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Abstract

The bestm-term approximation has since its first formulation by Stechkin in 1955 been
a rather theoretical subject of study in approximation theory. Recently however Jahn,
T.Ullrich and Voigtlaender have found some practical application for it by using it in
a new bound on the sampling numbers. One important class of spaces where this
bound can give an improvement over existing ones are mixed weighted Wiener spaces.
Motivated by this a new bound for the bestm-term approximation in these spaces will
be developed in this thesis. This is achieved by using techniques from hyperbolic cross
approximation. In addition a general optimality bound in form of a bound for the
Gelfand numbers of these spaces will also be provided.
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1 Introduction

The periodic weighted Wiener classes with mixed weights Aα,dp and their embeddings
into Lebesgue spaces have recently been studied in [15, 16, 18], where different upper and
lower bounds were shown for different (quasi) s-numbers. V.D. Nguyen, V.K. Nguyen
and Sickel examined the behaviour of some s-numbers of the embedding from Aα,d1

into L2 in their new paper [18] and showed bounds on the approximation, Bernstein,
Kolmogorov and Weyl numbers. The authors, however, did study neither the Gelfand
numbers nor the bestm-term approximation of these embeddings.

This thesis seeks to remedy this fact by proving an asymptotic bound for Gelfand
numbers of the identical embedding into L2. This will be achieved via decomposing
the error into different parts and estimating the finite-dimensional ones with results
about Gelfand numbers of operators between some finite-dimensional `p spaces.

Theorem 1.1. For n, d ∈ N, 0 < p ≤ 1 and α > 0 it holds

cn(Dα : `p(Zd)→ `2(Zd)) � n−(α+λ) log(n)(d−1)α

where λ = 1
p −

1
2 , and

Dα(xk)k∈Zd =
( d∏
j=1

(1 + |kj |)−αxk
)
k∈Zd

.

One motivation to study Gelfand numbers is, that they give a lower bound on the
non-linear sampling numbers or in other words, they bound the error of the best
non-linear reconstruction of a function from linear samples from below.

Another asymptotic quantity of interest is the bestm-term trigonometric approximation
ofAα,dp . Since Wiener classes, in general, are smoothness classes, the Fourier coefficients
of functions from themdecay fast. Thismakes them a prime target for best trigonometric
m-term approximation, since functions in the unit ball of these spaces can not have large
Fourier coefficients with high absolute value. To study these, greedy approximation
results on hyperbolic crosses from [29] were employed. The results for the bestm-term
approximation then allow for the formulation of some basis pursuit denoising bounds
that were supplemented with numerical experiments.

The bestm-term approximation has for a long time been a purely theoretical subject of
study. However, very recently Jahn, T. Ullrich and Voigtlaender have shown in [14] that
the sampling numbers measured in L2 can be bounded by a sum of the bestm-term
approximation and the best trigonometric approximation width measured in L∞ .
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Proposition 1.2 ([14, Theorem 3.1]). For any d ∈ N and any quasi-normed function space
F ↪→ L∞(Td) it holds for n,M ∈ N

%[nd log(n)3 log(M)]

(
F
)

2
. σn

(
F
)
∞ + E[−M,M ]d∩Zd

(
F
)
∞ (1.1)

And while the second term can be controlled in the setting of mixed weighted Wiener
classes (or even completely prevented, see [5]) the bounds for the bestm-term approxi-
mation in general are not known. While the authors showed a bound for α > 1

2 they
did not give an estimate for smaller α.

Proposition 1.3 ([14, Lemma 4.3 (i)]). Let α > 1
2 then for all n ∈ N it holds

σn
(
Aα,d1

)
∞ . n

−(α+ 1
2

) log(n)(d−1)α+ 1
2 . (1.2)

The technique used to prove this result cannot be expanded to 0 < α ≤ 1
2 since the

embedding Aα,d2 → L∞(Td) does not hold in this regime. Therefore, the second main
objective of this thesis was to develop a new asymptotic bound for the best m-term
approximation of mixed weighted Wiener classes for all α > 0.

Theorem 1.4. Let n, d ∈ N, 0 < p ≤ 1 and α > 0, then it holds

n−(α+λ) log(n)(d−1)α . σn
(
B1

(
Aα,dp

))
∞
. n−(α+λ) log(n)(d−1)α+ 1

2 (1.3)

where λ = 1
p −

1
2 .

This result can then be applied via Proposition 1.2 to achieve the last goal of this thesis,
using the above results and their improvements to establish bounds on the sampling
numbers of mixed weighted Wiener spaces using the new result from [14] as well as
existing bounds in terms of Gelfand and Kolmogorov numbers.

Notation

As usual N denotes the natural numbers, N0 := N ∪ {0}, Z denotes the integers, R the
real numbers andR+ the non-negative real numbers andC the complex numbers. If not
indicated otherwise log(·) denotes the natural logarithm of its argument, the positive
part of a ∈ R is defined as (a)+ = max(a, 0). Cn denotes the complex n-space. Vectors
and matrices are usually typesetted boldface for x,y ∈ Cn the inner product x · y = xy
is defined as usual. For any (quasi) normed spaced X its (quasi) norm is denoted by
‖ · ‖X when 0 < p ≤ ∞ andX = `p orX = Lp this is instead abbreviated by ‖ · ‖p where
`p denotes the usual space of p-sumable sequences. The space `p(Zd) simply denotes its
d-dimensional version. For r > 0 and a metric space X we denote byBX

r the sphere
with radius r measured in the metric of the space X . For two sequences a = (an)n∈N0

and b = (bn)n∈N0 we write a . b if there is a constant C > 0 such that for all n ∈ N0

it holds an ≤ Cbn. If both a . b and a & b hold true we write a � b. T denotes the
quotient space R/(2πZ). The constant λ is defined as λ = 1

p −
1
2 . For two operators S, T

we denote their composition by S ◦ T .
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2 Setting and basics

2.1 Setting

Definition 2.1. For α > 0 and 0 < p <∞ we define the norm

‖f‖Aαp (Td) :=
( ∑
k∈Zd

d∏
i=1

(1 + |ki|)αp|f̂(k)|p
) 1
p ,

with
f̂(k) = (2π)−d

∫
Td
f(x)e−ikxdx.

The corresponding space

Aαp (Td) :=
{
f ∈ L1(Td)

∣∣∣‖f‖Aαp (Td) <∞
}
, (2.1)

is called weighted Wiener space with mixed weights. The space Aαp (Td) is often simply denoted
by Aα,dp and Aαp (T1) by Aαp . In the case p =∞ the usual modifications are made and the space
is called Korobov space (see e.g. [8, Section 3.3]).

In the literature these spaces are often referred to as Asmix where s takes the place of α.
These spaces are usually called (mixed) weighted Wiener spaces (see [16]), weighted
mixed Wiener spaces (see [14]) or weighted Wiener algebras with mixed smoothness
(see [18]) or some combination of these. The Aαp (T1) spaces do not truly have mixed
weights since there is no product for d = 1.

Remark 2.2. While the space Aα,dp is a function space it also can be embedded into `p quite
naturally for all p > 0 by the following operator

Aαf =
( d∏
i=1

(1 + |ki|)αf̂(k)
)
k∈Zd , ‖Aα : Aα,dp → `p‖ = 1.

This property will be very useful since there are already some results for Gelfand numbers
between `p spaces.

Definition 2.3. A diagonal operator Dα between two d-dimensional multi-indexed Lebesgue
sequence spaces is an operator of the form

Dα(xk)k∈Zd =
( d∏
j=1

(1 + |kj |)−αxk
)
k∈I

3



where I ⊂ Zd. In particular if d = 1 the product vanishes and one simply gets

Dα(xk)k∈Z = ((1 + |k|)−αxk)k∈I .

