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ABSTRACT

In this paper we propose an approximation method for high-dimensional 1-periodic functions based
on the multivariate ANOVA decomposition. We provide an analysis on the classical ANOVA
decomposition on the torus and prove some important properties such as the inheritance of smoothness
for Sobolev type spaces and the weighted Wiener algebra. We exploit special kinds of sparsity in
the ANOVA decomposition with the aim to approximate a function in a scattered data or black-box
approximation scenario. This method allows us to simultaneously achieve an importance ranking on
dimensions and dimension interactions which is referred to as attribute ranking in some applications.
In scattered data approximation we rely on a special algorithm based on the non-equispaced fast
Fourier transform (or NFFT) for fast multiplication with arising Fourier matrices. For black-box
approximation we choose the well-known rank-1 lattices as sampling schemes and show properties
of the appearing special lattices.

Keywords ANOVA decomposition · high-dimensional approximation · Fourier approximation

1 Introduction

The approximation of high-dimensional functions is an important and current topic with great interest in many
applications. We consider a setting of periodic functions f : Td → C, d ∈ N, over the torus T where certain data
about the function is known. Here, we distinguish between a black-box setting, i.e., f can be evaluated at points
x ∈ Td at a certain cost, and a scattered data setting, i.e., sampling points X ⊆ Td and function values (f(x))x∈X

are given. Besides the natural question of wanting to find an approximation for f , we want to consider the question
of interpretability, i.e., analyzing the importance of the dimensions and dimension interactions of the function. In
applications this is sometimes referred to as an attribute ranking.

The main tool to achieve our goals is the analysis of variance (ANOVA) decomposition [6, 45, 38, 23] which is an
important model in the analysis of dimension interactions of multivariate, high-dimensional functions. It has proved
useful in understanding the reason behind the success of certain quadrature methods for high-dimensional integration
[40, 4, 17] and also infinite-dimensional integration [1, 19, 34]. The ANOVA decomposition decomposes a d-variate
function in 2d ANOVA terms where each term belongs to a subset of D := {1, 2, . . . , d}. The single term depends only
on the variables in the corresponding subset and the number of these variables is the order of the ANOVA term. In this
paper we study the classical ANOVA decomposition for periodic functions and how it acts on the frequency domain.
The decomposition is referred to as classical since it is based on an integral projection operator. In this setting we find
relationships between ANOVA terms and the support of the frequencies as subsets of Zd. Moreover, we prove formulas
for the representation of ANOVA terms and projections.

Classical approximation methods cannot be applied for high-dimensional functions in general since the data required
increases exponentially because of the curse of dimensionality. However, the observation has been made that in practical
applications with multivariate, high-dimensional functions, often only the ANOVA terms of a low order are enough to
describe a function, see e.g. [6]. This leads to the notion of a superposition dimension ds ∈ D that limits the order
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of the ANOVA terms involved. Using this as a sparsity assumption to circumvent the curse of dimensionality, we
consider functions where the ANOVA decomposition is mostly supported on terms of a low order, i.e., the norm of
the remaining decomposition weighed by the norm of f is small. This leads to a truncation of the decomposition
through a superposition threshold. We consider how the previously described error can be related to the decay of Fourier
coefficients and specifically the smoothness of f .

We present and analyze an approximation method that uses sensitivity analysis, cf. [47, 48, 38], on the truncated
ANOVA decomposition which is able to identify important ANOVA terms and incorporate this information in finding
an approximation. The goal is to simplify the approximation model which yields benefits in reducing the influence
of overfitting regarding the amount of data. We determine approximations of the Fourier coefficients of the function
(or learn them) by solving least-squares problems. This is done through exploiting the special structure of the system
matrix by identifying submatrices with the corresponding ANOVA terms. In the case of black-box approximations we
are using rank-1 lattices as a spatial discretization, see e.g. [24, 25, 26, 27], and for scattered data approximation we
rely on the iterative LSQR method [42] and the fast matrix-vector multiplications for Fourier matrices provided by the
non-equispaced fast Fourier transform (or NFFT) introduced in [31].

The paper is organized as follows. In Section 3 we introduce the classical ANOVA decomposition and study its
behavior for periodic functions with regard to the Fourier system. We prove new formulas for the Fourier coefficients of
projections in Lemma 3.1 and ANOVA terms in Lemma 3.5. Moreover, we prove that functions in Sobolev type spaces
and the weighted Wiener algebra inherit their smoothness to the ANOVA terms, see Theorem 3.10 and Theorem 3.11.
In Section 4 we consider the truncated ANOVA decomposition and prove formulas for their Fourier coefficients, see
Lemma 4.1 and Corollary 4.2. We also give direct formulas for the truncated decomposition using the projections in
Lemma 4.4 and Corollary 4.5. Furthermore, we relate Sobolev type spaces and the weighted Wiener algebra to the
previously introduced functions of low-dimensional structure and compute the errors in Theorem 4.6 and Theorem 4.7.
Specifically, we consider a class of product and order-dependent weights, see [35, 13, 33, 14], of functions with
isotropic and dominating-mixed smoothness, cf. [16, 26, 5], to obtain specific error bounds, see Corollary 4.8 and
Corollary 4.10. In Section 5 we present an approximation method for functions that are of an low-dimensional structure,
cf. Algorithm 1. We start by considering a black-box approximation scenario with rank-1 lattices as sampling schemes
and show properties of the arising lattices in Lemma 5.3, Lemma 5.5, and Corollary 5.6. Furthermore, we discuss
scattered data approximation in Section 5.2.2. The arising approximation errors are considered in Section 6 with
main results being Theorem 6.1, Theorem 6.2, Theorem 6.5, and Theorem 6.7. In Section 7 we perform numerical
experiments with a specific benchmark function.

2 Prerequisites and Notation

We consider multivariate 1-periodic functions f : Td → C with spatial dimension d ∈ N, which are square-integrable,
i.e., elements of L2(Td). Those functions have a unique representation with regard to the Fourier system {e2πik·x}k∈Zd

as Fourier series
f(x) =

∑
k∈Zd

ck(f) e
2πik·x,

where ck(f) :=
∫
Td f(x) e

−2πik·xdx ∈ C, k ∈ Zd, are the Fourier coefficients of f . Given a finite index set I ⊆ Zd,
we call the trigonometric polynomial

SIf(x) =
∑
k∈I

ck(f) e
2πik·x (1)

the Fourier partial sum of f with respect to the index set I .

In this paper we make use of indexing with sets. First, for a given spatial dimension d we denote withD = {1, 2, . . . , d}
the set of coordinate indices and subsets as bold small letters, e.g., u ⊆ D. The complement of those subsets are always
with respect to D, i.e., uc = D \ u. For a vector x ∈ Cd we define xu = (xi)i∈u ∈ C|u|. There remains a small
ambiguity regarding the order of the components of xu which can be clarified if one chooses a consistent ordering, e.g.,
ascending order which would be a natural choice.

Furthermore, we use the p-norm which is defined as

∥x∥p =


|{i ∈ D : xi ̸= 0}| : p = 0(∑d

i=1 |xi|p
)1/p

: 1 ≤ p <∞
maxi∈D |xi| : p =∞

for x ∈ Rd. Note that the case 1 ≤ p <∞ can be expanded to 0 < p < 1, but then ∥·∥p would only be a quasi-norm.
In the case p = 0, ∥·∥p is not a norm at all.
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2.1 Rank-1 lattice

In the case of black-box approximation we are going to rely on rank-1 lattice as sampling schemes, see e.g. [24, 25, 26,
27]. For a given lattice size M ∈ N and a generating vector z ∈ Zd we define a rank-1 lattice

Λ(z,M) :=

{
xj :=

j

M
z mod 1 : j = 0, 1, . . . ,M − 1

}
.

These lattices are useful in the evaluation of trigonometric polynomials

p ∈ ΠI := span
{
e2πik·◦ : k ∈ I

}
over a finite index set I ⊆ Zd for given Fourier coefficients ck(p). As discussed in [37], we have

p(xj) = p

(
j

M
z mod 1

)
=

M−1∑
l=0

 ∑
k∈I

k·z≡l mod M

ck(p)

 e2πi
jl
M .

The computation of the sum over l can be realized trough a one-dimensional FFT and therefore the evaluation of
p at all lattice nodes can be done using only this single FFT. The arithmetic complexity of this evaluation is in
O(M logM + d |I|).
However, using a special kind of rank-1 lattice, it is possible to reconstruct the Fourier coefficients ck(p) by sampling p
at the nodes in Λ(z,M) in an exact and stable way. For an index set I ⊆ Zd we define a reconstructing rank-1 lattice
Λ(z,M, I) as a rank-1 lattice Λ(z,M) such that the condition

m · z ̸≡ 0 mod M ∀m ∈ D(I) \ {0}

is fulfilled with
D(I) := {k − h : k,h ∈ I} (2)

being the difference set for I . Using the nodes of a reconstructing rank-1 lattice Λ(z,M, I), the Fourier coefficients
can be calculated as

ck(p) =
1

M

M∑
j=0

p

(
j

M
z mod 1

)
e−2πij k·z

M .

The calculation of all Fourier coefficients ck(p), k ∈ I , can then be realized trough a one-dimensional FFT and the
computation of the products k · z. Consequently, the arithmetic complexity of this evaluation is again in O(M logM +
d |I|).

The principle of this reconstruction can be generalized to functions f ∈ Aw(Td) := {f ∈ L1(Td) : ∥f∥Aw(Td) :=∑
k∈Zd w(k) |ck(f)| <∞}, w : Zd → [1,∞), by taking the Fourier partial sum SIf for a suitable index set I ⊆ Zd

and treating the evaluations of f as the evaluations of the trigonometric polynomial SIf . Using the same idea as before,
we get

ck(f) ≈ f̂k :=
1

M

M∑
j=0

f

(
j

M
z mod 1

)
e−2πij k·z

M

with a a reconstructing rank-1 lattice Λ(z,M, I). The error for each coefficient is

f̂k = ck(f) +
∑

h∈Λ⊥(z,M)\{0}
ck+h(f) (3)

with the integer dual lattice

Λ⊥(z,M) :=
{
k ∈ Zd : k · z ≡ 0 mod M

}
.

Consequently, if
∑

h∈Λ⊥(z,M)\{0} |ck+h(f)| is small, the approximations f̂k are close to the Fourier coefficients ck(f).
For further details on this topic we refer to [26, 27] and [43, Chapter 8].
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3 The classical ANOVA decomposition of 1-periodic functions

In this section we introduce the ANOVA decomposition, see e.g. [6, 38, 23], and derive new results for the periodic
setting specifically with regard to the decomposition acting on the frequency domain.

We start by defining the projection operator

Puf(xu) :=

∫
Td−|u|

f(x)dxuc (4)

that integrates over the variables xuc . For |u| > 0 this operator maps a function from L2(Td) to L2(T|u|) by the
Cauchy-Schwarz inequality and the image Puf depends only on the variables xu ∈ T|u|. In the case of u = ∅, the
projection gives us the integral of f . We define the index set

P(d)
u :=

{
k ∈ Zd : kuc = 0

}
(5)

which can be identified with Z|u| using the mapping k 7→ ku. Note that we use the convention Z|∅| = {0}. We now
prove a relationship between the Fourier coefficients of Puf and f .
Lemma 3.1. Let f ∈ L2(Td) and ℓ ∈ Z|u|. Then

cℓ(Puf) = ck(f)

for k ∈ Zd with ku = ℓ and kuc = 0.

Proof. We consolidate the two integrals and derive

cℓ(Puf) =

∫
T|u|

∫
Td−|u|

f(x)dxuc e−2πiℓ·xudxu

=

∫
Td

f(x) e−2πiℓ·xudx

=

∫
Td

f(x) e−2πik·xdx = ck(f) .

Using Lemma 3.1, we are able to write Puf as both, a d-dimensional Fourier series Puf(x) =
∑

k∈P(d)
u

ck(f) e
2πik·x

and a |u|-dimensional Fourier series Puf(xu) =
∑

ℓ∈Z|u| cℓ(Puf) e
2πiℓ·xu .

