

ANOVA meets control

Melanie Kircheis

joint work with
Daniel Potts, Manuel Schaller and Karl Worthmann

Research Seminar Numerics

Unknown function (control system):

$$H \colon \mathbb{R}^d \times \mathbb{R}^m \to \mathbb{R}^d,$$

 $H(\boldsymbol{x}, \boldsymbol{u}) \coloneqq F(\boldsymbol{x}) + G(\boldsymbol{x})\boldsymbol{u},$

with

- $F: \mathbb{R}^d \to \mathbb{R}^d, G: \mathbb{R}^d \to \mathbb{R}^{d \times m},$
- $d, m \in \mathbb{N}, m \ll d$.

Unknown function (control system):

$$H \colon \mathbb{R}^d imes \mathbb{R}^m o \mathbb{R}^d,$$
 $H(\boldsymbol{x}, \boldsymbol{u}) \coloneqq F(\boldsymbol{x}) + G(\boldsymbol{x})\boldsymbol{u},$

with

- $F: \mathbb{R}^d \to \mathbb{R}^d, G: \mathbb{R}^d \to \mathbb{R}^{d \times m},$
- $d, m \in \mathbb{N}, m \ll d$.

Given: samples $H(\boldsymbol{x}^i, \boldsymbol{u}^i)$ for $i=1,\ldots,M$

Unknown function (control system):

$$H \colon \mathbb{R}^d imes \mathbb{R}^m o \mathbb{R}^d,$$
 $H(\boldsymbol{x}, \boldsymbol{u}) \coloneqq F(\boldsymbol{x}) + G(\boldsymbol{x}) \boldsymbol{u},$

with

- $F: \mathbb{R}^d \to \mathbb{R}^d, G: \mathbb{R}^d \to \mathbb{R}^{d \times m},$
- $d, m \in \mathbb{N}, m \ll d$.

Given: samples $H(\boldsymbol{x}^i, \boldsymbol{u}^i)$ for $i=1,\dots,M$

Goal: find $\tilde{H} \approx H$

Unknown function (control system):

$$H \colon \mathbb{R}^d \times \mathbb{R}^m \to \mathbb{R}^d,$$

 $H(\boldsymbol{x}, \boldsymbol{u}) \coloneqq F(\boldsymbol{x}) + G(\boldsymbol{x})\boldsymbol{u},$

with

- $F: \mathbb{R}^d \to \mathbb{R}^d, G: \mathbb{R}^d \to \mathbb{R}^{d \times m},$
- $d, m \in \mathbb{N}, m \ll d$.

Given: samples $H(\boldsymbol{x}^i, \boldsymbol{u}^i)$ for $i = 1, \dots, M$

Goal: find $\tilde{H} \approx H$

Problem: curse of dimensionality

Unknown function (control system):

$$H \colon \mathbb{R}^d \times \mathbb{R}^m \to \mathbb{R}^d,$$

 $H(\boldsymbol{x}, \boldsymbol{u}) \coloneqq F(\boldsymbol{x}) + G(\boldsymbol{x})\boldsymbol{u},$

with

- $F: \mathbb{R}^d \to \mathbb{R}^d, G: \mathbb{R}^d \to \mathbb{R}^{d \times m},$
- $d, m \in \mathbb{N}, m \ll d$.

Given: samples $H(\boldsymbol{x}^i, \boldsymbol{u}^i)$ for $i = 1, \dots, M$

Goal: find $\tilde{H} \approx H$

Problem: curse of dimensionality

Assumption: F and G of low-dimensional structure

Unknown function (control system):

$$H \colon \mathbb{R}^d \times \mathbb{R}^m \to \mathbb{R}^d,$$
 $H(\boldsymbol{x}, \boldsymbol{u}) \coloneqq F(\boldsymbol{x}) + G(\boldsymbol{x})\boldsymbol{u},$

with

- $F: \mathbb{R}^d \to \mathbb{R}^d, G: \mathbb{R}^d \to \mathbb{R}^{d \times m},$
- $d, m \in \mathbb{N}, m \ll d$.

Given: samples $H(\boldsymbol{x}^i, \boldsymbol{u}^i)$ for $i = 1, \dots, M$

Goal: find $\tilde{H} \approx H$

Problem: curse of dimensionality

Assumption: F and G of low-dimensional structure

Example: Euler approximation of a controlled Duffing oscillator

$$H(\mathbf{x}, \mathbf{u}) = \mathbf{x} + \Delta t \begin{pmatrix} x_2 \\ x_1 - 3x_1^3 u \end{pmatrix}$$
$$= \begin{pmatrix} x_1 + \Delta t x_2 \\ x_2 + \Delta t x_1 \end{pmatrix} + \begin{pmatrix} 0 \\ -3\Delta t x_1^3 \end{pmatrix} u$$
$$= F(\mathbf{x}) + G(\mathbf{x})u$$

i. e.,

- d = 2,
- m = 1
- only 1D terms → low-dimensional

Overview

- ANOVA approximation for scalar-valued functions
- ANOVA approximation for control systems
- Numerical Example

ANOVA approximation

ANalysis Of VAriance (ANOVA) decomposition

[Caflish, Morokoff, Owen 97], [Rabitz, Alis 99], [Liu, Owen 06], [Kuo, Sloan, Wasilkowski, Wozniakowski 10], . . .

Decompose a d-dimensional function f into

$$f(\mathbf{x}) = f_{\varnothing}$$

$$+ f_{1}(x_{1}) + \dots + f_{d}(x_{d})$$

$$+ f_{1,2}(x_{1}, x_{2}) + f_{1,3}(x_{1}, x_{3}) + \dots + f_{d-1,d}(x_{d-1}, x_{d})$$

$$+ f_{1,2,3}(x_{1}, x_{2}, x_{3}) + \dots + f_{d-2,d-1,d}(x_{d-2}, x_{d-1}, x_{d})$$

$$\vdots$$

$$+ f_{[d]}(\mathbf{x})$$

constant one-dimensional terms two-dimensional terms three-dimensional terms

$$[d] \coloneqq \{1, \dots, d\}$$

2##5 UNIVERSITY OF TECHNOLOGY BY FAIL EXHIBITION CHENNETS CHENNETS

ANalysis Of VAriance (ANOVA) decomposition

[Caflish, Morokoff, Owen 97], [Rabitz, Alis 99], [Liu, Owen 06], [Kuo, Sloan, Wasilkowski, Wozniakowski 10], . . .

Decompose a d-dimensional function f into

$$f(\mathbf{x}) = f_{\varnothing}$$

$$+ f_{1}(x_{1}) + \dots + f_{d}(x_{d})$$

$$+ f_{1,2}(x_{1}, x_{2}) + f_{1,3}(x_{1}, x_{3}) + \dots + f_{d-1,d}(x_{d-1}, x_{d})$$

$$+ f_{1,2,3}(x_{1}, x_{2}, x_{3}) + \dots + f_{d-2,d-1,d}(x_{d-2}, x_{d-1}, x_{d})$$

$$\vdots$$

$$+ f_{[d]}(\mathbf{x})$$

$$= \sum_{\mathbf{v} \subseteq [d]} f_{\mathbf{v}}(\mathbf{x}_{\mathbf{v}})$$

constant one-dimensional terms two-dimensional terms three-dimensional terms

$$[d] \coloneqq \{1, \dots, d\}$$

ANalysis Of VAriance (ANOVA) decomposition

[Caflish, Morokoff, Owen 97], [Rabitz, Alis 99], [Liu, Owen 06], [Kuo, Sloan, Wasilkowski, Wozniakowski 10], . . .

Decompose a d-dimensional function f into

$$f(\mathbf{x}) = f_{\varnothing}$$

$$+ f_{1}(x_{1}) + \dots + f_{d}(x_{d})$$

$$+ f_{1,2}(x_{1}, x_{2}) + f_{1,3}(x_{1}, x_{3}) + \dots + f_{d-1,d}(x_{d-1}, x_{d})$$

$$+ f_{1,2,3}(x_{1}, x_{2}, x_{3}) + \dots + f_{d-2,d-1,d}(x_{d-2}, x_{d-1}, x_{d})$$

$$\vdots$$

$$+ f_{[d]}(\mathbf{x})$$

$$= \sum_{\mathbf{v} \subseteq [d]} f_{\mathbf{v}}(\mathbf{x}_{\mathbf{v}})$$

constant one-dimensional terms two-dimensional terms three-dimensional terms

$$[d]\coloneqq\{1,\ldots,d\}$$

- ightarrow in general multiple representations possible
- → conditions for uniqueness?

ANOVA meets control ANOVA approximation for scalar-valued functions

Definition

Let

$$\langle f, g \rangle_{L_2(\Omega, \omega)} \coloneqq \int_{\Omega} f(\boldsymbol{x}) \, g(\boldsymbol{x}) \, \omega(\boldsymbol{x}) \, d\boldsymbol{x}$$

Let

$$\langle f, g \rangle_{L_2(\Omega, \omega)} \coloneqq \int_{\Omega} f(\boldsymbol{x}) \, g(\boldsymbol{x}) \, \omega(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x}$$

⇒ unique decomposition satisfying:

$$0=\langle f_{m v},f_{m z}
angle_{L_2(\Omega,\omega)}$$
 for all ${m v}
eq {m z}\subseteq [d]$

Let

$$\langle f,g
angle_{L_2(\Omega,\omega)}\coloneqq\int_\Omega f(oldsymbol{x})\,g(oldsymbol{x})\,\omega(oldsymbol{x})\,\mathrm{d}oldsymbol{x}$$

⇒ unique decomposition satisfying:

$$0 = \langle f_{m v}, f_{m z}
angle_{L_2(\Omega,\omega)}$$
 for all $m v
eq m z \subseteq [d]$

Basis representation: For orthonormal basis $\{\varphi_{k}\}_{k\in\mathbb{N}_{0}^{d}}$ of $L_{2}(\Omega,\omega)$ we have

$$f(\boldsymbol{x}) = \sum_{\boldsymbol{k} \in \mathbb{N}_0^d} c_{\boldsymbol{k}}(f) \, \varphi_{\boldsymbol{k}}(\boldsymbol{x}), \qquad c_{\boldsymbol{k}}(f) \coloneqq \langle f, \varphi_{\boldsymbol{k}} \rangle_{L_2(\Omega, \omega)}.$$

