

Direct inverse nonequispaced fast Fourier transforms

Melanie Kircheis

Chemnitz University of Technology Faculty of Mathematics

joint work with Daniel Potts

Workshop and Summer School on Applied Analysis 2024 Chemnitz, September 16–20, 2024

Motivation - discrete problem

phantom

→ given measurements

 \rightarrow

 $\hat{f}_{m k}$

 $f(\boldsymbol{x}_j) = \sum_{\boldsymbol{k} \in \mathcal{I}_{\boldsymbol{M}}} \hat{f}_{\boldsymbol{k}} e^{2\pi \mathrm{i} \boldsymbol{k} \boldsymbol{x}_j}$

 $\tilde{h}_{k} \approx \hat{f}_{k}$

Motivation - discrete problem

phantom

given measurements

$$\hat{f}_{k}$$
 $f(\boldsymbol{x}_{j}) = \sum_{\boldsymbol{k}\in\mathcal{I}_{M}} \hat{f}_{\boldsymbol{k}} e^{2\pi i \boldsymbol{k} \boldsymbol{x}_{j}}$ $\tilde{h}_{\boldsymbol{k}} \approx \hat{f}_{\boldsymbol{k}}$

	ground truth	given measurements	aim
discrete problem	\hat{f}_{k}	$f(\boldsymbol{x}_j) = \sum_{\boldsymbol{k} \in \mathcal{I}_{\boldsymbol{M}}} \hat{f}_{\boldsymbol{k}} e^{2\pi \mathrm{i} \boldsymbol{k} \boldsymbol{x}_j}$	$ ilde{h}_{m k}pprox \hat{f}_{m k}$
			$oldsymbol{v} \in \mathbb{R}^d, oldsymbol{k} \in \mathcal{I}_{oldsymbol{M}}$

	ground truth	given measurements	aim
discrete problem	$\hat{f}_{oldsymbol{k}}$	$f(oldsymbol{x}_j) = \sum_{oldsymbol{k} \in \mathcal{I}_{oldsymbol{M}}} \hat{f}_{oldsymbol{k}} \mathrm{e}^{2\pi \mathrm{i} oldsymbol{k} oldsymbol{x}_j}$	$ ilde{h}_{m k}pprox \hat{f}_{m k}$
continuous problem	$\hat{f}(oldsymbol{v})$	$f(oldsymbol{x}_j) = \int\limits_{\left[-rac{M}{2},rac{M}{2} ight)^d} \hat{f}(oldsymbol{v}) \mathrm{e}^{2\pi \mathrm{i} oldsymbol{v} oldsymbol{x}_j} \mathrm{d} oldsymbol{v}$	$ ilde{h}(m{k})pprox\hat{f}(m{k})$
	I	[2 2]	$oldsymbol{v} \in \mathbb{R}^d, oldsymbol{k} \in \mathcal{I}_{oldsymbol{M}}$

Melanie Kircheis, Chemnitz University of Technology, Faculty of Mathematics

	ground truth	given measurements	aim
discrete problem	$\hat{f}_{oldsymbol{k}}$	$f(oldsymbol{x}_j) = \sum_{oldsymbol{k} \in \mathcal{I}_{oldsymbol{M}}} \hat{f}_{oldsymbol{k}} \mathrm{e}^{2 \pi \mathrm{i} oldsymbol{k} oldsymbol{x}_j}$	$ ilde{h}_{m k}pprox \hat{f}_{m k}$
continuous problem	$\hat{f}(oldsymbol{v})$	$f(\boldsymbol{x}_j) = \int\limits_{\left[-rac{M}{2},rac{M}{2} ight)^d} \hat{f}(\boldsymbol{v}) \mathrm{e}^{2\pi \mathrm{i} \boldsymbol{v} \boldsymbol{x}_j} \mathrm{d} \boldsymbol{v}$	$ ilde{h}(m{k})pprox\hat{f}(m{k})$
		$\left[-\frac{1}{2},\frac{1}{2}\right]^{-1}$	$oldsymbol{v} \in \mathbb{R}^d, oldsymbol{k} \in \mathcal{I}_{oldsymbol{M}}$

iterated methods direct methods (multiple applications of the NFFT needed) vs. (realized with a single NFFT)

	ground truth	given measurements	aim
discrete problem	$\hat{f}_{oldsymbol{k}}$	$f(oldsymbol{x}_j) = \sum_{oldsymbol{k} \in \mathcal{I}_{oldsymbol{M}}} \hat{f}_{oldsymbol{k}} \mathrm{e}^{2\pi \mathrm{i} oldsymbol{k} oldsymbol{x}_j}$	$ ilde{h}_{m k}pprox \hat{f}_{m k}$
continuous problem	$\hat{f}(oldsymbol{v})$	$f(\boldsymbol{x}_j) = \int \limits_{\left[-rac{M}{2},rac{M}{2} ight)^d} \hat{f}(\boldsymbol{v}) \mathrm{e}^{2\pi \mathrm{i} \boldsymbol{v} \boldsymbol{x}_j} \mathrm{d} \boldsymbol{v}$	${ ilde h}({m k})pprox {\hat f}({m k})$
		[$oldsymbol{v} \in \mathbb{R}^d, oldsymbol{k} \in \mathcal{I}_{oldsymbol{M}}$

iterated methods (multiple applications of the NFFT needed)	vs.	(re	direct methods ealized with a single NFFT)
special setting: evaluation points ${m x}_j, j=1,\ldots,N,$	fixed	\implies	highly profit from direct method
1 precomputation: only once for fixed $oldsymbol{x}_j$			

2 reconstruction: for each measurement \rightsquigarrow very efficient

Overview

1 Introduction

- Ø Discrete problem
- Ontinuous problem

NFFT (Nonequispaced Fast Fourier Transform)

Fast algorithm to evaluate a trigonometric polynomial

$$f(\boldsymbol{x}) = \sum_{\boldsymbol{k} \in \mathcal{I}_{\boldsymbol{M}}} \hat{f}_{\boldsymbol{k}} e^{2\pi \mathrm{i} \boldsymbol{k} \boldsymbol{x}}$$

 $\mathcal{O}(|\mathcal{I}_{\boldsymbol{M}}|\log(|\mathcal{I}_{\boldsymbol{M}}|)+N)$

[Dutt, Rokhlin 93], [Beylkin 95], [Potts, Steidl, Tasche 01]

- index set $\mathcal{I}_{\boldsymbol{M}} \coloneqq \mathbb{Z}^d \cap \left[-\frac{M}{2}, \frac{M}{2}\right)^d$ with cardinality $|\mathcal{I}_{\boldsymbol{M}}| = M^d, M \in 2\mathbb{N},$
- Fourier coefficients $\hat{f}_{k} \in \mathbb{C}, k \in \mathcal{I}_{M}$,
- nonequispaced points $m{x}_j \in \mathbb{T}^d \cong \left[-rac{1}{2},rac{1}{2}
 ight]^d, j=1,\ldots,N, N\in\mathbb{N}$

NFFT (Nonequispaced Fast Fourier Transform)

Fast algorithm to evaluate a trigonometric polynomial

$$f(\boldsymbol{x}) = \sum_{\boldsymbol{k} \in \mathcal{I}_{\boldsymbol{M}}} \hat{f}_{\boldsymbol{k}} e^{2\pi \mathrm{i} \boldsymbol{k} \boldsymbol{x}}$$

 $\mathcal{O}(|\mathcal{I}_{\boldsymbol{M}}|\log(|\mathcal{I}_{\boldsymbol{M}}|)+N)$

[Dutt, Rokhlin 93], [Beylkin 95], [Potts, Steidl, Tasche 01]

- index set $\mathcal{I}_{\boldsymbol{M}} \coloneqq \mathbb{Z}^d \cap \left[-\frac{M}{2}, \frac{M}{2}\right)^d$ with cardinality $|\mathcal{I}_{\boldsymbol{M}}| = M^d, M \in 2\mathbb{N}$,
- Fourier coefficients $\hat{f}_{k} \in \mathbb{C}, k \in \mathcal{I}_{M}$,
- nonequispaced points $m{x}_j \in \mathbb{T}^d \cong \left[-rac{1}{2},rac{1}{2}
 ight]^d, j=1,\ldots,N, N\in\mathbb{N}$

