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Optimal density compensation factors for the reconstruction of the Fourier transform of bandlimited functions
Motivation

Motivation – discrete problem

phantom

⇝ given measurements ⇝

reconstruction

f̂k f(xj) =
∑

k∈IM

f̂k e2πikxj h̃k ≈ f̂k

xj equispaced =⇒ FFT (Fast Fourier Transform)

xj nonequispaced =⇒ inverse NFFT (Nonequispaced Fast Fourier Transform) ?
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Motivation

Motivation
ground truth given measurements aim

discrete problem f̂k f(xj) =
∑

k∈IM

f̂k e2πikxj h̃k ≈ f̂k

continuous problem f̂(v) f(xj) =

∫
[−M

2
,M

2 )d

f̂(v) e2πivxj dv h̃(k) ≈ f̂(k)

v ∈ Rd, k ∈ IM

iterated methods
(multiple applications of the NFFT needed) vs. direct methods

(realized with a single NFFT)

special setting: evaluation points xj , j = 1, . . . , N, fixed =⇒ highly profit from direct method

1 precomputation: only once for fixed xj

2 reconstruction: for each measurement⇝ very efficient
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Overview

Overview

1 Introduction

2 Discrete problem

3 Continuous problem

4 Numerical Examples
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Optimal density compensation factors for the reconstruction of the Fourier transform of bandlimited functions
Introduction

NFFT (Nonequispaced Fast Fourier Transform)

Fast algorithm to evaluate a trigonometric polynomial O(|IM | log(|IM |) +N)

f(x) =
∑

k∈IM

f̂k e2πikx

• index set IM := Zd ∩
[
−M

2
, M

2

)d with cardinality |IM | = Md, M ∈ 2N,
• Fourier coefficients f̂k ∈ C, k ∈ IM ,

• nonequispaced points xj ∈ Td ∼=
[
− 1

2
, 1
2

)d
, j = 1, . . . , N, N ∈ N

Inversion problem (iNFFT):

Af̂ = f with A = A|IM | :=
(
e2πikxj

)N
j=1,k∈IM

∈ CN×|IM |

Given: f := (f(xj))
N
j=1 Find: f̂ := (f̂k)k∈IM Challenge: in general N ̸= |IM |
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Optimal density compensation factors for the reconstruction of the Fourier transform of bandlimited functions
Introduction

Basic idea

Equispaced nodes: A∗A = NI |IM | Nonequispaced nodes: A∗A ̸=NI |IM |

⇒ Find suitable matrix X with

XA ≈ I |IM |,

since then
f̂ ≈ XAf̂ = Xf .

Reminder – Equispaced nodes:

X = A∗ ·N−1

Simplest generalization:

X = A∗W ,

Algorithm
0. Precompute weights W

?

1. Compute scaled
coefficients Wf

O(N)

2. Adjoint NFFT
O(|IM | log(|IM |) +N)

i. e., additional weighting W := diag(wj)
N
j=1 due to nonequispaced sampling
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Optimal density compensation factors for the reconstruction of the Fourier transform of bandlimited functions
Discrete problem - trigonometric polynomials

Exact reconstruction for trigonometric polynomials

Theorem (K., Potts 23)

Let |I2M | ≤ N and xj ∈ Td, j = 1, . . . , N, be given.

Then the density compensation factors wj ∈ C satisfying

N∑
j=1

wj e
2πikxj = δ0,k, k ∈ I2M , AT

|I2M | w = e0

are optimal,
i. e., for all trigonometric polynomials f(x) =

∑
k∈IM

f̂k e2πikx, an exact reconstruction of the Fourier
coefficients f̂k ∈ C is given by

f̂k = hw
k :=

N∑
j=1

wj f(xj) e
−2πikxj , k ∈ IM . f̂ = A∗Wf

δ0,k ... Kronecker delta

Melanie Kircheis, Chemnitz University of Technology, Faculty of Mathematics 7



Optimal density compensation factors for the reconstruction of the Fourier transform of bandlimited functions
Discrete problem - trigonometric polynomials

Proof
• {e2πiℓx : ℓ ∈ Zd} forms an orthonormal basis of L2(Td) [Plonka, Potts, Steidl, Tasche 18]

• ℓ ∈ IM sufficient for trigonometric polynomials f(x) =
∑

k∈IM
f̂k e2πikx

• For fixed ℓ ∈ IM we have

hw
k =

N∑
j=1

wj e
2πi(ℓ−k)xj , k ∈ IM ,

and

f̂k = ck(f) =

∫
Td

e2πi(ℓ−k)x dx = δℓ,k, k ∈ IM .

