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Direct inverse nonequispaced fast Fourier transforms
Motivation

Motivation – discrete problem
phantom

 given measurements  

reconstruction

f̂k f(xj) =
∑

k∈IM

f̂k e2πikxj h̃k ≈ f̂k

xj equispaced =⇒ FFT (Fast Fourier Transform)
xj nonequispaced =⇒ inverse NFFT (Nonequispaced Fast Fourier Transform) ?
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Direct inverse nonequispaced fast Fourier transforms
Motivation

Motivation
ground truth given measurements aim

discrete problem f̂k f(xj) =
∑

k∈IM

f̂k e2πikxj h̃k ≈ f̂k

continuous problem f̂(v) f(xj) =

∫
[−M

2
,M

2 )d

f̂(v) e2πivxj dv h̃(k) ≈ f̂(k)

v ∈ Rd, k ∈ IM

iterated methods
(multiple applications of the NFFT needed) vs. direct methods

(realized with a single NFFT)

special setting: evaluation points xj , j = 1, . . . , N, fixed =⇒ highly profit from direct method
1 precomputation: only once for fixed xj

2 reconstruction: for each measurement very efficient
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Overview

Overview

1 Introduction

2 Discrete problem

3 Continuous problem
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Direct inverse nonequispaced fast Fourier transforms
Introduction

NFFT (Nonequispaced Fast Fourier Transform)
Fast algorithm to evaluate a trigonometric polynomial O(|IM | log(|IM |) +N)

[Dutt, Rokhlin 93], [Beylkin 95],
[Potts, Steidl, Tasche 01]

f(x) =
∑

k∈IM

f̂k e2πikx

• index set IM := Zd ∩
[
−M

2
, M

2

)d with cardinality |IM | =Md, M ∈ 2N,
• Fourier coefficients f̂k ∈ C, k ∈ IM ,

• nonequispaced points xj ∈ Td ∼=
[
− 1

2
, 1
2

)d
, j = 1, . . . , N, N ∈ N

Matrix notation:
f = Af̂ with A = A|IM | :=

(
e2πikxj

)N
j=1,k∈IM

∈ CN×|IM |

Factorizations: A ≈ BFD and
↗

banded
↑

FFT
↖

diagonal

A∗ ≈D∗F ∗B∗

(in each column of B only (2m+ 1)d entries, m ∈ N given)

Inversion problem (iNFFT): Given: f := (f(xj))
N
j=1 Find: f̂ := (f̂k)k∈IM Challenge: in general N 6= |IM |

Melanie Kircheis, Chemnitz University of Technology, Faculty of Mathematics 5
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Direct inverse nonequispaced fast Fourier transforms
Introduction

Basic idea
Equispaced nodes: A∗A = NI |IM | Nonequispaced nodes: A∗A 6=NI |IM |

⇒ Find suitable matrix X with

XA ≈ I |IM |,

since then
f̂ ≈XAf̂ = Xf .

Reminder – Equispaced nodes:

X = A∗ · 1
N

Simplest generalization:

X = A∗W ≈D∗F ∗B∗W ,

Density compensation algorithm
0. Precompute weights W

?

1. Compute scaled
coefficients Wf

O(N)

2. Adjoint NFFT
O(|IM | log(|IM |) +N)

Intuitive approach:
Voronoi weights based on geometry

i. e., additional weighting W := diag(wj)
N
j=1 due to nonequispaced sampling
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Direct inverse nonequispaced fast Fourier transforms
Discrete problem - trigonometric polynomials

Exact reconstruction for trigonometric polynomials
Theorem (K., Potts 23)
Let |I2M | ≤ N and xj ∈ Td, j = 1, . . . , N, be given.

