

Direct inverse nonequispaced fast Fourier transforms

Melanie Kircheis

Chemnitz University of Technology Faculty of Mathematics

joint work with Daniel Potts

Workshop and Summer School on Applied Analysis 2024 Chemnitz, September 16—20, 2024

Motivation – discrete problem

phantom

 \rightsquigarrow given measurements \rightsquigarrow

 \hat{f}_{k} f(x_j) = \sum \boldsymbol{k} ∈ ${\cal I}_{\boldsymbol{M}}$ $\hat{f}_{\bm{k}}$ е

 $\tilde{h}_{\mathbf{k}} \approx \hat{f}_{\mathbf{k}}$

Motivation – discrete problem

phantom

 \rightsquigarrow given measurements \rightsquigarrow

$$
\hat{f}_{\mathbf{k}} \qquad f(x_j) = \sum_{\mathbf{k} \in \mathcal{I}_M} \hat{f}_{\mathbf{k}} e^{2\pi i \mathbf{k} x_j} \qquad \qquad \tilde{h}_{\mathbf{k}} \approx \hat{f}_{\mathbf{k}}
$$

 x_i equispaced \implies FFT (Fast Fourier Transform) x^j nonequispaced =⇒ inverse NFFT (Nonequispaced Fast Fourier Transform) **?**

iterated methods (multiple applications of the NFFT needed) **vs.** direct methods (realized with a single NFFT)

÷

 \bullet reconstruction: for each measurement \rightsquigarrow very efficient

Overview

O Introduction

- ² Discrete problem
- ³ Continuous problem

NFFT (Nonequispaced Fast Fourier Transform)

Fast algorithm to evaluate a trigonometric polynomial $\mathcal{O}(|\mathcal{I}_M| \log(|\mathcal{I}_M|) + N)$

$$
f(\boldsymbol{x}) = \sum_{\boldsymbol{k} \in \mathcal{I}_{\boldsymbol{M}}} \hat{f}_{\boldsymbol{k}} e^{2\pi i \boldsymbol{k} \boldsymbol{x}}
$$

[Dutt, Rokhlin 93], [Beylkin 95], [Potts, Steidl, Tasche 01]

- index set $\mathcal{I}_{\mathcal{M}}\coloneqq\mathbb{Z}^d\cap\left[-\frac{M}{2},\frac{M}{2}\right)^d$ with cardinality $|\mathcal{I}_{\mathcal{M}}|=M^d,$ $M\in2\mathbb{N},$
- Fourier coefficients $\hat{f}_k \in \mathbb{C}$, $k \in \mathcal{I}_M$,
- $\bullet \;$ nonequispaced points $\bm{x}_j \in \mathbb{T}^d \cong \left[-\frac{1}{2},\frac{1}{2}\right)^d$, $j=1,\ldots,N,$ $N \in \mathbb{N}$

NFFT (Nonequispaced Fast Fourier Transform)

Fast algorithm to evaluate a trigonometric polynomial $\mathcal{O}(|\mathcal{I}_M| \log(|\mathcal{I}_M|) + N)$

$$
f(\boldsymbol{x}) = \sum_{\boldsymbol{k} \in \mathcal{I}_{\boldsymbol{M}}} \hat{f}_{\boldsymbol{k}} e^{2\pi i \boldsymbol{k} \boldsymbol{x}}
$$

[Dutt, Rokhlin 93], [Beylkin 95], [Potts, Steidl, Tasche 01]

- index set $\mathcal{I}_{\mathcal{M}}\coloneqq\mathbb{Z}^d\cap\left[-\frac{M}{2},\frac{M}{2}\right)^d$ with cardinality $|\mathcal{I}_{\mathcal{M}}|=M^d,$ $M\in2\mathbb{N},$
- Fourier coefficients $\hat{f}_k \in \mathbb{C}$, $k \in \mathcal{I}_M$,
- $\bullet \;$ nonequispaced points $\bm{x}_j \in \mathbb{T}^d \cong \left[-\frac{1}{2},\frac{1}{2}\right)^d$, $j=1,\ldots,N,$ $N \in \mathbb{N}$

Matrix notation:

$$
f = A\hat{f}
$$
 with $A = A_{|\mathcal{I}_M|} := (e^{2\pi i k x_j})_{j=1, k \in \mathcal{I}_M}^N \in \mathbb{C}^{N \times |\mathcal{I}_M|}$

NFFT (Nonequispaced Fast Fourier Transform)

Fast algorithm to evaluate a trigonometric polynomial $\mathcal{O}(|\mathcal{I}_M| \log(|\mathcal{I}_M|) + N)$

$$
f(\boldsymbol{x}) = \sum_{\boldsymbol{k} \in \mathcal{I}_{\boldsymbol{M}}} \hat{f}_{\boldsymbol{k}} e^{2\pi i \boldsymbol{k} \boldsymbol{x}}
$$

[Dutt, Rokhlin 93], [Beylkin 95], [Potts, Steidl, Tasche 01]

- index set $\mathcal{I}_{\mathcal{M}}\coloneqq\mathbb{Z}^d\cap\left[-\frac{M}{2},\frac{M}{2}\right)^d$ with cardinality $|\mathcal{I}_{\mathcal{M}}|=M^d,$ $M\in2\mathbb{N},$
- Fourier coefficients $\hat{f}_k \in \mathbb{C}$, $k \in \mathcal{I}_M$,
- $\bullet \;$ nonequispaced points $\bm{x}_j \in \mathbb{T}^d \cong \left[-\frac{1}{2},\frac{1}{2}\right)^d$, $j=1,\ldots,N,$ $N \in \mathbb{N}$

Matrix notation:

$$
f = A\hat{f}
$$
 with $A = A_{|\mathcal{I}_M|} := (e^{2\pi i k x_j})_{j=1, k \in \mathcal{I}_M}^N \in \mathbb{C}^{N \times |\mathcal{I}_M|}$

Factorizations: $A \approx BFD$ and $A^* \approx D^*F^*B^*$

$$
\begin{array}{c}\n\nearrow \uparrow \quad \nwarrow \\
\text{banded} \quad \text{FFT diagonal}\n\end{array}
$$

(in each column of \boldsymbol{B} only $(2m+1)^d$ entries, $m\in\mathbb{N}$ given)

NFFT (Nonequispaced Fast Fourier Transform)

Fast algorithm to evaluate a trigonometric polynomial $\mathcal{O}(|\mathcal{I}_M| \log(|\mathcal{I}_M|) + N)$

$$
f(\boldsymbol{x}) = \sum_{\boldsymbol{k} \in \mathcal{I}_{\boldsymbol{M}}} \hat{f}_{\boldsymbol{k}} e^{2\pi i \boldsymbol{k} \boldsymbol{x}}
$$

[Dutt, Rokhlin 93], [Beylkin 95], [Potts, Steidl, Tasche 01]

- index set $\mathcal{I}_{\mathcal{M}}\coloneqq\mathbb{Z}^d\cap\left[-\frac{M}{2},\frac{M}{2}\right)^d$ with cardinality $|\mathcal{I}_{\mathcal{M}}|=M^d,$ $M\in2\mathbb{N},$
- Fourier coefficients $\hat{f}_k \in \mathbb{C}$, $k \in \mathcal{I}_M$,
- $\bullet \;$ nonequispaced points $\bm{x}_j \in \mathbb{T}^d \cong \left[-\frac{1}{2},\frac{1}{2}\right)^d$, $j=1,\ldots,N,$ $N \in \mathbb{N}$

