
Chapter 1

Predicting Object Weights from
Giver’s Kinematics in Handover
Actions

Lena Kopnarski⋆, Laura Lippert⋆, Claudia Voelcker-Rehage, Daniel Potts,
and Julian Rudisch

Abstract Handover actions describe the action when an object is handed
over from one actor (human/robot) to another. A requirement for a smooth
handover action is precise coordination between the two actors in space and
time. Part of a handover action are reach and grasp movements. In order to
be able to perform adequate reach and grasp movements, precise models re-
garding the object properties are necessary, only then anticipatory grip force
scaling can take place. It is possible that receivers in handover actions observe
the giver during object manipulation in order to estimate the object weight
more accurately. Knowledge about the change in kinematics due to object
weight in handover actions can be used to improve human-robot interactions
by providing robots with better weight estimation through prediction based
on human kinematics. The aim of this study was to investigate whether pre-
dictions about the object weight can be achieved from the kinematics of the
giver in a handover action. Furthermore, the aim was to analyze which joint
angles are particularly suitable for classifying the object weight (i.e., are most
influenced by the object weight).
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1.1 Introduction

Joint handover actions are performed almost every day. Whether it is handing
over the stapler to a colleague at work, the glass of wine to the partner
at home or to exchange cash in the supermarket. In order to carry out a
smooth handover action, both actors need to coordinate precisely in space
and time [Sebanz et al., 2006]. Handover actions are a joint action that can be
divided into individual sub-actions. Thus, a handover action includes reaching
and grasping as well as carrying/transporting an object comparable to a
replacement task.

For reach, grasp and manipulation tasks, precise scaling of grip and load
forces is necessary. Motor control research has shown that grip and load forces
are already planned in anticipation [Hermsdörfer et al., 2011]. A suitable grip
force must be large enough to overcome the load force and prevent the object
from slipping out of the fingers, but must also avoid being too large, so that
the object is not crushed or the person is not getting fatigue. The necessary
grip and load forces depend on both the intended action and the object prop-
erties. Accordingly, the successful scaling of the grip and load forces depend a
lot on the accuracy of the estimates of the object properties. A handover ac-
tion is a time-critical action for both actors at the moment of object transfer.
While both actors are in physical contact with the object, the giver reduces
and the receiver increases grip forces rapidly [Mason and Mackenzie, 2005].
Therefore, precise anticipatory grip-force scaling is of particular importance.
Estimation of object properties (such as weight) is usually based on previous
experience and knowledge [van Polanen and Davare, 2015]. Furthermore, it
is also possible that information about the weight of an object is additionally
obtained from the observed kinematics of another person lifting or moving the
object [Hamilton et al., 2007]. This means that heavy objects can influence
the kinematics of movement differently than light objects (e.g., the joint angle
configuration). When an object is handed over from one person to another,
the receiver can observe this movement and obtain information to create an
accurate forward model on the receiver’s side.

An accurate estimation of the object weight also plays a major role for the
grip force scaling of robots [Copot et al., 2016]. If robots are confronted with
the task of grasping and transporting different, unknown objects, it is neces-
sary that they can estimate the object weight in order to produce a suitable
grip force. So far, predicting the object weight before the robot has physical
contact with the object is a major challenge that has already been addressed
by different approaches such as image recognition [Standley et al., 2017] or
thermography [Aujeszky et al., 2019]. In the context of hybrid societies, the
human-robot handover scenario plays a central role. As a the receiver, pre-
dicting the weight of the object through the kinematics of the giver could
allow the robot to anticipate appropriate grip forces, even if it is an unknown
object. This would give a big advantage over approaches like image recog-
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nition, where object classes have to be learned first and therefore can never
cover the variety of everyday objects.

In this study, we therefore want to investigate how changes in the weight of
an object can be identified from the motion kinematics of a giver during a han-
dover task. Furthermore, we investigate which joint angle contributes most to
the classification of object weights in order to find out which kinematic char-
acteristic of the giver should be considered most in a handover movement in
order to provide the most reliable prediction. Hence, we recorded kinematics
in handover actions in which the weight of the object to be handed over was
varied. The aim was to classify the kinematics (time-profiles of joint angles)
of the giver using a support vector machine (SVM) and thus to predict the
object weight.