Matrix notation:

$$oldsymbol{f} = oldsymbol{A} \widehat{oldsymbol{f}} \hspace{0.2cm} extsf{with} \hspace{0.2cm} oldsymbol{A} = oldsymbol{A}_{|\mathcal{I}_{oldsymbol{M}}|} \coloneqq \left(\mathrm{e}^{2\pi \mathrm{i} oldsymbol{k} oldsymbol{x}_{j}}
ight)_{j=1, \hspace{0.1cm} oldsymbol{k} \in \mathcal{I}_{oldsymbol{M}}} \hspace{0.2cm} \in \mathbb{C}^{N imes |\mathcal{I}_{oldsymbol{M}}|}$$

NFFT (Nonequispaced Fast Fourier Transform)

Fast algorithm to evaluate a trigonometric polynomial

$$f(\boldsymbol{x}) = \sum_{\boldsymbol{k} \in \mathcal{I}_{\boldsymbol{M}}} \hat{f}_{\boldsymbol{k}} e^{2\pi \mathrm{i} \boldsymbol{k} \boldsymbol{x}}$$

 $\mathcal{O}(|\mathcal{I}_{\boldsymbol{M}}|\log(|\mathcal{I}_{\boldsymbol{M}}|)+N)$

[Dutt, Rokhlin 93], [Beylkin 95], [Potts, Steidl, Tasche 01]

- index set $\mathcal{I}_{\boldsymbol{M}} \coloneqq \mathbb{Z}^d \cap \left[-\frac{M}{2}, \frac{M}{2}\right)^d$ with cardinality $|\mathcal{I}_{\boldsymbol{M}}| = M^d, M \in 2\mathbb{N},$
- Fourier coefficients $\hat{f}_{k} \in \mathbb{C}, k \in \mathcal{I}_{M}$,
- nonequispaced points $m{x}_j \in \mathbb{T}^d \cong \left[-rac{1}{2},rac{1}{2}
 ight]^d, j=1,\ldots,N, N\in\mathbb{N}$

Matrix notation:

$$oldsymbol{f} = oldsymbol{A} \widehat{oldsymbol{f}}$$
 with $oldsymbol{A} = oldsymbol{A}_{|\mathcal{I}_{oldsymbol{M}}|} \coloneqq \left(\mathrm{e}^{2\pi \mathrm{i}oldsymbol{k}oldsymbol{x}_{j}}
ight)_{j=1,\,oldsymbol{k}\in\mathcal{I}_{oldsymbol{M}}}^{N} \in \mathbb{C}^{N imes|\mathcal{I}_{oldsymbol{M}}|}$

Factorizations: $A \approx BFD$ and $A^* \approx D^*F^*B^*$

(in each column of \boldsymbol{B} only $(2m+1)^d$ entries, $m \in \mathbb{N}$ given)

NFFT (Nonequispaced Fast Fourier Transform)

Fast algorithm to evaluate a trigonometric polynomial

$$f(\boldsymbol{x}) = \sum_{\boldsymbol{k} \in \mathcal{I}_{\boldsymbol{M}}} \hat{f}_{\boldsymbol{k}} e^{2\pi \mathrm{i} \boldsymbol{k} \boldsymbol{x}}$$

 $\mathcal{O}(|\mathcal{I}_{\boldsymbol{M}}|\log(|\mathcal{I}_{\boldsymbol{M}}|)+N)$

[Dutt, Rokhlin 93], [Beylkin 95], [Potts, Steidl, Tasche 01]

- index set $\mathcal{I}_{\boldsymbol{M}} \coloneqq \mathbb{Z}^d \cap \left[-\frac{M}{2}, \frac{M}{2}\right)^d$ with cardinality $|\mathcal{I}_{\boldsymbol{M}}| = M^d, M \in 2\mathbb{N}$,
- Fourier coefficients $\hat{f}_{k} \in \mathbb{C}, k \in \mathcal{I}_{M}$,
- nonequispaced points $m{x}_j \in \mathbb{T}^d \cong \left[-rac{1}{2},rac{1}{2}
 ight]^d, j=1,\ldots,N, N\in\mathbb{N}$

Matrix notation:

$$oldsymbol{f} = oldsymbol{A} \widehat{oldsymbol{f}}$$
 with $oldsymbol{A} = oldsymbol{A}_{|\mathcal{I}_{oldsymbol{M}}|} \coloneqq \left(\mathrm{e}^{2\pi\mathrm{i}oldsymbol{k}oldsymbol{x}_j}
ight)_{j=1,\,oldsymbol{k}\in\mathcal{I}_{oldsymbol{M}}}^N \in \mathbb{C}^{N imes|\mathcal{I}_{oldsymbol{M}}|}$

Factorizations: $A \approx BFD$ and $A^* \approx D^*F^*B^*$ banded $\stackrel{\uparrow}{\text{FFT diagonal}} \stackrel{\kappa}{\text{Constrained}}$ (in each column of .

(in each column of ${\boldsymbol{B}}$ only $(2m+1)^d$ entries, $m\in\mathbb{N}$ given)

Inversion problem (iNFFT): Given: $f \coloneqq (f(x_j))_{j=1}^N$ Find: $\hat{f} \coloneqq (\hat{f}_k)_{k \in \mathcal{I}_M}$ Challenge: in general $N \neq |\mathcal{I}_M|$

Basic idea

Equispaced nodes: $A^*A = NI_{|\mathcal{I}_M|}$

Nonequispaced nodes: $\boldsymbol{A}^* \boldsymbol{A} \neq N \boldsymbol{I}_{|\mathcal{I}_{\boldsymbol{M}}|}$

Basic idea

Equispaced nodes: $A^*A = NI_{|\mathcal{I}_M|}$

 \Rightarrow Find suitable matrix \boldsymbol{X} with

 $XA \approx I_{|\mathcal{I}_M|},$

since then

 $\hat{f} pprox XA\hat{f} = Xf.$

Nonequispaced nodes: $A^*A \neq NI_{|\mathcal{I}_M|}$

Basic idea

Equispaced nodes: $A^*A = NI_{|\mathcal{I}_M|}$

 \Rightarrow Find suitable matrix $oldsymbol{X}$ with

 $XA \approx I_{|\mathcal{I}_M|},$

since then

$$\hat{f} pprox XA\hat{f} = Xf.$$

Reminder – Equispaced nodes:

$$\boldsymbol{X} = \boldsymbol{A}^* \cdot \frac{1}{N}$$

Nonequispaced nodes: $A^*A \neq NI_{|\mathcal{I}_M|}$

Basic idea

Equispaced nodes: $A^*A = NI_{|\mathcal{I}_M|}$

 \Rightarrow Find suitable matrix $oldsymbol{X}$ with

 $XA \approx I_{|\mathcal{I}_M|},$

since then

$$\hat{f} pprox XA\hat{f} = Xf.$$

Reminder – Equispaced nodes:

$$oldsymbol{X} = oldsymbol{A}^* \cdot rac{1}{N}$$

Simplest generalization:

$$\boldsymbol{X} = \boldsymbol{A}^* \boldsymbol{W} \approx \boldsymbol{D}^* \boldsymbol{F}^* \boldsymbol{B}^* \boldsymbol{W},$$

i. e., additional weighting $oldsymbol{W}\coloneqq \operatorname{diag}(w_j)_{j=1}^N$ due to nonequispaced sampling

Nonequispaced nodes: $A^*A \neq NI_{|\mathcal{I}_M|}$

Basic idea

Equispaced nodes: $A^*A = NI_{|\mathcal{I}_M|}$

 \Rightarrow Find suitable matrix \boldsymbol{X} with

 $XA \approx I_{|\mathcal{I}_M|},$

since then

 $\hat{f} pprox XA\hat{f} = Xf.$

Reminder – Equispaced nodes:

$$\boldsymbol{X} = \boldsymbol{A}^* \cdot \frac{1}{N}$$

Simplest generalization:

$$X = A^* W \approx D^* F^* B^* W,$$

Nonequispaced nodes: $A^*A \neq NI_{|\mathcal{I}_M|}$

Density compensation algorithm

 $\mathcal{O}(|\mathcal{I}_{\boldsymbol{M}}|\log(|\mathcal{I}_{\boldsymbol{M}}|)+N)$

Intuitive approach:

Voronoi weights based on geometry

i. e., additional weighting $oldsymbol{W}\coloneqq \operatorname{diag}(w_j)_{j=1}^N$ due to nonequispaced sampling

Exact reconstruction for trigonometric polynomials

Theorem (K., Potts 23)

Let $|\mathcal{I}_{2M}| \leq N$ and $x_j \in \mathbb{T}^d$, $j = 1, \ldots, N$, be given.