Let

$$\langle f, g \rangle_{L_2(\Omega, \omega)} \coloneqq \int_{\Omega} f(\boldsymbol{x}) g(\boldsymbol{x}) \omega(\boldsymbol{x}) d\boldsymbol{x}$$

⇒ unique decomposition satisfying:

$$0 = \langle f_{m v}, f_{m z}
angle_{L_2(\Omega,\omega)}$$
 for all $m v
eq m z \subseteq [d]$

Basis representation: For orthonormal basis $\{\varphi_{k}\}_{k\in\mathbb{N}_{0}^{d}}$ of $L_{2}(\Omega,\omega)$ we have

$$f(\boldsymbol{x}) = \sum_{\boldsymbol{k} \in \mathbb{N}_0^d} c_{\boldsymbol{k}}(f) \, \varphi_{\boldsymbol{k}}(\boldsymbol{x}), \qquad c_{\boldsymbol{k}}(f) \coloneqq \langle f, \varphi_{\boldsymbol{k}} \rangle_{L_2(\Omega, \omega)}.$$

[Potts, Schmischke 21]:

$$f_{\boldsymbol{v}}(\boldsymbol{x}_{\boldsymbol{v}}) = \sum_{\substack{\boldsymbol{k} \in \mathbb{N}_0^d \\ \text{supp } \boldsymbol{k} = \boldsymbol{v}}} c_{\boldsymbol{k}}(f) \, \varphi_{\boldsymbol{k}}(\boldsymbol{x}_{\boldsymbol{v}})$$

Let

$$\langle f, g \rangle_{L_2(\Omega, \omega)} \coloneqq \int_{\Omega} f(\boldsymbol{x}) g(\boldsymbol{x}) \omega(\boldsymbol{x}) d\boldsymbol{x}$$

⇒ unique decomposition satisfying:

$$0 = \langle f_{m v}, f_{m z}
angle_{L_2(\Omega,\omega)}$$
 for all $m v
eq m z \subseteq [d]$

Basis representation: For orthonormal basis $\{\varphi_{k}\}_{k\in\mathbb{N}_{\alpha}^{d}}$ of $L_{2}(\Omega,\omega)$ we have

$$f(\boldsymbol{x}) = \sum_{\boldsymbol{k} \in \mathbb{N}_{-}^{d}} c_{\boldsymbol{k}}(f) \, \varphi_{\boldsymbol{k}}(\boldsymbol{x}), \qquad c_{\boldsymbol{k}}(f) \coloneqq \langle f, \varphi_{\boldsymbol{k}} \rangle_{L_{2}(\Omega, \omega)}.$$

$$c_{\mathbf{k}}(f) := \langle f, \varphi_{\mathbf{k}} \rangle_{L_2(\Omega, \omega)}.$$

[Potts, Schmischke 21]:

$$f_{\boldsymbol{v}}(\boldsymbol{x}_{\boldsymbol{v}}) = \sum_{\substack{\boldsymbol{k} \in \mathbb{N}_0^d \\ \text{supp } \boldsymbol{k} = \boldsymbol{v}}} c_{\boldsymbol{k}}(f) \, \varphi_{\boldsymbol{k}}(\boldsymbol{x}_{\boldsymbol{v}})$$

$$k \in \mathbb{Z}^3$$
 $k = 0$ $|\sup k| = 1$ $|\sup pk| = 2$ $|\sup pk| = 3$

⇒ decomposition in the space of basis coefficients

[image credits: Laura Weidensager]

Numerical realization - ANOVA approximation

[Potts, Schmischke 21]

$$f = \sum_{\boldsymbol{v} \subseteq [d]} f_{\boldsymbol{v}}, \qquad f_{\boldsymbol{v}} = \sum_{\substack{\boldsymbol{k} \in \mathbb{Z}^d \\ \operatorname{supp} \boldsymbol{k} = \boldsymbol{v}}} c_{\boldsymbol{k}}(f) \, \varphi_{\boldsymbol{k}}$$

Numerical realization – ANOVA approximation

[Potts, Schmischke 21]

$$f = \sum_{\boldsymbol{v} \subseteq [d]} f_{\boldsymbol{v}}, \qquad f_{\boldsymbol{v}} = \sum_{\substack{\boldsymbol{k} \in \mathbb{Z}^d \\ \operatorname{supp} \boldsymbol{k} = \boldsymbol{v}}} c_{\boldsymbol{k}}(f) \, \varphi_{\boldsymbol{k}}$$

Truncation

reduce number of ANOVA terms

$$\mathcal{T}_{V} f = \sum_{\substack{\mathbf{v} \subseteq [d] \\ \mathbf{v} \in V}} f_{\mathbf{v}}$$
$$f_{\mathbf{v}} = \sum_{\substack{\mathbf{k} \in \mathbb{Z}^{d} \\ \text{supp } \mathbf{k} = \mathbf{v}}} c_{\mathbf{k}}(f) \varphi_{\mathbf{k}}$$

Numerical realization - ANOVA approximation

[Potts, Schmischke 21]

$$f = \sum_{\boldsymbol{v} \subseteq [d]} f_{\boldsymbol{v}}, \qquad f_{\boldsymbol{v}} = \sum_{\substack{\boldsymbol{k} \in \mathbb{Z}^d \\ \text{supp } \boldsymbol{k} = \boldsymbol{v}}} c_{\boldsymbol{k}}(f) \, \varphi_{\boldsymbol{k}}$$

Truncation

reduce number of ANOVA terms

$$\mathcal{T}_{V} f = \sum_{\substack{\mathbf{v} \subseteq [d] \\ \mathbf{v} \in V}} f_{\mathbf{v}}$$
$$f_{\mathbf{v}} = \sum_{\substack{\mathbf{k} \in \mathbb{Z}^{d} \\ \text{supp } \mathbf{k} = \mathbf{v}}} c_{\mathbf{k}}(f) \varphi_{\mathbf{k}}$$

Projection

choose finite number of basis functions $\{\varphi_{k}\}_{k\in\mathbb{Z}^{d}}$

$$P_{N}f = \sum_{\substack{v \subseteq [d] \\ v \in V}} \tilde{f}_{v}$$
$$\tilde{f}_{v} = \sum_{k \in \mathcal{I}_{N}v} c_{k}(f) \varphi_{k}$$

Numerical realization - ANOVA approximation

[Potts, Schmischke 21]

$$f = \sum_{\mathbf{v} \subseteq [d]} f_{\mathbf{v}}, \qquad f_{\mathbf{v}} = \sum_{\substack{\mathbf{k} \in \mathbb{Z}^d \\ \text{supp } \mathbf{k} = \mathbf{v}}} c_{\mathbf{k}}(f) \, \varphi_{\mathbf{k}}$$

Truncation

reduce number of ANOVA terms

$$\mathcal{T}_{V} f = \sum_{\substack{\mathbf{v} \subseteq [d] \\ \mathbf{v} \in V}} f_{\mathbf{v}}$$
$$f_{\mathbf{v}} = \sum_{\substack{\mathbf{k} \in \mathbb{Z}^{d} \\ \text{supp } \mathbf{k} = \mathbf{v}}} c_{\mathbf{k}}(f) \varphi_{\mathbf{k}}$$

Projection

choose finite number of basis functions $\{\varphi_{k}\}_{k\in\mathbb{Z}^{d}}$

$$\begin{aligned} P_{N}f &= \sum_{\substack{v \subseteq [d] \\ v \in V}} \tilde{f}_{v} \\ \tilde{f}_{v} &= \sum_{\substack{k \in \mathcal{I}_{N}v}} c_{k}(f) \, \varphi_{k} \end{aligned}$$

Regression

compute coefficients $c_{\pmb{k}}^\star$ from samples

$$f^* = \sum_{\substack{v \subseteq [d] \\ v \in V}} f^*_v$$
$$f^*_v = \sum_{k \in \mathcal{I}_{N^v}} c^*_k \varphi_k$$

$$f(\boldsymbol{x}) = f_\varnothing \qquad \text{constant} \\ + f_1(x_1) + f_2(x_2) + \ldots + f_d(x_d) \qquad \text{one-dimensional terms} \\ + f_{1,2}(x_1, x_2) + f_{1,3}(x_1, x_3) + \ldots + f_{d-1,d}(x_{d-1}, x_d) \qquad \text{two-dimensional terms} \\ + f_{1,2,3}(x_1, x_2, x_3) + \ldots + f_{d-2,d-1,d}(x_{d-2}, x_{d-1}, x_d) \qquad \text{three-dimensional terms} \\ \vdots \\ + f_{[d]}(x) \qquad \qquad \text{d-dimensional term} \\ = \sum_{\boldsymbol{v} \subseteq [d]} f_{\boldsymbol{v}}(\boldsymbol{x}_{\boldsymbol{v}})$$

$$f(\boldsymbol{x}) = f_\varnothing \qquad \text{constant}$$

$$+ f_1(x_1) + f_2(x_2) + \ldots + f_d(x_d) \qquad \text{one-dimensional terms}$$

$$+ f_{1,2}(x_1, x_2) + f_{1,3}(x_1, x_3) + \ldots + f_{d-1,d}(x_{d-1}, x_d) \qquad \text{two-dimensional terms}$$

$$+ f_{1,2,3}(x_1, x_2, x_3) + \ldots + f_{d-2,d-1,d}(x_{d-2}, x_{d-1}, x_d) \qquad \text{three-dimensional terms}$$

$$\vdots$$

$$+ f_{[d]}(x) \qquad \text{d-dimensional term}$$

$$= \sum_{\boldsymbol{v} \subseteq [d]} f_{\boldsymbol{v}}(\boldsymbol{x}_{\boldsymbol{v}})$$

