

Chemnitz University of Technology, Applied Functional Analysis

High-dimensional Approximation: Transforming periodic Approximation vs. Random Fourier Features

Laura Lippert joint work with Daniel Potts, Tino Ullrich and Rachel Ward

Chemnitz University of Technology Applied Functional Analysis

Algorithms and Complexity for Continuous Problems, Dagstuhl-Seminar 23351 01.09.2023

Given data

- ► sample points $x \in \mathcal{X} \subset \mathbb{R}^d$ with $|\mathcal{X}| = M$, i.i.d. according to density $\mu : \mathbb{R}^d \to \mathbb{R}_+$
- ► function values $f = (f(x))_{x \in X}$

Frafo approach

- transform the samples to the torus $\mathbb{T}^d = [-\frac{1}{2}, \frac{1}{2})^d$
- use approximation operator on \mathbb{T}^d

Random Fourier Features

• draw frequencies $\omega_j \in \mathbb{R}^d$ at random

•
$$f(\cdot) \approx \sum_j a_j \mathrm{e}^{\mathrm{i} \langle \boldsymbol{\omega}_j, \cdot \rangle}$$

30 20

10

-10

 $-20 \\ -30$

Given data

► sample points $x \in \mathcal{X} \subset \mathbb{R}^d$ with $|\mathcal{X}| = M$, i.i.d. according to density $\mu : \mathbb{R}^d \to \mathbb{R}_+$

Aim

Approximate the

function $f: \mathbb{R}^d \to \mathbb{C}$

► function values $f = (f(x))_{x \in X}$

Frafo approach

- transform the samples to the torus $\mathbb{T}^d = [-\frac{1}{2}, \frac{1}{2})^d$
- use approximation operator on \mathbb{T}^d

Random Fourier Features

• draw frequencies $\omega_j \in \mathbb{R}^d$ at random

•
$$f(\cdot) \approx \sum_j a_j \mathrm{e}^{\mathrm{i} \langle \boldsymbol{\omega}_j, \cdot \rangle}$$

-2 -1

20

10

-10

-20

Introduction

► sample points $x \in \mathcal{X} \subset \mathbb{R}^d$ with $|\mathcal{X}| = M$, i.i.d. according to density $\mu : \mathbb{R}^d \to \mathbb{R}_+$

Aim

Approximate the

function $f: \mathbb{R}^d \to \mathbb{C}$

► function values $f = (f(x))_{x \in X}$

Trafo approach

- transform the samples to the torus $\mathbb{T}^d = [-\frac{1}{2}, \frac{1}{2})^d$
- use approximation operator on \mathbb{T}^d

Random Fourier Features

• draw frequencies $\boldsymbol{\omega}_j \in \mathbb{R}^d$ at random

•
$$f(\cdot) \approx \sum_{j} a_{j} \mathrm{e}^{\mathrm{i} \langle \boldsymbol{\omega}_{j}, \cdot \rangle}$$

Outline

- 1. Approximation of periodic function
- 2. Variable Transformations
- 3. Approximation results on \mathbb{R}^d
- 4. Random Fourier Features
- 5. ANOVA decomposition

L. Lippert, D.Potts, T. Ullrich Fast Hyperbolic Wavelet Regression meets ANOVA Numer. Math. 154, 155-207 (2023)

L. Lippert, D.Potts

Variable Transformations in combination with Wavelets and ANOVA for high-dimensional approximation arXiv:2108.13197, 2022

Approximation of periodic functions

given data: samples $\mathcal{X} \subset \mathbb{T}^d$, $|\mathcal{X}| = M$, function values $f = (f(x))_{x \in \mathcal{X}}$

procedure:

- choose basis functions: $\psi_{i,k}^{\text{per}}(x)$ (periodized Chui-Wang wavelets of order m)
- let also other basis functions are possible, e.g. $e^{i\langle k,x
 angle}, \cos(\langle k,x
 angle), \dots$
- ▶ use index-set $(j, k) \in I_n$ with $N := |I_n| = O(2^n n^{d-1})$
- $\blacktriangleright\,$ choose wavelet level n according to logarithmic oversampling $M\gtrsim N\,\log N$

solve minimizing problem iteratively:

$$oldsymbol{a} = rgmin \left\|oldsymbol{A}oldsymbol{a} - oldsymbol{f}
ight\|_2, \quad oldsymbol{A} = \left(\psi^{ ext{per}}_{oldsymbol{j},oldsymbol{k}}(oldsymbol{x})
ight)_{oldsymbol{x}\in\mathcal{X},(oldsymbol{j},oldsymbol{k})\in I_n} \in \mathbb{R}^{M imes N}$$

construct approximant

$$S_n^{\mathcal{X}} f(\boldsymbol{x}) := \sum_{(\boldsymbol{j}, \boldsymbol{k}) \in I_n} a_{\boldsymbol{j}, \boldsymbol{k}} \psi_{\boldsymbol{j}, \boldsymbol{k}}^{ ext{per}}(\boldsymbol{x})$$

Approximation of periodic functions

given data: samples $\mathcal{X} \subset \mathbb{T}^d$, $|\mathcal{X}| = M$, function values $f = (f(x))_{x \in \mathcal{X}}$ procedure:

