

UNIVERSITY OF TECHNOLOGY IN THE EUROPEAN CAPITAL OF CULTURE CHEMNITZ

Department of Mathematics

Applied Functional Analysis, Junior Research Group SA ℓ E Franziska Nestler, Daniel Potts, Michael Schmischke, Martin Stoll and Theresa Wagner

Explainable Approximation in High Dimensions: Fourier-Based Algorithms Meet Kernel Methods

ANOVA Decomposition	Decomposition in Fourier Domain	Variances and GSI
Let $f \in L_2(\mathbb{T}^d)$. Based on the ANOVA (analysis of variance) decomposition $f(\boldsymbol{x}) = \sum f_{\boldsymbol{u}}(\boldsymbol{x}_{\boldsymbol{u}})$	For a subset $u \in \{1,, d\} =: \mathcal{D}$ of dimensions we have [Potts, Schmischke 2021]	Consider a trigonometric polynomial $f(\boldsymbol{x}) = \sum \hat{f}_{\boldsymbol{k}} e^{2\pi i \boldsymbol{k}^{\top} \boldsymbol{x}_{j}}.$

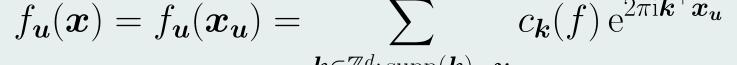
Basic

 $u \subseteq \overline{\{1,...,d\}}$

the importance of single dimensions as well as of groups of dimensions can be studied.

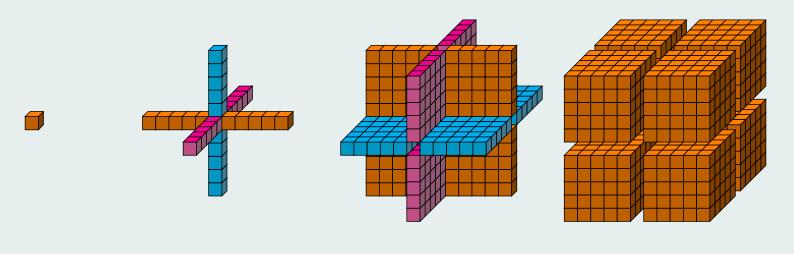
$$f_{\emptyset} = \int_{\mathbb{T}^d} f(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x},$$
$$f_{\boldsymbol{u}}(\boldsymbol{x}_{\boldsymbol{u}}) = \int_{\mathbb{T}^{d-|\boldsymbol{u}|}} f(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x}_{\bar{\boldsymbol{u}}} - \sum_{\boldsymbol{v} \subsetneq \boldsymbol{u}} f_{\boldsymbol{v}}(\boldsymbol{x}_{\boldsymbol{v}}),$$

where $\bar{\boldsymbol{u}} = \{1, \ldots, d\} \setminus \boldsymbol{u}$.



 $oldsymbol{k}{\in}\mathbb{Z}^d$: $ext{supp}(oldsymbol{k}){=}oldsymbol{u}$

Decomposition of the index set, 3D-visualization:



$$k \in \mathcal{K}$$

We easily see that $\sigma^2(f) = \sum_{\emptyset \neq u \subseteq \mathcal{D}} \sigma^2(f_u)$.
Study the importance of subsets u in terms of th
global sensitivity indices (GSI)

$$\rho_{\boldsymbol{u}}(f) := \frac{\sigma^2(f_{\boldsymbol{u}})}{\sigma^2(f)} = \frac{\sum_{\mathrm{supp}(\boldsymbol{k})=\boldsymbol{u}} |\hat{f}_{\boldsymbol{k}}|^2}{\sum_{\boldsymbol{k}\in\mathcal{K}\setminus\{\boldsymbol{0}\}} |\hat{f}_{\boldsymbol{k}}|^2} \in [0, 1]$$

Goal

Given: *N* data points $x_j \in \mathbb{T}^d$ or $[0, 1]^d$ and corresponding values $y_j \in \mathbb{R}$, find a model or rather function *f* with

$y_j pprox f(oldsymbol{x}_j).$

We can work efficiently with trigonometric models (nonuniform FFT, short: NFFT), but only in low dimensions (due to the curse of dimensionality).