Matrix notation:

$$
f = A\hat{f}
$$
 with $A = A_{|\mathcal{I}_M|} := (e^{2\pi i k x_j})_{j=1, k \in \mathcal{I}_M}^N \in \mathbb{C}^{N \times |\mathcal{I}_M|}$

Factorizations: $A \approx BFD$ and $A^* \approx D^*F^*B^*$ % banded ↑ FFT - diagonal

(in each column of \boldsymbol{B} only $(2m+1)^d$ entries, $m\in\mathbb{N}$ given)

 $\bf{Inversion problem (iNFFT):} \ \ \bf{Given:} \ \ f := (f(\bm{x}_j))_{j=1}^N \ \ \ \bf{Find:} \ \ \hat{f} := (\hat{f}_{\bm{k}})_{\bm{k} \in \mathcal{I}_{{\bm{M}}}} \ \ \ \textbf{Challenge:} \ \ \text{in general} \ \ N \neq |\mathcal{I}_{{\bm{M}}}|$

Equispaced nodes: $A^*A = NI_{|\mathcal{I}_M|}$ **Nonequispaced nodes:** $A^*A \neq NI_{|\mathcal{I}_M|}$

Basic idea

 \Rightarrow Find suitable matrix X with

$$
\boldsymbol{XA\approx I_{|\mathcal{I}_M|}},
$$

since then

 $\hat{f} \approx X A \hat{f} = X f.$

Equispaced nodes: $A^*A = NI_{|\mathcal{I}_M|}$ **Nonequispaced nodes:** $A^*A \neq NI_{|\mathcal{I}_M|}$

 \Rightarrow Find suitable matrix X with

$$
\boldsymbol{XA}\approx \boldsymbol{I}_{|\mathcal{I}_M|},
$$

since then

$$
\hat{f}\approx XA\hat{f}=Xf.
$$

Reminder – Equispaced nodes:

$$
\boldsymbol{X} = \boldsymbol{A}^* \cdot \frac{1}{N}
$$

Equispaced nodes: $A^*A = NI_{|\mathcal{I}_M|}$ **Nonequispaced nodes:** $A^*A \neq NI_{|\mathcal{I}_M|}$

 \Rightarrow Find suitable matrix X with

$$
\boldsymbol{XA}\approx \boldsymbol{I}_{|\mathcal{I}_M|},
$$

since then

$$
\hat{f}\approx XA\hat{f}=Xf.
$$

Reminder – Equispaced nodes:

$$
\boldsymbol{X} = \boldsymbol{A}^* \cdot \frac{1}{N}
$$

Simplest generalization:

$$
X=A^*W\approx D^*F^*B^*W,
$$

i. e., additional weighting $\boldsymbol{W}\coloneqq\mathrm{diag}(w_j)_{j=1}^N$ due to nonequispaced sampling

Equispaced nodes: $A^*A = NI_{|\mathcal{I}_{M}|}$ **Nonequispaced nodes:** $A^*A \neq NI_{|\mathcal{I}_{M}|}$

 \rightarrow Find suitable matrix X with

 $\boldsymbol{X}\boldsymbol{A}\approx\boldsymbol{I}_{\left|\mathcal{I}_{\boldsymbol{M}}\right|},$

since then

 $\hat{f} \approx X A \hat{f} = X f.$

Reminder – Equispaced nodes:

$$
\boldsymbol{X} = \boldsymbol{A}^* \cdot \frac{1}{N}
$$

Simplest generalization:

$$
X = A^*W \approx D^*F^*B^*W,
$$

Equispaced nodes: $A^*A = NI_{|\mathcal{I}_{M}|}$ **Nonequispaced nodes:** $A^*A \neq NI_{|\mathcal{I}_{M}|}$

Density compensation algorithm

\n- **0.** Precompute weights *W*?
\n- **1.** Compute scaled coefficients *Wf*
\n- $$
\mathcal{O}(N)
$$
\n- **2.** Adjoint NFFT\n $\mathcal{O}(|\mathcal{I}_M| \log(|\mathcal{I}_M|) + N)$
\n

Intuitive approach: Voronoi weights based on geometry

i. e., additional weighting $\boldsymbol{W}\coloneqq\mathrm{diag}(w_j)_{j=1}^N$ due to nonequispaced sampling

Exact reconstruction for trigonometric polynomials

Theorem (K., Potts 23)

Let $|\mathcal{I}_{2M}| \leq N$ and $\boldsymbol{x}_j \in \mathbb{T}^d, j = 1, \dots, N,$ be given.

Then the density compensation factors $w_i \in \mathbb{C}$ *satisfying*

$$
\sum_{j=1}^N w_j e^{2\pi i \mathbf{k} \mathbf{x}_j} = \delta_{\mathbf{0},\mathbf{k}}, \quad \mathbf{k} \in \mathcal{I}_{2M}, \qquad \qquad \mathbf{A}_{|\mathcal{I}_{2M}|}^T \mathbf{w} = \mathbf{e}_0
$$

are optimal,

i. e., for all trigonometric polynomials $f(\bm{x})=\sum_{\bm{k}\in\mathcal{I}_{\bm{M}}} \hat{f}_{\bm{k}}\,\mathrm{e}^{2\pi\mathrm{i}\bm{k}\bm{x}}$ an exact reconstruction of the Fourier *coefficients* $f_k \in \mathbb{C}$ *is given by*

$$
\hat{f}_{\boldsymbol{k}} = h_{\boldsymbol{k}}^{\mathrm{w}} := \sum_{j=1}^{N} w_j f(\boldsymbol{x}_j) e^{-2\pi i \boldsymbol{k} \boldsymbol{x}_j}, \quad \boldsymbol{k} \in \mathcal{I}_{\boldsymbol{M}}.\qquad \qquad \hat{\boldsymbol{f}} = \boldsymbol{A}^* \boldsymbol{W} \boldsymbol{f}
$$

 δ_0 _k ... Kronecker delta

Aim: exact solution to

$$
A_{|\mathcal{I}_{2M}|}^T w = e_0 \coloneqq (\delta_{0,k})_{k \in \mathcal{I}_{2M}} \tag{*}
$$

Aim: exact solution to

$$
A_{\left[\mathcal{I}_{2M}\right]}^{T}w=e_{0}:=\left(\delta_{0,k}\right)_{k\in\mathcal{I}_{2M}}\tag{*}
$$

Friendly setting ($|\mathcal{I}_{2M}| \leq N$): unique solution given by normal eqs. of 2nd kind [K., Potts 23]

$$
\boldsymbol{A}^T_{|\mathcal{I}_{2M}|}\overline{\boldsymbol{A}_{|\mathcal{I}_{2M}|}}\,\boldsymbol{v}=\boldsymbol{e}_0,\quad \overline{\boldsymbol{A}_{|\mathcal{I}_{2M}|}}\,\boldsymbol{v}=\boldsymbol{w}
$$

 \rightsquigarrow efficient computation: CG algorithm combined with NFFT $\mathcal{O}(|\mathcal{I}_{2M}| \log(|\mathcal{I}_{2M}|) + N)$

