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1 Introduction

1.1 The Problem

The aim of this thesis is to mainly study so called union closed set families, which are
families F consisting of �nitely many sets, such that if A and B are two sets from
F , then so is A ∪ B. Such families thus posses an algebraic, order theoretic, but also
combinatorial structure to them. The most famous open question about union closed
families is the union closed sets conjecture and states the following.

Conjecture 1.1 (Union Closed Sets Conjecture). Let F be a �nite, union closed family
containing at least one nonempty set. Then, there is an element x from the ground set
over F (i.e. a superset of all sets from F), such that

#{F ∈ F : x ∈ F} ≥ 1

2
·#F .

In words, any union closed family containing at least one nonempty set has an element
that is contained in at least half of the sets of F . While having a very simple statement,
this is one of the major open problems in extremal combinatorics. Everything will be
made more precise further down below.
Before starting with the technicalities, it is worthwhile to look at the �philosophical�
sides of this conjecture. A survey giving more details on the conjecture and its history
can be found in [10]. Since then, [1, 3, 9, 17, 38, 39] have further been published, studying
the union closed sets conjecture or related topics. In this context, the collaborative
e�ort in [24] should also be mentioned, which also resulted in a sizeable amount of new
conjectures and research.

1.2 Di�culties

It seems surprising that the Union Closed Sets Conjecture 1.1, having such a simple
statement, is still open after more then 40 years of extensive research. We give some
reasons why it might be so hard.
First of all, union closed families are so broad that they comprise a large number of
possible set families which allows for relatively sophisticated combinatorial substruc-
tures. Finding a technique that applies to all union closed families thus seems more
complicated than initially thought. Adding to that, the property of being union closed
only adds a small amount of structure to the set family. In [2] it was determined that
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1 Introduction

the number of union closed families over the ground set [n] behaves asymptotically as

2
(1+o(1))( n

n/2),

the exact values for small n are collected in [25]. This alone gives a sizeable amount of
possible set families (from a possible number of 22

n
) to study for each n ∈ N.

Secondly, while we do not assume much structure within our set families, we also do
not ask very much of them: we only search for an element contained in at least half of
the sets of the family (which seems rather di�cult to pinpoint exactly, as will be made
clear further down below). This makes an inductive approach, which certainly would be
among the �rst methods that one might try for Conjecture 1.1, rather di�cult. Indeed,
trying induction on #F , it is surprisingly di�cult to control the behaviour of elements
from the ground set x ∈ [n] with respect to the family F , even after we extend F by
only one or two more sets (whilest still being union closed).
Thirdly, continuing on the previous point, it seems very di�cult to generalize Conjec-
ture 1.1. In [24], many possible generalizations were given and shortly after disproven
by counterexamples (many conjectures stated there, specializing Conjecture 1.1, were
also later proven correct, e.g. in [1]). This suggests that one might better try to con-
struct (or �nd) a counterexample to Conjecture 1.1. Many conditions on (minimal)
counterexamples are already known.

1.3 Summary of this Thesis

Chapters 2 and 3 are a summary of already known results that we might only adapt
to our situation. In chapter 4, except for those explicitly named there, we will explore
new results and techniques in the study of union closed families and related structures.
We start by discussing union closed families in general. In particular, we will investigate
equivalent structures that also give us a deeper view into the inner structure of union
closed families.
We then devote some time to the conjecture itself and its many faces. This also gives a
comparison between what is already known and what this thesis aims to tackle.
We then introduce completely new techniques in the study of the conjecture. Specif-
ically, we introduce weaker, related and generalized versions of the conjecture. Here
we also deduce some results that already suggest on how to improve on what is known
about the conjecture.
On the way, we pose new and unsolved questions related to the Union Closed Sets Con-
jecture. At the end, we summarize some open questions suitable for further research.

1.4 Notation

As is common, N, N0,Z,R denote the natural numbers, nonnegative integers, integers
and reals. The power set of a set X will be denoted by P(X). For n ∈ N we write
[n] := {1, ..., n} (with [0] = ∅) and also shorten P(n) := P([n]) (with P(0) = {∅}). For

4



1 Introduction

a set family F we use ⋃
F =

⋃
F∈F

F,
⋂
F =

⋂
F∈F

F.

We will also use the symbol ∪̇ to emphasize a disjoint union. For the symmetric di�er-
ence of two sets we use the symbol ∆, i.e.

A∆B = (A \B) ∪ (B \A) = (A ∪B) \ (A ∩B).

The cardinality of a set X will be denoted by #X.
For two functions f, g (with positive values) we use the following Landau notation:

- f = O(g) if there is a constant C > 0 such that for all su�ciently large n it holds
f(n) ≤ C · g(n);

- f = o(g) if lim
n−→∞

f(n)
g(n) = 0;

- f = Ω(g) if g = O(f).

The natural logarithm will be denoted by ln, all other logarithms just with log and their
respective base.
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2 Characterizations of Set Families

This chapter introduces some basic notions from the theory of set families and aims to
give an overview on how they are connected with each other. For this, it is certainly
sensible to introduce a notion of isomorphy for set families.

De�nition 2.1. Let X,Y be sets and let A ⊆ P(X),B ⊆ P(Y ) be two set families.
We say that A and B are isomorphic if there is a bijection f : X → Y such that the
induced map

f̃ : P(X)→ P(Y ), A 7→ f(A)

is a bijection from A to B.

If no explicit ground set X is provided, we may assume that a given set family A is
de�ned over

⋃
A.

2.1 Union Closed Families

We introduce some common terminology from the literature on set families (see [10]).

De�nition 2.2. Let n ∈ N and F ⊆ P(n). We call the set family F

(i) nontrivial if
⋃
F = [n] and

⋂
F = ∅;

(ii) separating if for all x, y ∈ [n], x ̸= y there is an F ∈ F with #(F ∩ {x, y}) = 1;

(iii) union closed if for A,B ∈ F also A ∪B ∈ F .

An element i ∈ [n] is called abundant (with respect to the family F) if

#{F ∈ F : i ∈ F} ≥ 1

2
·#F .

The element i is called strictly abundant if the above inequality holds strictly (i.e.
�>� instead of just �≥�).

We will abbreviate �union closed set family� simply by union closed family. In the
context of the above, [n] is the ground set and we often speak of union closed families
over [n]. If F ⊆ P(n) is union closed and nontrivial, then by de�nition [n] =

⋃
F ∈ F
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2 Characterizations of Set Families

Figure 2.1: A visualization of union closed families

as the (�nite) union of sets from F . For what follows, we will investigate several other
set structures and how they relate to union closed families. We �rst observe some
immediate consequences.

Observation 2.3.

(i) A set family is separating if and only if the families Fx := {F ∈ F : x ∈ F}, x ∈
[n] are pairwise distinct. Indeed, the separating property is equivalent to the
statement that for all x, y ∈ [n], x ̸= y at least one of the sets Fx \ Fy or Fy \ Fx

is nonempty. This is precisely the case if the families Fx, x ∈ [n] are pairwise
distinct (but may be contained in each other).

(ii) For F a union closed family over [n] and X ⊆ [n] some subset, the derived families

F1 := {F ∩X : F ∈ F},
F2 := {F \X : F ∈ F},
F3 := {F ∈ F : F ∩X = ∅},
F4 := {F \X : F ∈ F , X ⊆ F},
F5 := {F ∈ F : F ∩X = ∅, F ∪X ∈ F}

are all union closed, in particular for X = {x} consisting of only one element. If
F is also nontrivial then so are F1, F2 and F4 (over their respective ground sets⋃
F1 = X and

⋃
F2 =

⋃
F4 = [n] \X), which in general is not the case for F3

and F5. If F is separating then the same holds for F1 and F2, but in general not
for F3, F4 or F5. We skip the details here but these claims are straight forward
to verify.

(iii) Let F ⊆ P(n) be a separating, nontrivial, union closed family. Then F contains
a set of size n − 1. Indeed, assume otherwise and let F be a maximal set (with
respect to set inclusion) in F \ {[n]}. By assumption #F ≤ n − 2, so there are
distinct x, y ∈ [n] \ F, x ̸= y. Since F is separating, there is a G ∈ F with x ∈ G
and y /∈ G (the other way around is analogous). In particular then F ∪ G ∈ F .
Since x ∈ F ∪G but y /∈ F ∪G we get F ⊊ F ∪G ⊊ [n], contradicting maximality
of F .
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2 Characterizations of Set Families

De�nition 2.4. Let n ∈ N and U ⊆ P(n). The family U is called an up-set if
A ⊆ B ⊆ [n] and A ∈ U implies B ∈ U .

That is, up-sets are set families that are closed under taking supersets. They are also
refered to as (order/set) �lters (in P(n)). Every up-set is union closed.

Example 2.5. We give some examples for union closed families.

(i) Trivially, P(n) and {∅, [n]} are union closed families over [n]. Of the two, only
the �rst one is separating (for n ≥ 2). A bit more interesting, for a k = 1, ..., n
the family

F := P(k) ∪ {[l] : l = k + 1, ..., n}
is a nontrivial, separating, union closed family over [n]. Intuitively, the union
closedness of a set family would suggest that F would have to contain many
�large� sets. However, this example shows that one has to be more careful with
�largeness�.

(ii) Denote by N := {A ⊆ N : #A < ∞} the family of �nite subsets of N. De�ne a
linear order on N as follows: For A,B ∈ N , A ̸= B de�ne A < B, if

• maxA < maxB or

• maxA = maxB and max(A∆B) ∈ A.

The order then starts

∅ < 1 < 12 < 2 < 123 < 23 < 13 < 3 < 1234 < 234 < 134 < 34 < 124 < 24 < ...

(here we omit the braces, e.g. 123 stands for the set {1, 2, 3}). Form ∈ N letH(m)
be the �rst m sets according to this order. Then H(m) ⊆ P(n) with n = ⌈log2m⌉
and H(m) is union closed. Indeed, this follows from A ≤ B ⇒ A ∪ B ≤ B for
A,B ∈ N , which can be deduced from the de�nition of the above order. The
union closed family H(m) is commonly called the Hungarian family.
A similar construction results in the so called Renaud-Fitina families (for that see
[10, 35]).

(iii) There are several other constructions of union closed families with peculiar proper-
ties. One of those is given in [33], with a generalization given in [10]. The following
example is similar and was �rst given in [37] (using shorthand as above):

{123, 6789, 4589, 4567, 46789, 45689, 45678, 16789, 24589, 34567, 456789, 146789,
245689, 345678, 1456789, 2456789, 3456789, 1236789, 1234589, 1234567,

12456789, 13456789, 23456789, 12346789, 12345689, 12345678, 123456789}.

This family consists of 27 sets and is de�ned over the set [9]. Here, the elements
1, 2, 3 appear in 13 sets, 4, 6, 8 appear in 23 and 5, 7, 9 appear in 20. Notice that
the elements 1, 2 and 3 are contained in the unique set of the smallest cardinality,
yet they are the least frequent elements among the set family, they are not even
contained in at least half of all sets. More visually, the above family can be
represented in a Hasse diagram.
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2 Characterizations of Set Families

Figure 2.2: The Hasse diagram of the family from Example 2.5 (iii)
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2 Characterizations of Set Families

2.2 Intersection and ∆-Closed Families

If we want to study union closed families, it is natural to also consider set families which
are closed under other set theoretic operations. This motivates the following de�nition.

De�nition 2.6. Let n ∈ N and F ⊆ P(n). We call the set family F

(i) intersection closed if for A,B ∈ F also A ∩B ∈ F ;

(ii) ∆-closed if for A,B ∈ F also A∆B ∈ F (symmetric di�erence).

An element i ∈ [n] is called rare (with respect to the family F) if

#{F ∈ F : i ∈ F} ≤ 1

2
·#F .

The element i is called strictly rare if the above inequality holds strictly (i.e. �<�
instead of just �≤�).

Again, we will abbreviate �intersection closed set family� to intersection closed family,
and analogously for ∆-closed family. In measure and probability theory in particular,
nonempty intersection closed families are also referred to as π-systems (see [7]). The
following elementary theorem gives a connection between union and intersection closed
families.

Theorem 2.7. Let n ∈ N. Then the following sets are in bijection to each other:

{F ⊆ P(n) : F union closed} → {F ⊆ P(n) : F intersection closed}
F 7→ {[n] \ F : F ∈ F}.

This bijection preserves the property of being nontrivial.

Proof. Using de Morgan's rule, for every union closed family F ⊆ P(n) the derived
family {[n] \F : F ∈ F} is intersection closed. By the same argument, being nontrivial
is also preserved. This map is then a bijection, as the inverse is also given by taking
complements of all member sets of an intersection closed family (resulting in a union
closed family). ■

This shows that union closed families are in a certain sense equivalent (cryptomorphic)
to intersection closed families. This allows us to translate statements for union closed
families to statements about intersection closed families. In many contexts it is more
common to work with intersection closed families instead of union closed families (anec-
dotally, mathematical structures, such as groups, vector spaces, σ-algebras and so on,
tend to be better behaved with respect to intersections rather than unions).
In analogy to union closed families, we also de�ne the corresponding concept of up-sets
under the above bijection.
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2 Characterizations of Set Families

De�nition 2.8. Let n ∈ N and D ⊆ P(n). The family D is called a down-set if
A ⊆ B ⊆ [n] and B ∈ D implies A ∈ D.