ONB Approach

Ansatz: $y_j \approx f(\boldsymbol{x}_j) := \sum_{\boldsymbol{k} \in \mathcal{K}} \hat{f}_{\boldsymbol{k}} e^{2\pi i \boldsymbol{k}^\top \boldsymbol{x}_j}$, where we assume a low superposition dimension: $\boldsymbol{k} \in \mathcal{K} \iff |\operatorname{supp}(\boldsymbol{k})| \leq d_s$. 1. Solve $\min_{\hat{f}} ||\boldsymbol{y} - \Phi \hat{f}||_2^2 + \lambda \hat{f}^* W \hat{f}$ iterative (LSQR), where $\Phi = [e^{2\pi i \boldsymbol{k}^\top \boldsymbol{x}_j}]_{\boldsymbol{k},j}$ (fast mult. via NFFTs). $W = \operatorname{diag}(\hat{\omega}_{\boldsymbol{k}})$ (decay of $\hat{f}_{\boldsymbol{k}} \sim \operatorname{smoothness}$ of f)

2. Compute GSI to determine active subsets *u*. Re-compute the approximation by only keeping the active subsets. [Potts, Schmischke 2020, 2021]

Kernel-Based Approach

Search $f \in \mathcal{H} = \overline{\operatorname{span}\{\kappa(\boldsymbol{x}, \cdot), \boldsymbol{x} \in \mathbb{R}^d\}}$ (RKHS). By the representer theorem, we may solve

$$\min_{f \in \mathcal{H}} \sum_{j=1}^{N} (y_j - f(\boldsymbol{x}_j))^2 + \lambda \|f\|_{\mathcal{H}}^2$$
$$\implies \min_{\boldsymbol{\alpha} \in \mathbb{C}^N} \|\boldsymbol{y} - K\boldsymbol{\alpha}\|_2^2 + \lambda \boldsymbol{\alpha}^* K \boldsymbol{\alpha},$$

where $K \in \mathbb{R}^{N \times N}$ is the kernel matrix with entries $\kappa(\boldsymbol{x}_i, \boldsymbol{x}_j)$. Kernel ridge regression (KRR), $y_j \approx \sum_{i=1}^N \alpha_i \kappa(\boldsymbol{x}_i, \boldsymbol{x}_j)$.

Connection: Regularized Least Squares

Consider the case $\lambda \neq 0$ with kernels of the form $\kappa(\boldsymbol{x}_i, \boldsymbol{x}_j) = \sum_{\boldsymbol{k} \in \mathcal{K}} \hat{\omega}_{\boldsymbol{k}}^{-1} e^{2\pi i \boldsymbol{k}^\top (\boldsymbol{x}_i - \boldsymbol{x}_j)}$.

Then, both approaches are mathematically equivalent [Shawe-Taylor, Cristianini 2004]

Comments and Questions

Other orthonormal systems analogously, e.g. half-period cosine basis in non-periodic case, x_j ∈ [0, 1]^d.
 The restriction to small superposition dimensions d_s is motivated by the sparsity of effects: In practice most phenomena can be described by a few low-dim. interactions. The same applies to sufficiently smooth functions.

$$\Phi^* \Phi \hat{\boldsymbol{f}} + \lambda W \hat{\boldsymbol{f}} = \Phi^* \boldsymbol{y} \iff \hat{\boldsymbol{f}} = \lambda^{-1} W^{-1} \Phi^* (\boldsymbol{y} - \Phi \hat{\boldsymbol{f}}) = W^{-1} \Phi^* \boldsymbol{\alpha}$$

with

$$\boldsymbol{\alpha} = \lambda^{-1} (\boldsymbol{y} - \Phi \boldsymbol{\hat{f}}) \iff \lambda \boldsymbol{\alpha} = \boldsymbol{y} - \Phi W^{-1} \Phi^* \boldsymbol{\alpha} \iff (\underbrace{\Phi W^{-1} \Phi^*}_{K} + \lambda I_N) \boldsymbol{\alpha} = \boldsymbol{y}.$$

Results - Least Squares Approach

Tested on real and synthetic data sets (regression and classification).