2.2 Gelfand numbers

In the following Gelfand numbers and some of their basic properties are presented.
They were introduced under a similar name (n-th diameter/width in the sense of
Gelfand) by Triebel in 1970 in the paper [31] based onwork by Solomyak and Tikhomirov
[26] and Tikhomirov [30]. The n-th Gelfand number gives a lower bound for the error
of the best non-linear reconstruction of a function from n linear samples, see Lemma
2.11. For more details or further references see [8, 21].

Definition 2.4. Let X,Y be quasi-Banach spaces and T : X → Y linear and continuous. The
Gelfand numbers cn(T ) are defined as

cn(T ) = inf
{

sup
x∈BX∩M

‖Tx‖Y : M ⊂ X linear subspace with codimM < n
}
, n ∈ N.

We say thatM ⊂ X is of codimensionm if there existm linearly independent functionals λi
such that

M = {x ∈ X : λi(x) = 0, i = 1, . . . ,m}.

However, this definition of codimension does not make sense in all quasi-Banach
spaces, there the dimension of a subspace is viewed as a purely algebraic notion and as
mentioned in [7, Definition 2.1.], the codimension of a subspace can for that purpose be
alternatively defined as the dimension of the quotient space, see [24, Sect. 1.40].

Gelfand numbers are part of a larger class of so called of s-numbers (see, eg. in [21,
Definition 2.2.1]). These share the following properties.

Definition 2.5. Let X,Z be quasi Banach-spaces and Y be a p-Banach space for p ≤ 1,
let S, T ∈ L(X,Y ) and R ∈ L(Y,Z). A mapping s : T → (sn(T ))∞n=1 with the following
properties

(S1) ‖T |L(X,Y )‖ = s1(T ) ≥ s2(T ) ≥ . . . ≥ 0

(S2) for all n1, n2 ∈ N it holds

sn1+n2−1(R ◦ S) ≤ sn1(R)sn2(S)

(S3) for all n1, n2 ∈ N it holds

spn1+n2−1(S + T ) ≤ spn1
(S) + spn2

(T )

(S4) If rank T < n then sn(T ) = 0 and sn(id : `n2 → `n2 ) = 1

4



is called s-function. And sn(T ) is called the n-th s-number of the operator T .

Proposition 2.6. The Gelfand numbers form an s-function.

Proof. To see (S1) we observe that the only spaceM ⊂ X with codim < 1 is the space
X itself. The monotonicity

cn+1(T ) ≤ cn(T )

is obvious. To see (S2) we choose ε > 0 and subspacesM1 ⊂ X with codimM1 < n1

andM2 ⊂ Y with codimM2 < n2 such that

‖Tx‖Y ≤ (1 + ε)cn1(T )‖x‖X , x ∈M1

‖Ry‖Z ≤ (1 + ε)cn2(R)‖y‖Y , y ∈M2.

PutM = M1 ∩ T−1(M2) then for x ∈M

‖(R ◦ T )x‖Z ≤ (1 + ε)cn2(R)‖Tx‖Y
≤ (1 + ε)2cn2(R)cn1(T )‖x‖X .

Clearly
M1 = {x ∈ X : fi(x) = 0, i = 1, . . . , n1 − 1}

M2 = {x ∈ X : gi(x) = 0, i = 1, . . . , n2 − 1}

=⇒ T−1(M2) = {x ∈ X : Tx ∈M2}
= {x ∈ X : gi(Tx) = 0, i = 1, . . . , n2 − 1}

=⇒ M1 ∩ T−1(M2) has codimension less than n1 + n2 − 1.

(S3) goes similar. Choose ε > 0 andM1 ⊂ X with codimM1 < n1 andM2 ⊂ X with
codimM2 < n2 such that

‖Sx‖Y ≤ (1 + ε)cn1(S)‖x‖X

‖Tx‖Y ≤ (1 + ε)cn2(T )‖x‖X .

TakeM1 ∩M2 = M and find for x ∈M

‖(S + T )x‖pY ≤ ‖Sx‖PY + ‖Tx‖py
≤ (1 + ε)p(cpn1

(S) + cpn2
(T ))‖x‖pX

=⇒ cpn1+n2−1(S + T ) ≤ cpn1
(S) + cpn2

(T ).

By the same reasoning as above we see that M ⊂ X has codimension smaller than
n1 + n2 − 1. For (S4) we notice that if rankT < n thenM = kerT has codimension < n.
Therefore

sup
x∈M∩BX

‖Tx‖Y = 0

and hence cn(T ) = 0. What remains is cn(id : `n2 → `n2 ) = 1 which follows from the
more general result [32, Lemma 4.3]. �
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2.3 Best m-term approximation

Next up be want to consider a different metric for approximation. The best m-term
approximation. To be precise the bestm-term trigonometric approximation, since in
this thesis we only use the trigonometric system as a dictionary. This quantity was first
devised by Stechkin in 1955 in the paper [27] and since then has been a very theoretical
subject of study especially in the Russian literature.

Definition 2.7. Let X be d-dimensional quasi-Banach function spaces and f ∈ X . The best
n-term approximation of f is defined as

σn(f)X := inf
s∈Σn

‖f − s‖X ,

where Σn is the set of all trigonometric polynomials of the form∑
k∈Zd

ake
ikx

with at most n non-zero coefficients ak.

The best n-term approximation of a function classW is defined accordingly, as

σn(W)X := sup
f∈W

σn(f)X .

Because we can apply it with Proposition 1.2 we are in particular interested in

σn

(
B1

(
Aαp (Td)

))
∞
,

the best trigonometricm-term approximation of a weighted Wiener class in L∞. This
approximation quantity is already different to Gelfand numbers in that it studies
functions and function classes instead of operators between them. They do however
have some similarities.

Lemma 2.8. The bestm-term approximation is not an s-function, but some properties still hold
in a similar fashion. Let X, Y, Z be function classes that contain the trigonometric polynomials
such that Y has an embedding into Z and X has an embedding into Y .

(L) for all n ∈ N and any α ∈ R it holds

σn(αf)X = |α|σn(f)X

(S1) ‖f‖ = σ0(f)X ≥ σ1(f)X ≥ . . . ≥ 0

(S2) for all n1, n2 ∈ N it holds

σn1+n2−1(X)Z ≤ σn1(X)Y σn2(Y )Z

6



(S3) for all n1, n2 ∈ N and f, g from a p-Banach space it holds

σpn1+n2−1(f + g)X ≤ σpn1
(f)X + σpn2

(g)X

(S4) if f ∈ Σn then σn(f)X = 0

Proof. (L) and (S1) follow immediately from the definition.

Instead of just approximating a function f from X in Z one could first approximate
the function in Y with n1 terms and then f − s1 in Z with n2 terms since f − s1 is in Y .
However this second approximation error has a different scaling, namely the norm of
the first approximation error or in other words the best n1-term approximation of X in
Y . Now applying (L) yields (S2).

(S3) follows from the p-triangle inequality and (S4) is trivial. �

Note that the property (L) is in stark contrast to the setting of Gelfand numbers. It also
means that it only makes sense to study the bestm-term approximation of bounded
function classes e.g. the unit ball of a function space.

A useful tool in nonlinear approximation is the so-called Stechkin Lemma (see, e.g. [8,
28]).

Lemma 2.9 (Stechkin Lemma). Let 0 < p < q ≤ ∞. Then it holds

σn(x)q ≤ (n+ 1)
1
q
− 1
p ‖x‖p (2.2)

for all x ∈ `p, where σn(x)q of a sequence is defined as the q-norm of the sequence without its n
largest entries.

Proof. Let x∗ be the non-increasing reordering of x then it holds

∞∑
i=n+1

|x∗i |q ≤ |x∗n+1|q−p
∞∑

i=n+1

|x∗i |p

≤
( 1

n+ 1

n+1∑
i=1

|x∗i |p
) q−p

p ‖x‖pp

≤ (n+ 1)
− q−p

p ‖x‖q−pp ‖x‖pp
≤ (n+ 1)

− q−p
p ‖x‖qp,

(2.3)

and since σn(x)q =
(∑∞

i=n+1 |x∗i |q
) 1
q we get the assertion. �
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2.4 Sampling numbers

The third important quantity discussed in this thesis will be the sampling numbers,
these are the worst case error of the best recovery operator using standard information.