Then the density compensation factors wj ∈ C satisfying
N∑
j=1

wj e
2πikxj = δ0,k, k ∈ I2M , AT

|I2M |w = e0

are optimal,
i. e., for all trigonometric polynomials f(x) =

∑
k∈IM

f̂k e2πikx an exact reconstruction of the Fourier
coefficients f̂k ∈ C is given by

f̂k = hw
k :=

N∑
j=1

wj f(xj) e
−2πikxj , k ∈ IM . f̂ = A∗Wf

δ0,k ... Kronecker delta
Melanie Kircheis, Chemnitz University of Technology, Faculty of Mathematics 7



Direct inverse nonequispaced fast Fourier transforms
Discrete problem - trigonometric polynomials

Computation schemes

Aim: exact solution to

AT
|I2M |w = e0 := (δ0,k)k∈I2M (∗)

Friendly setting (|I2M | ≤ N ): unique solution given by normal eqs. of 2nd kind [K., Potts 23]

AT
|I2M |A|I2M | v = e0, A|I2M | v = w

 efficient computation: CG algorithm combined with NFFT O(|I2M | log(|I2M |) +N)

Unfriendly setting (|I2M | > N ): no theoretical guarantee!
least squares solution by normal eqs. of 1st kind

A|I2M |A
T
|I2M |w = A|I2M | e0

[K., Potts 23]: not a good approximation...

Melanie Kircheis, Chemnitz University of Technology, Faculty of Mathematics 8
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Direct inverse nonequispaced fast Fourier transforms
Discrete problem - trigonometric polynomials

Recapitulation
So far:

f̂ ≈ A∗Wf ≈D∗F ∗B∗Wf
↗

diagonal
↑

FFT
↖

banded

Interpretation perspectives:

(i) Set g := Wf . ⇒ f̂ ≈D∗F ∗B∗g  ordinary NFFT,modified coefficient vector
(ii) Set B̃ := WB. ⇒ f̂ ≈D∗F ∗B̃∗f  modified NFFT, ordinary coefficient vector

⇒ density compensation =̂ optimization of the banded matrix B (only N degrees of freedom)

Now: optimize each nonzero entry of the banded matrix B (N(2m+ 1) degrees of freedom)

Reminder: seek to find a matrix X with
XA ≈ I |IM |

such that
f̂ ≈Xf .

Aim: X = D∗F ∗B̃
∗

[K., Potts 23]

 modification of matrix B

 preserve band structure and arithmetic
complexity

Melanie Kircheis, Chemnitz University of Technology, Faculty of Mathematics 9
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Direct inverse nonequispaced fast Fourier transforms
Discrete problem - trigonometric polynomials

Precomputational step – Optimization procedure [K., Potts 23]

Define h̃ := D∗F ∗B̃∗f .

⇒ ‖h̃− f̂‖2 = ‖D∗F ∗B̃∗f − f̂‖2 = ‖D∗F ∗B̃∗Af̂ − f̂‖2

≤
∥∥∥D∗F ∗B̃∗A− I |IM |

∥∥∥
F
‖f̂‖2

Optimization problem:

Minimize
B̃ banded

∥∥∥D∗F ∗B̃∗A− I |IM |

∥∥∥2
F
=
∥∥∥A∗B̃FD − I |IM |

∥∥∥2
F

If A∗B̃ is a pseudoinverse of FD then A∗B̃FD ≈ I |IM |.
Since F ∗F = |IMσ | I |IM |, a pseudoinverse is given by 1

|IMσ |
D−1F ∗.

Minimize
B̃ banded

∥∥∥A∗B̃ − 1
|IMσ |

D−1F ∗
∥∥∥2
F
=

∑
`∈IMσ

∥∥∥A∗` b̃` − 1
|IMσ |

D−1f`

∥∥∥2
2

 O(|IM |)

Melanie Kircheis, Chemnitz University of Technology, Faculty of Mathematics 10
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Precomputational step – Optimization procedure [K., Potts 23]
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Direct inverse nonequispaced fast Fourier transforms
Numerical Examples