Now, we recursively define the ANOVA term for u ⊆ D
fu := Puf −

∑
v⊊u

fv. (6)

There exists a direct formula for the ANOVA terms fu defined in (6).
Lemma 3.2. Let a ∈ N0 and b ∈ N with b > a. Then

b−1∑
n=a

(−1)n−a+1

(
b− a

n− a

)
= (−1)b−a.

Proof. We prove an equivalent form obtained through multiplication with (−1)a and an index shift
b−a−1∑
n=0

(−1)n+a+1

(
b− a

n

)
= (−1)b.

Splitting the sum and applying the Binomial theorem yields
b−a−1∑
n=0

(−1)n+a+1

(
b− a

n

)
=

b−a∑
n=0

(−1)n+a+1

(
b− a

n

)
− (−1)b+1

= (−1)a+1
b−a∑
n=0

(−1)n
(
b− a

n

)
︸ ︷︷ ︸

=(−1+1)b−a=0

+(−1)b

= (−1)b.
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Lemma 3.3. Let f ∈ L2(Td) with u ⊆ D. Then

fu =
∑
v⊆u

(−1)|u|−|v|Pvf. (7)

Proof. We prove this statement through structural induction over the cardinality of u. For |u| = 0, i.e., u = ∅, we have

(−1)0−0 (P∅) (x) = (P∅) (x) = (P∅) (x)−
∑
v⊊∅

fv(x).

Now, let (7) be true for v ⊆ D, |v| = 0, 1, . . . ,m− 1, m ∈ {1, 2, . . . , d}, and take a subset u ⊆ D with |u| = m. We
use the notation

δw⊆v =

{
1 : w ⊆ v

0 : otherwise.
and start from the recursive expression in (6) to obtain

fu(x) = (Puf) (x)−
∑
v⊊u

fv(x) = (Puf) (x)−
∑
v⊊u

∑
w⊆v

(−1)|v|−|w| (Pwf) (x)

= (Puf) (x)−
∑
v⊊u

∑
w⊊u

(−1)|v|−|w| (Pwf) (x)δw⊆v.

We exchange the two sums and sum over the order of the ANOVA terms∑
v⊊u

∑
w⊊u

(−1)|v|−|w| (Pwf) (x)δw⊆v =
∑
w⊊u

(Pwf) (x)
∑
v⊊u

(−1)|v|−|w|δw⊆v

=
∑
w⊊u

(Pwf) (x)

m−1∑
n=|w|

∑
v⊆u
|v|=n

(−1)|v|−|w|δw⊆v

=
∑
w⊊u

(Pwf) (x)

m−1∑
n=|w|

(−1)n−|w| ∑
v⊆u
|v|=n

δw⊆v.

Applying Lemma 3.2 yields the formula.

We proceed to present a relationship between the Fourier coefficients of fu and f . Furthermore, we prove fu ∈ L2(T|u|).
Therefore, we define the index set

F(d)
u :=

{
k ∈ Zd : kuc = 0, kj ̸= 0∀j ∈ u

}
which can be identified with (Z \ {0})|u| using the mapping k 7→ ku. Here, we use the convention (Z \ {0})|∅| = {0}.
Lemma 3.4. Let u,v ⊆ D with u ̸= v. Then F(d)

u ∩ F(d)
v = ∅. Moreover, we have

Zd =
⋃

u⊆D
F(d)
u .

Proof. Let u,v ⊆ D, u ̸= v, and w.l.o.g. |u| ≥ |v|. We assume there exists a k̃ ∈ F(d)
u ∩ F(d)

v and first consider the
case u ∩ v = ∅. Since k̃ ∈ F(d)

u we have k̃uc = 0 and therefore k̃v = 0. This contradicts k̃ ∈ F(d)
v . In the case of

u ∩ v ̸= ∅ there exists a j ∈ vc ∩ u. Then k̃ ∈ F(d)
v implies that k̃j = 0 which contradicts k̃ ∈ F(d)

u .

The inclusion
⋃

u⊆D F(d)
u ⊆ Zd is trivial since F(d)

u ⊆ Zd for every u ⊆ D. To prove Zd ⊆
⋃

u⊆D F(d)
u we take a

k ∈ Zd and define u = {j ∈ D : kj ̸= 0}. Then k ∈ F(d)
u and therefore k ∈

⋃
u⊆D F(d)

u .

Lemma 3.5. Let f ∈ L2(Td) with u ⊆ D and ℓ ∈ Z|u|. Then

cℓ(fu) =


ck(f) : ℓ ∈ (Z \ {0})|u|

δu,∅ · c0(f) : ℓ = 0

0 : otherwise

for k ∈ Zd with ku = ℓ and kuc = 0. Furthermore, fu ∈ L2(T|u|).

5
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Proof. We begin by employing the direct formula (7) to obtain

cℓ(fu) =

∫
T|u|

fu(xu) e
−2πiℓ·xudxu

=

∫
T|u|

∑
v⊆u

(−1)|u|−|v|Pvf(xv)

 e−2πiℓ·xudxu

=
∑
v⊆u

(−1)|u|−|v|
∫
T|u|

Pvf(xv) e
−2πiℓ·xudxu

=
∑
v⊆u

(−1)|u|−|v|ckv (Pvf) δku\v,0.

We go on to prove c0(fu) = δu,∅ · c0(f). In this case, kv = 0 and δku\v,0 = 1 for every v ⊆ u. By the Binomial
Theorem, we have

cℓ(fu) =
∑
v⊆u

(−1)|u|−|v|ckv (Pvf) δku\v,0 = c0(f)
∑
v⊆u

(−1)|u|−|v|

= c0(f)

|u|∑
n=0

(
|u|
n

)
(−1)|u|−n = c0(f) · δu,∅.

For the second case, we consider an ℓ and with a set v ⊆ u such that ∅ ̸= v := {i ∈ u : ki = 0} ̸= u. Then
δku\v,0 = 1⇐⇒ vc := u \ v ⊆ v and with the Binomial Theorem we get

cℓ(fu) =
∑
v⊆u

(−1)|u|−|v|ckv (Pvf) δku\v,0 =
∑

vc⊆v⊆u

(−1)|u|−|v|ckv (Pvf)

= ck(f)
∑

vc⊆v⊆u

(−1)|u|−|v| = ck(f)

|u|∑
n=|vc|

(
|u| − |vc|
n− |vc|

)
(−1)|u|−n

= ck(f)

|u|−|vc|∑
m=0

(
|u| − |vc|

m

)
(−1)|u|−|vc|−m = 0.

For the case were the entries of ℓ are all nonzero, only the addend where v = u is nonzero, i.e., cℓ(fu) = ck(f).

With Lemma 3.5 we have two equivalent series representations for the ANOVA term fu, the d-dimensional Fourier
series fu(x) =

∑
k∈F(d)

u
ck(f) e

2πik·x and the |u|-dimensional Fourier series fu(xu) =
∑

ℓ∈Z|u| cℓ(fu) e
2πiℓ·xu

with cℓ(fu) as in Lemma 3.5. The ANOVA terms have the following important property.
Corollary 3.6. Let f ∈ L2(Td) and u,v ⊆ D with u ̸= v. Then the ANOVA terms fu and fv are orthogonal, i.e.,

⟨fu, fv⟩L2(Td) = 0.

Proof. We employ Lemma 3.4 and Lemma 3.5 to deduce

⟨fu, fv⟩L2(Td) = ⟨
∑

k∈F(d)
u

ck(f) e
2πik·x,

∑
ℓ∈F(d)

u

cℓ(f) e
2πiℓ·x⟩L2(Td)

=
∑

k∈F(d)
u

∑
ℓ∈F(d)

u

ck(f) cℓ(f) δk,ℓ = 0.

Having defined the ANOVA terms, we now go on to the ANOVA decomposition, cf. [6, 38].
Theorem 3.7. Let f ∈ L2(Td), the ANOVA terms fu as in (6) and the set of coordinate indices D = {1, 2, . . . , d}.
Then f can be uniquely decomposed as

f(x) = f∅ +
d∑

i=1

f{i}(xi) +

d−1∑
i=1

d∑
j=i+1

f{i,j}(x{i,j}) + · · ·+ fD(x) =
∑
u⊆D

fu(xu) (8)

which we call analysis of variance (ANOVA) decomposition.

6
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Proof. We use that Zd is the disjoint union of the sets F(d)
u for u ⊆ D and obtain∑

u⊆D
fu(xu) =

∑
u⊆D

∑
k∈F(d)

u

ck(f) e
2πik·x =

∑
k∈⋃

u⊆D F(d)
u

ck(f) e
2πik·x

=
∑
k∈Zd

ck(f) e
2πik·x = f(x).

Since the union is disjoint, the decomposition is unique.

Remark 3.8. The ANOVA decomposition (8) depends strongly on the projection operator Puf , see (4). The integral
operator considered in this paper leads to the so called classical ANOVA decomposition. Another important variant is
the anchored decomposition where one chooses an anchor point c ∈ Td and the projection operator is then defined as

Puf(xu) = f(y), yu = xu,yuc = cuc .

This decomposition can for example be used in methods for the integration of high-dimensional functions such as the
multivariate decomposition method, see e.g. [34, 11]. However, the error analysis may again be based on the classical
ANOVA decomposition, see e.g. [12].

In Figure 1 we have visualized the different frequency index sets F(d)
u , u ⊆ D, for a 3-dimensional example.

3.1 Variance and Sensitivity

In order to get a notion of the importance of single terms compared to the entire function, we define the variance of a
function

σ2(f) :=

∫
Td

(f(x)− c0(f))
2
dx

for real-valued f . In this case, we have the equivalent formulation

σ2(f) = ∥f∥2L2(Td) − |c0(f)|
2

which yields a sensible definition for complex-valued functions f . For the ANOVA terms fu with ∅ ≠ u ⊆ D we have
c0(fu) = 0 and therefore

σ2(fu) = ∥fu∥2L2(T|u|) .

Lemma 3.9. Let f ∈ L2(Td). Then we obtain for the variance

σ2(f) =
∑

∅̸=u⊆D
σ2(fu).

Proof. We show that the right-hand side equals the left-hand side by employing Lemma 3.4 and Lemma 3.5∑
∅̸=u⊆D

σ2(fu) =
∑

∅̸=u⊆D

∑
k∈F(d)

u

|ck(f)|2 =
∑

k∈⋃
∅≠u⊆D F(d)

u

|ck(f)|2

=
∑
k∈Zd

|ck(f)|2 − |c0(f)|2 = ∥f∥2L2(Td) − |c0(f)|
2
.

The global sensitivity indices

ϱ(u, f) :=
σ2(fu)

σ2(f)
∈ [0, 1] (9)

for ∅ ≠ u ⊆ D provide a comparable score to rank the importance of ANOVA terms against each other, cf. [47, 48, 38].
Clearly, we have

∑
∅̸=u⊆D ϱ(u, f) = 1 by Lemma 3.9.

We now introduce one notion of effective dimensions as proposed in [6]. Given a fixed δ ∈ (0, 1], the general notion of
superposition dimension is defined as the minimum

min

s ∈ D :
∑

∅̸=u⊆D
|u|≤s

σ2(fu) ≥ δσ2(f)

 .

7
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Figure 1: The ANOVA decomposition working on the hypercube [−8, 8]3 as a part of the 3-dimensional index set Z3.