Aim: exact solution to

$$
A_{\left[\mathcal{I}_{2M}\right]}^{T}w = e_0 \coloneqq \left(\delta_{0,k}\right)_{k \in \mathcal{I}_{2M}} \tag{*}
$$

Friendly setting ($|\mathcal{I}_{2M}| \leq N$): unique solution given by normal eqs. of 2nd kind [K., Potts 23]

$$
\boldsymbol{A}^T_{|\mathcal{I}_{2M}|}\overline{\boldsymbol{A}_{|\mathcal{I}_{2M}|}}\,\boldsymbol{v}=\boldsymbol{e}_0,\quad \overline{\boldsymbol{A}_{|\mathcal{I}_{2M}|}}\,\boldsymbol{v}=\boldsymbol{w}
$$

 \rightsquigarrow efficient computation: CG algorithm combined with NFFT $\mathcal{O}(|\mathcal{I}_{2M}|\log(|\mathcal{I}_{2M}|) + N)$

Unfriendly setting ($|\mathcal{I}_{2M}| > N$ **): no theoretical guarantee!**

Aim: exact solution to

$$
A_{|\mathcal{I}_{2M}|}^T w = e_0 \coloneqq (\delta_{0,k})_{k \in \mathcal{I}_{2M}} \tag{*}
$$

Friendly setting ($|\mathcal{I}_{2M}| \leq N$): unique solution given by normal eqs. of 2nd kind [K., Potts 23]

$$
\boldsymbol{A}^T_{|\mathcal{I}_{2M}|}\overline{\boldsymbol{A}_{|\mathcal{I}_{2M}|}}\,\boldsymbol{v}=\boldsymbol{e}_0,\quad \overline{\boldsymbol{A}_{|\mathcal{I}_{2M}|}}\,\boldsymbol{v}=\boldsymbol{w}
$$

 \rightsquigarrow efficient computation: CG algorithm combined with NFFT $\mathcal{O}(|\mathcal{I}_{2M}| \log(|\mathcal{I}_{2M}|) + N)$

Unfriendly setting ($|\mathcal{I}_{2M}| > N$ **): no theoretical guarantee!** least squares solution by normal eqs. of 1st kind

$$
\overline{A_{|\mathcal{I}_{2M}|}}\,A_{|\mathcal{I}_{2M}|}^T\,w=\overline{A_{|\mathcal{I}_{2M}|}}\,e_0
$$

[K., Potts 23]: not a good approximation...

Recapitulation

So far:

 $\hat{f} \approx A^*Wf \approx P^*P^* \mathop{\mathbf{R}^*}_{\text{diagonal}} \mathop{\mathbf{F}\text{F}}^* Wf$

So far:

Interpretation perspectives:

(i) Set $g\coloneqq Wf. \qquad \Rightarrow \quad \hat{f} \approx D^*F^*B^*g \qquad \quad \rightsquigarrow \quad$ ordinary NFFT, modified coefficient vector

So far:

Interpretation perspectives:

-
-
- (i) Set $g\coloneqq Wf. \qquad \Rightarrow \quad \hat{f} \approx D^*F^*B^*g \qquad \quad \rightsquigarrow \quad$ ordinary NFFT, modified coefficient vector
- (ii) Set $\tilde{B}\coloneqq WB. \quad \Rightarrow \quad \hat{f} \approx D^*F^*\tilde{B}^*f \qquad \quad \rightsquigarrow \quad \text{modified NFFT, ordinary coefficient vector}$

So far:

Interpretation perspectives:

-
-
- (i) Set $g\coloneqq Wf. \qquad \Rightarrow \quad \hat{f} \approx D^*F^*B^*g \qquad \quad \rightsquigarrow \quad$ ordinary NFFT, modified coefficient vector
- (ii) Set $\tilde{B}\coloneqq WB. \quad \Rightarrow \quad \hat{f} \approx D^*F^*\tilde{B}^*f \qquad \quad \rightsquigarrow \quad \text{modified NFFT, ordinary coefficient vector}$

 \Rightarrow density compensation \cong optimization of the banded matrix B (only N degrees of freedom)

So far:

Interpretation perspectives:

- (i) Set $g\coloneqq Wf. \qquad \Rightarrow \quad \hat{f} \approx D^*F^*B^*g \qquad \quad \rightsquigarrow \quad$ ordinary NFFT, modified coefficient vector
- (ii) Set $\tilde{B}\coloneqq WB. \quad \Rightarrow \quad \hat{f} \approx D^*F^*\tilde{B}^*f \qquad \quad \rightsquigarrow \quad \text{modified NFFT, ordinary coefficient vector}$

 \Rightarrow density compensation \cong optimization of the banded matrix B (only N degrees of freedom)

Now: optimize each nonzero entry of the banded matrix B ($N(2m + 1)$ degrees of freedom)

So far:

Interpretation perspectives:

- (i) Set $g\coloneqq Wf. \qquad \Rightarrow \quad \hat{f} \approx D^*F^*B^*g \qquad \quad \rightsquigarrow \quad$ ordinary NFFT, modified coefficient vector
- (ii) Set $\tilde{B}\coloneqq WB. \quad \Rightarrow \quad \hat{f} \approx D^*F^*\tilde{B}^*f \qquad \quad \rightsquigarrow \quad \text{modified NFFT, ordinary coefficient vector}$

 \Rightarrow density compensation \cong optimization of the banded matrix B (only N degrees of freedom) **Now:** optimize each nonzero entry of the banded matrix B ($N(2m + 1)$ degrees of freedom)

Reminder: seek to find a matrix X with

$$
\boldsymbol{XA} \approx \boldsymbol{I}_{|\mathcal{I}_M|}
$$

such that

$$
\hat{f}\approx X f.
$$

So far:

Interpretation perspectives:

- (i) Set $g\coloneqq Wf. \qquad \Rightarrow \quad \hat{f} \approx D^*F^*B^*g \qquad \quad \rightsquigarrow \quad$ ordinary NFFT, modified coefficient vector
- (ii) Set $\tilde{B}\coloneqq WB. \quad \Rightarrow \quad \hat{f} \approx D^*F^*\tilde{B}^*f \qquad \quad \rightsquigarrow \quad \text{modified NFFT, ordinary coefficient vector}$

 \Rightarrow density compensation \cong optimization of the banded matrix B (only N degrees of freedom) **Now:** optimize each nonzero entry of the banded matrix B ($N(2m + 1)$ degrees of freedom)

Reminder: seek to find a matrix X with

$$
\boldsymbol{XA\approx I_{|\mathcal{I}_M|}}
$$

such that

$$
\hat{f} \approx X f.
$$

Aim: $X = D^*F^*\tilde{B}^*$ [K., Potts 23]

- \rightarrow modification of matrix \bm{B}
- \rightarrow preserve band structure and arithmetic complexity

Precomputational step – Optimization procedure in the state of $[K, Potts 23]$ Define $\tilde{h} := D^*F^*\tilde{B}^*f.$

$$
\begin{array}{ll} \Rightarrow & \displaystyle \|\tilde{{\bm{h}}} - \hat{{\bm{f}}}\|_2 = \|{\bm{D}}^*{\bm{F}}^*\tilde{{\bm{B}}}^*{\bm{f}} - \hat{{\bm{f}}}\|_2 = \|{\bm{D}}^*{\bm{F}}^*\tilde{{\bm{B}}}^*{\bm{A}}\hat{{\bm{f}}} - \hat{{\bm{f}}}\|_2 \\ & \leq \left\|{\bm{D}}^*{\bm{F}}^*\tilde{{\bm{B}}}^*{\bm{A}} - {\bm{I}}_{|{\mathcal{I}}_{{\bm{M}}}|}\right\|_{\rm F} \|\hat{{\bm{f}}}\|_2 \end{array}
$$