1.2 Methods

1.2.1 Participants

Forty healthy subjects (31 female) aged 22.0 ± 4.3 years participated in the
experiment, thus data were collected from a total of 20 dyads in the han-
dover experiment. All subjects had normal or corrected to normal vision, no
psychiatric or neurological disorders, and no orthopedic upper limb impair-
ments. According to the Edinburgh Handedness Inventory [Oldfield, 1971],
39 subjects were right-handed and one subject was ambidextrous. This study
was approved by the Ethics Committee of the Chemnitz University of Tech-
nology, Faculty of Behavioral and Social Sciences, on July 12, 2019 – number
V-343-17-CVR-SFB A01-24062019.

1.2.2 Materials

A passive-marker based optical motion capture system (Vicon Motion Sys-
tems Ltd, Oxford, UK) with 10 cameras (5 Vantage, 5 Vero) was used to
record subject motions at a sampling frequency of 100Hz. Sixteen spheri-
cal reflective markers with a diameter of 6.4mm were used for the upper
body (head, trunk, shoulders, right arm). We used a marker set based on the
PlugIn Gait Model [Vicon, 2020]. The following joint angles were extracted
for the right arm: shoulder (flexion/extension, abduction/adduction, inter-
nal/external rotation), elbow (flexion/extension), and wrist (flexion/extension,
internal/external rotation, ulnar/radial deviation).

Two different self-constructed, 3D printed test objects were used. Test
objects included transducers for the measurement of grip forces (not used
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for this study) and 5 infrared LEDs which enabled tracking in the Vicon
system. Two different test objects, differing in size, were used. Both objects
had an identical base body (8 cm × 8 cm × 8 cm), which contained both the
LEDs and the possibility of attaching weights inside the object. The grasping
surfaces, which differ in size and distance from each other (5 cm×5 cm×5 cm;
8 cm × 8 cm × 8 cm) between the two objects, were located above the base
body and were arranged one above the other (see Figure 1.1). The lower (blue)
grasping surfaces were used by the giver, the upper (yellow) by the receiver.
Three different object weights were used so that the handover object weighed
400 g in the light condition, 700 g in the medium condition and 1000 g in the
heavy condition (weight conditions were the same for both object sizes).

Fig. 1.1: Small (left) and big (right) object. Weights can be embedded in the
base body.

1.2.3 Procedure

Participation in the study consisted of two test sessions with about 7 to 14
days in between. The first session consisted of different motor and sensory
tests of the right hand, a questionnaire and a replacement task (no joint
action, not considered further here). In the second session, two subjects sat
opposite each other at a table. At the start of a trial, the object was placed
on a foam pad (17 cm×20.5 cm) fixed centrally to the table on the right-hand
side of the giver (see Figure 1.2). The subjects were instructed to perform
a handover action as natural as possible. After an acoustic signal, the giver
grasped the object at the lower grasping surfaces (blue) and handed it over
to the receiver, who grasped it at the upper grasping surfaces (yellow). The
receiver then placed the object on a foam pad on the other side of the table
(see Figure 1.2), which ended the trial. Subjects performed handover actions
with all six object configurations, with object size blocked and object weight
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presented in a pseudo-randomized order. Each subject was assigned either the
role of the giver or the receiver, with the assignment being swapped halfway
through the trials. Across all trials, each condition was performed 10 times
(2 roles × 2 object sizes × 3 object weights), resulting in four blocks and 120
trials. In total, our data set has M = 2400 trials (40 givers, with 60 trials
each).

Fig. 1.2: Experimental set up.