If we consider a particular Hilbert space H ⊆ L2(Td) with norm ∥·∥H , we modify the superposition dimension in the
sense of this space, see e.g. [41]. For f ∈ H and δ ∈ (0, 1] we define the modified superposition dimension as

d(sp) := min

s ∈ D : sup
∥f∥H≤1

∑
|u|>s

∥fu∥2L2(Td) ≤ 1− δ

 . (10)

Finally, we investigate how the smoothness of f translates to projections Puf and ANOVA terms fu. For a different
setting this has been discussed in [38, 18, 19] and therein called inheritance of smoothness. In our setting, we
express smoothness through special subspaces of L2(Td) and how f being an element of those spaces translates to the

8
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projections Puf and ANOVA terms fu. In particular, we look at Sobolev type spaces, cf. [32],

Hw(Td) :=

f ∈ L2(Td) : ∥f∥Hw(Td) :=

∑
k∈Zd

w2(k) |ck(f)|2
 1

2

<∞


and the weighted Wiener algebra

Aw(Td) :=

f ∈ L1(Td) : ∥f∥Aw(Td) :=
∑
k∈Zd

w(k) |ck(f)| <∞


with a weight function w : Zd → [1,∞) for both cases.
Theorem 3.10 (Inheritance of smoothness for Sobolev type spaces). Let f ∈ Hw(Td) with weight function w : Zd →
[1,∞). Then for any weight function
wu : Z|u| → [1,∞) with

wu(ku) ≤ w(k)∀k ∈ P(d)
u

we have Puf ∈ Hwu(T|u|) and fu ∈ Hwu(T|u|).

Proof. We show that the norm ∥Puf∥Hwu (T|u|) is finite by using Lemma 3.1∑
ℓ∈Z|u|

w2
u(ℓ) |cℓ(Puf)|2 =

∑
k∈P(d)

u

w2
u(ku) |ck(f)|2 ≤

∑
k∈P(d)

u

w2(k) |ck(f)|2

≤
∑
k∈Zd

w2(k) |ck(f)|2 = ∥f∥2Hw(Td) <∞.

Analogously, we employ Lemma 3.5 to prove fu ∈ Hwu(T|u|)∑
ℓ∈Z|u|

w2
u(ℓ) |cℓ(fu)|

2
=
∑

k∈F(d)
u

w2
u(ku) |ck(f)|2 ≤

∑
k∈F(d)

u

w2(k) |ck(f)|2

≤
∑
k∈Zd

w2(k) |ck(f)|2 = ∥f∥2Hw(Td) <∞.

Theorem 3.11 (Inheritance of smoothness for the weighted Wiener algebra). Let f ∈ Aw(Td) with weight function
w : Zd → [1,∞). Then for any weight function wu : Z|u| → [1,∞) with

wu(ku) ≤ w(k)∀k ∈ P(d)
u

we have Puf ∈ Awu(T|u|) and fu ∈ Awu(T|u|).

Proof. We use Lemma 3.1 to show that Puf ∈ Aw(T|u|)∑
ℓ∈Z|u|

wu(ℓ) |cℓ(fu)| =
∑

k∈P(d)
u

wu(ku) |ck(f)| ≤
∑

k∈P(d)
u

w(k) |ck(f)|

≤
∑
k∈Zd

w(k) |ck(f)| = ∥f∥Aw(Td) <∞.

We utilize Lemma 3.5 to prove fu ∈ Awu(T|u|)∑
ℓ∈Z|u|

wu(ℓ) |cℓ(fu)| =
∑

k∈F(d)
u

wu(ku) |ck(f)| ≤
∑

k∈F(d)
u

w(k) |ck(f)|

≤
∑
k∈Zd

w(k) |ck(f)| = ∥f∥Aw(Td) <∞.

The inheritance of smoothness has special significance with regard to the numerical realization of the method presented
in Section 5. It ensures that the ANOVA terms fu are at least as smooth as the function f in consideration which is
relevant for the quality of the approximation produced by the method.

9
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4 Truncated ANOVA decomposition

The number of ANOVA terms of a function is equal to the cardinality of P(D) = 2d and therefore grows exponentially
in the dimension. This reflects the curse of dimensionality in a certain way and poses a problem for the approximation
of a function. In this section we consider truncating the ANOVA decomposition, i.e., removing certain terms fu, and
therefore creating a certain form of sparsity. We define a subset of ANOVA terms as a subset of the power set of D,
i.e., U ⊆ P(D), such that the inclusion condition

u ∈ U =⇒ ∀v ⊆ u : v ∈ U (11)

holds, cf. [23, Chapter 3.2]. This is necessary due to the recursive definition of the ANOVA terms, see (6).

For any subset of ANOVA terms U we then define the truncated ANOVA decomposition as

TUf :=
∑
u∈U

fu.

A specific truncation idea can be obtained by relating to the superposition dimension d(sp), see (10). For a chosen
superposition threshold ds ∈ D (that may or may not be equal to the superposition dimension d(sp)), we define
Uds

:= {u ⊆ D : |u| ≤ ds} and Tds
:= TUds

. We subsequently prove properties of both TU in general and Tds
in

particular.

Lemma 4.1. Let f ∈ L2(Td) and U ⊆ P(D) be a subset of ANOVA terms. Then TUf ∈ L2(Td) and for k ∈ Zd the
Fourier coefficient is

ck(TUf) =

{
ck(f) : ∃u ∈ U : k ∈ F(d)

u

0 : otherwise.

Proof. Clearly, we have TUf ∈ L2(Td). Let now k ∈ Zd. Then there exists a u0 ⊆ D such that k ∈ F(d)
u0 . We employ

Lemma 3.5 and obtain

ck(TUf) =

∫
Td

(∑
u∈U

fu(xu)

)
e2πik·xdx =

∑
u∈U

∫
Td

fu(xu)e
2πik·xdx

=
∑
u∈U

∫
T|u|

fu(xu)e
2πiku·xudxu δku,0 =

∑
u∈U

ck(f) δkuc ,0 (1− δku,0)

=

{
ck(f) : u0 ∈ U

0 : otherwise.

Corollary 4.2. Let f ∈ L2(Td) and ds ∈ D a superposition threshold. Then Tds
f ∈ L2(Td) and only the Fourier

coefficients corresponding to ds-sparse frequencies are nonzero, i.e.,

ck(Tdsf) =

{
ck(f) : ∥k∥0 ≤ ds
0 : otherwise.

Proof. Since Uds
is a subset of ANOVA terms, Tds

f ∈ L2(Td) follows directly from Lemma 4.1. Moreover,
∃u ∈ Uds

: k ∈ F(d)
u ⇐⇒ ∥k∥0 ≤ ds.

The following lemma shows that the number of terms in Uds is polynomial in d for a fixed ds and therefore allows us to
circumvent the curse of dimensionality in terms of the number of sets.

Lemma 4.3. We estimate the cardinality of |Uds
| as follows

|Uds | <
(
ed

ds

)ds

,

i.e., the number of terms in Uds
has polynomial growth in d for fixed ds ∈ D \ {d}.

10
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Proof. We estimate the sum as follows

|Uds
| =

ds∑
n=0

(
d

n

)
≤

ds∑
n=0

dndns
n! dns

=

ds∑
n=0

(
d

ds

)n
dns
n!
≤
(

d

ds

)ds ds∑
n=0

dns
n!

.

Estimating the sum by the Taylor series for eds yields the statement.

In the following we show direct formulas for the truncated ANOVA decomposition based on the projections similarly as
for the ANOVA terms, see (7).
Lemma 4.4. Let f ∈ L2(Td) and U ⊆ P(D) a subset of ANOVA terms. Then we have the direct formula

TUf =
∑
u∈U

∑
v∈U
u⊆v

(−1)|v|−|u|Puf.

Proof. We apply equation (7) and obtain immediately

TUf =
∑
u∈U

fu =
∑
u∈U

∑
v⊆u

(−1)|u|−|v|Pvf =
∑
u∈U

∑
v∈U

(−1)|u|−|v|Pvf δv⊆u

=
∑
v∈U

∑
u∈U
v⊆u

(−1)|u|−|v|Pvf.

Corollary 4.5. Let f ∈ L2(Td) and ds ∈ D a superposition threshold. Then we have the direct formula

Tdsf =
∑
u⊆D
|u|≤ds

 ds∑
n=|u|

(−1)n−|u|
(
d− |u|
n− |u|

)Puf.

Proof. Since the equality ∑
v∈Uds
u⊆v

(−1)|v|−|u| =
ds∑

n=|u|
(−1)n−|u|

(
d− |u|
n− |u|

)
,

holds, we employ Lemma 4.4 and the formula is proven.

The truncated ANOVA decomposition plays a major role in our approximation approach presented in Section 5.
Therefore we are interested in functions that can be approximated well by a truncated ANOVA decomposition.
Specifically, we are looking to characterize functions such that the truncation operation by TUf for different sets U
retains most of the function, i.e., we have a relative error

∥f − TUf∥H1

∥f∥H2

< ε (12)

with ε > 0, and H1, H2 certain subspaces of L2(Td). It is especially interesting to characterize these functions by
properties like the smoothness. To this end, we start by proving general bounds for Sobolev type spaces Hw(Td) and
the weighted Wiener algebra Aw(Td) to later relate this to weight functions w defined by specific kinds of smoothness.

Moreover, this can be related to the superposition dimension d(sp) for a δ ∈ (0, 1], see (10). Let H1 = L2(Td) and
H2 ∈ {Hw(Td),Aw(Td)} for a weight function w. If we choose truncation by a superposition threshold ds ∈ D then
the bound on the right-hand side ε(ds) ∈ (0, 1) depends on ds. Moreover, we have

sup
f ̸=0

∥f − Tdsf∥
2
L2(Td)

∥f∥2H2

= sup
∥f∥H2

≤1

∑
|u|>ds

∥fu∥2L2(Td) < ε(ds) (13)

which follows from ∥f − Tds
f∥2L2(Td) =

∑
|u|>ds

∥fu∥2L2(Td). The modified superposition dimension d(sp) will now
be smaller or equal to min{ds ∈ D : ε(ds) ≤ 1 − δ}, i.e., truncation by this minimum as superposition threshold is
guaranteed to be effective in relation to δ.

11
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Theorem 4.6. Let f ∈ Hw(Td) with weight function w : Zd → [1,∞). Then

∥f − TUf∥L2(Td)

∥f∥Hw(Td)

≤ 1

min
k∈⋃

u⊆D
u/∈U

F(d)
u

w(k)
.

Proof. We employ Parseval’s identity and Lemma 4.1 to derive

∥f − TUf∥2L2(Td) =
∑
k∈Zd

|ck(f)− ck(TUf)|2 =
∑

k∈⋃
u⊆D
u/∈U

F(d)
u

|ck(f)|2

=
∑

k∈⋃
u⊆D
u/∈U

F(d)
u

w2(k)

w2(k)
|ck(f)|2

≤ 1

min
k∈⋃

u⊆D
u/∈U

F(d)
u

w2(k)
∥f∥2Hw(Td) .

Theorem 4.7. Let f ∈ Aw(Td) with weight function w : Zd → [1,∞). Then

∥f − TUf∥L∞(Td)

∥f∥Aw(Td)

≤ 1

min
k∈⋃

u⊆D
u/∈U

F(d)
u

w(k)
.

For f ∈ Hw(Td) with a weight function w : Zd → [1,∞) such that {1/w(k)}k∈Zd ∈ ℓ2 we have

∥f − TUf∥L∞(Td) ≤
√√√√√ ∑

k∈⋃
u⊆D
u/∈U

F(d)
u

1

w2(k)
∥f∥Hw(Td) .

Proof. We estimate the L∞-norm by the sum of the absolute values of the Fourier coefficients and then use Lemma 4.1

∥f − TUf∥L∞(Td) ≤
∑
k∈Zd

|ck(f)− ck(TUf)| =
∑

k∈⋃
u⊆D
u/∈U

F(d)
u

|ck(f)|

=
∑

k∈⋃
u⊆D
u/∈U

F(d)
u

w(k)

w(k)
|ck(f)| (14)

≤ 1

min
k∈⋃

u⊆D
u/∈U

F(d)
u

w(k)
∥f∥Aw(Td) .

Employing the Cauchy-Schwarz inequality in (14) instead of extracting the minimum yields

∥f − TUf∥L∞(Td) ≤
√√√√√ ∑

k∈⋃
u⊆D
u/∈U

F(d)
u

1

w2(k)
∥f∥Hw(Td) .