Problem: 2^d many terms (curse of dimensionality)

$$f(x) = f_\varnothing \qquad \text{constant} \\ + f_1(x_1) + f_2(x_2) + \ldots + f_d(x_d) \qquad \text{one-dimensional terms} \\ + f_{1,2}(x_1, x_2) + f_{1,3}(x_1, x_3) + \ldots + f_{d-1,d}(x_{d-1}, x_d) \qquad \text{two-dimensional terms} \\ + f_{1,2,3}(x_1, x_2, x_3) + \ldots + f_{d-2,d-1,d}(x_{d-2}, x_{d-1}, x_d) \qquad \text{three-dimensional terms} \\ \vdots \\ + f_{[d]}(x) \qquad \qquad \otimes \sum_{\substack{v \subseteq [d] \\ |v| \le a}} f_v(x_v) \\ \otimes \sum_{\substack{v \subseteq [d] \\ |v| \le a}} f_v(x_v) \\ \otimes \sum_{\substack{v \in [d] \\ |v| \ge a}} f_v(x_v) \\ \otimes \sum_{\substack{v \in [d] \\ |v| \ge a}} f_v(x_v) \\ \otimes \sum_{\substack{v \in [d] \\ |v| \ge a}} f_v(x_v) \\ \otimes \sum_{\substack{v \in [d] \\ |v| \ge a}} f_v(x_v) \\ \otimes \sum_{\substack{v \in [d] \\ |v| \ge a}} f_v(x_v) \\ \otimes \sum_{\substack{v \in [d] \\ |v| \ge a}} f_v(x_v) \\ \otimes \sum_{\substack{v \in [d] \\ |v| \ge a}} f_v(x_v) \\ \otimes \sum_{\substack{v \in [d] \\ |v| \ge a}} f_v(x_v) \\ \otimes \sum_{\substack{v \in [d] \\ |v|$$

Problem: 2^d many terms (curse of dimensionality)

 \Rightarrow introduce $q \in \mathbb{N}, q < d$ (superposition dimension)

$$f(x) = f_{\varnothing}$$

$$+ f_{\mathsf{H}}(x_1) + f_{\mathsf{L}}(x_2) + \dots + f_{\mathsf{L}}(x_{\mathsf{L}})$$

$$+ f_{\mathsf{L},2}(x_1, x_2) + f_{\mathsf{L},3}(x_1, x_3) + \dots + f_{\mathsf{L}=1,d}(x_{\mathsf{L}-1}, x_{\mathsf{L}})$$

$$+ f_{\mathsf{L},2,3}(x_1, x_2, x_3) + \dots + f_{\mathsf{L}=2,d-1,d}(x_{\mathsf{L}-2}, x_{\mathsf{L}-1}, x_{\mathsf{L}})$$

$$\vdots$$

$$\pm f_{\mathsf{L},2}(x)$$

$$\approx \sum_{\substack{v \subseteq [d] \\ v \in V}} f_v(x_v) = \mathcal{T}_V f$$
set V according to sparsity

constant one-dimensional terms two-dimensional terms

three-dimensional terms

Recap: reduced the number of ANOVA terms

$$f_{\boldsymbol{v}}(\boldsymbol{x}_{\boldsymbol{v}}) = \sum_{\substack{\boldsymbol{k} \in \mathbb{Z}^d \\ \text{supp } \boldsymbol{k} = \boldsymbol{v}}} c_{\boldsymbol{k}}(f) \, \varphi_{\boldsymbol{k}}(\boldsymbol{x}_{\boldsymbol{v}})$$

Recap: reduced the number of ANOVA terms

$$f_{m{v}}(m{x}_{m{v}}) = \sum_{\substack{m{k} \in \mathbb{Z}^d \ \mathrm{supp}\,m{k} = m{v}}} c_{m{k}}(f)\,arphi_{m{k}}(m{x}_{m{v}})$$

Problem: infinitely many coefficients needed ⇒ impossible in practice

Recap: reduced the number of ANOVA terms

$$f_{\boldsymbol{v}}(\boldsymbol{x}_{\boldsymbol{v}}) = \sum_{\substack{\boldsymbol{k} \in \mathbb{Z}^d \\ \text{supp } \boldsymbol{k} = \boldsymbol{v}}} c_{\boldsymbol{k}}(f) \, \varphi_{\boldsymbol{k}}(\boldsymbol{x}_{\boldsymbol{v}})$$

Problem: infinitely many coefficients needed ⇒ impossible in practice

 \rightsquigarrow introduce finite index sets \mathcal{I}_{N^v} and approximate by

$$f_{\boldsymbol{v}}(\boldsymbol{x}_{\boldsymbol{v}}) \approx \sum_{\boldsymbol{k} \in \mathcal{I}_{N^{\boldsymbol{v}}}} c_{\boldsymbol{k}}(f) \, \varphi_{\boldsymbol{k}}(\boldsymbol{x}_{\boldsymbol{v}}), \quad \boldsymbol{v} \subseteq [d]$$

Recap: reduced the number of ANOVA terms

$$f_{\boldsymbol{v}}(\boldsymbol{x}_{\boldsymbol{v}}) = \sum_{\substack{\boldsymbol{k} \in \mathbb{Z}^d \\ \text{supp } \boldsymbol{k} = \boldsymbol{v}}} c_{\boldsymbol{k}}(f) \, \varphi_{\boldsymbol{k}}(\boldsymbol{x}_{\boldsymbol{v}})$$

Problem: infinitely many coefficients needed ⇒ impossible in practice

 \rightsquigarrow introduce finite index sets \mathcal{I}_{N^v} and approximate by

$$f_{\boldsymbol{v}}(\boldsymbol{x}_{\boldsymbol{v}}) \approx \sum_{\boldsymbol{k} \in \mathcal{I}_{N^{\boldsymbol{v}}}} c_{\boldsymbol{k}}(f) \, \varphi_{\boldsymbol{k}}(\boldsymbol{x}_{\boldsymbol{v}}), \quad \boldsymbol{v} \subseteq [d]$$

and thus

$$f(\boldsymbol{x}) pprox \sum_{\boldsymbol{k} \in \mathcal{I}_{\boldsymbol{N}}} c_{\boldsymbol{k}}(f) \, \varphi_{\boldsymbol{k}}(\boldsymbol{x}), \qquad \mathcal{I}_{\boldsymbol{N}} \coloneqq \bigcup_{|\boldsymbol{v}| \leq q} \mathcal{I}_{\boldsymbol{N}^{\boldsymbol{v}}}$$

Recap: reduced the number of ANOVA terms

$$f_{\boldsymbol{v}}(\boldsymbol{x}_{\boldsymbol{v}}) = \sum_{\substack{\boldsymbol{k} \in \mathbb{Z}^d \\ \text{supp } \boldsymbol{k} = \boldsymbol{v}}} c_{\boldsymbol{k}}(f) \, \varphi_{\boldsymbol{k}}(\boldsymbol{x}_{\boldsymbol{v}})$$

Problem: infinitely many coefficients needed ⇒ impossible in practice

 \rightsquigarrow introduce finite index sets \mathcal{I}_{N^v} and approximate by

$$f_{\boldsymbol{v}}(\boldsymbol{x}_{\boldsymbol{v}}) \approx \sum_{\boldsymbol{k} \in \mathcal{I}_{N^{\boldsymbol{v}}}} c_{\boldsymbol{k}}(f) \, \varphi_{\boldsymbol{k}}(\boldsymbol{x}_{\boldsymbol{v}}), \quad \boldsymbol{v} \subseteq [d]$$

and thus

$$f(\boldsymbol{x}) pprox \sum_{\boldsymbol{k} \in \mathcal{I}_{\boldsymbol{N}}} c_{\boldsymbol{k}}(f) \, \varphi_{\boldsymbol{k}}(\boldsymbol{x}), \qquad \mathcal{I}_{\boldsymbol{N}} \coloneqq \bigcup_{|\boldsymbol{v}| \leq q} \mathcal{I}_{\boldsymbol{N}^{\boldsymbol{v}}}$$

 $\hat{=} \text{ projection using a finite dictionary } \{\varphi_{\pmb{k}}\}_{\pmb{k}\in\mathcal{I}_{\pmb{N}}}\subset\{\varphi_{\pmb{k}}\}_{\pmb{k}\in\mathbb{N}_0^d}$

Recap: reduced the number of ANOVA terms

$$f_{\boldsymbol{v}}(\boldsymbol{x}_{\boldsymbol{v}}) = \sum_{\substack{\boldsymbol{k} \in \mathbb{Z}^d \\ \text{supp } \boldsymbol{k} = \boldsymbol{v}}} c_{\boldsymbol{k}}(f) \, \varphi_{\boldsymbol{k}}(\boldsymbol{x}_{\boldsymbol{v}})$$

Problem: infinitely many coefficients needed ⇒ impossible in practice

 \rightsquigarrow introduce finite index sets \mathcal{I}_{N^v} and approximate by

$$f_{\boldsymbol{v}}(\boldsymbol{x}_{\boldsymbol{v}}) \approx \sum_{\boldsymbol{k} \in \mathcal{I}_{N^{\boldsymbol{v}}}} c_{\boldsymbol{k}}(f) \, \varphi_{\boldsymbol{k}}(\boldsymbol{x}_{\boldsymbol{v}}), \quad \boldsymbol{v} \subseteq [d]$$

and thus

$$f(\boldsymbol{x}) pprox \sum_{\boldsymbol{k} \in \mathcal{I}_{\boldsymbol{N}}} c_{\boldsymbol{k}}(f) \, \varphi_{\boldsymbol{k}}(\boldsymbol{x}), \qquad \mathcal{I}_{\boldsymbol{N}} \coloneqq \bigcup_{|\boldsymbol{v}| \leq q} \mathcal{I}_{\boldsymbol{N}^{\boldsymbol{v}}}$$

 $\hat{=} \text{ projection using a finite dictionary } \{\varphi_{\pmb{k}}\}_{\pmb{k}\in\mathcal{I}_{\pmb{N}}}\subset\{\varphi_{\pmb{k}}\}_{\pmb{k}\in\mathbb{N}_0^d}$

Still: computation of the integrals $c_{\mathbf{k}}(f) = \langle f, \varphi_{\mathbf{k}} \rangle_{L_2(\Omega, \omega)}, \mathbf{k} \in \mathcal{I}_{\mathbf{N}}$

Recap: reduced the number of ANOVA terms

$$f_{\boldsymbol{v}}(\boldsymbol{x}_{\boldsymbol{v}}) = \sum_{\substack{\boldsymbol{k} \in \mathbb{Z}^d \\ \text{supp } \boldsymbol{k} = \boldsymbol{v}}} c_{\boldsymbol{k}}(f) \, \varphi_{\boldsymbol{k}}(\boldsymbol{x}_{\boldsymbol{v}})$$