Definition 2.10. Let X(Ω) be a quasi-Banach function space and F be a quasi-normed space
continuously embedded into X . Then the n-th sampling number is defined as

%n(F)X = inf
t1...tn∈Ω

inf
R : Cn→X

sup
‖f‖F≤1

∥∥f −R(f(t1) . . . f(tn)
)∥∥
X

(2.4)

Between the Gelfand and sampling numbers the following relation holds.

Lemma 2.11 ([14][Lemma B.1]). Let F be a Banach space continuously embedded into the
Banach space X by the identity T : F → X . Then for all n ∈ N0 it holds

cn(T : F → X) ≤ %n(F)X . (2.5)

Proof. Let ε > 0. There exist t1 . . . tn ∈ Ω and R : Cn → X such that

sup
f∈B1

F

‖f −R
(
f(t1) . . . f(tn)

)∥∥
X
≤ (1 + ε)%n(F)X .

Chose now L as the following L :=
{
f ∈ F : f(t1) = · · · = f(tn) = 0

}
. This subspace

L ⊂ F has codim (L) ≤ n. Now it holds

cn(T : F → X) ≤ sup
f∈B1

F∩L

∥∥f∥∥
X

=
1

2
sup

f∈B1
F∩L

∥∥f − (−f)
∥∥
X

=
1

2
sup

f∈B1
F∩L

∥∥f −R(f(t1) . . . f(tn)
)
−
(
− f −R

(
− f(t1) . . .− f(tn)

))∥∥
X

≤
(1

2
sup

f∈B1
F∩L

∥∥f −R(f(t1) . . . f(tn)
)∥∥+

∥∥(−f)−R
(
f(t1) . . . f(tn))

∥∥
X

)
≤ (1 + ε)%n(F)X .

Taking the limit ε→ 0 yields the assertion. �

There also exist a second kind of sampling numbers, the linear sampling numbers.
These are similar to the (non-linear) ones above but only allow linear reconstruction
operators.

Definition 2.12. Let X(Ω) be a quasi-Banach function space and F be a quasi-normed space
continuously embedded into X . Then the n-th linear sampling number is defined as

%lin
n (F)X = inf

t1...tn∈Ω
inf

R : Cn→X
sup
‖f‖F≤1

∥∥f −R(f(t1) . . . f(tn)
)∥∥
X

(2.6)

when R : Cn → X is a linear map.

8



For the linear sampling numbers a similar relation to the one from Lemma 2.11 holds.

Lemma 2.13. Let F be a Banach space continuously embedded into the Banach space X by the
identity T : F → X . Then for all n ∈ N0 it holds

dn(T : F → X) ≤ %lin
n (F)X . (2.7)

2.5 Existing results for s-numbers

In this section some existing results from the literature will be discussed. The first two
of them give a bound on the Gelfand numbers of the identities between `Np and `Nq .
This is useful since a lot of results for Gelfand numbers can be proven by segmenting
operators into smaller finite blocks and then using finite results in finite-dimensional `p
spaces.

Definition 2.14. The space `Np is defined for 0 < p <∞ as

`Np (R) :=
{

(xn)Nn=1 ⊂ R
∣∣∣‖x‖`Np (R) :=

( N∑
n=1

|xn|p
) 1
p
<∞

}
,

with the usual modifications for p =∞.

First up is an upper bound shown by Vybrial in 2008.

Proposition 2.15 ( [33, Lemma 4.9] ). For 0 < p ≤ 1, q = 2 the following upper bound holds

cm(id : `Np → `Nq ) .
(1 + log(Nm)

m

) 1
p
− 1
q
.

This bound was later expanded to the case where p < q ≤ 2 and p ≤ 1 by Foucart, Pajor,
Rauhut and T.Ullrich in 2010. These authors also showed a corresponding lower bound
in the same paper.

Proposition 2.16 ( [9, Theorem 1.1] ). For 0 < p ≤ 1, p < q ≤ 2 andm < N the following
lower bound holds

cm(id : `Np → `Nq ) &
(1 + log(Nm)

m

) 1
p
− 1
q
.

Another result for Gelfand numbers was given by Buchmann [4, Korollar 7.6] and
Vybiral [33, Lemma 4.7] based on work by Gluskin [10] and is a two sided bound for
the regime where 1 < p < 2.

Proposition 2.17. For 1 < p < 2 andm < N the following bound holds

cm(id : `Np → `Nq ) � m−
1
2N

1− 1
p .

9



All of these results will be employed throughout this thesis to construct asymptotic
bounds on Gelfand numbers of diagonal operators.

Another very different result with relation to the topic of this thesis comes in the form
of a recent paper by V.D. Nguyen, V.K. Nguyen and Sickel where the authors studied a
wide variety of (quasi) s-numbers of the embedding from Aα,d1 into L2. They obtained
the following bounds.

Proposition 2.18 (see [18]). For the approximation numbers an and Kolmogorov numbers dn
it holds for all α > 0

an
(
id : Aα,d1 → L2(Td)

)
� dn

(
id : Aα,d1 → L2(Td)

)
� n−α log(n)α(d−1). (2.8)

For the Bernstein numbers bn and Weyl numbers xn it holds for all α > 0

bn
(
id : Aα,d1 → L2(Td)

)
� xn

(
id : Aα,d1 → L2(Td)

)
� n−(α+ 1

2
) log(n)α(d−1). (2.9)

Note that Bernstein numbers do not fulfil the definition of s-numbers used in this thesis.
They do however satisfy the older definition of s-numbers that can be found in [20] and
are usually referred to as quasi s-numbers.

10



3 Gelfand numbers of diagonal operators

3.1 Diagonal operators between `p and `2

Before examining Wiener classes with mixed weights we will look at the regime where
d = 1 and 0 < p ≤ 1. The space Aαp (T1) does not have the same product weights as
the ones in higher dimensions and it behaves slightly differently. This situation could
also be treated with results like [4, Satz 7.1] (see, e.g. [12, Proposition 6] for an English
version).

Using the same commutative diagram as in Section 3.2 we can reformulate the question
for the Gelfand numbers of the identical embeddingAαp to L2(T) as the question for the
Gelfand numbers of the diagonal operator from `p to `2. To get such a bound, we use the
results for finite-dimensional `p spaces from the previous chapter and a decomposition
of the diagonal operator.

The decomposition method

The following Theorem employs the decomposition method to construct a bound on
the Gelfand numbers of an operator with infinite entries. This is done by segmenting it
into a sum of Gelfand numbers of finitely supported operators (and one with infinite
support that can be estimated by its norm). It is similar to [32, Theorem 2.11 ] for
entropy numbers.

Theorem 3.1. Let 0 < p ≤ 1, α > 0 and define the diagonal operator

Dα

(
xk
)
k∈Z =

(
(|k|+ 1)−αxk

)
k∈Z,

mapping from `p(Z) to `2(Z). Then we have for n ∈ N

cn(Dα : `p(Z)→ `2(Z)) � n−(α+λ),

where
λ =

1

p
− 1

2
.

Proof. Step 1. Lower bound: Fix N ∈ N

11



`Np `N2

`p `2

Aα

id

Dα

Pd

Aα : (x−N , . . . , x0, . . . , xN )→ (. . . , 0, (N + 1)αx−N , . . . , x0, . . . , (N + 1)αxN , 0, . . .),

Pd : (xk)k∈Z → (x−N , . . . , x0, . . . , xN ),

=⇒ cn(id : `Np → `N2 ) ≤ ‖Aα‖cn(Dα : `p → `2)‖PN‖.
From Proposition 2.16 we know that for all n ≤ d

cn(id : `Np → `Nq ) & n−λ.