Down-sets are also refered to as independence systems, abstract simplicial complexes or
(order/set) ideals (in P(n)).
While ∆-closed families will not be all too important for us, they still have a property
closely related to the later chapters of this thesis. For this, we need the following (also
elementary) preparations.

Lemma 2.9. Let F ⊆ P(n) be a ∆-closed family. Then (F ,∆) is a (abelian) group
with identity ∅ and #F = 2k for some k = 0, 1, ..., n.

Proof. Interpreting sets X ⊆ [n] as (0, 1)-strings (in the canonical way) we have the well
known group isomorphism (P(n),∆) ∼= ((Z/2Z)n,+) (componentwise addition modulo
2). Thus, F is a subgroup of P(n). The fact that #F = 2k is then an easy consequence
of Lagrange's theorem (and the fact that 2 is prime). ■

In a slightly weaker version, the following was already observed in [32].

Theorem 2.10. Let F ⊆ P(n) be a nontrivial, ∆-closed family. Then, for all i ∈ [n]
we have

#{F ∈ F : i ∈ F} = 1

2
·#F

Proof. Fix i ∈ [n]. Because F is nontrivial, there is an A ∈ F with i ∈ A. De�ne the
set E := {F ∈ F : i /∈ F} which is a proper subset of F (as A /∈ E). By properties
of the symmetric di�erence, the set E (equipped with the symmetric di�erence ∆) is a
subgroup of F (if i /∈ X and i /∈ Y , then also i /∈ X∆Y ). Especially, one has ∅ ∈ E so
that E is nonempty. De�ning the coset

AE := {A∆E : E ∈ E},

we claim
AE = {F ∈ F : i ∈ F}.

Indeed, if F ∈ AE , then F = A∆E for some E ∈ E . Since i ∈ A and i /∈ E, we have
i ∈ F . On the other hand, if i ∈ F ∈ F , then F = A∆E with E := F∆A. Since i ∈ A
and i ∈ F , we have i /∈ E, so that F ∈ AE . This shows the above set equality.
In particular, we get E∪̇AE = F (as every set in F either does or does not contain i).
Thus, {E , AE} is a complete set of cosets of E . Since cosets have the same cardinalities,
we get

#F = 2 ·#(AE) = 2 ·#{F ∈ F : i ∈ F},

proving the claim. ■
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2 Characterizations of Set Families

2.3 Simply Rooted Families

We already saw an equivalent characterization of union closed families via intersection
closed families. This correspondance came from taking complements of all member sets
of a union closed family. We now want to investigate what happens, if we take the
complement of a set family F itself (i.e. P(n) \ F). This will be answered by the
following de�nition and theorem.

De�nition 2.11.

(i) Let i ∈ A ⊆ B, then de�ne the intervals

[A,B] := {X : A ⊆ X ⊆ B}

and
[i, A] := {X : i ∈ X ⊆ A}.

(ii) Let n ∈ N and let G ⊆ P(n) be a set family. We call G simply rooted if for all
∅ ≠ A ∈ G there is an i ∈ A with [i, A] ⊆ G.

The following theorem is well known in the theory of set families and has been used by
several authors (e.g. [5, 26]) to investigate the structure of union closed sets.

Theorem 2.12. Let n ∈ N. Then the following sets are in bijection to each other:

{F ⊆ P(n) : F union closed} → {G ⊆ P(n) : G simply rooted}
F 7→ P(n) \ F .

Proof. We have to show that F ⊆ P(n) is union closed, if and only if G := P(n) \ F
is simply rooted. For this, let F be a union closed family and let ∅ ≠ G ∈ G. Since
G /∈ F , we must have

G ⊋
⋃
{F ∈ F : F ⊆ G},

as the right hand side is the union of sets from F and thus itself a set in F . Choosing
an

i ∈ G \
⋃
{F ∈ F : F ⊆ G},

we obtain [i, G] ⊆ G.
On the other hand, let G be simply rooted and let A,B ∈ F . Assume, for contradiction,
that A∪B /∈ F . Thus, A∪B ∈ G and there is an i ∈ A∪B with [i, A∪B] ⊆ G. We may
assume, by symmetry, that i ∈ A. But then A ∈ [i, A] ⊆ [i, A ∪ B] ⊆ G, contradicting
A ∈ F = P(n) \ G. This shows that A ∪B ∈ F , so that F is union closed. ■

The usefulness of simply rooted families over [n] lies in the fact that one can more easily
control the sets that contain a given element i ∈ [n]. This is due to the fact that element
containment is already part of the de�nition of the simply rootedness, while it is not
entirely clear how element containment and union closedness are related (from i ∈ A
and i ∈ B one can clearly deduce i ∈ A ∪ B, but if for example A = A ∪ B we do not
get a new set that contains i).
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2 Characterizations of Set Families

2.4 Interior Operators

This and the following section are based on concepts mentioned in [11, 15]. It should be
noted that here we diverge a bit from the traditions used in the common literature. For
what follows, one usually works with dual concepts that are more natural in the context
of intersection closed families. Since we will be interested in union closed families, the
concepts will be adapted accordingly. We start with the following de�nition.

De�nition 2.13. Let n ∈ N and τ : P(n)→ P(n). We call τ a pre-interior operator
if

(i) for all A ⊆ [n] we have τ(A) ⊆ A (exclusivity);

(ii) for all A ⊆ B ⊆ [n] we have τ(A) ⊆ τ(B) (monotonicity).

We call τ an interior operator if additionally

(iii) for all A ⊆ [n] we have τ(τ(A)) = τ(A) (idempotence).

We have already seen an interior operator in the proof of Theorem 2.12. Interior oper-
ators are also known, among other names, as kernel operators. Often, one works with
closure operators instead, which are the dual concept of interior operators and which
ful�ll (ii) and (iii) from above as well as

(i') for all A ⊆ [n] we have τ(A) ⊇ A (extensibility).

We start with the following lemma.

Lemma 2.14. Let n ∈ N and τ : P(n)→ P(n). Then the following are equivalent:

(i) For all A ⊆ B ⊆ [n] we have τ(A) ⊆ τ(B) (monotonicity);

(ii) For all A,B ⊆ [n] we have τ(A) ∪ τ(B) ⊆ τ(A ∪B) (superadditivity).

Proof. (i ⇒ ii): For A,B ⊆ [n] we have A ⊆ A ∪ B and B ⊆ A ∪ B. Thus, as τ is
monotone, we get τ(A) ⊆ τ(A∪B) and τ(B) ⊆ A∪B. Both together give τ(A)∪τ(B) ⊆
τ(A ∪B). Since A and B were arbitrary, this proves the superadditivity.
(ii ⇒ i): For A ⊆ B ⊆ [n], we have B = A ∪ B. Thus, by the superadditivity we
get τ(A) ∪ τ(B) ⊆ τ(A ∪ B) = τ(B), which shows τ(A) ⊆ τ(B). Since A ⊆ B were
arbitrary, this shows the monotonicity of τ . ■

The lemma shows that monotone set functions seem to encode union-structures. To
make this more precise, for τ : P(n)→ P(n) de�ne the �xed point set

Fix τ := {A ⊆ [n] : τ(A) = A}.

We then have the following two characterizations.

13



2 Characterizations of Set Families

Theorem 2.15. Let F ⊆ P(n) be a set family. Then the following are equivalent:

(i) ∅ ∈ F and F is union closed;

(ii) F = Fix τ for some pre-interior operator τ : P(n)→ P(n).

Proof. (i ⇒ ii): Let ∅ ∈ F ⊆ P(n) be a union closed family and de�ne the operator

τ : P(n)→ P(n), X 7→
⋃
{F ∈ F : F ⊆ X}.

It is straightforward to check that this is a pre-interior operator. For every F ∈ F , we
trivially have τ(F ) = F , so that F ⊆ Fix τ . On the other hand, if X ∈ P(n)\F then, as
in the proof of Theorem 2.12, we have τ(X) ⊊ X. This shows P(n) \F ⊆ P(n) \Fix τ ,
i.e. Fix τ ⊆ F . All in all, we get F = Fix τ , which shows that (ii) holds.
(ii ⇒ i): Let τ : P(n) → P(n) be a pre-interior operator and set F := Fix τ . By
De�nition 2.13 (i) it is clear that τ(∅) = ∅, so that ∅ ∈ F . It remains to show that F
is union closed. For this, let A,B ∈ F and we need to show τ(A ∪ B) = A ∪ B. The
inclusion �⊆� holds by monotonicity of τ . For the other inclusion, Lemma 2.14 and
A,B ∈ F = Fix τ yield

A ∪B = τ(A) ∪ τ(B) ⊆ τ(A ∪B).

Thus τ(A ∪B) = A ∪B, as desired. ■

The above correspondence between union closed families (containing the empty set) and
pre-interior operators is not one-to-one. To �x this, we have the following characteriza-
tion.

Theorem 2.16. Let n ∈ N. The following sets are in bijection to each other:

{F ⊆ P(n) : ∅ ∈ F union closed} → {τ : P(n)→ P(n) interior operator}

F 7→
(
X 7→

⋃
{F ∈ F : F ⊆ X}

)
.

The inverse of this correspondence is given by τ 7→ Fix τ .

Proof. In the proof of Theorem 2.15, we have seen that τ(X) :=
⋃
{F ∈ F : F ⊆ X}

yields a pre-interior operator, which has �xed point set Fix τ = F . It remains to show,
that τ2 = τ . But this follows immediately since for all X ⊆ [n] we have τ(X) ∈ F
(indeed, the maximal F ∈ F with F ⊆ X). Thus, the above correspondance is well
de�ned.
It remains to show, that the above correspondence is bijective. For this, we have to
prove that if τ : P(n)→ P(n) is an interior operator then τ is given by

τ(X) =
⋃
{F ∈ Fix τ : F ⊆ X} (2.1)

for all X ⊆ [n]. Fix an X ⊆ [n]. We have (by monotonicity of τ)

F = τ(F ) ⊆ τ(X)

14



2 Characterizations of Set Families

Figure 2.3: A set X ⊆ [n] and its projection τ(X) ∈ F

for all F ∈ Fix τ with F ⊆ X. Thus τ(X) ⊇
⋃
{F ∈ Fix τ : F ⊆ X}. For the other

inclusion, note that τ(X) ⊆ X (τ exclusive) and τ(X) ∈ F (τ idempotent), so that
τ(X) is part of the above union. Thus, we also get the other inclusion and (2.1) holds.
This �nishes the proof. ■

For a union closed family ∅ ∈ F ⊆ P(n) the corresponding interior operator τ : P(n)→
F ⊆ P(n) may be seen as a �projection� from P(n) onto F .

2.5 Anticongruence Partitions

We will build upon the insights from the last section. Let ∅ ∈ F ⊆ P(n) be a union
closed family and τ : P(n) → P(n) the corresponding interior operator from Theorem
2.16. Notice that the image τ(P(n)) of τ is exactly F (as τ is idempotent and Fix τ =
F). For every F ∈ F we de�ne its corresponding cluster by

T (F ) := τ−1(F ) = {X ⊆ [n] : τ(X) = F}. (2.2)

It is then clear that {T (F ) : F ∈ F} forms a partition of P(n), as every X ∈ P(n) is
in the cluster T (τ(X)). We want to investigate what structure these clusters have.

De�nition 2.17. Let n ∈ N and P = {P1, ..., Pm} be a partition of P(n) into nonempty,
pairwise disjoint sets Pi ⊆ P(n), i = 1, ...,m. We call P an anticongruence partition
if the following holds: For all A,B,C ⊆ [n] with A,B ∈ Pi there is a j = j(A,B,C) ∈
{1, ...,m} with A ∩ C,B ∩ C ∈ Pj . The corresponding equivalence relation γ = γP of
an anticongruence partition will be called an anticongruence relation.

Thus, a partition P of P(n) is an anticongruence partition if for two sets A and B
from the same partition class, A∩C and B ∩C are also in the same partition class for
arbitrary C (but it may vary in which partition class A∩C and B ∩C land). In terms
of anticongruence relations:

AγB ⇒ (A ∩ C)γ(B ∩ C).

15
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Remark 2.18. In the literature it is more common to work with equivalence relations
instead of the corresponding partitions and also to use the dual concepts. There, a
congruence relation is an equivalence relation θ on P(n) such that if AθB then also
(A∪C)θ(B∪C) for all C ⊆ [n]. These concepts originate in the theory of dependencies
in data banks (see for instance [11, 15]).
Congruence relations are also used in order theory, where they are equivalence relations
respecting unions and intersections (or more generally joins and meets, see De�nition
3.9 below). For more on that side see [14]. However, we will use them more akin
to the context in [11] from where we get the distinction between compatibility with
intersections and unions.

Our �rst aim is to show that the partitions derived from a union closed family ∅ ∈ F ⊆
P(n) (or more precisely from the corresponding interior operator τ) are precisely the
anticongruence partitions of P(n).