Precomputational step – Optimization procedure $[K, Pots 23]$ Define $\tilde{h} := D^*F^*\tilde{B}^*f.$

$$
\begin{array}{ll} \Rightarrow & \displaystyle \|\tilde{{\bm{h}}} - \hat{{\bm{f}}}\|_2 = \|{\bm{D}}^*{\bm{F}}^*\tilde{{\bm{B}}}^*{\bm{f}} - \hat{{\bm{f}}}\|_2 = \|{\bm{D}}^*{\bm{F}}^*\tilde{{\bm{B}}}^*{\bm{A}}\hat{{\bm{f}}} - \hat{{\bm{f}}}\|_2 \\ & \leq \left\|{\bm{D}}^*{\bm{F}}^*\tilde{{\bm{B}}}^*{\bm{A}} - {\bm{I}}_{|{\mathcal{I}}_{{\bm{M}}}|}\right\|_{\rm F} \|\hat{{\bm{f}}}\|_2 \end{array}
$$

Optimization problem:

$$
\underset{\tilde{B} \text{ banded}}{\text{Minimize}} \ \left\| \boldsymbol{D}^* \boldsymbol{F}^* \tilde{\boldsymbol{B}}^* \boldsymbol{A} - \boldsymbol{I}_{|\mathcal{I}_M|} \right\|_{\text{F}}^2 = \left\| \boldsymbol{A}^* \tilde{\boldsymbol{B}} \boldsymbol{F} \boldsymbol{D} - \boldsymbol{I}_{|\mathcal{I}_M|} \right\|_{\text{F}}^2
$$

Precomputational step – Optimization procedure $[K, Pots 23]$ Define $\tilde{h} := D^*F^*\tilde{B}^*f.$

$$
\begin{array}{ll} \Rightarrow & \displaystyle \|\tilde{{\bm{h}}} - \hat{{\bm{f}}}\|_2 = \|{\bm{D}}^*{\bm{F}}^*\tilde{{\bm{B}}}^*{\bm{f}} - \hat{{\bm{f}}}\|_2 = \|{\bm{D}}^*{\bm{F}}^*\tilde{{\bm{B}}}^*{\bm{A}}\hat{{\bm{f}}} - \hat{{\bm{f}}}\|_2 \\ & \leq \left\|{\bm{D}}^*{\bm{F}}^*\tilde{{\bm{B}}}^*{\bm{A}} - {\bm{I}}_{|{\mathcal{I}}_{{\bm{M}}}|}\right\|_{\rm F} \|\hat{{\bm{f}}}\|_2 \end{array}
$$

Optimization problem:

$$
\underset{\tilde{B} \text{ banded}}{\text{Minimize}} \ \left\| \boldsymbol{D}^* \boldsymbol{F}^* \tilde{\boldsymbol{B}}^* \boldsymbol{A} - \boldsymbol{I}_{|\mathcal{I}_M|} \right\|_{\text{F}}^2 = \left\| \boldsymbol{A}^* \tilde{\boldsymbol{B}} \boldsymbol{F} \boldsymbol{D} - \boldsymbol{I}_{|\mathcal{I}_M|} \right\|_{\text{F}}^2
$$

If $\bm{A}^*\tilde{\bm{B}}$ is a pseudoinverse of $\bm{F}\bm{D}$ then $\bm{A}^*\tilde{\bm{B}}\bm{F}\bm{D}\approx\bm{I}_{|\mathcal{I}_{\bm{M}}|}.$

Precomputational step – Optimization procedure $[K, Pots 23]$ Define $\tilde{h} := D^*F^*\tilde{B}^*f.$

$$
\begin{array}{ll} \Rightarrow & \displaystyle \|\tilde{{\bm{h}}} - \hat{{\bm{f}}}\|_2 = \|{\bm{D}}^*{\bm{F}}^*\tilde{{\bm{B}}}^*{\bm{f}} - \hat{{\bm{f}}}\|_2 = \|{\bm{D}}^*{\bm{F}}^*\tilde{{\bm{B}}}^*{\bm{A}}\hat{{\bm{f}}} - \hat{{\bm{f}}}\|_2 \\ & \leq \Big\|{\bm{D}}^*{\bm{F}}^*\tilde{{\bm{B}}}^*{\bm{A}} - {\bm{I}}_{|{\mathcal{I}}_{{\bm{M}}}|}\Big\|_{\rm F} \|\hat{{\bm{f}}}\|_2 \end{array}
$$

Optimization problem:

$$
\underset{\tilde{B} \text{ banded}}{\text{Minimize}} \ \left\| \boldsymbol{D}^* \boldsymbol{F}^* \tilde{B}^* \boldsymbol{A} - \boldsymbol{I}_{|\mathcal{I}_M|} \right\|_{\text{F}}^2 = \left\| \boldsymbol{A}^* \tilde{B} \boldsymbol{F} \boldsymbol{D} - \boldsymbol{I}_{|\mathcal{I}_M|} \right\|_{\text{F}}^2
$$

If $\bm{A}^*\tilde{\bm{B}}$ is a pseudoinverse of $\bm{F}\bm{D}$ then $\bm{A}^*\tilde{\bm{B}}\bm{F}\bm{D}\approx\bm{I}_{|\mathcal{I}_{\bm{M}}|}.$ Since $F^*F=|{\cal I}_{M_{\bm \sigma}}| \text{ } I_{|{\cal I}_{\bm M}|},$ a pseudoinverse is given by $\frac{1}{|{\cal I}_{M_{\bm \sigma}}|}D^{-1}F^*.$

Precomputational step – Optimization procedure $[K, Pots 23]$ Define $\tilde{h} := D^*F^*\tilde{B}^*f.$

$$
\begin{array}{ll} \Rightarrow & \displaystyle \|\tilde{{\bm{h}}} - \hat{{\bm{f}}}\|_2 = \|{\bm{D}}^*{\bm{F}}^*\tilde{{\bm{B}}}^*{\bm{f}} - \hat{{\bm{f}}}\|_2 = \|{\bm{D}}^*{\bm{F}}^*\tilde{{\bm{B}}}^*{\bm{A}}\hat{{\bm{f}}} - \hat{{\bm{f}}}\|_2 \\ & \leq \left\|{\bm{D}}^*{\bm{F}}^*\tilde{{\bm{B}}}^*{\bm{A}} - {\bm{I}}_{|{\mathcal{I}}_{{\bm{M}}}|}\right\|_{\rm F} \|\hat{{\bm{f}}}\|_2 \end{array}
$$

Optimization problem:

$$
\underset{\tilde{B} \text{ banded}}{\text{Minimize}} \ \left\| \boldsymbol{D}^* \boldsymbol{F}^* \tilde{\boldsymbol{B}}^* \boldsymbol{A} - \boldsymbol{I}_{|\mathcal{I}_M|} \right\|_{\text{F}}^2 = \left\| \boldsymbol{A}^* \tilde{\boldsymbol{B}} \boldsymbol{F} \boldsymbol{D} - \boldsymbol{I}_{|\mathcal{I}_M|} \right\|_{\text{F}}^2
$$