Problem: infinitely many coefficients needed ⇒ impossible in practice

 \rightsquigarrow introduce finite index sets \mathcal{I}_{N^v} and approximate by

$$f_{\boldsymbol{v}}(\boldsymbol{x}_{\boldsymbol{v}}) \approx \sum_{\boldsymbol{k} \in \mathcal{I}_{N^{\boldsymbol{v}}}} c_{\boldsymbol{k}}(f) \, \varphi_{\boldsymbol{k}}(\boldsymbol{x}_{\boldsymbol{v}}), \quad \boldsymbol{v} \subseteq [d]$$

and thus

$$f(\boldsymbol{x}) \approx \sum_{\boldsymbol{k} \in \mathcal{I}_{\boldsymbol{N}}} c_{\boldsymbol{k}}(f) \, \varphi_{\boldsymbol{k}}(\boldsymbol{x}), \qquad \mathcal{I}_{\boldsymbol{N}} \coloneqq \bigcup_{|\boldsymbol{v}| \leq q} \mathcal{I}_{\boldsymbol{N}^{\boldsymbol{v}}}$$

 $\hat{=} \text{ projection using a finite dictionary } \{\varphi_{\pmb{k}}\}_{\pmb{k}\in\mathcal{I}_{\pmb{N}}}\subset\{\varphi_{\pmb{k}}\}_{\pmb{k}\in\mathbb{N}_0^d}$

Still: computation of the integrals $c_k(f) = \langle f, \varphi_k \rangle_{L_2(\Omega, \omega)}, k \in \mathcal{I}_N$

→ data-driven approximation

Goal: approximate coefficients $c_{k}(f)$ in $f(x) \approx \sum_{k \in \mathcal{I}_{N}} c_{k}(f) \varphi_{k}(x)$

- \triangleright from samples of the function f
- riangleright at points $\{m{x}^1,\dots,m{x}^M\}$ i.i.d. random according to the density ω

Goal: approximate coefficients $c_{k}(f)$ in $f(x) \approx \sum_{k \in \mathcal{I}_{N}} c_{k}(f) \varphi_{k}(x)$

- $\, \triangleright \text{ from samples of the function } f$
- \triangleright at points $\{ {{{\boldsymbol{x}}^1}, \ldots ,{{\boldsymbol{x}}^M}} \}$ i.i.d. random according to the density $\omega,$

i. e.,

$$\underbrace{\begin{pmatrix} \varphi_{\boldsymbol{k}_1}(\boldsymbol{x}^1) & \cdots & \varphi_{\boldsymbol{k}_N}(\boldsymbol{x}^1) \\ \vdots & & \vdots \\ \varphi_{\boldsymbol{k}_1}(\boldsymbol{x}^M) & \cdots & \varphi_{\boldsymbol{k}_N}(\boldsymbol{x}^M) \end{pmatrix}}_{\boldsymbol{A} \in \mathbb{R}^{M \times |\mathcal{I}_{\boldsymbol{N}}|}} \underbrace{\begin{pmatrix} c_{\boldsymbol{k}_1} \\ \vdots \\ c_{\boldsymbol{k}_N} \end{pmatrix}}_{\boldsymbol{c}} \approx \underbrace{\begin{pmatrix} f(\boldsymbol{x}^1) \\ \vdots \\ f(\boldsymbol{x}^M) \end{pmatrix}}_{\boldsymbol{f}}$$

Goal: approximate coefficients $c_k(f)$ in $f(x) \approx \sum_{k \in \mathcal{I}_N} c_k(f) \varphi_k(x)$

- \triangleright from samples of the function f
- \triangleright at points $\{x^1, \dots, x^M\}$ i.i.d. random according to the density ω ,

i. e..

$$\underbrace{\begin{pmatrix} \varphi_{\boldsymbol{k}_1}(\boldsymbol{x}^1) & \cdots & \varphi_{\boldsymbol{k}_N}(\boldsymbol{x}^1) \\ \vdots & & \vdots \\ \varphi_{\boldsymbol{k}_1}(\boldsymbol{x}^M) & \cdots & \varphi_{\boldsymbol{k}_N}(\boldsymbol{x}^M) \end{pmatrix}}_{\boldsymbol{A} \in \mathbb{R}^{M \times |\mathcal{I}_{\boldsymbol{N}}|}} \underbrace{\begin{pmatrix} c_{\boldsymbol{k}_1} \\ \vdots \\ c_{\boldsymbol{k}_N} \end{pmatrix}}_{\boldsymbol{c}} \approx \underbrace{\begin{pmatrix} f(\boldsymbol{x}^1) \\ \vdots \\ f(\boldsymbol{x}^M) \end{pmatrix}}_{\boldsymbol{f}} \qquad \qquad \sim \text{minimize } \|\boldsymbol{A}\boldsymbol{c} - \boldsymbol{f}\|_2^2$$

Goal: approximate coefficients $c_k(f)$ in $f(x) \approx \sum_{k \in \mathcal{T}_N} c_k(f) \varphi_k(x)$

- \triangleright from samples of the function f
- \triangleright at points $\{x^1, \dots, x^M\}$ i.i.d. random according to the density ω ,

i. e..

$$\underbrace{\begin{pmatrix} \varphi_{\boldsymbol{k}_1}(\boldsymbol{x}^1) & \cdots & \varphi_{\boldsymbol{k}_N}(\boldsymbol{x}^1) \\ \vdots & & \vdots \\ \varphi_{\boldsymbol{k}_1}(\boldsymbol{x}^M) & \cdots & \varphi_{\boldsymbol{k}_N}(\boldsymbol{x}^M) \end{pmatrix}}_{\boldsymbol{A} \in \mathbb{R}^{M \times |\mathcal{I}_{\boldsymbol{N}}|}} \underbrace{\begin{pmatrix} c_{\boldsymbol{k}_1} \\ \vdots \\ c_{\boldsymbol{k}_N} \end{pmatrix}}_{\boldsymbol{c}} \approx \underbrace{\begin{pmatrix} f(\boldsymbol{x}^1) \\ \vdots \\ f(\boldsymbol{x}^M) \end{pmatrix}}_{\boldsymbol{f}} \qquad \qquad \sim \text{minimize } \|\boldsymbol{A}\boldsymbol{c} - \boldsymbol{f}\|_2^2$$

- least squares solution $c^* = (A^T A)^{-1} A^T f$
 - [Kämmerer, Ullrich, Volkmer 21]: good condition number with high probability, if $|\mathcal{I}_N| < \frac{M}{\log M}$
 - [Bartel, Potts, Schmischke 22]: can be computed efficiently (LSQR + fast multiplication)

Regression

Goal: approximate coefficients $c_k(f)$ in $f(x) \approx \sum_{k \in \mathcal{T}_N} c_k(f) \varphi_k(x)$

- \triangleright from samples of the function f
- \triangleright at points $\{x^1, \dots, x^M\}$ i.i.d. random according to the density ω ,

i. e..

$$\underbrace{\begin{pmatrix} \varphi_{\boldsymbol{k}_1}(\boldsymbol{x}^1) & \cdots & \varphi_{\boldsymbol{k}_N}(\boldsymbol{x}^1) \\ \vdots & & \vdots \\ \varphi_{\boldsymbol{k}_1}(\boldsymbol{x}^M) & \cdots & \varphi_{\boldsymbol{k}_N}(\boldsymbol{x}^M) \end{pmatrix}}_{\boldsymbol{A} \in \mathbb{R}^{M \times |\mathcal{I}_N|}} \underbrace{\begin{pmatrix} c_{\boldsymbol{k}_1} \\ \vdots \\ c_{\boldsymbol{k}_N} \end{pmatrix}}_{\boldsymbol{c}} \approx \underbrace{\begin{pmatrix} f(\boldsymbol{x}^1) \\ \vdots \\ f(\boldsymbol{x}^M) \end{pmatrix}}_{\boldsymbol{f}} \qquad \text{\leadsto minimize } \|\boldsymbol{A}\boldsymbol{c} - \boldsymbol{f}\|_2^2$$

- least squares solution $c^* = (A^T A)^{-1} A^T f$
 - [Kämmerer, Ullrich, Volkmer 21]: good condition number with high probability, if $|\mathcal{I}_N| < \frac{M}{\log M}$
 - [Bartel, Potts, Schmischke 22]: can be computed efficiently (LSQR + fast multiplication)
- final approximation

$$f^{\star}(\boldsymbol{x}) \coloneqq \sum_{\boldsymbol{k} \in \mathcal{I}_{N}} c_{\boldsymbol{k}}^{\star} \, \varphi_{\boldsymbol{k}}(\boldsymbol{x})$$

ANOVA approximation for control systems

Unknown function:

$$H \colon \mathbb{R}^d \times \mathbb{R}^m \to \mathbb{R}^d,$$

 $H(\boldsymbol{x}, \boldsymbol{u}) \coloneqq F(\boldsymbol{x}) + G(\boldsymbol{x})\boldsymbol{u},$

with

- $F: \mathbb{R}^d \to \mathbb{R}^d$,
- $G: \mathbb{R}^d \to \mathbb{R}^{d \times m}$,
- $d, m \in \mathbb{N}, m \ll d$,

Unknown function:

$$H : \mathbb{R}^d \times \mathbb{R}^m \to \mathbb{R}^d,$$

 $H(\boldsymbol{x}, \boldsymbol{u}) \coloneqq F(\boldsymbol{x}) + G(\boldsymbol{x})\boldsymbol{u},$

with

- $F: \mathbb{R}^d \to \mathbb{R}^d$,
- $G: \mathbb{R}^d \to \mathbb{R}^{d \times m}$,
- $d, m \in \mathbb{N}, m \ll d$,

 $\begin{tabular}{ll} \textbf{Assumption:} F and G of low-dimensional structure \\ \end{tabular}$

Unknown function:

$$H \colon \mathbb{R}^d \times \mathbb{R}^m \to \mathbb{R}^d,$$
 $H(\boldsymbol{x}, \boldsymbol{u}) \coloneqq F(\boldsymbol{x}) + G(\boldsymbol{x})\boldsymbol{u},$

with

- $F: \mathbb{R}^d \to \mathbb{R}^d$,
- $G: \mathbb{R}^d \to \mathbb{R}^{d \times m}$,
- $d, m \in \mathbb{N}, m \ll d$,

Assumption: F and G of low-dimensional structure

Given:

- sampling points $(oldsymbol{x}^i,oldsymbol{u}^i),\,i=1,\ldots,M$
- $\bullet \ \ \mathsf{samples} \ H(\boldsymbol{x}^i, \boldsymbol{u}^i)$

Unknown function:

$$H : \mathbb{R}^d \times \mathbb{R}^m \to \mathbb{R}^d,$$

 $H(\boldsymbol{x}, \boldsymbol{u}) \coloneqq F(\boldsymbol{x}) + G(\boldsymbol{x})\boldsymbol{u},$

with

- $F: \mathbb{R}^d \to \mathbb{R}^d$,
- $G: \mathbb{R}^d \to \mathbb{R}^{d \times m}$,
- $d, m \in \mathbb{N}, m \ll d$,