Theorem 2.19. Let n ∈ N. The following sets are in a bijection to each other:

{τ : P(n)→ P(n) interior operator} → {P anticongruence partition of P(n)}
τ 7→ {T (F ) : F ∈ F},

where F = Fix τ and T (F ) as in (2.2). Denoting γ = γP the corresponding equivalence
relation, the inverse is given via

P 7→
(
X 7→

⋂
{Y ⊆ [n] : XγY }

)
. (2.3)

Proof. We �rst show that the above map is well de�ned. For this, we have to show that
for an interior operator τ : P(n)→ P(n) the corrsponding clusters form an anticongru-
ence partition. Indeed, it su�ces to show that for all A,C ⊆ [n] and calling F := τ(A),
we have

τ(A ∩ C) = τ(F ∩ C)

(then, if A,B ⊆ [n] are in the same cluster so that τ(A) = τ(B) = F , we have
τ(A∩C) = τ(F ∩C) = τ(B∩C), so that A∩C and B∩C are also in the same cluster).
Since τ is exclusive, we have A ⊇ F and consequently A∩C ⊇ F ∩C. By monotonicity
of τ , this gives the inclusion τ(A ∩ C) ⊇ τ(F ∩ C). For the reverse inclusion, take
an arbitrary H ∈ F = Fix τ with H ⊆ A ∩ C. Then clearly H ⊆ C and, again by
monotonicity of τ , H = τ(H) ⊆ τ(A) = F . Hence H ⊆ F ∩ C, which shows

τ(A ∩ C) =
⋃
{H ∈ F : H ⊆ A ∩ C} ⊆

⋃
{H ∈ F : H ⊆ F ∩ C} = τ(F ∩ C)

and thus proves the other inclusion. This shows the well de�nedness.
To see that the claimed correspondance is also bijective, we have to verify that (2.3)
is indeed an inverse. We are done once we showed that for all interior operators τ :

P(n)→ P(n),
τ(X) =

⋂
{Y ⊆ [n] : τ(Y ) = τ(X)}

(this is (2.3) applied to the anticongruence partition derived from the clusters of τ ,
which has the corresponding anticongruence relation XγY if and only if τ(X) = τ(Y ))
holds for all X ⊆ [n]. Since Y = τ(X) is part of the intersection (by idempotence of τ),
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Figure 2.4: The cluster T (F ) for an F ∈ F

we directly get τ(X) ⊇
⋂
{Y ⊆ [n] : τ(Y ) = τ(X)}. On the other hand, for all Y ⊆ [n]

with τ(Y ) = τ(X) we have τ(X) = τ(Y ) ⊆ Y , which also shows the other inclusion.
All in all, this veri�es the claimed inverse map and �nishes the proof. ■

From the get-go it is not clear how restrictive the anticongruence condition actually
is. However, Theorems 2.16 and 2.19 give an easy way to construct all anticongruence
partitions: Start with a union closed family containing the empty set, construct the
corresponding interior operator and derive from that the partition via its clusters. In
the following we collect some immediate consequences of anticongruence partitions, in
particular the structure of its partition classes.

Corollary 2.20. Let n ∈ N and let P = {P1, ..., Pm} be an anticongruence partition
of P(n).

(i) If A,B ∈ Pi and A ⊆ B, then [A,B] ⊆ Pi (see De�nition 2.11 (i));

(ii) If A,B ∈ Pi, then A ∩B ∈ Pi.

(iii) For all i, j ∈ {1, ...,m} there is a unique k = k(i, j) ∈ {1, ...,m} such that

Pi

∈

Pj ⊆ Pk,

where A∈ B := {A ∩B : A ∈ A, B ∈ B} denotes the elementwise intersection.

Of course, one can also de�ne the elementwise union A ∈B of two set families A and B
in an analogous manner.

Proof. (i): Let A ⊆ B be sets from the same partition class Pi. For an arbitrary
C ∈ [A,B], Theorem 2.19 yields, that A = A ∩ C and C = B ∩ C are also in the same
partition class. Since A ∈ Pi thus also C ∈ Pi. This proves [A,B] ⊆ Pi.
(ii): If A and B are from the same partition class Pi, setting C = B in Theorem 2.19
yields that A ∩B and B ∩B = B are also from the same partition class. Since B ∈ Pi

thus also A ∩B ∈ Pi.
(iii): Let A,B ∈ Pi and C,D ∈ Pj . It su�ces to show that A ∩ C and B ∩ D lie in
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the same partition class (namely then Pk). Denoting by γ = γP the corresponding
anticongruence relation, we have the implications

AγB ⇒ (A ∩ C)γ(B ∩ C)

CγD ⇒ (B ∩ C)γ(B ∩D).

By transitivity of γ we thus get (A ∩ C)γ(B ∩D) as desired. ■

Remark 2.21.

(i) By the previous corollary, we see that the partition classes of an anitcongruence
partition are of the following form: Every partition class Pi contains a unique
minimal member X =

⋂
Pi and we have

Pi =
⋃

Y ∈Pi

[X,Y ].

In particular, using Theorems 2.16 and 2.19, for every anticongruence partition P
the family {

⋂
Pi : Pi ∈ P} is union closed.

(ii) Also note that not all partitions of P(n) whose partition classes ful�ll the two
properties from (i) are an anticongruence partition. A simple example of that
for n = 2 is {{∅}, {1}, {2, 12}} (using shorthand notation as in Example 2.5 (ii)).
Indeed, the family of minimal members from each partition class has to form a
union closed family, which is here not the case. Alternatively, 2 and 12 are in the
same partition class, but intersecting with 1 yields ∅ and 1 respectively, which lie
in di�erent partition classes.

(iii) In general, Pi

∈

Pj ⊆ Pk is a proper inclusion. As an example, over n = 2 we have
the anticongruence partition {{∅, 1}, {2}, {12}}. For P1 = {∅, 1} and P2 = {2}
(again we remind: �2� here actually stands for {2}, etc.) we have P1

∈

P2 = {∅} ⊊
P1 (i.e. k = 1).

The following corollary is particularly noteworthy and will be of importance later on.

Corollary 2.22. Let n ∈ N, ∅ ∈ F ⊆ P(n) a union closed family, τ : P(n) →
P(n) the corresponding interior operator and T (F ), F ∈ F the corresponding clusters.
Furthermore, let E,F ∈ F with E ⊆ F . Then the map

ιFE : T (F )→ T (E), X 7→ X \ (F \ E)

is an order embedding (i.e. for all X,Y ∈ T (F ) it holds X ⊆ Y if and only if ιFE(X) ⊆
ιFE(Y )), in particular injective.

Proof. We �rst prove that the given map is well de�ned. Clearly, if X ∈ T (F ) then
X and F are in the same cluster (namely T (F )). Thus, by Theorem 2.19 we get that
X \ (F \E) and F \ (F \E) = E are in the same cluster (note that taking �... \ (F \E)�
is the same as taking �... ∩ (([n] \ F ) ∪ E)�). Hence X \ (F \ E) ∈ T (E), so that the
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map is indeed well de�ned.
Let now X,Y ∈ T (F ). Assume X ⊆ Y . This gives

ιFE(X) = X \ (F \ E) ⊆ Y \ (F \ E) = ιFE(Y ),

so that ιFE is order preserving. Assume now ιFE(X) ⊆ ιFE(Y ). Using F ⊆ X and F ⊆ Y
we get

X = ιFE(X) ∪̇ (F \ E) ⊆ ιFE(Y ) ∪̇ (F \ E) = Y,

so that ιFE is an order embedding. It is a general fact from order theory that order
embeddings are injective (using antisymmetry, see [14] for more details). In our case,
this can be seen a bit more directly using the set operations. Indeed, if X,Y ∈ T (F )
with ιFE(X) = ιFE(Y ), essentially the same argument as was already used above shows

X = ιFE(X) ∪̇ (F \ E) = ιFE(Y ) ∪̇ (F \ E) = Y,

so that ιFE is injective. ■

Clearly, ιEE = idT (E) is just the identity map. The above corollary shows that for
E,F ∈ F , E ⊆ F the cluster T (F ) can be embedded (order theoretically) into the
cluster T (E) (via the map ιFE). In particular⋃{

ιFE

(
T (F )

)
: F ∈ F , E ⊆ F

}
= T (E)

for all E ∈ F (the inclusion ⊆ follows by the above corollary, the choice F = E also
shows ⊇).

2.6 The Equivalence Theorem

For the sake of having a better overview, we recollect the major results so far into the
following equivalence theorem.

Theorem 2.23. Let n ∈ N. The following sets are in bijection to each other:

SUC = {F ⊆ P(n) : ∅ ∈ F union closed},
SIC = {F ⊆ P(n) : [n] ∈ F intersection closed},
SSR = {G ⊆ P(n) : ∅ /∈ G simply rooted},
SIO = {τ : P(n)→ P(n) interior operator},
SAP = {P anticongruence partition of P(n)}.

Proof. The bijections are given in the Theorems 2.7, 2.12, 2.16 and 2.19. It should
be noted that the there given bijections are compatible with the here given sets (e.g.
if ∅ ∈ F ⊆ P(n) is union closed, then the corresponding intersection closed family
contains [n], etc.) ■

Later on, we will mainly be interested in anticongruence partitions.
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The Union Closed Sets Conjecture is the main driving force in the study of set families
(from a combinatorial point of view). We will now go into the details of the conjecture
itself.

3.1 The Conjecture

We start by given a more precise statement for the Union Closed Sets Conjecture.

Conjecture 3.1 (Union Closed Sets Conjecture). Let n ∈ N and let F ⊆ P(n) be a
nontrivial, union closed family. Then there is an element i ∈ [n] with

#{F ∈ F : i ∈ F} ≥ 1

2
·#F .

The above may be reformulated as: Every �nite, nontrivial union closed family contains
an abundant element.

Remark 3.2. The minimal assumption on F that is certainly necessary (next to the
union closedness) is that F contains at least one nonempty set. However, without
losing generality, we can assume F to be nontrivial, as we may shrink the ground set
to
⋃
F (i.e. disregard all elements that appear in no sets) and also assume

⋂
F = ∅,

so that no element trivially ful�lls Conjecture 3.1. The latter can be done, as deleting
trivial elements (in this sense) does not a�ect the union closedness of the family (see
Observation 2.3 (ii)). Furthermore, we may assume F to be separating (see De�nition
2.2 (ii)), as two elements which cannot be separated behave the same with regards to
Conjecture 3.1. Thus we may delete indistinguishable elements (which again does not
a�ect the union closedness).
It should also be noted that it is important to only consider �nite union closed families
(which then by the previous remarks may be assumed to only consist of �nite sets). For
example, the family

F := {{n ∈ N : n ≥ k} : k ∈ N}

over N is union closed. However, every n ∈ N is only contained in �nitely many sets
from F , while F itself is of in�nite cardinality. Thus, if one wants to generalize the
Union Closed Sets Conjecture 3.1 to in�nite families, one seems to need some additional
�compactness� or "Noetherianity" assumptions (e.g. consider a similar example to above
but over N∪{∞}) to assure that at least one element is contained in an in�nite number
of sets from the family.
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3 The Union Closed Sets Conjecture

Using Theorems 2.7 and 2.12 and the bijections given there, an easy inspection leads
to the following equivalence.

Observation 3.3. The following statements are equivalent:

(i) Every �nite, nontrivial, union closed family contains an abundant element (Union
Closed Sets Conjecture 3.1);

(ii) Every �nite, nontrivial, intersection closed family contains a rare element (Inter-
section Closed Sets Conjecture);

(iii) Every �nite, nontrivial, simply rooted family contains a rare element.

In Theorem 2.10, the matter for ∆-closed families was already resolved (even in a much
stronger version). Unfortunately, this does not seem to help for the case of union closed
families. Also, the bijections given in Theorems 2.16 and 2.19 do not seem to easily allow
a simple (insightful) reformulation of the Union Closed Sets Conjecture 3.1. However,
they help in understanding the structre of union closed families, which will be useful
later on. For the rest of this chapter we recollect some known results that, irrespective
of the truth of the Union Closed Sets Conjecture 3.1, are certainly interesting on their
on rights. On the way, we also prepare some of the basic facts that will be used in the
latter sections. We start with a recollection of known cases for Conjecture 3.1.

Remark 3.4.

(i) Every �nite, union closed family containing a one-element or two-element set
ful�lls the Union Closed Sets Conjecture 3.1. Even more, if {x} ∈ F ({x, y} ∈ F)
then x (at least one of x or y) is abundant in F . This is often refered to as a
�folklore� fact in combinatorics (see [10] or [36, 37]). The corresponding statement
for three-element sets is in general not true (see Example 2.5 (iii)). There is
however a characterization of local con�gurations that guarantee the existence of
an abundant element among them (see [33]). The latter uses techniques from
convex analysis.