Then the density compensation factors $w_j \in \mathbb{C}$ satisfying

$$\sum_{j=1}^{N} w_j e^{2\pi i \boldsymbol{k} \boldsymbol{x}_j} = \delta_{\boldsymbol{0}, \boldsymbol{k}}, \quad \boldsymbol{k} \in \mathcal{I}_{\boldsymbol{2M}}, \qquad \boldsymbol{A}_{|\mathcal{I}_{\boldsymbol{2M}}|}^T \boldsymbol{w} = \boldsymbol{e}_{\boldsymbol{0}}$$

are optimal,

i. e., for all trigonometric polynomials $f(x) = \sum_{k \in \mathcal{I}_M} \hat{f}_k e^{2\pi i kx}$ an exact reconstruction of the Fourier coefficients $\hat{f}_k \in \mathbb{C}$ is given by

$$\hat{f}_{oldsymbol{k}} = h^{\mathrm{w}}_{oldsymbol{k}} := \sum_{j=1}^{N} w_j f(oldsymbol{x}_j) \, \mathrm{e}^{-2\pi \mathrm{i} oldsymbol{k} oldsymbol{x}_j}, \quad oldsymbol{k} \in \mathcal{I}_{oldsymbol{M}}. \qquad \qquad \hat{oldsymbol{f}} = oldsymbol{A}^* oldsymbol{W} oldsymbol{f}$$

 $\delta_{\mathbf{0}, \mathbf{k}} \dots$ Kronecker delta

Aim: exact solution to

$$\boldsymbol{A}_{|\mathcal{I}_{2\boldsymbol{M}}|}^{T} \boldsymbol{w} = \boldsymbol{e}_{\boldsymbol{0}} \coloneqq (\delta_{\boldsymbol{0},\boldsymbol{k}})_{\boldsymbol{k} \in \mathcal{I}_{2\boldsymbol{M}}} \tag{(*)}$$

Aim: exact solution to

$$\boldsymbol{A}_{|\mathcal{I}_{2M}|}^{T} \boldsymbol{w} = \boldsymbol{e}_{0} \coloneqq (\delta_{0,k})_{k \in \mathcal{I}_{2M}}$$
(*)

Friendly setting ($|I_{2M}| \leq N$): unique solution given by normal eqs. of 2nd kind

$$oldsymbol{A}_{|\mathcal{I}_{\mathbf{2M}}|}^T \overline{oldsymbol{A}_{|\mathcal{I}_{\mathbf{2M}}|}} oldsymbol{v} = oldsymbol{e}_{\mathbf{0}}, \quad \overline{oldsymbol{A}_{|\mathcal{I}_{\mathbf{2M}}|}} oldsymbol{v} = oldsymbol{w}$$

~> efficient computation: CG algorithm combined with NFFT

[K., Potts 23]

 $\mathcal{O}(|\mathcal{I}_{2M}|\log(|\mathcal{I}_{2M}|) + N)$

Aim: exact solution to

$$\boldsymbol{A}_{|\mathcal{I}_{2M}|}^{T} \boldsymbol{w} = \boldsymbol{e}_{0} \coloneqq (\delta_{0,k})_{k \in \mathcal{I}_{2M}}$$
(*)

Friendly setting ($|I_{2M}| \leq N$): unique solution given by normal eqs. of 2nd kind

$$oldsymbol{A}_{|\mathcal{I}_{\mathbf{2M}}|}^T \overline{oldsymbol{A}_{|\mathcal{I}_{\mathbf{2M}}|}} \, oldsymbol{v} = oldsymbol{e}_{\mathbf{0}}, \quad \overline{oldsymbol{A}_{|\mathcal{I}_{\mathbf{2M}}|}} \, oldsymbol{v} = oldsymbol{w}$$

---- efficient computation: CG algorithm combined with NFFT

[K., Potts 23]

 $\mathcal{O}(|\mathcal{I}_{\mathbf{2M}}|\log(|\mathcal{I}_{\mathbf{2M}}|) + N)$

Unfriendly setting ($|\mathcal{I}_{2M}| > N$ **):** no theoretical guarantee!

Aim: exact solution to

$$\boldsymbol{A}_{|\mathcal{I}_{2M}|}^{T} \boldsymbol{w} = \boldsymbol{e}_{0} \coloneqq (\delta_{0,k})_{k \in \mathcal{I}_{2M}}$$
(*)

Friendly setting ($|\mathcal{I}_{2M}| \leq N$): unique solution given by normal eqs. of 2nd kind

$$oldsymbol{A}_{|\mathcal{I}_{\mathbf{2M}}|}^T \overline{oldsymbol{A}_{|\mathcal{I}_{\mathbf{2M}}|}} \, oldsymbol{v} = oldsymbol{e}_{\mathbf{0}}, \quad \overline{oldsymbol{A}_{|\mathcal{I}_{\mathbf{2M}}|}} \, oldsymbol{v} = oldsymbol{w}$$

---- efficient computation: CG algorithm combined with NFFT

 $\mathcal{O}(|\mathcal{I}_{2M}|\log(|\mathcal{I}_{2M}|) + N)$

[K. Potts 23]

Unfriendly setting ($|I_{2M}| > N$ **):** no theoretical guarantee! least squares solution by normal eqs. of 1st kind

$$\overline{A_{|\mathcal{I}_{\mathbf{2M}}|}} A_{|\mathcal{I}_{\mathbf{2M}}|}^T w = \overline{A_{|\mathcal{I}_{\mathbf{2M}}|}} e_0$$

[K., Potts 23]: not a good approximation...

Recapitulation

So far:

 $\hat{f}pprox A^*Wf pprox D^*F^*B^*Wf$ diagonal FFT banded

So far:

Interpretation perspectives:

(i) Set $g \coloneqq Wf$. $\Rightarrow \hat{f} \approx D^*F^*B^*g$ \rightarrow ordinary NFFT, modified coefficient vector

So far:

Interpretation perspectives:

- (ii) Set $\tilde{B} \coloneqq WB$. $\Rightarrow \hat{f} \approx D^* F^* \tilde{B}^* f$ \rightsquigarrow modified NFFT, ordinary coefficient vector
- (i) Set $g\coloneqq Wf$. \Rightarrow $\hat{f}\approx D^*F^*B^*g$ \rightsquigarrow ordinary NFFT, modified coefficient vector

So far:

Interpretation perspectives:

- (ii) Set $\tilde{B} \coloneqq WB$. $\Rightarrow \hat{f} \approx D^* F^* \tilde{B}^* f$ \rightsquigarrow modified NFFT, ordinary coefficient vector
- (i) Set $g \coloneqq Wf$. $\Rightarrow \hat{f} \approx D^*F^*B^*g$ \rightsquigarrow ordinary NFFT, modified coefficient vector

 \Rightarrow density compensation $\hat{=}$ optimization of the banded matrix B

(only N degrees of freedom)

So far:

Interpretation perspectives:

- (i) Set $g \coloneqq Wf$. $\Rightarrow \hat{f} \approx D^*F^*B^*g$ \rightsquigarrow ordinary NFFT, modified coefficient vector
- (ii) Set $\tilde{B} \coloneqq WB$. $\Rightarrow \hat{f} \approx D^* F^* \tilde{B}^* f$ \rightsquigarrow modified NFFT, ordinary coefficient vector

 \Rightarrow density compensation $\hat{=}$ optimization of the banded matrix B

Now: optimize each nonzero entry of the banded matrix B

(only N degrees of freedom)

(N(2m+1) degrees of freedom)

So far:

Interpretation perspectives:

- (i) Set $g \coloneqq Wf$. $\Rightarrow \hat{f} \approx D^*F^*B^*g$ \rightsquigarrow ordinary NFFT, modified coefficient vector
- (ii) Set $\tilde{B} \coloneqq WB$. $\Rightarrow \hat{f} \approx D^* F^* \tilde{B}^* f$ \rightsquigarrow modified NFFT, ordinary coefficient vector

 \Rightarrow density compensation $\hat{=}$ optimization of the banded matrix B

Now: optimize each nonzero entry of the banded matrix B

(only N degrees of freedom)

(N(2m+1) degrees of freedom)

Reminder: seek to find a matrix X with

$$XA pprox I_{|\mathcal{I}_{M}|}$$

such that

$$\hat{f}pprox Xf$$
 .

