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1 Introduction

1.1 Aim

The Kadison-Singer problem was for a long time one of the major open problems in
functional analysis. Even though it started out as a problem concerning a certain in�nite
dimensional C*-algebra, it turned out that it has many equivalent �nite dimensional
formulations, many of which have a highly combinatorial nature to them.
We will give a thorough explanation of all the tools that were developed by Marcus,
Spielman and Srivastava and many before them that �nally lead to a solution of the
Kadison-Singer problem. The �rst half of this thesis will therefore consist mostly of a
retelling of [19] with some more detailed information if we feel the need for them.
Soon after their solution, it was realized that their techniques can be applied to show
the existence of other structures that are of functional analytic and approximation
theoretic interest. The second half of this thesis will present such an application of
the subsequently developed theory by Nitzan, Olanevskii and Ulanovskii, showing the
existence of exponential frames on sets of �nite measure. The latter section will therefore
follow closely their paper [20].
The aim of this thesis is to be, for the most part, a self contained reference of this
topic without the major need of outside sources. We wish to give a deep explanation
of all the involved concepts and with only a few exceptions we prove all their (for us)
necessary properties. As for required preliminaries, the �rst chapters on the Kadison-
Singer problem should be understandable only with knowledge from basic linear algebra
and calculus (in particular complex analysis; the Kadison-Singer problem itself requiring
some functional analysis). The chapter on exponential frames assumes some knowledge
on general Hilbert spaces and the Fourier transform.

1.2 Notation

We will use N for the (positive) natural numbers and N0 when we want to include 0,
R for the reals and C for the complex numbers. For a ring R, we denote by R[x] and
R[x1, ..., xn] the ring of (�nite) polynomials (univariate or multivariate respectively)
with coe�cients in R. Of course, we are mostly interested in the case R ∈ {R,C}. For
real numbers x1, ..., xk, y, z1, ..., zl we write

x1

...
xk

≤ y ≤
z1

...
zl
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1 Introduction

as a convenient way to express xp ≤ y ≤ zq for all p = 1, ..., k and all q = 1, ..., l.
This is purely cosmetically and is just chosen to be easier to grasp than the equivalent
formulation

max{xp : p = 1, ..., k} ≤ y ≤ min{zq : q = 1, ..., l}.

We will adopt the conventions R≥0 = [0,∞) and R>0 = (0,∞). We will sometimes
denote the set {1, ..., n} by [n]. For a square matrix A we will denote its characteristic
polynomial as χ[A](t) = det(tI −A). For partial derivatives we will write ∂xi or simply
∂i for the derivative after the i-th variable. The expectation and probability will be
denoted using the symbols E and P respectively. We will also use the Landau symbol
O occasionally. By 1 ∈ Rm we will denote the all ones vector, by 0 the all zeroes-
vector and we will also use O for the all zeroes matrix. log will stand for the natural
logarithm. To better distinguish between them, we will write ‖ · ‖ for the euclidean
norm on �nite dimensional spaces CN and ‖ · ‖2 for the usual norm in the Lebesgue
spaces L2. Occasionally we will write K ⊂⊂ Ω to denote compact subsets. As is often
seen, we write Uε(x) for the open ε-ball around x (with respect to some metric, clear
from context). Also the closure of a set Ω (with the topology clear from context) will
be denoted by Ω.
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2 Polynomials and Expectations

2.1 Interlacings and Families of Polynomials

Polynomials of the kind in the following de�nition are also often referred to as �hyper-
bolic�, which originates from the theory of partial di�erential equations.

De�nition 2.1. A polynomial p ∈ C[x] is said to be real rooted if all its roots are
real numbers.

Of course, a real rooted polynomial which has at least one nonzero real coe�cient (e.g.
its leading coe�cient) is a real polynomial, i.e. has only real coe�cients. If we enumerate
the roots x1, ..., xn of a real rooted polynomial, we always do so in nondecreasing order,
i.e. x1 ≤ x2 ≤ ... ≤ xn. For the major part, we are only interested in real rooted
polynomials with real coe�cients. Our main interest for now are certain families of real
rooted polynomials.

De�nition 2.2. For two real rooted polynomials, we say that g(x) = α0
∏n−1
i=1 (x− αi)

interlaces f(x) = β0
∏n
i=1(x− βi), if

β1 ≤ α1 ≤ β2 ≤ α2 ≤ ... ≤ βn−1 ≤ αn−1 ≤ βn.

A family {fj}kj=1 of real rooted polynomials with same degree has a common in-

terlacing, if there is a real rooted polynomial g that interlaces all fj , j = 1, ..., k

simultaneously, i.e. writing fj(x) = βj0
∏n
i=1(x− βji ) and αi as above we have

β1
1
...
βk1

≤ α1 ≤
β1

2
...
βk2

≤ α2 ≤ ... ≤
β1
n−1
...

βkn−1

≤ αn−1 ≤
β1
n
...
βkn

.

If we have a family with common interlacing just like in the de�nition, we may think
of the (multi-)sets {β1

i , ..., β
k
i } as �clusters� of roots, where two neighboring clusters can

be �separated� by a corresponding root of g. Also note that therefore the interlacing
property is more a property of the (multi-)sets of roots of the polynomials rather than
of the polynomials themself. For some situations it might be better to think in terms
of multisets, however the interpretation via polynomials will also turn out to be useful.
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2 Polynomials and Expectations

Remark 2.3. [11]

(i) If f has a root x0 with multiplicity d ≥ 2 and g interlaces f , then g also has x0

as a root with multiplicity ≥ d− 1. Also, if {fj}j has a common interlacing and
one of the fj has a root of order ≥ 3, then all of the fj have that root (but not
necessarily with the same multiplicities, even though they di�er at most by two).

(ii) Assume {fj}kj=1 is a family of real rooted polynomials all of degree n, such that

β is a common root of the fj , i.e. fj(β) = 0 for all j = 1, ..., k. Write βj1, ..., β
j
n−1

for the roots of fj(x)/(x−β). Assume further that the family {fj(x)/(x−β)}kj=1

has a common interlacing g with roots α1, ..., αn−2.

β1
1
...
βk1

≤ α1 ≤
β1

2
...
βk2

≤ α2 ≤ ... ≤
β1
n−2
...

βkn−2

≤ αn−2 ≤
β1
n−1
...

βkn−1

.

We want to reinsert β into this picture to show that the family {fj}j has a common
interlacing. If β ≤ min{βj1 : 1 ≤ j ≤ k} =: β or β := max{βjn−1 : 1 ≤ j ≤ k} ≤ β
we have no di�culties with that, since we could simply add some α ∈ [β, β] or
α ∈ [β, β] respectively to the roots of g to get a common interlacing (x− α)g(x)
for {fj}j .
Otherwise we can order the polynomials fj in such a way, that there is a j0 ∈
{0, ..., k} with

β1
i
...

βj0i

≤ β ≤
βj0+1
i
...
βki

for some i. This means that the cluster {β1
i , ..., β

k
i } for the family {fj(x)/(x−β)}j

gets split up into {β1
i , ..., β

j0
i , β, ..., β} and {β, ..., β, βj0+1

i , ..., βki } for the family
{fj}j . But then the polynomial (x− β)g(x) interlaces the family {fj}j .
Comparing this with the above case, (x− β)g(x) is always a common interlacing
for {fj}j , if g interlaces {fj(x)/(x− β)}j .

(iii) If a family {fj}j of real rooted polynomials has the property, that any fj1 and
fj2 , j1 6= j2 have a common interlacing gj1j2 , then {fj}j already has a common
interlacing. Indeed, again denoting the roots of fj by β

j
i , by the assumption we

know that the intervals [βj1i , β
j1
i+1] and [βj2i , β

j2
i+1] are not disjoint. Namely, the

i-th root of gj1j2 lies in both by the interlacing property, see

βj1i
βj2i
≤ αj1j2 ≤ β

j1
i+1

βj2i+1

. (2.1)

Thus, for any given i = 1, ..., n − 1 the system {[βji , β
j
i+1] : j = 1, ..., k} ful�lls

the so called (onedimensional) Helly property. A classical theorem by Helly and
Radon [21, 15] then states, that also the total intersection

Ii :=
k⋂
j=1

[βji , β
j
i+1]
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2 Polynomials and Expectations

is non-empty. It turns out that such a machinery however is not needed here and
that there is even a short explanation for our situation. Simply choose βj0i :=

max{βji : j = 1, ..., k} which trivially ful�lls βji ≤ βj0i for all j. But by (2.1) we
also have βj0i ≤ αj0ji ≤ βji+1 for all j. Thus βj0i ∈ [βji , β

j
i+1] for all j, so that

βj0i ∈ Ii is non-empty.
Choose now αi ∈ Ii for i = 1, ..., n− 1, these ful�ll

max{βji : j = 1, ..., k} ≤ αi ≤ min{βji+1 : j = 1, ..., k},

so that g(x) =
∏n−1
i=1 (x− αi) is a common interlacing for {fj}j . This shows that

�pairwise interlacable� and �totally interlacable� are indeed equivalent, the other
direction being trivial.

The following result relies mainly on basic continuity arguments for polynomials.

Lemma 2.4. [18] Let {fj}kj=1 be a family of real rooted polynomials all of the same
degree having positive leading coe�cients and de�ne

f∅ :=

k∑
j=1

fj .

If {fj}kj=1 has a common interlacing, then there is a j such that the largest root of fj
is at most the largest root of f∅.

Proof. Let the fj have common degree n and let g be a common interlacing with largest
root αn−1. Since all fj have positive leading coe�cient, fj(x) is positive for all j
whenever x is su�ciently large. Also, by the fact that g is a common interlacing,
every fj has precisely one root ≥ αn−1, so fj(αn−1) ≤ 0 for all j = 1, ..., k. Therefore
f∅(αn−1) ≤ 0 and, since f∅ has positive leading coe�cient, we also have f∅(x1) > 0 for
a su�ciently large x1, e.g. for all

x1 > max
1≤j≤k

max{x0 : fj(x0) = 0}.

This shows, that f∅ has a root in the interval [αn−1, x1) and is positive for all x ≥ x1,
so the largest root of f∅ is larger than αn−1, the largest root of g. Let βn be this largest
root of f∅.
Since 0 = f∅(βn) =

∑k
j=1 fj(βn), there is a j with fj(βn) ≥ 0. Collecting everything so

far together, we get for this j:

fj(αn−1) ≤ 0, fj(βn) ≥ 0

and fj has exactly one root ≥ αn−1, so this root must be ≤ βn, which proves the
claim. �

It will be convenient to de�ne a similar concept for families of real rooted polynomials
indexed by product sets.
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2 Polynomials and Expectations

De�nition 2.5. Let S1, ..., Sm be �nite sets and for all (s1, ..., sm) ∈ S1 × ...× Sm let
fs1,...,sm be real rooted polynomials of common degree n with positive leading coe�-
cients. For a partial assignment (s1, ..., sk) ∈ S1 × ...× Sk with 1 ≤ k < m set

fs1,...,sk :=
∑

sk+1∈Sk+1,...,sm∈Sm

fs1,...,sk,sk+1,...,sm ,

as well as
f∅ =

∑
s1∈S1,...,sm∈Sm

fs1,...,sm .

We say that the family {fs1,...,sm : s1 ∈ S1, ..., sm ∈ Sm} forms an interlacing family

if for all k = 0, ...,m− 1 and all (s1, ..., sk) ∈ S1 × ...× Sk, the polynomials

{fs1,...,sk,t}t∈Sk+1

have a common interlacing.

Theorem 2.6. [19] Let S1, ..., Sm be �nite sets and {fs1,...,sm : s1 ∈ S1, ..., sm ∈ Sm} an
interlacing family of real rooted polynomials. Then there is an assignment (s1, ..., sm) ∈
S1 × ...× Sm, such that the largest root of fs1,...,sm is at most the largest root of f∅.

Proof. By induction on m. The case m = 1 is precisely lemma 2.4 above. So assume
the statement is true for m− 1. Using the induction hypothesis choose (s1, ..., sm−1) ∈
S1× ...×Sm−1 such that the largest root of fs1,...,sm−1 is at most the largest root of f∅.
The polynomials {fs1,...,sm−1,t}t∈Sm have a common interlacing by assumption. Since
by de�nition we have

fs1,...,sm−1 =
∑
t∈Sm

fs1,...,sm−1,t,

again by lemma 2.4 there is an element sm ∈ Sm, such that the largest root of fs1,...,sm
is at most the largest root of fs1,...,sm−1 , which by choice of (s1, ..., sm−1) is at most the
largest root of f∅ (with the induction hypothesis). �

Notice that this proof gives an iterative method for �nding an assignment (s1, ..., sm) ∈
S1× ...×Sm as in the statement. The following theorem gives a useful classi�cation for
families with a common interlacing.

Theorem 2.7. [11] Let {fj}kj=1 be real polynomials (i.e. only real coe�cients) of the
same degree with positive leading coe�cients. Then {fj}kj=1 has a common interlacing,

if and only if
∑k

j=1 λjfj is real rooted for all convex combinations λj ≥ 0,
∑k

j=1 λj = 1.

Proof. We set n := deg f1 = ... = deg fk their common degree and denote by βj1 ≤ ... ≤
βjn the roots of fj .
(⇒): By induction on n. Without loss of generality we may assume that the fj have no
common roots. If otherwise we had a β with fj(β) = 0 for all j = 1, ..., k, we can apply
the induction hypothesis on {fj(x)/(x − β)}j , where we use remark 2.3 (ii). Consider
now a convex combination f =

∑k
j=1 λjfj where we may further assume λj > 0 for all

8



2 Polynomials and Expectations

j, otherwise we can just restrict or considerations to the set of all indices j for which
λj > 0.
Let g be a common interlacing for the fj with roots αi, i.e. we have the by now familiar
situation

β1
1
...
βk1

≤ α1 ≤
β1

2
...
βk2

≤ α2 ≤ ... ≤
β1
n−1
...

βkn−1

≤ αn−1 ≤
β1
n
...
βkn

.

For 1 ≤ j ≤ k, since fj has positive leading coe�cient and g interlaces fj , we have

fj(αi)

{
≤ 0 n− i odd
≥ 0 n− i even

. (2.2)

Since the fj have no common root, fj(αi) cannot be zero for all i. With (2.2) we
therefore have

f(αi)

{
< 0 n− i odd
> 0 n− i even

for the convex combination f . Thus in every open interval (α1, α2), ..., (αn−2, αn−1) the
polynomial f admits a root. Since f(αn−1) < 0 and f has positive leading coe�cient,
it has another root > αn−1, so the polynomial f of degree n with real coe�cients has
at least n− 1 real roots. But since complex roots of real polynomials come in pairs of
two (via conjugates), f must have an n-th real root, thus f is real rooted.
(⇐): By remark 2.3 (iii) it su�ces to consider the case of k = 2 polynomials f1, f2. The
proof of this side of the implication is somewhat lengthy and we proceed in multiple
steps (each of them certainly worthy their own lemma, however we will only need these
details here in this part of the proof). To shorten the following a bit, we will say that
two real rooted polynomials f, g with common degree and positive leading coe�cient
are compatible if all their convex combinations λf+(1−λ)g, λ ∈ [0, 1] are real rooted.
So in what follows let f1 and f2 always be compatible of common degree n and let
hλ = λf1 + (1− λ)f2 for λ ∈ [0, 1] be a convex combination. Furthermore, for i = 1, 2
and x ∈ R let ni(x) be the number of roots of fi (counted with their multiplicities) that
are ≥ x. For real a ∈ R we also say that f1 and f2 agree in a, if f1(a) 6= 0 6= f2(a) and
f1(a) and f2(a) have the same sign (so either both > 0 or both < 0).

(A) The derivatives f ′1 and f ′2 are also compatible:
All polynomials hλ = λf1 + (1 − λ)f2 have real roots and by basic calculus the
roots of the derivative h′λ lie between the roots of hλ (counted with their according
multiplicities), so that h′λ = λf ′1 + (1− λ)f ′2 has all n− 1 real roots, thus f ′1 and
f ′2 are compatible.