(ii) There are many classes of union closed families which are known to ful�ll the
Union Closed Sets Conjecture 3.1. Many of them are listed in [10] (e.g. if F is
not only union closed but also intersection closed [33] or if for F ⊆ P(n) one has
#F ≥ (1 − c)2n−1 with c > 0 an absolute constant [26]). Recently, in [1] it was
shown that union closed families generated by translates of subsets of a �nite,
abelian group contain an abundant element. Even stronger, they showed that the
expected number of sets containing any given element is ≥ 1

2 ·#F (see Observation
3.5).

(iii) It is also known (see [27, 42]) that any nontrivial, union closed family F ⊆ P(n)
contains an element that appears in at least Ω( #F

log2(#F)) many sets of F . We will
go into similar results later on.

We continue with some more speci�c ideas in the next sections.
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3.2 Averaging

We start with the following observation.

Observation 3.5. Let F ⊆ P(n) be a nontrivial, union closed family. If we know that,
on average, we have

1

n

n∑
i=1

#{F ∈ F : i ∈ F} ≥ 1

2
·#F , (3.1)

then F contains at least one abundant element. Of course, via double counting, the left
hand side of the above may be rewritten as

n∑
i=1

#{F ∈ F : i ∈ F} =
∑
F∈F

#F.

Unfortunately (at least if we consider the expected value for the uniform distribution
on [n] as above), the inequality (3.1) is generally not true. A simple example of that
is {∅, {1}, [n]} ⊆ P(n) for n ≥ 3. By setting the parameters k and n in Example 2.5
(i) right, one can even show that the expected value can be arbitrarily small. However,
there is at least the following result from [5].

Theorem 3.6. Let n ∈ N and let F ⊆ P(n) be a union closed family with #F ≥ 2
3 ·2

n.
Then

1

n

n∑
i=1

#{F ∈ F : i ∈ F} ≥ 1

2
·#F

holds.

This theorem is sharp in the sense that for all n ∈ N there is a union closed family
F ⊆ P(n) of size #F = ⌊23 · 2

n⌋ which does not ful�ll inequality (3.1). Examples of
that are the Hungarian families H(⌊23 · 2

n⌋) from Example 2.5 (ii).

There is at least the following result known about averaging, proved in [34].

Theorem 3.7. Let n ∈ N and let F ⊆ P(n) be a union closed family consisting of
m = #F sets. Then

1

m

∑
F∈F

#F ≥ log2m

2
.

The bound in the theorem is equivalent to

1

n

∑
x∈[n]

#{F ∈ F : x ∈ F} ≥ log2m

n
· m
2
.

In the case of separating families, in [21] the following bound was proven.
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Theorem 3.8. Let n ∈ N and let F ⊆ P(n) be a separating, union closed family
consisting of m = #F sets. Then

1

n

∑
x∈[n]

#{F ∈ F : x ∈ F} ≥ n+ 1

2
.

A short proof of this is also given in [10].

3.3 Posets and Lattices

It is natural to not only consider the algebraic and combinatorial structure derived from
the union operation of a union closed family, but also the order theoretic structure that
arises from the canonical order on F (set inclusion). In view of the Union Closed Sets
Conjecture 3.1, which is concerned with element incidence, this seems especially useful.

3.3.1 Terminology from Order Theory

For a more profound discussion, we need some basic notions from order theory.

De�nition 3.9. Let X be a nonempty set. Then (X,≤) is called a poset if ≤ de�nes
a re�exive, antisymmetric and transitive relation on X. For x, y ∈ X we say that y
covers x if x < y and x ≤ z ≤ y implies z = x or z = y for all z ∈ X.
Furthermore, (X,≤) is called a lattice if every x, y ∈ X have a unique minimal common
upper bound (the join x ∨ y) and a unique maximal common lower bound (the meet

x ∧ y).

Intuitively, y covers x if y is a �successor� of x with respect to the order.

Example 3.10. Every set family F becomes a poset if we equip it with the order of set
inclusion. If F is also union and intersection closed, then (F ,⊆) becomes a lattice with
join A∨B = A∪B and meet A∧B = A∩B. In general, even if F is neither union nor
intersection closed, we may still be able to obtain a meet and join (which then di�er
from the union and intersection). For this, we have the following observation.

Observation 3.11. Let n ∈ N and ∅ ∈ F ⊆ P(n) be a nontrivial, union closed family
containing the empty set. Since F is union closed, the corresponding poset (F ,⊆) has
a join, namely set unions. So far, this makes F into a join-semilattice. To see that F
is indeed a lattice, we need to show that any two sets A,B ∈ F have a meet. However,
this cannot be realized by the intersection (in general), as F may not be intersection
closed. Using the interior operator τ : P(n) → P(n), X 7→

⋃
{F ∈ F : F ⊆ X} as in

Theorem 2.16, we can still verify that

A ∧B := τ(A ∩B)
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is a meet operation for F . Indeed, clearly A ∧B is a set in F and it is also the largest
set among all sets from F , that is a subset of both A and B (by the way τ was de�ned).
This makes F into a lattice.

Even for �nite posets and lattices there exists a deep theory and a rich literature (see
[14]). However, here we will only be concerned with the connections to the union closed
sets problem. For this, we need some more notions. First note that for �nite lattices
(X,≤) (as we are interested in) there is a unique minimal element (the largest common
lower bound of X, i.e. the meet of all elements of X, which is well de�ned for �nite X)
and a unique maximal element (the lowest common upper bound of X, i.e. the join of
all elements of X). These minimal and maximal elements are commonly denoted by 0
and 1 (sometimes also refered to as the bottom ⊥ and top ⊤ respectively) in X. Clearly,
in the case of ∅ ∈ F ⊆ P(n) a nontrivial, union closed family the minimal element of F
is ∅ and the maximal element of F is [n].

De�nition 3.12. Let (X,≤) be a lattice with join ∨ and meet ∧. An element x ∈ X
which is not minimal is called join-irreducible if x = y ∨ z implies y = x or z = x.
Analogously, an element x ∈ X which is not maximal is called meet-irreducible if
x = y ∧ z implies x = y or x = z.

It is common to say that the minimal element of a lattice (if it has one, e.g. in �nite
lattices) is not join-irreducible and dually for the maximal element that it is no meet-
irreducible. For example in the lattice (N, |) (the natural numbers with the order derived
from dividability, the meet is the greatest common devisor and the join is the least
common multiple), the convention is that 1 is not join-irreducible (i.e. prime), see [14]
for more. Also note that an element x of a lattice L is join-irreducible if and only if
there exists exactly one element of L that is covered by x. Dually, an element x is
meet-irreducible if and only if there is a unique element covering x.

Example 3.13. For n ∈ N consider the nontrivial, union and intersection closed family
F = {∅, [1], ..., [n]} which is linearly (also known as totally) ordered. Then all members
of F are easily seen to be join-irreducible (i.e. union-irreducible) and meet-irreducible
(i.e. intersection-irreducible), except for the the minimal set ∅ and the maximal set [n]
of course.

3.3.2 The Lattice Formulation of the Union Closed Sets Conjecture

We now come back to the Union Closed Sets Conjecture 3.1. We start with the following
considerations.

Remark 3.14. Let ∅ ∈ F ⊆ P(n) be a nontrivial, union closed family. For any given
i ∈ [n] we have

{F ∈ F : i ∈ F} = F \ {G ∈ F : i /∈ G} = F \ {G ∈ F : G ⊆ [n] \ {i}}.
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Let τ : P(n)→ P(n) be the interior operator corresponding to F (Theorem 2.16). One
then has

{G ∈ F : G ⊆ [n] \ {i}} = {G ∈ F : G ⊆ τ([n] \ {i})}

by properties of τ . Thus, i ∈ [n] is abundant in F if and only if

#{G ∈ F : G ⊆ τ([n] \ {i})} ≤ 1

2
·#F .

The point we want to make is that τ([n] \ {i}) is an explicit member of F . Thus, the
Union Closed Sets Conjecture 3.1 holds if and only if every nontrivial, union closed F
has a maximal set X ∈ F \ {[n]} (even meet-irreducible in F) such that

#{G ∈ F : G ⊆ X} ≤ 1

2
·#F . (3.2)

If X is maximal in F \ {[n]}, then for any i ∈ [n] \X we have X = τ([n] \ {i}).
Note that in general, a union closed family need not contain a nonempty set A ∈ F \{∅}
such that

#{F ∈ F : A ⊆ F} ≥ 1

2
·#F .

A simple example of that is {∅, 12, 13, 23, 123} ⊆ P(3) (shorthand as in Example 2.5
(ii)). Thus, the requirement (3.2) gives a more intrinsic point of view of the structure
of union closed families. This will be made more precise in the conjecture below.

The importance of lattices for the Union Closed Sets Conjecture 3.1 lies in the following
(see [10]).

Conjecture 3.15. Let (L,≤) be a �nite lattice with at least two elements. Then there
is a meet-irreducible element x ∈ L such that

#{y ∈ L : y ≤ x} ≤ 1

2
·#L.

From context it should always be clear what meaning �≤� and �≥� have (i.e. in the
lattice L or in R). Also note that we have to require that #L ≥ 2, as otherwise L does
not contain any meet-irreducible elements.

Theorem 3.16. The Union Closed Sets Conjecture 3.1 and Conjecture 3.15 are equiv-
alent.

For a detailed proof we would need to discuss some more theory on lattices. Instead we
will refer to the literature where we would need further results about lattices.

Proof. We use the reformulation of the Union Closed Sets Conjecture 3.1 for intersec-
tion closed families discussed in Observation 3.3. The gist of the proof of the above
equivalence is then to interpret a lattice as an intersection closed family and vice versa.
(⇒): Assume that any nontrivial intersection closed family contains a rare element. Let
(L,≤) be a lattice with at least two elements. For every x ∈ L set

M(x) = {y ∈ L : y ≥ x, y meet-irreducible}.
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One can show (see [14]) that M(x ∨ y) = M(x) ∩ M(y) and x =
∧
M(x). Thus

G = {M(x) : x ∈ L} is an intersection close family. The ground set of G is the set of
meet-irreducible elements in L, and G is in bijection with L. Applying the assumption
on G, we get the claim.
(⇐): Assume Conjecture 3.15 holds. Let F ⊆ P(n) be a nontrivial union closed family.
Interpret F as a lattice (F ,⊆) (see Observation 3.11). If A ∈ F is a meet-irreducible
set in F with

#{F ∈ F : F ⊆ A} ≤ 1

2
·#F ,

then every x ∈ [n] \A is abundant (similar as discussed in Remark 3.14). ■

Remark 3.17.

(i) One usually states Conjecture 3.15 in its dual formulation, that every lattice L as
above has a join-irreducible x ∈ L with

#{y ∈ L : y ≥ x} ≤ 1

2
·#L.

We have chosen the other formulation, as it is a bit closer to union closed families
(see Remark 3.14), the dual formulation being more natural for intersection closed
families.

(ii) Let L be a lattice and for y ∈ L set

J(y) := {x ∈ L : x ≤ y, x join-irreducible}.

Contrary to what one might conjecture at �rst sight, it is in general not true that
J(y ∨ z) = J(y) ∪ J(z) for all y, z ∈ L. As for an example we can consider the
Fano plane as a set family

F := {∅, 1, 2, 3, 4, 5, 6, 7, 123, 145, 167, 246, 257, 347, 356, 1234567}

(shorthand as in Example 2.5 (ii)). Then (F ,⊆) becomes a lattice. The meet is
here given via set intersection (i.e. F is an intersection closed family), however
the join is not set union (see Remark 4.25). The join-irreducibles of F are then
clearly the singletons 1, ..., 7. We get

J(1 ∨ 2) = J(123) = {1, 2, 3},

but
J(1) ∪ J(2) = {1, 2}.

Clearly, one at least has the inclusion J(y) ∪ J(z) ⊆ J(y ∨ z).

Remark 3.18. The above seems to suggest that every �nite lattice L is (isomorphic
to) a sublattice of P(n) for some n ∈ N (to be more speci�c, n the number of join-
irreducibles of L). However, note that for K ⊆ L to be a sublattice of L, it is required
(see [14]) that the join and meet of K must coincide with the join an meet of L.
Therefore, for some subset K ⊆ L there might be a natural way to make K into a
lattice using the order on K induced by the order of L, but this does not mean that
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K is a sublattice of L. As for an example, simply note that union closed families
∅ ∈ F ⊆ P(n) are only sublattices, if they are also intersection closed. Otherwise, the
meet in F (as already discussed in Observation 3.11) is not the intersection of sets. In
general, F ⊆ P(n) is only a join-subsemilattice.

Conjecture 3.15 is known to hold for many particular classes of lattices, see [10] for
more details.

3.4 Lower Bounds

The Union Closed Sets Conjecture 3.1 postulates the existence of an element that ap-
pears in at least half of the sets of a nontrivial, union closed family. While it is still
unknown if there is even an element in a c-fraction of sets for some c > 0, there are
some known lower bounds that depend on n and m. We collect the most important
ones for the sake of having a better view on what is known about union closed families.
We start with the bound of Knill proved in [27] and later improved by Wójcik in [42].
The bound of Knill is relatively simple to prove.

Theorem 3.19. Let n ∈ N and F ⊆ P(n) a nontrivial, union closed family with
m = #F . There exists an element x ∈ [n] with

#{F ∈ F : x ∈ F} ≥ m− 1

log2(m+ 1)
.