Moreover, ‖Aα : `Np → `p‖ ≤ Nα and ‖PN : `2 → `N2 ‖ = 1. Therefore, we get for n = N
(note that since here we work in Z instead of N0 this still satisfies the conditions of
Proposition 2.16)

n−λ . nαcn(Dα : `p → `2).

=⇒ cn(Dα : `p → `2) ≥ n−(λ+α).

Step 2. Upper bound: Fix n ∈ N and assume without loss of generality that n = 2m,
N = 2n+ 1. Let us further decompose Dα = Dα,n +Dn

α, where

Dα,n : (xk)k∈Z →
(
(|k|+ 1)−αxk

)
−n≤k≤n

Dn
α : (xk)k →

((
(|k|+ 1)−αxk

)−∞
k=−n, 0, . . . , 0︸ ︷︷ ︸

2n−1

,
(
(|k|+ 1)−αxk

)∞
k=n

)
.

Now we split Dα,d into dyadic blocks

∆0 : (xk)k∈Z → (. . . , 0, x0, 0, . . .)

∆1 : (xk)k∈Z → (. . . , 0,
x1

2α
,
x2

3α
, 0, . . .)

∆−1 : (xk)k∈Z → (. . . , 0,
x−2

3α
,
x−1

2α
, 0, . . .)

∆2 : (xk)k∈Z → (. . . , 0,
x3

4α
,
x4

5α
, 0, . . .)

∆−2 : (xk)k∈Z → (. . . , 0,
x−4

5α
,
x−3

4α
, 0, . . .)

...

∆m : (xk)k∈Z → (. . . , 0,
x2m−1+1

(2m−1 + 2)α
, . . . ,

x2m

(2m + 1)α
, 0, . . .)

∆−m : (xk)k∈Z → (. . . , 0,
x−2m

(2m + 1)α
, . . . ,

x−2m−1−1

(2m−1 + 2)α
, 0, . . .).

12



We use the subadditivity of the Gelfand numbers, see Proposition 2.6 and Definition
2.5, (S4) and obtain for N =

∑m
k=−m nk

cpN (Dα,n : `p → `2) ≤
m∑

k=−m
cpnk(∆k : `p → `2).

We can now further decompose Dα as follows

Dα =

m∑
j=−m

∆j +

L∑
j=m+1

(
∆j + ∆−j

)
+D2L+1

α ,

where L is chosen later. Now choose

• nj = 2j−12(m−j)η with η < 1, for j = 1 . . . ,m,

• nj = 2j−12(m−j)δ with δ > 1 (chosen later), for j = m+ 1, . . . , L.

Clearly, we have
L∑
j=1

nj =
m∑
j=1

nj +
L∑

j=m+1

nj

and
m∑
j=1

nj =

m∑
j=1

2j−12(m−j)η � 2mη
m∑
j=1

2j(1−η) . 2m

because of η < 1. Further, due to δ > 1 we have

L∑
j=m+1

nj =

L∑
j=m+1

2j−12(m−j)δ = 2mδ
L∑

j=m+1

2j(1−δ) . 2m, δ > 1.

We will need that

2j−12(m−j)δ > j = log 2j−1, j = m+ 1, . . . , L.

Hence, we get by the subadditivity of Gelfand numbers a sum that is reminiscent of
Maiorov’s discretisation technique [17]

cpcN (Dα : `p → `2) ≤
m∑

j=−m
cpn|j|(∆j : `p → `2) + 2

L∑
j=m+1

cpnj (∆j : `p → `2) + 2cr1(D2L+1
α : `p → `2)

We estimate piece by piece. For nj ≥ 2j−1 it obviously holds

m∑
j=−m

crn|j|(∆j : `p → `2) � cnj (id : `2
j−1

p → `2
j−1

2 )2−jα = 0

13



Proposition 2.15 now gives

2

L∑
j=m+1

cpnj (∆j : `p → `2) = 2

L∑
j=m+1

cpnj (∆j : `p → `2)

.
L∑

j=m+1

(
log
(

2j−1

2j−12(m−j)δ

)
2j−12(m−j)δ

)λr
2−jαp

�
L∑

j=m+1

[(j −m)δ2(j−m)δ2−j ]λr2−jαp

= 2−m(α+λ)r
L∑

j=m+1

[(j −m)δ2(j−m)δ2m−j ]λr2(m−j)αp

� 2−m(λ+α)r
L∑

j=m+1

[
(j −m)δ2−(j−m)[α−(δ−1)λ]

]p
.

The sum converges if α > (δ − 1)λ hence, we choose δ close to 1 but larger than 1.

What remains is

c1(D2L+1
α : `p → `2) ≤ ‖D2L+1

α : `p → `2‖ . 2−Lα
!

. 2−m(α+λ).

How do we choose the parameters?

• L such that 2−Lα < 2−m(α+λ), L = C(α, λ)m

• δ > 1 small enough such that α > (δ − 1)λ

This implies
cC(α,λ)2m(Dα : `p → `2) . 2−m(α+λ).

To obtain
cn(Dα : `p → `2) . n−(α+λ)

we use a monotonicity argument for

C(α, λ)2m ≤ n ≤ C(α, λ)2m+1

which gives
cn(Dα : `p → `2) ≤ cC(α,λ)2m . 2−m(α+λ) . n−(α+λ).

�

3.2 Diagonal operators between `p(Zd) and `2(Zd)

Recall the motivation from Section 3.1, where we studied diagonal operators between
`p and `2. This will now be extended to the regime where d > 1 and 0 < p ≤ 2. This

14



setting is qualitatively different from the one dimensional one since we now have to
deal with mixed (product) weights. Therefore, results like [4, Satz 7.1] do not apply
here. Consider for 0 < p ≤ 2 the embedding of a space Aαp (Td) in L2(Td)

‖f‖Aα,dp =
∑
k∈Zd

d∏
i=1

(1 + |ki|)α|f̂(k)|, α > 0.

We will use the following commutative diagram to characterize this embedding via a
diagonal operator.

Aαp (Td) L2(Td)

`p(Zd) `2(Zd)

id

Aα

Dα

B

Aαf =
( d∏
i=1

(1 + |ki|)αf̂(k)
)
k∈Zd , ‖A‖ = 1

B(xk)k∈Zd =
∑
k∈Zd

xke
ikx, ‖B‖ = 1

Dα(xk)k∈Zd =
( d∏
i=1

(1 + |ki|)−αxk
)
k∈Zd

Since the operators Aα and B are invertible we get by Definition 2.5 (S2)

cn(id : Aαp (Td)→ L2(Td)) = cn(Dα : `p(Zd)→ `2(Zd)).

We can therefore study the Gelfand numbers of Dα to get them for the embedding
id : Aα(Td)→ L2(Td). This is done in the following Theorem that expands Theorem
3.1 to the regime where d > 1 and provides the bound for [14][Lemma 4.2 (i)]. Its
proof uses the same general strategy but adopts it to accommodate the mixed weights.
Therefore, the blocks in this proof will not be cubes but instead hyperbolic layers. It
incorporates some ideas from the proof of [7, Proposition 7.1].

Theorem 3.2. Let n, d ∈ N where d > 1 such that log(n) > log(log2(n))2(d − 1) and
0 < p ≤ 1. Let further α > 0 with d ≤ log(n)(d−1)α then it holds

cn(Dα : `p(Zd)→ `2(Zd)) � n−(α+λ) log(n)(d−1)α

where
λ =

1

p
− 1

2
.

15



Proof. Step 1. Upper bound: Assume without loss of generality that n = 2m with
m ∈ N0. First note that Dα is radial-symmetric and can be split into 2d operators Dαc

that each have support on one of the 2d quadrants of Zd. Let us now further decompose
Dαc (w.l.o.g. this is the operator on the first quadrant) into blocks.