(B) If f1 and f2 agree in a < b ∈ R, then n1(b)− n1(a) = n2(b)− n2(a):
Since f1 and f2 agree in a and b, hλ has no roots on the boundary of [a, b]. As
λ ∈ [0, 1] varies continuously, so do the roots of hλ (which are always real by
compatibility of f1 and f2) between the roots of f1 and f2. By the �rst argument,
now root of hλ can cross a or b, so that the number of roots of hλ in (a, b) stays
constant. But the polynomials f1 = h1 and f2 = h0 have n1(b) − n1(a) and
n2(b)− n2(a) roots respectively in this interval, so that they are the same, giving
the claim.
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2 Polynomials and Expectations

(C) For x ∈ R we have |n1(x)− n2(x)| ≤ 1:
We use induction on n, their common degree. The case n = 1 is clear. Since
common roots of f1 and f2 contribute in the same way to n1 as they do to n2, we
may assume f1 and f2 to have no common roots. Notice here that factoring out
linear factors from both f1 and f2 preserve the compatibility property, as can be
easily seen by considering the convex combinations hλ.
Let now n ≥ 2 and assume there is a x0 ∈ R with n1(x0) − n2(x0) ≥ 2 (if
there only is a x0 with n1(x0)− n2(x0) ≤ −2 simply exchange the rolls of f1 and
f2). Adding some small ε > 0 to x0, by continuity we can assume that x0 is
a root of f1. Furthermore, we may assume x0 to be the largest root of f1 with
n1(x0) − n2(x0) ≥ 2. By the assumptions so far (namely that f1 and f2 have no
common roots) we also have f2(x0) 6= 0.
If n1(x0) − n2(x0) > 2 were true, consider the roots of the derivatives f ′1 and
f ′2 and their in an analogous way de�ned quantities n′1 and n′2. Since the roots
of derivatives of real rooted polynomials lie between the roots of the original
polynomial, we have n′1(x0) = n1(x0)−1 and n′2(x0) ≤ n2(x0). But then n′1(x0)−
n′2(x0) ≥ n1(x0) − n2(x0) + 1 ≥ 2, which is a contradiction to the induction
hypothesis (with (A) giving the compatibility of f ′1 and f ′2). This contradiction
shows n1(x0)− n2(x0) = 2.
For a y2 ∈ R strictly larger than all roots of f1 and f2, we have, since f1 and f2

have positive leading coe�cients, that f1 and f2 agree in y2 (both polynomials
are positive there). By the fact that n1(x0) − n2(x0) = 2 is even, we can choose
a y1 < x0, so that f1 and f2 also agree in y1 and in such a way that f1 and
f2 have no roots in [y1, x0). But then counting the roots in [y1, y2] we see that
n1(y2) − n1(y1) = n2(y2) − n2(y1) − 1 6= n2(y2) − n2(y1), contradicting (B).
Therefore such a x0 cannot exist and we conclude the claim.

We are now able to show that f1 and f2 have a common interlacing. Denoting

f1(x) = β1
0

n∏
i=1

(x− β1
i ), f2(x) = β2

0

n∏
i=1

(x− β2
i )

with βj0 > 0, j = 1, 2 and βj1 ≤ ... ≤ βjn, j = 1, 2, we have to show that [β1
i , β

1
i+1] ∩

[β2
i , β

2
i+1] are nonempty for all i = 1, ..., n − 1. As in remark 2.3 (iii) this implies the

existence of a common interlacing.
Suppose otherwise and let i∗ be the maximal i = 1, ..., n−1 with [β1

i∗ , β
1
i∗+1]∩[β2

i∗ , β
2
i∗+1] =

∅. After possibly renaming f1 and f2, we may assume β1
i∗+1 < β2

i∗ , so that the inter-
val [β1

i∗ , β
1
i∗+1] lies entirely to the left of [β2

i∗ , β
2
i∗+1]. But then n2(β2

i∗) = n − i∗ and
n1(β2

i∗) = n− i∗−2 (using maximality of i∗), contradicting (C). This �nally proves that
f1 and f2 have a common interlacing. �

2.2 Stable Polynomials

The following de�nition also originates from the theory of partial di�erential equations
(as was already the case with the notion of real rootedness).

De�nition 2.8. A polynomial p ∈ C[z1, ..., zm] is called stable, whenever one of the
following (obviously) equivalent conditions hold

10



2 Polynomials and Expectations

(i) ∀i = 1, ...,m : Im zi > 0 ⇒ p(z1, ..., zm) 6= 0;

(ii) p(z1, ..., zm) = 0 ⇒ ∃i = 1, ...,m : Im zi ≤ 0.

A stable polynomial with real coe�cients is called real stable.

Remark 2.9. [19] Notice that, by a similar argumentation as at the end of the proof of
2.7 (⇒), a real stable polynomial in one variable has only real roots. Thus, a univariate
polynomial is real stable if and only if it is real rooted and has (at least one nonzero)
real coe�cients.

Our aim is to study certain polynomials which will turn out to be real stable. For a
start we need a tool from complex analysis, known as Hurwitz's theorem. The proof of
this statement (at least the one dimensional case) can be found in most text books on
complex analysis, so we only sketch it here.

Theorem 2.10. [10] Let D ⊆ Cd be a domain (i.e. open and connected) and suppose
that (fn)n is a sequence of nonvanishing analytic functions on D, that converges uni-
formly on all compact subsets K ⊂⊂ D to f . Then f is either nonvanishing on D or
constant zero.

Proof sketch. Assume we already proved the one dimensional case d = 1, which can
be done by basic complex analytical arguments. Assume for c ∈ D we have f(c) = 0
and choose an open neighborhood U := Uε(c) ⊆ D. By the one dimensional case, f is
zero on the intersection U ∩ {z ∈ Cd : z1 = c1}. Repeat this argument for the other
coordinates, so we have f = 0 on U , i.e. f vanishes on a (open) subdomain of D. By
the (higher dimensional) identity theorem, f also vanishes on D. �

Proposition 2.11. [3, 26] Let A1, ..., Am ∈ Cn×n be hermitian positive semide�nite
matrices and consider the polynomial

p(z1, ..., zm) = det

 m∑
i=1

ziAi

 .

If p is not constant zero, then p is real stable.

Proof. Set A :=
∑m

i=1 ziAi. Since for real zi's the matrix A is hermitian, we have then
also that p(z1, ..., zm) is real. Therefore p has real coe�cients and it remains to show
stability.
Using a limiting argument together with Hurwitz's theorem 2.10 above, it su�ces to
consider the case where all Ai are positive de�nite. In this case, the polynomial p
is not the zero polynomial (not even if we �x n − 1 of the zi's and consider it as a
univariate polynomial in the remaining variable). With z ∈ Rn and λ ∈ Rn>0 write

11



2 Polynomials and Expectations

z(t) := z + tλ ∈ Cn for t ∈ C and observe that P :=
∑m

i=1 λiAi is hermitian positive
de�nite, in particular it has an hermitian positive de�nite square root P 1/2. Then

p(z(t)) = det

 m∑
i=1

(zi + tλi)Ai

 = det

 m∑
i=1

ziAi + t

m∑
i=1

Ai


= det (A + tP ) = (detP 1/2) det(tI + P−1/2AP−1/2)(detP 1/2)

= (−1)n(detP ) det(−tI − P−1/2AP−1/2)

= (−1)n(detP )χ[P−1/2AP−1/2](−t)

is in essence the characteristic polynomial of an hermitian matrix P−1/2AP−1/2 (remem-
ber, the zi here are real) and thus has only real roots. This shows that p(z1, ..., zn) = 0
can only be if all zi's are real, which proves the assertion. �

In particular this show that the polynomial det(xI +
∑m

i=1 ziAi) is real stable for her-
mitian positive semide�nite A1, ..., Am, since it is clearly not constant zero by the xI
term.

To generate real stable polynomials from known ones, there is a multitude of di�erent
approaches. One relatively simple one comes from the study of roots of complex poly-
nomials. The following theorem may be compared to the Gauss-Lucas theorem and will
be useful for our purposes.

Theorem 2.12. Let q ∈ C[z] be a complex polynomial of degree d and let A ⊆ C be
a convex subset that contains all roots of q. For λ ∈ C the roots of the polynomial
q(z) − λq′(z) lie in the region swept out by translating A in the direction and by the
magnitude of dλ.

Proof. We will show that any root of q(z) − λq′(z) can be expressed as the sum of a
convex combination of the roots of q plus tλ, where t ∈ [0, d]. Let z1, ..., zd be the roots
of q and choose a root z of q−λq′. If z is also a root of q, then the above holds trivially,
so let q(z) 6= 0. In this case we clearly have λ 6= 0. We can then write q(z)−λq′(z) = 0
equivalently as

1 = λ
q′(z)

q(z)
= λ

d∑
i=1

1

z − zi
= λ

d∑
i=1

z − zi
|z − zi|2

(2.3)

which gives

1

λ
+

d∑
i=1

zi
|z − zi|2

= z
d∑
i=1

1

|z − zi|2
,

so, after taking complex conjugates,

1

λ
∑d

i=1
1

|z−zi|2
+

1∑d
i=1

1
|z−zi|2

d∑
i=1

1

|z − zi|2
zi = z.

By setting

µi =
1/|z − zi|2∑d
j=1 1/|z − zj |2

12



2 Polynomials and Expectations

and

tλ =
1

λ
∑d

i=1
1

|z−zi|2

we get

tλ+
d∑
i=1

µizi = z.

To �nish the proof it remains to show that t ∈ [0, d], i.e.

t =
1

|λ|2
∑d

i=1
1

|z−zi|2
≤ d

or equivalently

|λ|−2 ≤ d
d∑
i=1

1

|z − zi|2
. (2.4)

Notice, by (2.3), that the left side can be expressed as

|λ|−2 =

∣∣∣∣∣∣
d∑
i=1

1

z − zi

∣∣∣∣∣∣
2

.

Using the triangle inequality, (2.4) gets implied by d∑
i=1

1

|z − zi|

2

≤ d
d∑
i=1

1

|z − zi|2
,

but this follows from the (real) Cauchy-Schwarz inequality applied to the vectors [1]di=1

and [ 1
|z−zi| ]

d
i=1. Reading the chain of inequalities backwards yields the assertion. �

Corollary 2.13. [19] If p ∈ R[z1, ..., zm] is real stable, then so is

(1− ∂1)p = p− ∂1p.

Proof. Let x2, ..., xn ∈ C with positive imaginary part Imxi > 0, i = 2, ...,m. The
univariate polynomial q(z) = p(z, x2, ..., xm) (according to de�nition 2.8) can only have
roots z0 with Im z0 ≤ 0, i.e. it is stable. The set H := {z ∈ C : Im z ≤ 0} is convex and
invariant under translation by d (degree of q), while containing all the roots of q, so by
theorem 2.12 the roots of (1 − ∂z)q also lie in H, i.e. (1 − ∂z)q is stable. Therefore,
(1− ∂1)p has no roots where all imaginary parts are positive. �

Lemma 2.14. [26] Let p ∈ R[z1, ..., zm] be real stable and a ∈ R. Then the polynomial
p|z1=a = p(a, z2, ..., zm) is constant zero or real stable.

Proof. It is obvious that p|z1=a has real coe�cients, so only need to show stability. As
in the proof of corollary 2.13, we have that p|z1=ã for ã ∈ C with Im ã > 0 is stable. A
simple limiting argument by approximating a with such ã, e.g. by a + i/n, n −→ ∞,
together with Hurwitz's theorem 2.10 yields the claim. �

13



2 Polynomials and Expectations

It should also be clear that permuting the variables of p(z1, ..., zm) as to obtain a poly-
nomial p̃(z1, ..., zm) = p(zσ(1), ..., zσ(m)) for a permutation σ of the set {1, ...,m} also
preserves real stability.

2.3 Trace Identities

This small section is a reminder from linear algebra and aims to derive a useful identity
regarding the trace of matrices. For a vector v ∈ Cn we denote by v∗ the transpose
and componentwise complex conjugate of v. We will also use the trace functional tr
on the space of (complex valued) square matrices, which induces an inner product
〈A,B〉 = tr(AB∗), where A and B must be of the same format m×n. For real matrices
A,B,C and X,Y (with compatible formats) we have the straightforward identities

tr(ABC) = tr(CAB) = tr(BCA) (2.5)

and especially
tr(XY ) = tr(Y X).

Notice that, if X ∈ Cm×n and Y ∈ Cn×m, then the trace in tr(XY ) is a functional de-
�ned on Cm×m, while in the case of tr(Y X) it is de�ned on Cn×n, so technically speaking
these are two di�erent functionals since they act (in general) on di�erent ground sets.
The same applies to the cyclic identities above. However, we will not distinguish be-
tween these notationwise and context will make it clear how these functionals are meant
exactly. As an example, we will sometimes see chains of equalities looking like

tr(Auv∗) = tr(v∗Au) = v∗Au,

where A is a square matrix and u and v are (column) vectors of compatible dimensions.
We will often simply skip the intermediate step, so we mention this point here to avoid
possible confusion later on.

Lemma 2.15. If A ∈ Cn×n is invertible and u, v ∈ Cn, then

det(A+ uv∗) = (detA)(1 + v∗A−1u).

Proof. Observe[
I 0

v∗A−1 1

][
A+ uv∗ u

0 1

][
I 0
−v∗ 1

]
=

[
A u
0 v∗A−1u+ 1

]
,

so basic properties of the determinant then imply the claim. �

Theorem 2.16. For A,B ∈ Cn×n with A invertible we have

∂t det(A+ tB)|t=0 = detA · tr(A−1B).

14
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Proof. Let B =
∑r

i=1 uiv
∗
i be a rank-one decomposition of B. Applying lemma 2.15

iteratively yields

det(A+ tB) = det

A+ t
r∑
i=1

uiv
∗
i

 = (detA)
r∏
i=1

(1 + tv∗iA
−1ui)

= detA+ detA · t
r∑
i=1

v∗iA
−1ui +O(t2) for t −→ 0.

Thus, ∂t det(A+ tB)|t=0 evaluates to detA ·
∑r

i=1 v
∗
iA
−1ui, but

r∑
i=1

v∗iA
−1ui =

r∑
i=1

tr(A−1uiv
∗
i ) = tr

A−1
r∑
i=1

uiv
∗
i

 = tr(A−1B),

proving the claim. �

2.4 Mixed Characteristic Polynomials

De�nition 2.17. Let A1, ..., Am ∈ Cd×d be (hermitian positive semide�nite) matrices,
we call

µ[A1, ..., Am](x) :=

 m∏
i=1

1− ∂i

det

xI +
m∑
i=1

ziAi

∣∣∣∣∣
z1=...=zm=0

the mixed characteristic polynomial of the matrices A1, ..., Am.

Such polynomials arise from the study of expected characteristic polynomials of random
rank-one hermitian positive semide�nite matrices. This connection will be made precise
in the following results.

Lemma 2.18. [19] For A ∈ Cd×d and vector valued random variable v ∈ Cd, such that
the covariance matrix Evv∗ exists, we have

Edet(A− vv∗) = (1− ∂t) det(A+ tEvv∗)|t=0. (2.6)

Proof. First assume A is invertible. By lemma 2.15 and linearity of the operators E and
tr we have

Edet(A− vv∗) = E[(detA)(1− v∗A−1v)]

= detA · E[1− tr(A−1vv∗)]

= detA− detA · E tr(A−1vv∗)

= detA− detA · tr(A−1Evv∗).

15
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On the other hand, by theorem 2.16 we have

(1− ∂t) det(A+ tEvv∗)|t=0 = det(A+ tEvv∗)|t=0 − detA · tr(A−1Evv∗)
= detA− detA · tr(A−1Evv∗).

This yields (2.6) for invertible A. If A is not invertible notice that both sides of (2.6)
are continuous (even polynomial) functions in the entries of A, therefore a limiting
argument proves the claim for all A ∈ Cd×d. �

Theorem 2.19. [19] Let v1, ..., vm ∈ Cd be independent random vectors with �-
nite support (i.e. each vi can only be one of the �nitely many elements of Wi =
{wi1, ..., wili}, li ∈ N). For Ai := Eviv∗i the covariance matrices, we have

Eχ

 m∑
i=1

viv
∗
i

 (x) =

 m∏
i=1

1− ∂i

 det

xI +

m∑
i=1

ziAi

∣∣∣∣∣
z1=...=zm=0

, (2.7)

which is precisely the mixed characteristic polynomial of the Ai's.

Proof. First note that the covariance matrices really do exist, since the vi's have �nite
support. We �rst write out the left hand side of (2.7) more clearly to get to

E

χ
 m∑
i=1

viv
∗
i

 (x)

 = Edet

xI − m∑
i=1

viv
∗
i

 .

The claim then follows from the following general formula

Edet

M − k∑
i=1

viv
∗
i

 =

 k∏
i=1

1− ∂i

det

M +
k∑
i=1

ziAi

∣∣∣∣∣
z1=...=zk=0

,

which we will prove with induction on k by applying lemma 2.18 repeatedly. The case
k = 0 is clear, even k = 1 is just the statement of lemma 2.18. Otherwise, by using the
independence of the vi's, Ai = Eviv∗i , linearity of E together with the �niteness of the
vi's and the aforementioned lemma 2.18 we get:

Edet

M − k∑
i=1

viv
∗
i

 = Ev1,...,vk−1
Evk det

M − k−1∑
i=1

viv
∗
i − vkv∗k


= Ev1,...,vk−1

(1− ∂k) det

M − k−1∑
i=1

viv
∗
i + zkAk

∣∣∣∣∣
zk=0

= (1− ∂k)Ev1,...,vk−1
det

M − k−1∑
i=1

viv
∗
i + zkAk

∣∣∣∣∣
zk=0

= (1− ∂k)

k−1∏
i=1

1− ∂i

det

M + zkAk +
k−1∑
i=1

ziAi

∣∣∣∣∣
z1=...=zk−1=0

∣∣∣∣∣
zk=0

=

 k∏
i=1

1− ∂i

det

M +

k∑
i=1

ziAi

∣∣∣∣∣
z1=...=zk=0

,

16
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as desired. Notice that we used the induction hypothesis on the matrix M + zkAk
instead of just M alone. �

Corollary 2.20. The mixed characteristic polynomial

µ[A1, ..., Am](x) :=

 m∏
i=1

1− ∂i

 det

xI +
m∑
i=1

ziAi

∣∣∣∣∣
z1=...=zm=0

of hermitian positive semide�nite matrices A1, ..., Am is real rooted.