Assumption: F and G of low-dimensional structure

Given:

- sampling points $(\boldsymbol{x}^i, \boldsymbol{u}^i), i = 1, \dots, M$
- ullet samples $H(oldsymbol{x}^i,oldsymbol{u}^i)$

Goal: find $\tilde{H} \approx H$

Unknown function:

$$H \colon \mathbb{R}^d \times \mathbb{R}^m \to \mathbb{R}^d,$$
 $H(\boldsymbol{x}, \boldsymbol{u}) \coloneqq F(\boldsymbol{x}) + G(\boldsymbol{x})\boldsymbol{u},$

with

- $F: \mathbb{R}^d \to \mathbb{R}^d$,
- $G: \mathbb{R}^d \to \mathbb{R}^{d \times m}$,
- $d, m \in \mathbb{N}, m \ll d,$

Assumption: F and G of low-dimensional structure

Given:

- sampling points $(\boldsymbol{x}^i, \boldsymbol{u}^i), i = 1, \dots, M$
- ullet samples $H(oldsymbol{x}^i,oldsymbol{u}^i)$

Goal: find $\tilde{H} \approx H$

Approach: ANOVA approximation

Unknown function:

$$H \colon \mathbb{R}^d \times \mathbb{R}^m \to \mathbb{R}^d,$$
 $H(\boldsymbol{x}, \boldsymbol{u}) \coloneqq F(\boldsymbol{x}) + G(\boldsymbol{x})\boldsymbol{u},$

with

- $F: \mathbb{R}^d \to \mathbb{R}^d$,
- $G: \mathbb{R}^d \to \mathbb{R}^{d \times m}$,
- $d, m \in \mathbb{N}, m \ll d$,

Assumption: F and G of low-dimensional structure

Given:

- sampling points $(\boldsymbol{x}^i, \boldsymbol{u}^i), i = 1, \dots, M$
- ullet samples $H(oldsymbol{x}^i,oldsymbol{u}^i)$

Goal: find $\tilde{H} \approx H$

Approach: ANOVA approximation

Problem: F and G cannot be sampled separately

Unknown function:

$$H \colon \mathbb{R}^d \times \mathbb{R}^m \to \mathbb{R}^d,$$
 $H(\boldsymbol{x}, \boldsymbol{u}) \coloneqq F(\boldsymbol{x}) + G(\boldsymbol{x})\boldsymbol{u},$

with

- $F: \mathbb{R}^d \to \mathbb{R}^d$.
- $G: \mathbb{R}^d \to \mathbb{R}^{d \times m}$,
- $d, m \in \mathbb{N}, m \ll d$.

Assumption: F and G of low-dimensional structure

Given:

- sampling points $(\boldsymbol{x}^i, \boldsymbol{u}^i), i = 1, \dots, M$
- samples $H(\mathbf{x}^i, \mathbf{u}^i)$

Goal: find $\tilde{H} \approx H$

Approach: ANOVA approximation

Problem: F and G cannot be sampled separately

→ individual approximation not possible

Unknown function:

$$H \colon \mathbb{R}^d imes \mathbb{R}^m o \mathbb{R}^d, \ H(oldsymbol{x}, oldsymbol{u}) \coloneqq F(oldsymbol{x}) + G(oldsymbol{x}) oldsymbol{u},$$

with

- $F: \mathbb{R}^d \to \mathbb{R}^d$,
- $G: \mathbb{R}^d \to \mathbb{R}^{d \times m}$,
- $d, m \in \mathbb{N}, m \ll d$

Given:

- sampling points $({m x}^i, {m u}^i), i=1,\dots,M$
- samples $H(\boldsymbol{x}^i, \boldsymbol{u}^i)$

Goal: find $\tilde{H} \approx H$

Approach: ANOVA approximation

Problem: F and G cannot be sampled separately

- → individual approximation not possible
- → coupled reconstruction

Unknown function:

$$H \colon \mathbb{R}^d imes \mathbb{R}^m o \mathbb{R}^d, \ H(oldsymbol{x}, oldsymbol{u}) \coloneqq F(oldsymbol{x}) + G(oldsymbol{x}) oldsymbol{u},$$

with

- $F: \mathbb{R}^d \to \mathbb{R}^d$,
- $G: \mathbb{R}^d \to \mathbb{R}^{d \times m}$,
- $d, m \in \mathbb{N}, m \ll d$

Assumption: F and G of low-dimensional structure

Given:

- sampling points $(\boldsymbol{x}^i, \boldsymbol{u}^i), i = 1, \dots, M$
- ullet samples $H(oldsymbol{x}^i,oldsymbol{u}^i)$

Goal: find $\tilde{H} \approx H$

Approach: ANOVA approximation

Problem: F and G cannot be sampled separately

- → individual approximation not possible
- $\leadsto \text{coupled reconstruction}$

Important: avoid ANOVA approximation of H in $oldsymbol{z} = (oldsymbol{x}, oldsymbol{u})$

for m>1 introduces many additional terms – nonexistent interactions of the components of ${m u}$

→ unnecessary costs + error

Unknown function:

$$H \colon \mathbb{R}^d imes \mathbb{R}^m o \mathbb{R}^d, \ H(oldsymbol{x}, oldsymbol{u}) \coloneqq F(oldsymbol{x}) + G(oldsymbol{x}) oldsymbol{u},$$

with

- $F: \mathbb{R}^d \to \mathbb{R}^d$,
- $G: \mathbb{R}^d \to \mathbb{R}^{d \times m}$,
- $d, m \in \mathbb{N}, m \ll d$

Assumption: F and G of low-dimensional structure

Given:

- sampling points $({m x}^i, {m u}^i), i=1,\ldots,M$
- samples $H(\boldsymbol{x}^i, \boldsymbol{u}^i)$

Goal: find $\tilde{H} \approx H$

Approach: ANOVA approximation

Problem: F and G cannot be sampled separately

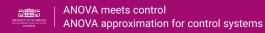
- → individual approximation not possible
- → coupled reconstruction

Important: avoid ANOVA approximation of H in $oldsymbol{z}=(oldsymbol{x},oldsymbol{u})$

for m>1 introduces many additional terms – nonexistent interactions of the components of $oldsymbol{u}$

→ unnecessary costs + error

ightsquigarrow exploit linearity in $oldsymbol{u}$ instead



Simplest approach: $\mathbb{U}=\{\mathbf{0}, e_1, \dots, e_m\}$ with $\{e_\ell\}_{\ell=1}^m$ unit vectors of \mathbb{R}^m

Simplest approach: $\mathbb{U} = \{\mathbf{0}, e_1, \dots, e_m\}$ with $\{e_\ell\}_{\ell=1}^m$ unit vectors of \mathbb{R}^m

evaluation of H(x, u) = F(x) + G(x)u yields

Simplest approach: $\mathbb{U} = \{\mathbf{0}, e_1, \dots, e_m\}$ with $\{e_\ell\}_{\ell=1}^m$ unit vectors of \mathbb{R}^m

evaluation of H(x, u) = F(x) + G(x)u yields

$$H(\boldsymbol{x},\boldsymbol{0}) = F(\boldsymbol{x}),$$

Simplest approach: $\mathbb{U}=\{\mathbf{0}, e_1, \dots, e_m\}$ with $\{e_\ell\}_{\ell=1}^m$ unit vectors of \mathbb{R}^m

evaluation of
$$H(\boldsymbol{x},\boldsymbol{u}) = F(\boldsymbol{x}) + G(\boldsymbol{x})\boldsymbol{u}$$
 yields

$$egin{aligned} H(oldsymbol{x},oldsymbol{0}) &= F(oldsymbol{x}), \ H(oldsymbol{x},oldsymbol{e}_{\ell}) &= egin{pmatrix} F_{1}(oldsymbol{x}) \\ \vdots \\ F_{d}(oldsymbol{x}) \end{pmatrix} + egin{pmatrix} G_{11}(oldsymbol{x}) & \dots & G_{1m}(oldsymbol{x}) \\ \vdots & & \vdots \\ G_{d1}(oldsymbol{x}) & \dots & G_{dm}(oldsymbol{x}) \end{pmatrix} oldsymbol{e}_{\ell} \ &= F(oldsymbol{x}) + G_{\ell}(oldsymbol{x}), \quad \ell = 1, \dots, m. \end{aligned}$$

Simplest approach: $\mathbb{U}=\{\mathbf{0},e_1,\ldots,e_m\}$ with $\{e_\ell\}_{\ell=1}^m$ unit vectors of \mathbb{R}^m

evaluation of $H(\boldsymbol{x}, \boldsymbol{u}) = F(\boldsymbol{x}) + G(\boldsymbol{x})\boldsymbol{u}$ yields

$$H(\boldsymbol{x}, \boldsymbol{0}) = F(\boldsymbol{x}),$$

$$H(\boldsymbol{x}, \boldsymbol{e}_{\ell}) = egin{pmatrix} F_{1}(\boldsymbol{x}) \\ \vdots \\ F_{d}(\boldsymbol{x}) \end{pmatrix} + egin{pmatrix} G_{11}(\boldsymbol{x}) & \dots & G_{1m}(\boldsymbol{x}) \\ \vdots & & \vdots \\ G_{d1}(\boldsymbol{x}) & \dots & G_{dm}(\boldsymbol{x}) \end{pmatrix} \boldsymbol{e}_{\ell}$$

$$= F(\boldsymbol{x}) + G_{\ell}(\boldsymbol{x}), \quad \ell = 1, \dots, m,$$

i. e.,

$$G_{\ell}(\boldsymbol{x}) = H(\boldsymbol{x}, \boldsymbol{e}_{\ell}) - F(\boldsymbol{x})$$

= $H(\boldsymbol{x}, \boldsymbol{e}_{\ell}) - H(\boldsymbol{x}, \boldsymbol{0}), \quad \ell = 1, \dots, m$

