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Introduction

Sampling theorem of Shannon–Whittaker–Kotelnikov [Whittaker 1915],
[Kotelnikov 1933],

[Shannon 1949]Let f ∈ L2(R) be bandlimited on
[
− N

2
, N

2

]
for some N > 0,

i. e., its Fourier transform
f̂(v) :=

∫
R
f(t) e−2πitv dt

is supported on
[
− N

2
, N

2

]
.

Then the function f is completely determined by its equispaced samples f
(

ℓ
L

)
, ℓ ∈ Z, with

some L ≥ N and it holds

f(t) =
∑
ℓ∈Z

f
(

ℓ
L

)
sinc

(
Lπ
(
t− ℓ

L

))
, t ∈ R ,

where
sincx :=

{
sin x
x

x ∈ R \ {0} ,
1 x = 0 .
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Introduction

Localized sampling
Problem:

f(t) =
∑
ℓ∈Z

f
(

ℓ
L

)
sinc

(
Lπ
(
t− ℓ

L

))
, t ∈ R

infinitely many samples⇝ impossible in practice

Solution: truncation via localized sampling, i. e., for somem ∈ N \ {1} we consider

(Rrect,mf)(t) :=
∑
ℓ∈Z

f
(

ℓ
L

)
sinc

(
Lπ
(
t− ℓ

L

))
1[−m/L,m/L]

(
t− ℓ

L

)
, t ∈ R (∗)

Lemma (Micchelli, Xu, Zhang 09)

Let f ∈ BN/2(R) with fixed N ∈ N, L := N(1 + λ) with λ ≥ 0 andm ∈ N \ {1} be given.
Then it holds

∥f −Rrect,mf∥C0(R) ≤
√
L

π

√
2

m
+

1

m2
∥f∥L2(R) .

⇒ Since sinc decays slowly at infinity, (∗) is not a good approximation.
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Introduction

Regularized Shannon sampling formula with localized sampling
Modification: multiply sinc with a more convenient window φ, i. e.,

(Rφ,mf)(t) =
∑
ℓ∈Z

f
(

ℓ
L

)
sinc

(
Lπ
(
t− ℓ

L

))
φm

(
t− ℓ

L

)
, t ∈ R , [Qian 03],

[Lin, Zhang 17]
withm ∈ N \ {1} and φm(x) := φ(x)1[−m/L,m/L](x) with compact support

⇝ only 2m samples f
(

ℓ
L

)
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Regularized Shannon sampling formula with localized sampling
Modification: multiply sinc with a more convenient window φ, i. e.,
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(
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Simplified notation:

For t ∈
(
0, 1

L

)
:

(Rφ,mf)
(
t+ k

L

)
=

m∑
ℓ=−m+1

f
(
ℓ+k
L

)
sinc

(
Lπ
(
t− ℓ

L

))
φm

(
t− ℓ

L

)
,

on
(
k
L
, k+1

L

)
, k ∈ Z

⇝ only 2m samples f
(

ℓ
L

)
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Introduction

Previous approaches:
• Gaussian window function:

– [Qian 03], [Qian, Craemer 06], and references therein
– [Lin, Zhang 17]: improvement of error bounds for L = N = 1
– [Qian, Craemer 05]: noisy samples

• Generalizations to holomorphic functions:
– [Schmeisser, Stenger 07] using contour integration
– [Tanaka, Sugihara, Murota 08] for approximation of derivatives of f

• survey of different approaches for window functions: [Qian 04]
• approach in Fourier space: [Strohmer, Tanner 06]
⇝ aim is to find a regularization function with smooth Fourier transform

Now: propose new set of window functions φ with small support
⇝ high accuracy + fast evaluation
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On regularized Shannon sampling formulas with localized sampling
Estimate of the uniform approximation error

Window functions φ : R → [0, 1]

Let L := N(1 + λ), λ ≥ 0, andm ∈ N \ {1} with 2m≪ L.
We introduce a set Φm,L of window functions with the following properties:

1 φ ∈ L2(R) is even, positive on (−m/L, m/L) and continuous on R \ {−m/L, m/L}
2 φ|[0,∞) is non-increasing with φ(0) = 1

3 the Fourier transform φ̂(v) :=
∫
R φ(x) e

−2πivx dx is explicitly known

−m
L

m
L

x

Examples:

φrect(x) := 1[−m/L,m/L](x)

φGauss(x):= e−x2/(2σ2) , σ > 0

φB(x):=
1

M2s(0)
M2s

(
Lxs
m

)
, s > 0

φsinh(x):=
1

sinh β
sinh

(
β
√

1− (Lx/m)2
)
, β > 0

[Potts, Tasche 21]
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Estimate of the uniform approximation error

Estimate of the uniform approximation error

Theorem (K., Potts, Tasche 22)

Let f ∈ Bδ(R) with δ = τN , τ ∈ (0, 1/2),N ∈ N, L = N(1 + λ) with λ ≥ 0 and
m ∈ N \ {1}. Further let φ ∈ Φm,L with φm(x) := φ(x)1[−m/L,m/L](x) be given.