Proof. Observe that

p(x, z1, ..., zm) = det

xI +
m∑
i=1

ziAi


is nonconstant (because of the xI term), thus by proposition 2.11 we know that p is
real stable. By corollary 2.13 we therefore also know that m∏

i=1

1− ∂i

det

xI +
m∑
i=1

ziAi


is real stable. Then with lemma 2.14 we get that m∏

i=1

1− ∂i

det

xI +
m∑
i=1

ziAi

∣∣∣∣∣
z1=...=zm=0

is real stable. By remark 2.9 the mixed characteristic polynomial is therefore real
rooted. �

We will now proof that the random vectors vi from theorem 2.19 lead naturally to a
family of polynomials with a common interlacing. For that suppose that vi takes on
the value wij ∈Wi with probability pij . De�ne for j1 ∈ [l1], ..., jm ∈ [lm] the univariate
polynomials

qj1...jm(x) =

 m∏
i=1

piji

 · χ
 m∑
i=1

wijiw
∗
iji

 (x).

Theorem 2.21. [19] The polynomials {qj1...jm : j1 ∈ [l1], ..., jm ∈ [lm]} form an inter-
lacing family (see de�nition 2.5).

Proof. For 1 ≤ k < m, j1 ∈ [l1], ..., jk ∈ [lk] let

qj1...jk(x) =

 k∏
i=1

piji

 · Evk+1,...,vmχ

 k∑
i=1

wijiw
∗
iji +

m∑
i=k+1

viv
∗
i

 (x)

17
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and also

q∅(x) = Ev1,...,vmχ

 m∑
i=1

viv
∗
i

 (x).

We need to show that for a partial assignment (j1, ..., jk) ∈ [l1]×...×[lk] the polynomials
{qj1,...,jk,t}t∈[lk+1] have a common interlacing. In view of theorem 2.7 we have to show
that arbitrary convex combinations

lk+1∑
t=1

λtqj1...jk,t(x)

are real rooted. We show this by denoting by uk+1 a random vector (independent from
the vi's) that takes on wk+1,t with probability

λtpk+1,t∑lk+1

s=1 λspk+1,s

∈ [0, 1]

and observing that the convex combination
∑lk+1

t=1 λtqj1...jk,t(x) then equalslk+1∑
s=1

λspk+1,s

 k∏
i=1

piji

 · Euk+1,vk+2,...,vmχ

 k∑
i=1

wijiw
∗
iji + uk+1u

∗
k+1 +

m∑
i=k+2

viv
∗
i

 (x).

(2.8)

Since this is up to a real scalar multiple a mixed characteristic polynomial by theorem
2.19, it is real rooted by corollary 2.20, showing that the family {qj1,...,jk,t}t∈[lk+1] has
a common interlacing by theorem 2.7. Indeed, to show the validity of (2.8) expand the
expectation after uk+1 (remember all random vectors here are independent) to get

Euk+1,vk+2,...,vmχ

 k∑
i=1

wijiw
∗
iji + uk+1u

∗
k+1 +

m∑
i=k+2

viv
∗
i

 (x)

=

lk+1∑
t=1

λtpk+1,t∑lk+1

s=1 λspk+1,s

Evk+2,...,vmχ

 k∑
i=1

wijiw
∗
iji + wk+1,tw

∗
k+1,t +

m∑
i=k+2

viv
∗
i

 (x)

and compare this to

lk+1∑
t=1

λtqj1...jk,t(x)

=

lk+1∑
t=1

λt

 k∏
i=1

piji

 pk+1,t · Evk+2,...,vmχ

 k∑
i=1

wijiw
∗
iji + wk+1,tw

∗
k+1,t +

m∑
i=k+2

viv
∗
i

 (x).

�

Notice that q∅ from the proof above is the mixed characteristic polynomial µ[A1, ..., Am](x)
by theorem 2.19, where again Ai = Eviv∗i are the covariance matrices.
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3 Connections to the Kadison-Singer

Problem

3.1 Root Estimations

We now want to give bounds on the roots of the mixed characteristic polynomial. For
a start notice the following.

Remark 3.1. [19] Let A1, ..., Am ∈ Cd×d be hermitian positive semide�nite matri-
ces with

∑m
i=1Ai = I. If we plug this into the mixed characteristic polynomial (see

de�nition 2.17) we may write

µ[A1, ..., Am](x) =

 m∏
i=1

1− ∂zi

 det

xI +
m∑
i=1

ziAi

∣∣∣∣∣
z1=...=zm=0

=

 m∏
i=1

1− ∂zi

 det

 m∑
i=1

(x+ zi)Ai

∣∣∣∣∣
z1=...=zm=0

=

 m∏
i=1

1− ∂yi

 det

 m∑
i=1

yiAi

∣∣∣∣∣
y1=...=ym=x

,

where we used the �linear substitution� ∂yif(yi)|yi=zi+x = ∂zif(zi + x). Writing

Q(y1, ..., ym) :=

 m∏
i=1

1− ∂yi

 det

 m∑
i=1

yiAi


this gives µ[A1, ..., Am](x) = Q(x, ..., x).

From now on we will always assume
∑m

i=1Ai = I. We will come back to this function
Q at a later point. The roots of Q will help in estimating the roots of the mixed
characteristic polynomial.

De�nition 3.2. For a multivariate polynomial p ∈ R[x1, ..., xm] we say that x ∈ Rm
lies above the roots of p, if p(x + t) > 0 for all t ∈ Rm≥0, i.e. p is positive on the
nonnegative orthant with origin in x. By Abp we denote the set of all points x, that lie
above the roots of p, explicitly Abp = {x ∈ Rm : p(x+ t) > 0 for all t ∈ Rm≥0}.
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3 Connections to the Kadison-Singer Problem

Note that if we have a univariate polynomial p(x) with positive leading coe�cient, then
x0 lies above the roots of p if and only if x0 is strictly larger then the largest root of p.
If we consider Q as a real polynomial (which is possible since the matrices Ai de�ning
it are hermitian, so Q has real coe�cients) we can write

AbQ = {y ∈ Rm : Q(y + t) > 0∀t ∈ Rm≥0}

=

y ∈ Rm :

 m∏
i=1

1− ∂yi

 det

 m∑
i=1

(yi + ti)Ai

 > 0∀t ∈ Rm≥0

 .

To study the roots of µ[A1, ..., Am](x) = Q(x, ..., x) we will investigate the elements
in AbQ of the form x1, x ∈ R, i.e. the intersection AbQ ∩ Dm with the �diagonal�
Dm := {x1 : x ∈ R}. In particular, we want to give an upper bound on inf{x ∈ R :

x1 ∈ AbQ}, which in turn gives an upper bound on the largest root of µ[A1, ..., Am](x) =
Q(x, ..., x). This upper bound will depend on the matrices A1, ..., Am (again, we will
only be interested in the case

∑m
i=1Ai = I), explicitly on the traces trAi.

This will be achieved by iteratively applying the operators 1 − ∂yi (compare this with
the de�nition of Q given in remark 3.1) and keeping track of the roots of the evolving
polynomials. Let us now get into the details of the techniques involved

De�nition 3.3. For p ∈ R[x1, ..., xm] a real stable polynomial and a point x ∈ Abp
de�ne the barrier function of p in direction j at x as

Φj
p(x) :=

∂xjp(x)

p(x)
= ∂xj log p(x).

If we set qx,j(t) := p(x1, ..., xj−1, t, xj+1, ..., xm) ∈ R[t], we can give the equivalent
de�nition

Φj
p(x) = Φj

p(x1, ..., xm) =
q′x,j(xj)

qx,j(xj)
=

r∑
i=1

1

xj − λi
.

where the univariate restriction qx,j(t) has the roots λ1, ..., λr, which are real by lemma
2.14 (but in general they depend on the �xed variables x1, ..., xj−1, xj+1, ..., xm).

Theorem 3.4. [19, 23] Let p ∈ R[x1, ..., xm] be a real stable polynomial and let x ∈ Abp
lie above the roots of p. Then for all i, j ≤ m and δ ≥ 0 we have

(i) Φj
p(x+ δei) ≤ Φj

p(x);

(ii) Φj
p(x+ δei) ≤ Φj

p(x) + δ · ∂xiΦ
j
p(x+ δei).

Point (i) describes the monotonicity (decreasing) of Φj
p and (ii) its convexity.

Proof. Notice that both claims follow once we showed that more generally we have
(−1)k∂ki Φj

p(x) ≥ 0 for all x ∈ Abp, k ∈ N0 (k = 1 is the monotonicity (i), k = 2 is the
convexity (ii)).
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3 Connections to the Kadison-Singer Problem

First consider the univariate case p = p(x) = µ
∏n
i=1(x− λi) with

Φp(x) =
p′(x)

p(x)
=

n∑
i=1

1

x− λi
.

We thus get

(−1)kΦ(k)
p (x) = n!

n∑
i=1

1

(x− λi)n+1
,

which is indeed positive, since x lies above the roots of p, i.e. x > λi for all i.
As for the multivariate case, it su�ces to �x m − 2 of the variables to real numbers
(preserving real stability by lemma 2.14), since we are only interested in the behavior of
of the j-th variable under change of the i-th variable. Thus, without loss of generality,
let p = p(x1, x2) be real stable. We want to show that

(−1)k∂k2 Φ1
p(x) ≥ 0

whenever x lies above the roots of p. Rewriting

(−1)k∂k2 Φ1
p(x) = (−1)k∂k2∂1 log p(x) = ∂1

(
(−1)k∂k2 log p(x)

)
,

we will aim to show that (−1)k∂k2 log p(x) is nondecreasing in the �rst variable. We will
use basic continuity and smoothness properties of polynomials. In this circumstance,
we will adopt the terminology of saying that a certain property holds for generic x, if
it holds for all but �nitely many x (under our consideration).
We can interpret px1(x2) = p(x1, x2) as a univariate polynomial in x2, which changes if
we consider other (but �xed) x1. For real x1, the polynomial px1 is real stable (again
by lemma 2.14). Denote its real roots by λ1(x1), ..., λn(x1) (with multiplicities). For
generic x1, the number n of roots does not depend on x1, the roots λi(x1) can be labeled
to vary smoothly with x1 and the multiplicities of the λi(x1) are locally constant. We
can then write

(−1)k∂k2 log p(x) = −(k − 1)!

n∑
i=1

1

(x2 − λi(x1))k

and aim to show that each term 1
x2−λi(x1) is nonincreasing in x1. Since x = (x1, x2)

lies over the roots of p, we have λi(x1) < x2, so it su�ces to show that the λi(x1) are
generically nonincreasing in x1.
Assume otherwise, so that (as λi(x1) is smooth in x1) it somewhere increases, so that
it has positive derivative (di�erentiating after the variable x1) on an open interval. In
particular, there is an x0 (from that interval), with positive derivative and constant
multiplicity d in a (su�ciently small) neighborhood of x0 (being entirely contained in
the open interval from above). With help of the monotonicity and smoothness (ore
concretely the fact, that p is a polynomial) of λi(x1) around x0 and the inverse function
theorem we can conclude that λi(x1) depends analytically on x1 in this neighborhood
around x0. Continuing λi(x1) analytically to a small neighborhood of x0 in the complex
plane, we see that for complex z1 in this extended neighborhood of x0 the corresponding
root λi(z1) of the polynomials pz1(z2) = p(z1, z2) (now in complex variables) lies in a
neighborhood of λi(x0) (varying smoothly, i.e. analytically in z1). Since the derivative
of λi(x1) in x0 is positive, we conclude that there is a complex root (z1, z2) of p (i.e.
z2 = λi(z1)) in the corresponding neighborhood of (x0, λi(x0)) with Im z1 and Im z2

both positive (by applying the Cauchy-Riemann di�erential equations to λi(z1)). This
contradicts stability of p, so that λi(x1) are (generically) nonincreasing. This �nally
�nishes the proof. �
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3 Connections to the Kadison-Singer Problem

Taking once again a look at th de�nition of Q we are now interested in the relations
between Abp and Ab(1−∂xj )p. The barrier function will help us for that.

Corollary 3.5. [19] Suppose that p ∈ R[x1, ..., xm] is real stable, x ∈ Abp lies above
the roots of p and assume Φj

p(x) < 1. Then x lies above the roots of (1 − ∂xj )p, i.e.
x ∈ Ab(1−∂xj )p.

Proof. For t ∈ Rm≥0 we have by the assumptions and theorem 3.4 (i) that Φj
p(x + t) ≤

Φj
p(x) < 1. The de�nition of the barrier function then reads

∂xjp(x+ t)

p(x+ t)
< 1,

so
(p− ∂xjp)(x+ t) > 0

which is precisely the fact that x lies above the roots of (1− ∂xj )p. �

To apply this argument inductively we need stronger requirements on Φj
p(x), namely

that it is bounded away from 1. The precise technicalities will be stated in the next
result.

Lemma 3.6. [19] Let p ∈ R[x1, ..., xm] be a real stable polynomial, x ∈ Abp and δ > 0
with

Φj
p(x) ≤ 1− 1

δ
. (3.1)

Then for all i = 1, ...,m:
Φi
p−∂xj p

(x+ δej) ≤ Φi
p(x).

Proof. We start by taking a look at

(1− Φj
p)p =

(
1− ∂jp

p

)
p = p− ∂jp,

and

∂iΦ
j
p = ∂i

(
∂jp

p

)
=
∂i∂jp · p− ∂jp · ∂ip

p2
=
∂j∂ip · p− ∂ip · ∂jp

p2
= ∂j

(
∂ip

p

)
= ∂jΦ

i
p,

so ∂iΦ
j
p = ∂jΦ

i
p. Then we may write

Φi
p−∂xj p

=
∂i(p− ∂jp)
p− ∂jp

=
∂i

(
(1− Φj

p)p
)

(1− Φj
p)p

=
(1− Φj

p) · ∂ip
(1− Φj

p)p
+

(∂i(1− Φj
p)) · p

(1− Φj
p)p

= Φi
p −

∂iΦ
j
p

1− Φj
p

= Φi
p −

∂jΦ
i
p

1− Φj
p

.
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3 Connections to the Kadison-Singer Problem

Thus Φi
p−∂xj p

(x+ δej) ≤ Φi
p(x) is equivalent to

Φi
p(x+ δej)−

∂jΦ
i
p(x+ δej)

1− Φj
p(x+ δej)

≤ Φi
p(x)

or slightly rearranged

−
∂jΦ

i
p(x+ δej)

1− Φj
p(x+ δej)

≤ Φi
p(x)− Φi

p(x+ δej).

By theorem 3.4 (ii) we get

−δ∂jΦi
p(x+ δej) ≤ Φi

p(x)− Φi
p(x+ δej),

so to prove the claim it su�ces to show

−
∂jΦ

i
p(x+ δej)

1− Φj
p(x+ δej)

≤ −δ∂jΦi
p(x+ δej).

From theorem 3.4 (i) we get −∂jΦi
p(x+ δej) ≥ 0 (of course the case when it is equal to

0 is clear), so dividing by it yields

1

1− Φj
p(x+ δej)

≤ δ.

Again by theorem 3.4 (i) we have Φj
p(x+ δej) ≤ Φj

p(x), so this gets implied by

1

1− Φj
p(x)

≤ δ,

which is just the assumption (3.1) and thus proves the claim. �

To get back to a situation akin to remark 3.1 we can now prove the following:

Theorem 3.7. Suppose A1, ..., Am ∈ Cd×d are hermitian positive semide�nite matri-
ces with

∑m
i=1Ai = I and trAi ≤ ε for all i. Then the largest root of the mixed

characteristic polynomial

µ[A1, ..., Am](x) =

 m∏
i=1

1− ∂yi

 det

 m∑
i=1

yiAi

∣∣∣∣∣
y1=...=ym=x

= Q(x, ..., x)

is at most (1 +
√
ε)2.

Compare this with remark 3.1 and the discussion after de�nition 3.2.

Proof. Let

P (y1, ..., ym) = det

 m∑
i=1

yiAi


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3 Connections to the Kadison-Singer Problem

and set t =
√
ε+ ε. Since all Ai's are positive semide�nite and

det

t m∑
i=1

Ai

 = det(tI) > 0

we see that the vector t1 lies above the roots of P . By theorem 2.16 we get

Φj
P (y1, ..., ym) =

∂jP (y1, ..., ym)

P (y1, ..., ym)
= tr


 m∑
i=1

yiAi

−1

Aj

 ,

so

Φj
P (t1) = tr(t−1Aj) =

trAj
t
≤ ε

t
=

ε√
ε+ ε

. (3.2)

We set

φ :=
ε

ε+
√
ε
, δ :=

1

1− φ
= 1 +

√
ε

and already note the similarities to lemma 3.6. For k = 1, ...,m we also de�ne

Pk(y1, ..., ym) :=

 k∏
i=1

1− ∂yi

P (y1, ..., ym)

and observe that Pm = Q (see remark 3.1).
Set x0 := t1 and xk := x0 + δ(e1 + ... + ek), i.e. xk has t + δ in its �rst k components
and t in the remaining. We therefore have xk = xk−1 + δek and applying corollary
3.5 and lemma 3.6 iteratively we see that xk−1 + δek = xk lies above the roots of
(1− ∂yk)Pk−1 = Pk and

Φj
Pk

(xk) = Φj
(1−∂yk )Pk−1

(xk−1 + δek) ≤ Φj
Pk−1

(xk−1) ≤ φ = 1− 1

δ

by induction with (3.2) as the induction start. We therefore see that the largest root of
µ[A1, ..., Am](x) = Pm(x1) (since xm = (t+ δ)1 lies above the roots of Pm) is at most

t+ δ = (
√
ε+ ε) + (1 +

√
ε) = (1 +

√
ε)2,

as desired. �

The choice of t (and thus of φ = ε/t and δ = 1/(1− ϕ)) might seem a bit arbitrary at
�rst. These values can be obtained by considering t as a unknown variable and then
optimizing (minimizing) the �nal value

t+ δ = t+
1

1− ε
t

=
t2 + (1− ε)t

t− ε
,

which exactly leads to t = ε+
√
ε.
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3 Connections to the Kadison-Singer Problem

3.2 Solutions to the Kadison-Singer Problem and Related

Conjectures

The following results will build up to a solution of the Kadison-Singer problem.