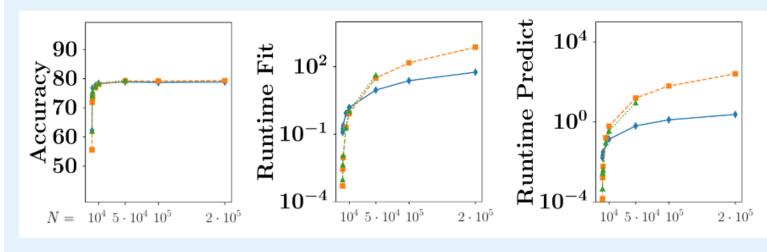
data set	d	N	error (type)	ref. method	ANOVA-LSQR
Forest Fires	12	517	12.71 (MAD)	SVM	12.65
Energy Eff. Housing	8	768	1.79 (RMSE)	Grad. Boost. Mach.	1.49
Energy Eff. Cooling	8	768	0.48 (RMSE)	Random Forest	0.44
Airfoil Self-Noise	5	1503	0.028 (rel. ℓ_2)	Sparse Rand. Features	0.016
California Housing	8	20640	0.115 (RMSE)	Local Learning Reg. NN	0.109
Ailerons	40	13750	0.0460 (RMSE)	Local Learning Reg. NN	0.0457

[Schmischke 2022, PhD thesis], publicly available julia software.

- ln the case of $\lambda = 0$ we need to work over-/under- determined.
- ln the dual setting we compute the α_j in addition. Benefit?

Results - Kernel Approach

We consider real data sets for binary classification and apply Gaussian ANOVAlike kernels (which we approximate by trig. polynomials)



We compared our NFFT-based KRR with standard sklearn algorithms (KRR and SVM) in python. Example: Results for SUSY data set with d = 18 features. [Nestler, Stoll, Wagner 2022]

ure	Support Vector Regression	Conditionally p.d. Kernels	Gaussian Process Regression	
Futi	$ \min_{\hat{f}} \frac{1}{2} \ \hat{f}\ _{2}^{2} + C \sum_{j=1}^{N} \xi_{j} ^{2} \text{s.t. } y_{j} - (\Phi \hat{f})_{j} \leq \epsilon + \xi_{j} $	$f(\boldsymbol{x}) = \sum_{j=1}^{N} \alpha_j \kappa(\boldsymbol{x}_j, \boldsymbol{x}) + \sum_{\boldsymbol{l}} \beta_{\boldsymbol{l}} p_{\boldsymbol{l}}(\boldsymbol{x}), \begin{pmatrix} K & P \\ P^\top & \boldsymbol{0} \end{pmatrix} \cdot \begin{pmatrix} \boldsymbol{\alpha} \\ \boldsymbol{\beta} \end{pmatrix} \stackrel{!}{=} \begin{pmatrix} \boldsymbol{y} \\ \boldsymbol{0} \end{pmatrix}$	Use ANOVA-type kernels $\kappa(\boldsymbol{x}_i, \boldsymbol{x}_j)$ as covariance functions in Gaussian processes.	

Results

Ongoing & Future

Ket.

Software

- ► Julia Package ANOVAapprox by M. Schmischke:
 - https://github.com/NFFT/ANOVAapprox.jl
 - Bases: "per" (Fourier system), "cos" (half-per. cosine), "cheb" (Chebyshev polynomials), "wav1"...." wav4" (Wavelets).
 - Solvers: "lsqr", "fista" (different regularization, group lasso), "krr" (solves the dual problem with CG, $K = \Phi W^{-1} \Phi^*$).
- Interpretability: GSI and attribute ranking.
- Python code NFFT4ANOVA by T. Wagner:
 - https://github.com/wagnertheresa/NFFT4ANOVA
 - KRR, where the kernel is a sum of equally weighted low-dimensional Gaussian kernels.

References

- Franziska Nestler, Martin Stoll and Theresa Wagner. Learning in High-Dimensional Feature Spaces Using ANOVA-Based Fast Matrix-Vector Multiplication. arXiv: 2111.10140, 2021. (accepted in Found. Data Sci.)
- 2 Daniel Potts and Michael Schmischke. Interpretable Approximation of High-Dimensional Data. SIAM J. Math. Data Sci., 3 (4), 1301–1323, 2021.
- 3 Daniel Potts and Michael Schmischke. Approximations of high-dimensional periodic functions with Fourier-based methods. SIAM J. Numer. Anal. 59, 2393-2429, 2021.
- 4 Felix Bartel, Michael Schmischke and Daniel Potts. Grouped Transformations and Regularization in High-Dimensional Explainable ANOVA Approximation. SIAM Journal on Scientific Computing, 2021 (accepted).
- 5 Laura Lippert, Daniel Potts and Tino Ullrich. Fast Hyperbolic Wavelet Regression meets ANOVA. ArXiv: 2108.13197, 2021.

Dr. Franziska Nestler

franziska.nestler@math.tu-chemnitz.de
http://www.tu-chemnitz.de/~nesfr

Junior Research Group SA_lE

http://www.tu-chemnitz.de/mathematik/sale

SPONSORED BY THE