Proof. Let S ⊆ [n] be a minimum (i.e. of minimal cardinality) set that intersects all
F ∈ F \ {∅}. We claim that for every s ∈ S there is a set Fs ∈ F with S ∩ Fs = {s}.
Indeed, if not then there is an s ∈ S such that for all F ∈ F with s ∈ F we have
#(S ∩ F ) ≥ 2. But then S \ {s} still intersects every F ∈ F \ {∅}, contradicting
minimality of S. Since F is union closed, for every ∅ ̸= T ⊆ S there is an F ∈ F with
S ∩ F = T , namely F =

⋃
s∈T Fs. Thus m ≥ 2#S − 1, i.e. #S ≤ log2(m + 1). Every

element of S appears in a nonempty set of F , thus there must be an x ∈ S ⊆ [n] with

#{F ∈ F : x ∈ F} ≥ m− 1

log2(m+ 1)
.

■

Wójcik strengthened this bound to the following.

Theorem 3.20. Let n ∈ N and F ⊆ P(n) a nontrivial, union closed family with
m = #F . There exists an element x ∈ [n] with

#{F ∈ F : x ∈ F} ≥ (1 + o(1))m

log2(4/3) log2m
≥ 2.4

log2m
·m

for su�ciently large m.
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On a di�erent note, averaging also gives a lower bound for the frequency of the most
frequent element in a union closed family. The following bound follows directly from
Theorem 3.7.

Theorem 3.21. Let n ∈ N and F ⊆ P(n) a nontrivial, union closed family with
m = #F . There exists an element x ∈ [n] with

#{F ∈ F : x ∈ F} ≥ log2m

n
· m
2
.

By applying averaging not to the entire family but just to certain subfamilies, Balla
obtained the following bound in [4].

Theorem 3.22. Let n ∈ N with n ≥ 16 and F ⊆ P(n) a nontrivial, union closed family
with m = #F . There exists an element x ∈ [n] with

#{F ∈ F : x ∈ F} ≥
√

log2 n

n
· m
2
.

These are, as far as the author is aware, the best known bounds.
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Using the previously developed theory, we discuss some new approaches for the Union
Closed Sets Conjecture 3.1. First we study the structure of union closed families a bit
more. We then look at the frequencies of all the elements from the ground set in a
given union closed family. The �rst two sections may be seen as an attempt to prove
the Union Closed Sets Conjecture 3.1 via an inductive approach.
In the third section we use some of the previously developed theory to prove a statement
that is weaker than the Union Closed Sets Conjecture 3.1 but still gives some insight
into the combinatorial structure of union closed families. We also demonstrate how to
use this new technique to obtain some statements about the frequencies of elements in
a union closed family. These considerations also naturally lead to related statements
for other types of set families. In this context we state a conjecture that is again a
weakening of the Union Closed Sets Conjecture 3.1 but may be more approachable.
At last, we consider families that are closed under operations similar to the union of
two sets. We start with a relatively common technique in combinatorics to consider
vector spaces over �nite �elds. This naturally generalizes to families de�ned over other
set systems. An ambitious question is to determine what fraction of the sets from such
families contain a certain element.

4.1 Appendable Sets

For a given union closed F ⊆ P(n) we consider now those sets A ∈ P(n) that we
can add to F , so that F ∪ {A} stays union closed. Such sets may be thought of as
appendable sets to the family F . We can prove the following theorem about the family
of appendable sets.

Lemma 4.1. Let n ∈ N and let F ⊆ P(n) be a union closed family. Then

F∇ := {A ⊆ [n] : F ∪ {A} union closed} ⊆ P(n)

is also union closed.

Proof. We have to show, that if F ∪ {A} and F ∪ {B} are union closed then so is
F ∪ {A ∪ B}. If A ∪ B = A or A ∪ B = B, this is clear. We can therefore assume
A ⊊ A∪B and B ⊊ A∪B. Fix an F ∈ F . It su�ces to show F ∪(A∪B) ∈ F∪{A∪B}.
Observe that since F ∪ {A} and F ∪ {B} are union closed, we have F ∪ A ∈ F ∪ {A}
and F ∪B ∈ F ∪ {B}. We distinguish the following four cases:
F ∪A ∈ F and F ∪B ∈ F : Since F is union closed, we get

F ∪ (A ∪B) = (F ∪A) ∪ (F ∪B) ∈ F ⊆ F ∪ {A ∪B}.
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F ∪A ∈ F and F ∪B = B: Since F ∪ {B} is union closed and B ⊊ A ∪ B (especially
F ∪ (A ∪B) ̸= B), we get

F ∪ (A ∪B) = (F ∪A) ∪B ∈ (F ∪ {B}) \ {B} ⊆ F ⊆ F ∪ {A ∪B}.

F ∪A = A and F ∪B ∈ F : This is completely analogous to the previous case.
F ∪A = A and F ∪B = B: We have F ⊆ A and F ⊆ B, so that

F ∪ (A ∪B) = A ∪B ∈ F ∪ {A ∪B}.

This �nishes the case analysis and proves the claim. ■

Remark 4.2. By de�nition it is clear that F ⊆ F∇ for union closed families F ⊆ P(n).
Furthermore, if F ⊊ P(n) then F∇ \ F is nonempty, as it contains all maximal sets
(with respect to set inclusion) in P(n) \ F ̸= ∅. Thus, if F is not the entire power set
then F ⊊ F∇ is a proper extension.

It would certainly be interesting (for union closed F ⊊ P(n)) to investigate the structure
of the family F∇ \ F of appendable sets. In particular, the family of minimal such sets

F∇ := Min(F∇ \ F)

(where for a set family X the family MinX consists of the inclusion wise minimal sets in
X ) should be of special interest. In some sense good control over F∇, or rather families
of the form F ∪ {A} for A ∈ F∇, could be enough for an inductive proof (over the
variable m := #F) of Conjecture 3.1 above.

Question. What additional structure does F∇ posses? What can be said about F∇?

To use some terminology we have introduced about lattices: If F is the system of all
union closed families over [n] (also including ∅ and {∅}), then for a given F ∈ F the set
{F ∪ {A} : A ∈ F∇} \ {F} ⊆ F consists of those union closed families that cover F
(see De�nition 3.9). Here we (naturally) equip F with the order of set inclusion.

4.2 Frequencies in Union Closed Families

There have been many attempts to generalize the Union Closed Sets Conjecture 3.1.
As was discussed in the introduction, this seems to be surprisingly hard. For example,
we have already seen that there might not be an abundant element among a set of
minimum cardinality in F (see Example 2.5 (iii) and [10, 37]). There is still some hope
in strengthening the conjecture to obtain more insights into the structure of union closed
families.
As for a new consideration, observe the following.
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Observation 4.3. Let F = F1 be a nontrivial, union closed family over [n] and assume
that the Union Closed Sets Conjecture 3.1 holds. We therefore have an x1 ∈ [n] such
that

#{F ∈ F1 : x1 ∈ F} ≥ 1

2
·#F1.

The family F2 := {F \ {x1} : F ∈ F2, x1 ∈ F} (see also Observation 2.3 (ii)) is then a
nontrivial, union closed family over [n] \ {x1}. We thus again �nd an x2 ∈ [n] \ {x1},
such that

#{F ∈ F2 : x2 ∈ F} ≥ 1

2
·#F2 ≥

1

4
·#F1.

We then conclude, that {x1, x2} is a two element set, that is contained in at least 1
4 ·#F

of all sets from F . Repeating this procedure k-times, we get a k-element set, that is
contained in at least a 2−k-th portion of all sets from F .
In particular, this means that the k-th most frequent element among F appears in at
least 2−k ·#F many sets. We make this more precise and even give a strengthening in
the following conjecture.

Conjecture 4.4. Let F be a nontrivial, union closed family over [n] and assume

#{F ∈ F : 1 ∈ F} ≥ #{F ∈ F : 2 ∈ F} ≥ ... ≥ #{F ∈ F : n ∈ F},

i.e. the elements are sorted by their frequencies (otherwise relabel them). Then, for all
k ∈ {1, ..., n} we have

#{F ∈ F : k ∈ F} ≥ 1

2k−1 + 1
·#F .

Remark 4.5. If Conjecture 4.4 indeed holds, then the bound given there is sharp. For
k = 2, ..., n this is easily demonstrated by the nontrivial, union closed family F :=
P(k − 1) ∪ {[n]} ⊆ P(n). The elements i = 1, ..., k − 1 appear in 2k−2 + 1 many sets,
the elements i = k, ..., n appear in one set (namely only [n]). Since #F = 2k−1 + 1 we
thus get the equality

#{F ∈ F : k ∈ F} = 1 =
1

2k−1 + 1
·#F .

Also, setting k = 1 into Conjecture 4.4 yields Conjecture 3.1, which shows that the
above conjecture generalizes the Union Closed Sets Conjecture 3.1.

To justify Conjectue 4.4 somewhat, we start with the following lemma.

Lemma 4.6. Let n ∈ N, F ⊆ P(n) a nontrivial union closed family and x ∈ [n]. For
every A ∈ F with x ∈ A we have

#{F ∈ F : x ∈ F} ≥ 1

2#A−1 + 1
·#F .

Proof. Let x and A be as in the assumptions and consider the map

φ : {G ∈ F : x /∈ G} → {F ∈ F : x ∈ F}, G 7→ G ∪A.
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This map is well de�ned (F nontrivial and union closed) but in general not injective.
For G1, G2 ∈ F with x /∈ G1, G2 we have

G1 ∪A = G2 ∪A

⇔G1 \A = G2 \A
⇔G1 \ (A \ {x}) = G2 \ (A \ {x}),

where the �rst equivalence follows by basic set theory and the second by the fact that
x /∈ G1, G2. Thus, G1 and G2 map (under the map φ) to the same set if and only if
they coincide on [n] \ (A \ {x}). In conclusion, for any given set G1 ⊆ [n] there are
(including G1 itself) at most 2#A−1 such sets G2 ⊆ [n].
It follows that there is a family G ⊆ {G ∈ F : x /∈ G}, such that

#G ≥ #{G ∈ F : x /∈ G}
2#A−1

and φ|G : G → {F ∈ F : x ∈ F} is injective. This can be done by de�ning the
equivalence relation G1 ∼ G2 if and only if φ(G1) = φ(G2) on {G ∈ F : x /∈ G} and
picking, from every equivalence class, a representative. The family of representatives is
then G. The injectivity of φ|G follows by de�nition and the bound on the cardinality of
G by the above combinatorial argument.
Since φ|G is injective we get

#{F ∈ F : x ∈ F} ≥ #G ≥ #{G ∈ F : x /∈ G}
2#A−1

=
#F −#{F ∈ F : x ∈ F}

2#A−1
.

From this the claim follows. ■

Corollary 4.7. Let n ∈ N and F ⊆ P(n) a nontrivial, union closed family. Assume
that the elements of the ground set [n] are ordered by frequencies (as in Conjecture
4.4). Then k = n and k = n− 1 ful�ll the bound given in Conjecture 4.4.

Proof. For the case k = n simply apply Lemma 4.6 to x = n and A = [n] ∈ F . For the
case k = n − 1 it su�ces to consider the case of separating families. Here, since n − 1
is contained in a set F ∈ F of size at most n − 1, applying Lemma 4.6 to this set we
get the statement for k = n− 1. ■

Conjecture 4.4 may be useful for an inductive proof, as we also have stronger assump-
tions. Another reason why this approach might be useful is given in the following
informal discussion.
Assume again that the elements of [n] are ordered by their frequencies in F . Thus, the
element k for k > 1 is by de�nition less frequent than the elements 1, ..., k−1. Therefore,
if we know that k is already relatively frequent among F , then 1 in particular must be
frequent as well. This is good news in light of of Conjecture 4.4 and the Union Closed
Sets Conjecture 3.1 in general. If on the other hand k is very infrequent, so that maybe
even equality occurs in

#{F ∈ F : k ∈ F} = 1

2k−1 + 1
·#F ,

then this seems to force a certain structure on F (at least for su�ciently large k) which
makes the elements 1, ..., k − 1 rather frequent (see Remark 4.5). This is again good
news in with regard of the Union Closed Sets Conjecture 3.1.
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Question. Can the above discussion be made precise?

In a similar spirit, we at least have the following statement.

Remark 4.8. It should be clear that for any given x, we apply the bound guaranteed
by the proposition with A ∈ Argmin{#A : x ∈ A ∈ F}. However, in general this bound
does not seem to be so good. For example, ifA = {x, y}, then we have already mentioned
(in Remark 3.4 (i)) that x or y must be abundant. The proposition however then only
gives a factor 1

3 instead of the desired 1
2 . In fact, the above proof is a generalization of

the (folklore) proof that x is abundant given that {x} ∈ F .
Inspired by the above proof, we do however obtain another interpretation of the bound
in Conjecture 4.4: the fact that

#{F ∈ F : k ∈ F} ≥ 1

2k−1 + 1
·#F

is equivalent to

#{F ∈ F : k ∈ F} ≥ 1

2k−1
·#{G ∈ F : k /∈ G}.