- choose basis functions: $\psi_{j,k}^{\text{per}}(x)$ (periodized Chui-Wang wavelets of order m)
- ▶ also other basis functions are possible, e.g. $e^{i\langle \boldsymbol{k}, \boldsymbol{x} \rangle}, \cos(\langle \boldsymbol{k}, \boldsymbol{x} \rangle), \dots$
- ▶ use index-set $(j, k) \in I_n$ with $N := |I_n| = \mathcal{O}(2^n n^{d-1})$
- $\blacktriangleright\,$ choose wavelet level n according to logarithmic oversampling $M\gtrsim N\,\log N$
- solve minimizing problem iteratively:

$$oldsymbol{a} = rgmin \left\|oldsymbol{A}oldsymbol{a} - oldsymbol{f}
ight\|_2, \quad oldsymbol{A} = \left(\psi^{ ext{per}}_{oldsymbol{j},oldsymbol{k}}(oldsymbol{x})
ight)_{oldsymbol{x}\in\mathcal{X},(oldsymbol{j},oldsymbol{k})\in I_n} \in \mathbb{R}^{M imes N}$$

construct approximant

$$S_n^{\mathcal{X}} f(\boldsymbol{x}) := \sum_{(\boldsymbol{j}, \boldsymbol{k}) \in I_n} a_{\boldsymbol{j}, \boldsymbol{k}} \psi_{\boldsymbol{j}, \boldsymbol{k}}^{ ext{per}}(\boldsymbol{x})$$

Theorem ([L., Potts, Ullrich, '23])

Let $\mathcal{X} \sim i.i.d$ uniformly, $M \geq r N \log N$, m the order of the wavelets, if $rac{1}{2} < s < m$:

$$\mathbb{P}\left(\left\|f - S_n^{\mathcal{X}} f\right\|_{L_2(\mathbb{T}^d)} \lesssim 2^{-ns} n^{(d-1)/2} \|f\|_{\boldsymbol{B}^s_{2,\infty}(\mathbb{T}^d)}\right) \ge 1 - 2 M^{-r}.$$

and if m = s

$$\mathbb{P}\left(\left\|f - S_n^{\mathcal{X}} f\right\|_{L_2(\mathbb{T}^d)} \lesssim 2^{-ns} n^{(d-1)/2} \|f\|_{H^s_{\min}(\mathbb{T}^d)}\right) \ge 1 - 2M^{-r}.$$

important assumptions:

• uniformly distributed samples with $M \gtrsim N \log N$, $(N \sim 2^n n^{d-1})$

• regularity of the function: $f \in H^s_{mix}(\mathbb{T}^d)$ or $f \in B^s_{2,\infty}(\mathbb{T}^d)$

result: error decay $\sim N^{-s} (\log N)^{(s+1/2)(d-1)}$

TUC · 01.09.2023 · Laura Lippert

Theorem ([L., Potts, Ullrich, '23])

Let $\mathcal{X} \sim i.i.d$ uniformly, $M \geq r N \log N$, m the order of the wavelets, if $rac{1}{2} < s < m$:

$$\mathbb{P}\left(\left\|f - S_n^{\mathcal{X}} f\right\|_{L_2(\mathbb{T}^d)} \lesssim 2^{-ns} n^{(d-1)/2} \|f\|_{\boldsymbol{B}^s_{2,\infty}(\mathbb{T}^d)}\right) \ge 1 - 2 M^{-r}.$$

and if m = s

$$\mathbb{P}\left(\left\|f - S_n^{\mathcal{X}} f\right\|_{L_2(\mathbb{T}^d)} \lesssim 2^{-ns} n^{(d-1)/2} \|f\|_{H^s_{\min}(\mathbb{T}^d)}\right) \ge 1 - 2M^{-r}.$$

important assumptions:

- uniformly distributed samples with $M \gtrsim N \log N$, ($N \sim 2^n n^{d-1}$)
- regularity of the function: $f \in H^s_{mix}(\mathbb{T}^d)$ or $f \in B^s_{2,\infty}(\mathbb{T}^d)$

result: error decay $\sim N^{-s} (\log N)^{(s+1/2)(d-1)}$

TUC · 01.09.2023 · Laura Lippert

Theorem ([L., Potts, Ullrich, '23])

Let $\mathcal{X} \sim i.i.d$ uniformly, $M \geq r N \log N$, m the order of the wavelets, if $rac{1}{2} < s < m$:

$$\mathbb{P}\left(\left\|f - S_n^{\mathcal{X}} f\right\|_{L_2(\mathbb{T}^d)} \lesssim 2^{-ns} n^{(d-1)/2} \|f\|_{\boldsymbol{B}^s_{2,\infty}(\mathbb{T}^d)}\right) \ge 1 - 2 M^{-r}.$$

and if m = s

$$\mathbb{P}\left(\left\|f - S_n^{\mathcal{X}} f\right\|_{L_2(\mathbb{T}^d)} \lesssim 2^{-ns} n^{(d-1)/2} \|f\|_{H^s_{\min}(\mathbb{T}^d)}\right) \ge 1 - 2M^{-r}.$$

important assumptions:

- uniformly distributed samples with $M \gtrsim N \log N$, ($N \sim 2^n n^{d-1}$)
- ▶ regularity of the function: $f \in H^s_{mix}(\mathbb{T}^d)$ or $f \in B^s_{2,\infty}(\mathbb{T}^d)$

result: error decay $\sim N^{-s} (\log N)^{(s+1/2)(d-1)}$

Constructing the transformation

one-dimensional case:

$$\mathbf{R} \colon \mathbb{R} \to [-\frac{1}{2}, \frac{1}{2}], \quad \mathbf{R}(x) := \int_{-\infty}^{\infty} \mu(t) \mathrm{d}t - \frac{1}{2}$$