Discrete example – Shepp-Logan phantom

1 phantom data = Fourier coefficients f̂ := (f̂k)k∈IM of a trigonometric polynomial

2 compute the evaluations f(xj) =
∑

k∈IM

f̂k e2πikxj by means of NFFT

3 reconstruct h̃k ≈ f̂k, k ∈ IM

Friendly setting (|I2M | ≤ N ):
• linogram grid of size
R = 2M, T = 2R

• phantom sizeM ×M with
M = 2c, c = 3, . . . , 10

• relative errors

e2 :=
‖h̃− f̂‖2
‖f̂‖2

 show exact reconstruction

Unfriendly setting (|I2M | > N ):
• linogram grid of size
R =M, T = 2R

• phantom of sizeM = 1024

 compare presented computation
schemes
– Voronoi weights
– new density compensation factors
– optimization approach -0.5 0 0.5

−0.5

0

0.5
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Direct inverse nonequispaced fast Fourier transforms
Numerical Examples

Friendly setting (|I2M | < N )

101 102 103

10−15

10−12

10−9

10−6

M

‖h̃
−
f̂
‖ 2

‖f̂
‖ 2

density compensation
optimization
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Direct inverse nonequispaced fast Fourier transforms
Numerical Examples

Unfriendly setting (|I2M | > N )

-512 0 512
0

1

(a) Original phantom
-512 0 512

0

1

(b) Voronoi weights
e2 = 5.30e− 01

-512 0 512

0

1

(c) Density
compensation
e2 = 5.06e− 01

-512 0 512
0

1

(d) Optimization
e2 = 2.27e− 03
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Direct inverse nonequispaced fast Fourier transforms
Continuous problem - bandlimited functions

Analogous problem for bandlimited functions
Application: MRI (Magnetic Resonance Imaging) [Rosenfeld 98], [Greengard, Lee, Inati 06], [Eggers, K., Potts 22]

no longer discrete
(trigonometric polynomials) but continuous

(bandlimited functions)

(Continuous) Fourier transform:

f̂(v) :=

∫
Rd

f(x) e−2πivx dx, v ∈ Rd

 bandlimited functions with maximum bandwidth M ⇐⇒ supp(f̂ ) =
[
−M

2
, M

2

)d
=⇒ f(x) =

∫
Rd

f̂(v) e2πivx dv =

∫
[−M

2
,M

2 )d

f̂(v) e2πivxj dv, x ∈ Rd

Reconstruct: evaluations f̂(k) ∈ C, k ∈ IM Given: measurements f(xj), j = 1, . . . , N

Now: extend previous methods
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Direct inverse nonequispaced fast Fourier transforms
Continuous problem - bandlimited functions

Reconsideration as trigonometric polynomials
Consider 1-periodization

f̃(x) :=
∑
r∈Zd

f(x+ r) ∈ L2(Td)

⇒ uniquely representable by absolute convergent Fourier series [Plonka, Potts, Steidl, Tasche 18]

f̃(x) :=
∑
k∈Zd

ck(f̃) e
2πikx,

with Fourier coefficients

ck(f̃) =

∫
Td

f̃(x) e−2πikx dx =

∫
Rd

f(x) e−2πikx dx = f̂(k), k ∈ Zd

 f bandlimited with bandwidth M ⇐⇒ supp(f̂ ) =
[
−M

2
, M

2

)d
=⇒ f̂(k) = 0, k ∈ Zd \ IM

=⇒ f̃ trigonometric polynomial of degree M

⇒ density compensation method:
f̂(k) = ck(f̃) =

N∑
j=1

wj f̃(xj) e
−2πikxj , k ∈ IM f̂ = A∗Wf̃

Melanie Kircheis, Chemnitz University of Technology, Faculty of Mathematics 15
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Direct inverse nonequispaced fast Fourier transforms
Continuous problem - bandlimited functions

Practical situation (e. g. MRI)
In practice: only hypothetical case !