The condition {1/w(k)}k∈Zd ∈ ℓ2 assures that the sum which appears in the bound is finite.

In the following, we relate the truncation of f by the operator Tds
with the smoothness of f . To this end, we introduce

the weights
wα,β(k) := γ−1

suppk (1 + ∥k∥1)
α

∏
s∈suppk

(1 + |ks|)β (15)

12
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with suppk = {i ∈ D : ki ̸= 0} and parameters β ≥ 0, and α > −β. The parameters α, β, and the weight γu, u ⊆ D,
regulate the decay of the Fourier coefficients. Specifically, the parameter α is regulating the isotropic smoothness and β
the dominating mixed smoothness, cf. [7]. Moreover, γ controls the influence of the different dimensions. We choose a
POD (product and order-dependent) structure for γu such that

γu = Γ|u|
∏
s∈u

γs, (16)

where Γ ∈ (0, 1]d is nonincreasing and γ = (γi)
d
i=1 ∈ (0, 1]d. The POD structure is motivated by the application of

quasi-Monte Carlo methods for PDEs with random coefficients, cf. [35, 13, 33, 14]. Similar weights for isotropic and
dominating mixed smoothness have been considered in [16, 26, 5]. Moreover, the Sobolev type spaces may also be
referred to as weighted Korobov spaces, cf. [46] for product weights and [9] for general weights.

We now use the previously obtained bounds for general weight functions w and derive results for the weights wα,β

from (15). We focus on the subsets of ANOVA terms Uds
defined by a superposition threshold ds ∈ D.

Corollary 4.8. Let f ∈ Awα,β

(Td) with weight function from (15) with POD structure (16), β ≥ 0, α > −β,
Γ ∈ (0, 1]d, and γ ∈ (0, 1]d. Then

∥f − Tds
f∥L∞(Td)

∥f∥Awα,β
(Td)

≤ Γds+1 (2 + ds)
−α 2−β(ds+1)

ds+1∏
s=1

γ∗
s (17)

where γ∗ is the non-increasing rearrangement of γ.

Proof. We use Theorem 4.7 and calculate the bound for the weight function wα,β,γ by computing the minimum

M := min
k∈Zd

∥k∥0>ds

Γ−1
∥k∥0

(1 + ∥k∥1)
α

d∏
s=1

(1 + |ks|)β
∏

s∈suppk

γ−1
s .

Since Γ is non-increasing by definition, Γ−1
ds+1 has to be equal to the smallest value. The frequencies in F(d)

u have
exactly |u| nonzero entries, therefore we get

M = Γ−1
ds+1(1 + ds + 1)α(1 + 1)β(ds+1) min

k∈Zd

∥k∥0>ds

∏
s∈u

γ−1
s .

The remaining product becomes minimal for the product of the ds + 1 smallest entries in γ which yields the statement.

Lemma 4.9. Let n ∈ D and γ ∈ (0, 1]d. Then ∑
u⊆D
|u|=n

∏
s∈u

γ2
s ≤ ∥γ∥

2n
2 .

Proof. We rewrite the sum as follows

∑
u⊆D
|u|=n

∏
s∈u

γ2
s =

d∑
i1=1

γ2
i1

d∑
i2=i1+1

γ2
i2 · · ·

d∑
in=in−1+1

γ2
in .

Then every single sum can be estimated by ∥γ∥22, i.e.,

d∑
ij=ij−1+1

γ2
ij ≤

d∑
ij=1

γ2
ij = ∥γ∥22

for j ∈ {2, 3, . . . , d} with equality for j = 1.

13
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Corollary 4.10. Let f ∈ Hwα,β

(Td) with weight function from (15) with POD structure (16), β ≥ 0, α > −β,
Γ ∈ (0, 1]d, and γ ∈ (0, 1]d. Then

∥f − Tdsf∥L2(Td)

∥f∥
Hwα,β

(Td)

≤ Γds+1 (2 + ds)
−α 2−β(ds+1)

ds+1∏
s=1

γ∗
s (18)

where γ∗ = (γ∗
s )

d
s=1 is the non-increasing rearrangement of γ. For functions with isotropic smoothness α = 0 and

dominating mixed smoothness β > 1/2 we have

∥f − Tdsf∥L∞(Td)

∥f∥
Hwα,β

(Td)

≤

√√√√ d∑
n=ds+1

2nΓ2
n (ζ(2β)− 1)

n ∥γ∥2n2

where ζ is the Riemann zeta function. Exponential decay for Γs, i.e., Γs = cs, 0 < c ≤ 1, such that the condition

∥γ∥2 <
1

c
√

2ζ(2β)− 2
(19)

holds, yields the bound

∥f − Tdsf∥L∞(Td)

∥f∥
Hwα,β

(Td)

≤

(
c ∥γ∥2

√
2ζ(2β)− 2

)ds+1

√
1− 2c2 ∥γ∥22 (ζ(2β)− 1)

. (20)

Proof. The bound from statement (18) is a consequence of Theorem 4.6 and can be calculated analogously to the
proof of Corollary 4.8. For the second statement, we calculate the constant in the bound from Theorem 4.7. We use
Lemma 3.4 and the product structure of the weights wα,β(k) to obtain∑

k∈⋃
u⊆D
|u|>ds

F(d)
u

1

w2(k)
=
∑
u⊆D
|u|>ds

∑
k∈F(d)

u

1

Γ−2
|u| (1 + |ks|)

2β∏
s∈u γ−2

s

=
∑
u⊆D
|u|>ds

Γ2
u

∑
k∈(Z\{0})|u|

1(∏
s∈u γ−2

s

) (∏|u|
s=1(1 + |ks|)2β

)
=
∑
u⊆D
|u|>ds

Γ2
|u|
∏
s∈u

γ2
s

∑
k∈Z\{0}

1

(1 + |k|)2β
.

We find an explicit form by replacing the sums with the Riemann zeta function∏
s∈u

γ2
s

∑
k∈Z\{0}

1

(1 + k)2β
=
∏
s∈u

2γ2
s

∑
k∈N

1

(1 + k)2β
= 2|u| (ζ(2β)− 1)

|u| ∏
s∈u

γ2
s .

Applying Lemma 4.9 then gives us the upper bound

d∑
n=ds+1

2nΓ2
n (ζ(2β)− 1)

n
∑
u⊆D
|u|=n

∏
s∈u

γ2
s ≤

d∑
n=ds+1

2nΓ2
n (ζ(2β)− 1)

n ∥γ∥2n2 .

If we choose an exponential decay for Γn, i.e., Γn := cn, 0 < c ≤ 1, the explicit upper bound becomes

d∑
n=ds+1

2nc2n (ζ(2β)− 1)
n ∥γ∥2n2 =

qds+1

1− q
(1− qd−ds)

where q := 2c2 (ζ(2β)− 1) ∥γ∥22 with 0 < q < 1 because of the condition (19).

The bound in Corollary 4.8 and (18) in Corollary 4.10 are independent of the spatial dimensions d of the functions f as
long as they have the same superposition threshold and the norm stays the same. This allows us to circumvent the curse
of dimensionality here and use the ANOVA terms in Uds

for a superposition threshold ds ∈ D. The bound (20) can

14
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Figure 2: Decay of errors from (18), (20), and (17) in relation to their isotropic smoothness α and dominating-mixed
smoothness β with d = 9, ds = 3, dimension dependent coefficients γ = (1/s)9s=1 and order dependent coefficients
Γ = (π−s

√
3
s
)9s=1.

also be considered for d→∞. The dependence on the dimension d is contained within the norm ∥γ∥22. Choosing a
square-summable sequence {γℓ}ℓ∈N results in an upper bound for ∥γ∥2 for any d→∞. In this case the bound can be
made independent of d by the condition (19).

Figure 2 shows the different bounds for weights wα,β with γ = (1/s)9s=1 and Γ = (π−s
√
3
s
)9s=1, see (15). With regard

to the superposition dimension d(sp) for Hwα,β

(Td), cf. (10), one may interpret this as follows: Given f ∈ Hwα,β

(Td),
the value ε(α, β) ∈ (0, 1) of the bound in part (a) of Figure 2 tells us that for δ = 1 − ε(α, β)2 the superposition
dimension d(sp) is smaller or equal to the superposition threshold ds = 3, e.g., ε(0, 1) ≈ 0.0008 and therefore
δ = 0.99999936.

5 ANOVA approximation method

We consider the general problem of approximating a periodic function f : Td → C given certain function evaluations of
f . Specifically, we distinguish two approximation scenarios – black-box approximation and scattered data approximation.
In the case of black-box approximation, we are able to evaluate f at any given point x ∈ Td. Since the evaluations
come at a certain cost, we aim to keep them minimal or require a certain trade-off. For scattered data approximation we
have a finite set of nodes X ⊆ Td and know the function values y = (f(x))x∈X . Here, one cannot add more nodes to
X or choose the locations of the nodes. Both scenarios have a high relevance for problems in various applications.

In this section, we consider an approximation scheme for high-dimensional, periodic functions of a low-dimensional
structure, i.e., functions with a small superposition dimension d(sp) ∈ D for a δ ∈ (0, 1] that is close to one, cf. (10). In
this case the truncation by Tds with a small superposition threshold ds ∈ D will be effective. It has been observed that
functions in many practical applications belong to such a class, see e.g. [6]. In Section 4 we have considered errors
for functions of dominating-mixed and isotropic smoothness defined trough the decay of the Fourier coefficients and
therefore obtained an upper bound for the modified superposition dimension d(sp) from (10). Considering Figure 2, we
know that e.g. POD weights lead to a decay such that the functions are of a low-dimensional structure.

The approximation scheme can be viewed in both approximation scenarios although the details are different. We work
for now with the node set X as well as function evaluations y and keep in mind that X may also be chosen if we are in
the black-box case. The first step is to reduce the ANOVA decomposition to the terms in Uds

, i.e., we approximate

f ≈ Tdsf =
∑

u∈Uds

fu.

The Fourier coefficients ck(Tdsf) can only be nonzero if the frequency k is at most ds-sparse, i.e., ∥k∥0 ≤ ds, see
Corollary 4.2. Based on this, we aim to approximate f by a Fourier partial sum SIf with a finite index set

I ⊆
{
k ∈ Zd : suppk ∈ Uds

}
. (21)
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The challenge is to determine an appropriate index set I . To this end, we employ a special scheme to determine
frequency locations based on the ANOVA terms and an importance ranking on them.

We call the first step active set detection and its aim is to determine an importance ranking on the terms fu with u ∈ Uds

based on the global sensitivity indices ϱ(u, f), cf. (9). This information is also highly relevant to interpret relations in
our data X and y.

Based on the sensitivity indices we build an active set of ANOVA terms U ⊆ Uds
. This relates to the importance of

frequencies and therefore information on how to choose the index set I from (21). Reducing the number of ANOVA
terms and in turn the number of frequencies leads to a reduction of the model complexity. The effects of overfitting are
therefore lessened. In Section 5.1 we consider the details of the active set detection and in Section 5.3 the approximation
with an active set as well as approximation errors.