1.2.4 Analyses

1.2.4.1 Data Preprocessing

The used data for our approach are times series, denoted by αi(t) for the joint
angle i = 1, . . . 7 belonging to the three wrist, three shoulder and one elbow
angles. In order to compare the time series, they were cut to their individual
start and end time stamp. The starting point is the time after which the giver
has grasped the object. This is defined by the moment when the velocity of
the object exceeds a threshold of 0.02m/s for the first time. The end point is
reached when givers and receivers wrist have minimal distance. Consequently,
due to differences in the movement, the time series have different lengths for
different trials. This can be fixed by a time normalization, where we use for
every trial instead of the given time stamps t1, . . . , te the normalized time
stamps

0, t2−t1
te−t1

, t3−t1
te−t1

, . . . , te−1−t1
te−t1

, 1.
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Hence, we modeled every angle by a function depending on the time,

αi(t), t ∈ [0, 1], i = 1, . . . 7, (1.1)

which we have given at discrete time points and has length 1. Missing data
was interpolated linearly and some trials were discarded due to too many
missing values, which reduced the total amount of 2400 trials. After filtering
due to data recording errors we received M = 2256 trials. The time series
αi(t) are plotted in Figure 1.3 for some random trials from one person.

(a) Wrist extension/flexion (b) Wrist ulnar/radial devia-

tion

(c) Wrist internal/external

rotation

(d) Shoulder abduc-

tion/adduction

(e) Shoulder exten-

sion/flexion

(f) Shoulder inter-

nal/external rotation

(g) Elbow extension/flexion

Fig. 1.3: A subset of the time-series αi(t) (solid) of one person for the 7 joint
angles, together with the approximated time series α̃i(t) (black, dashed). The
colors belong to the light (blue), medium (red) and heavy (green) object.

1.2.4.2 Prediction procedure

The aim was to extract the important information from the time series αi(t)
which classify the objects weight and to find out which joint angles are impor-
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tant for the classification. Each time series αi(t) can be viewed as a smooth
function defined on [0, 1], which allows for a decomposition in basis functions.
A useful basis in this case is the half-period-cosine basis, which allows us for
every angle i to approximate the time series well by

αi(t) ≈
n−1∑
k=0

a
(i)
k cos(πkt) =: α̃i(t), i = 1, . . . 7. (1.2)

The half-period cosine basis is a good choice for the approximation of non-
periodic functions, since in this case the decay rate is O(n3/2) and the coef-

ficients a
(i)
k can be calculated easily and fast from the time series at discrete

points by using the discrete cosine transform (DCT), see [Plonka et al., 2018,
Chapter 6]. Hence, we described the time series αi(t) by n = 8 coefficients

a
(i)
k with k = 0, . . . , 7, which is a very compressed expression in contrast to

the full time series. Furthermore, n = 8 is a reasonable choice between over-
and underfitting. For smaller n the error between αi(t) and α̃i(t) is too big,
whereas for bigger n the approximation fits to much the noise in the mea-
sured data. The approximated time series α̃i(t) are plotted as dashed lines
in Figure 1.3. An other advantage of this procedure is that the sum of cosine
functions smooths out the measurement inaccuracies, which led to noisy data
in the original time series. Each trial has n = 8 Cosine-coefficients for each
of the considered 7 joint angles. This can be seen as data compression in
comparison the raw time series, since there are only 56 degrees of freedom
for each trial.

We have the label vector y ∈ {1, 2, 3}M , which assigns 1, 2 and 3 to the
trials with light, medium and heavy object, respectively. When we use all 7
joint angles for the prediction, we receive a matrix X ∈ R56×M containing

the coefficients a
(i)
k for every trial. For the classification we use Julia’s SVM,

which is contained in LIBSVM in the Machine Learning package. Different
strategies for a train/test split and cross-validation (CV) are possible in order
to give a measure how good our classification is. For cross-validation we first
split all M trials randomly 80/20 in train- and test data (CV all trials). And
in a second variant we choose randomly the trials from 8 persons as test
set and the trials from all other persons as training set, which is also an
approximately 80/20-splitting (CV person-wise). In all cases we did the CV
10 times, resulting in 50 classification tasks in total, from which we average
the classification rate. In general, we standardize the values ofX belonging to
the test trials by a Z-transform, which transforms the mean and the variance
of every column of X to zero and one, respectively. This is necessary, since
the coefficients are scaled differently. For the prediction of the trials in the
test set we have to transform the values in X belonging to the test trials by
the same transformation like the training set.