UNIVERSITY OF TECHNOLOGY In the control of coursed CHEMISTS

Unit vectors as control

Simplest approach: $\mathbb{U}=\{\mathbf{0},e_1,\ldots,e_m\}$ with $\{e_\ell\}_{\ell=1}^m$ unit vectors of \mathbb{R}^m

evaluation of $H(\boldsymbol{x}, \boldsymbol{u}) = F(\boldsymbol{x}) + G(\boldsymbol{x})\boldsymbol{u}$ yields

$$H(\boldsymbol{x}, \boldsymbol{0}) = F(\boldsymbol{x}),$$

$$H(\boldsymbol{x}, \boldsymbol{e}_{\ell}) = \begin{pmatrix} F_{1}(\boldsymbol{x}) \\ \vdots \\ F_{d}(\boldsymbol{x}) \end{pmatrix} + \begin{pmatrix} G_{11}(\boldsymbol{x}) & \dots & G_{1m}(\boldsymbol{x}) \\ \vdots & & \vdots \\ G_{d1}(\boldsymbol{x}) & \dots & G_{dm}(\boldsymbol{x}) \end{pmatrix} \boldsymbol{e}_{\ell}$$
$$= F(\boldsymbol{x}) + G_{\ell}(\boldsymbol{x}), \quad \ell = 1, \dots, m,$$

i. e.,

$$G_{\ell}(\boldsymbol{x}) = H(\boldsymbol{x}, \boldsymbol{e}_{\ell}) - F(\boldsymbol{x})$$

= $H(\boldsymbol{x}, \boldsymbol{e}_{\ell}) - H(\boldsymbol{x}, \boldsymbol{0}), \quad \ell = 1, \dots, m$

 \Rightarrow may produce samples of F and G artificially

Simplest approach: $\mathbb{U}=\{m{0},m{e}_1,\dots,m{e}_m\}$ with $\{m{e}_\ell\}_{\ell=1}^m$ unit vectors of \mathbb{R}^m

evaluation of $H(\boldsymbol{x},\boldsymbol{u}) = F(\boldsymbol{x}) + G(\boldsymbol{x})\boldsymbol{u}$ yields

$$egin{aligned} H(oldsymbol{x},oldsymbol{0}) &= F(oldsymbol{x}), \ H(oldsymbol{x},oldsymbol{e}_{\ell}) &= egin{pmatrix} F_1(oldsymbol{x}) \\ \vdots \\ F_d(oldsymbol{x}) \end{pmatrix} + egin{pmatrix} G_{11}(oldsymbol{x}) & \dots & G_{1m}(oldsymbol{x}) \\ \vdots & & \vdots \\ G_{d1}(oldsymbol{x}) & \dots & G_{dm}(oldsymbol{x}) \end{pmatrix} oldsymbol{e}_{\ell} \ &= F(oldsymbol{x}) + G_{\ell}(oldsymbol{x}), \quad \ell = 1, \dots, m. \end{aligned}$$

i. e.,

$$G_{\ell}(\boldsymbol{x}) = H(\boldsymbol{x}, \boldsymbol{e}_{\ell}) - F(\boldsymbol{x})$$

= $H(\boldsymbol{x}, \boldsymbol{e}_{\ell}) - H(\boldsymbol{x}, \boldsymbol{0}), \quad \ell = 1, \dots, m$

 \Rightarrow may produce samples of F and G artificially

Remark: ANOVA only for scalar-valued functions

$$H_j(oldsymbol{x},oldsymbol{u}) = F_j(oldsymbol{x}) + \sum_{\ell=1}^m G_{j\ell}(oldsymbol{x}) \, u_\ell, \quad j=1,\ldots,d$$

Simplest approach: $\mathbb{U} = \{0, e_1, \dots, e_m\}$ with $\{e_\ell\}_{\ell=1}^m$ unit vectors of \mathbb{R}^m

evaluation of H(x, u) = F(x) + G(x)u yields

$$egin{aligned} H(oldsymbol{x},oldsymbol{0}) &= F(oldsymbol{x}), \ H(oldsymbol{x},oldsymbol{e}_{\ell}) &= egin{pmatrix} F_{1}(oldsymbol{x}) \\ dots \\ F_{d}(oldsymbol{x}) \end{pmatrix} + egin{pmatrix} G_{11}(oldsymbol{x}) & \ldots & G_{1m}(oldsymbol{x}) \\ dots \\ G_{d1}(oldsymbol{x}) & \ldots & G_{dm}(oldsymbol{x}) \end{pmatrix} oldsymbol{e}_{\ell} \ &= F(oldsymbol{x}) + G_{\ell}(oldsymbol{x}), \quad \ell = 1, \ldots, m, \end{aligned}$$

i. e..

$$G_{\ell}(\boldsymbol{x}) = H(\boldsymbol{x}, \boldsymbol{e}_{\ell}) - F(\boldsymbol{x})$$

= $H(\boldsymbol{x}, \boldsymbol{e}_{\ell}) - H(\boldsymbol{x}, \boldsymbol{0}), \quad \ell = 1, \dots, m$

 \Rightarrow may produce samples of F and G artificially

Remark: ANOVA only for scalar-valued functions

$$H_j(oldsymbol{x},oldsymbol{u}) = F_j(oldsymbol{x}) + \sum_{\ell=1}^m G_{j\ell}(oldsymbol{x}) \, u_\ell, \quad j=1,\dots,d$$
 $hd samples ig(H_j(oldsymbol{x}^i,oldsymbol{0})ig)_{i=1}^M ext{ for } ilde{F}_j$

Simplest approach: $\mathbb{U}=\{m{0},m{e}_1,\dots,m{e}_m\}$ with $\{m{e}_\ell\}_{\ell=1}^m$ unit vectors of \mathbb{R}^m

evaluation of $H(\boldsymbol{x},\boldsymbol{u}) = F(\boldsymbol{x}) + G(\boldsymbol{x})\boldsymbol{u}$ yields

$$egin{aligned} H(oldsymbol{x},oldsymbol{0}) &= F(oldsymbol{x}), \ H(oldsymbol{x},oldsymbol{e}_{\ell}) &= egin{pmatrix} F_1(oldsymbol{x}) \\ dots \\ F_d(oldsymbol{x}) \end{pmatrix} + egin{pmatrix} G_{11}(oldsymbol{x}) & \ldots & G_{1m}(oldsymbol{x}) \\ dots \\ G_{d1}(oldsymbol{x}) & \ldots & G_{dm}(oldsymbol{x}) \end{pmatrix} oldsymbol{e}_{\ell} \ &= F(oldsymbol{x}) + G_{\ell}(oldsymbol{x}), \quad \ell = 1, \ldots, m. \end{aligned}$$

i. e.,

$$G_{\ell}(\boldsymbol{x}) = H(\boldsymbol{x}, \boldsymbol{e}_{\ell}) - F(\boldsymbol{x})$$

= $H(\boldsymbol{x}, \boldsymbol{e}_{\ell}) - H(\boldsymbol{x}, \boldsymbol{0}), \quad \ell = 1, \dots, m$

 \Rightarrow may produce samples of F and G artificially

Remark: ANOVA only for scalar-valued functions

$$H_j(\boldsymbol{x}, \boldsymbol{u}) = F_j(\boldsymbol{x}) + \sum_{\ell=1}^m G_{j\ell}(\boldsymbol{x}) u_\ell, \quad j = 1, \dots, d$$

Simplest approach: $\mathbb{U}=\{m{0},m{e}_1,\dots,m{e}_m\}$ with $\{m{e}_\ell\}_{\ell=1}^m$ unit vectors of \mathbb{R}^m

evaluation of $H(\boldsymbol{x},\boldsymbol{u}) = F(\boldsymbol{x}) + G(\boldsymbol{x})\boldsymbol{u}$ yields

$$egin{aligned} H(oldsymbol{x},oldsymbol{0}) &= F(oldsymbol{x}), \ H(oldsymbol{x},oldsymbol{e}_{\ell}) &= egin{pmatrix} F_1(oldsymbol{x}) \\ dots \\ F_d(oldsymbol{x}) \end{pmatrix} + egin{pmatrix} G_{11}(oldsymbol{x}) & \ldots & G_{1m}(oldsymbol{x}) \\ dots \\ G_{d1}(oldsymbol{x}) & \ldots & G_{dm}(oldsymbol{x}) \end{pmatrix} oldsymbol{e}_{\ell} \ &= F(oldsymbol{x}) + G_{\ell}(oldsymbol{x}), \quad \ell = 1, \ldots, m, \end{aligned}$$

i. e.,

$$G_{\ell}(\boldsymbol{x}) = H(\boldsymbol{x}, \boldsymbol{e}_{\ell}) - F(\boldsymbol{x})$$

= $H(\boldsymbol{x}, \boldsymbol{e}_{\ell}) - H(\boldsymbol{x}, \boldsymbol{0}), \quad \ell = 1, \dots, m$

 \Rightarrow may produce samples of F and G artificially

Remark: ANOVA only for scalar-valued functions

→ proceed rowwise:

$$H_j(\boldsymbol{x}, \boldsymbol{u}) = F_j(\boldsymbol{x}) + \sum_{\ell=1}^m G_{j\ell}(\boldsymbol{x}) u_\ell, \quad j = 1, \dots, d$$

- ho samples $\left(H_j(oldsymbol{x}^i, oldsymbol{0})
 ight)_{i=1}^M$ for $ilde{F}_j$
- ho samples $\left(H_j(m{x}^i,m{e}_\ell)-H_j(m{x}^i,m{0})
 ight)_{i=1}^M$ for $ilde{G}_{j\ell}$

 \checkmark preserves structure (linearity in u)

UNIVERSITY OF TECHNOLOGY BIT THE EXEMPLISH OWNERS OF CULTURE CHEMNETZ

Unit vectors as control

Simplest approach: $\mathbb{U}=\{m{0},m{e}_1,\dots,m{e}_m\}$ with $\{m{e}_\ell\}_{\ell=1}^m$ unit vectors of \mathbb{R}^m

evaluation of $H(\boldsymbol{x},\boldsymbol{u}) = F(\boldsymbol{x}) + G(\boldsymbol{x})\boldsymbol{u}$ yields

$$egin{aligned} H(oldsymbol{x}, oldsymbol{0}) &= F(oldsymbol{x}), \ H(oldsymbol{x}, oldsymbol{e}_{\ell}) &= egin{pmatrix} F_1(oldsymbol{x}) \\ dots \\ F_d(oldsymbol{x}) \end{pmatrix} + egin{pmatrix} G_{11}(oldsymbol{x}) & \ldots & G_{1m}(oldsymbol{x}) \\ dots \\ G_{d1}(oldsymbol{x}) & \ldots & G_{dm}(oldsymbol{x}) \end{pmatrix} oldsymbol{e}_{\ell} \ &= F(oldsymbol{x}) + G_{\ell}(oldsymbol{x}), \quad \ell = 1, \ldots, m, \end{aligned}$$

i. e.,

$$G_{\ell}(\boldsymbol{x}) = H(\boldsymbol{x}, \boldsymbol{e}_{\ell}) - F(\boldsymbol{x})$$