⇒ need to assure equality
• Since for k, ℓ ∈ IM we have (ℓ− k) ∈ I2M , this is fulfilled if

N∑
j=1

wj e
2πikxj = δ0,k, k ∈ I2M . AT

|I2M | w = e0

⇝ necessary for exact solution: underdetermined system with |I2M | ≤ N [Huybrechs 09]

Melanie Kircheis, Chemnitz University of Technology, Faculty of Mathematics 8
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Optimal density compensation factors for the reconstruction of the Fourier transform of bandlimited functions
Discrete problem - trigonometric polynomials

Computation schemes

Aim: exact solution to
AT

|I2M | w = e0 := (δ0,k)k∈I2M
(∗)

Friendly setting (|I2M | ≤ N ): unique solution given by normal eqs. of 2nd kind [K., Potts 23]

AT
|I2M |A|I2M | v = e0, A|I2M | v = w

⇝ efficient computation: CG algorithm combined with NFFT O(|I2M | log(|I2M |) +N)

Unfriendly setting (|I2M | > N ): no theoretical guarantee!
• least squares solution by normal eqs. of 1st kind

A|I2M | A
T
|I2M | w = A|I2M | e0

[K., Potts 23]: not a good approximation...
• note that (∗) implies A∗WA = I |IM | =⇒ minimization of

∥∥A∗WA− I |IM |
∥∥2
F

⇝minimizer obtained by solving Sw = b with [Rosenfeld 98]

S :=
( ∣∣∣[AA∗]j,s

∣∣∣2 )N
j,s=1

and b = |IM | · 1N

O(N3)

Melanie Kircheis, Chemnitz University of Technology, Faculty of Mathematics 9
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Optimal density compensation factors for the reconstruction of the Fourier transform of bandlimited functions
Continuous problem - bandlimited functions

Analogous problem for bandlimited functions

Application: MRI (Magnetic Resonance Imaging) [Rosenfeld 98], [Greengard, Lee, Inati 06], [Eggers, K., Potts 22]

no longer discrete
(trigonometric polynomials) but continuous

(bandlimited functions)

(Continuous) Fourier transform:

f̂(v) :=

∫
Rd

f(x) e−2πivx dx, v ∈ Rd

⇝ bandlimited functions with maximum bandwidth M ⇐⇒ supp(f̂ ) =
[
−M

2
, M

2

)d
=⇒ f(x) =

∫
Rd

f̂(v) e2πivx dv =

∫
[−M

2
,M

2 )d

f̂(v) e2πivxj dv, x ∈ Rd

Reconstruct: evaluations f̂(k) ∈ C, k ∈ IM Given: measurements f(xj), j = 1, . . . , N

Now: extend previous method

Melanie Kircheis, Chemnitz University of Technology, Faculty of Mathematics 10
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Optimal density compensation factors for the reconstruction of the Fourier transform of bandlimited functions
Continuous problem - bandlimited functions

Reconsideration as trigonometric polynomials
Consider 1-periodization

f̃(x) :=
∑
r∈Zd

f(x+ r) ∈ L2(Td)