We end this chapter with the following question (in a similar spirit to the Erd®s-Gallai
theorem [19]) that generalizes Conjecture 4.4 even further.

Question. Which sequences (#{F ∈ F : x ∈ F})x∈[n] can occur?

4.3 Weaker Versions

4.3.1 Up-sets and Union Closed Families

Using the notation introduced in De�nition 2.11 (i) we may rewrite

{F ∈ F : i ∈ F} = F ∩ [i, [n]]

for F ⊆ P(n) and i ∈ [n]. The family U = [i, [n]] has the following properties:

(i) U ⊆ P(n) is an up-set;

(ii) #U = 2n−1.

Motivated by this, we pose the following weaker (relaxed) version of the Union Closed
Sets Conjecture 3.1 in hopes of obtaining new insights.

Conjecture 4.9. Let n ∈ N and F ⊆ P(n) a nontrivial, union closed family. Then
there is an up-set U ⊆ P(n) of size #U ≤ 2n−1 with

#(F ∩ U) ≥ 1

2
·#F .
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We will give a proof of this conjecture further below. The general idea how to get a
suitable up-set is the following greedy procedure.

Start with U = ∅. As long as #(F ∩U) < 1
2 ·#F , choose that F ∈ F \U that minimizes

#([F, [n]] \ U). Enlarge U ← U ∪ [F, [n]] and repeat the previous step.

That is, at every step we try to add a set from F not already in U , that minimizes the
number of sets added to U (U is at every step an up-set). It remains to justify why U
at the end is not too large (i.e. #U ≤ 2n−1).
With this at our aim, we start with the following. Recall that any union closed family
containing the empty set has a corresponding interior operator (Theorem 2.16) and
anticongruence partition (Theorem 2.19).

Lemma 4.10. Let n ∈ N, ∅ ∈ F ⊆ P(n) union closed, τ : P(n) → P(n) the cor-
responding interior operator and T (F ), F ∈ F the corresponding clusters. Then the
map

F → N, F 7→ #T (F )

is order reversing, i.e. for E,F ∈ F with E ⊆ F we have #T (E) ≥ #T (F ).

Proof. This follows directly from the injectivity of the maps ιFE from Corollary 2.22. ■

This lemma together with the greedy procedure above gives the following immediate
corollary.

Corollary 4.11. Let the situation be as in Lemma 4.10 and let m := #F . Then the
sets in F may be arranged in such a way F1, F2, ..., Fm that

(i) #T (F1) ≤ #T (F2) ≤ ... ≤ #T (Fm);

(ii) if Fi ⊇ Fj then i ≤ j.

Property (ii) can be seen as a (reversed) linear extension of the poset (F ,⊆) (see [40]).
Of course (if F is nontrivial) we have F1 = [n] and Fm = ∅. In particular we get
#T (F1) = 1 and

#T (∅) = max{#T (F ) : F ∈ F}.

Before coming back to Conjecture 4.9 we need an elementary lemma.

Lemma 4.12. Let 0 ≤ n1 ≤ n2 ≤ ... ≤ nm be real numbers, set N :=
∑m

i=1 ni and let
ϑ ∈ [0, 1]. Then

ϑN ≥
⌊ϑm⌋∑
i=1

ni.

Here ⌊·⌋ is rounding down and ⌈·⌉ is rounding up. Note that this bound also holds for
m = 0.
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Proof. The statement is clear for ϑ < 1
m (right hand side = 0, left hand side ≥ 0), so

suppose ϑ ≥ 1
m . De�ne the function f : (0,m] → R, f(x) := n⌈x⌉. By monotonicity of

the ni's the function f is monotonically increasing. Thus, since m
⌊ϑm⌋ ≥ 1, we have

f(x) ≤ f

(
m

⌊ϑm⌋
· x
)

for x ∈ (0, ⌊ϑm⌋]. Then, using the substitution y = m
⌊ϑm⌋ · x, we get

⌊ϑm⌋∑
i=1

ni =

∫ ⌊ϑm⌋

0
f(x)dx ≤

∫ ⌊ϑm⌋

0
f

(
m

⌊ϑm⌋
· x
)
dx =

∫ m

0
f(y) · ⌊ϑm⌋

m
dy

=
⌊ϑm⌋
m
·

m∑
i=1

ni ≤ ϑN.

■

At �rst, the last inequality in the above proof seems a bit wasteful. However, for a given
ϑ ∈ [0, 1] by simply applying the above lemma for ϑ′ := ⌊ϑm⌋

m we preserve the sum on
the right hand side, i.e.

⌊ϑm⌋∑
i=1

ni =

⌊ϑ′m⌋∑
i=1

ni,

while making the left hand side even smaller, i.e.

ϑN ≥ ϑ′N.

We are now ready to prove Conjecture 4.9 in a slightly more general form.

Theorem 4.13. Let n, t ∈ N and F ⊆ P(n) a nontrivial, union closed family. Then

there is an up-set U ⊆ P(n) of size #U ≤
⌈
1
t · 2

n
⌉
such that

#(F ∩ U) ≥ 1

t
·#F .

Proof. We may assume ∅ ∈ F . Let m = #F and order F = {F1, F2, ..., Fm} as

in Corollary 4.11. We claim that U :=
⋃⌈m/t⌉

i=1 T (Fi) does the job. Indeed, because
Fi ∈ T (Fi) for all i, we have F ∩ U = {F1, ..., F⌈m/t⌉} and as such

#(F ∩ U) =
⌈
m

t

⌉
≥ 1

t
·#F .

It remains to show that U is an up-set of size at most
⌈
1
t · 2

n
⌉
. The fact that U is

an up-set stems from the fact that {T (F1), ..., T (Fm)} is a partition of P(n) having
the property from Corollary 2.20 (i) and that the Fi's are arranged in a way ful�lling
Corollary 4.11 (ii). To bound #U we use Corollary 4.11 (i). For this, note that F1 = [n]
(see the remark after Corollary 4.11). Setting ni := #T (Fi) we thus have 1 = n1 ≤
n2 ≤ ... ≤ nm and

m∑
i=2

ni = 2n − 1.
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Applying Lemma 4.12 to n2, ..., nm with ϑ =
⌈mt ⌉−1

m−1 we get

#U =

⌈m/t⌉∑
i=1

ni = 1 +

⌈m/t⌉−1∑
i=1

ni+1 ≤ 1 +

⌈
m
t

⌉
− 1

m− 1

m−1∑
i=1

ni+1

≤ 1 +
m+t−1

t − 1

m− 1
(2n − 1) = 1 +

1

t
· (2n − 1)

<
1

t
· 2n + 1,

but #U is an integer so even #U ≤
⌈
1
t · 2

n
⌉
, �nishing the proof. ■

Setting t = 2 yields Conjecture 4.9.

Corollary 4.14. Conjecture 4.9 is true.

We can even give a slight strengthening of Theorem 4.13 if we know a bit more about
the family F . By Observation 2.3 (iii) the following class of families also includes all
separating families.

Theorem 4.15. Let n ∈ N and F ⊆ P(n) a nontrivial, union closed family of size
m = #F containing a set of size n−1 and let t ∈ {1, ...,m−1}. Then there is an up-set
U ⊆ P(n) of size

#U ≤ 1

t
· m− t− 1

m− 2
· 2n + 2

(
1− 1

t

)(
1 +

1

m− 2

)
,

such that

#(F ∩ U) ≥ 1

t
·#F .

Proof. The proof is analogous to the proof of Theorem 4.13 and we will only outline
the di�erences. Let n1, ..., nm be as before. Using the existence of a set of size n− 1 in
F we can further assume n1 = n2 = 1. This time using ϑ = ⌈m/t⌉−2

m−2 we get the desired
bound

#U = 2 +

⌈m/t⌉−2∑
i=1

ni+2 ≤ 2 +
⌈m/t⌉ − 2

m− 2

m−2∑
i=1

ni+2

≤ 2 +
m+t−1

t − 2

m− 2
· (2n − 2)

=
1

t
· m− t− 1

m− 2
· 2n + 2

(
1− 1

t

)(
1 +

1

m− 2

)
.

■
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For �xed m and t, the case for separating families of size m (or general families as
described by the theorem) thus guarantees an up-set of size at most

1

t
· m− t− 1

m− 2
· 2n +O(1),

which, for su�ciently large n and t ≥ 2, is better than

1

t
· 2n +O(1)

as guaranteed by Theorem 4.13. This might be surprising, as the assumption of having
a set of size n − 1 in our family might seem very minor at �rst. Again, for t = 2 the
above bound reads

#U ≤ m− 3

m− 2
· 2n−1 + 1 +

1

m− 2
,

giving

#U ≤
⌊
m− 3

m− 2
· 2n−1 +

1

m− 2

⌋
+ 1.

This bound is mainly useful for smaller m (compared to 2n−1).

4.3.2 Bounds on Frequencies for Union Closed Families

While it seems unlikely that Theorem 4.13 alone can lead to a solution of the Union
Closed Sets Conjecture 3.1, there might be some hope to gain further insights into
union closed families. As mentioned before, it is not even known if every nontrivial
union closed family F contains an element contained in some c-fraction of sets from
F for some constant c > 0 (c = 1/2 being the Union Closed Sets Conjecture 3.1).
Theorem 4.13 however gives some extra structure to the �big� sets of a union closed
family F ⊆ P(n), namely that half of the sets from F lie in an up-set of size at most
2n−1. The following theorem aims to show how this information might be useful.

Theorem 4.16. There is a universal constant C > 0 with the following property: Let
n, t ∈ N with n ≥ 2 and t ≥ Cn

log2 n
and let U ⊆ P(n) be an up-set with #U ≤ 2n−1. For

any sets A1, ..., At ∈ U there are indices 1 ≤ i < j ≤ t with Ai ∩Aj ̸= ∅.

Thus, choosing any t sets from U , as long as t is su�ciently large, two of the chosen sets
must intersect. This then also holds for the set family F ∩ U ⊆ U from Theorem 4.13.

Proof. We prove the theorem by contraposition. Assume that U ⊆ P(n) is an up-set
with #U ≤ 2n−1 and that A1, ..., At ∈ U are all pairwise disjoint. Denoting ai := #Ai

for i = 1, ..., t, the up-set
⋃t

i=1[Ai, [n]] (see De�nition 2.11 (i)) generated by the Ai's is
of size (by the principle of inclusion-exclusion)

∑
∅≠I⊆[t]

(−1)#I−12n−
∑

i∈I ai = 2n

1−
t∏

i=1

(
1− 2−ai

) ,
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since 2n−
∑

i∈I ai is the size of
⋂

i∈I [Ai, [n]] =
[⋃

i∈I Ai, [n]
]
. For variables x1, ..., xt ≥ 0

with
∑t

i=1 xi ≤ n, the expression

1−
t∏

i=1

(
1− 2−xi

)
is minimized when x1 = ... = xt =

n
t . We get

2n−1 ≥ #U ≥ #

t⋃
i=1

[Ai, [n]] ≥ 2n
(
1−

(
1− 2−n/t

)t)
= 2n −

(
2n/t − 1

)t
so that

(
2n/t − 1

)t
≥ 2n−1. Further rearranging and bounding yields

n ≥ t · log2
(

1

1− 2−1/t

)
> t · log2

(
t

ln 2

)
. (4.1)

If now we would have t ≥ 2n
log2 n

, then

t · log2
(

t

ln 2

)
≥ 2n

log2 n
· log2

(
2n

ln 2 · log2 n

)
= n · 2 logn

(
2n

ln 2 · log2 n

)
≥ n,

contradicting (4.1). We thus have to have

t <
2n

log2 n
,

completing the proof (with C = 2). ■

Remark 4.17. Using the above proof, we can easily improve the constant to C =
1.367... < 1.368. One could also improve C by only considering up-sets of size at most
c · 2n for some c > 0 (above c = 1/2).
The important part however is that choosing Ω( n

logn) many sets in U already gives two
intersecting sets. In particular, combining with Theorem 4.13, every nontrivial, union
closed family F ∈ P(n) contains a subfamily E ⊆ F of size at least 1

2 ·#F , such that
O( n

logn) sets from E cannot be pairwise disjoint.

We now demonstrate how to to obtain a bound for the frequency of the most frequent
element in a nontrivial, union closed family using only the two results above. This
should be more understood as a demonstration on how one may use the above results,
but further optimizations (obtaining better asymptotics) by a more detailed analysis
are conceivable.
We �rst have to go through some graph theory, see [16]. For a graph G = (V,E) the
clique number is de�ned as

ω(G) := max

{
#X : X ⊆ V,

(
X

2

)
⊆ E

}
,

the maximum cardinality of a set of vertices X such that every pair {x, y} ⊆ X is an
edge in G. We also de�ne the independence number

α(G) := max

{
#I : I ⊆ V,

(
I

2

)
∩ E = ∅

}
,
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the maximum cardinality of a set of vertices I such that no pair {x, y} ⊆ I is an edge
in G. The inequality α(G) < t is then equivalent to the statement that any t vertices
contain at least one edge among them in G. For a graph G = (V,E) one can de�ne
the complement graph G := (V,

(
V
2

)
\E) consisting of precisely the non-edges of G. By

de�nition, α(G) = ω(G). Turán's theorem gives a bound on the number of edges of a
graph with a given clique number.