So far:

Interpretation perspectives:

- (i) Set g := Wf. $\Rightarrow \hat{f} \approx D^*F^*B^*g$ \rightarrow ordinary NFFT, modified coefficient vector
- (ii) Set $\tilde{B} \coloneqq WB$. $\Rightarrow \hat{f} \approx D^* F^* \tilde{B}^* f$ \longrightarrow modified NFFT, ordinary coefficient vector

 \Rightarrow density compensation $\hat{=}$ optimization of the banded matrix B(only N degrees of freedom) **Now:** optimize each nonzero entry of the banded matrix B(N(2m+1) degrees of freedom)

Reminder: seek to find a matrix X with

$$XA pprox I_{|\mathcal{I}_{M}|}$$

such that

$$\hat{f}pprox Xf$$

Aim: $X = D^* F^* \tilde{B}^*$ [K., Potts 23]

- \rightarrow modification of matrix **B**
- → preserve band structure and arithmetic complexity

Precomputational step – Optimization procedure Define $\tilde{h} := D^* F^* \tilde{B}^* f$.

$$egin{array}{lll} \Rightarrow & \|m{ ilde{h}}-m{ ilde{f}}\|_2 = \|m{D}^*m{F}^*m{ ilde{B}}^*m{f} - m{ ilde{f}}\|_2 = \|m{D}^*m{F}^*m{ ilde{B}}^*m{A}m{\hat{f}} - m{\hat{f}}\|_2 \ & \leq \left\|m{D}^*m{F}^*m{ ilde{B}}^*m{A} - m{I}_{|\mathcal{I}_M|}
ight\|_{\mathrm{F}} \|m{\hat{f}}\|_2 \end{array}$$

[K., Potts 23]

Precomputational step – Optimization procedure Define $\tilde{h} := D^* F^* \tilde{B}^* f$.

$$\Rightarrow \hspace{0.1 in} \| ilde{m{h}} - \hat{m{f}}\|_2 = \|m{D}^*m{F}^* ilde{m{B}}^*m{f} - \hat{m{f}}\|_2 = \|m{D}^*m{F}^* ilde{m{B}}^*m{A}\hat{m{f}} - \hat{m{f}}\|_2 \ \leq \left\|m{D}^*m{F}^* ilde{m{B}}^*m{A} - m{I}_{|\mathcal{I}_{M}|}
ight\|_{
m F} \|m{m{f}}\|_2$$

Optimization problem:

$$\underset{\tilde{\boldsymbol{B}} \text{ banded}}{\text{Minimize}} \left\| \boldsymbol{D}^* \boldsymbol{F}^* \tilde{\boldsymbol{B}}^* \boldsymbol{A} - \boldsymbol{I}_{|\mathcal{I}_M|} \right\|_{\mathrm{F}}^2 = \left\| \boldsymbol{A}^* \tilde{\boldsymbol{B}} \boldsymbol{F} \boldsymbol{D} - \boldsymbol{I}_{|\mathcal{I}_M|} \right\|_{\mathrm{F}}^2$$

Precomputational step – Optimization procedure Define $\tilde{h} := D^* F^* \tilde{B}^* f$. $\Rightarrow \|\tilde{h} - \hat{f}\|_2 = \|D^* F^* \tilde{B}^* f - \hat{f}\|_2 = \|D^* F^* \tilde{B}^* f - \hat{f}\|_2$

$$egin{array}{lll} \Rightarrow & \| ilde{m{h}} - \hat{m{f}}\|_2 = \|m{D}^*m{F}^* ilde{m{B}}^*m{f} - \hat{m{f}}\|_2 = \|m{D}^*m{F}^* ilde{m{B}}^*m{A}m{f} - m{f}\|_2 \ & \leq \left\|m{D}^*m{F}^* ilde{m{B}}^*m{A} - m{I}_{|\mathcal{I}_{M}|}
ight\|_{
m F} \|m{f}\|_2 \end{array}$$

Optimization problem:

$$\underset{\tilde{\boldsymbol{B}} \text{ banded}}{\text{Minimize }} \left\| \boldsymbol{D}^* \boldsymbol{F}^* \tilde{\boldsymbol{B}}^* \boldsymbol{A} - \boldsymbol{I}_{|\mathcal{I}_M|} \right\|_{\mathrm{F}}^2 = \left\| \boldsymbol{A}^* \tilde{\boldsymbol{B}} \boldsymbol{F} \boldsymbol{D} - \boldsymbol{I}_{|\mathcal{I}_M|} \right\|_{\mathrm{F}}^2$$

If $A^* \tilde{B}$ is a pseudoinverse of FD then $A^* \tilde{B} FD \approx I_{|\mathcal{I}_M|}$.

Precomputational step – Optimization procedure Define $\tilde{h} := D^* F^* \tilde{B}^* f$. $\Rightarrow \|\tilde{h} - \hat{f}\|_2 = \|D^* F^* \tilde{B}^* f - \hat{f}\|_2 = \|D^* F^* \tilde{B}^* f - \hat{f}\|_2$

$$egin{array}{lll} &\Rightarrow & \| ilde{m{h}} - \hat{m{f}}\|_2 = \|m{D}^*m{F}^* ilde{m{B}}^*m{f} - \hat{m{f}}\|_2 = \|m{D}^*m{F}^* ilde{m{B}}^*m{A}\hat{m{f}} - \hat{m{f}}\|_2 \ &\leq & \left\|m{D}^*m{F}^* ilde{m{B}}^*m{A} - m{I}_{|\mathcal{I}_{m{M}}|}
ight\|_{
m F} \|m{m{f}}\|_2 \end{array}$$

Optimization problem:

$$\underset{\tilde{\boldsymbol{B}} \text{ banded}}{\text{Minimize }} \left\| \boldsymbol{D}^* \boldsymbol{F}^* \tilde{\boldsymbol{B}}^* \boldsymbol{A} - \boldsymbol{I}_{|\mathcal{I}_{\boldsymbol{M}}|} \right\|_{\mathrm{F}}^2 = \left\| \boldsymbol{A}^* \tilde{\boldsymbol{B}} \boldsymbol{F} \boldsymbol{D} - \boldsymbol{I}_{|\mathcal{I}_{\boldsymbol{M}}|} \right\|_{\mathrm{F}}^2$$

If $A^* \tilde{B}$ is a pseudoinverse of FD then $A^* \tilde{B} FD \approx I_{|\mathcal{I}_M|}$. Since $F^* F = |\mathcal{I}_{M_{\sigma}}| I_{|\mathcal{I}_M|}$, a pseudoinverse is given by $\frac{1}{|\mathcal{I}_{M_{\sigma}}|} D^{-1} F^*$.

