

UNIVERSITY OF TECHNOLOGY IN THE EUROPEAN CAPITAL OF CULTURE CHEMNITZ

Fast and direct inverse nonequispaced Fourier transforms

Melanie Kircheis and Daniel Potts

Motivation – MRI problem

 \hat{f}_{k}

 $h_{k} \approx \hat{f}_{k}$

Algorithm to efficiently evaluate trigonometric polynomials

transform (NFFT)

$$f(\boldsymbol{x}) = \sum_{\boldsymbol{k} \in \mathcal{I}_{\boldsymbol{M}}} \hat{f}_{\boldsymbol{k}} e^{2\pi i \boldsymbol{k} \cdot \boldsymbol{k}}$$

Nonequispaced fast Fourier

Unitarity?

Equispaced nodes:

$$oldsymbol{A}^*oldsymbol{A} = Noldsymbol{I}_{|\mathcal{I}_M|}$$
 or $oldsymbol{A}oldsymbol{A}^* = |\mathcal{I}_M|\cdotoldsymbol{I}_N$

Nonequispaced nodes: $A^*A \neq NI_{|\mathcal{I}_M|}$ and $AA^* \neq |\mathcal{I}_M| \cdot I_N$

 $k{\in}\mathcal{I}_M$

 $f(\boldsymbol{x}_j) = \sum \hat{f}_{\boldsymbol{k}} e^{2\pi i \boldsymbol{k} \boldsymbol{x}_j}$

Inversion problem (iNFFT)

Solve: $A\hat{f} = f$ with $A \coloneqq \left(e^{2\pi i k x_j}\right)_{j=1, k \in \mathcal{I}_M}^N$ Given: $\boldsymbol{f} \coloneqq (f(\boldsymbol{x}_j))_{j=1}^N, \, \boldsymbol{x}_j \in \mathbb{T}^d \cong \left[-\frac{1}{2}, \frac{1}{2}\right)^d$ Find: $\hat{f} \coloneqq (\hat{f}_k)_{k \in \mathcal{I}_M}, \ \hat{f}_k \in \mathbb{C}$ **Challenge:** in general $N \neq |\mathcal{I}_M|$

at nonequispaced nodes $\boldsymbol{x}_{i} \in \mathbb{T}^{d}$, $j = 1, \ldots, N, d \in \mathbb{N}$, with index set $\mathcal{I}_{\boldsymbol{M}} \coloneqq \left\{ \boldsymbol{k} \in \mathbb{Z}^d : -\frac{M}{2} \le k_t < \frac{M}{2}, t = 1, \dots, d \right\}$

- equispaced grid \boldsymbol{x}_i and $M^d = |\mathcal{I}_M| = N$ **FFT:** $\mathcal{O}(|\mathcal{I}_M| \log(|\mathcal{I}_M|))$ \Rightarrow
- Complexity: $\mathcal{O}(|\mathcal{I}_M| \log(|\mathcal{I}_M|) + N)$
- ► Factorization:

Approx BFD and $A^*pprox D^*F^*B^*$ banded FFT diagonal

Direct methods

vs. iterated methods (multiple iteration steps)

reconstruction = same number of arithmetic operations as single adjoint NFFT \Rightarrow highly profit in setting of fixed x_i **precomputation:** has to be done only once **reconstruction:** for each measurement → adjoint NFFT very fast