Theorem 4.18. Let G = (V,E) be a graph on n = #V vertices and m = #E edges
and let t ∈ N.

(i) If ω(G) < t then m ≤
(
1− 1

t−1

)
· n2

2 .

(ii) If α(G) < t then m ≥ 1
t−1 ·

n2

2 −
n
2 .

Proof. For (i) see [16]. To prove (ii) we apply (i) to G. Since α(G) < t we have ω(G) < t,
so that G has at most (

1− 1

t− 1

)
· n

2

2

edges. But then G has at least(
n

2

)
−
(
1− 1

t− 1

)
· n

2

2
=

1

t− 1
· n

2

2
− n

2

edges, proving the claim. ■

The intuition behind Theorem 4.18 (ii) is that if a graph is such that for every t vertices
there must be an edge between some of those t vertices, then the graph itself has to
contain a su�ciently large number of edges (indeed, for �xed t the graph contains at
least a constant fraction of all possible edges). It should be noted that the bound given
in Theorem 4.18 (i) is asymptotically tight, for more see [16].
We now come back to bounding the frequency of the most frequent element in a non-
trivial, union closed family.

Theorem 4.19. Let n ∈ N with n ≥ 2 and let F ⊆ P(n) be a nontrivial, union closed
family on m := #F sets. Assume

m ≥ 7n

log2 n
.

Then there is an element x ∈ [n] with

#{F ∈ F : x ∈ F} ≥
√
log2 n

3n
·#F .

Proof. By Theorems 4.13 and 4.16 there is a subfamily E ⊆ F with µ := #E ≥ 1
2 ·#F

and having the property that, setting t :=
⌈
1.368n
log2 n

⌉
, for all A1, ..., At ∈ E at least two of
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the sets have a nonempty intersection. Consider the graph G := (E , E(G)) where

E(G) :=

{
E1E2 ∈

(
E
2

)
: E1 ∩ E2 ̸= ∅

}
.

By Theorem 4.16, for the independence number of G it holds

α(G) < t,

so that by Theorem 4.18 (ii) we get

#E(G) ≥ 1

t− 1
· µ

2

2
− µ

2
.

For every E1E2 ∈ E(G) pick an element c(E1E2) ∈ E1 ∩ E2. This de�nes an edge
coloring of G with n colors. Consequently, there must be a color x∗ ∈ [n] that appears
on at least

1

n
·

(
1

t− 1
· µ

2

2
− µ

2

)
(4.2)

edges (i.e. for which there are at least this many pairs E1E2 with x∗ ∈ E1 ∩ E2). Let
G′ be the subgraph of G generated by the edges of color x∗ (discard isolated vertices
that are not incident to an edge of color x∗) and let µ′ be the number of vertices in G′.
Note that µ′ is a lower bound for the number of sets E ∈ E with x∗ ∈ E. Since G′ is
a graph on µ′ vertices and at least as many edges as described in (4.2), we must have
(using t ≤ 1.368n

log2 n
+ 1)

(µ′)2

2
≥
(
µ′

2

)
≥ 1

n
·

(
1

t− 1
· µ

2

2
− µ

2

)
≥ µ2

2n · 1.368nlog2 n

− µ

2n
,

so that

µ′ ≥
√

µ2 log2 n

1.368n2
− µ

n
.

Notice that the function

hn(s) :=
log2 n

1.368n2
· s2 − 1

n
· s

is minimized at s0 = 1.368n
2 log2 n

. In particular, hn(s) is increasing for s ≥ s0. Since by

assumption m
2 ≥ s0, hn(s) for

m
2 ≤ s ≤ m attains its minimum at s = m

2 . Thus√
µ2 log2 n

1.368n2
− µ

n
≥
√

m2 log2 n

4 · 1.368n2
− m

2n
=

√
1

4 · 1.368
− n

2m log2 n
·
√
log2 n

n
·m

and using the assumption again we conclude

#{F ∈ F : x∗ ∈ F} ≥ µ′ ≥
√

1

4 · 1.368
− 1

14
·
√
log2 n

n
·m ≥

√
log2 n

3n
·m,

�nishing the proof. ■
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The condition on m seems a bit unfortunate, but considering that m can get as large as
2n we already encapsulate almost all union closed families. We only added it so that the
�nal bound on the frequency looks somewhat cleaner. In [21] (and slightly improved
in [31]) it was shown that any nontrivial, separating, union closed family F ⊆ P(n)
with #F ≤ 2n contains an abundant element. Thus, for n ≥ 23.5 (i.e for n ≥ 12) the
condition on m in Theorem 4.19 is not essential. Indeed, due to [41] it is known that
the Union Closed Sets Conjecture 3.1 also holds for all nontrivial, union closed families
F ⊆ P(n) for n ≤ 12, so that we may disregard the condition on m entirely.
We again emphasize that this is just a demonstration of how the new insights might be
used. Essentially, the above gives the existence of an element contained in an

Ω

(√
log2 n

n

)

fraction of the sets from F . Compared to Theorems 3.20 or 3.22, this does not yield
any new results.
However, combining known techniques (for example the above cited results) with our
new insights might give better asymptotic bounds for the frequency of the most frequent
element in a nontrivial, union closed family. For example, we did not even use the fact
that E is also union closed. Still, the Union Closed Sets Conjecture 3.1 in its purest
form seems far out of reach.

4.3.3 Bounds on Frequencies for Intersecting Families

The previous section also had us consider other types of set families than union closed
ones. In particular, we can ask about the frequencies in families of the following type.

De�nition 4.20. Let n ∈ N and F ⊆ P(n). Then F is called an intersecting family

if for all A,B ∈ F , A ∩B ̸= ∅.

Intersecting families are very well known in combinatorics, especially the Erd®s-Ko-
Rado theorem [20] about the size of a uniform intersecting family. It does not seem like
intersecting families were investigated with respect to the frequency of elements yet.

Question. For F ⊆ P(n) an intersecting family, what can be guaranteed about the
frequency of the most frequent element in F?

Remark 4.21. The Fano plane

{123, 145, 167, 246, 257, 347, 356}

shows that we might have no element that appears in at least a half of the sets of an
intersecting family.
More generally, the Fano plane is a special example of a projective plane (in the combi-
natorial sense). A projective plane of order n ∈ N is a set family F ⊆ P(n2 + n + 1),
each set having cardinality n+ 1 and every pair {x, y} ⊆ [n2 + n+ 1] being contained
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in exactly one set of F . Furthermore, two distinct sets in F intersect in exactly one
element (so in particular projective planes are intersecting) and every x ∈ [n2 + n+ 1]
is contained in exactly n+ 1 sets of F . For such an F we thus have

#{F ∈ F : x ∈ F} = n+ 1

n2 + n+ 1
·#F .

Since n+1
n2+n+1

can get arbitrarily small, for general intersecting families we cannot expect
to �nd an element of the ground set contained in a constant fraction of the sets from
the family.
Projective planes themselves are special cases of a much larger class of structures called
(combinatorial) designs. These objects are very well studied, see for example [6].

We will see projective planes later on below, including how one can construct such
families. It should be noted that there are two di�erent types of projective planes: the
combinatorial structures as described above and the algebraic/geometric structures as
described in Remark 4.26. There, the somewhat strange choice of parameters (n2+n+1
and n + 1) should be made clearer. Projective planes in the combinatorial sense are a
generalization of projective planes over �nite �elds in the algebraic sense.
We return to the question, how frequent an element among an intersecting family can
be. The proof of the following theorem is a direct adaptation of the proof of Theorem
4.19.

Theorem 4.22. Let n ∈ N and let F ⊆ P(n) be an intersecting family of size m = #F .
Then there is an x ∈ [n] with

#{F ∈ F : x ∈ F} ≥
√

m− 1

mn
·m.

Proof. Let F be as in the statement. Consider the graph G = (F ,
(F
2

)
) ∼= Km. For

every F1F2 ∈
(F
2

)
pick a c(F1F2) ∈ F1 ∩ F2. This de�nes an edge coloring of G with n

colors. Therefore, there must be a color x∗ ∈ [n] that appears on at least

1

n

(
m

2

)
edges of G. Let G′ be the graph induced by the edges of color x∗ and let m′ be the
number of vertices incident to an edge of color x∗. Then(

m′

2

)
≥ 1

n

(
m

2

)
,

which gives us

(m′)2 −m′ − m2 −m

n
≥ 0.

We thus obtain

#{F ∈ F : x∗ ∈ F} ≥ m′ ≥ 1

2
+

√
1

4
+

m2 −m

n
≥
√

m2 −m

n
=

√
m− 1

mn
·m.

■
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Figure 4.1: The coloring from the proof of Theorem 4.22 for the Fano plane

If we want to make the factor in the above bound independent of m, for m ≥ 2 (the
only case of interest) we can estimate√

m− 1

mn
≥ (2n)−1/2.

As the projective planes showed, if we want a bound that only depends on n, this is,
up to a constant factor, the best possible that we can guarantee. The projective planes
also show that

#{F ∈ F : x ∈ F} = 1

2
+

√
1

4
+

m2 −m

n

can hold for all x ∈ [n].
As the following construction shows, there is no reasonable bound that only depends
on m. Consider the complete graph Km = ([m],

(
[m]
2

)
). De�ne a family

F = {F1, ..., Fm} ⊆ P

((
[m]

2

))

with Fi := {X ∈
(
[m]
2

)
: i ∈ X} for i ∈ [m]. Then for i ̸= j it holds Fi ∩ Fj = {{i, j}},

so F is intersecting. Also, every {i, j} ∈
(
[m]
2

)
is contained in exactly two sets, namely

in Fi and Fj .
Clearly, every intersecting family on m ≥ 2 sets contains an element that is contained in
at least 2 sets from the family. Thus, for every intersecting family F of size m = #F , if
we want a factor that only depends on m, we can generally only guarantee the existence
of an element x from the (here unspeci�ed) ground set with

#{F ∈ F : x ∈ F} ≥ 2

m
·#F = 2.

If F ⊆ P(n) is a nontrivial family and x ∈ [n], then {F ∈ F : x ∈ F} is clearly
intersecting (namely in x). Thus, the following is again a weakening of the Union
Closed Sets Conjecture 3.1.

Conjecture 4.23. Let n ∈ N and F ⊆ P(n) be a nontrivial, union closed family. Then
there exists an intersecting subfamily E ⊆ F with #E ≥ 1

2 ·#F .
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If the Union Closed Sets Conjecture 3.1 holds and x is an abundant element in F , then
E := F ∩ [x, [n]] is an intersecting family with #E ≥ 1

2 ·#F . Conjecture 4.23 generalizes
Conjecture 4.9. If we would be able to prove the above conjecture though we would
get (combining it with Theorem 4.22) for all nontrivial, union closed F ⊆ P(n) the
existence of an element x ∈ [n] with

#{F ∈ F : x ∈ F} ≥ 1

2
√
2n
·#F

(using the small remark after the proof of Theorem 4.22). This is again worse than
Theorem 3.22, but again, we did not use the fact that E is intersecting and union
closed.

Question. For an intersecting, union closed family F ⊆ P(n), what can be guaranteed
about the frequency of the most frequent element x ∈ [n] in F?

4.4 Generalizing Union Closedness

One can ask how important the condition of being union closed actually is. To this end,
we investigate families closed under other set operations.

4.4.1 A q-Analogue

In combinatorics it can be expected that many statements about sets can be carried
over to statements about subspaces of �nite dimensional vector spaces over �nite �elds.
Then, we are not so interested in the cardinality of the subspaces but rather their
dimension. An example of that is [13], where this was done for the Kruskal-Katona
theorem. We give a full account of the general strategy for such considerations. If
the ground �eld is the �nite �eld GF(q) with q = pk elements (p prime), then these
statements are referred to as q-analogues of the original problem. As far as the author
is aware of, there are no such investigations with regards to the Union Closed Sets
Conjecture 3.1.
We �rst introduce some notation. Let q = pk be a prime power and GF(q) be the �eld
with q elements. Then GF(q)n is canonically a GF(q)-vector space. Denote by Lq(n)
(often called the linear lattice) the family of all subspaces of GF(q)n. If V,W ∈ Lq(n),
we can de�ne their sum V +W as the GF(q)-linear span of V ∪W (equivalently, the
intersection of all subspaces containing V ∪W ). In what follows, we will study subspace
families Q ⊆ Lq(n).

De�nition 4.24. Let n ∈ N and q = pk be a prime power. We call the subspace family
Q ⊆ Lq(n) sum closed if for V,W ∈ Q also V +W ∈ Q.

We again abbreviate �sum closed subspace family� simply to sum closed family.
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Remark 4.25.

(i) One has to be a bit cautious when one wants to translate the terminology from
set families to the setting of subspace families. Since all subspaces contain the
zero of GF(q)n, we call a subspace family Q ⊆ Lq(n) nontrivial if

⋃
Q = GF(q)n

and
⋂
Q = {0}. For sum closed families Q we have

⋃
Q = GF(q)n if and only if

GF(q)n ∈ Q.