⇒ uniquely representable by absolute convergent Fourier series [Plonka, Potts, Steidl, Tasche 18]

f̃(x) :=
∑
k∈Zd

ck(f̃) e
2πikx,

with Fourier coefficients

ck(f̃) =

∫
Td

f̃(x) e−2πikx dx =

∫
Rd

f(x) e−2πikx dx = f̂(k), k ∈ Zd

⇝ f bandlimited with bandwidth M ⇐⇒ supp(f̂ ) =
[
−M

2
, M

2

)d
=⇒ f̂(k) = 0, k ∈ Zd \ IM

=⇒ f̃ trigonometric polynomial of degree M

⇒ exact reconstruction

f̂(k) = ck(f̃) =

N∑
j=1

wj f̃(xj) e
−2πikxj , k ∈ IM f̂ = A∗Wf̃
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Optimal density compensation factors for the reconstruction of the Fourier transform of bandlimited functions
Continuous problem - bandlimited functions

Practical situation (e. g. MRI)

In practice: only hypothetical case !

periodization f̃ cannot be sampled ⇐⇒ f cannot be sampled on whole Rd

Sampling: limited coverage of space
⇝ f only known on a bounded domain, w.l.o.g. for x ∈

[
− 1

2
, 1
2

)d

Consequences: need to assume that f is small outside
[
− 1

2
, 1
2

)d
, such that f̃(xj) ≈ f(xj)

⇝ have to deal with the approximation

f̂(k) ≈
N∑

j=1

wj f(xj) e
−2πikxj , k ∈ IM

=⇒ f̂= A∗Wf̃ ≈ A∗Wf

Main cause of error: f is not known on whole Rd
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Optimal density compensation factors for the reconstruction of the Fourier transform of bandlimited functions
Continuous problem - bandlimited functions

Connection to previous work
[Greengard, Lee, Inati 06]: extend approximation to whole interval

f̂(v) ≈ h̃(v) :=

N∑
j=1

wj f̃(xj) e
−2πivxj , v ∈

[
−M

2
, M

2

)d

⇒ inverse Fourier transform

f(xs) =

∫
[−M

2
,M

2 )d

f̂(v) e2πivxs dv ≈
∫

[−M
2

,M
2 )d

h̃(v) e2πivxs dv =

N∑
j=1

wj f̃(xj) · |IM | sinc
(
Mπ(xj − xs)

)

Question: Choose wj based on this equation
f ≈ |IM | ·CnWf̃ ≈ |IM | ·CnWf ,

where ?
Cn :=

(
sinc

(
Mπ(xj − xs)

))N

j,s=1

∈ RN×N

⇝ ideally aim for IN = |IM | ·CnW
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Optimal density compensation factors for the reconstruction of the Fourier transform of bandlimited functions
Continuous problem - bandlimited functions

Exact solution? main diagonal of |IM | ·CnW = IN reads as

1
|IM | = wj sinc(0) = wj , j = 1, . . . , N,

i. e., need sinc(Mπ(xj − xs)) = 0, j ̸= s  xj nonequispaced ⇝ only approximate solution

Least squares problem:

Minimize
W=diag(wj)

N
j=1

∥|IM | ·CnW − IN∥2F

⇝ consider only nonzeros

∥|IM | ·CnW − IN∥2F =

N∑
j=1

∥|IM | ·Cnwj − ej∥22 =

N∑
j=1

∥|IM | · [Cn]j wj − ej∥22

⇒ least squares solution given by

wj =
1

|IM | [Cn]
†
j ej = . . . =

1

|IM |

(
N∑

s=1

sinc2(Mπ(xj − xs))

)−1
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Optimal density compensation factors for the reconstruction of the Fourier transform of bandlimited functions
Numerical Examples

Numerical Examples – Testing Grids

-0.5 0 0.5
−0.5

0

0.5

(a) Spiral grid
-0.5 0 0.5

−0.5

0

0.5

(b) Polar (blue)
and modified polar (red) grid

-0.5 0 0.5
−0.5

0

0.5

(c) Linogram grid

Figure: Exemplary grids of size R = 12 and T = 2R.
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Optimal density compensation factors for the reconstruction of the Fourier transform of bandlimited functions
Numerical Examples

Discrete problem – Shepp-Logan phantom

1 phantom data = Fourier coefficients f̂ := (f̂k)k∈IM of a trigonometric polynomial