= $H(\boldsymbol{x}, \boldsymbol{e}_{\ell}) - H(\boldsymbol{x}, \boldsymbol{0}), \quad \ell = 1, \dots, m$

 \Rightarrow may produce samples of F and G artificially

Remark: ANOVA only for scalar-valued functions

$$H_j({m x},{m u}) = F_j({m x}) + \sum_{\ell=1}^m G_{j\ell}({m x})\,u_\ell, \quad j=1,\ldots,d$$

- riangleright samples $\left(H_j(oldsymbol{x}^i, oldsymbol{0})
 ight)_{i=1}^M$ for $ilde{F}_j$
- - ✓ preserves structure (linearity in u)
- $m{\mathsf{X}} \hspace{0.1cm} M(m+1)$ function evaluations necessary
 - at each unit vector all x^i
 - non-flexible

 $\label{eq:aim:preserve} \textbf{Aim:} \ \text{preserve structure + use only one set of samples of} \ H$

 $\ensuremath{\mathbf{Aim:}}$ preserve structure + use only one set of samples of H

Observation: ANOVA approximation separately for F and G would mean

$$H_j(\boldsymbol{x}, \boldsymbol{u}) = F_j(\boldsymbol{x}) + \sum_{\ell=1}^m G_{j\ell}(\boldsymbol{x}) u_\ell$$
 , $j = 1, \dots, d$

 $\ensuremath{ \mbox{Aim:}}$ preserve structure + use only one set of samples of H

Observation: ANOVA approximation separately for F and G would mean

$$H_j(\boldsymbol{x}, \boldsymbol{u}) = F_j(\boldsymbol{x}) + \sum_{\ell=1}^m G_{j\ell}(\boldsymbol{x}) u_\ell \approx \sum_{\boldsymbol{k} \in \mathcal{I}(V_1)} c_{\boldsymbol{k}}^1 \varphi_{\boldsymbol{k}}^1(\boldsymbol{x}) +$$
, $j = 1, \dots, d$

 $\ensuremath{ \mbox{Aim:}}$ preserve structure + use only one set of samples of H

Observation: ANOVA approximation separately for F and G would mean

$$H_j(\boldsymbol{x},\boldsymbol{u}) = F_j(\boldsymbol{x}) + \sum_{\ell=1}^m G_{j\ell}(\boldsymbol{x}) u_\ell \approx \sum_{\boldsymbol{k} \in \mathcal{I}(V_1)} c_{\boldsymbol{k}}^1 \varphi_{\boldsymbol{k}}^1(\boldsymbol{x}) + \sum_{\ell=1}^m \left(\sum_{\boldsymbol{s} \in \mathcal{I}(V_{\ell+1})} c_{\boldsymbol{s}}^{\ell+1} \varphi_{\boldsymbol{s}}^{\ell+1}(\boldsymbol{x}) \right) u_\ell, \quad j = 1, \dots, d$$

 $\mbox{\bf Aim:}$ preserve structure + use only one set of samples of ${\cal H}$

Observation: ANOVA approximation separately for F and G would mean

$$H_j(\boldsymbol{x}, \boldsymbol{u}) = F_j(\boldsymbol{x}) + \sum_{\ell=1}^m G_{j\ell}(\boldsymbol{x}) u_\ell \approx \sum_{\boldsymbol{k} \in \mathcal{I}(V_1)} c_{\boldsymbol{k}}^1 \varphi_{\boldsymbol{k}}^1(\boldsymbol{x}) + \sum_{\ell=1}^m \left(\sum_{\boldsymbol{s} \in \mathcal{I}(V_{\ell+1})} c_{\boldsymbol{s}}^{\ell+1} \varphi_{\boldsymbol{s}}^{\ell+1}(\boldsymbol{x}) \right) u_\ell, \quad j = 1, \dots, d$$

 \Rightarrow for $(\boldsymbol{x}^i, \boldsymbol{u}^i)$ i.i.d. random:

$$oldsymbol{c}^\ell \coloneqq \left(c_{oldsymbol{k}}^\ell
ight)_{oldsymbol{k}\in\mathcal{I}(V_\ell)}, \quad oldsymbol{A}_\ell \coloneqq \left(arphi_{oldsymbol{k}}^\ell(oldsymbol{x}^i)
ight)_{i=1,\,oldsymbol{k}\in\mathcal{I}(V_\ell)}^M, \quad oldsymbol{U}_\ell \coloneqq \mathrm{diag}(u_\ell^1,\ldots,u_\ell^M)$$

 $\begin{tabular}{ll} \textbf{Aim:} preserve structure + use only one set of samples of H \\ \end{tabular}$

Observation: ANOVA approximation separately for F and G would mean

$$H_{j}(\boldsymbol{x}, \boldsymbol{u}) = F_{j}(\boldsymbol{x}) + \sum_{\ell=1}^{m} G_{j\ell}(\boldsymbol{x}) u_{\ell} \approx \sum_{\boldsymbol{k} \in \mathcal{I}(V_{1})} c_{\boldsymbol{k}}^{1} \varphi_{\boldsymbol{k}}^{1}(\boldsymbol{x}) + \sum_{\ell=1}^{m} \left(\sum_{\boldsymbol{s} \in \mathcal{I}(V_{\ell+1})} c_{\boldsymbol{s}}^{\ell+1} \varphi_{\boldsymbol{s}}^{\ell+1}(\boldsymbol{x}) \right) u_{\ell}, \quad j = 1, \dots, d$$

 \Rightarrow for $(\boldsymbol{x}^i, \boldsymbol{u}^i)$ i.i.d. random:

$$oldsymbol{c}^\ell \coloneqq \left(c_{oldsymbol{k}}^\ell
ight)_{oldsymbol{k}\in\mathcal{I}(V_\ell)}, \quad oldsymbol{A}_\ell \coloneqq \left(arphi_{oldsymbol{k}}^\ell(oldsymbol{x}^i)
ight)_{i=1,\ oldsymbol{k}\in\mathcal{I}(V_\ell)}^M, \quad oldsymbol{U}_\ell \coloneqq \operatorname{diag}(u_\ell^1,\dots,u_\ell^M)$$

yields

$$\left(H_j(oldsymbol{x}^i,oldsymbol{u}^i)
ight)_{i=1}^Mpprox \left(oldsymbol{A}_1 \quad oldsymbol{U}_1oldsymbol{A}_2 \quad \dots \quad oldsymbol{U}_moldsymbol{A}_{m+1}
ight) \left(egin{array}{c} oldsymbol{c}^1 \ dots \ oldsymbol{c}^{m+1} \end{array}
ight)$$

 ${\bf Aim:}$ preserve structure + use only one set of samples of H

Observation: ANOVA approximation separately for F and G would mean

$$H_{j}(\boldsymbol{x}, \boldsymbol{u}) = F_{j}(\boldsymbol{x}) + \sum_{\ell=1}^{m} G_{j\ell}(\boldsymbol{x}) u_{\ell} \approx \sum_{\boldsymbol{k} \in \mathcal{I}(V_{1})} c_{\boldsymbol{k}}^{1} \varphi_{\boldsymbol{k}}^{1}(\boldsymbol{x}) + \sum_{\ell=1}^{m} \left(\sum_{\boldsymbol{s} \in \mathcal{I}(V_{\ell+1})} c_{\boldsymbol{s}}^{\ell+1} \varphi_{\boldsymbol{s}}^{\ell+1}(\boldsymbol{x}) \right) u_{\ell}, \quad j = 1, \dots, d$$

 \Rightarrow for $(\boldsymbol{x}^i, \boldsymbol{u}^i)$ i.i.d. random:

$$oldsymbol{c}^\ell \coloneqq \left(c_{oldsymbol{k}}^\ell
ight)_{oldsymbol{k}\in\mathcal{I}(V_\ell)}, \quad oldsymbol{A}_\ell \coloneqq \left(arphi_{oldsymbol{k}}^\ell(oldsymbol{x}^i)
ight)_{i=1,\ oldsymbol{k}\in\mathcal{I}(V_\ell)}^M, \quad oldsymbol{U}_\ell \coloneqq \operatorname{diag}(u_\ell^1,\dots,u_\ell^M)$$

yields

$$\left(H_j(oldsymbol{x}^i,oldsymbol{u}^i)
ight)_{i=1}^Mpprox \left(oldsymbol{A}_1 \quad oldsymbol{U}_1oldsymbol{A}_2 \quad \dots \quad oldsymbol{U}_moldsymbol{A}_{m+1}
ight) \left(egin{array}{c} oldsymbol{c}^1 \ dots \ oldsymbol{c}^{m+1} \end{array}
ight)$$

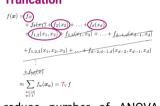
⇒ find least squares solution

[https://github.com/NFFT/ANOVAapprox.jl]

$$H_j({m x},{m u}) = F_j({m x}) + \sum_{\ell=1}^m G_{j\ell}({m x})\,u_\ell, \quad j=1,\ldots,d$$

Recap - ANOVA approximation:

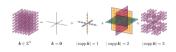
Truncation



reduce number of ANOVA terms

Projection

choose finite number of basis functions $\{\varphi_{k}\}_{k\in\mathbb{Z}^{d}}$



Regression

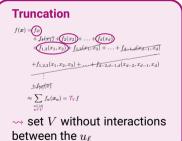
$$\underbrace{\begin{pmatrix} \varphi_{k_1}(\boldsymbol{x}^1) & \cdots & \varphi_{k_N}(\boldsymbol{x}^1) \\ \vdots & & \vdots \\ \varphi_{k_1}(\boldsymbol{x}^M) & \cdots & \varphi_{k_N}(\boldsymbol{x}^M) \end{pmatrix}}_{\boldsymbol{A} \in \mathbb{R}^{M \times |\mathcal{I}_N|}} \underbrace{\begin{pmatrix} c_{k_1} \\ \vdots \\ c_{k_N} \end{pmatrix}}_{\boldsymbol{c}} \approx \underbrace{\begin{pmatrix} f(\boldsymbol{x}^1) \\ \vdots \\ f(\boldsymbol{x}^M) \end{pmatrix}}_{\boldsymbol{f}}$$

$$\Rightarrow \text{ minimize } \|\boldsymbol{A}\boldsymbol{c} - \boldsymbol{f}\|_2^2$$