 \mathbf{R}

0.2 0.4

 \mathbb{T}^d

transformed samples \mathcal{Y}

0.2

-0

-0.4

-04 - 02

Constructing the transformation

one-dimensional case:

$$\mathbf{R} \colon \mathbb{R} \to [-\frac{1}{2}, \frac{1}{2}], \quad \mathbf{R}(x) := \int_{-\infty}^{x} \mu(t) \mathrm{d}t - \frac{1}{2}$$

multi-dimensional case assumptions:

• independent input variables, i.e. $\mu(\mathbf{x}) = \prod_{i=1}^{d} \mu_i(x_i)$

ightarrow transform every dimension separately:

 $\mathbf{R}(\boldsymbol{x}) := (\mathbf{R}_1(x_1), \dots, \mathbf{R}_d(x_d))$

useful properties of the transformation

there exists an inverse

$$\mathbf{R}^{-1}(\boldsymbol{y}) := \left(\mathbf{R}_1^{-1}(y_1), \dots, \mathbf{R}_d^{-1}(y_d)\right)$$

$$\blacktriangleright \frac{\mathrm{d}}{\mathrm{d}\boldsymbol{x}} \mathbf{R}(\boldsymbol{x}) = \mu(\boldsymbol{x})$$

multi-dimensional case assumptions:

• independent input variables, i.e. $\mu(\boldsymbol{x}) = \prod_{i=1}^{d} \mu_i(x_i)$

 \rightarrow transform every dimension separately:

$$\mathbf{R}(\boldsymbol{x}) := (\mathbf{R}_1(x_1), \dots, \mathbf{R}_d(x_d))$$

useful properties of the transformation

there exists an inverse

$$\mathbf{R}^{-1}(\boldsymbol{y}) := \left(\mathbf{R}_1^{-1}(y_1), \dots, \mathbf{R}_d^{-1}(y_d)\right)$$

$$\blacktriangleright \frac{\mathrm{d}}{\mathrm{d}\boldsymbol{x}} \mathrm{R}(\boldsymbol{x}) = \mu(\boldsymbol{x})$$

multi-dimensional case assumptions:

• independent input variables, i.e. $\mu(\mathbf{x}) = \prod_{i=1}^{d} \mu_i(x_i)$

 \rightarrow transform every dimension separately:

$$\mathbf{R}(\boldsymbol{x}) := (\mathbf{R}_1(x_1), \dots, \mathbf{R}_d(x_d))$$

useful properties of the transformation

there exists an inverse

$$\mathbf{R}^{-1}(\boldsymbol{y}) := \left(\mathbf{R}_1^{-1}(y_1), \dots, \mathbf{R}_d^{-1}(y_d)\right)$$

 $\blacktriangleright \frac{\mathrm{d}}{\mathrm{d}\boldsymbol{x}} \mathrm{R}(\boldsymbol{x}) = \mu(\boldsymbol{x})$

 $\mathbb{R} \longrightarrow \mathcal{V}^{(\sim \mathcal{U})}$

 $(\sim \mu)$

our procedure:

- transform samples $\mathcal{Y} = R(\mathcal{X})$
- ▶ use approximation operator $S_n^{\mathcal{Y}}$ on \mathbb{T}^d
- transform back to \mathbb{R}^d

$$(S_n^{\mathcal{Y}}(f \circ \mathbf{R}^{-1})) \circ \mathbf{R}$$

preservation of L_2 -norm:

$$\|f\|^2_{L_2(\mathbb{R}^d,\mu)} := \int_{\mathbb{R}^d} |f(\boldsymbol{x})|^2 \mu(\boldsymbol{x}) \mathrm{d} \boldsymbol{x} = \left\|f \circ \mathrm{R}^{-1}
ight\|^2_{L_2(\mathbb{T}^d)}$$

ightarrow measure error in $\|\cdot\|_{L_2(\mathbb{R}^d,\mu)}$

idea:

introduce function spaces $H_{\min}^m(\mathbb{R}^d,\mu)$ with $\|f \circ \mathbb{R}^{-1}\|_{H^m_{\min}(\mathbb{T}^d)} = \|f\|_{H^m_{\min}(\mathbb{R}^d,\mu)}$

 $(\sim \mu)$

our procedure:

- transform samples $\mathcal{Y} = R(\mathcal{X})$
- \mathbb{R} $(\sim \mathcal{U})$ \blacktriangleright use approximation operator $S_n^{\mathcal{Y}}$ on \mathbb{T}^d
 - transform back to \mathbb{R}^d

$$(S_n^{\mathcal{Y}}(f \circ \mathbf{R}^{-1})) \circ \mathbf{R}$$

preservation of L_2 -norm:

$$\|f\|^2_{L_2(\mathbb{R}^d,\mu)} := \int_{\mathbb{R}^d} |f(\boldsymbol{x})|^2 \mu(\boldsymbol{x}) \mathrm{d} \boldsymbol{x} = \left\|f \circ \mathrm{R}^{-1}
ight\|^2_{L_2(\mathbb{T}^d)}$$

ightarrow measure error in $\|\cdot\|_{L_2(\mathbb{R}^d,\mu)}$

idea:

introduce function spaces $H^m_{\min}(\mathbb{R}^d, \mu)$ with $\|f \circ \mathbb{R}^{-1}\|_{H^m_{\min}(\mathbb{T}^d)} = \|f\|_{H^m_{\min}(\mathbb{R}^d, \mu)}$

our procedure:

- \blacktriangleright transform samples $\mathcal{Y} = \mathbf{R}(\mathcal{X})$
- $\overset{(\sim \mu)}{\mathcal{X}} \xrightarrow{\mathbf{R}} \overset{(\sim \mathcal{U})}{\mathcal{Y}} \xrightarrow{\blacktriangleright} \text{ use approximation operator } S_n^{\mathcal{Y}} \text{ on } \mathbb{T}^d$ $\blacktriangleright \text{ transform back to } \mathbb{R}^d$

$$(S_n^{\mathcal{Y}}(f \circ \mathbf{R}^{-1})) \circ \mathbf{R}$$

$$\|f\|^2_{L_2(\mathbb{R}^d,\mu)} := \int_{\mathbb{R}^d} |f(\boldsymbol{x})|^2 \mu(\boldsymbol{x}) \mathrm{d} \boldsymbol{x} = \left\|f \circ \mathrm{R}^{-1}
ight\|^2_{L_2(\mathbb{T}^d)}$$

 \rightarrow measure error in $\|\cdot\|_{L_2(\mathbb{R}^d,\mu)}$

idea:

introduce function spaces $H^m_{\min}(\mathbb{R}^d,\mu)$ with $\left\|f\circ \mathbf{R}^{-1}\right\|_{H^m_{\min}(\mathbb{T}^d)} = \|f\|_{H^m_{\min}(\mathbb{R}^d,\mu)}$

o∰≣⊂.

Weighted function spaces (one-dimensional)

Weighted Sobolev norms on $\ensuremath{\mathbb{R}}$:

$$\|f\|_{H^m(\mathbb{R},\mu)}^2 := \sum_{k=0}^m \left\| \mathbf{D}^k f \right\|_{L_2(\mathbb{R},\Upsilon_{m,k})}^2 \text{ with } \Upsilon_{m,k}(x) := \begin{cases} \sum_{\alpha=k}^m |B_{\alpha,k}(x)|^2 \mu(x) & \text{ if } 1 \le k \le m, \\ \mu(x) & \text{ if } k = 0. \end{cases}$$

o∰≣⊂.

Weighted function spaces (one-dimensional)

Weighted Sobolev norms on $\ensuremath{\mathbb{R}}$:

$$\|f\|_{H^m(\mathbb{R},\mu)}^2 := \sum_{k=0}^m \left\| \mathbf{D}^k f \right\|_{L_2(\mathbb{R},\Upsilon_{m,k})}^2 \text{ with } \Upsilon_{m,k}(x) := \begin{cases} \sum_{\alpha=k}^m |B_{\alpha,k}(\mathbf{x})|^2 \mu(x) & \text{if } 1 \le k \le m, \\ \mu(x) & \text{if } k = 0. \end{cases}$$

Bell polynomial

Weighted Sobolev norms on $\ensuremath{\mathbb{R}}$:

Variable Transformations

₽₩₩ς

$$\begin{split} \|f\|_{H^{m}(\mathbb{R},\mu)}^{2} &:= \sum_{k=0}^{m} \left\| \mathbf{D}^{k} f \right\|_{L_{2}(\mathbb{R},\Upsilon_{m,k})}^{2} \text{ with } \Upsilon_{m,k}(x) := \begin{cases} \sum_{\alpha=k}^{m} |B_{\alpha,k}(\mathbf{x})|^{2} \mu(x) & \text{ if } 1 \leq k \leq m, \\ \mu(x) & \text{ if } k = 0. \end{cases} \\ \\ \text{Examples:} & \text{Bell polynomial} \\ \|f\|_{H^{0}(\mathbb{R},\mu)}^{2} &= \|f\|_{L_{2}(\mathbb{R},\mu)}^{2} \\ \|f\|_{L^{2}(\mathbb{R},\mu)}^{2} &= \|f\|_{L_{2}(\mathbb{R},\mu)}^{2} + \|f'\|_{L_{2}(\mathbb{R},\frac{1}{\mu})}^{2} \\ \|f\|_{H^{2}(\mathbb{R},\mu)}^{2} &= \|f\|_{L_{2}(\mathbb{R},\mu)}^{2} + \|f'\|_{L_{2}(\mathbb{R},\frac{1}{\mu})}^{2} \\ \|f\|_{H^{2}(\mathbb{R},\mu)}^{2} &= \|f\|_{L_{2}(\mathbb{R},\mu)}^{2} + \|f'\|_{L_{2}(\mathbb{R},\frac{1}{\mu}+\frac{(\mu')^{2}}{\mu^{5}})}^{2} + \|f''\|_{L_{2}(\mathbb{R},\frac{1}{\mu^{3}})}^{2} &= \|f \circ \mathbf{R}^{-1}\|_{H^{2}(\mathbb{T})}^{2} \\ \|f\|_{H^{2}(\mathbb{T})}^{2} &= \|f\|_{H^{2}(\mathbb{T})}^{2} \\ \|f\|_{H^{2}(\mathbb{T})}^{2}$$

The normal distribution

density:

transformation:

The normal distribution

density:

transformation:

multivariate setting:

$$\|f\|_{H^m_{\min}(\mathbb{R}^d,\mu)}^2 = \sum_{0 \le \|\boldsymbol{k}\|_{\infty} \le m} \left\| \mathbb{D}^{\boldsymbol{k}} f(\boldsymbol{x}) \right\|_{L_2(\mathbb{R}^d,\Upsilon_{m,\boldsymbol{k}})}^2 \text{ with } \Upsilon_{m,\boldsymbol{k}}(\boldsymbol{x}) := \prod_{i=1}^d \Upsilon_{m,k_i}(x_{k_i})$$

further weighted function spaces:

- definition for fractional smoothness via the decay of the Fourier coefficients
- ► transformation also for Besov regularity possible: define norm in $B_{2,\infty}^s(\mathbb{R}^d,\mu)$, such that

$$\left\| f \circ \mathbf{R}^{-1} \right\|_{\boldsymbol{B}^{s}_{2,\infty}(\mathbb{T}^{d})} \lesssim \| f \|_{\boldsymbol{B}^{s}_{2,\infty}(\mathbb{R}^{d},\mu)},$$

where we use characterization via Fourier coefficients of the space $m{B}^s_{2,\infty}(\mathbb{T}^d)$

Variable Transformations

multivariate setting:

$$\|f\|_{H^m_{\mathrm{mix}}(\mathbb{R}^d,\mu)}^2 = \sum_{0 \le \|\boldsymbol{k}\|_{\infty} \le m} \left\| \mathrm{D}^{\boldsymbol{k}} f(\boldsymbol{x}) \right\|_{L_2(\mathbb{R}^d,\Upsilon_{m,\boldsymbol{k}})}^2 \text{ with } \Upsilon_{m,\boldsymbol{k}}(\boldsymbol{x}) := \prod_{i=1}^d \Upsilon_{m,k_i}(x_{k_i})$$

further weighted function spaces:

- definition for fractional smoothness via the decay of the Fourier coefficients
- ► transformation also for Besov regularity possible: define norm in $B_{2,\infty}^s(\mathbb{R}^d,\mu)$, such that

$$\left\| f \circ \mathbf{R}^{-1} \right\|_{\boldsymbol{B}^{s}_{2,\infty}(\mathbb{T}^{d})} \lesssim \|f\|_{\boldsymbol{B}^{s}_{2,\infty}(\mathbb{R}^{d},\mu)},$$

where we use characterization via Fourier coefficients of the space $B_{2,\infty}^s(\mathbb{T}^d)$

Approximation results on \mathbb{R}^d

Theorem ([L., Potts, '22])

Let the density μ_i be in $C^{m-1}(\mathbb{R})$ for $i \in \{1, ..., d\}$ and let $m \in \mathbb{N}$ be the order of vanishing moments of the wavelet ψ . Let $M \gtrsim rN \log N$ (r > 1), $\mathcal{X} \subset \mathbb{R}^d$ be drawn i.i.d at random according to μ , $f \in C(\mathbb{R})$, $\mathcal{Y} = \mathbb{R}(\mathcal{X})$. Then

$$\begin{split} & \mathbb{P}\left(\left\|f - (S_n^{\mathcal{Y}}(f \circ \mathbf{R}^{-1})) \circ \mathbf{R}\right\|_{L_2(\mathbb{R}^d,\mu)} \lesssim 2^{-ns} n^{(d-1)/2} \left\|f\right\|_{\mathbf{B}^s_{2,\infty}(\mathbb{R}^d,\mu)}\right) \ge 1 - 2 \, M^{-r} \quad \text{if } s < m, \\ & \mathbb{P}\left(\left\|f - (S_n^{\mathcal{Y}}(f \circ \mathbf{R}^{-1})) \circ \mathbf{R}\right\|_{L_2(\mathbb{R}^d,\mu)} \lesssim 2^{-ns} n^{(d-1)/2} \left\|f\right\|_{H^s_{\mathrm{mix}}(\mathbb{R}^d,\mu)}\right) \ge 1 - 2 \, M^{-r} \quad \text{if } m = s. \end{split}$$

$$\mathsf{RMSE} = \left(\sum_{\boldsymbol{x} \in \mathcal{X}_{\mathsf{test}}} \frac{1}{|\mathcal{X}_{\mathsf{test}}|} |f(\boldsymbol{x}) - \tilde{f}(\boldsymbol{x})|^2 \right)^{1/2}$$

function: $f : \mathbb{R}^d \to \mathbb{R}, \quad f(x) = \mathrm{e}^{-\|x\|_2^2}$ density:

$$\mathsf{RMSE} = \left(\sum_{\boldsymbol{x} \in \mathcal{X}_{\mathsf{test}}} \frac{1}{|\mathcal{X}_{\mathsf{test}}|} |f(\boldsymbol{x}) - \tilde{f}(\boldsymbol{x})|^2 \right)^{1/2}$$

function: $f \colon \mathbb{R}^d \to \mathbb{R}, \quad f(\boldsymbol{x}) = \mathrm{e}^{-\|\boldsymbol{x}\|_2^2}$ density:

$$\mu_{\rm N}(x) = \frac{1}{\sqrt{2\pi}} {\rm e}^{-x^2/2}$$

$$\mathsf{RMSE} = \left(\sum_{\boldsymbol{x} \in \mathcal{X}_{\mathsf{test}}} \frac{1}{|\mathcal{X}_{\mathsf{test}}|} |f(\boldsymbol{x}) - \tilde{f}(\boldsymbol{x})|^2 \right)^{1/2}$$

function: $f : \mathbb{R}^d \to \mathbb{R}, \quad f(\boldsymbol{x}) = \mathrm{e}^{-\|\boldsymbol{x}\|_2^2}$ density:

$$\mu_{\rm N}(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$$

►
$$f \in H^2(\mathbb{R}^d, \mu_N), \quad f \notin H^3(\mathbb{R}, \mu_N)$$

► $f \in B^{5/2}_{2,\infty}(\mathbb{R}^d, \mu_N)$
► $m = 3 \rightarrow m > s$

$$\mathsf{RMSE} = \left(\sum_{\boldsymbol{x} \in \mathcal{X}_{\text{test}}} \frac{1}{|\mathcal{X}_{\text{test}}|} |f(\boldsymbol{x}) - \tilde{f}(\boldsymbol{x})|^2\right)^{1/2} 10^{-2} \bigcup_{\substack{\boldsymbol{x} \in \mathcal{X}_{\text{test}}}} 10^{-2} \bigcup_{\substack{\boldsymbol{x} \in \mathcal{X}_{\text{test}}}} \frac{1}{|\mathcal{X}_{\text{test}}|} |f(\boldsymbol{x}) - \tilde{f}(\boldsymbol{x})|^2\right)^{1/2} 10^{-2} \bigcup_{\substack{\boldsymbol{x} \in \mathcal{X}_{\text{test}}}} 10^{-2} \bigcup_{\substack{\boldsymbol{x} \in \mathcal{X}_{\text{test}}}} \frac{1}{|\mathcal{X}_{\text{test}}|} |f(\boldsymbol{x}) - \tilde{f}(\boldsymbol{x})|^2\right)^{1/2} 10^{-2} \bigcup_{\substack{\boldsymbol{x} \in \mathcal{X}_{\text{test}}}} 10^{-2} \bigcup_{\substack{\boldsymbol{x} \in \mathcal{X}_{\text{test}}}} \frac{1}{|\mathcal{X}_{\text{test}}|} |f(\boldsymbol{x}) - \tilde{f}(\boldsymbol{x})|^2\right)^{1/2} 10^{-2} \bigcup_{\substack{\boldsymbol{x} \in \mathcal{X}_{\text{test}}}} 10^{-2} \bigcup_{\substack{\boldsymbol{x} \in \mathcal{X}_{\text{test}}}} \frac{1}{|\mathcal{X}_{\text{test}}|} |f(\boldsymbol{x}) - \tilde{f}(\boldsymbol{x})|^2\right)^{1/2} 10^{-2} \bigcup_{\substack{\boldsymbol{x} \in \mathcal{X}_{\text{test}}}} 10^{-2} \bigcup_{\substack{\boldsymbol{x} \in \mathcal{X}_{\text{test}}}} \frac{1}{|\mathcal{X}_{\text{test}}|} |f(\boldsymbol{x}) - \tilde{f}(\boldsymbol{x})|^2\right)^{1/2} 10^{-2} \bigcup_{\substack{\boldsymbol{x} \in \mathcal{X}_{\text{test}}}} 10^{-2} \bigcup_{\substack{\boldsymbol{x} \in \mathcal{X}_{\text{test}}}} \frac{1}{|\mathcal{X}_{\text{test}}|} |f(\boldsymbol{x}) - \tilde{f}(\boldsymbol{x})|^2\right)^{1/2} \dots (1^{-2})^{1/2} \bigcup_{\substack{\boldsymbol{x} \in \mathcal{X}_{\text{test}}}} 10^{-2} \bigcup_{\substack{\boldsymbol{x} \in \mathcal{X}_{\text{test}}}} \frac{1}{|\mathcal{X}_{\text{test}}|} |f(\boldsymbol{x}) - \tilde{f}(\boldsymbol{x})|^2\right)^{1/2} \dots (1^{-2})^{1/2} \dots (1^{-2})^$$

• $f \in \boldsymbol{B}_{2,\infty}^{5/2}(\mathbb{R}^d, \mu_N)$ • $m = 3 \to m > s$

$$\mathsf{RMSE} = \left(\sum_{\boldsymbol{x} \in \mathcal{X}_{\mathsf{test}}} \frac{1}{|\mathcal{X}_{\mathsf{test}}|} |f(\boldsymbol{x}) - \tilde{f}(\boldsymbol{x})|^2 \right)^{1/2}$$

function: $f : \mathbb{R}^d \to \mathbb{R}, \quad f(\boldsymbol{x}) = \mathrm{e}^{-\|\boldsymbol{x}\|_2^2}$ density:

$$\mu_{\rm L}(x) = \frac{1}{8} {\rm e}^{-\frac{|x-2|}{4}}$$

•
$$f \in H^m(\mathbb{R}^d, \mu_L)$$
 for all $m \in \mathbb{N}$
• $m = 3 \to m = s$

Approximation results on \mathbb{R}^d

Numerical example

$$\mathsf{RMSE} = \left(\sum_{x \in \mathcal{X}_{\text{test}}} \frac{1}{|\mathcal{X}_{\text{test}}|} |f(x) - \tilde{f}(x)|^2\right)^{1/2} 10^{-2} \qquad \qquad 10^{-3} \qquad 10^{-3} \qquad \qquad 10^{-8} \qquad \qquad 10^{-3} \qquad \qquad 10^{-$$

Random Fourier Features

$$f(oldsymbol{x}) pprox \sum_{j=1}^{N} rac{oldsymbol{a}_{j}}{oldsymbol{e}_{j}} \mathrm{e}^{\mathrm{i} \langle oldsymbol{\omega}_{j}, oldsymbol{x}
angle}$$

- $\triangleright \omega_i$: draw at random and keep fixed
- \blacktriangleright a_i : learn from data
- over-parametrized setting $N \gg M$
- background: approximation of a kernel κ by

$$\kappa(\boldsymbol{x}_k, \boldsymbol{x}_\ell) pprox \sum_{j=1}^N \mathrm{e}^{\mathrm{i} \langle \boldsymbol{\omega}_j, \boldsymbol{x}_k
angle} \mathrm{e}^{\mathrm{i} \langle \boldsymbol{\omega}_j, \boldsymbol{x}_\ell
angle}$$