periodization f̃ cannot be sampled ⇐⇒ f cannot be sampled on whole Rd

Sampling: limited coverage of space
 f only known on a bounded domain, w.l.o.g. for x ∈

[
− 1

2
, 1
2

)d

Consequences: need to assume that f is small outside
[
− 1

2
, 1
2

)d
, such that f̃(xj) ≈ f(xj)

 have to deal with the approximation

f̂(k) ≈
N∑
j=1

wj f(xj) e
−2πikxj , k ∈ IM

=⇒ f̂ = A∗Wf̃ ≈ A∗Wf

Main cause of error: f is not known on whole Rd  analogously also optimization method applicable

Melanie Kircheis, Chemnitz University of Technology, Faculty of Mathematics 16
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Direct inverse nonequispaced fast Fourier transforms
Numerical Examples

Continuous example – tensorized triangular pulse function
1 specify compactly supported f̂(v) = g(v1) · g(v2), with triangular pulse g(v) := (1−

∣∣ v
b

∣∣) · χ[−b,b](v)
2 compute inverse Fourier transform

f(x) =

∫
R2

f̂(v) e2πivx dv = b2 sinc2(bπx), x ∈ R2

 bandlimited with bandwidth M for all b ∈ N with b ≤ M
2

3 sample f(xj) for given xj ∈
[
− 1

2
, 1
2

)2
, j = 1, . . . , N

4 reconstruct h̃(k) ≈ f̂(k), k ∈ IM

Setup:
• consider |I2M | ≤ N
• M = 32 and b = 12

• modified polar grid of size
R = 2M, T = 2R

• pointwise errors
∣∣h̃− f̂

∣∣
-0.5 0 0.5

−0.5

0

0.5 Sampling data:
• real-world sampling f(xj)
• artificial sampling of the periodization

f̃(xj) =
∑

k∈IM

f̂(k) e2πikxj

Melanie Kircheis, Chemnitz University of Technology, Faculty of Mathematics 17
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∣∣ v
b

∣∣) · χ[−b,b](v)
2 compute inverse Fourier transform

f(x) =

∫
R2

f̂(v) e2πivx dv = b2 sinc2(bπx), x ∈ R2

 bandlimited with bandwidth M for all b ∈ N with b ≤ M
2

3 sample f(xj) for given xj ∈
[
− 1

2
, 1
2

)2
, j = 1, . . . , N

4 reconstruct h̃(k) ≈ f̂(k), k ∈ IM

Setup:
• consider |I2M | ≤ N
• M = 32 and b = 12

• modified polar grid of size
R = 2M, T = 2R

• pointwise errors
∣∣h̃− f̂

∣∣
-0.5 0 0.5

−0.5

0

0.5 Sampling data:
• real-world sampling f(xj)
• artificial sampling of the periodization

f̃(xj) =
∑

k∈IM

f̂(k) e2πikxj
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Results – pointwise errors
∣∣h̃− f̂

∣∣
real-world sampling

f(xj)

artificial sampling
f̃(xj) =

∑
k∈IM

f̂(k) e2πikxj

of the periodization

(a) Equispaced points xj
& FFT

(b) Density
compensation

(c) Optimization
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Summary
• new direct inversion methods for d ≥ 1, introduced for discrete problem (trigonometric polynomials)
• sampling density compensation: exact reconstruction in case |I2M | ≤ N
• optimization: based on factorization B

↖
FD of NFFT, also works for |IM | < N

optimized

• fast algorithms of same complexity O(|IM | log(|IM |) +N)

• extendable to continuous problem (bandlimited functions)
• error solely occurs since f cannot be sampled on whole Rd

• K., Potts: Fast and direct inversion methods for the multivariate nonequispaced
fast Fourier transform. Front. Appl. Math. Stat. 9 (2023).
• K., Potts: Optimal density compensation factors for the reconstruction of the

Fourier transform of bandlimited functions. SampTA Paper (2023).

Thank you for your attention!
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