[https://github.com/NFFT/ANOVAapprox.jl]

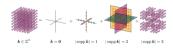
$$H_j(\boldsymbol{x}, \boldsymbol{u}) = F_j(\boldsymbol{x}) + \sum_{\ell=1}^m G_{j\ell}(\boldsymbol{x}) u_\ell, \quad j = 1, \dots, d$$

Recap - ANOVA approximation:



Projection

choose finite number of basis functions $\{\varphi_{\pmb{k}}\}_{\pmb{k}\in\mathbb{Z}^d}$



Regression

$$\underbrace{\begin{pmatrix} \varphi_{k_1}(\boldsymbol{x}^1) & \cdots & \varphi_{k_N}(\boldsymbol{x}^1) \\ \vdots & & \vdots \\ \varphi_{k_1}(\boldsymbol{x}^M) & \cdots & \varphi_{k_N}(\boldsymbol{x}^M) \end{pmatrix}}_{\boldsymbol{A} \in \mathbb{R}^{M \times |\mathcal{I}_N|}} \underbrace{\begin{pmatrix} c_{k_1} \\ \vdots \\ c_{k_N} \end{pmatrix}}_{\boldsymbol{c}} \approx \underbrace{\begin{pmatrix} f(\boldsymbol{x}^1) \\ \vdots \\ f(\boldsymbol{x}^M) \end{pmatrix}}_{\boldsymbol{f}}$$

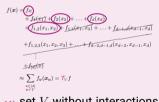
$$\xrightarrow{\text{minimize } \|\boldsymbol{A}\boldsymbol{c} - \boldsymbol{f}\|_2^2}$$

[https://github.com/NFFT/ANOVAapprox.jl]

$$H_j(\boldsymbol{x}, \boldsymbol{u}) = F_j(\boldsymbol{x}) + \sum_{\ell=1}^m G_{j\ell}(\boldsymbol{x}) u_\ell, \quad j = 1, \dots, d$$

Recap - ANOVA approximation:

Truncation



 \leadsto set V without interactions between the u_ℓ

Projection

use the Chebyshev basis

$$\{\varphi_k^{\text{cheb}}\}_{k\in\mathbb{N}_0} = \{1, \sqrt{2}x, \dots\}$$

+

choose only one basis function for all u_ℓ

 \Rightarrow exact reconstruction of all u_{ℓ}

Regression

$$\underbrace{\begin{pmatrix} \varphi_{k_1}(\boldsymbol{x}^1) & \cdots & \varphi_{k_N}(\boldsymbol{x}^1) \\ \vdots & & \vdots \\ \varphi_{k_1}(\boldsymbol{x}^M) & \cdots & \varphi_{k_N}(\boldsymbol{x}^M) \end{pmatrix}}_{\boldsymbol{A} \in \mathbb{R}^{M \times |\mathbb{Z}_N|}} \underbrace{\begin{pmatrix} c_{k_1} \\ \vdots \\ c_{k_N} \end{pmatrix}}_{\boldsymbol{c}} \approx \underbrace{\begin{pmatrix} f(\boldsymbol{x}^1) \\ \vdots \\ f(\boldsymbol{x}^M) \end{pmatrix}}_{\boldsymbol{f}}$$

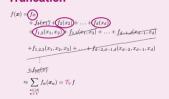
$$\leadsto$$
 minimize $\|\boldsymbol{A}\boldsymbol{c}-\boldsymbol{f}\|_2^2$

[https://github.com/NFFT/ANOVAapprox.jl]

$$H_j(\boldsymbol{x}, \boldsymbol{u}) = F_j(\boldsymbol{x}) + \sum_{\ell=1}^m G_{j\ell}(\boldsymbol{x}) u_\ell, \quad j = 1, \dots, d$$

Recap - ANOVA approximation:

Truncation



 \leadsto set V without interactions between the u_ℓ

Projection

use the Chebyshev basis

$$\{\varphi_k^{\text{cheb}}\}_{k\in\mathbb{N}_0} = \{1,\sqrt{2}x,\dots\}$$

+

choose only one basis function for all u_ℓ

 \Rightarrow exact reconstruction of all u_{ℓ}

Regression

$$\underbrace{\begin{pmatrix} \varphi_{k_1}(x^1) & \cdots & \varphi_{k_N}(x^1) \\ \vdots & & \vdots \\ \varphi_{k_1}(x^M) & \cdots & \varphi_{k_N}(x^M) \end{pmatrix}}_{\boldsymbol{A} \in \mathbb{R}^{M \times |\mathbb{Z}_N|}} \underbrace{\begin{pmatrix} c_{k_1} \\ \vdots \\ c_{k_N} \end{pmatrix}}_{\boldsymbol{c}} \approx \underbrace{\begin{pmatrix} f(x^1) \\ \vdots \\ f(x^M) \end{pmatrix}}_{\boldsymbol{f}}$$

$$\rightarrow \text{ minimize } \|\boldsymbol{A}\boldsymbol{c} - \boldsymbol{f}\|_2^2$$

 \Rightarrow only need suitable preprocessing step (adjust the index sets V and \mathcal{I}_{N^v} appropriately)

Numerical Example

- d = 8 and m = 1
- consider only one component

$$H_j(\boldsymbol{x}, u) = \underbrace{(x_4 - x_1) x_2}_{F(\boldsymbol{x})} - \underbrace{x_3}_{G(\boldsymbol{x})} u$$

maximum two-dimensional terms

$$\rightsquigarrow q = 2$$

- d = 8 and m = 1
- · consider only one component

$$H_j(\boldsymbol{x}, u) = \underbrace{(x_4 - x_1) x_2}_{F(\boldsymbol{x})} - \underbrace{x_3}_{G(\boldsymbol{x})} u$$

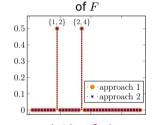
- maximum two-dimensional terms $\Rightarrow q = 2$
- Chebyshev basis for both approaches
 - □ approach 1 unit vectors
 - □ proach 2 − matrix approach

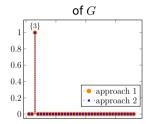
- d = 8 and m = 1
- consider only one component

$$H_j(\boldsymbol{x}, u) = \underbrace{(x_4 - x_1) x_2}_{F(\boldsymbol{x})} - \underbrace{x_3}_{G(\boldsymbol{x})} u$$

- maximum two-dimensional terms $\rightsquigarrow q=2$
- Chebyshev basis for both approaches
 - ▶ approach 1 unit vectors
 - □ approach 2 matrix approach

relevant ANOVA terms





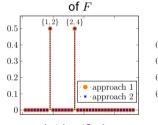
 \Rightarrow correctly identified

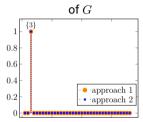
- d = 8 and m = 1
- consider only one component

$$H_j(\boldsymbol{x}, u) = \underbrace{(x_4 - x_1) x_2}_{F(\boldsymbol{x})} - \underbrace{x_3}_{G(\boldsymbol{x})} u$$

- maximum two-dimensional terms $\rightsquigarrow q=2$
- Chebyshev basis for both approaches
 - ▷ approach 1 unit vectors
 - approach 2 matrix approach

relevant ANOVA terms





- \Rightarrow correctly identified
- **2** error results \leadsto same order of magnitude 10^{-10}

• investigated ANOVA in the context of control problems H(x, u) = F(x) + G(x)u

- investigated ANOVA in the context of control problems H(x, u) = F(x) + G(x)u
- introduced 2 methods to exploit low-dimensional structures of F and G, especially linearity in \boldsymbol{u}
 - ✓ easy to use due to free software package [https://github.com/NFFT/ANOVAapprox.jl]
 - efficient computation

- investigated ANOVA in the context of control problems H(x, u) = F(x) + G(x)u
- ullet introduced 2 methods to exploit low-dimensional structures of F and G, especially linearity in $oldsymbol{u}$
 - ✓ easy to use due to free software package [https://github.com/NFFT/ANOVAapprox.jl]
 - efficient computation
- simple approach using unit vectors as control
 - \checkmark allows to approximate F and G separately due to artificial samples
 - x many samples needed → possibly unfeasible in practice

- investigated ANOVA in the context of control problems H(x, u) = F(x) + G(x)u
- ullet introduced 2 methods to exploit low-dimensional structures of F and G, especially linearity in $oldsymbol{u}$
 - ✓ easy to use due to free software package [https://github.com/NFFT/ANOVAapprox.jl]
 - ✓ efficient computation
- simple approach using unit vectors as control
 - \checkmark allows to approximate F and G separately due to artificial samples
 - many samples needed --- possibly unfeasible in practice
- 2 additional approach to only need one set of samples --> determined suitable preprocessing
 - \checkmark preserve linearity exact reconstruction of components of u
 - ✓ only one set of samples
 - ✓ no additional ANOVA terms introduced

- investigated ANOVA in the context of control problems H(x, u) = F(x) + G(x)u
- ullet introduced 2 methods to exploit low-dimensional structures of F and G, especially linearity in $oldsymbol{u}$
 - ✓ easy to use due to free software package [https://github.com/NFFT/ANOVAapprox.jl]
 - efficient computation
- simple approach using unit vectors as control
 - \checkmark allows to approximate F and G separately due to artificial samples
 - ✗ many samples needed → possibly unfeasible in practice
- 2 additional approach to only need one set of samples --> determined suitable preprocessing
 - \checkmark preserve linearity exact reconstruction of components of u
 - ✓ only one set of samples
 - ✓ no additional ANOVA terms introduced
- K., Potts, Schaller, Worthmann: ANOVA approximation for control systems. In preparation.

- investigated ANOVA in the context of control problems H(x, u) = F(x) + G(x)u
- ullet introduced 2 methods to exploit low-dimensional structures of F and G, especially linearity in $oldsymbol{u}$
 - ✓ easy to use due to free software package [https://github.com/NFFT/ANOVAapprox.jl]
 - efficient computation
- simple approach using unit vectors as control
 - \checkmark allows to approximate F and G separately due to artificial samples
 - many samples needed --- possibly unfeasible in practice
- 2 additional approach to only need one set of samples --> determined suitable preprocessing
 - ✓ preserve linearity exact reconstruction of components of u
 - ✓ only one set of samples
 - no additional ANOVA terms introduced
- K., Potts, Schaller, Worthmann: ANOVA approximation for control systems. In preparation.

Thank you for your attention!