TUC · 01.09.2023 · Laura Lippert

14/22

www.tu-chemnitz.de/~lipl

A. Hashemi, H. Schaeffer, R. Shi, U. Topcu, G. Tran, R. Ward Generalization Bounds for Sparse Random Feature Expansions Appl. Comput. Harmon. Anal. 62, 310-330 (2023) Y. Xie, R. Shi, H. Schaeffer, R. Ward SHRIMP: Sparser Random Feature Models via Iterative Magnitude Pruning Proc. Math. Sci. 190, 303-318 (2022) E. Saha, H. Schaeffer, G. Tran HARFE: hard-ridge random feature expansion

Sampl. Theory Signal Process, Data Anal. 21, 27 (2023)

A. Rahimi, B. Recht

Random Features for Large-Scale Kernel Machines Adv. Neural Inf. Process. 20. (2007)

Algorithm

- draw frequencies $(\omega_j)_{j=1}^N \subset \mathbb{R}^d$ according to density $\varrho \colon \mathbb{R}^d \to \mathbb{R}$
- construct random feature matrix $m{A} = \left(\mathrm{e}^{\mathrm{i}\langlem{\omega}_j,m{x}
 angle}
 ight)_{j=1,m{x}\in\mathcal{X}}^N$

$$oldsymbol{a}^{\#} = \operatorname*{argmin}_{oldsymbol{a}} \left\|oldsymbol{a}
ight\|$$
 s.t. $\left\|oldsymbol{A}oldsymbol{a} - oldsymbol{f}
ight\|_2 \leq \lambda$

- optional: prune the index-set $\{1, \ldots, N\}$ iteratively
- construct approximation $f^{\#}({m x}) = \sum_{j=1}^N a_j^{\#} \mathrm{e}^{\mathrm{i}\,\langle {m \omega}_j, {m x}
 angle}$

The distribution ρ and the smoothness

$$\mathcal{F}(arrho)\coloneqq \left\{f(oldsymbol{x}) = \int_{\mathbb{R}^d} \hat{f}(oldsymbol{\omega}) \mathrm{e}^{\mathrm{i}\langleoldsymbol{\omega},oldsymbol{x}
angle} \mathrm{d}oldsymbol{\omega} \mid \|f\|_{\mathcal{F}(arrho)} \coloneqq \sup_{oldsymbol{\omega}\in\mathbb{R}^d} \left|rac{\hat{f}(oldsymbol{\omega})}{arrho(oldsymbol{\omega})}
ight| < \infty
ight\}$$

- ► literature: Gaussian random features: $\rho_N(\omega) \sim e^{-\frac{\|\omega\|^2}{2\sigma^2}}$
- ightarrow strong decay condition on the Fourier transform \hat{f}
- $\rightarrow\,$ strong smoothness assumption on the function f idea: using density

$$arrho_{\Pi}^{s} \sim \prod_{i \in [d]} rac{1}{\sigma \left(1 + oldsymbol{\omega}_{i}^{2} / \sigma^{2}
ight)^{s}}$$

work in progress:

$$H^{r}_{\min}(\mathbb{R}^{d}) \subseteq \mathcal{F}(\varrho^{s}_{\Pi}) \text{ if } s > \frac{1}{2}, r < 2s - \frac{1}{2},$$
$$\lim_{r \to 2s - 1/2} \frac{H^{r}_{\min}(\mathbb{R}^{d}) = \mathcal{F}(\varrho^{s}_{\Pi}).}{\frac{16}{22}}$$

TUC · 01.09.2023 · Laura Lippert

www.tu-chemnitz.de/~lipl

In the literature so far:

Finite second moment of feature density ρ is needed \rightarrow can be relaxed Work in progess:

Matrix
$$\mathbf{A} = (e^{i\langle \boldsymbol{\omega}, \boldsymbol{x} \rangle})_{j=1, \boldsymbol{x} \in \mathcal{X}}^N$$
 is well-conditioned w.h.p. if $N > 2M$

•
$$\sigma \gamma \sqrt{d} \gtrsim \log M$$
 $(\gamma, \sigma : \text{scaling parameters of } \mu, \varrho)$

•
$$\mu$$
 fulfills small ball property: $\mathbb{P}(\|m{x} - m{x}'\| > \delta) > \varepsilon$

$$|\hat{arrho}(oldsymbol{x})|\lesssim \mathrm{e}^{-\|oldsymbol{x}\|_2}$$

The interpolation case

ANOVA (Analysis of variance) decomposition :

$$f(\boldsymbol{x}) = \sum_{\boldsymbol{u} \subseteq \{1, \dots, d\}} f_{\boldsymbol{u}}(\boldsymbol{x}_{\boldsymbol{u}})$$

truncation: $f(\boldsymbol{x}) \approx \sum_{|\boldsymbol{u}| \leq q} f_{\boldsymbol{u}}(\boldsymbol{x}_{\boldsymbol{u}})$

properties:

$$\mathbf{P} \quad f_{\varnothing} = \int_{\mathbb{R}} f(\boldsymbol{x}) \mu(\boldsymbol{x}) d\boldsymbol{x}$$
$$\mathbf{P} \quad \int_{\mathbb{R}} f_{\boldsymbol{u}}(\boldsymbol{x}_{\boldsymbol{u}}) f_{\boldsymbol{v}}(\boldsymbol{x}_{\boldsymbol{v}}) \mu(\boldsymbol{x}) d\boldsymbol{x} = 0, \quad \boldsymbol{u} \neq \boldsymbol{v}$$