Precomputational step – Optimization procedure Define $\tilde{h} := D^* F^* \tilde{B}^* f$. $\Rightarrow \|\tilde{h} - \hat{f}\|_2 = \|D^* F^* \tilde{B}^* f - \hat{f}\|_2 = \|D^* F^* f\|_2$

$$\Rightarrow \hspace{0.1 in} \| ilde{m{h}} - \hat{m{f}}\|_2 = \|m{D}^*m{F}^* ilde{m{B}}^*m{f} - \hat{m{f}}\|_2 = \|m{D}^*m{F}^* ilde{m{B}}^*m{A}m{f} - m{f}\|_2 \ \leq \left\|m{D}^*m{F}^* ilde{m{B}}^*m{A} - m{I}_{|\mathcal{I}_{M}|}
ight\|_{\mathrm{F}} \|m{f}\|_2$$

Optimization problem:

$$\underset{\tilde{\boldsymbol{B}} \text{ banded}}{\text{Minimize }} \left\| \boldsymbol{D}^* \boldsymbol{F}^* \tilde{\boldsymbol{B}}^* \boldsymbol{A} - \boldsymbol{I}_{|\mathcal{I}_{\boldsymbol{M}}|} \right\|_{\mathrm{F}}^2 = \left\| \boldsymbol{A}^* \tilde{\boldsymbol{B}} \boldsymbol{F} \boldsymbol{D} - \boldsymbol{I}_{|\mathcal{I}_{\boldsymbol{M}}|} \right\|_{\mathrm{F}}^2$$

If $A^* \tilde{B}$ is a pseudoinverse of FD then $A^* \tilde{B}FD \approx I_{|\mathcal{I}_M|}$. Since $F^*F = |\mathcal{I}_{M_{\sigma}}| I_{|\mathcal{I}_M|}$, a pseudoinverse is given by $\frac{1}{|\mathcal{I}_{M_{\sigma}}|} D^{-1}F^*$.

$$\begin{array}{l} \underset{\tilde{\boldsymbol{B}} \text{ banded}}{\text{ minimize }} \left\| \boldsymbol{A}^{*} \tilde{\boldsymbol{B}} - \frac{1}{|\mathcal{I}_{\boldsymbol{M}_{\boldsymbol{\sigma}}}|} \boldsymbol{D}^{-1} \boldsymbol{F}^{*} \right\|_{\mathrm{F}}^{2} = \sum_{\boldsymbol{\ell} \in \mathcal{I}_{\boldsymbol{M}_{\boldsymbol{\sigma}}}} \left\| \boldsymbol{A}_{\boldsymbol{\ell}}^{*} \tilde{\boldsymbol{b}}_{\boldsymbol{\ell}} - \frac{1}{|\mathcal{I}_{\boldsymbol{M}_{\boldsymbol{\sigma}}}|} \boldsymbol{D}^{-1} \boldsymbol{f}_{\boldsymbol{\ell}} \right\|_{2}^{2} \end{array}$$

Precomputational step – Optimization procedure Define $\tilde{h} := D^* F^* \tilde{B}^* f$. $\Rightarrow \|\tilde{h} - \hat{f}\|_2 = \|D^* F^* \tilde{B}^* f - \hat{f}\|_2 = \|D^* F^* \tilde{B}^* A \hat{f} - \hat{f}\|_2$

$$\Rightarrow \|oldsymbol{h}-oldsymbol{f}\|_2 = \|oldsymbol{D}^*oldsymbol{F}^*oldsymbol{B}^*oldsymbol{f} - oldsymbol{f}\|_2 = \|oldsymbol{D}^*oldsymbol{F}^*oldsymbol{B}^*oldsymbol{f} - oldsymbol{f}\|_2 \ \leq \left\|oldsymbol{D}^*oldsymbol{F}^*oldsymbol{\tilde{B}}^*oldsymbol{A} - oldsymbol{f}\|_2 = \|oldsymbol{D}^*oldsymbol{F}^*oldsymbol{B}^*oldsymbol{A} - oldsymbol{f}\|_2 \ \leq \left\|oldsymbol{D}^*oldsymbol{F}^*oldsymbol{\tilde{B}}^*oldsymbol{A} - oldsymbol{f}\|_2 = \|oldsymbol{D}^*oldsymbol{F}^*oldsymbol{B}^*oldsymbol{A} - oldsymbol{f}\|_2 \ \leq \left\|oldsymbol{D}^*oldsymbol{F}^*oldsymbol{\tilde{B}}^*oldsymbol{A} - oldsymbol{I}\|_2 = \|oldsymbol{D}^*oldsymbol{F}^*oldsymbol{B}^*oldsymbol{A} - oldsymbol{f}\|_2 \ \leq \left\|oldsymbol{D}^*oldsymbol{F}^*oldsymbol{\tilde{B}}^*oldsymbol{A} - oldsymbol{I}\|_2 \ = \|oldsymbol{D}^*oldsymbol{D}^*oldsymbol{B}^*oldsymbol{A} - oldsymbol{I}\|_2 \ \leq \left\|oldsymbol{D}^*oldsymbol{F}^*oldsymbol{\tilde{B}}^*oldsymbol{A} - oldsymbol{I}\|_2 \ = \|oldsymbol{D}^*oldsymbol{F}^*oldsymbol{B}^*oldsymbol{A} - oldsymbol{I}\|_2 \ \leq \left\|oldsymbol{D}^*oldsymbol{F}^*oldsymbol{B}^*oldsymbol{A} - oldsymbol{I}\|_2 \ = \left\|oldsymbol{D}^*oldsymbol{F}^*oldsymbol{B}^*oldsymbol{A} - oldsymbol{I}\|_2 \ = \left\|oldsymbol{D}^*oldsymbol{D}^*oldsymbol{B}^*oldsymbol{A} - oldsymbol{I}\|_2 \ = \left\|oldsymbol{D}^*oldsymbol{D}^*oldsymbol{B}^*oldsymbol{A} - oldsymbol{I}\|_2 \ = \left\|oldsymbol{D}^*oldsymbol{D}^*oldsymbol{B}^*oldsymbol{A} - oldsymbol{I}\|_2 \ = \left\|oldsymbol{D}^*oldsymbol{D}^*oldsymbol{B}^*oldsymbol{D} - oldsymbol{D}^*oldsymbol{B}^*oldsymbol{D}^*oldsymbol{D}^*oldsymbol{D}^*oldsymbol{B}^*oldsymbol{D}^*oldsym$$

Optimization problem:

$$\underset{\tilde{\boldsymbol{B}} \text{ banded}}{\text{Minimize }} \left\| \boldsymbol{D}^* \boldsymbol{F}^* \tilde{\boldsymbol{B}}^* \boldsymbol{A} - \boldsymbol{I}_{|\mathcal{I}_{\boldsymbol{M}}|} \right\|_{\mathrm{F}}^2 = \left\| \boldsymbol{A}^* \tilde{\boldsymbol{B}} \boldsymbol{F} \boldsymbol{D} - \boldsymbol{I}_{|\mathcal{I}_{\boldsymbol{M}}|} \right\|_{\mathrm{F}}^2$$

If $A^* \tilde{B}$ is a pseudoinverse of FD then $A^* \tilde{B}FD \approx I_{|\mathcal{I}_M|}$. Since $F^*F = |\mathcal{I}_{M_{\sigma}}| I_{|\mathcal{I}_M|}$, a pseudoinverse is given by $\frac{1}{|\mathcal{I}_{M_{\sigma}}|} D^{-1}F^*$.

$$\begin{array}{l} \underset{\tilde{B} \text{ banded}}{\text{ minimize }} \left\| \boldsymbol{A}^{*} \tilde{\boldsymbol{B}} - \frac{1}{|\mathcal{I}_{\boldsymbol{M}_{\boldsymbol{\sigma}}}|} \boldsymbol{D}^{-1} \boldsymbol{F}^{*} \right\|_{\mathrm{F}}^{2} = \sum_{\boldsymbol{\ell} \in \mathcal{I}_{\boldsymbol{M}_{\boldsymbol{\sigma}}}} \left\| \boldsymbol{A}_{\boldsymbol{\ell}}^{*} \tilde{\boldsymbol{b}}_{\boldsymbol{\ell}} - \frac{1}{|\mathcal{I}_{\boldsymbol{M}_{\boldsymbol{\sigma}}}|} \boldsymbol{D}^{-1} \boldsymbol{f}_{\boldsymbol{\ell}} \right\|_{2}^{2} \end{array}$$

 $\rightsquigarrow \mathcal{O}(|\mathcal{I}_{\boldsymbol{M}}|)$

Direct inverse nonequispaced fast Fourier transforms Numerical Examples

Discrete example - Shepp-Logan phantom

() phantom data = Fourier coefficients $\hat{f} := (\hat{f}_k)_{k \in \mathcal{I}_M}$ of a trigonometric polynomial