5.1 Active set detection

The method assumes that the underlying function f is of a low-dimensional structure, i.e., f ≈ Tds
f for some

superposition threshold ds ∈ D. The goal in the active set detection step is to determine an importance ranking for the
ANOVA terms. In order to do this, we choose an appropriate search index set. Since we have no a-priori knowledge
about the importance of the ANOVA terms or the smoothness of the function f , we work with order-dependent finite
index sets I0 = {0}, I1 ⊆ (Z \ {0}), . . . , Ids ⊆ (Z \ {0})ds . This achieves that two ANOVA terms fu and fv with
|u| = |v| are supported on equivalent index sets. We then use the projection operator

PuI := {k ∈ Zd : ku ∈ I,kuc = 0} (22)
to project the index sets and obtain

I(Uds
) =

⋃
u∈Uds

PuI|u|. (23)

This leads to the approximation by a Fourier partial sum

f(x) ≈ Tds
f(x) ≈ SI(Uds )

f(x) =
∑

k∈I(Uds )

ck(f) e
2πik·x. (24)

The Fourier coefficients ck(f) in (24) are unknown and we aim to determine approximations for them from the data X
and y. To this end, we consider the least-squares problem

f̂sol = argmin

f̂∈C|I(Uds
)|

∥∥∥y − FI(Uds )
f̂
∥∥∥2
2

(25)

with Fourier matrix FI(Uds )
=
(
e2πik·x

)
x∈X,k∈I(Uds )

. If the Fourier matrix has full rank, the elements of the solution

vector f̂sol = (f̂k)k∈I(Uds )
are the unique least-squares approximation to the Fourier coefficients, i.e., f̂k ≈ ck(f),

with respect to X and y. Depending on the approximation scenario, there are different methods of solving least-squares
problems of the type (25). We refer to Section 5.2 for details.

We use the approximate Fourier coefficients f̂k to build the approximate Fourier partial sum

SI(Uds )
f(x) ≈ SX

I(Uds )
f(x) =

∑
k∈I(Uds )

f̂k e
2πik·x (26)

which provides an initial approximation to the function f . In order to achieve a Fourier matrix FI(Uds )
with full rank

and combat the effects of overfitting, we may need to severely limit the number of frequencies in the order-dependent
sets I1, I2, . . . , Ids

. Details on this will be considered in the following subsections for the specific approximation
scenarios.

In order to determine an importance ranking on the ANOVA terms, we assume that the global sensitivity indices of
SX
I(Uds )

f and f behave similarly, i.e., it holds that

ϱ(u1, S
X
I(Uds )

f) ≤ ϱ(u2, S
X
I(Uds )

f) =⇒ ϱ(u1, f) ≤ ϱ(u2, f) (27)

for u1,u2 ∈ Uds
. This allows us to use a threshold vector ε ∈ [0, 1]ds to define an active set of ANOVA terms that

only contains the important terms with respect to ε

U
(ε)
X,y := {v ⊆ D : ∃u ∈ Uds

: v ⊆ u and ϱ(u, SX
I(Uds )

f) > ε|u|}. (28)

The inclusion condition (11) is fulfilled by definition. We reduce the ANOVA decomposition to this set of terms to
determine an approximation for f in Section 5.3.
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5.2 Least-squares approximation

In this section, we discuss the solution of least-squares problems of the form

min
f̂∈C|I(U)|

∥∥∥y − FI(U)f̂
∥∥∥2
2

(29)

with a Fourier matrix FI(U) =
(
e2πik·x

)
x∈X,k∈I(U)

. Here, U is an arbitrary subset of ANOVA terms and for each term

we have a given finite frequency index set Iu ⊆ (Z \ {0})|u|. The set

I(U) =
⋃
u∈U

PuIu (30)

is obtained through the projections (22).

The following remark shows that the Fourier matrix can be structured with respect to the ANOVA terms. Moreover, we
can decompose the matrix-vector multiplications with both, FI(U) and its adjoint F ∗

I(U).

Remark 5.1. Let FI(U) be a Fourier matrix with respect to a node set X and an index set I(U) with a subset of ANOVA
terms U ⊆ P(D) and index sets Iu ⊆ (Z \ {0})|u|, u ∈ U . Then

F f̂ = (Fu1
Fu2

· · · Fun
) f̂

where u1,u2, . . . ,un with n = |U | is a numbering of the subsets of coordinate indices in U such that f̂ =(
f̂u1

f̂u2
· · · f̂un

)⊤
. The Fourier matrices are Fu =

(
e2πiℓ·xu

)
x∈X,ℓ∈Iu

. The matrix-vector product with F

can therefore be decomposed as
F f̂ =

∑
u∈U

Fuf̂u

with vector components f̂u. For the adjoint product F ∗f with a vector f ∈ C|X| we obtain the result â ∈ C|I(U)| by
computing the products

âu = F ∗
uf , ∀u ∈ U.

Then we have the result vector â = (âu1
âu2

· · · âun
)
⊤.

5.2.1 Black-box scenario

In the case of black-box approximation, i.e., the set X can be chosen, we have to determine an appropriate special
discretization for index sets of the type I(U). Here, we have different possibilities. One might think of rank-1 lattices
that have been used for integration before, see e.g. [8], and approximation, see e.g. [26, 30]. For a general introduction
to lattice rules, we refer to Section 2.1. Sparse grid sampling related to the Smolyak algorithm is a further possibility,
cf. [15, 21, 22, 23].

In the following, we focus on using reconstructing single rank-1 lattice for function approximation. If we have a
reconstructing single rank-1 lattice Λ(z,M, I(U)) ⊆ Zd for a generating vector z ∈ Zd and size M ∈ N with respect
to an index set I(U), then

F ∗
I(U)FI(U) = M · I (31)

with I the identity matrix, see [43, Chapter 8.2]. Then the solution to problem (29) is unique and given by the
multiplication of the Moore-Penrose inverse F †

I(U) with y, see e.g. [3]. Through the property (31) the Moore-Penrose
inverse is simplified to

F †
I(U) =

1

M
F ∗
I(U), (32)

i.e., a multiplication with the adjoint matrix. This allows us to efficiently compute approximations for the Fourier
coefficients of f if the nodes form a reconstructing rank-1 lattice.

It remains the issue of determining such a reconstructing rank-1 lattice given an index set of type I(U). In [43, Theorem
8.16] it was shown that reconstructing lattices exist if the lattice size M is sufficiently large. Since the evaluations of f
come at a certain cost, it is necessary to consider the lattice size for our special types of index sets which we do in the
following.

An important quantity to get estimations on the lattice size is the difference set D(I(U)) from (2) since the result [43,
Theorem 8.16] tells us that there exists a reconstructing rank-1 lattice with prime cardinality

|I(U)| ≤M ≤ |D(I(U))| .
In the following, we proof properties and show estimates on the cardinality of both I(U) and D(I(U)).
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Lemma 5.2. Let U ⊆ P(D) be a subset of ANOVA terms and Iu ⊆ Z|u|, u ∈ U , finite symmetric frequency sets. Then
we have

D(I(U)) =
⋃
u∈U
v⊆u

{k − h : k ∈ PuIu,h ∈ PvIv}.

Proof. It is easy to see that
⋃

u∈U
v⊆u
{k − h : k ∈ PuIu,h ∈ PvIv} ⊆ D(I(U)) since PuIu ⊆ I(U) for every u ∈ U

and v ∈ U for all v ⊆ u ∈ U due to (11). In order to show the other inclusion we take an element ℓ ∈ D(I(U)). By
the uniqueness property of the ANOVA decomposition we know that there exists u,v ∈ U such that ℓ = k − h with
k ∈ PuIu and h ∈ PvIv . Taking the symmetry of the index sets Iu into account, we have proven the statement.

The following lemma gives an estimate for the size of the difference set of index sets of type I(U) if there exists an
upper bound on the cardinality of the term dependent sets Iu.

Lemma 5.3. Let U be a subset of ANOVA terms and Iu ⊆ (Z \ {0})|u|,u ∈ U, symmetric frequency sets. Then the
cardinality of the difference set of I(U) is bounded by

|D(I(U))| ≤
∑
u∈U

∑
v⊆u

|Iu| |Iv| ≤ 2maxu∈U |u| |U |max
u∈U
|Iu|2 . (33)

Proof. We estimate the cardinality of the difference set by applying Lemma 5.2

|D(I(U))| ≤
∑
u∈U

∑
v⊆u

|Iu| |Iv| .

Here, we do not have equality since the union in Lemma 5.2 is not necessarily disjoint. Applying the upper bound on
the cardinality of the sets Iu, we arrive at∑

u∈U

∑
v⊆u

|Iu| |Iv| ≤
∑
u∈U

∑
v⊆u

max
u∈U
|Iu|2 ≤ max

u∈U
|Iu|2 2maxu∈U |u| ∑

u∈U

1

≤ 2maxu∈U |u| |U |max
u∈U
|Iu|2 .

Remark 5.4. The cardinality of Uds
is bounded by (e · d/ds)ds , see Lemma 4.3. Therefore the estimate in (33) becomes

|D(I(Uds
))| ≤

(
2e · d
ds

)ds

max
u∈U
|Iu|2 .

In the following, we consider special term-dependent frequency index sets of the structure

Iu :=
{
ℓ ∈ (Z \ {0})|u| : w(k) ≤ Nu for k ∈ Zd with ku = ℓ, kuc = 0

}
(34)

with a subset of coordinate indices ∅ ≠ u ⊆ D, a weight function w : Zd → [1,∞) and cut-off Nu ∈ N. For a given
subset of ANOVA terms U ⊆ P(D) we estimate the cardinalities of both, I(U) and the difference set D(I(U)).

Lemma 5.5. Let U ⊆ P(D) be a subset of ANOVA terms, I∅ = {0}, and Iu, ∅ ≠ u ∈ U , finite frequency sets as in
(34) for a weight function w : Zd → [1,∞) and Nu ∈ N. Moreover, let hmin : N→ [1,∞) and hmax : N→ [1,∞) be
functions such that

c hmin(Numin
) ≤ min

u∈U\{∅}
|Iu| and max

u∈U
|Iu| ≤ C hmax(Numax

)

with umin = argminu∈U\{∅} |Iu|, umax = argmaxu∈U |Iu|, and 0 < c ≤ C. Then we have for the asymptotic
behavior of the cardinality of I(U)

c hmin(Numin) ≤
|I(U)|
|U |

≤ C hmax(Numax).

The constants do not depend on the spatial dimension d.
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Proof. Since the projected sets PuIu, u ∈ U , are disjoint, we have

|I(U)| =
∑
u∈U

|Iu| .

In order to show the upper bound, we estimate the cardinality of each index set by hmax∑
u∈U

|Iu| ≤
∑
u∈U

C hmax(Numax
) ≤ C hmax(Numax

)
∑
u∈U

1 = |U | C hmax(Numax
).

The lower bound follows with similar arguments.

Corollary 5.6. Let U ⊆ P(D) be a subset of ANOVA terms, I∅ = {0}, and Iu, ∅ ≠ u ∈ U , finite symmetric frequency
sets as in (34) for a weight function w : Zd → [1,∞) and Nu ∈ N. Moreover, let hmax be a function as in Lemma 5.5.
Then

|D(I(U))| ≤ C2 2maxu∈U |u| |U |h2
max(Numax

).

Proof. The corollary is a direct consequence of Lemma 5.3 and Lemma 5.5.

We may apply [43, Algorithm 8.17] to construct the reconstructing rank-1 lattice Λ(z,M, I(U)) via a component-by-
component approach. Choosing the set X = Λ(z,M, I(U)) as sampling nodes yields a Moore-Penrose inverse of type
(32) and we are able to compute the solution to (29) by multiplying with the adjoint Fourier matrix. This computation
can be done efficiently using a lattice fast Fourier transform or LFFT, see [43, Section 8.2.2].

5.2.2 Scattered data scenario

In this section, we consider the scenario of scattered data approximation, i.e., we have a fixed set of nodes X ⊆ Td.
Here, we aim to solve the least-squares problem (29) with the iterative LSQR method [42]. Specifically, we are
interested in the matrix-free variant, i.e., we do not have to construct the system matrix FI(U) ∈ C|X|,|I(U)| explicitly.
The curse of dimensionality would quickly lead to the size of the matrix becoming intractable. The matrix-free variant
requires two algorithms, one which takes a vector a ∈ C|I(U)| as an input and returns the result of the matrix-vector
multiplication FI(U)a and one that takes â ∈ C|X| as an input and returns the result of F ∗

I(U)â. If we take Remark 5.1
into account, it is only necessary to provide algorithms for fast multiplication with Fourier matrices FIu ∈ C|X|,|Iu|,
u ∈ U .