If $\bm{A}^*\tilde{\bm{B}}$ is a pseudoinverse of $\bm{F}\bm{D}$ then $\bm{A}^*\tilde{\bm{B}}\bm{F}\bm{D}\approx\bm{I}_{|\mathcal{I}_{\bm{M}}|}.$ Since $F^*F=|{\cal I}_{M_{\bm \sigma}}| \text{ } I_{|{\cal I}_{\bm M}|},$ a pseudoinverse is given by $\frac{1}{|{\cal I}_{M_{\bm \sigma}}|}D^{-1}F^*.$

$$
\underset{\tilde{B} \text{ banded}}{\text{Minimize}} \ \left\| \boldsymbol{A}^* \tilde{B} - \tfrac{1}{|\mathcal{I}_{\boldsymbol{M}\boldsymbol{\sigma}}|} \boldsymbol{D}^{-1} \boldsymbol{F}^* \right\|_{\text{F}}^2 = \sum_{\boldsymbol{\ell} \in \mathcal{I}_{\boldsymbol{M}\boldsymbol{\sigma}}} \left\| \boldsymbol{A}_{\boldsymbol{\ell}}^* \tilde{b}_{\boldsymbol{\ell}} - \tfrac{1}{|\mathcal{I}_{\boldsymbol{M}\boldsymbol{\sigma}}|} \boldsymbol{D}^{-1} \boldsymbol{f}_{\boldsymbol{\ell}} \right\|_2^2
$$

Precomputational step – Optimization procedure $[K, Pots 23]$ Define $\tilde{h} := D^*F^*\tilde{B}^*f.$

$$
\begin{aligned}\Rightarrow \quad & \|\tilde{\boldsymbol{h}}-\hat{\boldsymbol{f}}\|_2 = \|\boldsymbol{D}^*\boldsymbol{F}^*\tilde{\boldsymbol{B}}^*\boldsymbol{f}-\hat{\boldsymbol{f}}\|_2 = \|\boldsymbol{D}^*\boldsymbol{F}^*\tilde{\boldsymbol{B}}^*\boldsymbol{A}\hat{\boldsymbol{f}}-\hat{\boldsymbol{f}}\|_2 \\ & \leq \left\|\boldsymbol{D}^*\boldsymbol{F}^*\tilde{\boldsymbol{B}}^*\boldsymbol{A}-\boldsymbol{I}_{|\mathcal{I}_\mathcal{M}|}\right\|_{\mathrm{F}}\|\hat{\boldsymbol{f}}\|_2\n\end{aligned}
$$

Optimization problem:

$$
\underset{\tilde{B} \text{ banded}}{\text{Minimize}} \ \left\| \boldsymbol{D}^* \boldsymbol{F}^* \tilde{\boldsymbol{B}}^* \boldsymbol{A} - \boldsymbol{I}_{|\mathcal{I}_M|} \right\|_{\text{F}}^2 = \left\| \boldsymbol{A}^* \tilde{\boldsymbol{B}} \boldsymbol{F} \boldsymbol{D} - \boldsymbol{I}_{|\mathcal{I}_M|} \right\|_{\text{F}}^2
$$

If $\bm{A}^*\tilde{\bm{B}}$ is a pseudoinverse of $\bm{F}\bm{D}$ then $\bm{A}^*\tilde{\bm{B}}\bm{F}\bm{D}\approx\bm{I}_{|\mathcal{I}_{\bm{M}}|}.$ Since $F^*F=|{\cal I}_{M_{\bm \sigma}}| \text{ } I_{|{\cal I}_{\bm M}|},$ a pseudoinverse is given by $\frac{1}{|{\cal I}_{M_{\bm \sigma}}|}D^{-1}F^*.$

$$
\underset{\tilde{B} \text{ banded}}{\text{Minimize}} \ \left\| \boldsymbol{A}^* \tilde{B} - \tfrac{1}{|\mathcal{I}_{M\sigma}|} \boldsymbol{D}^{-1} \boldsymbol{F}^* \right\|_{\mathrm{F}}^2 = \sum_{\boldsymbol{\ell} \in \mathcal{I}_{M\sigma}} \left\| \boldsymbol{A}_{\boldsymbol{\ell}}^* \tilde{b}_{\boldsymbol{\ell}} - \tfrac{1}{|\mathcal{I}_{M\sigma}|} \boldsymbol{D}^{-1} \boldsymbol{f}_{\boldsymbol{\ell}} \right\|_2^2
$$

 $\rightsquigarrow \mathcal{O}(|\mathcal{I}_M|)$

Discrete example – Shepp-Logan phantom

 \bullet phantom data = Fourier coefficients $\hat{f} := (\hat{f}_{k})_{k \in \mathcal{I}_M}$ of a trigonometric polynomial

 $\bm{2}$ compute the evaluations $f(\bm{x}_j) = -\sum \ \hat{f}_{\bm{k}} \, \mathrm{e}^{2\pi \mathrm{i} \bm{k} \bm{x}_j}$ by means of NFFT $k \in \mathcal{I}$

a reconstruct $\tilde{h}_k \approx \hat{f}_k, k \in \mathcal{I}_M$

Discrete example – Shepp-Logan phantom

1 phantom data = Fourier coefficients $\hat{f} := (\hat{f}_k)_{k \in \mathcal{I}_M}$ of a trigonometric polynomial

\n- Compute the evaluations
$$
f(x_j) = \sum_{k \in \mathcal{I}_M} \hat{f}_k e^{2\pi i k x_j}
$$
 by means of NFFT
\n- reconstruct $\tilde{h}_k \approx \hat{f}_k$, $k \in \mathcal{I}_M$
\n

Friendly setting ($|\mathcal{I}_{2M}| \leq N$):

- linogram grid of size $R = 2M, T = 2R$
- phantom size $M \times M$ with $M = 2^c, c = 3, \ldots, 10$
- relative errors

$$
e_2 \coloneqq \frac{\|\tilde{\boldsymbol{h}}-\hat{\boldsymbol{f}}\|_2}{\|\hat{\boldsymbol{f}}\|_2}
$$

Discrete example – Shepp-Logan phantom

1 phantom data = Fourier coefficients $\hat{f} := (\hat{f}_k)_{k \in \mathcal{I}_M}$ of a trigonometric polynomial

 $\bm{2}$ compute the evaluations $f(\bm{x}_j) = -\sum \ \hat{f}_{\bm{k}} \, \mathrm{e}^{2\pi \mathrm{i} \bm{k} \bm{x}_j}$ by means of NFFT $k \in \mathcal{I}$ **8** reconstruct $\tilde{h}_k \approx \hat{f}_k$, $k \in \mathcal{I}_M$

Friendly setting ($|\mathcal{I}_{2M}| \leq N$):

- linogram grid of size $R = 2M$, $T = 2R$
- phantom size $M \times M$ with $M = 2^c, c = 3, \ldots, 10$
- relative errors

$$
e_2 \coloneqq \frac{\|\tilde{\boldsymbol{h}}-\hat{\boldsymbol{f}}\|_2}{\|\hat{\boldsymbol{f}}\|_2}
$$