2 compute the evaluations $f(x_j) = \sum_{k \in \mathcal{I}_M} \hat{f}_k e^{2\pi i k x_j}$ by means of NFFT

3 reconstruct $\tilde{h}_{k} \approx \hat{f}_{k}, k \in \mathcal{I}_{M}$

Discrete example - Shepp-Logan phantom

() phantom data = Fourier coefficients $\hat{f} := (\hat{f}_k)_{k \in \mathcal{I}_M}$ of a trigonometric polynomial

2 compute the evaluations
$$f(x_j) = \sum_{k \in \mathcal{I}_M} \hat{f}_k e^{2\pi i k x_j}$$
 by means of NFFT

3 reconstruct $\tilde{h}_{k} \approx \hat{f}_{k}, k \in \mathcal{I}_{M}$

Friendly setting ($|\mathcal{I}_{2M}| \leq N$):

- linogram grid of size R = 2M, T = 2R
- phantom size $M \times M$ with $M = 2^c, c = 3, \dots, 10$
- relative errors

$$e_2\coloneqq rac{\| ilde{oldsymbol{h}}- ilde{oldsymbol{f}}\|_2}{\| ilde{oldsymbol{f}}\|_2}$$

Discrete example – Shepp-Logan phantom

() phantom data = Fourier coefficients $\hat{f} \coloneqq (\hat{f}_k)_{k \in \mathcal{I}_M}$ of a trigonometric polynomial

2 compute the evaluations $f(\boldsymbol{x}_j) = \sum_{\boldsymbol{k} \in \mathcal{I}_M} \hat{f}_{\boldsymbol{k}} e^{2\pi i \boldsymbol{k} \boldsymbol{x}_j}$ by means of NFFT 3 reconstruct $\tilde{h}_{\boldsymbol{k}} \approx \hat{f}_{\boldsymbol{k}}, \, \boldsymbol{k} \in \mathcal{I}_M$

Friendly setting ($|\mathcal{I}_{2M}| \leq N$):

- linogram grid of size R = 2M, T = 2R
- phantom size $M \times M$ with $M = 2^c, c = 3, \dots, 10$
- relative errors

$$e_2\coloneqq rac{\|oldsymbol{ ilde{h}}-oldsymbol{\hat{f}}\|_2}{\|oldsymbol{\hat{f}}\|_2}$$

Unfriendly setting ($|\mathcal{I}_{2M}| > N$):

- linogram grid of size R = M, T = 2R
- phantom of size M = 1024
- \rightsquigarrow compare presented computation schemes
 - Voronoi weights
 - new density compensation factors
 - optimization approach

Direct inverse nonequispaced fast Fourier transforms

Friendly setting ($|\mathcal{I}_{2M}| < N$)

Unfriendly setting ($|\mathcal{I}_{2M}| > N$)

Analogous problem for bandlimited functions

Application: MRI (Magnetic Resonance Imaging)

no longer

discrete (trigonometric polynomials) [Rosenfeld 98], [Greengard, Lee, Inati 06], [Eggers, K., Potts 22]

continuous (bandlimited functions)

but

Analogous problem for bandlimited functions

Application: MRI (Magnetic Resonance Imaging)

no longer (tr

discrete (trigonometric polynomials) [Rosenfeld 98], [Greengard, Lee, Inati 06], [Eggers, K., Potts 22]

continuous (bandlimited functions)

(Continuous) Fourier transform:

$$\widehat{f}(oldsymbol{v})\coloneqq\int\limits_{\mathbb{R}^d}f(oldsymbol{x})\,\mathrm{e}^{-2\pi\mathrm{i}oldsymbol{v}oldsymbol{x}}\,\mathrm{d}oldsymbol{x},\quadoldsymbol{v}\in\mathbb{R}^d$$

but

 \rightarrow bandlimited functions with maximum bandwidth $M \iff \operatorname{supp}(\hat{f}) = \left[-\frac{M}{2}, \frac{M}{2}\right]^d$

$$\implies f(\boldsymbol{x}) = \int_{\mathbb{R}^d} \hat{f}(\boldsymbol{v}) e^{2\pi i \boldsymbol{v} \boldsymbol{x}} d\boldsymbol{v} = \int_{\left[-\frac{M}{2}, \frac{M}{2}\right]^d} \hat{f}(\boldsymbol{v}) e^{2\pi i \boldsymbol{v} \boldsymbol{x}_j} d\boldsymbol{v}, \quad \boldsymbol{x} \in \mathbb{R}^d$$

Analogous problem for bandlimited functions

Application: MRI (Magnetic Resonance Imaging)

no longer discrete (trigonometric polynomials)

but

[Rosenfeld 98], [Greengard, Lee, Inati 06], [Eggers, K., Potts 22]

continuous (bandlimited functions)

(Continuous) Fourier transform:

$$\hat{f}(oldsymbol{v}) \coloneqq \int\limits_{\mathbb{R}^d} f(oldsymbol{x}) \, \mathrm{e}^{-2\pi \mathrm{i} oldsymbol{v} oldsymbol{x}} \, \mathrm{d} oldsymbol{x}, \quad oldsymbol{v} \in \mathbb{R}^d$$

 \rightsquigarrow bandlimited functions with maximum bandwidth $M \iff \operatorname{supp}(\hat{f}) = \left[-\frac{M}{2}, \frac{M}{2}\right]^d$

$$\implies f(\boldsymbol{x}) = \int_{\mathbb{R}^d} \hat{f}(\boldsymbol{v}) e^{2\pi i \boldsymbol{v} \boldsymbol{x}} d\boldsymbol{v} = \int_{\left[-\frac{M}{2}, \frac{M}{2}\right]^d} \hat{f}(\boldsymbol{v}) e^{2\pi i \boldsymbol{v} \boldsymbol{x}_j} d\boldsymbol{v}, \quad \boldsymbol{x} \in \mathbb{R}^d$$

Reconstruct: evaluations $\hat{f}(\boldsymbol{k}) \in \mathbb{C}, \, \boldsymbol{k} \in \mathcal{I}_{\boldsymbol{M}}$

Given: measurements $f(\boldsymbol{x}_j), j = 1, \dots, N$

discrete

Analogous problem for bandlimited functions

Application: MRI (Magnetic Resonance Imaging)

no longer (trigonometric polynomials)

but

[Rosenfeld 98], [Greengard, Lee, Inati 06], [Eggers, K., Potts 22]

continuous (bandlimited functions)

(Continuous) Fourier transform:

$$\widehat{f}(oldsymbol{v})\coloneqq\int\limits_{\mathbb{R}^d}f(oldsymbol{x})\,\mathrm{e}^{-2\pi\mathrm{i}oldsymbol{v}oldsymbol{x}}\,\mathrm{d}oldsymbol{x},\quadoldsymbol{v}\in\mathbb{R}^d$$

 $\iff \operatorname{supp}(\hat{f}) = \left[-\frac{M}{2}, \frac{M}{2}\right]^d$ \rightsquigarrow bandlimited functions with maximum bandwidth M

$$\implies f(\boldsymbol{x}) = \int_{\mathbb{R}^d} \hat{f}(\boldsymbol{v}) e^{2\pi i \boldsymbol{v} \boldsymbol{x}} d\boldsymbol{v} = \int_{\left[-\frac{M}{2}, \frac{M}{2}\right]^d} \hat{f}(\boldsymbol{v}) e^{2\pi i \boldsymbol{v} \boldsymbol{x}_j} d\boldsymbol{v}, \quad \boldsymbol{x} \in \mathbb{R}^d$$

Reconstruct: evaluations $\hat{f}(k) \in \mathbb{C}, k \in \mathcal{I}_M$

Now: extend previous methods

Given: measurements $f(\boldsymbol{x}_i), j = 1, \dots, N$

Reconsideration as trigonometric polynomials

Consider 1-periodization

$$\widetilde{f}(oldsymbol{x})\coloneqq \sum_{oldsymbol{r}\in\mathbb{Z}^d}f(oldsymbol{x}+oldsymbol{r})\in L_2(\mathbb{T}^d)$$