Sampling density compensation

Optimization of banded matrix

Basic idea	Computation scheme	Basic idea	Computation scheme
Find suitable matrix X with $XA \approx I_{ \mathcal{I}_M },$ since then $\hat{f} \approx XA\hat{f} = Xf.$ Reminder – Equispaced nodes: $X = A^* \cdot N^{-1}$ Simplest generalization: $X = A^*W,$ i. e., additional weighting due to nonequispaced sampling	Exactness condition: An exact reconstruction $\hat{f} = A^*Wf$ is given if $ \mathcal{I}_{2M} < N$ and $\sum_{j=1}^{N} w_j e^{2\pi i k x_j} = \delta_{0,k}, k \in \mathcal{I}_{2M}.$ Practice: 10^0 by means of normal 10^{-7} equations 10^{-14} 10^{-14} 10^{-14} 10^{-14} 10^{-14} $ \mathcal{I}_M $	Recap:(i) $\hat{f} \approx D^* F^* B^* W f$ $= D^* F^* B^* g$ (ii) $\hat{f} \approx D^* F^* B^* W f$ $= D^* F^* \tilde{B}^* f$ \Rightarrow Optimization of banded B (only N degrees of freedom)Now: optimize all nonzero entries \rightsquigarrow modification of B \rightsquigarrow preserve structure and complexity	Consider: $\ D^*F^*\tilde{B}^*f - \hat{f}\ _2$ $\leq \ D^*F^*\tilde{B}^*A - I_{ \mathcal{I}_M }\ _F \ \hat{f}\ _2$ $\Rightarrow A^*\tilde{B} \text{ pseudoinverse of } FD$ $\Rightarrow \text{ given since } F^*F = \mathcal{I}_{M_{\sigma}} I_{ \mathcal{I}_M }$ Optimization problem: $Minimize_{\tilde{B} \text{ banded}} \ A^*\tilde{B} - \frac{1}{ \mathcal{I}_{M_{\sigma}} }D^{-1}F^*\ _F^2$ $= \sum_{l \in \mathcal{I}_{M_{\sigma}}} \ A_l^*\tilde{b}_l - \frac{1}{ \mathcal{I}_{M_{\sigma}} }D^{-1}f_l\ _2^2$
Algorithm 1 [2, 3]	Error bound [2] In case of small residuals $\varepsilon_{k} \in \mathbb{R}$	Algorithm 2 [1, 2]	Error bound [2] In case of small residuals $\varepsilon_{\ell} > 0$
 Precompute weights W Compute scaled coeffs Wf Adjoint NFFT 	there exists an $\varepsilon \geq 0$ such that $\ \boldsymbol{A}^*\boldsymbol{W}\boldsymbol{f} - \boldsymbol{\hat{f}}\ _2 \leq \varepsilon \mathcal{I}_{\boldsymbol{M}} \cdot \ \boldsymbol{\hat{f}}\ _2.$	 Precompute matrix <i>B</i>_{opt} Modified adjoint NFFT 	there exists an $\varepsilon \ge 0$ such that $\ \boldsymbol{h}_{\text{opt}} - \boldsymbol{\hat{f}}\ _2^2 \le \varepsilon \mathcal{I}_{\boldsymbol{M}} \cdot \ \boldsymbol{\hat{f}}\ _2^2.$
Example with $ \mathcal{I}_{2M} < N$	V	Example with $ \mathcal{I}_{2M} > N$	

)irect

hante • Relative errors \mathbf{O} gan

Ο

Ð

Sh

Numerics

• phantom size $M \times M$

 $\| oldsymbol{\widehat{f}} \|_2$

 $e_2 \coloneqq$

- [1] Kircheis, Potts. Efficient multivariate inversion of the nonequispaced fast Fourier transform. *PAMM*, 20(1):e202000120, 2021.
- [2] Kircheis, Potts. Fast and direct inversion methods for the multivariate nonequispaced fast Fourier transform. Front. Appl. Math. Stat. 9:1155484, 2023. [3] Kircheis, Potts. Optimal density compensation factors for the reconstruction of the Fourier transform of bandlimited functions. arXiv, 2304.00094, 2023.

Related work

NFFT – [Plonka, P., Steidl, Tasche 18] Iteration – [Kunis, P. 07], [Scarnati, Gelb 19] Density comp. for MRI – [Eggers, K., P. 22] Frame-theoretical approach – [K., P. 19]

• phantom size 1024×1024

Melanie Kircheis, Daniel Potts

• linogram grid of size $N = 2 \cdot 1024^2$

{melanie.kircheis, potts}@math.tu-chemnitz.de http://www.tu-chemnitz.de/~kimel, http://www.tu-chemnitz.de/~potts