(ii) A priori, it does not make sense to talk of separability for subspace families. This
is due to the fact that if x ∈ V ∈ Lq(n), then also λx ∈ V for all λ ∈ GF(q). This
suggest that we have to work in a projective setting. To make this more precise,
let V ∈ Lq(n) be a subspace. On V \ {0} de�ne the equivalence relation ∼ by

x ∼ y :⇔ ∃λ ∈ GF(q) \ {0} : x = λy.

The projective space is then the quotient PV := (V \ {0})/ ∼. Alternatively, we
could also write PV = (V \ {0})/GF(q)× where GF(q)× = GF(q) \ {0} acts on V
via scalar multiplication (this de�nes a group action of GF(q)× on V \ {0}). Here
we use the convention that P{0} = ∅. The elements of PV may be seen as �lines�
in V through the origin 0. For Q ⊆ Lq(n) we then set PQ := {PV : V ∈ Q}. In
PQ, which can be seen as a set family over PGF(q)n, it now makes sense to speak
of separation of elements. We then call a subspace family Q ⊆ Lq(n) separating,
if PQ ⊆ P(PGF(q)n) is separating as a set family.

(iii) Using the language introduced in (ii), we can also de�ne PV + PW := P(V +W )
in PGF(q)n. This is well de�ned, as the map P : Lq(n) → PLq(n) is a bijection.
We can therefore speak of sum closed families PQ ⊆ P(PGF(q)n). Note that in
general PV ∪ PW ⊊ PV + PW (often PV ∪ PW is not even of the form PU for
some U ∈ Lq(n)). This allows us to switch between Lq(n) and PLq(n).

Remark 4.26. Continuing on 4.21, we now have a way to construct projective planes
in the combinatorial sense whenever n = pk is a prime power. For this take the the
projective versions of all the two-dimensional subspaces of GF(q)3. This gives a set
family over

n3 − 1

n− 1
= n2 + n+ 1

elements and every set from the family contains

n2 − 1

n− 1
= n+ 1

elements.

We emphazise again that generally

PLq(n) ⊊ P(PGF(q)n)

and that the structure on PLq(n) comes via subspace sums rather than set unions.
The above remark suggest a similarity between union closed families and sum closed
families Q (or rather their projective versions PQ). In particular, one might try to
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formulate a conjecture similar to the Union Closed Sets Conjecture 3.1 but for sum
closed families. However, it is not so clear how the factor of � 12 � needs to change in
this q-analogue situation. For this, we have the following remark which benchmarks the
factor against the entire space Lq(n).

Remark 4.27. An adapted version of the Union Closed Sets Conjecture 3.1 certainly
has to hold in the case of Q = Lq(n). A basic counting argument (via ordered bases)
shows that there are (

n

d

)
q

:=
(qn − 1)...(qn−d+1 − 1)

(qd − 1)...(q − 1)

d-dimensional subspace in Lq(n) (see [12]). These numbers are often referred to as q-
binomial coe�cients or Gaussian coe�cients (see [28, 29]) and one recovers the common
binomial coe�cient by taking q −→ 1 (since lim

q−→1

qn−1
q−1 = n). One thus sees

#Lq(n) =
n∑

d=0

(
n

d

)
q

.

Among those, there are
n∑

d=1

(
n− 1

d− 1

)
q

subspaces that contain a �xed element x ̸= 0. Thus, every nonzero x appears in a

#{V ∈ Lq(n) : x ∈ V }
#Lq(n)

=

∑n
d=1

(
n−1
d−1

)
q∑n

d=0

(
n
d

)
q

=: κq,n

fraction of all subspaces from Lq(n). This shows that if a q-analogue of the Union
Closed Sets Conjecture 3.1 holds, then the factor must be at most κq,n. Note that this

factor already can be very small for large q and n (κq,n is roughly of the order q−
n
2
+ 1

4

since the dominating term in
(
n
d

)
q
is qd(n−d)).

Given the above remark, we cautiously state the following conjecture.

Conjecture 4.28. Let n ∈ N, q = pk a prime power, Q ⊆ Lq(n) a sum closed family
and

κq,n =

∑n
d=1

(
n−1
d−1

)
q∑n

d=0

(
n
d

)
q

.

Then there is an x ∈ GF(q)n \ {0} such that

#{V ∈ Q : x ∈ V } ≥ κq,n ·#Q.

We will refer to it as the q-analogue of the Union Closed Sets Conjecture 3.1 or perhaps
just as the Sum Closed Sets Conjecture. It should also be noted that, in a speci�c
algebraic sense, the Union Closed Sets Conjecture 3.1 may be recovered from its q-
analogue by taking q = 1 and working with a suitable theory of the �eld with one
element (the set of �vector spaces of dimension ≤ n� over such a theoretical object
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would then correspond to P(n)). For more on that see [12].
One now has the opportunity to take everything known about union closed families and
to try to prove analogous statements for sum closed families. We will demonstrate this
with the following theorem. It can be seen as an adapted version of the �folklore� proof
that if a union closed family F contains a singleton {x} ∈ F , then x is abundant in F
(see [10]).

Theorem 4.29. Let n ∈ N, q = pk a prime power and Q ⊆ Lq(n) a nontrivial, sum
closed family. Assume U ∈ Q is a one-dimensional subspace of GF(q)n and x ∈ U \{0},
then

#{V ∈ Q : x ∈ V } ≥ 1

1 + qn−1
·#Q.

Proof. Let 0 ̸= x ∈ U ∈ Q as in the assumptions. Consider the function

φ : {V ∈ Lq(n) : x /∈ V } → {W ∈ Lq(n) : x ∈W}, V 7→ V + U.

How large can #φ−1(W ) get? Let W ∈ Lq(n) with x ∈W and dimW = d. If we want
to have V + U = W , then V has to be a subspace of W of dimension dimV = d − 1
with x /∈ V . Every such V contains

(qd−1 − 1)(qd−1 − q)...(qd−1 − qd−2)

ordered bases (v1, ..., vd−1). Indeed, there are qd−1 − 1 possibilities to choose the �rst
vector v1 (every vector in V except the zero vector), there are qd−1 − q possibilities to
choose the second vector v2 (every vector in V except for the ones in span{v1}), there
are qd−1 − q2 possibilities to choose the third vector v3 (every vector in V except for
the ones in span{v1, v2}), and so on.
Also note that there are

(qd − q)(qd − q2)...(qd − qd−1)

ordered bases of W of the form (x,w1, ..., wd−1). Observe that for every such ordered
basis, the space V := span{w1, ..., wd−1} ful�lls x /∈ V and U + V = W . Also, if V
is any such space and (v1, ..., vd−1) is an ordered basis of V , then (x, v1, ..., vd−1) is an
ordered basis of W of the above mentioned type.
By symmetry, for any given V as above, the number of ordered bases (x,w1, ..., wd−1)
of W so that V = span{w1, ..., wd−1} is independent of the choice of V . We conclude

#{V ∈ Lq(n) : x /∈ V,U + V = W} = (qd − q)(qd − q2)...(qd − qd−1)

(qd−1 − 1)(qd−1 − q)...(qd−1 − qd−2)
= qd−1.

This also gives
#φ−1(W ) = qdimW−1 ≤ qn−1

for all W ∈ Lq(n) with x ∈W . Since φ restricts to a map

φ : {V ∈ Q : x /∈ V } → {W ∈ Q : x ∈W},

we thus have
qn−1 ·#{W ∈ Q : x ∈W} ≥ #{V ∈ Q : x /∈ V },

proving the theorem. ■
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Note that the factor 1
1+qn−1 ≈ q−n+1 is in general much smaller than the desired factor

κq,n ≈ q−
n
2
+ 1

4 . How can this be?
Inspecting the proof, this is due to the fact that #φ−1(W ) depends on dimW , in
particular it can take di�erent values for di�erent W 's. Compare this with Lemma 4.6,
where we did not have this issue in the proof there and indeed the bound there can be
sharp. Due to the fact that #φ−1(W ) depends on W , the bound in Theorem 4.29 can
be assumed to almost never be sharp.
Thus, there is still hope to raise the factor all the way to κq,n. The following discussion
o�ers a heuristic justi�cation, that a modi�cation to the above proof might yield this
better constant already. Consider the weighted average∑n

d=1 q
d−1
(
n−1
d−1

)
q∑n

d=1

(
n−1
d−1

)
q

.

The dominating term of the summand corresponding to d in the numerator is

q(d−1)(n−d+1),

so that the dominating term in the numerator corresponds to d−1 = n
2 (as to maximize

(d − 1)(n − d + 1), also disregarding rounding). Similarly, the dominating term of the
summand corresponding to d in the denominator is

q(d−1)(n−d),

so that the dominating term in the denominator corresponds to d = n+1
2 (as to maximize

(d − 1)(n − d), again disregarding rounding). Thus, the weighted average above is of
order roughly

q(
n
2 )

2−(n−1
2 )

2

= q
n
2
− 1

4 .

Compared to κn,q ≈ q−
n
2
+ 1

4 , this gives roughly the same asymptotic.

Question. Can the above, informal discussion be applied to prove Theorem 4.29 with
the constant 1

1+qn−1 replaced by κq,n?

4.4.2 A Vaster Setting

The considerations in the previous section can further be generalized. For example,
what if instead of linear subspaces, we consider the subrings or ideals of a (�nite) ring?
Or for that sake any structure, so that the system of substructures is intersection closed?
A very general question would then be the following.

Remark 4.30. Let n ∈ N and let N ⊆ P(n) be a nontrivial, intersection closed family
with [n] ∈ N. As we have already done with union closed family, N is a lattice. The
meet operation is just set intersection, the join is given by

A ∨B =
⋂
{N ∈ N : A ⊆ N,B ⊆ N}.

One can now study the structure of nontrivial, ∨-closed families F ⊆ N. We get the
theory for union closed families for N = P(n), and the case for sum closed families if N
consists of the (projective versions of) subspaces of GF(q)n.
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Question. For a given N ⊆ P(n), what is the largest constant κ = κ(N), such that for
any nontrivial, ∨-closed family F ⊆ N there is an element x ∈ [n] with

#{F ∈ F : x ∈ F} ≥ κ ·#F?

The vast scope that the above question captures makes it almost impossible to answer
in a satisfactory way. However single cases may be answered quite easily.

Example 4.31. If N = {[k] : k ∈ {0, 1, ..., n}}, then any F ⊆ N is ∨-closed (since ∨ is
basically just the maximum here). For any nontrivial F ⊆ N it holds

#{F ∈ F : 1 ∈ F} ∈ {#F ,#F − 1},

depending on whether ∅ ∈ F or not. In any case

#{F ∈ F : 1 ∈ F} ≥ 1

2
·#F .

This shows that κ(N) ≥ 1
2 and F = {∅, [n]} even gives equality.

The above example is rather simple. For the Union Closed Sets Conjecture 3.1 we would
like to know about N = P(n). One way one could get new insights is by considering
the following.

Question. Does there exist a sequence {∅, [n]} = N2 ⊊ N3 ⊊ ... ⊊ N2n = P(n) of
intersection closed families Ni ⊆ P(n), such that for all i = 2, ..., 2n it holds

κ(Ni) ≥
1

2
?

The idea of the above is in a way another inductive approach to the Union Closed Sets
Conjecture 3.1, but instead of building up the union closed family F , we build up the
�universe� around it. We leave this question for future research.
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The Union Closed Sets Conjecture 3.1 is still an open and very active part of research in
combinatorics. The author hopes that this thesis sheds some new light on union closed
families and their famous conjecture. To summarize, the main idea of this thesis was
to investigate the inner structure of a union closed family F to obtain new insights into
the behaviour of F . By doing so, we obtain a subfamily E ⊆ F containing at least half
of the sets from F and possessing some additional structure. This additional structure
allowed us to conclude some statements about the frequency of elements in E which,
up to a factor of 1

2 , translates to a statement about frequencies in F . While we were
not able to do so in this thesis, we hope that this approach can at least yield better
asymptotics on the frequency of elements in F .
We also stated some new conjectures that could give some new approaches to the Union
Closed Sets Conjecture 3.1. To �nish, we summarize the most important open questions
discussed in this thesis:

(1) Conjecture 4.4: Does the k-th most frequent element in a nontrivial, union closed
family F appear in at least 1

2k−1+1
·#F many sets from F?

(2) Conjecture 4.23: Does every nontrivial, union closed family F contain an inter-
secting subfamily E ⊆ F of cardinality #E ≥ 1

2 ·#F? What can we say about the
frequency of the most frequent element in a nontrivial, union closed, intersecting
family F?

(3) Remark 4.30 and the discussion after: What can we say about nontrivial, ∨-
closed families in an intersection closed family N? Can we build up a chain
{∅, [n]} = N2 ⊊ ... ⊊ N2n = P(n) of intersection closed families, such that every
nontrivial, ∨-closed family F ⊆ Ni has an element appearing in at least half of
all sets from F?
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