Theorem 3.8. [19] If ε > 0 and v1, ..., vm ∈ Cd are independent random vectors with
�nite support (like in theorem 2.19) with

m∑
i=1

Eviv∗i = I

and E‖vi‖2 ≤ ε for all i, then

P

∥∥∥∥∥∥
m∑
i=1

viv
∗
i

∥∥∥∥∥∥ ≤ (1 +
√
ε)2

 > 0.

Proof. With Ai := Eviv∗i we see that

trAi = E tr viv
∗
i = Ev∗i vi = E‖vi‖2 ≤ ε

holds for all i. By theorems 3.7 and 2.19 the largest root of the mixed characteristic
polynomial µ[A1, ..., Am](x) is at most (1 +

√
ε)2. Using notation as in theorem 2.21 we

know that the polynomials {qj1...jm : j1 ∈ [l1], ..., jm ∈ [lm]} form an interlacing family.
By theorem 2.6 there is an assignment (s1, ..., sm) ∈ [l1]× ...× [lm], such that the largest
root of the characteristic polynomial

χ

 m∑
i=1

wisiw
∗
isi

 (x)

is at most (1+
√
ε)2 (note that, with the small remark after the proof of theorem 2.21, we

have q∅(x) = µ[A1, ..., Am](x)). This shows that the largest eigenvalue of
∑m

i=1wisiw
∗
isi

(and since the matrix is hermitian positive semide�nite this is the same as the largest
singular value) is at most (1 +

√
ε)2, so that the matrix norm is also at most (1 +

√
ε)2

as well. The corresponding event has probability
∏m
i=1 pisi > 0, �nishing the proof. �

This result gives the existence of certain matrices (as described in the theorem) with
relatively good controllable norms (i.e. singular values, i.e. eigenvalues). Note that
this approach is nonconstructive. Even worse, unlike other probabilistic inequalities
of similar type, we do not even get an arbitrarily high probability in our bound, just
positive probability.
Now onto some more concrete applications of this result, which will lead to a solution
of the Kadison-Singer problem.

Corollary 3.9. [19] Let r ∈ N and let u1, ..., um ∈ Cd be vectors ful�lling
m∑
i=1

uiu
∗
i = I
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3 Connections to the Kadison-Singer Problem

and ‖ui‖2 ≤ δ for all i. Then there exists a partition {S1, ..., Sr} of [m], such that∥∥∥∥∥∥
∑
i∈Sj

uiu
∗
i

∥∥∥∥∥∥ ≤
(

1√
r

+
√
δ

)2

for all j = 1, ..., r.

Proof. Set

wi1 =


ui
0
...
0

 , wi2 =


0

ui
...
0

 , ..., wir =


0

0
...
ui

 ,
which are all vectors from Crd. De�ne v1, ..., vm to be independent random vectors such
that vi takes the values Wi = {

√
rwik}rk=1 each with probability 1/r. We have

Eviv∗i =


uiu
∗
i 0

uiu
∗
i

. . .

0 uiu
∗
i


and ‖vi‖2 = r‖ui‖2 ≤ rδ (the norm of vi does not depend on which vector wik it
represents since all of them have norm ‖ui‖). So

m∑
i=1

Eviv∗i = I

(identity matrix over Crd) and thus we can apply theorem 3.8 with ε = rδ. This shows
that there is an assignment of the vi that ful�lls(

1 +
√
rδ
)2
≥

∥∥∥∥∥∥
m∑
i=1

viv
∗
i

∥∥∥∥∥∥ =

∥∥∥∥∥∥
r∑

k=1

∑
i:vi=wik

(√
rwik

) (√
rwik

)∗∥∥∥∥∥∥ .
By setting Sk = {i : vi = wik} we get our desired partition:∥∥∥∥∥∥

∑
i∈Sk

uiu
∗
i

∥∥∥∥∥∥ =

∥∥∥∥∥∥
∑
i∈Sk

wikw
∗
ik

∥∥∥∥∥∥ ≤ 1

r

∥∥∥∥∥∥
r∑

k=1

∑
i:vi=wik

(√
rwik

) (√
rwik

)∗∥∥∥∥∥∥ ≤
(

1√
r

+
√
δ

)2

.

To comment on the �rst �≤�: Notice that each partition class Sk corresponds to these
vectors vi (with the assignment given by theorem 3.8) which have their �weight� in the
k-th spot, i.e. from the ((k − 1)d+ 1)-st to the kd-th component and zero everywhere
else, so that ∑

i∈Sk

wikw
∗
ik =

1

r

∑
i:vi=wik

(√
rwik

) (√
rwik

)∗
=

1

r

∑
i:vi=wik

viv
∗
i

is a block diagonal matrix of the form

Diag(O, ...,O,
∑
i∈Sk

uiu
∗
i ,O, ...,O),
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where the
∑

i∈Sk uiu
∗
i stands in the k-th spot. The matrix

1

r

r∑
k=1

∑
i:vi=wik

(√
rwik

) (√
rwik

)∗
however is precisely

Diag

∑
i∈S1

uiu
∗
i , ...,

∑
i∈Sr

uiu
∗
i

 .

It thus �contains� the matrix Diag(O, ...,
∑

i∈Sk uiu
∗
i , ...,O) inside its block diagonal

structure from which it can be easily seen that this will only increase the matrix norm.
�

Theorem 3.10 (Weaver's KS2-conjecure). [19, 27] There exist universal constants
η ≥ 2 and θ > 0 such that the following holds: Let v1, ..., vm ∈ Cd be unit vectors (i.e.
‖vi‖ = 1 in the euclidean norm for all i) and suppose

m∑
i=1

|〈w, vi〉|2 = η (3.3)

for all unit vectors w ∈ Cd. Then we can �nd a partition [m] = S1∪̇S2 with∑
i∈Sj

|〈w, vi〉|2 ≤ η − θ (3.4)

for all unit vectors w ∈ Cd and each j = 1, 2.

By �universal constants� we mean that η and θ do not depend on m or d. The set of
(normalized) vi's from above form a tight frame with frame bound η.

Proof. Let the vi be unit vectors as in the assumptions. We want to apply corollary 3.9
with r = 2. How to choose δ now and what does this mean for η and θ? For this set
ui = vi/

√
η and consider the hermitian positive semide�nite matrix

H :=

m∑
i=1

uiu
∗
i ,

which has the property

w∗Hw =
1

η

m∑
i=1

(w∗vi) · (v∗iw) =
1

η

m∑
i=1

|〈w, vi〉|2 = 1

for all unit vectors w ∈ Cd by (3.3). This shows that H = I is the identity, since

w∗(H − I)w = w∗Hw − w∗w = 1− 1 = 0

for all unit vectors w, so that the ui ful�ll the requirements of corollary 3.9 with

‖ui‖2 =
1

η
‖vi‖2 =

1

η
=: δ.
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This shows the existence of a partition S1∪̇S2 = [m] with

1

η

∥∥∥∥∥∥
∑
i∈Sj

viv
∗
i

∥∥∥∥∥∥ =

∥∥∥∥∥∥
∑
i∈Sj

uiu
∗
i

∥∥∥∥∥∥ ≤
(

1√
r

+
√
δ

)2

=

(
1√
2

+
1
√
η

)2

for j = 1, 2, so that ∥∥∥∥∥∥
∑
i∈Sj

viv
∗
i

∥∥∥∥∥∥ ≤
(√

η
√

2
+ 1

)2

=
1

2
η +

√
2η + 1.

Notice that for η > (2 +
√

2)2 we have 1
2η +

√
2η + 1 < η, so for such η we have∥∥∥∥∥∥

∑
i∈Sj

viv
∗
i

∥∥∥∥∥∥ ≤
(√

η
√

2
+ 1

)2

= η − θ

for θ = 1
2η −

√
2η − 1 > 0. Then

∑
i∈Sj

|〈w, vi〉|2 = w∗

∑
i∈Sj

viv
∗
i

w ≤

∥∥∥∥∥∥
∑
i∈Sj

viv
∗
i

∥∥∥∥∥∥w∗w ≤ η − θ
for each = 1, 2 and all unit vectors w ∈ Cn, so choosing for example η = 18 > (2 +

√
2)2

(so δ = 1/18) and calculating θ = 2 with the above relations we get our desired universal
constants, proving (3.4). �

Remark 3.11. Notice that the choice of η = 18 and θ = 2 is somewhat arbitrary, even
though they are particularly nice numerical values. This is just to stress that these
constants can really be chosen universally, so they are applicable in any situation as
described in the statement of theorem 3.10 independent of any other parameters (i.e.
of m, d or the choice of the vi's).
We will reiterate however that we can choose any η > (2+

√
2)2 with the corresponding

θ = 1
2η −

√
2η − 1, so that η − θ = (1 +

√
η/2)2 > (2 +

√
2)2. In [7], it was shown that

the constraint on η can be loosened under certain extra assumptions, yielding better
constants in that case. Their new approach uses a more careful analysis for theorem
3.7. For us, the theoretic implications of the existence of such η and θ will be enough.

Notably, Weaver [27] showed that theorem 3.10 is equivalent to the Kadison-Singer
problem, which will be stated precisely at the end of this section. The proof that theorem
3.10 is indeed equivalent to the Kadison-Singer problem goes by showing that Weaver's
conjecture is equivalent to another classical conjecture which is in turn equivalent to
Kadison-Singer, namely Anderson's paving conjecture. The methods from [19] can
even show this other conjecture directly, which we also want to demonstrate here. In
particular, we can give a self contained proof of the Kadison-Singer problem, without
needing to show the equivalence between Weaver's conjecture and the paving conjecture
(both of course are now theorems). We will need theorem 3.10 later on however, so it
is worthwhile proving it as well. To get to the paving conjecture, we start with the
following central notion.
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3 Connections to the Kadison-Singer Problem

De�nition 3.12. A matrix T ∈ Cd×d can be (r, ε)-paved for r ∈ N and ε > 0, if there
are coordinate projections P1, ..., Pr with

∑r
i=1 Pi = I and ‖PiTPi‖ ≤ ε‖T‖ for all i.

The coordinate projections P1, ..., Pr from the de�nition can also be seen as a partition
S1, ..., Sr of [d] (re�ected by the property

∑r
i=1 Pi = I), so that the matrix norms of the

principle submatrices of T corresponding the the Si's are small in comparison to the
norm of T itself. It should also be clear that only ε ∈ (0, 1) are interesting choices. We
also see that the property of being (r, ε)-pavable can be extended to in�nite matrices
acting continuously on the in�nite dimensional, separable Hilbert space l2(N) = l2.

Lemma 3.13. [8] Suppose there is a function r : R>0 → N such that every hermitian
projection Q ∈ C2n×2n (i.e. Q∗ = Q and Q2 = Q) with diagonal entries equal to 1/2
can be (r(ε), 1+ε

2 )-paved for all ε > 0. Then every hermitian T ∈ Cn×n with zeroes in
its main diagonal can be (r(ε)2, ε)-paved for all ε > 0.

Proof. As a note: Throughout the proof we will denote the identity matrices on Cn×n
and C2n×2n both by I.
Let T ∈ Cn×n be hermitian with zero diagonal and assume, without loss of generality,
that ‖T‖ ≤ 1 (otherwise scale accordingly by a real scalar). Consider the auxiliary
matrices

R =

[
T (I − T 2)1/2

(I − T 2)1/2 −T

]
∈ C2n×2n

and

Q =
1

2
(I +R) ∈ C2n×2n.

Notice, by the conditions we set on T , that R (i.e. (I − T 2)1/2) is well de�ned and
hermitian. In particular, R and then also Q are hermitian. Since R has zero diagonal,
the matrix Q has only 1/2-entries on its main diagonal. Lastly, we note that

R2 =

[
T 2 + (I − T 2) T (I − T 2)1/2 − (I − T 2)1/2T

T (I − T 2)1/2 − (I − T 2)1/2T (I − T 2) + T 2

]
=

[
I 0
0 I

]
= I

is the identity, where we used the fact that T and (I − T 2)1/2 commute. Therefore, we
see that

Q2 =
1

4
(I + 2R+R2) =

1

4
(2I + 2R) =

1

2
(I +R) = Q,

so that Q is as in the statement of the lemma and thus (r(ε), 1+ε
2 )-pavable by assump-

tion.
Let r = r(ε) and P1, ..., Pr be coordinate projections of C2n with ‖PiQPi‖ ≤ 1+ε

2 ‖Q‖ =
1+ε

2 (Q projection, so ‖Q‖ = 1) for all i = 1, ..., r. We then have

0 � PiQPi �
1 + ε

2
PiIPi =

1 + ε

2
Pi,

where � is the Loewner order on the set of hermitian matrices. By R = 2Q− I we get

−Pi � PiRPi � εPi.
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Applying the same reasoning to −R with the corresponding matrix Q̃ = 1
2(I−R) we get

a (possibly) di�erent collection of coordinate projections P̃1, ..., P̃r with ‖P̃iQ̃P̃i‖ ≤ 1+ε
2 ,

but by the universality of r and ε as in the statement we still have the same parameters.
Analogously we therefore get

−εP̃i � P̃iRP̃i � P̃i.

The set {PiP̃j : i, j = 1, ..., r} (with PiP̃j = P̃jPi) of coordinate projections therefore
ful�lls

r∑
i,j=1

PiP̃j =

 r∑
i=1

Pi

 r∑
j=1

P̃j

 = I2 = I

and by the above
−ε(PiP̃j) � (PiP̃j)R(PiP̃j) � ε(PiP̃j),

so ‖(PiP̃j)R(PiP̃j)‖ ≤ ε‖PiP̃j‖ ≤ ε for all i, j = 1, ..., r. Also have ‖R‖ = 1 by

‖Rz‖2 = 〈R2z, z〉 = ‖z‖2

for all z ∈ C2n (using selfadjointness of R and R2 = I), so we see that R is (r2, ε)-
pavable.
By restricting the paving of R above to the �rst n coordinates, we therefore see that T
is also (r2, ε)-pavable. �

The following result is known as Anderson's paving conjecture [1], where we can even
give an explicit bound on r (originally, one only asked for the existence of such r).

Theorem 3.14 (Paving Conjecture). [19] For 0 < ε < 1 any hermitian T ∈ Cn×n with
zero diagonal can be (r, ε)-paved with r ≤ 136/ε4.

Note that r depends only on ε, but not on n or T itself. This will be crucial in the
proof of Kadison-Singer, where we need an in�nite dimensional analogue.

Proof. In sight of lemma 3.13, let Q ∈ C2n×2n be an hermitian projection with diagonal
entries all 1/2. The claim follows, if we have shown that Q is (r̃, 1+ε

2 )-pavable with
a suitable bound on r̃. To do so, write Q = [u∗iuj ]

2n
i,j=1 as a Gram matrix (remember

Q∗ = Q = Q2, so Q is hermitian positive semide�nite which allows us to write Q in that
form) for u1, ..., u2n ∈ C2n. By the structure of Q we have ‖ui‖2 = u∗iui = 1/2 =: δ for
all i. Applying corollary 3.9 to these vectors and an r̃ ∈ N to be speci�ed later we get
a partition S1, ..., Sr̃ of [2n] with corresponding coordinate projections P1, ..., Pr̃, such
that

‖PkQPk‖ =
∥∥[u∗iuj ]i,j∈Sk

∥∥ =

∥∥∥∥∥∥
∑
i∈Sk

uiu
∗
i

∥∥∥∥∥∥ ≤
(

1√
r̃

+
√
δ

)2

=

(
1√
r̃

+
1√
2

)2

for all k = 1, ..., r̃, where we used the fact that for arbitrary rectangular matrices U we
have the equality ‖U∗U‖ = ‖UU∗‖. By ‖Q‖ = 1 and(

1√
r̃

+
1√
2

)2

=
1

2
+

√
2√
r̃

+
1

r̃
,
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3 Connections to the Kadison-Singer Problem

we see that Q can be (r̃, 1+ε
2 )-paved for

ε

2
=

√
2√
r̃

+
1

r̃
⇒ r̃ =

(√
2 +
√

2 + 2ε

ε

)2

≤ (2 +
√

2)2

ε2
,

so lemma 3.13 shows that any hermitian T ∈ Cn×n with zero diagonal can be (r, ε)-
paved for

r = r̃2 ≤ (2 +
√

2)4

ε4
≤ 136

ε4
.