First segment N0 =
⋃∞
j=0Nj with Nj = {2j − 1, . . . , 2j+1 − 2}, it holds #Nj = 2j . This

then immediately induces a segmentation of Nd into cuboids �x =
∏d
l=1Nxl , each of

these blocks contains #�x = 2|x| points.

Now one can group blocks on the same hyperbolic layer together

�j :=
{
n ∈ Nd0

∣∣∣ ∃x ∈ Nd0 : n ∈ �x,#�x = 2j
}
, (3.1)

where the contents of every�x appear in exactly one�j , j ∈ N0 meaningNd0 =
⋃∞
j=0�j .

This now allows us to decomposeDαc =
∑∞

j=0 ∆j where ∆j is justDαc restricted to �j .

To continue we need to know how many points are in each hyperbolic layer �j . First
consider, that �j can be decomposed into a number of �x that each contain 2j points.
Since these sets are products of dyadic intervals their quantity is just the number of
possibilities to distribute j to d different dimensions. In total

Cj := #�j = 2j
(
j + d− 1

j

)
� 2jjd−1.

The above decomposition together with the subadditivity of Gelfand numbers now
gives for r = min{1, p}

crn2d

(
Dα

)
≤ 2d

( L∑
j=0

crnj (∆j) +
M∑

j=L+1

crnj (∆j) + cr1
( ∞∑
j=M+1

∆j

))
, (3.2)

where
L =

⌊
m− (d− 1) log2m

⌋
(3.3)

and
M =

⌊
m(1 +

λ

α
)− (d− 1) log2m

⌋
. (3.4)

For the first sum in (3.2) choose nj = 2Cj (i.e. for j = 0, . . . ,m). This then gives

L∑
j=0

crnj (∆j : `p(Zd)→ `2(Zd)) = 0 (3.5)

and
L∑
j=0

nj � 2
L∑
j=0

2jjd−1 ≤ 2
L∑
j=0

2jmd−1 � 2Lmd−1 � 2m. (3.6)
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In the second sum in (3.2) choose nj = 2j2(L−j)ηjd−1 where j = L + 1, . . . ,M , η > 1
will be chosen later. It now holds

M∑
j=L+1

nj � 2Lη
M∑

j=L+1

2j(1−η)jd−1 � 2LLd−1 ≤ 2Lmd−1 = 2m. (3.7)

To estimate the second sum Proposition 2.15 is used
M∑

j=L+1

crnj (∆j : `p → `2) .
M∑

j=L+1

crnj (id : `
Cj
p → `

Cj
2 )2−jαr

.
M∑

j=L+1

(
log
(

2jjd−1

2j2(L−j)ηjd−1

)
2j2(L−j)ηjd−1

)λr
2−jαr

�
M∑

j=L+1

[(j − L)η2(j−L)η2−jj1−d]λr2−jαr

= 2−L(α+λ)r
M∑

j=L+1

[(j − L)η2(j−L)η2L−jj1−d]λr2(L−j)αr

� 2−L(λ+α)r
M∑

j=L+1

[
(j − L)η2−(j−L)[α−(η−1)λ]j−λ(d−1)

]r
� 2−(m−(d−1) log2m)(λ+α)r(m− (d− 1) log2m)−λ(d−1)r

� 2−m(λ+α)rm(d−1)(λ+α)rm−λ(d−1)r

= 2−m(λ+α)rm(d−1)αr,

(3.8)

where the fact that m > 2(d− 1) log2m was used in the second to last line. The sum
only converges if α > (η − 1)λ, so η has to be chosen accordingly.

What remains is

cr1
( ∞∑
j=M+1

∆j : `p(Zd)→ `2(Zd)
)
≤ ‖

∞∑
j=M+1

∆j : `p(Zd)→ `2(Zd)‖r

. 2−Mαr

� 2−(m(1+ λ
α

)−(d−1) log2m)αr

= 2−m(α+λ)rm(d−1)αr.

(3.9)

We can therefore estimate (3.2) by (3.5), (3.8) and (3.9) as follows

cr2m2d

(
Dα : `p(Zd)→ `2(Zd)

)
≤ 2d

(
0 + 2−m(λ+α)rm(d−1)αr + 2−m(λ+α)rm(d−1)αr)

� 2−m(λ+α)rm(d−1)αr

(3.10)
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Since
∑M

j=0 nj . 2m by (3.6) and (3.7). After taking the r-th root this gives

cdC(α,λ)2m(Dα : `p(Zd)→ `2(Zd)) . 2−m(α+λ)m(d−1)α.

To obtain
cn2d(Dα : `p(Zd)→ `2(Zd)) . n−(α+λ) log(n)(d−1)α

we use a monotonicity argument for

C(α, λ)2mm(d−1)α ≤ n ≤ C(α, λ)2m+1m(d−1)α

which yields

cn2d(Dα : `p(Zd)→ `2(Zd)) ≤ c2dC(α,λ)2m . 2−m(α+λ)m(d−1)α . n−(α+λ) log(n)(d−1)α.

Step 2. Lower bound: Let n,m, d, L be as above.
From Theorem 2.16 we know that

cn2d(Dα : `p(Zd)→ `2(Zd)) ≥ 2dc2LLd−1(∆L : `p(Zd)→ `2(Zd))

& c2LLd−1(id : `CLp → `CL2 )2−Lα

&

(
log
(

2LLd−1

2L−1Ld−1

)
2L−1Ld−1

)λ
2−Lα

≥
(
2−LL1−d)λ2−Lα

= 2−L(α+λ)L−λ(d−1)

≥ 2−m(α+λ)m(d−1)(α+λ)m−(d−1)λ

= 2−m(α+λ)m(d−1)α.

(3.11)

And then again argue with monotonicity to get this for all n.

�

This result can be extended to p ≤ 1 < q ≤ 2 by using the extended upper bound from
[9] instead of Lemma 2.15 for finite-dimensional `p spaces and to p ≤ 2 by the following
result, that employs Proposition 2.17. Also note that for d = 1 the one-dimensional
result, Theorem 3.1 immediately follows.

Corollary 3.3. Let n, d ∈ N such that 1 < p ≤ 2 and further α > p−1
p , then it holds

cn(Dα : `p(Zd)→ `2(Zd)) � n−(α+λ) log(n)(d−1)α

where
λ =

1

p
− 1

2
.
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Proof. Follow the proof of Theorem 3.2 until just after (3.6). Now one can choose
nj = (j − L)−22LLd−1 instead. This still yields

M∑
j=L+1

nj = 2LLd−1
M∑

j=L+1

(j − L)−2 � 2LLd−1 ≤ 2Lmd−1 = 2m. (3.12)

We can then use Proposition 2.17 to bound the second sum

M∑
j=L+1

cnj (∆j : `p → `2) �
M∑

j=L+1

cnj (id : `
Cj
p → `

Cj
2 )2−jα

�
M∑

j=L+1

n
− 1

2
j C

1− 1
p

j 2−jα

�
M∑

j=L+1

(j − L)2−
L
2 L−

d−1
2 j

(d−1) p−1
p 2

j p−1
p 2−jα

� 2
−L( 1

2
+α−1+ 1

p
)
L
−( 1

2
−1+ 1

p
)(d−1)

� 2−(m−(d−1) log2m)(λ+α)(m− (d− 1) log2m)−λ(d−1)

� 2−m(λ+α)m(d−1)(λ+α)m−λ(d−1)

= 2−m(λ+α)m(d−1)α.

(3.13)

This only works if α > p−1
p , see section 4.2 for further comments. �

Remark 3.4. Theorem 3.2 and Corollary 3.3 together with the considerations at the beginning
of the section now give us for α >

(p−1
p

)
+
and 0 < p ≤ 2

cn(id : Aαp (Td)→ L2(Td)) = cn(Dα : `p(Zd)→ `2(Zd)) � n−(α+λ) log(n)(d−1)α,

the asymptotic behaviour of the identical embedding of Aαp (Td) into L2(Td) where

λ =
1

p
− 1

2
.