The existence of such algorithms depends on the choice of the specific index sets Iu. For full grids, i.e., frequency sets
of the type

Iu = Gu
N =

{
k ∈ Z|u| : −Nu

2
≤ ki ≤

Nu

2
− 1, i = 1, 2, . . . , |u|

}
, Nu ∈ 2N,

the non-equispaced fast Fourier transform (NFFT) was introduced in [31]. Moreover, for hyperbolic cross index sets of
the form

Iu = H |u|
n =

⋃
j∈N|u|

0

∥j∥1=n

Ĝj

with Ĝn = ×|u|
s=1Ĝns

and Ĝns
= (−2ns−1, 2ns−1]|u| ∩ Z, we have the non-equispaced hyperbolic cross fast Fourier

transform (NHCFFT), cf. [10].

5.3 Approximation with active set

Now that we have obtained the active set U (ε)
X,y from (28), we aim to construct an approximation using only these

ANOVA terms. The global sensitivity indices ϱ(u, SX
I(Uds )

f) calculated from the approximation SX
I(Uds )

f in (26)

provide us with a basis to choose term-dependent frequency index sets Iu ⊆ (Z \ {0})|u|, ∅ ̸= u ∈ U
(ε)
X,y. A higher

sensitivity index suggests that the term is more important to the function and therefore a larger corresponding index set
could be advisable.

We project the index sets as before to obtain I(U
(ε)
X,y), see (30). Note that in general and depending on the threshold ε,

we have reduced the number of frequencies significantly. This is a sensible measure to reduce the effects of overfitting.
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Now, we approximate f by the Fourier partial sum

f(x) ≈ T
U

(ε)
X,y

f(x) ≈ S
I(U

(ε)
X,y)

f(x) =
∑

k∈I(U
(ε)
X,y)

ck(f) e
2πik·x.

The Fourier coefficients ck(f) are again unknown and we determine them by least-squares approximation from X and
y. The unique solution is given by

f̂sol = argmin

f̂∈C|I(U
(ε)
X,y

)|

∥∥∥y − F
I(U

(ε)
X,y)

f̂
∥∥∥2
2

(35)

if the Fourier matrix F
I(U

(ε)
X,y)

=
(
e2πik·x

)
x∈X,k∈I(U

(ε)
X,y)

has full rank. Details on how to solve this system for

scattered data and black-box approximation can be found in Section 5.2. We use the elements of the solutions vector
f̂sol = (f̂k)k∈I(U

(ε)
X,y)

to form the approximate Fourier partial sum and our solution

f(x) ≈ S
I(U

(ε)
X,y)

f(x) ≈ SX

I(U
(ε)
X,y)

f(x) =
∑

k∈I(U
(ε)
X,y)

f̂k e
2πik·x.

The following algorithm summarizes the proposed method.

Algorithm 1 ANOVA Approximation Method

Input: X ⊆ Td finite node set
y = (f(x))x∈X function values
ds ∈ D superposition threshold

1: Choose finite order-dependent search sets I1 ⊆ Z \ {0}, . . . , Ids
⊆ (Z \ {0})ds .

2: Compute solution of least-squares problem (25).

3: f̂sol = (f̂k)k∈I(Uds )
← argmin

f̂∈C|I(Uds
)|
∥∥∥y − FI(Uds )

f̂
∥∥∥2
2

4: Compute global sensitivity indices for approximation SX
I(Uds )

f using (9).

5: ϱ(u, SX
I(Uds )

f)←

∥∥∥(SX
I(Uds

)f)u

∥∥∥2

L2(Td)∥∥∥∥SX
I(Uds

)
f

∥∥∥∥2

L2(Td)

−
∣∣∣∣c0(SX

I(Uds
)
f

)∣∣∣∣2 , u ∈ Uds

6: Choose threshold vector ε ∈ [0, 1]ds and build active set.
7: U

(ε)
X,y ←

{
v ⊆ D : ∃u ∈ Uds

: v ⊆ u and ϱ(u, SX
I(Uds )

f) > ε|u|
}

8: Use information from global sensitivity indices to choose finite index sets Iu ⊆ (Z \ {0})|u| per ANOVA term in
U

(ε)
X,y .

9: Compute solution of least-squares problem (35).

10: f̂sol = (f̂k)k∈I(U
(ε)
X,y)
← argmin

f̂∈C|I(U
(ε)
X,y

)|
∥∥∥y − F

I(U
(ε)
X,y)

f̂
∥∥∥2
2

Output: f̂k ∈ C,k ∈ I(U
(ε)
X,y) approximations to Fourier

coefficients ck(f)
ϱ(u, SX

I(Uds )
f) ∈ [0, 1],u ∈ Uds global sensitivity indices of SX

I(Uds )
f

or importance ranking on the terms

6 Error analysis

The error of our approximation method measured in the norm of some space H ⊆ L2(Td) can be decomposed into
multiple components by the triangle inequality∥∥∥f − SX

I(U)f
∥∥∥
H
≤ ∥f − TUf∥H︸ ︷︷ ︸

ANOVA truncation error

+
∥∥∥TUf − SX

I(U)f
∥∥∥
H︸ ︷︷ ︸

approximation error

for an active set of ANOVA terms U ⊆ Uds with superposition threshold ds ∈ D. We distinguish between the ANOVA
truncation error and the approximation error. Here, the analysis of the ANOVA truncation error is independent of the
concrete approximation problem (35) and the scenario (scattered data or black-box).
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6.1 ANOVA truncation error

The ANOVA truncation error is related to the truncation of the ANOVA decomposition to the set Uds
with superposition

threshold ds ∈ D and the active set U ⊆ Uds
. We can separate the ANOVA truncation error as follows

∥f − TUf∥H ≤ ∥f − Tds
f∥H︸ ︷︷ ︸

truncation by ds

+ ∥Tds
f − TUf∥H︸ ︷︷ ︸

active set truncation

. (36)

Here, we bring Tds
in with the aim to relate the error to our function class of low-order interactions, see (12). To control

the second term, we require assumptions on the sensitivity indices of the ANOVA terms in Uds
\ U . Since the error is

only related to the structure of the function it can be considered independently of any specific approximation scenario
like black-box or scattered data approximation. We show bounds for this error in the case that f is an element of a
Sobolev type space Hw(Td) or a Wiener algebra Aw(Td) and H is L2(Td) or L∞(Td).

Theorem 6.1. Let f ∈ Hw(Td) with a weight function w : Zd → [1,∞) and superposition dimension d(sp), see (10),
for a δ ∈ (0, 1). If there exists a subset of ANOVA terms U ⊆ Ud(sp) such that

ϱ(u, f) =
σ2(fu)

σ2(f)
< ε, ε > 0,

for every u ∈ Ud(sp) \ U then

∥f − TUf∥L2(Td)

∥f∥Hw(Td)

≤
√
1− δ +

√
|Ud(sp) \ U | ε.

Proof. The ANOVA truncation error can be separated as in (36). We prove an upper bound for the active set truncation.
With Parseval’s equality and the assumption on the global sensitivity indices, we estimate

∥Td(sp)f − TUf∥2L2(Td) =
∑

u∈U
d(sp)\U

∑
k∈F(d)

u

|ck(f)|2 ≤ σ2(f) |Ud(sp) \ U | ε. (37)

Clearly, we have σ2(f) ≤ ∥f∥2L2(Td) ≤ ∥f∥
2
Hw(Td).

Theorem 6.2. Let f ∈ Aw(Td) with a weight function w : Zd → [1,∞). If there exsists a subset of ANOVA terms
U ⊆ Uds

, ds ∈ D, such that ∑
k∈F(d)

u
|ck(f)|∑

k∈Zd |ck(f)|
< ε1, ε1 > 0 (38)

for every u ∈ Uds
\ U and we have

∥f − Tds
f∥L∞(Td)

∥f∥Aw(Td)

< ε2, ε2 > 0,

then
∥f − TUf∥L∞(Td)

∥f∥Aw(Td)

≤ ε2 +
√
|Uds

\ U | ε1.

Proof. We split the ANOVA truncation error as in (36) and prove an upper bound for the second part. To this end, we
estimate the L∞ norm of f by the absolute values of its Fourier coefficients and apply (38) to obtain

∥Tds
f − TUf∥L∞(Td) ≤

∑
u∈Uds\U

∑
k∈F(d)

u

|ck(f)| ≤ |Uds
\ U | ε1

∑
k∈Zd

|ck(f)| .

Naturally, it holds that
∑

k∈Zd |ck(f)| ≤ ∥f∥Aw(Td) which leads to the desired estimate.

Note that in order to prove a bound for the error in L∞, we formulated a condition on an ℓ1 equivalent of the global
sensitivity indices ϱ(u, f) in accordance with the Wiener algebra norm.
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6.2 Approximation error

In this section, we focus on the approximation error which we separate into two parts as well∥∥∥TUf − SX
I(U)f

∥∥∥
H
≤
∥∥TUf − SI(U)f

∥∥
H︸ ︷︷ ︸

truncation error

+
∥∥∥SI(U)f − SX

I(U)f
∥∥∥
H︸ ︷︷ ︸

aliasing error

(39)

with H ∈ {L2(Td),L∞(Td)}, a subset of ANOVA terms U ⊆ P(D), and a finite frequency index set I(U) ⊆ Zd of
structure (30) with sets Iu as in (34). The truncation error remains independent of the approximation scenario and can
be estimated by the norms in Aw and Hw.

Lemma 6.3. Let f ∈ Hw(Td), w : Zd → [1,∞) a weight function, and I(U) ⊆ Zd a finite frequency index set of type
(30) with U ⊆ P(D). Then the relative truncation error can be estimated as∥∥TUf − SI(U)f

∥∥
L2(Td)

∥f∥Hw(Td)

≤ 1

minu∈U Nu
. (40)

If in addition we have
∑

k∈Zd
1

w2(k) <∞, we can estimate∥∥TUf − SI(U)f
∥∥
L∞(Td)

∥f∥Hw(Td)

≤
√√√√∑

u∈U

∑
k∈F(d)

u \PuIu

1

w2(k)
. (41)

Proof. In order to prove (40) we employ Parseval’s identity and use the weight w(k)∥∥TUf − SI(U)f
∥∥2
L2(Td)

=
∑
u∈U

∑
k∈F(d)

u \PuIu

|ck(f)|2 =
∑
u∈U

∑
k∈F(d)

u \PuIu

w2(k)

w2(k)
|ck(f)|2

≤
∑
u∈U

1

N2
u

∑
k∈F(d)

u \PuIu

w2(k) |ck(f)|2 ≤
1

minu∈U N2
u

∥f∥2Hw(Td) .

For the bound (41) we estimate the norm by the absolute sum of the Fourier coefficients and use the Cauchy-Schwarz
inequality ∥∥TUf − SI(U)f

∥∥
L∞(Td)

=
∑

k∈⋃
u∈U F(d)

u \I(U)

|ck(f)| =
∑

k∈⋃
u∈U F(d)

u \I(U)

w(k)

w(k)
|ck(f)|

≤ ∥f∥Hw(Td)

√√√√∑
u∈U

∑
k∈F(d)

u \PuIu

1

w2(k)
.

Lemma 6.4. Let f ∈ Aw(Td) with w : Zd → [1,∞) a weight function such that
∑

k∈Zd
1

w2(k) <∞, and I(U) ⊆ Zd

a finite frequency index set of type (30) with U ⊆ P(D) and sets Iu as in (34). Then the relative truncation error can
be estimated as ∥∥TUf − SI(U)f

∥∥
L∞(Td)

∥f∥Aw(Td)

≤ min

 1

minu∈U Nu
,max
u∈U

√√√√ ∑
k∈F(d)

u \PuIu

1

w2(k)

 .

Proof. The proof requires similar steps to the proof of Lemma 6.3.