J

Reconsideration as trigonometric polynomials

Consider 1-periodization

$$ilde{f}(oldsymbol{x})\coloneqq \sum_{oldsymbol{r}\in\mathbb{Z}^d}f(oldsymbol{x}+oldsymbol{r})\in L_2(\mathbb{T}^d)$$

 \Rightarrow uniquely representable by absolute convergent Fourier series

$$ilde{f}(oldsymbol{x})\coloneqq \sum_{oldsymbol{k}\in\mathbb{Z}^d} c_{oldsymbol{k}}(ilde{f})\,\mathrm{e}^{2\pi\mathrm{i}oldsymbol{k}oldsymbol{x}},$$

with Fourier coefficients

$$c_{\boldsymbol{k}}(\tilde{f}) = \int_{\mathbb{T}^d} \tilde{f}(\boldsymbol{x}) e^{-2\pi i \boldsymbol{k} \boldsymbol{x}} d\boldsymbol{x} = \int_{\mathbb{R}^d} f(\boldsymbol{x}) e^{-2\pi i \boldsymbol{k} \boldsymbol{x}} d\boldsymbol{x} = \hat{f}(\boldsymbol{k}), \quad \boldsymbol{k} \in \mathbb{Z}^d$$

 \Rightarrow uniquely representable by absolute convergent Fourier series

Reconsideration as trigonometric polynomials

Consider 1-periodization

$$ilde{f}(oldsymbol{x})\coloneqq \sum_{oldsymbol{r}\in\mathbb{Z}^d}f(oldsymbol{x}+oldsymbol{r})\in L_2(\mathbb{T}^d)$$

[Plonka, Potts, Steidl, Tasche 18]

$$ilde{f}(oldsymbol{x})\coloneqq \sum_{oldsymbol{k}\in\mathbb{Z}^d} c_{oldsymbol{k}}(ilde{f})\,\mathrm{e}^{2\pi\mathrm{i}oldsymbol{k}oldsymbol{x}},$$

with Fourier coefficients

$$c_{m{k}}(ilde{f}) = \int\limits_{\mathbb{T}^d} ilde{f}(m{x}) \, \mathrm{e}^{-2\pi \mathrm{i} m{k} m{x}} \, \mathrm{d} m{x} = \int\limits_{\mathbb{R}^d} f(m{x}) \, \mathrm{e}^{-2\pi \mathrm{i} m{k} m{x}} \, \mathrm{d} m{x} = \hat{f}(m{k}), \quad m{k} \in \mathbb{Z}^d$$

 $\rightsquigarrow f$ bandlimited with bandwidth M

 $\begin{array}{ll} \Longleftrightarrow & \operatorname{supp}(\widehat{f}\,) = \left[-\frac{M}{2}, \frac{M}{2}\right)^d \quad \Longrightarrow \quad \widehat{f}(k) = 0, \, k \in \mathbb{Z}^d \setminus \mathcal{I}_M \\ \Rightarrow & \widetilde{f} \text{ trigonometric polynomial of degree } M \end{array}$

Reconsideration as trigonometric polynomials

Consider 1-periodization

$$ilde{f}(oldsymbol{x})\coloneqq \sum_{oldsymbol{r}\in\mathbb{Z}^d}f(oldsymbol{x}+oldsymbol{r})\in L_2(\mathbb{T}^d)$$

 \Rightarrow uniquely representable by absolute convergent Fourier series

[Plonka, Potts, Steidl, Tasche 18]

$$ilde{f}(oldsymbol{x})\coloneqq \sum_{oldsymbol{k}\in\mathbb{Z}^d}c_{oldsymbol{k}}(ilde{f})\,\mathrm{e}^{2\pi\mathrm{i}oldsymbol{k}oldsymbol{x}},$$

with Fourier coefficients

$$c_{m{k}}(ilde{f}) = \int\limits_{\mathbb{T}^d} ilde{f}(m{x}) \, \mathrm{e}^{-2\pi \mathrm{i} m{k} m{x}} \, \mathrm{d} m{x} = \int\limits_{\mathbb{R}^d} f(m{x}) \, \mathrm{e}^{-2\pi \mathrm{i} m{k} m{x}} \, \mathrm{d} m{x} = \hat{f}(m{k}), \quad m{k} \in \mathbb{Z}^d$$

 $\rightsquigarrow f$ bandlimited with bandwidth $oldsymbol{M}$

 $\begin{array}{ll} \Longleftrightarrow & \operatorname{supp}(\widehat{f}\,) = \left[-\frac{M}{2}, \frac{M}{2}\right)^d & \Longrightarrow & \widehat{f}(\boldsymbol{k}) = 0, \, \boldsymbol{k} \in \mathbb{Z}^d \setminus \mathcal{I}_{\boldsymbol{M}} \\ \\ \implies & \widetilde{f} \text{ trigonometric polynomial of degree } \boldsymbol{M} \end{array}$

 \Rightarrow density compensation method:

In practice: only hypothetical case !

```
periodization \tilde{f} cannot be sampled \iff f cannot be sampled on whole \mathbb{R}^d
```

Sampling: limited coverage of space

 $\rightsquigarrow f$ only known on a bounded domain, w.l.o.g. for $m{x} \in \left[-rac{1}{2},rac{1}{2}
ight)^d$

In practice: only hypothetical case !

```
periodization \tilde{f} cannot be sampled \iff f cannot be sampled on whole \mathbb{R}^d
```

Sampling: limited coverage of space

 $\rightsquigarrow f$ only known on a bounded domain, w.l.o.g. for $m{x} \in \left[-rac{1}{2},rac{1}{2}
ight)^d$

Consequences: need to assume that f is small outside $\left[-\frac{1}{2},\frac{1}{2}\right)^d$, such that $\tilde{f}(\boldsymbol{x}_j) \approx f(\boldsymbol{x}_j)$ \rightsquigarrow have to deal with the approximation

$$\hat{f}(oldsymbol{k}) pprox \sum_{j=1}^{N} w_j \, f(oldsymbol{x}_j) \, \mathrm{e}^{-2\pi \mathrm{i} oldsymbol{k} oldsymbol{x}_j}, \quad oldsymbol{k} \in \mathcal{I}_{oldsymbol{M}}$$
 $\implies \quad \widehat{oldsymbol{f}} = oldsymbol{A}^* oldsymbol{W} oldsymbol{f} pprox oldsymbol{A}^* oldsymbol{W} oldsymbol{f}$

In practice: only hypothetical case !

```
periodization \widetilde{f} cannot be sampled \iff f cannot be sampled on whole \mathbb{R}^d
```

Sampling: limited coverage of space

 $\rightsquigarrow f$ only known on a bounded domain, w.l.o.g. for $m{x} \in \left[-rac{1}{2},rac{1}{2}
ight)^d$

Consequences: need to assume that f is small outside $\left[-\frac{1}{2},\frac{1}{2}\right)^d$, such that $\tilde{f}(\boldsymbol{x}_j) \approx f(\boldsymbol{x}_j)$ \rightsquigarrow have to deal with the approximation

$$\hat{f}(oldsymbol{k}) pprox \sum_{j=1}^{N} w_j f(oldsymbol{x}_j) e^{-2\pi i oldsymbol{k} oldsymbol{x}_j}, \quad oldsymbol{k} \in \mathcal{I}_{oldsymbol{M}}$$
 $\implies \quad oldsymbol{\hat{f}} = oldsymbol{A}^* oldsymbol{W} oldsymbol{f} pprox oldsymbol{A}^* oldsymbol{W} oldsymbol{f}$

Main cause of error: f is not known on whole \mathbb{R}^d

In practice: only hypothetical case !

periodization \widetilde{f} cannot be sampled $\iff f$ cannot be sampled on whole \mathbb{R}^d

Sampling: limited coverage of space

 $\rightsquigarrow f$ only known on a bounded domain, w.l.o.g. for $m{x} \in \left[-rac{1}{2},rac{1}{2}
ight)^d$