This successfully concludes the study of the Gelfand numbers of weighted Wiener
classes with mixed weights by giving a sharp bound on their asymptotic behaviour.
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4 Best m-term trigonometric approximation
of mixed weighted Wiener classes

4.1 Weighted Wiener classes with quasi norms

To get a result for the bestm-term approximation for arbitrary α we will split the error
estimation into two parts. This can be done thanks to Lemma 2.8. We use Stechkin’s
Lemma to approximate the error from Aα,dp in Aα,d1 and the treat the error of Aα,d1 in Lq
with Theorem 4.2.

To show this Theorem we first need an auxiliary greedy approximation results for
hyperbolic crosses due to Temlyakov.

Lemma 4.1 ([29, Theorem 2.6]). For every trigonometric polynomial with frequencies of
maximal degree N , there exist constructive greedy-type approximation methods, which provide
m-term polynomials Qm with the following properties. For 2 ≤ q <∞∥∥f −Qm∥∥q . m− 1

2 ‖f‖Aα1 . (4.1)

And for q =∞ ∥∥f −Qm∥∥∞ . m− 1
2 log(N)

1
2 ‖f‖Aα1 . (4.2)

The proof of this Theorem is based on the ideas from Theorem 3.2 combined with
techniques from [6, Theorem 6.1] and employs results from [29, Theorem 2.5/2.6]. In
particular, we are interested in the cases q = 2 and q =∞, where the latter one can be
applied to Proposition 1.2.

Theorem 4.2. Let n, d ∈ N such that p = 1 and 2 ≤ q ≤ ∞ let further α > 0 then it holds

n−(α+λ) log(n)(d−1)α . σn
(
B1

(
Aα,dp

))
q
. n−(α+λ) log(n)(d−1)α+µ (4.3)

where
λ =

1

2
,

and µ = 1
2 if both q =∞ and d > 1 or 0 otherwise.

Proof. Again assume n = 2m, using the same idea and notation as in (the proof of)
Theorem 3.2 we can restrict and decompose f ∈ Aα,dp as follows

f(x) =

∞∑
i=0

fi(x),
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where fj =
∑

k∈�j f̂(k)eixk.

We now again want to split the problem into three blocks, the first finite one where
we use a lot of our "approximation budget" per frequency to get a precise result, the
second finite one where we start allowing some error, and an outer infinite one where
the decay in α helps us bound the error

‖f − P‖q ≤
L∑
k=0

‖fk − fk‖q +
M∑

k=L+1

‖fk − Pk‖q +
∞∑

k=M+1

‖fk‖q =: S1 + S2 + S3. (4.4)

For j = 0 . . . Lwe chose Pk = fk, then obviously S1 = 0.

To estimate S2 now putmk = (k − L)−22LLd−1 for all k = L+ 1 . . .M and choose, by
Lemma 4.1 Pk ∈ Σmk such that

‖fk − Pk‖q . m−λk mµ2−(kα). (4.5)

This is possible because of (4.1), or (4.2) for d =∞, where the norm ‖fk‖Aα1 is bounded
by 2−(kα) since it has support only on the k-th hyperbolic layer, see (3.1). For d = 1

instead use [29, Theorem 2.3] to avoid the termm
1
2 in the case q =∞. Choose now L as

in (3.3) andM as in (3.4), then P :=
∑M

k=0 Pk is a linear combination of at most

L∑
k=0

Ck +
M∑

k=L+1

mk .
L∑
k=0

2kkd−1 +
M∑

k=L+1

(k − L)−22LLd−1

. 2LLd−1

≤ 2Lmd−1

. 2m

(4.6)

trigonometric terms.

Now we can estimate S2 by using (4.5)

S2 .
M∑

k=L+1

m−λk 2−kαmµ

=
M∑

k=L+1

(k − L)2λ2−LλL−λ(d−1)2−kαmµ

. 2−L(α+λ)L−λ(d−1)mµ

� 2−(m−(d−1) log2m)(α+λ)(m− (d− 1) log2m)−λ(d−1)mµ

� 2−m(α+λ)m(d−1)(α+λ)m−λ(d−1)mµ

= 2−m(α+λ)m(d−1)α+µ.

(4.7)
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To estimate S3 we use the fact that

‖fk‖q ≤ ‖fk‖∞ ≤
∑
j

|f̂k(j)| = ‖f̂k(j)‖`1 . 2−kα,

and therefore

S3 .
∞∑

k=M+1

2−kα

≤ 2−Mα

= 2−(m(1+ λ
α

)−(d−1) log2(m))α

= 2−m(α+λ)m(d−1)α.

(4.8)

Combining now (4.7) and (4.8) we can estimate (4.4) as follows

σ2m+d(f)q ≤ ‖f − P‖q
≤ S0 + S1 + S2

. 0 + 2−m(α+λ)m(d−1)α + 2−m(α+λ)m(d−1)α

. 2−m(α+λ)mα

(4.9)

Now arguing with monotonicity as in the results before we obtain the assertion for all n.

To get a lower bound we will use a specific function for n = 2mmd−1, this also works
for p other than p = 1. Choose

f(x) = Cn
−(α+ 1

p
)
log(n)α(d−1)

∑
k∈�m

eikx. (4.10)

This function has Aα,dp -norm as follows

‖f‖Aα,dp � n−(α+ 1
p

)
log(n)α(d−1)

( ∑
k∈�m

( d∏
j=1

(1 + |kj |)α
)p) 1

p

� n−(α+ 1
p

)
log(n)α(d−1)

( ∑
k∈�m

2αp‖k‖1
) 1
p

� n−(α+ 1
p

)
log(n)α(d−1)

( ∑
k∈�m

2αpm
) 1
p

� n−(α+ 1
p

)
log(n)α(d−1)

(
2mmd−12αpm

) 1
p

� 1.

(4.11)
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This implies that f ∈ BC
(
Aα,dp

)
for properly chosen constant C.

Now define g = C2n
− 1

2
∑

k∈�m\Km e
ikx and h =

∑
k∈Km ake

ikx where Km ⊂ �m is a
frequency set with at most n2 elements. For these functions we get

‖g‖L2 = C2n
− 1

2
(
|�m \Km|

) 1
2 . n−

1
2n

1
2 = 1 (4.12)

and

〈f − h, g〉 = 〈f, g〉

= CC2n
−(α+ 1

p
+ 1

2
)
log(n)α(d−1)

∑
k∈�m\Km

1

≥ CC2n
−(α+ 1

p
+ 1

2
)
log(n)α(d−1)

(
|�m| − |Km|

)
& n−(α+ 1

p
− 1

2
)
log(n)α(d−1).

(4.13)

Using the Cauchy-Schwarz inequality and (4.12) yields

〈f − h, g〉 ≤ ‖f − h‖L2‖g‖L2 ≤ ‖f − h‖2. (4.14)

Applying now (4.13) and (4.14) gives

σn2d

(
B1

(
Aα,dp

))
q
& inf

h∈Σn
‖f − h‖2

≥ inf
h∈Σn
〈f − h, g〉

& n−(α+ 1
p
− 1

2
)
log(n)α(d−1)

(4.15)

where indeed every h ∈ Σn
2
can be chosen as above and g accordingly. The factor 1

2 can
be ignored since we are investigating the asymptotic behaviour. �

This Theorem is very useful for p = 1 but for smaller p we do not gain anything. To
remedy this, we can employ the Stechkin Lemma to gain a factor when changing from
Aα,dp to Aα,d1 .