�

Of course, the above bound may be optimized further. However, it is known, see [8], that
we have an dependency between r and ε of at least r ≥ ε−2 (with so called conference
matrices from combinatorial matrix theory, see [2] as a starting point on those, almost
attaining that bound) and that matrices Q as in lemma 3.13 cannot be (r, 1+ε

2 )-paved
for r = 2 and 1+ε

2 < 1 (in fact, more generally we have the relation r
2(r−1) ≤

1+ε
2 ).

For the proof of the Kadison-Singer problem we will need an in�nite dimensional ex-
tension of theorem 3.14, which will require the compactness theorem of Arzela and
Ascoli.

Corollary 3.15. [23] Let T be a continuous, selfadjoint operator on the in�nite dimen-
sional, separable Hilbert space l2 and further assume that T only has zeroes on its main
diagonal. Then T can be (r, ε)-paved with r ≤ 136/ε4.

Proof. Let ε > 0 arbitrary, T as in the statement and consider the matrices (operators)
T (m) to be the upper-left principal (m × m)-submatrix of T extended by zeroes to
an in�nite matrix. Of course we then have ‖T (m)‖ ≤ ‖T‖ for all m ∈ N. Applying

theorem 3.14 to these T (m) we get the existence of coordinate projections P (m)
1 , ..., P

(m)
r

(all of them are in�nite matrices) with
∑r

i=1 P
(m)
i = I (identity operator on l2) and

‖P (m)
i T (m)P

(m)
i ‖ ≤ ε‖T (m)‖ ≤ ε‖T‖ for all i = 1, ..., r, where r ≤ 136/ε4 does not

depend on m, so we may assume that there are r such projections P (m)
i for all m (some

of these projections then may be the zero operator).

Applying the theorem of Arzela-Ascoli to the set {P (m)
i : m ∈ N, 1 ≤ i ≤ r} (closedness

and boundedness are clear, equicontinuity is also ful�lled by the fact that these are
linear operators whos norms are all bounded uniformly by 1), we can choose a sequence

of increasing natural numbers (m(l))l, such that P (m(l))
i −→ Pi, l −→∞ pointwise (i.e.

componentwise) to some Pi for all i = 1, ..., r simultaneously. By the properties of the

P
(m)
i we see that the Pi are again coordinate projections and that

I =
r∑
i=1

P
(m(l))
i −→

r∑
i=1

Pi , l −→∞,

so that
∑r

i=1 Pi = I.
For unite vectors u, v ∈ l2 which have �nite support (note that the vectors of �nite

support form a dense subset of l2), we see that P (m(l))
i u = Piu and P (m(l))

i v = Piv for
all i = 1, ..., r and all su�ciently large l. Since Piu and Piv have �nite support, we also
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3 Connections to the Kadison-Singer Problem

have T (m(l))Piu = Tiu and T (m(l))Piv = Tiv for su�ciently large l. We therefore see,
for l big enough, that

〈T (m(l))P
(m(l))
i u, P

(m(l))
i v〉 = 〈TPiu, TPiv〉 = 〈PiTPiu, v〉

for all i = 1, ..., r. Since ‖P (m)
i T (m)P

(m)
i ‖ ≤ ε‖T‖ for all i = 1, ..., r, the Cauchy-Schwarz

inequality yields

〈PiTPiu, v〉 = 〈P (m(l))
i T (m(l))P

(m(l))
i u, v〉 ≤ ε‖T‖,

so taking suprema over all unit vectors u and v we get

‖PiTPi‖ ≤ ε‖T‖

for all i = 1, ..., r. This �nishes the proof. �

To conclude this chapter we will now discuss the Kadison-Singer problem: Let again
l2 be the (complex) Hilbert space of square summable sequences. By the Fischer-Riesz
theorem from basic functional analysis we known that every complex separable Hilbert
space is isometrically isomorphic to l2, so for our considerations it su�ces to investigate
this case. We set B := L(l2) to be the space of linear, bounded operators l2 → l2, which
becomes a C*-algebra with the involution ∗ being de�ned as taking adjoint operators.
Let A ⊆ B be a (closed) unital subalgebra (i.e. I ∈ A for I the identity operator) closed
under the ∗-operation (i.e. A ∈ A ⇒ A∗ ∈ A). A notable example of such an A would
be the set D of diagonal operators on l2. A state of A is a continuous linear functional
ϕ : A→ C, that ful�lls

(i) ϕ(I) = 1;

(ii) ϕ(P ) ≥ 0 for all positive operators P ∈ A (i.e. 〈Px, x〉 ≥ 0 for all x ∈ l2).

The set S(A) of all states on A is a convex subset in the dual space A′, which is also
weak*-compact (A′ equipped with the weak*-topology induced by A), as can be shown
using the Banach-Alaoglu theorem. By the Krein-Milman theorem S(A) ⊆ A′ is the
closed convex hull of its extreme points. These extreme points are called the pure
states of A, so that pure states are precisely those states that cannot be expressed as a
proper convex combination (i.e. at least two coe�cients of the convex combination are
not zero) of other states. The following should help to give some intuition on how pure
states work.

Lemma 3.16. [23] Let ϕ be a pure state on D and P ∈ D a diagonal projection, i.e.
P has zeroes on its o�-diagonal entries and only zeroes or ones on its main diagonal.
Then ϕ(P ) ∈ {0, 1}.

Proof. Let P be as above. Both P and I−P are positive operators, thus by assumption
ϕ(P ) ≥ 0 and ϕ(I −P ) ≥ 0, so that we have 0 ≤ ϕ(P ) ≤ 1. Assume, for contradiction,
that ϕ(P ) = θ ∈ (0, 1). We can then de�ne new states ϕ1, ϕ2 on D by ϕ1(Q) = 1

θϕ(PQ)
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3 Connections to the Kadison-Singer Problem

and ϕ2(Q) = 1
1−θϕ((I−P )Q), which are easily seen to satisfy the properties we require

for a state. But then we have

θϕ1(Q) + (1− θ)ϕ2(Q) = ϕ(PQ) + ϕ((I − P )Q) = ϕ(Q),

contradicting the fact that ϕ is a pure state. We therefore see that ϕ(P ) ∈ {0, 1} for ϕ
and P as above. �

By the Hahn-Banach theorem, any state ϕ on A can be extended to a continuous linear
functional on B. In the case that A = D are the diagonal operators, the existence
of such an extension can be seen even simpler, by setting all o�-diagonal entries of an
H ∈ B to zero and applying ϕ on this restricted operator. The Kadison-Singer problem
states further:

Theorem 3.17 (Kadison-Singer). [16, 27, 23] The extension of a pure state on D to a
state on B is unique.

Proof. Let ϕ be a pure state on D and ψ an extension of ϕ to a state on B. It can
be seen directly that the claim follows once we showed that ψ is zero on all Q ∈ B
whos main diagonal only consists of zero entries. Furthermore, it su�ces to consider
selfadjoint operators, since we can split up

Q =
Q+Q∗

2
+

1

i
· i(Q−Q

∗)

2
,

so we can always write Q as a linear combination of selfadjoint operators (still having
only zeroes on their main diagonal). Once we showed the case for selfadjoint Q, we
therefore get by linearity of ψ the wanted statement for general Q.
Let now ε > 0 be arbitrary. Using corollary 3.15, for all selfadjoint Q ∈ B with zero
diagonal we can �nd coordinate projections P1, ..., Pr with I =

∑r
i=1 Pi and ‖PiQPi‖ ≤

ε‖Q‖ for all i = 1, ..., r. As seen multiple times by now, r ≤ 136/ε4 only depends on ε
(while the actual projections P1, ..., Pr depend on Q).
By lemma 3.16 we have that ψ(Pi) = ϕ(Pi) ∈ {0, 1}, so with

1 = ϕ(I) =
r∑
i=1

ϕ(Pi)

we see that exactly one of the Pi, say Pi0 , has ϕ(Pi0) = 1, while the others ful�ll
ϕ(Pi) = 0, i 6= i0. For what follows take an arbitrary i 6= i0.
We now verify that 〈A,B〉 := ψ(AB∗) is a semiscalar product on A,B ∈ B. Linearity in
the �rst component is clear, sesquilinearity in the second component follows in the same
way using 〈A, iB〉 = ψ(A(iB)∗) = −iψ(AB∗) = −i〈A,B〉, positive semide�niteness is a
consequence of property (ii) of the state ψ (since XX∗ is a positive operator for X ∈ B,
we have 〈X,X〉 = ψ(XX∗) ≥ 0) and conjugate symmetry is settled by the already
proven properties together with

R 3 〈A+B,A+B〉 − 〈A−B,A−B〉 = 2(〈A,B〉+ 〈B,A〉)

⇒ Im〈A,B〉 = − Im〈B,A〉
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3 Connections to the Kadison-Singer Problem

and
R 3 〈iA+B, iA+B〉 − 〈A+ iB,A+ iB〉 = 2i(〈A,B〉 − 〈B,A〉)

⇒ Re〈A,B〉 = Re〈B,A〉,

so that indeed 〈A,B〉 = 〈B,A〉. We can therefore apply the Cauchy-Schwarz inequality
for the semiscalar product on B above, so that

|ψ(PiR
∗)|2 ≤ ψ(PiP

∗
i )ψ(RR∗)

for all R ∈ B. Since ψ(PiP
∗
i ) = ψ(Pi) = 0 (remember i 6= i0), we conclude ψ(PiR

∗) = 0
(and consequently ψ(RPi) = 0) for all R ∈ B, i 6= i0. Thus

ψ(Q) =
r∑
i=1

ψ(PiQPi) = ψ(Pi0QPi0)

and by ‖Pi0QPi0‖ ≤ ε‖Q‖ we therefore get

|ψ(Q)| = |ψ(Pi0QPi0)| ≤ ‖ψ‖ · ‖Pi0QPi0‖ ≤ ‖ψ‖ · ε‖Q‖

(‖ψ‖ the norm of ψ as a functional, ‖Q‖ the norm of Q as an operator). Since ε > 0
was chosen arbitrarily, we see that indeed ψ(Q) = 0. �

As stated right before theorem 3.17, we also know how this extension has to look. In
particular, the extension is again a pure state (now on B). There are more general
formulations of the Kadison-Singer problem (generalizations to more C*-algebras as
described above, not just D) and deeper theoretical connection (correspondence of pure
states on D with ultra�lters on N), but we will not go deeper into these topics.
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4 Exponential Frames

We now want to give a concrete application of the above results for functional analytic
and approximation theoretic purposes. But �rst a reminder on the notions.

De�nition 4.1. For a Hilbert space H = (H, 〈·, ·〉, ‖ · ‖), a subset E = {ui}i∈I ⊆ H is
called a frame, if there are constants 0 < a ≤ A (then called the frame bounds), so
that

a‖x‖2 ≤
∑
i∈I
|〈x, ui〉|2 ≤ A‖x‖2

for all x ∈ H.

We will consider the Hilbert space L2(S) of (equivalence classes of) complex valued
square integrable functions on S ⊆ R (always with respect to the Lebesgue measure).
We want to construct a frame of L2(S) of a certain form, namely consisting of expo-
nential functions {exp(iλ·) : λ ∈ Λ} for a �discrete� set of frequencies Λ. For these
exponential functions to be in L2(S), we have to require S to be of �nite measure. The
problem under consideration thus states:
For a measurable S ⊆ R of �nite measure, �nd a (in some sense) discrete set of fre-
quencies Λ ⊆ R, such that E(Λ) := {exp(iλ·) : λ ∈ Λ} ⊆ L2(S) forms a frame and give
estimates for the corresponding frame bounds.
We will make everything precise further down. Of course, from the get go it is not even
clear that such Λ exist at all. For example it is not always possible to �nd frequencies,
such that E(Λ) forms an orthogonal basis. Since in our situation an exponential or-
thogonal basis results in a frame with equal frame bounds a = A = |S| (the measure of
S), frames are the natural generalization for this problem.

4.1 Consequences of Weaver's Conjecture

In order to get such Λ, we will use the partition given by theorem 3.10. For convenience,
we will restate theorem 3.10 a bit more explicitly.

Theorem 4.2. [20] Let 0 < ε and u1, ..., um ∈ Cn with ‖ui‖2 ≤ ε for all i = 1, ...,m
and

m∑
i=1

|〈w, ui〉|2 = ‖w‖2
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4 Exponential Frames

for all w ∈ Cn. Then there is a partition S1∪̇S2 = [m] with

∑
i∈Sj

|〈w, ui〉|2 ≤
(1 +

√
2ε)2

2
‖w‖2

for each j = 1, 2 and all w ∈ Cn. In the case of ε < 1 we therefore have∑
i∈Sj

|〈w, ui〉|2 ≤
1 + 5

√
ε

2
‖w‖2.

Proof. Without loss of generality let ε < (2+
√

2)−2 and let the ui ful�ll the assumptions.
The rescaled vectors vi := ui/

√
ε ful�ll the assumptions of theorem 3.10 with η = 1/ε >

(2 +
√

2)2 (compare with remark 3.11). We conclude that for a suitable partition
S1∪̇S2 = [m] we have ∑

i∈Sj

|〈w, vi〉|2 ≤ (η − θ) · ‖w‖2

for all j = 1, 2 and w ∈ Cn. Scaling back gives∑
i∈Sj

|〈w, ui〉|2 ≤
η − θ
η
· ‖w‖2,

so plugging in η and η − θ (see theorem 3.10 and remark 3.11) gives the desired

∑
i∈Sj

|〈w, vi〉|2 ≤
(1 + 1/

√
2ε)2

1/ε
· ‖w‖2 =

(1 +
√

2ε)2

2
‖w‖2.

For the last part in the statement simply observe (1 +
√

2ε)2 ≤ 1 + 5
√
ε for ε < 1. �

Indeed, the constant 5 here could even be slightly improved to 2 + 2
√

2, or even if we
only want this type of inequality to hold for 0 < ε < (2+

√
2)−2 we can further improve

the constant to 2 +
√

2 < 3.42. We will continue as in [20], however one may keep this
in mind if one is interested in better constants at the end (for this, a look in [7] can also
be useful).

We will give some �rst insight into why this might be related to frames.

Remark 4.3. [20] With notation as in theorem 4.2 we have∑
i∈S1

|〈w, ui〉|2 = ‖w‖2 −
∑
i∈S2

|〈w, ui〉|2,

so for ε < 1 theorem 4.2 even gives the two sided estimate

1− 5
√
ε

2
‖w‖2 ≤

∑
i∈Sj

|〈w, ui〉|2 ≤
1 + 5

√
ε

2
‖w‖2

for each j = 1, 2 and w ∈ Cn.
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We will continue with more concrete application of theorem 4.2 to frames.

Corollary 4.4. [14] Let v1, ..., vk ∈ Cn with ‖vi‖2 ≤ δ for all i = 1, ..., k and

α‖w‖2 ≤
k∑
i=1

|〈w, vi〉|2 ≤ β‖w‖2

for all w ∈ Cn, where β ≥ α > δ > 0 are some constants. Then there is a partition
S1∪̇S2 = [k], such that

1− 5
√
δ/α

2
· α‖w‖2 ≤

∑
i∈Sj

|〈w, ui〉|2 ≤
1 + 5

√
δ/α

2
· β‖w‖2

for each j = 1, 2 and all w ∈ Cn.

Proof. Consider the operator M : Cn → Cn, w 7→
∑k

i=1〈w, vi〉vi. Observe 〈Mw,w〉 =∑k
i=1 |〈w, vi〉|2 ≥ 0, so that M is a positive operator which is also hermitian by

〈Mu,w〉 =

k∑
i=1

〈u, vi〉〈vi, w〉 =

k∑
i=1

〈w, vi〉〈vi, u〉 = 〈Mw,u〉 = 〈u,Mw〉.

We can therefore form M1/2 which has the property

‖M1/2w‖2 = w∗Mw = w∗
k∑
i=1

〈w, vi〉vi =
k∑
i=1

|〈w, vi〉|2,

so that by the assumptions

α‖w‖2 ≤ ‖M1/2w‖2 ≤ β‖w‖2

for all w ∈ Cn.
Setting now ui = M−1/2vi, we have ‖ui‖2 ≤ ‖vi‖2/α ≤ δ/α, but also

k∑
i=1

〈w, ui〉ui = M−1/2
k∑
i=1

〈M−1/2w, vi〉vi = M−1/2M(M−1/2w) = w

for all w ∈ Cn, sinceM−1/2 is hermitian. This shows, that the ui ful�ll the assumptions
of theorem 4.2 with m = k and ε = δ/α < 1. Let S1∪̇S2 = [k] be a partition as
guaranteed by theorem 4.2. We thus get (with the above bound on the operator norm
of M1/2) ∑

i∈Sj

|〈w, vi〉|2 =
∑
i∈Sj

|〈M1/2w, ui〉|2 ≤
1 + 5

√
ε

2
‖M1/2w‖2

≤
1 + 5

√
δ/α

2
· β‖w‖2.

For the lower bound we use remark 4.3, to get analogously∑
i∈Sj

|〈w, vi〉|2 =
∑
i∈Sj

|〈M1/2w, ui〉|2 ≥
1− 5

√
ε

2
‖M1/2w‖2

≥
1− 5

√
δ/α

2
· α‖w‖2.