We want to study the influence of the 7 different joint angles for the
classification. Therefore we do the previously described classification using
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only the joint angles in the subset u ⊂ {1, . . . , 7}. This means, we only

use the coefficients a
(i)
k with i ∈ u for the classification. We denote the

classification rate by cv(u). The Shapley values are a common tool for
describing feature contributions. They were introduced in [Shapley, 1952]
for game theory and more recently also used for approximation theory,
[Owen, 2014, Sundararajan and Najmi, 2020].
Our variables are the 7 different joint angles. Given any subset u ⊂ {1, . . . , 7}
of the joint angles, the value that subset creates on its own is its explanatory
power. We use here the classification rate as a way to measure explanatory
power. Shapley showed that there is a unique valuation ϕ, that satisfies some
reasonable axioms. Using our classification rate cv(u), these values are de-
fined by

ϕi =
1

7

∑
u⊆{1,...,7}\{i}

(
6

|u|

)−1

(cv(u ∪ {i})− cv(u)) , (1.3)

where cv(∅) := 0. The values ϕi give some notion for importance of the joint
angles for classification task.

1.3 Results

Our aim was to predict the object weight classification from the cosine coef-

ficients a
(i)
k of the time series belonging to the time series of the joint angles.

Considering all joint angles, we achieved a classification rate of 0.683 (CV all
trials) and 0.567 (CV person-wise). We plotted in Figure 1.4 some coefficients

a
(i)
k for k = 0, 1. One can see that there are some person specific behaviors,

which means that some coefficients a
(i)
k slightly differ for the persons, inde-

pendent of the objects weight.
The mean classification rate which we reached for different subsets u and

the different CV strategies are summarized in Table 1.1. There we present
the subsets u, for which the highest classification rates are possible. The best
classification rate 0.68 is reached involving all joint angles. Additionally, us-
ing for instance only one of the joint angles results in a low classification rate:
Predicting the weight only from wrist ulnar/radial deviation gives prediction
rate 0.354, since 3 different classes have to be predicted, this is no meaningful
prediction.

One further question was the influence of the different joint angles to the
classification rate. We calculated the Shapley values (1.3) for the two differ-
ent CV strategies and plot the results in Figure 1.5. The wrist ulnar/radial
deviation is least necessary for the classification. Whereas, the shoulder in-
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(a) i = 1 (wrist extension/flexion) (b) i = 2 (wrist ulnar/radial deviation)

(c) i = 3 (wrist internal/external rotation) (d) i = 4 (shoulder abduction/adduction)

(e) i = 5 (shoulder extension/flexion) (f) i = 6 (shoulder internal/external rota-

tion)

(g) i = 7 (elbow extension/flexion)

Fig. 1.4: The coefficients a
(i)
k for k = 0, 1 for the different angles and all trials.

The different colors belong to trials from different persons. The shape belongs
to the object’s weight.
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ternal/external rotation and elbow extension/flexion are import angles for
the classification.

1 2 3 4 5 6 7

4 · 10−2

6 · 10−2

8 · 10−2

0.1

0.12

0.14 CV all trials

CV person-wise

Mapping of the angles
1 → Wrist extension/flexion

2 → Wrist ulnar/radial deviation

3 → Wrist internal/external rotation

4 → Shoulder abduction/adduction

5 → Shoulder extension/flexion

6 → Shoulder internal/external rotation

7 → Elbow extension/flexion

Fig. 1.5: The Shapley values with the classification rate as explanatory power
and two different cross-validation strategies.