2 compute the evaluations f(xj) =
∑

k∈IM

f̂k e2πikxj by means of NFFT

3 reconstruct h̃k ≈ f̂k, k ∈ IM

Friendly setting (|I2M | ≤ N ):
• linogram grid of size R = 2M, T = 2R

• phantom size M ×M

• relative errors

e2 :=
∥h̃− f̂∥2
∥f̂∥2

⇝ show exact reconstruction

Unfriendly setting (|I2M | > N ):
• spiral grid of size R = M, T = 2R

• phantom of size M = 64

⇝ compare presented computation schemes
– normal eqs. of 2nd kind
– normal eqs. of 1st kind
– Frobenius norm minimization

(small M necessary for being affordable)
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Optimal density compensation factors for the reconstruction of the Fourier transform of bandlimited functions
Numerical Examples

Friendly setting (|I2M | < N )

101 102 103
10−15

10−14

10−13

10−12

10−11

M

e 2
: =

∥h̃
−
f̂
∥ 2

∥f̂
∥ 2

normal eqs. of 2nd kind
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Optimal density compensation factors for the reconstruction of the Fourier transform of bandlimited functions
Numerical Examples

Unfriendly setting (|I2M | > N )

-32 0 32
0

1

(a) Phantom
-32 0 32
0

1

(b) Normal eqs.
of 2nd kind
e2 = 0.2482

-32 0 32
0

1

(c) Normal eqs.
of 1st kind
e2 = 0.2482

-32 0 32
0

1

(d) Frobenius norm
minimization
e2 = 0.1187
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Optimal density compensation factors for the reconstruction of the Fourier transform of bandlimited functions
Numerical Examples

Continuous problem – tensorized triangular pulse function

1 specify compactly supported f̂(v) = g(v1) · g(v2), with triangular pulse g(v) := (1−
∣∣ v
b

∣∣) · χ[−b,b](v)

2 compute inverse Fourier transform

f(x) =

∫
R2

f̂(v) e2πivx dv = b2 sinc2(bπx), x ∈ R2

⇝ bandlimited with bandwidth M for all b ∈ N with b ≤ M
2

3 sample f(xj) for given xj ∈
[
− 1

2
, 1
2

)2
, j = 1, . . . , N

4 reconstruct h̃(k) ≈ f̂(k), k ∈ IM

Setup:
• consider |I2M | ≤ N

• M = 32 and b = 12

• modified polar grid of size R = 2M, T = 2R

• pointwise errors
∣∣h̃− f̂

∣∣

Sampling data:
• real-world sampling f(xj)

• artificial sampling of the periodization

f̃(xj) =
∑

k∈IM

f̂(k) e2πikxj
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Optimal density compensation factors for the reconstruction of the Fourier transform of bandlimited functions
Numerical Examples

Results – real-world sampling (top) & artificial sampling (bottom)

(a) equispaced
setting

(b) normal eqs.
of 2nd kind

(c) Frobenius norm
minimization

(d) [Greengard, Lee, Inati 06]
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Optimal density compensation factors for the reconstruction of the Fourier transform of bandlimited functions
Summary

Summary

• new direct inversion method based on sampling density compensation
• introduced for discrete problem (trigonometric polynomials)
• exact reconstruction in case |I2M | ≤ N

• extendable continuous problem (bandlimited functions)
• error solely occurs since f cannot be sampled on whole Rd

• K., Potts: Fast and direct inversion methods for the multivariate nonequi-
spaced fast Fourier transform.
Frontiers in Applied Mathematics and Statistics 9 (2023).

• K., Potts: Optimal density compensation factors for the reconstruction of
the Fourier transform of bandlimited functions. arXiv, 2304.00094, 2023.

Thank you for your attention!
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Appendix

NFFT – Fast computation of f(xj) =
∑

k∈IM f̂k e
2πikxj [Potts, Steidl, Tasche 01]

1 Set O(|IM |)

ĝk :=

{
f̂k

ŵ(k)
: k ∈ IM ,

0 : k ∈ IMσ \ IM .