�
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The formulation given in corollary 4.4 is particularly useful for inductive purposes, as
will be seen for the next result.

Theorem 4.5. [20] Let u1, ..., um ∈ Cn with ‖ui‖2 = n
m for all i = 1, ...,m and

m∑
i=1

|〈w, ui〉|2 = ‖w‖2 (4.1)

for all w ∈ Cn. Then there is a J ⊆ [m] with

c0 ·
n

m
‖w‖2 ≤

∑
i∈J
|〈w, ui〉|2 ≤ C0 ·

n

m
‖w‖2 (4.2)

for all w ∈ Cn. Here, c0 and C0 are universal positive constants.

Proof. As a �rst step consider for 0 < δ < 1/100 the inductively de�ned numbers
α0 = β0 = 1 and

αj+1 := αj ·
1− 5

√
δ/αj

2
, βj+1 := βj ·

1 + 5
√
δ/αj

2
.

We want to show that then there is a universal constant C > 0 and an L ∈ N, such that
αj ≥ 100δ for all j ≤ L, as well as 25δ ≤ αL+1 < 100δ and βL+1 < CαL+1 ≤ 100Cδ.
Notice that

1− 5
√
δ/αj

2

is strictly monotonically increasing in αj > 0. For αj ≥ 100δ we thus have

1

4
=

1− 5
√

δ
100δ

2
≤

1− 5
√
δ/αj

2
< lim

x−→∞

1− 5
√
δ/x

2
=

1

2
,

therefore
αj
4
≤ αj ·

1− 5
√
δ/αj

2
= αj+1 <

αj
2
.

Set L := max{j ∈ N : αj ≥ 100δ} (L depends on δ), so that αj ≥ 100δ for all j ≤ L.
Note that αj ↘ 0 decreasingly as j −→ ∞, so that L < ∞. By the de�nition of L we
have αL+1 < 100δ, but by the above also

αL+1 ≥
αL
4
≥ 25δ.

It remains to �nd a C > 0 not depending on δ, such that βL+1 < CαL+1. This will be
obtained by iteratively inserting the de�nition of the αj and βj from above:

βL+1

αL+1
=
βL
αL
·

1 + 5
√
δ/αL

1− 5
√
δ/αL

=
βL−1

αL−1
·

1 + 5
√
δ/αL−1

1− 5
√
δ/αL−1

·
1 + 5

√
δ/αL

1− 5
√
δ/αL

= ...

=
β0

α0︸︷︷︸
=1

·
L∏
j=0

1 + 5
√
δ/αj

1− 5
√
δ/αj

.
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Have αL ≥ 100δ, so that 5
√
δ/αL ≤ 1/2 and using

αj+1 <
αj
2

⇒ 5
√
δ/αj <

1√
2
· 5
√
δ/αj+1

inductively, we get 5
√
δ/αL−j < 2−1−j/2 for j = 1, ..., L (with �≤� for j = 0). Thus

βL+1

αL+1
=

L∏
j=0

1 + 5
√
δ/αj

1− 5
√
δ/αj

<
∞∏
j=0

1 + 2−1−j/2

1− 2−1−j/2 =: C < 35.21,

which yields the �nal claim.
With this at hand, consider now the situation as in the statement of the theorem. First
notice that n ≤ m, as otherwise there is a w ∈ Cn \ {0}, which is orthogonal to all ui,
i = 1, ...,m. Plugging this into (4.1), the left hand side would yield 0, while the right
hand side would be strictly positive. This contradiction shows n ≤ m, so n/m ≤ 1.
If 1 ≥ n/m ≥ 1/100, then (4.2) holds with J = [m], C0 = 100 and c0 = 1. Assume for
the rest δ := n/m < 1/100 and let αj and βj be as in the �rst part of the proof. The
vectors vi = ui satisfy the assumption of corollary 4.4 with α = α0 = 1 and β = β0 = 1.
Hence, there is a set J1 ⊆ [m] with

α1‖w‖2 ≤
∑
i∈J1

|〈w, ui〉|2 ≤ β1‖w‖2

for all w ∈ Cn. We may now apply corollary 4.4 again (restricted on the indices in the
set J1). Since α1 ≥ αL ≥ 100δ > δ, corollary 4.4 gives the existence of a J2 ⊆ J1 with

α2‖w‖2 ≤
∑
i∈J2

|〈w, ui〉|2 ≤ β2‖w‖2.

If we keep on going like this, after L + 1 applications of corollary 4.4 (which is doable
by αL ≥ 100δ > δ) we get

αL+1‖w‖2 ≤
∑

i∈JL+1

|〈w, ui〉|2 ≤ βL+1‖w‖2.

By what was proven in the �rst part, we therefore get

25δ‖w‖2 ≤
∑

i∈JL+1

|〈w, ui〉|2 < 100Cδ‖w‖2.

The claim now follows (once we remembered δ = n/m) for J = JL+1, c0 = 25 and
C0 = 100C < 3521. �

Remark 4.6. We have seen that we have to split the set [m] a total of L+1 times. If at
every step we choose to take the smaller of the two sets we can estimate #J ≤ 2−(L+1)m.
By a0 = 1 and aj/2 ≥ aj+1 we easily see that aj ≤ 2−j , so that we can guarantee
aL+1 < 100δ if we have 2−(L+1) ≤ 100δ. Since δ = n/m we therefore get an estimate of
the form #J ≤ 100n. All this of course only makes sense if m > 100n.
If we take instead in every step the larger of the two sets, we get that there is also a J
as above with #J ≥ 100n. Depending on our purposes, we might want J to be small
or J to be large, but in general #J ≈ 100n might be a good guess loosely speaking.
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We give a further reformulation of theorem 4.5, which is more akin to the concept of
matrices with the so called restricted isometry property (RIP).

Corollary 4.7. There exist universal constants c0, C0 > 0 with the following property:
Whenever A ∈ Cm×n is a matrix such that the columns of A form an orthonormal
system and every row of A has equal euclidean norm (for every i = 1, ...,m, the norm
‖Ai‖ of the i-th row of A is independent of i), then we can �nd a set J ⊆ [m], such that

c0 ·
n

m
‖w‖2 ≤ ‖AJw‖2 ≤ C0 ·

n

m
‖w‖2

for all w ∈ Cn, where AJ denotes the submatrix of A corresponding to the row indices
from J .

Note that the norm in ‖w‖ is the euclidean norm on Cn, while ‖AJw‖ is the euclidean
norm on CJ .

Proof. As above, let Ai for i = 1, ...,m be the rows of A (we will consider Ai as column
vectors) and denote by κ = ‖Ai‖2 their common norm. Then have

m · κ =
m∑
i=1

‖Ai‖2 =
m∑
i=1

n∑
j=1

|aij |2 =
n∑
j=1

m∑
i=1

|aij |2︸ ︷︷ ︸
=1, since ONS

= n,

so κ = n/m, thus ‖Ai‖2 = n/m for all i = 1, ...,m. But for arbitrary w ∈ Cn we have

m∑
i=1

|〈w,Ai〉|2 =

m∑
i=1

A∗iw ·A
∗
iw = w∗

 m∑
i=1

AiA
∗
i

w,

where
∑m

i=1AiA
∗
i = A∗A = I (columns are orthonormal), so

∑m
i=1 |〈w,Ai〉|2 = ‖w‖2.

Thus the Ai = ui ful�ll the assumptions (4.2) of theorem 4.5, giving us a J ⊆ [m] with

c0 ·
n

m
‖w‖2 ≤

∑
i∈J
|〈w,Ai〉|2 ≤ C0 ·

n

m
‖w‖2

for all w ∈ Cn. But ∑
i∈J
|〈Ai, w〉|2 = ‖AJw‖2,

which �nishes the proof. �

4.2 Analysis of the Paley-Wiener Space

We �rst �x some notation. For f a complex valued, integrable function on R (with
respect to the Lebesgue measure), we write

f̂(ξ) = (2π)−1/2

∫
R
f(x)e−ixξdx

for its Fourier transform, where we continue F in the usual way to all L2-functions.
Before we get to the analysis itself, we �rst need some auxiliary notions.
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De�nition 4.8. For a set Λ ⊆ R we de�ne its separation constant

d(Λ) := inf
λ 6=λ′∈Λ

|λ− λ′|.

We call such a Λ ⊆ R discrete, if d(Λ) > 0. If (Λn)n is a sequence of discrete sets with
d(Λn) ≥ d for all n ∈ N, where d > 0 is a �xed constant, we say that (Λn)n converges
weakly to a countable Λ ⊆ R, and call Λ its weak limit, if

∀ε > 0∀Ω = (a, b), a, b ∈ (R \ Λ)∃N ∈ N∀n ≥ N : Λn ∩ Ω ⊆ (Λ ∩ Ω) + (−ε, ε)
and Λ ∩ Ω ⊆ (Λn ∩ Ω) + (−ε, ε).

(Notice that we require the above statement only to hold for all intervals Ω, which have
end points not in Λ, i.e. for which Ω ⊆ R \ Λ hold) We then write Λn

w−→ Λ.
Furthermore, we de�ne Λ ⊆ R to be quasidiscrete, if for all λ ∈ Λ there is an ε =
ε(λ) > 0, such that Λ ∩ Uε(λ) = {λ}.

Some remarks: For technical reasons we require the weak limit Λ to be countable.
Otherwise every sequence (Λn)n as described in the de�nition would trivially converge
weakly towards R for example, since then we will never �nd a suitable Ω, so the condition
is trivially ful�lled. Notice also the importance of the restriction for the intervals Ω.
As an example consider the sequence de�ned by Λn = {1/n} for n ∈ N. It certainly
sounds plausible for this sequence to converge towards Λ = {0} and it indeed does (as
one checks easily) in the weak sense as above. However, if we would try to apply the
above de�nition for the interval Ω = (0, 2) (which has its left boundary point in Λ),
then for no ε > 0 the �rst condition on N will be met, as the left hand side is always
nonempty, while the right hand side is always empty.
Note that it is possible for the weak limit of discrete sets to be empty, for example
{n} w−→ ∅ in the above sense. In the case that #Λ ≤ 1, we have d(Λ) =∞. Obviously,
every discrete set is quasidiscrete. Also observe that in general, the union of two discrete
sets is not discrete again (according to the above de�nition), as can be seen with Λ1 = N
and Λ2 = {n − 1

n
: n ∈ N}. However, it is easily seen that the union of �nitely many

(quasi-)discrete sets is quasidiscrete, but also keep in mind that not ever quasidiscrete
set is the union of �nitely many discrete sets, as can be seen with Λ = {

√
n : n ∈ N}

for example.
We will next prove some technical properties of this type of convergence.

Proposition 4.9. Let (Λn)n be a sequence of nonempty discrete sets with d(Λn) ≥
d > 0 for all n ∈ N.

(i) Let Λn
w−→ Λ. For any λ ∈ Λ there is a sequence (λn)n with λn ∈ Λn for all n ∈ N

and λn −→ λ. If on the other hand (λn)n is a convergent sequence with λn ∈ Λn
for all n ∈ N, then the limit lim

n−→∞
λn lies in Λ.

(ii) If the weak limit exists, it is unique.

(iii) If Λn
w−→ Λ, then d(Λ) ≥ d, so Λ is discrete.

(iv) There is a subsequence (Λnk)k, that converges weakly to a discrete Λ ⊆ R with
d(Λ) ≥ d.
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Proof. (i): Let λ ∈ Λ arbitrary and �x n > 1/d. Then, for every k ∈ N there is a
Nk ∈ N, such that for every m ≥ Nk we have

λ ∈ Λ ∩
(
λ− δk

2n+ k
, λ+

δk
2n+ k

)
︸ ︷︷ ︸

=Ω

⊆
(

Λm ∩
(
λ− δk

2n+ k
, λ+

δk
2n+ k

)
︸ ︷︷ ︸

=Ω

)
+

(
− 1

n
,

1

n

)
︸ ︷︷ ︸

=(−ε,ε)

,

where δk ∈ (0, 1] ensures that the boundary of Ω does not contain any points from Λ,
which is possible since Λ is countable.
Notice that the interval Ω has length 2δk

2n+k < d, so that Λm ∩ Ω contains at most one
point, and since the far right hand side is not empty (it contains λ for example) there
is a λk,m ∈ Λm ∩ Ω. It should be clear that we can choose these Nk to be strictly
increasing, i.e. Nk < Nk+1. We now select

λ1 ∈ Λ1 , ... , λN1−1 ∈ ΛN1−1

arbitrary, then

λN1 = λ1,N1 , λN1+1 = λ1,N1+1 , ... , λN2−1 = λ1,N2−1,

then
λN2 = λ2,N2 , λN2+1 = λ2,N2+1 , ... , λN3−1 = λ2,N3−1,

and so on (all Λn are nonempty). The sequence (λn)n is now de�ned in a way according
to the claim, where convergence is ensured by the ever shrinking �(−ε, ε)� term at the
end.
On the other hand let now (λn)n be a sequence as in the second part of the claim and
set λ = lim

n−→∞
λn. For an arbitrary neighborhood Ω = Uε(λ), only �nitely many of the

sets Λm ∩ Ω can be empty. Then have

Λm ∩ Ω ⊆ (Λ ∩ Ω) + (−ε, ε)

for all but �nitely many m. Since we can choose ε arbitrarily small (with similar
conclusions from the countability of Λ as were already used in the �rst part), the
principle of nested intervals yields λ ∈ Λ.
(ii): By (i) we get a complete description of Λ, showing that the weak limit must be
unique. To write it out for once:

Λ =

{
λ ∈ R : ∃λn ∈ Λn, n ∈ N with lim

n−→∞
λn = λ

}
.

(iii): Again by (i), choosing according sequences λn −→ λ and λ′n −→ λ′ for λ 6= λ′ ∈ Λ,
then by uniqueness of the limit for the convergence in (R, | · |), the sequences (λn)n and
(λ′n)n can only be equal in at most �nitely many places. Therefore, they are di�erent
from a point onward, say for all n ≥ N . Since the Λn's all have a separation constant
≥ d, we have |λn−λ′n| ≥ d for all n ≥ N . Taking limits yields |λ−λ′| ≥ d, so d(Λ) ≥ d
is discrete.
(iv): The basic idea is to use the already proven characterization of the weak limit
from point (i) together with a diagonalization argument and the Bolzano-Weierstrass
theorem. For this, consider for l ∈ Z the intervals Il := [ld, (l + 1)d) (d as in the
statement of the proposition). We see that R =

⋃
l∈Z Il disjointly and since d(Λn) ≥ d

for all n ∈ N, we also have #(Il ∩ Λn) ≤ 1 for all l ∈ Z, n ∈ N. Furthermore set
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J0
l := {n ∈ N : Il ∩Λn 6= ∅} for l ∈ Z, so J0

l is the set of indices n, such that Λn has an
element from Il for given l.
If we have #J0

l < ∞ for all l ∈ Z, then we easily see that Λn
w−→ ∅, in which case

we are done with Λ = ∅. So assume there is an l1 ∈ Z, so that #J0
l1

= ∞. Then the
sequence (λ1

j )j∈J0
l1

, where λ1
j is the unique element in Il1 ∩ Λj for j ∈ J0

l1
(notice that

this intersection is nonempty by de�nition of J0
l1
), consists of in�nitely many values

from Il1 ⊆ [l1d, (l1 + 1)d], so by the Bolzano-Weierstrass theorem it has a convergent
subsequence. Denote the indices of this convergent subsequence by J1 = {j1

1 < j1
2 < ...},

so that λ1
j1p
−→ λ1 as p −→∞ for some λ1 ∈ R.

Set now J1
l := J1

l ∩ J1 and repeat the above process to get either that #J1
l < ∞ for

all l ∈ Z \ {l1}, in which case we have Λj1p
w−→ {λ1} so the claim follows for Λ = {λ1},

or the existence of an l2 ∈ Z \ {l1} with #J1
l2

=∞. In the latter case we again choose
indices J1

l2
⊇ J2 = {j2

1 < j2
2 < ...} with Il2 ∩ Λj2p 3 λ

2
j2p
−→ λ2 as p −→∞.

If this process can only be repeated �nitely many times, until it stops at an m ∈ N, then
Λjmp

w−→ {λ1, ..., λm−1}, so the weak limit is the desired Λ. If on the other hand the
above process continues inde�nitely, then by the way the subsequences and subsequences
of subsequences and so on are constructed, a typical diagonalization argument shows
that Λjpp

w−→ {λ1, λ2, ...} =: Λ.
With (iii) we have d(Λ) ≥ d in either case, which �nishes the prove. �

Consider for another example the discrete sets Λn = {(−1)n}. This sequence does not
converge, as can be seen directly by the de�nition or easier through proposition 4.9
(i). However, one can easily identify (Λ2n)n or (Λ2n−1)n as convergent subsequences.
Moreover, if we choose an arbitrary bijection q : N→ Q, the sequence of sets de�ned by
Λn = {q(n)} is again divergent, but for any λ ∈ R there is a corresponding subsequence
converging to Λ = {λ}. Notice also that the fact, that the d(Λn) are uniformly bounded
away from 0 is important, as can be seen by the sequence of discrete sets ( 1

nZ)n, for which
weak convergence towards a countable Λ does not make sense in the above de�nition
4.8 and indeed is unsuitable for our purposes below, as will be seen later.
We now come to the central concept for this section.