Unfriendly setting ($|\mathcal{I}_{2M}| > N$):

- linogram grid of size $R = M, T = 2R$
- phantom of size $M = 1024$
- \rightarrow compare presented computation schemes
	- Voronoi weights
	- new density compensation factors
	- optimization approach

[Direct inverse nonequispaced fast Fourier transforms](#page-0-0) 2群5 **TECHNISCHE UNIVERSITÄ**
In dir Gethiomarische Europe
CHEMNITZ [Numerical Examples](#page-35-0)

Friendly setting $(|\mathcal{I}_{2M}| < N)$

Unfriendly setting $(|\mathcal{I}_{2M}| > N)$

Analogous problem for bandlimited functions

Application: MRI (Magnetic Resonance Imaging) [Rosenfeld 98], [Greengard, Lee, Inati 06], [Eggers, K., Potts 22]

no longer discrete (trigonometric polynomials) but continuous

(bandlimited functions)

Analogous problem for bandlimited functions

Application: MRI (Magnetic Resonance Imaging) [Rosenfeld 98], [Greengard, Lee, Inati 06], [Eggers, K., Potts 22]

no longer discrete

discrete continuous
(trigonometric polynomials) but (bandlimited func (bandlimited functions)

(Continuous) Fourier transform:

$$
\hat{f}(\boldsymbol{v}) \coloneqq \int\limits_{\mathbb{R}^d} f(\boldsymbol{x}) \, \mathrm{e}^{-2\pi \mathrm{i} \boldsymbol{v} \boldsymbol{x}} \, \mathrm{d} \boldsymbol{x}, \quad \boldsymbol{v} \in \mathbb{R}^d
$$

 \rightarrow bandlimited functions with maximum bandwidth M $\left[-\frac{M}{2},\frac{M}{2}\right)^d$

$$
\implies f(\boldsymbol{x}) = \int\limits_{\mathbb{R}^d} \hat{f}(\boldsymbol{v}) e^{2\pi i \boldsymbol{v} \boldsymbol{x}} d\boldsymbol{v} = \int\limits_{\left[-\frac{M}{2},\frac{M}{2}\right)^d} \hat{f}(\boldsymbol{v}) e^{2\pi i \boldsymbol{v} \boldsymbol{x}_j} d\boldsymbol{v}, \quad \boldsymbol{x} \in \mathbb{R}^d
$$

Analogous problem for bandlimited functions

Application: MRI (Magnetic Resonance Imaging) [Rosenfeld 98], [Greengard, Lee, Inati 06], [Eggers, K., Potts 22]

no longer discrete

discrete continuous
(trigonometric polynomials) but (bandlimited func (bandlimited functions)

(Continuous) Fourier transform:

$$
\hat{f}(\boldsymbol{v}) \coloneqq \int\limits_{\mathbb{R}^d} f(\boldsymbol{x}) \, \mathrm{e}^{-2\pi \mathrm{i} \boldsymbol{v} \boldsymbol{x}} \, \mathrm{d} \boldsymbol{x}, \quad \boldsymbol{v} \in \mathbb{R}^d
$$

 \rightarrow bandlimited functions with maximum bandwidth M $\left[-\frac{M}{2},\frac{M}{2}\right)^d$

$$
\implies f(\boldsymbol{x}) = \int_{\mathbb{R}^d} \hat{f}(\boldsymbol{v}) e^{2\pi i \boldsymbol{v} \boldsymbol{x}} d\boldsymbol{v} = \int_{\left[-\frac{M}{2}, \frac{M}{2}\right)^d} \hat{f}(\boldsymbol{v}) e^{2\pi i \boldsymbol{v} \boldsymbol{x}_j} d\boldsymbol{v}, \quad \boldsymbol{x} \in \mathbb{R}^d
$$

Reconstruct: evaluations $\hat{f}(k) \in \mathbb{C}$, $k \in \mathcal{I}_M$ **Given:** measurements $f(x_i)$, $i = 1, ..., N$

Analogous problem for bandlimited functions

Application: MRI (Magnetic Resonance Imaging) [Rosenfeld 98], [Greengard, Lee, Inati 06], [Eggers, K., Potts 22]

no longer discrete

discrete continuous
(trigonometric polynomials) but (bandlimited func (bandlimited functions)

(Continuous) Fourier transform:

$$
\hat{f}(\boldsymbol{v}) \coloneqq \int\limits_{\mathbb{R}^d} f(\boldsymbol{x}) \, \mathrm{e}^{-2\pi \mathrm{i} \boldsymbol{v} \boldsymbol{x}} \, \mathrm{d} \boldsymbol{x}, \quad \boldsymbol{v} \in \mathbb{R}^d
$$

 \rightarrow bandlimited functions with maximum bandwidth M $\left[-\frac{M}{2},\frac{M}{2}\right)^d$

$$
\implies f(\boldsymbol{x}) = \int_{\mathbb{R}^d} \hat{f}(\boldsymbol{v}) e^{2\pi i \boldsymbol{v} \boldsymbol{x}} d\boldsymbol{v} = \int_{\left[-\frac{M}{2}, \frac{M}{2}\right)^d} \hat{f}(\boldsymbol{v}) e^{2\pi i \boldsymbol{v} \boldsymbol{x}_j} d\boldsymbol{v}, \quad \boldsymbol{x} \in \mathbb{R}^d
$$

Reconstruct: evaluations $\hat{f}(\mathbf{k}) \in \mathbb{C}$, $\mathbf{k} \in \mathcal{I}_M$ **Given:** measurements $f(x_i)$, $i = 1, ..., N$

Now: extend previous methods

Reconsideration as trigonometric polynomials

Consider 1-periodization

$$
\tilde{f}({\bm{x}}) \coloneqq \sum_{{\bm{r}}\in\mathbb{Z}^d} f({\bm{x}}+{\bm{r}})\in L_2(\mathbb{T}^d)
$$

Reconsideration as trigonometric polynomials

Consider 1-periodization

$$
\tilde{f}({\bm{x}}) \coloneqq \sum_{{\bm{r}} \in \mathbb{Z}^d} f({\bm{x}} + {\bm{r}}) \in L_2(\mathbb{T}^d)
$$

⇒ uniquely representable by absolute convergent Fourier series [Plonka, Potts, Steidl, Tasche 18]

$$
\tilde{f}(\boldsymbol{x}) \coloneqq \sum_{\boldsymbol{k} \in \mathbb{Z}^d} c_{\boldsymbol{k}}(\tilde{f}) e^{2\pi i \boldsymbol{k} \boldsymbol{x}},
$$

with Fourier coefficients

$$
c_{\mathbf{k}}(\tilde{f}) = \int\limits_{\mathbb{T}^d} \tilde{f}(\mathbf{x}) e^{-2\pi i \mathbf{k} \mathbf{x}} \, \mathrm{d}\mathbf{x} = \int\limits_{\mathbb{R}^d} f(\mathbf{x}) e^{-2\pi i \mathbf{k} \mathbf{x}} \, \mathrm{d}\mathbf{x} = \hat{f}(\mathbf{k}), \quad \mathbf{k} \in \mathbb{Z}^d
$$