Table 1.1: Classification rates of predicting the objects weight from subset u
of joint angles using different cross-validation strategies.

u \ CV all trials person-wise

{1, 2, 3, 4, 5, 6, 7} 0.683 0.567
{1, 3, 4, 6, 7} 0.680 0.578

{1, 3, 4, 5, 6, 7} 0.679 0.579

{3, 4, 5, 7} 0.678 0.578
{2, 4, 5, 7} 0.676 0.573

{2, 3, 4, 5, 6, 7} 0.676 0.603

{3, 4, 6, 7} 0.675 0.613

{1, 4, 5, 6} 0.675 0.575

{1, 2, 4, 5, 6, 7} 0.674 0.587
{4, 6, 7} 0.664 0.619

{4, 5, 6, 7} 0.670 0.614

{5, 6, 7} 0.659 0.606
...

...
...

{3} 0.482 0.421
{4} 0.447 0.437

{2} 0.391 0.354

Mapping of the angles
1 → Wrist extension/flexion

2 → Wrist ulnar/radial deviation

3 → Wrist internal/external rotation

4 → Shoulder abduction/adduction

5 → Shoulder extension/flexion

6 → Shoulder internal/external rotation

7 → Elbow extension/flexion
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1.4 Discussion

In this study we investigated how the weight of an object in a handover task
can be predicted by the joint angles of the giver’s active arm. For this pur-
pose, a discrete cosine transform and a support vector machine (SVM) were
used to classify the different weights.
The results of the ross-validation (CV) show that a prediction of the ob-
ject weight is possible, whereby a higher classification rate is achieved when
the data of a subject is included in both the training and the test data
set (CV all trials). We attribute this to the individuality of the movement.
Looking at Figure 1.4, we notice that the data are clustered by person. This
individual influence factor on movement has also already been shown in sev-
eral studies [Bekemeier et al., 2019, Girges et al., 2015, Cunado et al., 1997,
Bednarik et al., 2005]. The influence factor of individuality possibly also af-
fects the classification performance. In other words, if an SVM is trained with
the kinematic data of one person, a more reliable prediction of the kinematics
of the same person is obtained than the prediction with kinematic data of
another person.
Furthermore, by determining the Shapley value, it could be shown that espe-
cially the shoulder rotation and elbow movement is influenced by the object
weight and therefore makes an important contribution to the prediction of
the object weight. Wrist ulnar/radial deviation provides the least amount of
explanation in object weight prediction.
It has already been shown that people have the ability to estimate the weight
of an object by observation while another person is grasping, transporting or
manipulating the object [Sciutti et al., 2014, Rizzolatti et al., 1999]. Efforts
to find out on which kinematic characteristics these judgements depended
yielded the result that mainly the duration of the lifting movement is used to
make such judgements about the object weight [Hamilton et al., 2007]. The
results of our study extend these findings and allow the use of kinematic
data for weight prediction by using the joint angles alone without explicitly
determining the lifting duration.
A limitation of our experimental setup is that we recorded the giver kine-
matics in a very controlled environment, as the start position of the object
was always the same and the grasping position was only varied by the two
different object sizes. This results in a relatively low variance of the giver
movements. This contrasts with real handover actions in everyday life, where
the object can always be at a different starting position and orientation, re-
sulting in a greater kinematic variance of the giver.
Therefore, we suggest that in further experiments the starting position could
be varied. Moreover, a variation of the weight classes would be interesting. In
this study we investigated the three weight classes 400 g, 700 g, 1000 g, which
could be varied both in distance and in rage, possibly resulting in different
classification accuracies. By changing the weight classes, it is conceivable that
in the future not only classifications but also weight estimations will be pos-
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sible through the analysis of kinematic data.
The SVM is widely used for classification tasks. Therefore, also here good
results were expected. Furthermore, one has to choose specific parameters
from the time-series for the classification, since the raw time series are noisy.
And, furthermore, the joint angles at specific times are not robust against
changes in the absolute position: The same movement from a slightly differ-
ent starting position can lead to completely different joint angles.
In joint handover actions, observation and prediction (about the intentions
of the other but also about the object properties) play an important role.
This is why it is necessary that robots in hybrid societies are also able to
achieve this, so that human actors can interact intuitively and smoothly. The
approach described in this study can contribute to improving human-robot
interactions in hybrid societies by having the robot predict object properties
through observation.
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