De�nition 4.10. For S ⊆ R, the Paley-Wiener space PWS is de�ned to be the space
of all functions f ∈ L2(R), such that f̂ vanishes almost everywhere outside of S, i.e. its
essential support ful�lls supp f̂ ⊆ S.

Remark 4.11. [20]

(i) If S ⊆ R has �nite measure |S| < ∞, then it is a well known consequence of
Hölder's inequality that ∫

S
|F (ξ)|dξ ≤ ‖F‖2 · |S|1/2

for all F ∈ L2(S), so L2(S) ⊆ L1(S). Hence, if f ∈ PWS , then f̂ ∈ L2(R),
but also supp f̂ ⊆ S, so that we can identify f̂ with f̂ |S (restricting onto S) and
we therefore get f̂ ∈ L2(S) ⊆ L1(S). By well known properties of the Fourier
transform we get that then f is continuous, i.e. PWS consists of continuous

43



4 Exponential Frames

functions (if |S| < ∞). In particular, point evaluation f(x), x ∈ R makes sense
for f ∈ PWS .
To better understand the Paley-Wiener space, it might be useful to consider the
following: Let S ⊆ R of �nite measure |S| < ∞ and let (fn)n be a sequence in
PWS (the sequence elements being equivalence classes, however we can identify
them with there unique continuous representative, see above), such that f̂n −→
f̂ , n −→∞ in L1(S). Then

|fn(x)− f(x)| =
∣∣∣∣(2π)−1/2

∫
R

(f̂n(ξ)− f̂(ξ))eixξdξ

∣∣∣∣
≤ (2π)−1/2

∫
S
|f̂n(ξ)− f̂(ξ)|dξ

= (2π)−1/2‖f̂n − f̂‖1 −→ 0,

so that fn −→ f, n −→∞ uniformly. Thus, for S ⊆ R of �nite measure one easily
sees (using Riemann-Lebesgue), that PWS is (or more formally can be identi�ed
with) a closed subspace of (C0(R), ‖ ·‖∞), where C0(R) is the set of all continuous
functions R→ C which decay towards 0 for |x| −→ ∞.

(ii) The following easy observation is crucial in some of the coming results: For
S ⊆ T ⊆ R de�nition 4.10 immediately implies PWS ⊆ PWT . Also note that
if S and T di�er only in a null set, i.e |S∆T | = 0 for the symmetric di�erence,
then PWS = PWT , as the corresponding null set cannot be �seen� by the integral
of the inverse Fourier transform (the equality of spaces can also be seen by the
de�nition directly).
We further have some transformation properties of the Paley-Wiener spaces:
Translating S by −t to get −t + S, the map τt : PW−t+S → PWS , (τtf)(x) =
eitxf(x) is well de�ned by

(τtf)∧(ξ) = (2π)−1/2

∫
R
eitxf(x)e−ixξdx

= (2π)−1/2

∫
R
f(x)e−ix(ξ−t)dx = f̂(ξ − t)

for f ∈ PW−t+S and easily seen to be an isometric isomorphism (for |S| < ∞).
Similarly scaling S by α > 0 to get αS, the map µα : PWS → PWαS , (µαf)(x) =
f(αx) is also well de�ned by

(µαf)∧(ξ) = (2π)−1/2

∫
R
f(αx)e−ixξdx

=
(2π)−1/2

α

∫
R
f(y)e−iy

ξ
αdy =

1

α
f̂

(
ξ

α

)
for f ∈ PWS and further ‖µαf‖2 = α−1/2‖f‖2 (for |S| <∞).

We �rst establish some more general auxiliary results, before we come to the main
theorem of this chapter. The proof of the following statement relies heavily on abstract
Hilbert space theory and complex analysis, so we will only state the result here and
refer to [28] for the proof.
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Theorem 4.12. [20, 28] Given a discrete set Λ ⊆ R, i.e. d(Λ) > 0, and a bounded
set S ⊆ R, there is a constant K = K(d(Λ), diam(S)), where diam(S) = sup{|x − y| :

x, y ∈ S} is the diameter of S, such that∑
λ∈Λ

|f(λ)|2 ≤ K‖f‖22

for all f ∈ PWS .

This will be used for the following two limiting results.

Lemma 4.13. [20] Let S ⊆ R be bounded and of positive measure |S| > 0. Let further
(Λk)k be a sequence of discrete sets in R with d(Λk) ≥ δ > 0 for all k ∈ N and Λk

w−→ Λ
for some countable Λ ⊆ R. Then

lim
k−→∞

∑
λ∈Λk

|f(λ)|2 =
∑
λ∈Λ

|f(λ)|2

holds for all f ∈ PWS .

Note that the set Λ may be empty, so that the empty sum on the right is 0. In that
case the lemma may be seen as a Riemann-Lebesgue type result.

Proof. First note that Λ is countable by de�nition 4.8, so that the sum over Λ makes
sense in principle. Let f ∈ PWS , by remark 4.11 (i) we know that f is continuous, so
that for every l ∈ Z it is possible to choose a xl ∈ [lδ − δ

2 , lδ + δ
2 ] with

|f(xl)| = max{|f(x)| : |x− lδ| ≤ δ/2}.

By de�nition it is clear that xl+2 − xl ≥ δ, so that the sets {xl : l ∈ Z even} and
{xl : l ∈ Z odd} are discrete sets with separation constants ≥ δ each. Applying theorem
4.12 to both sets separately yields∑

l∈Z
|f(xl)|2 ≤ 2K‖f‖22 <∞. (4.3)

For R > 0 with −R,R /∈ Λ but otherwise arbitrary, we now have by splitting up the
sums

∣∣∣∣∣∣
∑
λ∈Λk

|f(λ)|2 −
∑
λ∈Λ

|f(λ)|2
∣∣∣∣∣∣ ≤

∣∣∣∣∣∣∣∣∣
∑
λ∈Λk
|λ|<R

|f(λ)|2 −
∑
λ∈Λ
|λ|<R

|f(λ)|2

∣∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣∣
∑
λ∈Λk
|λ|≥R

|f(λ)|2 −
∑
λ∈Λ
|λ|≥R

|f(λ)|2

∣∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣∣
∑
λ∈Λk
|λ|<R

|f(λ)|2 −
∑
λ∈Λ
|λ|<R

|f(λ)|2

∣∣∣∣∣∣∣∣∣+
∑
λ∈Λk
|λ|≥R

|f(λ)|2 +
∑
λ∈Λ
|λ|≥R

|f(λ)|2.
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Since the Λk have separation constant ≥ δ and so does Λ by proposition 4.9 (iii), the
way the xl's are de�ned yields∣∣∣∣∣∣

∑
λ∈Λk

|f(λ)|2 −
∑
λ∈Λ

|f(λ)|2
∣∣∣∣∣∣ ≤

∣∣∣∣∣∣∣∣∣
∑
λ∈Λk
|λ|<R

|f(λ)|2 −
∑
λ∈Λ
|λ|<R

|f(λ)|2

∣∣∣∣∣∣∣∣∣+ 2
∑
|l|≥R/δ

|f(xl)|2.

By continuity of f , the discreteness of the Λk as well as of Λ and proposition 4.9 (i) and
(ii), the �rst term of the right hand side goes to zero as k −→∞. By (4.3), so does the
second term for R −→∞ on the right hand side. This establishes the claim. �

Lemma 4.14. [20] Let S1 ⊆ S2 ⊆ ... be an in�nite, increasing sequence of bounded
subsets of R, such that S :=

⋃
k∈N Sk has �nite measure. Let Λ ⊆ R be a discrete set

and k,K > 0 constants, such that for all j ∈ N there holds

k‖fj‖22 ≤
∑
λ∈Λ

|fj(λ)|2 ≤ K‖fj‖22

for all fj ∈ PWSj . Then we have

k‖f‖22 ≤
∑
λ∈Λ

|f(λ)|2 ≤ K‖f‖22

for all f ∈ PWS .

Proof. Given an f ∈ PWS , let fj ∈ PWSj be the inverse Fourier transform of f̂ · 1Sj .
By dominated convergence then have ‖f̂ − f̂j‖1 −→ 0, j −→ ∞, so as in remark 4.11
(i) we get that fj −→ f uniformly for j −→∞. Also notice that

‖f − fj‖22 = ‖f̂ − f̂j‖22 −→ 0, j −→∞,

again by dominated convergence.
For given R > 0 we have ∑

λ∈Λ
|λ|<R

|fj(λ)|2 ≤ K‖fj‖22.

First taking j −→∞ gives (together with the above convergence properties for the fj)∑
λ∈Λ
|λ|<R

|f(λ)|2 ≤ K‖f‖22,

letting then R −→∞ yields ∑
λ∈Λ

|f(λ)|2 ≤ K‖f‖22.

To get the other side of the claimed inequality, we will use the already proven inequality
(and the triangle inequality) to get∑

λ∈Λ

|f(λ)|2
1/2

≥

∑
λ∈Λ

|fj(λ)|2
1/2

−

∑
λ∈Λ

|(f − fj)(λ)|2
1/2

≥ k1/2‖fj‖2 −K1/2‖f − fj‖2
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(PWS ⊇ PWSj , see remark 4.11, are vector spaces, so f − fj ∈ PWS). Again letting
j −→∞ gives the assertion

k‖f‖22 ≤
∑
λ∈Λ

|f(λ)|2.

�

Remark 4.15. A similar assertion to that of the above lemma holds more general for
Λ, which are the �nite union of discrete sets. Writing Λ =

⋃r
l=1 Λl in such a way, we

have ∑
λ∈Λl

|fj(λ)|2 ≤
∑
λ∈Λ

|fj(λ)|2 ≤ K‖fj‖22,

for all fj ∈ PWSj and l = 1, ..., r. Then lemma 4.14 yields∑
λ∈Λl

|f(λ)|2 ≤ K‖f‖22

for all f ∈ PWS and l = 1, ..., r. Thus

∑
λ∈Λ

|f(λ)|2 ≤
r∑
l=1

∑
λ∈Λl

|f(λ)|2 ≤ rK‖f‖22

for all f ∈ PWS . Similar to the proof above, then get∑
λ∈Λ

|f(λ)|2
1/2

≥

∑
λ∈Λ

|fj(λ)|2
1/2

−

∑
λ∈Λ

|(f − fj)(λ)|2
1/2

≥ k1/2‖fj‖2 − (rK)1/2‖f − fj‖2,

thus we conclude as above that

k‖f‖22 ≤
∑
λ∈Λ

|f(λ)|2 ≤ rK‖f‖22

for all f ∈ PWS . Therefore, we only have to pay an additional factor in the upper
bound.

The following lemma helps in controlling the discrete set Λ of sample points when taking
limiting processes.

Lemma 4.16. [20] Assume that there is a constant C > 0, an S ⊆ R of �nite measure
|S| <∞ and a countable Λ ⊆ R, such that∑

λ∈Λ

|f(λ)|2 ≤ C|S| · ‖f‖22

holds for all f ∈ PWS . Then there is a constant η = η(S) > 0, so that

#(Λ ∩ Ω) ≤ 9C

for every interval Ω ⊆ R with |Ω| = η.
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Proof. Let h ∈ PWS be the inverse Fourier transform of the indicator function 1S (1S
is L1 by �niteness of |S|). Thus h is continuous and we further have

h(0) = (2π)−1/2

∫
R
1S(ξ)eiξ·0dξ = (2π)−1/2|S| > |S|/3

and
‖h‖22 = ‖1S‖22 = |S|.

By continuity it is now possible to choose an η > 0 small enough, so that |h(x)| ≥ |S|/3
whenever |x| ≤ η/2 (notice that η only depends on S). By the assumption from the
lemma applied to f = h we get for Ω = [−η/2, η/2] then

#(Λ ∩ Ω) ·
(
|S|
3

)2

≤
∑

λ∈Λ∩Ω

|h(λ)|2 ≤
∑
λ∈Λ

|h(λ)|2 ≤ C|S| · ‖h‖22 = C|S|2,

so that #(Λ ∩ Ω) ≤ 9C for this particular Ω. Since translating h yields a modulation
of ĥ, we have that h(· − x0) ∈ PWS for all x0 ∈ R. This corresponds to translating the
set Ω, so that the assertion holds for general intervals of length η.

�

Obviously, if the assertion of the above lemma holds for all intervals of length η, then
it holds for all intervals of length ≤ η.

Remark 4.17. We will go into some more detail on the dependence between S and
the constant η. To reiterate, for S ⊆ R, 0 < |S| <∞ the constant η is chosen in such a
way that

|h(x)| = (2π)−1/2

∣∣∣∣∫
S
eixξdξ

∣∣∣∣ ≥ 1

3
|S|

for all |x| ≤ η/2. We formally de�ne

η(S) := max

{
η > 0 : |x| ≤ 1

2
η ⇒ |h(x)| ≥ 1

3
|S|
}
,

where the max is justi�ed (instead of sup) by continuity of h since |S| <∞ (see remark
4.11 (i)). Notice �rst, that there is no universal lower bound on the η(S), not even for
|S| ≤ M uniformly bounded by some M > 0, since for n ∈ N we can consider the sets
Sn = [−n−1/2,−n]∪[n, n+1/2], all of measure |Sn| = 1. A straightforward calculation
leads to

h(x) = (2π)−1/2 · 2
∫ n+1/2

n
cos(xξ)dξ =

√
2

π
·

sin
(
(n+ 1/2)x

)
− sin(nx)

x
,

for which one can show, using the Taylor expansion of the sinc -function for example,
that η(Sn) = O(n−1/2), so in particular η(Sn) −→ 0 as n −→ ∞. Since this is only for
demonstrative purposes, we will not go into further details.
Let S ⊆ R with 0 < |S| < ∞. The above example seems to suggest that a general
bound may not be straightforward to �nd, so we only consider the special case that
additionally ∫

S
|ξ|dξ <∞
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holds (in particular, this holds for all bounded S). Using the mean value theorem on
Reh and Imh (which are continuously di�erentiable by the additional assumption) for
all real x < y there are σ, τ ∈ (x, y) with∣∣∣∣h(y)− h(x)

y − x

∣∣∣∣ =

∣∣∣∣Reh(y)− Reh(x)

y − x
+ i · Imh(y)− Imh(x)

y − x

∣∣∣∣
= |Reh′(σ) + i · Imh′(τ)|

= (2π)−1/2

∣∣∣∣∫
S
ξ cos(σξ)dξ + i

∫
S
ξ sin(τξ)dξ

∣∣∣∣
≤ (2π)−1/2 · 2

∫
S
|ξ|dξ,

so that h is Lipschitz-continuous with Lipschitz-constant L =
√

2/π
∫
S |ξ|dξ. Therefore,

using h(0) = (2π)−1/2|S|, we get the chain of implications

|x| ≤

(
(2π)−1/2 − 1

3

)
|S|√

2/π
∫
S |ξ|dξ

⇒ |h(x)− h(0)| ≤
√

2/π

∫
S
|ξ|dξ · |x| ≤

(
(2π)−1/2 − 1

3

)
|S|

⇒ |h(x)| ≥ |h(0)| − |h(x)− h(0)| ≥ 1

3
|S|

and conclude from that

η(S) ≥ 1

2
·

(
(2π)−1/2 − 1

3

)
|S|√

2/π
∫
S |ξ|dξ

=

(
1

4
− 1

12

√
2π

)
︸ ︷︷ ︸

>0.04

· |S|∫
S |ξ|dξ

> 0.

4.3 Exponential Frames on General Sets of Finite Measure

The following few results will culminate in the main result of this chapter.

Lemma 4.18. [20] Let n < m ∈ N and let S ⊆ R of the type

S =
⋃
r∈I

[
2πr

m
,
2π(r + 1)

m

]
,

where I ⊆ {0, ...,m− 1},#I = n. Then there is a Λ ⊆ Z with

c′0|S| · ‖f‖22 ≤
∑
λ∈Λ

|f(λ)|2 ≤ C ′0|S| · ‖f‖22

for all f ∈ PWS , where c′0, C
′
0 > 0 are universal constants.
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Proof. Writing I = {r1, ..., rn}, let

F(I) =

[
exp

(
2πi

kr

m

)]
k=0,...,m−1;r∈I

=


exp

(
2πi · 0·r1

m

)
· · · exp

(
2πi · 0·rn

m

)
...