Reconsideration as trigonometric polynomials

Consider 1-periodization

$$
\tilde{f}({\bm{x}}) \coloneqq \sum_{{\bm{r}} \in \mathbb{Z}^d} f({\bm{x}} + {\bm{r}}) \in L_2(\mathbb{T}^d)
$$

⇒ uniquely representable by absolute convergent Fourier series [Plonka, Potts, Steidl, Tasche 18]

$$
\tilde{f}(\boldsymbol{x}) \coloneqq \sum_{\boldsymbol{k} \in \mathbb{Z}^d} c_{\boldsymbol{k}}(\tilde{f}) e^{2\pi i \boldsymbol{k} \boldsymbol{x}},
$$

with Fourier coefficients

$$
c_{\mathbf{k}}(\tilde{f}) = \int\limits_{\mathbb{T}^d} \tilde{f}(\boldsymbol{x}) \, \mathrm{e}^{-2\pi \mathrm{i} \mathbf{k} \boldsymbol{x}} \, \mathrm{d} \boldsymbol{x} = \int\limits_{\mathbb{R}^d} f(\boldsymbol{x}) \, \mathrm{e}^{-2\pi \mathrm{i} \mathbf{k} \boldsymbol{x}} \, \mathrm{d} \boldsymbol{x} = \hat{f}(\boldsymbol{k}), \quad \boldsymbol{k} \in \mathbb{Z}^d
$$

 \rightarrow f bandlimited with bandwidth M

 $\left(-\frac{M}{2},\frac{M}{2}\right)^d \quad \implies \quad \hat{f}(\bm{k})=0, \bm{k} \in \mathbb{Z}^d \setminus \mathcal{I}_{\bm{M}}$ \implies \tilde{f} trigonometric polynomial of degree M

Reconsideration as trigonometric polynomials

Consider 1-periodization

$$
\tilde{f}({\bm{x}}) \coloneqq \sum_{{\bm{r}}\in\mathbb{Z}^d} f({\bm{x}}+{\bm{r}})\in L_2(\mathbb{T}^d)
$$

⇒ uniquely representable by absolute convergent Fourier series [Plonka, Potts, Steidl, Tasche 18]

$$
\tilde{f}(\boldsymbol{x}) \coloneqq \sum_{\boldsymbol{k} \in \mathbb{Z}^d} c_{\boldsymbol{k}}(\tilde{f}) e^{2\pi i \boldsymbol{k} \boldsymbol{x}},
$$

with Fourier coefficients

$$
c_{\mathbf{k}}(\tilde{f}) = \int\limits_{\mathbb{T}^d} \tilde{f}(\mathbf{x}) e^{-2\pi i \mathbf{k} \mathbf{x}} \, \mathrm{d}\mathbf{x} = \int\limits_{\mathbb{R}^d} f(\mathbf{x}) e^{-2\pi i \mathbf{k} \mathbf{x}} \, \mathrm{d}\mathbf{x} = \hat{f}(\mathbf{k}), \quad \mathbf{k} \in \mathbb{Z}^d
$$

 \rightarrow f bandlimited with bandwidth M

 $\left(-\frac{M}{2},\frac{M}{2}\right)^d \quad \implies \quad \hat{f}(\bm{k})=0, \bm{k} \in \mathbb{Z}^d \setminus \mathcal{I}_{\bm{M}}$ \implies \tilde{f} trigonometric polynomial of degree M

 \Rightarrow density compensation method:

$$
\hat{f}(\mathbf{k}) = c_{\mathbf{k}}(\tilde{f}) = \sum_{j=1}^{N} w_j \, \tilde{f}(\mathbf{x}_j) e^{-2\pi i \mathbf{k} \mathbf{x}_j}, \quad \mathbf{k} \in \mathcal{I}_{\mathbf{M}} \qquad \mathbf{\hat{f}} = \mathbf{A}^* \mathbf{W} \tilde{f}
$$

In practice: only hypothetical case !

```
periodization \tilde{f} cannot be sampled \iff f cannot be sampled on whole \mathbb{R}^d
```
Sampling: limited coverage of space

 $\rightsquigarrow f$ only known on a bounded domain, w.l.o.g. for $\bm{x} \in \left[-\frac{1}{2},\frac{1}{2}\right)^d$

In practice: only hypothetical case !

```
periodization \tilde{f} cannot be sampled \iff f cannot be sampled on whole \mathbb{R}^d
```
Sampling: limited coverage of space

 $\rightsquigarrow f$ only known on a bounded domain, w.l.o.g. for $\bm{x} \in \left[-\frac{1}{2},\frac{1}{2}\right)^d$

Consequences: need to assume that f is small outside $\left[-\frac{1}{2},\frac{1}{2}\right)^d$, such that $\tilde{f}(\bm{x}_j)\approx f(\bm{x}_j)$ \rightarrow have to deal with the approximation

$$
\hat{f}(\mathbf{k}) \approx \sum_{j=1}^{N} w_j f(\mathbf{x}_j) e^{-2\pi i \mathbf{k} \mathbf{x}_j}, \quad \mathbf{k} \in \mathcal{I}_M
$$

$$
\implies \qquad \hat{f} = A^* \mathbf{W} \tilde{f} \approx A^* \mathbf{W} f
$$

In practice: only hypothetical case !

```
periodization \tilde{f} cannot be sampled \iff f cannot be sampled on whole \mathbb{R}^d
```
Sampling: limited coverage of space

 $\rightsquigarrow f$ only known on a bounded domain, w.l.o.g. for $\bm{x} \in \left[-\frac{1}{2},\frac{1}{2}\right)^d$

Consequences: need to assume that f is small outside $\left[-\frac{1}{2},\frac{1}{2}\right)^d$, such that $\tilde{f}(\bm{x}_j)\approx f(\bm{x}_j)$ \rightarrow have to deal with the approximation

$$
\hat{f}(\mathbf{k}) \approx \sum_{j=1}^{N} w_j f(\mathbf{x}_j) e^{-2\pi i \mathbf{k} \mathbf{x}_j}, \quad \mathbf{k} \in \mathcal{I}_M
$$

$$
\implies \qquad \hat{f} = A^* \mathbf{W} \tilde{f} \approx A^* \mathbf{W} f
$$

Main cause of error: f is not known on whole \mathbb{R}^d

In practice: only hypothetical case !

```
periodization \tilde{f} cannot be sampled \iff f cannot be sampled on whole \mathbb{R}^d
```
Sampling: limited coverage of space

 $\rightsquigarrow f$ only known on a bounded domain, w.l.o.g. for $\bm{x} \in \left[-\frac{1}{2},\frac{1}{2}\right)^d$

Consequences: need to assume that f is small outside $\left[-\frac{1}{2},\frac{1}{2}\right)^d$, such that $\tilde{f}(\bm{x}_j)\approx f(\bm{x}_j)$ \rightarrow have to deal with the approximation

$$
\hat{f}(\mathbf{k}) \approx \sum_{j=1}^{N} w_j f(\mathbf{x}_j) e^{-2\pi i \mathbf{k} \mathbf{x}_j}, \quad \mathbf{k} \in \mathcal{I}_M
$$

$$
\implies \qquad \hat{f} = A^* \mathbf{W} \tilde{f} \approx A^* \mathbf{W} f
$$