Consequences: need to assume that f is small outside $\left[-\frac{1}{2}, \frac{1}{2}\right)^d$, such that $\tilde{f}(x_j) \approx f(x_j)$ \rightsquigarrow have to deal with the approximation

$$\hat{f}(\boldsymbol{k}) pprox \sum_{j=1}^{N} w_j f(\boldsymbol{x}_j) e^{-2\pi i \boldsymbol{k} \boldsymbol{x}_j}, \quad \boldsymbol{k} \in \mathcal{I}_{\boldsymbol{M}}$$
 $\implies \quad \hat{\boldsymbol{f}} = \boldsymbol{A}^* \boldsymbol{W} \tilde{\boldsymbol{f}} pprox \boldsymbol{A}^* \boldsymbol{W} \boldsymbol{f}$

Main cause of error: f is not known on whole \mathbb{R}^d

 \rightsquigarrow analogously also optimization method applicable

Continuous example - tensorized triangular pulse function

1 specify compactly supported $\hat{f}(v) = g(v_1) \cdot g(v_2)$, with triangular pulse $g(v) \coloneqq (1 - \left|\frac{v}{b}\right|) \cdot \chi_{[-b,b]}(v)$ **2** compute inverse Fourier transform

$$f(\boldsymbol{x}) = \int_{\mathbb{R}^2} \hat{f}(\boldsymbol{v}) e^{2\pi i \boldsymbol{v} \boldsymbol{x}} d\boldsymbol{v} = b^2 \operatorname{sinc}^2(b\pi \boldsymbol{x}), \ \boldsymbol{x} \in \mathbb{R}^2$$

 \rightsquigarrow bandlimited with bandwidth M for all $b \in \mathbb{N}$ with $b \leq \frac{M}{2}$

(3) sample $f(\boldsymbol{x}_j)$ for given $\boldsymbol{x}_j \in \left[-\frac{1}{2}, \frac{1}{2}\right)^2$, $j = 1, \dots, N$ (4) reconstruct $\tilde{h}(\boldsymbol{k}) \approx \hat{f}(\boldsymbol{k})$, $\boldsymbol{k} \in \mathcal{I}_M$

Continuous example - tensorized triangular pulse function

1 specify compactly supported $\hat{f}(v) = g(v_1) \cdot g(v_2)$, with triangular pulse $g(v) \coloneqq (1 - \left|\frac{v}{b}\right|) \cdot \chi_{[-b,b]}(v)$ **2** compute inverse Fourier transform

$$f(\boldsymbol{x}) = \int_{\mathbb{R}^2} \hat{f}(\boldsymbol{v}) e^{2\pi i \boldsymbol{v} \boldsymbol{x}} d\boldsymbol{v} = b^2 \operatorname{sinc}^2(b\pi \boldsymbol{x}), \ \boldsymbol{x} \in \mathbb{R}^2$$

 \rightsquigarrow bandlimited with bandwidth M for all $b \in \mathbb{N}$ with $b \leq \frac{M}{2}$

(a) sample
$$f(\boldsymbol{x}_j)$$
 for given $\boldsymbol{x}_j \in \left[-\frac{1}{2}, \frac{1}{2}\right)^2, j = 1, \dots, N$
(d) reconstruct $\tilde{h}(\boldsymbol{k}) \approx \hat{f}(\boldsymbol{k}), \boldsymbol{k} \in \mathcal{I}_M$

Setup:

- consider $|\mathcal{I}_{2M}| \leq N$
- M = 32 and b = 12
- modified polar grid of size R = 2M, T = 2R
- pointwise errors $ig| ilde{m{h}} \hat{m{f}} ig|$

Continuous example - tensorized triangular pulse function

1 specify compactly supported $\hat{f}(v) = g(v_1) \cdot g(v_2)$, with triangular pulse $g(v) \coloneqq (1 - \left|\frac{v}{b}\right|) \cdot \chi_{[-b,b]}(v)$ **2** compute inverse Fourier transform

$$f(\boldsymbol{x}) = \int_{\mathbb{R}^2} \hat{f}(\boldsymbol{v}) e^{2\pi i \boldsymbol{v} \boldsymbol{x}} d\boldsymbol{v} = b^2 \operatorname{sinc}^2(b\pi \boldsymbol{x}), \ \boldsymbol{x} \in \mathbb{R}^2$$

 \rightsquigarrow bandlimited with bandwidth M for all $b \in \mathbb{N}$ with $b \leq \frac{M}{2}$

Sample
$$f(x_j)$$
 for given $x_j \in \left[-\frac{1}{2}, \frac{1}{2}\right)^2, j = 1, \ldots, N$
reconstruct $\tilde{h}(k) \approx \hat{f}(k), k \in \mathcal{I}_M$

Setup:

- consider $|\mathcal{I}_{2M}| \leq N$
- M = 32 and b = 12
- modified polar grid of size R = 2M, T = 2R
- pointwise errors $ig| ilde{h} \hat{f} ig|$

Sampling data:

- real-world sampling $f(x_j)$
- artificial sampling of the periodization

$$\widetilde{f}(\boldsymbol{x}_j) = \sum_{\boldsymbol{k}\in\mathcal{I}_{\boldsymbol{M}}} \widehat{f}(\boldsymbol{k}) e^{2\pi \mathrm{i} \boldsymbol{k} \boldsymbol{x}_j}$$

TECHNISCHE UNVERSITÄT

Direct inverse nonequispaced fast Fourier transforms Numerical Examples

Results – pointwise errors $ig| ilde{h}-\hat{f}ig|$

real-world sampling $f({m x}_j)$

$$\begin{split} & \text{artificial sampling} \\ & \tilde{f}(\boldsymbol{x}_j) = \sum_{\boldsymbol{k} \in \mathcal{I}_{\boldsymbol{M}}} \hat{f}(\boldsymbol{k}) \, \mathrm{e}^{2\pi \mathrm{i} \boldsymbol{k} \boldsymbol{x}_j} \\ & \text{of the periodization} \end{split}$$

TECHNISCHE UNVERSITÄT IN DER KITTERAAMTSHOT EXEMPS Direct inverse nonequispaced fast Fourier transforms Numerical Examples

Results – pointwise errors $ig| ilde{h}-\hat{f}ig|$

Summary

- new direct inversion methods for $d \ge 1$, introduced for discrete problem (trigonometric polynomials)
- sampling density compensation: exact reconstruction in case $|\mathcal{I}_{2M}| \leq N$
- optimization: based on factorization $\mathop{{f B}}_{\nwarrow} \mathop{{f FD}}$ of NFFT, also works for $|{\cal I}_{{f M}}| < N$

optimized

- fast algorithms of same complexity $\mathcal{O}(|\mathcal{I}_{\boldsymbol{M}}|\log(|\mathcal{I}_{\boldsymbol{M}}|)+N)$
- extendable to continuous problem (bandlimited functions)
- error solely occurs since f cannot be sampled on whole \mathbb{R}^d
- K., Potts: Fast and direct inversion methods for the multivariate nonequispaced fast Fourier transform. Front. Appl. Math. Stat. 9 (2023).
- K., Potts: Optimal density compensation factors for the reconstruction of the Fourier transform of bandlimited functions. SampTA Paper (2023).

Summary

- new direct inversion methods for $d \ge 1$, introduced for discrete problem (trigonometric polynomials)
- sampling density compensation: exact reconstruction in case $|\mathcal{I}_{2M}| \leq N$
- optimization: based on factorization $\mathop{{f B}}_{\nwarrow} \mathop{{f FD}}$ of NFFT, also works for $|{\cal I}_{{f M}}| < N$

optimized

- fast algorithms of same complexity $\mathcal{O}(|\mathcal{I}_{\boldsymbol{M}}|\log(|\mathcal{I}_{\boldsymbol{M}}|)+N)$
- extendable to continuous problem (bandlimited functions)
- error solely occurs since f cannot be sampled on whole \mathbb{R}^d
- K., Potts: Fast and direct inversion methods for the multivariate nonequispaced fast Fourier transform. Front. Appl. Math. Stat. 9 (2023).
- K., Potts: Optimal density compensation factors for the reconstruction of the Fourier transform of bandlimited functions. SampTA Paper (2023).

Thank you for your attention!