...

exp
(

2πi · (m−1)·r1
m

)
· · · exp

(
2πi · (m−1)·rn

m

)


be the (nonnormalized) Fourier matrix with columns indexed by I. Notice thatm−1/2F(I)
ful�lls the requirements of corollary 4.7 (with common squared euclidean row norm
κ = n/m), so that there is a row selection J ⊆ {0, ...,m− 1} with

c0 ·
n

m
‖w‖2 ≤ ‖m−1/2F(I)J · w‖2 ≤ C0 ·

n

m
‖w‖2

for all w ∈ CI , where the norms are the euclidean norms in the spaces CI and CJ
respectively. The constants c0 and C0 are universal constants and are taken from
corollary 4.7. We therefore have

c0n‖w‖2 ≤ ‖F(I)J · w‖2 ≤ C0n‖w‖2 (4.4)

for all w ∈ CI .
Observe that every �function� F ∈ L2(S) can be written as

F (t) =
∑
r∈I

Fr

(
ξ − 2πr

m

)
,

where the Fr ∈ L2[0, 2π/m] ⊆ L2(R) (extend by 0) are de�ned by

Fr(ξ) := F

(
ξ +

2πr

m

)
1[0,2π/m](ξ),

so we simply split up F according to the intervals de�ning S. Taking inverse Fourier
transforms we therefore see that every f ∈ PWS can be represented as

f(x) =
∑
r∈I

e2πi· r
m
xfr(x)

for some fr ∈ PW[0,2π/m], r ∈ I (the inverse Fourier transforms of the Fr). Using the
unitarity of the Fourier transform (and its inverse) and the structure of the Fr above we
see that the e2πi· r

m
xfr(x) are pairwise orthogonal in L2(R). For general h ∈ PW[0,2π/m]

we also have the fact that
1

m
‖h‖22 =

∑
λ∈mZ

|h(λ)|2 (4.5)

at hand. Indeed, since {emk (·) = (m/2π)1/2 exp(imk·) : k ∈ Z} is an orthonormal basis
in L2[0, 2π/m], we have

‖h‖22 = ‖ĥ‖22 =
∑
k∈Z
|〈ĥ, emk 〉|2 =

∑
k∈Z

∣∣∣∣∣
√
m

2π

∫ 2π/m

0
ĥ(ξ)e−imkξdξ

∣∣∣∣∣
2

=
∑
k∈Z

m

∣∣∣∣(2π)−1/2

∫
R
ĥ(ξ)ei·(−mk)ξdξ

∣∣∣∣2
= m

∑
k∈Z
|h(−mk)|2 = m

∑
λ∈mZ

|h(λ)|2.
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We now claim that for Λ := {j + km : j ∈ J, k ∈ Z} we get the desired estimate. To
verify this, take an arbitrary f ∈ PWS (which also gives fr as described above). We
then have

∑
λ∈Λ

|f(λ)|2 =
∑
j∈J

∑
k∈Z
|f(j + km)|2 =

∑
j∈J

∑
k∈Z

∣∣∣∣∣∣
∑
r∈I

e2πi· jr
m fr(j + km)

∣∣∣∣∣∣
2

,

so applying (4.5) for every j ∈ J to hj(x) =
∑

r∈I e
2πi· jr

m fr(j + x) we further get

∑
λ∈Λ

|f(λ)|2 =
1

m

∑
j∈J

∫
R

∣∣∣∣∣∣
∑
r∈I

e2πi· jr
m fr(j + x)

∣∣∣∣∣∣
2

dx

=
1

m

∫
R

∑
j∈J

∣∣∣∣∣∣
∑
r∈I

e2πi· jr
m fr(x)

∣∣∣∣∣∣
2

dx

=
1

m

∫
R
‖F(I)J [fr(x)]r∈I‖2dx,

where [fr(x)]r∈I is the vector consisting of the fr, r ∈ I all evaluated at x. By (4.4) we
get

c0 ·
n

m

∫
R

∑
r∈I
|fr(x)|2dx ≤

∑
λ∈Λ

|f(λ)|2 ≤ C0 ·
n

m

∫
R

∑
r∈I
|fr(x)|2dx.

The claim now follows from the calculation (using the orthogonality described above)

∫
R

∑
r∈I
|fr(x)|2dx =

∫
R

∑
r∈I
|e2πi· r

m
xfr(x)|2dx =

∫
R

∣∣∣∣∣∣
∑
r∈I

e2πi· r
m
xfr(x)

∣∣∣∣∣∣
2

dx =

∫
R
|f(x)|2dx

and the fact that |S| = 2πn
m , so that c′0 = c0/2π and C ′0 = C0/2π. �

We now re�ne this result.

Corollary 4.19. [20] Let S ⊆ [0, 2π] be a set of positive measure. Then there is a
Λ ⊆ Z with

c′2|S| · ‖f‖22 ≤
∑
λ∈Λ

|f(λ)|2 ≤ C ′2|S| · ‖f‖22

for all f ∈ PWS . (c′2, C
′
2 positive universal constants)

Proof. We start with compact K ⊆ [0, 2π]. Let |K| > ε > 0, then K can be covered by
a set Kε ⊆ [0, 2π], so that Kε is of the form described in lemma 4.18 with K ⊆ Kε and
|Kε \K| < ε (in particular |K| ≤ |Kε| ≤ 2|K|). It is easily seen that this can indeed be
done, since compact sets in R are the �nite union of closed and bounded intervals. By
the denseness of the rational numbers in R (to be more speci�c here of 2πQ ⊆ R) all of
those closed and bounded intervals can be covered arbitrarily well by sets of the above
form, which can then be extended to a cover of the original compact set of the desired
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type.
By lemma 4.18, this gives a Λε ⊆ Z with

c′0|Kε| · ‖f‖22 ≤
∑
λ∈Λε

|f(λ)|2 ≤ C ′0|Kε| · ‖f‖22

for all f ∈ PWKε . Using remark 4.11 (ii) and K ⊆ Kε, we have PWK ⊆ PWKε , so that
the aforementioned bound holds in particular for all f ∈ PWK . This gives

c′1|K| · ‖f‖22 ≤ c′0|Kε| · ‖f‖22 ≤
∑
λ∈Λε

|f(λ)|2 ≤ C ′0|Kε| · ‖f‖22 ≤ C ′1|K| · ‖f‖22,

for all f ∈ PWK , which yields the statement for the compact case for c′1 = c′0 and
C ′1 = 2C ′0 with Λ = Λε.
More generally, for open U ⊆ [0, 2π] (with respect to the subspace topology), U consists
of a disjoint union of at most countably many open intervals. Thus, if we go over to
the closure U ⊆ [0, 2π], we add at most countably many points to U , so that U \U is a
null set and by that, using remark 4.11 (ii), have PWU = PWU . But U is compact, by
the �rst part of the proof we therefore get

c′1|U | · ‖f‖22 ≤
∑
λ∈Λ

|f(λ)|2 ≤ C ′1|U | · ‖f‖22

for all f ∈ PWU , where c′1C
′
1 and Λ are just as above.

Using now the outer regularity of the Lebesgue measure, for measurable S ⊆ [0, 2π]
with |S| > 0 there is an open U ⊆ [0, 2π] with S ⊆ U and |U \ S| < |S|, in particular
|U | ≤ |S|+ |U \ S| ≤ 2|S|. By the open case, we have

c′1|U | · ‖f‖22 ≤
∑
λ∈Λ

|f(λ)|2 ≤ C ′1|U | · ‖f‖22

for all f ∈ PWU , but again by remark 4.11 (ii) it holds PWS ⊆ PWU , so that as in the
�rst part of the proof we get

c′2|S| · ‖f‖22 ≤ c′1|U | · ‖f‖22 ≤
∑
λ∈Λ

|f(λ)|2 ≤ C ′1|U | · ‖f‖22 ≤ C ′2|S| · ‖f‖22

for all f ∈ PWS , where Λ gets taken over from the open case and c′2 = c′1 and C
′
2 = 2C ′1,

similar to above. This concludes the proof. �

We note that for the above purposes, it is easier to get estimates for the Paley-Wiener
space by approximating the de�ning sets from the outside. By the properties of the
Lebesgue measure, this can be done to an arbitrarily small error, which allows us to
get the desired bounds. In what comes below however we are required to make an
approximation from the inside, which is why we introduced the machinery developed
for the Paley-Wiener space in the previous section.
It is also noteworthy that the additional factor 2 (which was used twice in the above
proof) can be replaced by 1 + ε for an arbitrary ε > 0. However, if we do not want
to introduce an additional factor, i.e. C ′0 = C ′1 = C ′2, we certainly have to use more
sophisticated techniques. For simplicity, we will be satis�ed with the above bounds for
now.
We can easily extend the result even further.
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Corollary 4.20. [20] For every bounded S ⊆ R of positive measure, which is contained
in an interval of length 2πd, there is a a set Λ ⊆ 1

dZ with

c′2|S| · ‖f‖22 ≤
∑
λ∈Λ

|f(λ)|2 ≤ C ′2|S| · ‖f‖22 (4.6)

for all f ∈ PWS . (c′2, C
′
2 positive universal constants)

Proof. First note that applying the translation operator τt form remark 4.11 (ii) does
not change the quantities in the above bound, so we may assume S ⊆ [0, 2πd]. Using
the bijective scaling operator µ1/d from remark 4.11 (ii) for f ∈ PWS , apply corollary
4.19 to µ1/df ∈ PW 1

d
S where 1

dS ⊆ [0, 2π] to get

c′2

∣∣∣∣1dS
∣∣∣∣ · ‖µ1/df‖22 ≤

∑
λ∈Λ′

|(µ1/df)(λ)|2 ≤ C ′2
∣∣∣∣1dS

∣∣∣∣ · ‖µ1/df‖22.

for some Λ′ ⊆ Z. Since (µ1/df)(λ) = f(λ/d) and ‖µ1/df‖22 = d‖f‖22, we get (4.6) for
Λ = 1

dΛ′ ⊆ 1
dZ. �

We answer now the question from the start of this chapter.

Theorem 4.21. [20] There are universal constants c, C > 0 such that the following
holds: For every set S ⊆ R of �nite measure there is a quasidiscrete set Λ ⊆ R, so that
E(Λ) = {exp(iλ·)}λ∈Λ is a frame in L2(S) with frame bounds c|S| and C|S|, i.e.

c|S| · ‖h‖22 ≤
∑

u∈E(Λ)

|〈h, u〉|2 ≤ C|S| · ‖h‖22

for all h ∈ L2(S).

Proof. The claimed bound somewhat more explicitly written out reads

c|S| · ‖h‖22 ≤
∑

u∈E(Λ)

∣∣∣∣∣
∫
S
h(t)e−iλtdt︸ ︷︷ ︸
=
√

2πĥ(λ)

∣∣∣∣∣
2

≤ C|S| · ‖h‖22,

so going over to the Fourier transform we need to show the existence of universal con-
stants c′, C ′ > 0 (c′ = c/2π, C ′ = C/2π) with

c′|S| · ‖f‖22 ≤
∑
λ∈Λ

|f(λ)|2 ≤ C ′|S| · ‖f‖22

for all f ∈ PW−S (the minus coming from the fact that h is the inverse Fourier transform
of f but in what follows we will replace −S by S which does not change the validity
of the statement by a transformation argument just like that in remark 4.11 (ii)). The
case for bounded S ⊆ R is clear by corollary 4.20, so consider unbounded S ⊆ R of
�nite measure.
Take a sequence S1 ⊆ S2 ⊆ ... of bounded sets Sj with S =

⋃
j Sj (e.g. Sj = [−j, j]∩S),
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on which we may impose further properties to or liking, if they do not con�ict with
generality. Using corollary 4.20 we get discrete sets Λj with (4.6), i.e

c′2|Sj | · ‖fj‖22 ≤
∑
λ∈Λj

|fj(λ)|2 ≤ C ′2|Sj | · ‖fj‖22

for all fj ∈ PWSj and all j ∈ N. Since PWSj ⊆ PWSk for j ≤ k (with remark 4.11 (ii))
we even have

c′2|Sk| · ‖fj‖22 ≤
∑
λ∈Λk

|fj(λ)|2 ≤ C ′2|Sk| · ‖fj‖22 (4.7)

for all fj ∈ PWSj and j ≤ k.
Denote by

h(x) := (2π)−1/2

∫
S
eixξdξ, hj(x) := (2π)−1/2

∫
Sj

eixξdξ,

so that ĥ = 1S and ĥj = 1Sj . By remark 4.11 (i) we know that h and the hj are
continuous. Therefore, there are η(S) and η(Sj) as in remark 4.17. Our �rst aim will
be to show that the η(Sj) are uniformly bounded from below by some ρ > 0. Since
Sj ↗ S with S of �nite measure, dominated convergence gives that 1Sj −→ 1S in
L1. Again by remark 4.11 (i), we conclude that hj −→ h uniformly, so in particular
|hj | −→ |h| uniformly (by the reverse triangle inequality). Thus, we can choose an index
j0 ∈ N, such that

|hj(x)| ≥ 1

3
|S|

for all j ≥ j0 and |x| ≤ 1
4η(S). By disregarding the �rst few sequence elements of

(hj)j , we may assume without loss of generality that j0 = 1. We therefore have that
η(Sj) ≥ 1

2η(S) =: ρ is uniformly bounded from below.
Applying lemma 4.16 (together with the small remark under its proof) to the Sj , for
which

∑
λ∈Λj

|fj(λ)|2 ≤ C ′2|Sj | · ‖fj‖22 holds for all fj ∈ PWSj , we have that

#(Λj ∩ Ω) ≤ 9C ′2

for all intervals Ω of length |Ω| ≤ ρ. We can therefore partition the sets Λj into subsets

Λ
(l)
j , l = 1, ..., r, by considering the intersections Λj ∩ [nρ, (n+ 1)ρ] for n ∈ Z, such that

d(Λ
(l)
j ) ≥ ρ (see de�nition 4.8), where r ≤ 18C ′2 is universal for all j ∈ N (the additional

factor of 2 comes from the same sort of even-odd-argument as was already used in
the proof of lemma 4.13). By taking appropriate subsequences (and subsequences of

subsequences etc.) we can assume by proposition 4.9 (iv) that Λ
(l)
j

w−→ Λ(l), j −→ ∞
(which a priori are not known to be nonempty) with d(Λ(l)) ≥ ρ, l = 1, ..., r. Then
the set Λ :=

⋃r
l=1 Λ(l) is quasidiscrete, or more speci�cally the union of �nitely many

discrete sets.
Writing

∑
λ∈Λk

|fj(λ)|2 =
∑r

l=1

∑
λ∈Λ

(l)
k

|fj(λ)|2, and taking limits k −→∞ as in lemma

4.13, (4.7) becomes

c′2|S| · ‖fj‖22 ≤
r∑
l=1

∑
λ∈Λ(l)

|fj(λ)|2 ≤ C ′2|S| · ‖fj‖22
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for all fj ∈ PWSj . In particular, the lower bound implies that at least one of the Λ(l)

(and by extension also Λ) is nonempty. We also have

∑
λ∈Λ

|fj(λ)|2 ≤
r∑
l=1

∑
λ∈Λ(l)

|fj(λ)|2 ≤ r
∑
λ∈Λ

|fj(λ)|2

(in general, the �rst �≤� might not be replaceable by an �=�, since the Λ(l) are not
guaranteed to be pairwise disjoint), so that we have

c′2
r
|S| · ‖fj‖22 ≤

∑
λ∈Λ

|fj(λ)|2 ≤ C ′2|S| · ‖fj‖22

for all fj ∈ PWSj . A �nal application of lemma 4.14 together with remark 4.15 for

j −→∞ yields the assertion for unbounded S with c′ = c′2
r and C ′ = rC ′2. �

Notice that, after going through all the arguments again, we can even get numerical
values for c and C. However, at this point c ≥ 6 · 10−4 may be very small while
C ≤ 6 · 108 may be very large (the biggest contributers being the large values of C0

in theorem 4.5 and of r from the proof of theorem 4.21), which certainly makes the
above result very interesting in theory, but not very good for practical applications,
disregarding the whole fact that it is not even easy to get Λ concretely. As was already
mentioned at various points throughout the arguments, there is still much room for
improvements.
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5 Final Remarks

There are some open ends to these topics that, as far as the author is aware of, have
not been further studied so far. It is known that theorem 3.8 can be improved (under
certain extra assumptions), as was done in [7]. This also leads to improved constants
in an accordingly adapted version of theorem 3.10. However, the most important open
problem here seems to be how large the probability in theorem 3.8 can be, in particular
how many partitions ful�lling corollary 3.9 and theorem 3.10 there are and maybe even
how they can be found in an e�cient way. To this extend, the formulation of corollary
4.7 may be improved to get more knowledge on RIP matrices (and related concepts
from the theory of compressed sensing, see [22]), especially there existence (in a some-
what deterministic way) for a small number of rows. As was noted in the small remark
after theorem 3.14, there also seems to be connections to the theory of combinatorial
matrices regarding optimal bounds for such situations.
It is also useful to take a look at [9] or [29] (in German), which give an overview of all
the problems, which are related to Weaver's conjectures, Anderson's paving conjecture
and the Kadison-Singer problem in general. In particular, the Feichtinger conjecture
also might be useful in the context of frames, as was discussed above, and which is also
dealt with in [7]. As was already discussed after theorem 4.21, the constants there can
probably be improved by a lot.
It is also natural to ask, whether theorem 4.21 holds for the higher dimensional case
of S ⊆ Rd of �nite but positive measure. To this end and other related topics, [24]
gives more general results. In principle, all but maybe theorem 4.12 are easily seen to
be generalizable to the multidimensional setting. It might also be not to far fetched
to expect the multidimensional analogue of theorem 4.21 to also give new insights into
discrepancy theory or related concepts. There are also more abstract results regarding
frames over Lebesgue spaces or even more generally on Hilbert spaces, see for example
[6] or [7]. All this theory has its roots in [19].
As a �nal note, this manuscript is, for a complete solution of the Kadison-Singer prob-
lem, not the �rst of its kind, see among others [5] or [25]. The author of this work hopes
however, that this presentation is not only useful for understanding the Kadison-Singer
problem and its solution, but it also aims to demonstrate its further applications to
(but certainly not just) functional analysis and approximation theory.
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