Main cause of error: f is not known on whole \mathbb{R}^d

 \rightarrow analogously also optimization method applicable

Continuous example – tensorized triangular pulse function

D specify compactly supported $\hat{f}(v) = g(v_1) \cdot g(v_2)$, with triangular pulse $g(v) := (1 - \left| \frac{v}{b} \right|) \cdot \chi_{[-b,b]}(v)$ **2** compute inverse Fourier transform

$$
f(\boldsymbol{x}) = \int_{\mathbb{R}^2} \hat{f}(\boldsymbol{v}) e^{2\pi i \boldsymbol{v} \cdot \boldsymbol{x}} d\boldsymbol{v} = b^2 \operatorname{sinc}^2(b\pi \boldsymbol{x}), \ \boldsymbol{x} \in \mathbb{R}^2
$$

 \rightsquigarrow bandlimited with bandwidth \boldsymbol{M} for all $b\in\mathbb{N}$ with $b\leq\frac{M}{2}$

 $\textbf{3}$ sample $f(\boldsymbol{x}_j)$ for given $\boldsymbol{x}_j \in \left[-\frac{1}{2},\frac{1}{2}\right)^2, j=1,\ldots,N$ 4 reconstruct $\tilde{h}(\mathbf{k}) \approx \hat{f}(\mathbf{k}), \mathbf{k} \in \mathcal{I}_M$

Continuous example – tensorized triangular pulse function

D specify compactly supported $\hat{f}(v) = g(v_1) \cdot g(v_2)$, with triangular pulse $g(v) := (1 - \left| \frac{v}{b} \right|) \cdot \chi_{[-b,b]}(v)$ **2** compute inverse Fourier transform

$$
f(\boldsymbol{x}) = \int_{\mathbb{R}^2} \hat{f}(\boldsymbol{v}) e^{2\pi i \boldsymbol{v} \cdot \boldsymbol{x}} d\boldsymbol{v} = b^2 \operatorname{sinc}^2(b\pi \boldsymbol{x}), \ \boldsymbol{x} \in \mathbb{R}^2
$$

 \rightsquigarrow bandlimited with bandwidth \boldsymbol{M} for all $b\in\mathbb{N}$ with $b\leq\frac{M}{2}$

\n- **6** sample
$$
f(x_j)
$$
 for given $x_j \in \left[-\frac{1}{2},\frac{1}{2}\right)^2$, $j = 1, \ldots, N$
\n- **6** reconstruct $\tilde{h}(k) \approx \hat{f}(k)$, $k \in \mathcal{I}_M$
\n

Setup:

- consider $|\mathcal{I}_{2M}| < N$
- $M = 32$ and $b = 12$
- modified polar grid of size $R = 2M$, $T = 2R$
- $\bullet \,$ pointwise errors $\big| \tilde{h} \hat{f} \big|$

Continuous example – tensorized triangular pulse function

D specify compactly supported $\hat{f}(v) = g(v_1) \cdot g(v_2)$, with triangular pulse $g(v) := (1 - \left| \frac{v}{b} \right|) \cdot \chi_{[-b,b]}(v)$ **2** compute inverse Fourier transform

$$
f(\boldsymbol{x}) = \int_{\mathbb{R}^2} \hat{f}(\boldsymbol{v}) e^{2\pi i \boldsymbol{v} \cdot \boldsymbol{x}} d\boldsymbol{v} = b^2 \operatorname{sinc}^2(b\pi \boldsymbol{x}), \ \boldsymbol{x} \in \mathbb{R}^2
$$

 \rightsquigarrow bandlimited with bandwidth \boldsymbol{M} for all $b\in\mathbb{N}$ with $b\leq\frac{M}{2}$

\n- **6** sample
$$
f(x_j)
$$
 for given $x_j \in \left[-\frac{1}{2},\frac{1}{2}\right)^2$, $j = 1, \ldots, N$
\n- **6** reconstruct $\tilde{h}(k) \approx \hat{f}(k)$, $k \in \mathcal{I}_M$
\n

Setup:

- consider $|\mathcal{I}_{2M}| < N$
- $M = 32$ and $b = 12$
- modified polar grid of size $R = 2M$, $T = 2R$
- $\bullet \,$ pointwise errors $\big| \tilde{h} \hat{f} \big|$

Sampling data:

- real-world sampling $f(\boldsymbol{x}_i)$
- artificial sampling of the periodization

$$
\tilde{f}(\boldsymbol{x}_j) = \sum_{\boldsymbol{k} \in \mathcal{I}_{\boldsymbol{M}}} \hat{f}(\boldsymbol{k}) e^{2\pi i \boldsymbol{k} \boldsymbol{x}_j}
$$

Results – pointwise errors $\bigl|\tilde{h}-\hat{f}\bigr|$

real-world sampling $f(\boldsymbol{x}_i)$

2群5 TECHNISCHE UNIVERSITÄ

artificial sampling $\tilde{f}(\boldsymbol{x}_j) = -\sum_i \; \hat{f}(\boldsymbol{k}) \, \mathrm{e}^{2\pi \mathrm{i} \boldsymbol{k} \boldsymbol{x}_j}$ $k\in\mathcal{I}_M$ of the periodization

2群5 TECHNISCHE UNIVERSITÄT [Direct inverse nonequispaced fast Fourier transforms](#page-0-0) [Numerical Examples](#page-52-0)

Results – pointwise errors $\bigl|\tilde{h}-\hat{f}\bigr|$

Summary

- new direct inversion methods for $d \geq 1$, introduced for discrete problem (trigonometric polynomials)
- sampling density compensation: exact reconstruction in case $|\mathcal{I}_{2M}| \leq N$
- $\bullet \,$ optimization: based on factorization $\, {\bm B} \, {\bm F} {\bm D}$ of NFFT, also works for $|{\cal I}_{{\bm M}}| < N$ $\breve{}$

optimized

- fast algorithms of same complexity $\mathcal{O}(|\mathcal{I}_M| \log(|\mathcal{I}_M|) + N)$
- extendable to continuous problem (bandlimited functions)
- $\bullet\,$ error solely occurs since f cannot be sampled on whole \mathbb{R}^d
- **K., Potts: Fast and direct inversion methods for the multivariate nonequispaced fast Fourier transform**. Front. Appl. Math. Stat. 9 (2023).
- **K., Potts: Optimal density compensation factors for the reconstruction of the Fourier transform of bandlimited functions**. SampTA Paper (2023).

Summary

- new direct inversion methods for $d \geq 1$, introduced for discrete problem (trigonometric polynomials)
- sampling density compensation: exact reconstruction in case $|\mathcal{I}_{2M}| \leq N$
- $\bullet \,$ optimization: based on factorization $\, {\bm B} \, {\bm F} {\bm D}$ of NFFT, also works for $|{\cal I}_{{\bm M}}| < N$ $\breve{}$

optimized

- fast algorithms of same complexity $\mathcal{O}(|\mathcal{I}_M| \log(|\mathcal{I}_M|) + N)$
- extendable to continuous problem (bandlimited functions)
- $\bullet\,$ error solely occurs since f cannot be sampled on whole \mathbb{R}^d
- **K., Potts: Fast and direct inversion methods for the multivariate nonequispaced fast Fourier transform**. Front. Appl. Math. Stat. 9 (2023).
- **K., Potts: Optimal density compensation factors for the reconstruction of the Fourier transform of bandlimited functions**. SampTA Paper (2023).

Thank you for your attention!