Corollary 4.3. Let n, d ∈ N such that 0 < p ≤ 1 and 2 ≤ q ≤ ∞ let further α > 0 then it
holds

n−(α+λ) log(n)(d−1)α . σn
(
B1

(
Aα,dp

))
q
. n−(α+λ) log(n)(d−1)α+µ (4.16)

where
λ =

1

p
− 1

2
,

and µ = 1
2 if both q =∞ and d > 1 or 0 otherwise.
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Proof. We use Lemma 2.8 to simply split the approximation into two parts and apply
the Stechkin Lemma 2.9 to Aαp yielding

σ2n2d

(
B1

(
Aα,dp

))
q
≤ σn2d

(
B1

(
Aα,dp

))
Aα,d1

σn2d

(
B1

(
Aα,d1

))
q
≤ n−

1
p

+1
σn2d

(
B1

(
Aα,d1

))
q

and then apply the upper bound from Theorem 4.2 to obtain

σ2n2d

(
B1

(
Aα,dp

))
q
. n−(α+λ) log(n)(d−1)α+µ. (4.17)

The lower bound can be shown as in Theorem 4.2. �

This result indeed expands Proposition 1.3 to the regime where αmaybe be less than
one half. In addition, it works for a wider variety of p and q while also giving a lower
bound that is sharp up to a logarithmic factor.

4.2 Results for p > 1

In the previous section results for the bestm-term approximation of mixed weighted
Wiener classes with p ≤ 1 were shown, in particular a result for Aα,d1 . For p = 2
the weighted Wiener classes coincide with other important spaces and therefore the
following result was already shown in 1989 by Belinskii.

Theorem 4.4 ([1, Theorem 2] and [2, Theorem 11.1.6]). For α > 1
2 and n ∈ N0 it holds

n−α log(n)(d−1)α . σn
(
B1

(
Aα,d2

))
∞
. n−α log(n)(d−1)α+ 1

2 . (4.18)

This result again only holds for α > 1
2 and unlike before there is no clear path to

loosening the restrictions on α. To get results for p > 1 one could now just use Stechkin’s
Lemma 2.9 but then the restriction on α would be retained. Instead, one can try to
modify the proof from Theorem 4.2 to lower the requirements on α. This is achieved
by estimating the A1-norm of f on the hyperbolic layers in terms of the Ap-norm by
abusing the fact that these layers have finite support.

Theorem 4.5. Let n, d ∈ N such that 1 < p ≤ q and 2 ≤ q ≤ ∞ let further α > 1− 1
p then it

holds

n−(α+λ) log(n)(d−1)α . σn2d

(
B1

(
Aα,dp

))
q
. n−(α+λ) log(n)(d−1)α+µ (4.19)

where
λ =

1

p
− 1

2
,

and µ = 1
2 if q =∞ and d > 1 or 0 otherwise.
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Proof. Follow the proof of Theorem 4.2 until (4.5). There [29, Theorem 2.6] is used with
‖fk‖Aα1 ≤ 2−(kα). However, in this setting now only the Aαp -norm of f is bounded by
one instead of the Aα1 -norm. To fix this recall that the support of fk is limited to the
k-th hyperbolic layer and therefore at most 2kkd−1. This now gives, by Remark 2.2 and
after considering that a finite sequence with fixed `p-norm has largest possible `1-norm
when all its entries are equal, the following

‖fk‖Aα1 ≤ 2kkd−1
(
2kkd−1

)− 1
p

≤ ‖fk‖Aαp 2
k(1− 1

p
)
k

(d−1)(1− 1
p

)

≤ 2−(kα)2
k(1− 1

p
)
k

(d−1)(1− 1
p

)
.

(4.20)

To continue the estimation of S2 as before α > 1− 1
p is needed, so that the sum below

collapses to k = L+ 1.

S1 .
M∑

k=L+1

dm
− 1

2
k 2−(kα)2

k(1− 1
p

)
k

(d−1)(1− 1
p

)
mµ

=
M∑

k=L+1

d(k − L)2−L
1
2L−

1
2

(d−1)2
−k(α−1+ 1

p
)
k

(d−1)(1− 1
p

)
mµ

. 2
−L( 1

2
+α−1+ 1

p
)
L
−( 1

2
−1+ 1

p
)(d−1)

mµ

� 2−(m−(d−1) log2m)(λ+α)(m− (d− 1) log2m)−λ(d−1)mµ

� 2−m(λ+α)m(d−1)( 1
2

+α)m−λ(d−1)mµ

= 2−m(λ+α)m(d−1)α+µ.

(4.21)

Note that here λ has a different value than in Theorem 4.2.

The estimation of S3 and the lower bound now work as before. �

This indeed recovers the original result for 1 < p < 2. While the bound on α might
seem arbitrary, even if one were to use interpolation techniques between A1 and A2

one would only achieve the same restrictions. Indeed, α > p−1
p seems to be the natural

barrier.

4.3 Basis pursuit denoising

An application of the best n-term approximation results above will be the following
bound for basis pursuit denoising (BPD) in weighted Wiener classes. The idea behind
BPD is, given a function f to guarantee that there is a good sparse approximation with
trigonometric polynomials (this is where the best n-term approximation comes in) and
then employ compressed sensing techniques to recover this (unknown) trigonometric
polynomial with just a few random points where the difference between the polynomial
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and f is treated as noise (hence denoising). Examples of this strategy can be found in
[23, 22].

Let X = (x1 . . . xn) be a sequence of N sampling points drawn i.i.d. from Td. Then the
N bymmatrix

(FX)j,k = eikxj , (4.22)

would satisfy (FXc)j = f(xj) if f were a trigonometric polynomial of degree at mostm
and c its vector of Fourier coefficients. However, we now want to allow more general
f ∈ Aα,dp . By Corollary 4.3 we know that there is an n-sparse trigonometric polynomial
fn with ‖f − fn‖q ≤ Cn−(α+λ) log(n)(d−1)α+µ. We now want to recover this fn with
sparse approximation but can only sample f (since we do not know fn, only that it
exists). We therefore put yi = f(xi) for i = 1 . . . N .

Proposition 4.6 ([22, Theorem 3.2] ). Let c∗ be the solution to the minimisation problem

min ‖c‖1 subject to ‖FXc− y‖2 ≤ ν, (4.23)

then it satisfies the bound
‖c− c∗‖2 ≤ C1

ν√
N

(4.24)

with probability at least 1 − ε if ‖fn − f‖2 ≤ ν and if the isometry constants of the Matrix
satisfy δ3n + 3δ4n < 2. This is true when the number of samples taken is at least

N

logN
≥ C0 nd log(n)3 log(ε−1).

If we choose N equal to this bound and set ν to the bound from Corollary 4.3 with
q = 2 we get from (4.24)

‖c− c∗‖2 ≤ C2
n
−(α+ 1

p
)
log(n)(d−1)α−2√
d log(ε−1)

. (4.25)

This is achieved with an oversampling factor that is logarithmic in n and linear in d. In
other words the curse of dimensionality does not affect the number of required samples.

It can however still be slightly improved by employing a more recent result by Haviv
and Regev based on work by Bourgain [3].

Proposition 4.7 ([11, Theorem 3.7]). LetM ∈ Cnd×nd be a unitary matrix with ‖M‖∞ ≤
O(n−

1
2 ). For sufficiently small ε > 0 and

N = C nd log(n)3 ε−4

a matrixA ∈ CN×nd with independently uniformly chosen rows fromM multiplied by
√

nd

N

has restricted isometry constants δn < ε with high probability.
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This result allows to reduce the number of sampling points in Proposition 4.6 by a
factor of log(n).

This is done by starting with the Fourier matrix with nd frequencies and points and
then subsampling F from this.

4.4 Numerical experiments

To illustrate theBPDresults from theprevious sectionwe can compute the approximation
of e.g. a trigonometric monomial with high degree via `1 and `2 minimisation. In
this context BP or `1 minimisation refers (4.23) while `2 minimisation refers to the
same problem, where instead of ‖c‖1 the term ‖c‖2 is minimised. The error is always
measured in the L2-norm.