For the aliasing error in (39), we start by considering the black-box approximation case where we solve the least-squares
problem as described in Section 5.2.
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Theorem 6.5. Let f ∈ Hw(Td) with a weight function w : Zd → [1,∞) such that
∑

k∈Zd
1

w2(k) <∞ and I(U) ⊆ Zd

a finite frequency index set of type (30) with sets Iu as in (34). Moreover, we have a reconstructing rank-1 lattice
Λ(z,M, I(U)) for a generating vector z ∈ Zd and lattice size M ∈ N. Then the aliasing error can be estimated as∥∥∥SI(U)f − S

Λ(z,M,I(U))
I(U) f

∥∥∥
L2(Td)

∥f∥Hw(Td)

≤

√√√√ ∑
k∈Zd\I(U)

1

w2(k)
. (42)

Furthermore, if f ∈ Aw(Td) we get for the L∞-norm∥∥∥SI(U)f − S
Λ(z,M,I(U))
I(U) f

∥∥∥
L∞(Td)

∥f∥Aw(Td)

≤ 1

infk∈Zd\I(U) w(k)
. (43)

Proof. We show the bound (42) by first applying Parseval’s identity and (3)∥∥∥SI(U)f − S
Λ(z,M,I(U))
I(U) f

∥∥∥2
L2(Td)

=
∑

k∈I(U)

∣∣∣f̂k − ck(f)
∣∣∣2

=
∑

k∈I(U)

∣∣∣∣∣∣
∑

h∈Λ⊥(z,M)\{0}
ck+h(f)

∣∣∣∣∣∣
2

.

We then incorporate the weight and utilize the Cauchy-Schwarz inequality to obtain

∥∥∥SI(U)f − S
Λ(z,M,I(U))
I(U) f

∥∥∥2
L2(Td)

=
∑

k∈I(U)

∣∣∣∣∣∣
∑

h∈Λ⊥(z,M)\{0}

w(k + h)

w(k + h)
ck+h(f)

∣∣∣∣∣∣
2

≤
∑

k∈I(U)

 ∑
h∈Λ⊥(z,M)\{0}

w2(k + h) |ck+h(f)|2
×

×

 ∑
h∈Λ⊥(z,M)\{0}

1

w2(k + h)


From [43, Lemma 8.13] we know that for fixed k ∈ I(U) we have disjoint sets

Mk :=
{
k + h : h ∈ Λ⊥(z,M) \ {0}

}
⊆ Zd \ I(U).

This means we are able to estimate∑
h∈Λ⊥(z,M)\{0}

w2(k + h) |ck+h(f)|2 =
∑
ℓ∈Mk

w2(ℓ) |cℓ(f)|2

≤
∑
ℓ∈Zd

w2(ℓ) |cℓ(f)|2 = ∥f∥2Hw(Td)

such that ∥∥∥SI(U)f − S
Λ(z,M,I(U))
I(U) f

∥∥∥2
L2(Td)

≤ ∥f∥2Hw(Td)

∑
k∈I(U)

∑
h∈Λ⊥(z,M)\{0}

1

w2(k + h)
.

Using that the sets Mk are disjoint and
⋃

k∈I(U) Mk ⊆ Zd \ I(U) yields∑
k∈I(U)

∑
h∈Λ⊥(z,M)\{0}

1

w2(k + h)
=

∑
k∈I(U)

∑
ℓ∈Mk

1

w2(ℓ)

=
∑

ℓ∈⋃
k∈I(U) Mk

1

w2(ℓ)
≤

∑
ℓ∈Zd\I(U)

1

w2(ℓ)
.

The L∞-bound (43) follows directly from [43, Theorem 8.14].
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In the following we consider the approximation error for scattered data approximation with a fixed node set X ⊆ Td.
Previously, we assumed that the index set I(U) and the node set X are such that the Fourier matrix FI(U) has full
rank. In this case the least-squares problem (29) has a unique solution. Assuming that the nodes in X are i.i.d. random
variables that are uniformly distributed in Td, it is possible to achieve good bounds on the approximation error, see
[2, 20, 29, 39].

Lemma 6.6. Let f ∈ Hw(Td) with a weight function w : Zd → [1,∞) such that
∑

k∈Zd
1

w2(k) < ∞, X ⊆ Td a
finite set of i.i.d. uniformly distributed points, y = (f(x))x∈X , and I(U) ⊆ Zd a finite frequency index set of type
(30) with U ⊆ P(D) a subset of ANOVA terms and sets Iu as in (34). If for the number of frequencies we have
|I(U)| ≤ |X|

7r log|X| , r > 0, then

sup
∥f∥

Hw(Td)
≤1

∑
x∈X

∣∣(f − SI(U)f
)
(x)
∣∣2

|X|
≤ 5max

θ2I(U),
8rκ2 log |X|
|X|

∑
k∈Zd\I(U)

1

w2(k)


with a probability of at least 1− 3 |X|1−r for θI(U) =

∥∥f − SI(U)f
∥∥
L2(Td)

and κ = 1+
√
5

2 .

Proof. The setting of this lemma is a special case of [39, Theorem 5.1].

The following theorem deals with the actual approximation error by incorporating the previous lemma.

Theorem 6.7. Let f ∈ Hw(Td) with a weight function w : Zd → [1,∞) such that
∑

k∈Zd
1

w2(k) <∞, I(U) ⊆ Zd a
finite frequency index set of type (30) with sets Iu as in (34). Moreover, U ⊆ P(D), and SX

I(U)f are the corresponding
approximate Fourier partial sum obtained through the scattered data approximation method described in Section 5.2. If
the elements of X ⊆ Td are i.i.d. random variables uniformly distributed on Td and for the number of frequencies we
have |I(U)| ≤ |X|

7r log|X| , r > 0, then∥∥∥SI(U)f − SX
I(U)f

∥∥∥
L2(Td)

∥f∥Hw(Td)

≤

√√√√√8max

θ2I(U), κ
2
log |X|
|X|

∑
k∈Zd\I(U)

1

w2(k)


with a probability of at least 1− 3 |X|1−r for θI(U) =

∥∥f − SI(U)f
∥∥
L2(Td)

and κ = 1+
√
5

2 .

Proof. We denote the Fourier coefficients with ĉ = (ck(f))k∈I(U) and the approximate Fourier coefficients computed
by Algorithm 1 with f̂ = (f̂k)k∈I(U). With Parseval’s identity as well as the Moore-Penrose inverse we obtain

∥∥∥SI(U)f − SX
I(U)f

∥∥∥
L2(Td)

=

√√√√ ∑
k∈I(U)

∣∣∣f̂k − ck(f)
∣∣∣2 =

∥∥∥f̂ − ĉ
∥∥∥
2

=

∥∥∥∥(F ∗
I(U)FI(U)

)−1

F ∗
I(U)y − ĉ

∥∥∥∥
2

=

∥∥∥∥(F ∗
I(U)FI(U)

)−1

F ∗
I(U)

(
y − FI(U)ĉ

)∥∥∥∥
2

.

We use the properties of the spectral norm and estimate further

≤
∥∥∥∥(F ∗

I(U)FI(U)

)−1

F ∗
I(U)

∥∥∥∥
2

∥∥y − FI(U)ĉ
∥∥
2

=

∥∥∥∥(F ∗
I(U)FI(U)

)−1

F ∗
I(U)

∥∥∥∥
2

√∑
x∈X

∣∣(f − SI(U)f
)
(x)
∣∣2 .

Applying [39, Theorem 2.3] yields

sup
∥f∥

Hw(Td)
≤1

∥∥∥SI(U)f − SX
I(U)f

∥∥∥
L2(Td)

≤ sup
∥f∥

Hw(Td)
≤1

√
2

|X|
∑
x∈X

∣∣(f − SI(U)f
)
(x)
∣∣2.
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Finally, we use Lemma 6.6 to obtain our bound

sup
∥f∥

Hw(Td)
≤1

∥∥∥SI(U)f − SX
I(U)f

∥∥∥
L2(Td)

≤

√√√√√8max

θ2I(U), κ
2
log |X|
|X|

∑
k∈Zd\I(U)

1

w2(k)


with a probability of at least 1− 3 |X|1−r.

This concludes the consideration of the error of the presented method in both approximation scenarios. We were able to
achieve bounds for L2 and L∞ for functions in weighted Wiener algebras and Sobolev type spaces.

7 Numerical Results

We present numerical results for the method described in Section 5 for a test function f : [0, 1)9 → R,

f(x) := B2(x1)B4(x5) +B2(x2)B4(x6) +B2(x3)B4(x7) +B2(x4)B4(x8)B6(x9), (44)

where B2, B4 and B6 are parts of univariate, shifted, scaled and dilated B-splines of order 2, 4, and 6, respectively, see
Figure 3 for illustration. Their Fourier series is given by

Bj(x) := cj
∑
k∈Z

sincj
(
π · k
j

)
cos(π · k) e2πik·x

with sinc(x) := sin(x)/x and the constants c2 :=
√
3/4, c4 :=

√
315/604, c6 :=

√
277200/655177 such that

∥Bj∥L2(Td) = 1. This allows the direct computation of the Fourier coefficients ck(f) and the norm ∥f∥L2(Td). The
ANOVA terms fu are only nonzero for

u ∈ U∗ := P({1, 5}) ∪ P({2, 6}) ∪ P({3, 7}) ∪ P({4, 8, 9}).
The function f therefore has an exact low-dimensional structure for ds = 3, i.e., T3f = f . This leads to ds = 3 being
the optimal choice for the superposition threshold with no error caused by ANOVA truncation since it corresponds to
the superposition dimension d(sp) for δ = 1, see (13). In an approximation scenario with an unknown function f this
information is of course not known.

We consider two errors

εℓ2 =

∥∥∥y − (SX
I(Uds )

f(x))x∈X

∥∥∥
2

∥y∥2
, and εL2 =

∥∥∥f − SX
I(Uds )

f
∥∥∥
L2(T9)

∥f∥L2(T9)

. (45)

Here, the error εℓ2 can be regarded as a training error since it is taken at the given sampling set X and the error εL2 as a
type of generalization error since it measures the error in the Fourier coefficients. Since our goal is to find the important
ANOVA terms, i.e., the terms in U∗, we expect to have an interval (or gap) in which to choose the order-dependent
threshold ε ∈ [0, 1]ds . Therefore, we define

I(j) =

{
∅ : assumption (27) is not fulfilled
(a(j), b(j)) : assumption (27) is fulfilled

with 1 ≤ j ≤ ds and

a(j) := max
{
ϱ(u, SX

I(Uds )
f) : u ∈ Uds

\ U∗, |u| = j
}
,

b(j) := min
{
ϱ(u, SX

I(Uds )
f) : u ∈ U∗, |u| = j

}
.

Here, the assumption (27) is to be understood for every order of terms, i.e., for u and v with |u| = |v| = j.
Remark 7.1. The norm occurring in the error εL2 can be calculated using Parseval’s identity∥∥∥f − SX

I(Uds )
f
∥∥∥2
L2

= ∥f∥2L2
+

∑
k∈I(Uds )

∣∣∣ck(f)− f̂k

∣∣∣2 − ∑
k∈I(Uds )

|ck(f)|2

which is possible since we know the exact Fourier coefficients and the norm of the function f . In general, this error
cannot be computed.
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Figure 3: B-splines B2, B4, and B6 over T ∼= [0, 1).

7.1 Scattered Data Approximation

For our numerical experiments we use one sampling set X ⊆ T9 of uniformly distributed nodes with M := |X| =
2.5 · 106, and an evaluation vector y = (f(x))x∈X . We are going to start by choosing three as the superposition
threshold ds while later reducing it to two which allows us to see the effect of truncating an ANOVA term. Our
primary aim for now is to detect the ANOVA terms in U∗ which we achieve using the first step of our method, see
Section 5.1. To this end, we choose a frequency index set I(Uds) ⊆ Z9, cf. (24), through order-dependent sets
I0 = {0}, I1 = {−N1/2, . . . , N1/2− 1}, I2 = {−N2/2, . . . , N2/2− 1}2, and I3 = {−N3/2, . . . , N3/2− 1}3 with
N1, N2, N3 ∈ 2N. The method gives us an approximation SX

I(Uds )
f .