hyperbolic index-set I₃

ANOVA (Analysis of variance) decomposition :

$$f(\boldsymbol{x}) = \sum_{\boldsymbol{u} \subseteq \{1,...,d\}} f_{\boldsymbol{u}}(\boldsymbol{x}_{\boldsymbol{u}})$$

properties:

$$\mathbf{b} \quad f_{\varnothing} = \int_{\mathbb{R}} f(\boldsymbol{x}) \mu(\boldsymbol{x}) d\boldsymbol{x}$$

$$\mathbf{b} \quad \int_{\mathbb{R}} f_{\boldsymbol{u}}(\boldsymbol{x}_{\boldsymbol{u}}) f_{\boldsymbol{v}}(\boldsymbol{x}_{\boldsymbol{v}}) \mu(\boldsymbol{x}) d\boldsymbol{x} = 0, \quad \boldsymbol{u} \neq \boldsymbol{v}$$

ANOVA (Analysis of variance) decomposition :

$$f(\boldsymbol{x}) = \sum_{\boldsymbol{u} \subseteq \{1,...,d\}} f_{\boldsymbol{u}}(\boldsymbol{x}_{\boldsymbol{u}})$$

properties:

$$\mathbf{P} \quad f_{\varnothing} = \int_{\mathbb{R}} f(\boldsymbol{x}) \mu(\boldsymbol{x}) d\boldsymbol{x}$$
$$\mathbf{P} \quad \int_{\mathbb{R}} f_{\boldsymbol{u}}(\boldsymbol{x}_{\boldsymbol{u}}) f_{\boldsymbol{v}}(\boldsymbol{x}_{\boldsymbol{v}}) \mu(\boldsymbol{x}) d\boldsymbol{x} = 0, \quad \boldsymbol{u} \neq \boldsymbol{v}$$

ANOVA (Analysis of variance) decomposition :

$$f(\boldsymbol{x}) = \sum_{\boldsymbol{u} \subseteq \{1,...,d\}} f_{\boldsymbol{u}}(\boldsymbol{x}_{\boldsymbol{u}})$$

properties:

$$\mathbf{b} \quad f_{\varnothing} = \int_{\mathbb{R}} f(\boldsymbol{x}) \mu(\boldsymbol{x}) d\boldsymbol{x}$$

$$\mathbf{b} \quad \int_{\mathbb{R}} f_{\boldsymbol{u}}(\boldsymbol{x}_{\boldsymbol{u}}) f_{\boldsymbol{v}}(\boldsymbol{x}_{\boldsymbol{v}}) \mu(\boldsymbol{x}) d\boldsymbol{x} = 0, \quad \boldsymbol{u} \neq \boldsymbol{v}$$

ANOVAapprox

$$f_{\boldsymbol{u}}(\boldsymbol{x}_{\boldsymbol{u}}) \approx \sum_{(\boldsymbol{j},\boldsymbol{k})\in I^{\boldsymbol{u}}} a_{\boldsymbol{j},\boldsymbol{k}} \psi_{\boldsymbol{j},\boldsymbol{k}}^{\mathrm{per}}(\mathbf{R}_{\boldsymbol{u}}^{-1}(\boldsymbol{x}_{\boldsymbol{u}}))$$

 \rightarrow choosing index-set with $|\operatorname{supp} \boldsymbol{j}| \leq q$

- ▶ approximate variances $\sigma^2(f_u)$ by $\sigma^2((S_n^{\mathcal{Y}}(f \circ \mathbb{R}^{-1}))_u)$ from coefficients $a_{j,k}$
- second approximation: using only important ANOVA terms, increase accuracy for important ANOVA terms

M. Schmischke, L. Lippert, F.Nestler NFFT/ANOVAapprox.jl: v1.1.7 (v1.1.7) Zenodo. https://doi.org/10.5281/zenodo.7070795

L. Lippert, D. Krumm, D. Potts, S. Odenwald

Estimating vertical ground reaction forces from plantar pressure using interpretable high-dimensional approximation submitted to Sports Eng.

Sparse Random Fourier Features

- similar idea: draw *q*-sparse frequencies random: For each $u \in \{1, ..., d\}$ with |u| = q draw random ω_u and $\omega_{u^c} = 0$
- $e^{\langle \boldsymbol{\omega}_j,\cdot\rangle}$ is no orthonormal system

$$\blacktriangleright f_{\boldsymbol{u}}(\boldsymbol{x}_{\boldsymbol{u}}) = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} \hat{f}(\boldsymbol{\omega}) E(\boldsymbol{x}, \boldsymbol{\omega}, \boldsymbol{\mu}, \boldsymbol{u}) \mathrm{d}\boldsymbol{\omega}$$

Trafo approach

- ► fast multiplication with matrix A available → fast algorithm for big number of samples M
- direct connection between ANOVA terms and coefficients a_{j,k}
- ▶ function spaces $H^s_{mix}(\mathbb{R}^d, \mu)$
- ightarrow approximation rates are transferred from \mathbb{T}^d to \mathbb{R}^d

Random Fourier Features

- no fast algorithm available, but more parameters possible for low number of samples M (compared to dimension d)
- can be interpreted as a neural network with two layers
- function spaces $\mathcal{F}(\varrho)$
- theoretical error estimates possible, with complicated assumptions
- sensitive to the parameter choice

Thank you for your attention