The following example is the approximation of exp(2πi 50) (scaled in such a way that it
is in the 1-ball ofA1

1) with 120 frequencies and 200 iterations from a ”fista” (fast iterative
soft thresholding algorithm) solver, which is a common `1 minimiser.
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Figure 2: smoothed Approximation
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Indeed, we see that error `1 obtained with BP becomes smaller a lot sooner than the
`2 error. However, for large n the least squares error decays faster by a multiplicative
constant factor. The `1 minimisation also seems to be more stable compared to the `2
one as can be seen in Figure 1. The second graphic shows the smoothed average over
100 calculations.

The second numerical experiment was done in 3 dimensions with a 3-dimensional
monomial and ”only” 20 frequencies in each dimension (so 8000 in total). Here the
difference between the `1 and `2 minimisation becomes even more pronounced. Where
the `1 minimisation has good decay almost immediately the error of the `2 minimisation
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Figure 3: Approximation in 3 Dimensions
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only drops significantly after the system becomes overdetermined. This illustrates
very well how the number of samples suffer from the curse of dimensionality in this
regime while in the `1 case they do not. This picture was only smoothed over 20 runs
since the runtime of this program does not behave as nicely as the number of required
samples (Note that sophisticated approximation algorithms like ANOVA have better
runtime then `1 or `2 minimisation for higher dimensions) and instead suffers from the
curse of dimensionality even for the `1 case. For very large numbers of samples the
`2 minimisation again closes the gap and the ANOVA (for details regarding ANOVA
see [25]) approximation even overtakes it (as does `2, eventually) however this only
happens for overdetermined systems.

Figure 4 shows the comparison between different dimensional problems for monomes
with similarA1

1 norms. As one can see the number samples required to reach some error
is indeed only influenced in a linear fashion by the dimension d. E.g. in one dimension
it takes about 1000 sampling points for the error to reach 10−6 in two dimensions
about 2000 and in three 2500. One reason why the gaps are not uniform might be that
different regulariasation terms where used. The optimal terms could only be computed
numerically here, since the above bounds are only asymptotic.
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5 Sampling numbers of mixed weighted
Wiener spaces in L2

5.1 Linear and non-linear sampling numbers

As mentioned in the introduction the Kolmogorov numbers of mixed weighted Wiener
space have already been studied in [18] and Proposition 2.18 states that they behave like

dn
(
id : Aα,d1 → L2(Td)

)
� n−α log(n)α(d−1). (5.1)

This gives a lower bound on the linear sampling numbers via Lemma 2.13.

%lin
n

(
Aα,d1

)
2
& n−α log(n)α(d−1). (5.2)

Similar to the linear sampling numbers the non-linear ones can also be bounded from
below. The results from Section 3 in particular Remark 3.4 give by Lemma 2.11 the
following bound.

Theorem 5.1. For 1 ≤ p ≤ 2 and α > p−1
p it holds

%n(Aα,dp )2 ≥ cn(id : Aαp (Td)→ Lq(Td)) � n−(α+λ) log(n)(d−1)α. (5.3)

In particular this implies

%n
(
Aα,d1

)
2
& n−(α+ 1

2
) log(n)(d−1)α. (5.4)

This lower bound is better by one half in the main rate than the one for linear sampling
numbers.

Now using the new Results from [14] we can even get an upper bound on the non-linear
sampling numbers. This is done by using the improved results about best m-term
approximation i.e. Corollary 4.3 and Theorem 4.5.

Proposition 5.2. For 1 ≤ p ≤ 2 and α > p−1
p it holds

%n
(
Aα,dp

)
2
. n−(α+λ) log(n)(d−1)α+3(α+λ)+ 1

2 (5.5)

where
λ =

1

p
− 1

2
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in particular for p = 1 it holds

%n
(
Aα,d1

)
2
. n−(α+ 1

2
) log(n)(d−1)α+3(α+ 1

2
)+ 1

2 (5.6)

Proof. Employ [14, Theorem 3.2] and follow the idea of [14, Corollary 4.4] but allow for
general p. ChooseM =

⌊
n
α+λ
α

⌋
instead. �

This means there is only a dimension-independent gap in the order of the log of the size
3(α+ 1

2) between the upper and lower bound of the (non-linear) sampling numbers of
weighted Wiener classes with mixed weights.

In addition, even the upper bound on the non-linear sampling numbers is smaller by a
factor of one half in the main rate then the lower bound of the linear sampling numbers
i.e.

%n
(
Aα,d1

)
2

%lin
n

(
Aα,d1

)
2

. n−
1
2 log(n)3(α+ 1

2
). (5.7)
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6 Conclusion

Asmentioned in the introduction themain point of this thesis was to expand Proposition
1.3 for the bestm-term approximation for weighted mixed Wiener classes from [14] to
the regime where αmay be less than one half. As well as to complement Proposition
2.18 from [18] with an asymptotic bound for the Gelfand numbers in these spaces.

Indeed, Theorem 3.2 shows that the Gelfand numbers have the same behaviour as the
Weyl and Bernstein numbers in Aα,d1

bn
(
id : Aα,d1 → L2

)
� xn

(
id : Aα,d1 → L2

)
� cn

(
id : Aα,d1 → L2

)
� n−(α+ 1

2
) log(n)α(d−1).

Where L2 is understood to be restricted to the torus L2(Td). In particular the Gelfand
numbers decay faster than the Kolmogorov numbers by one half in the main rate.

However, Theorem 3.2 is not restricted to the case where p = 1. Instead, as stated in
Remark 3.4 it holds for all 0 < p ≤ 2.

On the topic of the bestm-term approximation for weighted Wiener classes with mixed
weights the restriction on α was bypassed completely for p ≤ 1, by showing the bound
directly instead of embedding it into some L2 Sobolev space of periodic functions
with bounded mixed derivative, as was done in [14]. This direct result was obtained
by using results from hyperbolic cross approximation [29] and combining them with
decomposition methods also used for other quasi s-numbers. Therefore instead of
having the bound (1.2)

σn

(
B1

(
Aα,dp

))
∞
≤ n−(α+ 1

2
) log(n)(d−1)α+ 1

2 , (6.1)

for only α > 1
2 we get from Theorem 4.2 the bound

n−(α+λ) log(n)(d−1)α . σn
(
B1

(
Aα,dp

))
q
. n−(α+λ) log(n)(d−1)α+µ (6.2)

for all α > 0, p = 1 and 2 ≤ q ≤ ∞. In addition, this Theorem also provides a lower
bound that is sharp up to a logarithmic factor.

Corollary 4.3 employs the Stechkin Lemma to expand this result to the quasi-Banach
setting 0 < p ≤ 1 and Theorem 4.5 modifies the original proof to p ≥ 1 for α > p−1

p .

Both of these bounds can be useful tools when working with mixed weighted Wiener
spaces as can be seen in [14]. The best m-term approximation result is used to show
error estimates, while the Gelfand bound is used as an optimality statement to contrast
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this with, since the Gelfand numbers are the worst case the error of the best non-linear
reconstruction of a function from linear samples. This was demonstrated in Section 5
were these bounds were used to get a lower bound on the linear sampling numbers and
a (in the main rate) tight asymptotic bound on the non-linear sampling numbers by
employing results from [14]. In particular, it was shown

n−(α+ 1
2

) log(n)(d−1)α . %n
(
Aα,d1

)
2
. n−(α+ 1

2
) log(n)(d−1)α+3(α+ 1

2
)+ 1

2 , (6.3)

while for the linear sampling numbers only the lower bound

%lin
n

(
Aα,d1

)
2
& n−α log(n)α(d−1) (6.4)

holds. This shows that there exists a gap of at least one half in the main rate between
linear and non-linear reconstruction in mixed weighted Wiener classes. This can be
shown because the Kolmogorov numbers decay slower than the Gelfand numbers and
the bestm-term approximation.
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