Results of numerical experiments with the function f from (44) and different choices for the bandwidths N1, N2, and
N3 are displayed in Table 1. They show that it is indeed possible to detect the ANOVA terms in U∗ using trigonometric
polynomials of small degrees. Moreover, both errors are roughly of the same order. Since our number of samples M is
fixed, we are looking for values N such that one balances the effects of underfitting and overfitting. The experiments
suggest that the choice in examples 5 and 8 is close to optimal. In Figure 4 we depicted the global sensitivity indices
ϱ(u, SX

I(Uds )
f), cf. Algorithm 1, for example 8 from Table 1. The one-dimensional sets {i}, i = 1, . . . , 9, all have large

indices as they are all in U∗ while the two dimensional sets

{1, 5}, {2, 6}, {3, 7}, {4, 8}, {4, 9}, {8, 9} ∈ U∗

are clearly separated from the two dimensional sets in Uds \ U∗. The same holds for the one three-dimensional term
{4, 8, 9} ∈ U∗. The size of the intervals I(j) suitable to choose the parameters εj is especially relevant since it separates
important from unimportant terms.

Since there exists N , and ε such that we are able to recover the set of ANOVA terms U∗, we set U (ε)
X,y = U∗ from now

on. We aim to improve our approximation quality with the given data by solving the minimization problem (35). Here,
we could choose individual index sets for every ANOVA term in U∗ to form I(U∗) based on the global sensitivity
indices, but for our function order-dependence can be maintained. Table 2 shows the results of the approximation using
the index set I(U∗).
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size of index sets relative errors

N |I(Uds
)| εℓ2 εL2

I(1), I(2), I(3)

1 [256, 32, 8] 65704 4.7 · 10−3 4.8 · 10−3 (0.0, 0.021)
(3.0 · 10−8, 0.019)
(1.2 · 10−8, 0.026)

2 [256, 32, 16] 320392 2.1 · 10−3 2.4 · 10−3 (0.0, 0.021)
(7.2 · 10−9, 0.019)
(2.5 · 10−8, 0.026)

3 [256, 32, 32] 2539336 2.6 · 10−2 2.8 · 10−2 (0.0, 0.016)
(8.3 · 10−5, 0.015)
(2.5 · 10−3, 0.023)

4 [256, 64, 8] 173992 4.4 · 10−3 4.7 · 10−3 (0.0, 0.021)
(1.1 · 10−7, 0.019)
(1.1 · 10−8, 0.026)

5 [256, 64, 16] 428680 1.6 · 10−3 1.9 · 10−3 (0.0, 0.021)
(1.8 · 10−8, 0.019)
(1.6 · 10−8, 0.026)

6 [256, 64, 32] 2647624 2.5 · 10−2 3.2 · 10−2 (0.0, 0.015)
(4.0 · 10−4, 0.015)
(2.9 · 10−3, 0.022)

7 [512, 64, 8] 176296 4.4 · 10−3 4.7 · 10−3 (0.0, 0.021)
(1.1 · 10−7, 0.019)
(1.1 · 10−8, 0.026)

8 [512, 64, 16] 430984 1.6 · 10−3 1.9 · 10−3 (0.0, 0.021)
(1.8 · 10−8, 0.019)
(1.6 · 10−8, 0.026)

9 [512, 64, 32] 2649928 2.5 · 10−2 3.2 · 10−2 (0.0, 0.015)
(4.0 · 10−4, 0.015)
(2.9 · 10−3, 0.022)

Table 1: Results of detection step for important ANOVA terms with M = 2.5 · 106 uniformly distributed nodes
(N = [N1, N2, N3]).

size of index sets relative errors

N |I(U∗)| εℓ2 εL2

1 [1024, 64, 64] 283069 5.6 · 10−4 6.3 · 10−4

2 [1024, 128, 32] 135773 6.0 · 10−4 6.4 · 10−4

4 [1024, 128, 64] 356029 2.7 · 10−4 3.1 · 10−4

5 [1024, 256, 64] 649405 2.0 · 10−4 2.7 · 10−4

Table 2: Results for approximation with active set U∗ and M = 2.5 · 106 uniformly distributed nodes (N =
[N1, N2, N3]).

The number of terms in U∗ is significantly smaller than in Uds
such that we are able to increase N while balancing the

effects of over- and underfitting. We observe that the reduction of the ANOVA terms to U∗ yields benefit with regard to
approximation quality due to the reduction in model complexity.

Now that we have experiments with no truncation error in the ANOVA decomposition, i.e., T3f = f , we repeat the
tests with a superposition threshold ds = 2. In this case, it is not possible to detect the ANOVA term f{4,8,9} which
results in the set U+ := U∗ \ {4, 8, 9} being optimal for the detection step. For the following tests, we use the same
nodes as we did previously.
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Figure 4: Behavior of the global sensitivity indices ϱ(u, SX
I(Uds )

f) for the example 8 from Table 1.

size of index sets relative errors

N |I(Uds)| εℓ2 εL2 I(1), I(2)

1 [256, 16] 10396 9.4 · 10−2 9.4 · 10−2 (0.0, 0.021)
(3.0 · 10−6, 0.020)

2 [256, 32] 36892 9.3 · 10−2 9.4 · 10−2 (0.0, 0.021)
(3.0 · 10−6, 0.020)

3 [256, 64] 145180 9.1 · 10−2 9.6 · 10−2 (0.0, 0.021)
(4.8 · 10−5, 0.020)

4 [256, 128] 582940 8.2 · 10−2 1.1 · 10−1 (0.0, 0.021)
(2.3 · 10−4, 0.020)

Table 3: Results of detection step for important ANOVA terms with M = 2.5 · 106 uniformly distributed nodes and
superposition threshold ds = 2, (N = [N1, N2]).

The results of the experiments in Table 3 show that it is possible to determine the terms in U+. Since three-dimensional
terms are not included, the term f{4,8,9} is not in the approximation which results in the larger errors compared to
Table 1.

Since there exists N ∈ N2 and ε > 0 such that U (ε)
X,y = U+, we use U+ for the next approximation step with suitable

index sets I(U+). The results for different choices of N1 and N2 are displayed in Table 4. We are able to achieve better
errors with the smaller index sets. Obviously, the influence of the cutoff error is dominating such that a large benefit in
taking many additional frequencies cannot be observed.

7.2 Black-Box Approximation

In the following numerical experiments we aim to find reconstructing rank-1 lattice, see Section 2.1, for the function f .
In the first step, our goal is to determine the set of ANOVA terms U∗ and later use it to improve our approximation
quality. As discussed in [28], the function f works well with hyperbolic cross index sets of dominating mixed
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size of index sets relative errors

N |I(U+)| εℓ2 εL2

1 [1024, 16] 10558 9.3 · 10−2 9.3 · 10−2

2 [1024, 32] 14974 9.3 · 10−2 9.3 · 10−2

3 [1024, 64] 33022 9.3 · 10−2 9.4 · 10−2

4 [1024, 128] 105982 9.1 · 10−2 9.5 · 10−2

Table 4: Approximation results for active set U+ with M = 2.5 · 106 uniformly distributed nodes (N = [N1, N2]).

smoothness 3/2. Therefore, we define

HN
j =

k ∈ Zj :
∏

s∈suppk

(1 + |ks|)
3
2 ≤ N

 , N ∈ N. (46)

We choose as order-dependent index sets I0 = {0}, I1 = HN1
1 , I2 = HN2

2 , and I3 = HN1
3 with N1, N2, N3 ∈ N

to obtain I(Uds
) as in (23). The method then gives us a reconstructing rank-1 lattice X := Λ(z,M, I(Uds

)) with
generating vector z ∈ Z9 and lattice sizes M ∈ N by employing the component-by-component construction from [43,
Algorithm 8.17]. The approximation is defined as SX

I(Uds )
f .

Table 5 shows results of numerical experiments with f , see (44), and different choices for the parameters N1, N2, and
N3. We can see that there exist an ε such that it is possible to detect the active set of terms U∗ in every test scenario.
The lattice size increases with the growing index set as expected. Note that is sufficient to use an index set of 3481
frequencies and a lattice with only 46351 evaluations in order to detect the active set of ANOVA terms.

Now, we set the active set U (ε)
X,y = U∗. The aim is again to improve our approximation quality by solving the

minimization problem (35). We also maintain the order-dependence of the set I(U∗) based on the structure of the
function. Table 6 shows the results of the approximation using the index set I(U∗). Larger cutoff parameters Ni become
possible such that we are able to achieve a good approximation error with relatively small lattice sizes in relation to our
problem dimension. The sizes of our reconstructing lattices stay manageable as well.

size of index sets relative errors

N |I(Uds)| εℓ2 εL2 M I(1), I(2), I(3)

[102, 102, 102] 3481 2.8 · 10−2 3.0 · 10−2 47351 (0.0, 0.021)
(3.4 · 10−5, 0.019)
(5.7 · 10−5, 0.025)

[103, 103, 103] 11203 1.0 · 10−2 1.0 · 10−2 490277 (0.0, 0.021)
(1.7 · 10−7, 0.019)
(5.7 · 10−7, 0.026)

[104, 104, 103] 16891 7.0 · 10−3 7.1 · 10−3 1114489 (0.0, 0.021)
(3.5 · 10−10, 0.019)
(5.3 · 10−8, 0.026)

[105, 104, 103] 17341 7.0 · 10−3 7.0 · 10−3 2349307 (0.0, 0.021)
(1.7 · 10−9, 0.019)
(2.8 · 10−9, 0.026)

Table 5: Results of detection step for important ANOVA terms (N = [N1, N2, N3]).

8 Summary

In this paper we considered the classical ANOVA decomposition for periodic functions. We studied different index
sets P(d)

u and F(d)
u for the projections Puf and ANOVA terms fu, respectively, and proved their properties as well as

formulas for the Fourier coefficients. For functions in Sobolev type spaces Hw(Td) and the weighted Wiener algebra
Aw(Td) we showed that a function inherits its smoothness to both the projections and ANOVA terms.
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size of index sets relative errors

N |I(Uds)| εℓ2 εL2 M

[104, 104, 104] 2243 2.4 · 10−3 2.6 · 10−3 157243
[105, 105, 105] 6565 8.3 · 10−4 8.3 · 10−4 1346881
[106, 105, 105] 7591 7.7 · 10−4 7.7 · 10−4 883391
[106, 106, 105] 13495 5.0 · 10−4 5.0 · 10−4 5691109

Table 6: Results of detection step for important ANOVA terms (N = [N1, N2, N3]).

Moreover, we related the smoothness of a function characterized by the decay of its Fourier coefficients to the class of
functions of a low-dimensional structure and considered relative errors for L∞ and L2 weighed by the corresponding
Sobolev and Wiener algebra norms. This lead to an upper bound for the modified superposition dimension d(sp) in
those spaces. For product and order-dependent weights wα,β we were able to obtain specific bounds.

We introduced an approximation method for high-dimensional functions that are of a low-dimensional structure in
Section 5. The method can be employed in black-box and scattered data approximation. In the former scenario one
needs a special discretization for the index sets of type I(U), e.g., rank-1 lattice, and in the latter an algorithm to realize
an efficient multiplication with the Fourier matrices. We proved results for the error of the method, see Section 6, in L2

and L∞. An L∞ bound in the scattered data case for the aliasing error in (39) is still open. Here, one needs to consider
estimating the quantity

sup
∥f∥Aw(Td)

≤1

1

|X|
∑
x∈X

∣∣(f − SI(U)f
)
(x)
∣∣ .

Numerical experiments with a benchmark function were successfully performed in Section 7. The active set detection
works well for this function in both approximation scenarios and even for small degrees of trigonometric polynomials.
A definite goal is to perform experiments on real-world data sets and try to determine attribute rankings.

Moreover, it is possible to consider a similar analysis of the ANOVA decomposition in weighted Lebesgue spaces
with orthogonal polynomials as bases, e.g., the Chebyshev system. This would also allow a generalization of the
approximation method to a non-periodic setting, cf. [44].
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