2 Compute O(|IM | log(|IM |))

gl :=
1

|IMσ |
∑

k∈IM

ĝk e2πik(M−1
σ ⊙ l), l ∈ IMσ ,

by a d-variate inverse FFT.
3 Compute O(N)

f̃j :=
∑

l∈IMσ

gl w̃m

(
xj −M−1

σ ⊙ l
)
, j = 1, . . . , N.

Output: f̃j ≈ fj , j = 1, . . . , N . O(|IM | log(|IM |) +N)
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Appendix

Remark – sinc operator
Fourier series of the periodization of g(t) = e2πitx, t ∈

[
−M

2
, M

2

)d
, with x ∈ Cd fixed: [Lund, Bowers 92]

e2πitx =
∑
ℓ∈Zd

e2πityℓ sinc
(
Mπ(x− yℓ)

)
, x ∈ Cd, (△)

where yℓ := M−1 ⊙ ℓ =
(
M−1ℓ1, . . . ,M

−1ℓd
)T

, ℓ ∈ Zd, and the d-variate function sinc(x) :=
∏d

t=1 sinc(xt)

Define:

C :=

(
sinc

(
Mπ(xj − yℓ)

))N

j=1, ℓ∈Zd

. . . sinc operator

F :=
(
e2πikyℓ

)
ℓ∈Zd,k∈IM

. . . one-sided infinite Fourier matrix

⇒ point evaluations of (△) at x = xj , j = 1, . . . , N, and t = k ∈ IM :

CF =

( ∑
ℓ∈Zd

e2πikyℓ sinc
(
Mπ(xj − yℓ)

))N

j=1,k∈IM

= A
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Remark – equivalence of approaches [Greengard, Lee, Inati 06] and [Pipe, Menon 99]

Classical sampling theorem of Shannon-Whittaker-Kotelnikov:
Any bandlimited function f ∈ L2(Rd) with maximum bandwidth M can be recovered from its uniform
samples f(yℓ), ℓ ∈ Zd, as

f(x) =
∑
ℓ∈Zd

f(yℓ) sinc
(
Mπ(x− yℓ)

)
, x ∈ Rd.

⇝ application to f(x) = sinc(Mπ(xj − x)) with j fixed + evaluation at x = xs, s = 1, . . . , N :

sinc
(
Mπ(xj − xs)

)
=
∑
ℓ∈Zd

sinc
(
Mπ(xj − yℓ)

)
sinc

(
Mπ(xs − yℓ)

)

[Pipe, Menon 99]: restriction to finitely many ℓ ∈ IM

=⇒ uniform truncation of Shannon series (poor approximation)

⇒ equivalence of [Greengard, Lee, Inati 06] and [Pipe, Menon 99] only holds asymptotically for |IM | → ∞
(slow convergence)
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Continuous problem – 2nd example

Setup:
• f̂(v) = g(v1) · g(v2), with triangular pulse

g(v) := (1−
∣∣ v
b

∣∣) · χ[−b,b](v)

• M = 64 and b = 24

• log. modified polar grids of different sizes R, T = 2R

• relative errors ∥h̃−f̂∥2
∥f̂∥2

Note for M = 64:
• |IM | = 4096

• |I2M | = 16384

⇝ consider |I2M | ≤ N and |IM | > N

R N normal eqs. of 2nd kind Frobenius norm minimization [Greengard, Lee, Inati 06]

40 3565 4.4908e-01 1.7608e-01 2.0475e-01
48 5145 1.0886e-01 2.0690e-02 1.5829e-01
56 7149 3.6632e-02 8.0215e-03 1.5401e-01
64 9429 2.5109e-02 4.7988e-03 1.8337e-01
72 11965 7.6871e-03 4.1096e-03 2.0633e-01
80 14909 5.5991e-03 3.8507e-03 2.1932e-01
88 18153 3.8889e-03 3.9853e-03 2.2665e-01
96 21589 4.2240e-03 3.7917e-03 2.3092e-01
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