Then it holds

∥f −Rφ,mf∥C0(R) ≤
(
E1(m, δ, L) + E2(m, δ, L)

)
∥f∥L2(R) ,

where the corresponding error constants are defined by

E1(m, δ, L) :=
√
2δ max

v∈[−δ,δ]

∣∣∣∣∣1−
∫ v+L

2

v−L
2

φ̂(u) du

∣∣∣∣∣ ,
E2(m, δ, L) :=

√
2L

πm

(
φ2(m

L

)
+ L

∫ ∞

m
L

φ2(t) dt

)1/2

.
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Estimate of the uniform approximation error

Proof sketch I
Only consider t ∈

[
0, 1

L

]
and split the approximation error

f(t)− (Rφ,mf)(t) = f(t)−
∑
ℓ∈Z

f
(

ℓ
L

)
ψ
(
t− ℓ

L

)
︸ ︷︷ ︸

regularization error e1(t)

+
∑
ℓ∈Z

f
(

ℓ
L

)
ψ
(
t− ℓ

L

)
− (Rφ,mf)(t)︸ ︷︷ ︸

truncation error e2,0(t)

with ψ(x) := sinc(Lπx)φ(x).

(i) Regularization error: Fourier transform yields

and thereby

|e1(t)| ≤
∫
R
|ê1(v)|dv ≤ max

v∈[−δ,δ]
|η(v)|

∫ δ

−δ

|f̂(v)| dv

≤
√
2δ max

v∈[−δ,δ]
|η(v)| · ∥f∥L2(R).
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L

) 1

L
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φ̂(u) du

=: f̂(v) η(v)
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Estimate of the uniform approximation error

Proof sketch II
(ii) Truncation error: Let Jm := {−m+ 1, . . . ,m}, then

e2,0(t) =
∑
ℓ∈Z

f
(

ℓ
L

)
ψ
(
t− ℓ

L

) [
1− 1[−m/L,m/L]

(
t− ℓ

L

)]
=

∑
ℓ∈Z\Jm

f
(

ℓ
L

)
ψ
(
t− ℓ

L

)

such that

|e2,0(t)| ≤
∑

ℓ∈Z\Jm

∣∣f( ℓ
L

)∣∣ ∣∣sinc(Lπ (t− ℓ
L

))∣∣φ(t− ℓ
L

)
≤ 1

πm

∑
ℓ∈Z\Jm

∣∣f( ℓ
L

)∣∣φ(t− ℓ
L

)

≤ 1

πm

√
L ∥f∥L2(R)

( ∑
ℓ∈Z\Jm

φ2(t− ℓ
L

))1/2

and ∑
ℓ∈Z\Jm

φ2(t− ℓ
L

)
=

∞∑
ℓ=m

φ2(t+ ℓ
L

)
+

∞∑
ℓ=m+1

φ2(t− ℓ
L

)
≤ 2

∞∑
ℓ=m

φ2( ℓ
L
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On regularized Shannon sampling formulas with localized sampling
Estimate of the uniform approximation error

Simplified result

This theorem can be simplified, if the window function φ ∈ Φm,L

1 is continuous on R
2 vanishes on R \

[
− m

L
, m

L

]

⇒ truncation errors vanish ⇒ E2(m, δ, L) = 0
⇒ simple error estimate

∥f −Rφ,mf∥C0(R) ≤ E1(m, δ, L) ∥f∥L2(R)

Examples:
✓ B–spline

✓ sinh-type

✗ Gaussian
→ does not vanish on R \

[
− m

L
, m

L

]
✗ characteristic
→ not continuous on R
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On regularized Shannon sampling formulas with localized sampling
Estimate of the uniform approximation error

Results for special window functions & parameter choice
Only have to estimate the error constants Ej(m, δ, L), j = 1, 2.

⇒ uniform approximation error decays exponentially with respect tom for
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Results for special window functions & parameter choice
Only have to estimate the error constants Ej(m, δ, L), j = 1, 2.

⇒ uniform approximation error decays exponentially with respect tom for

• Gaussian window function

∥f −RGauss,mf∥C0(R) ≤ c1 e
−m·c2 ∥f∥L2(R) , σ =

√
m

πL (L−2δ)

⇝ improves decay rate in [Qian 03] and [Lin, Zhang 17] from (m− 1) tom
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• modified B–spline window function

∥f −RB,mf∥C0(R) ≤ c1 e
−m·c2 ∥f∥L2(R) , s =

⌈
m+1

2

⌉
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• modified B–spline window function

∥f −RB,mf∥C0(R) ≤
3
√
δs

(2s−1)π
e
−m·ln

(
πm (1+λ−2τ)

2s(1+λ)

)
∥f∥L2(R) , s =

⌈
m+1

2

⌉
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On regularized Shannon sampling formulas with localized sampling
Estimate of the uniform approximation error
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(
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2
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• sinh-type window function

∥f −Rsinh,mf∥C0(R) ≤ c1 e
−m·c2 ∥f∥L2(R) , β = πm (1+λ−2τ)

1+λ
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On regularized Shannon sampling formulas with localized sampling
Estimate of the uniform perturbation error

Estimate of the uniform perturbation error
Consider noisy samples f̃ℓ := f

(
ℓ
L

)
+ εℓ with |εℓ| ≤ ε, ℓ ∈ Z, and ε > 0.

• [Daubechies, DeVore 03]: classical Shannon series is not robust
• But: regularized Shannon sampling formula is

Define
(Rφ,mf̃)(t) =

∑
ℓ∈Z

f̃ℓ sinc
(
Lπ
(
t− ℓ

L

))
φm

(
t− ℓ

L

)
, t ∈ R .

Theorem (K., Potts, Tasche 22)

Let f ∈ Bδ(R)with δ = τN , τ ∈ (0, 1/2),N ∈ N, L = N(1 + λ)with λ ≥ 0 andm ∈ N \ {1}.
Further let φ ∈ Φm,L and f̃ℓ = f(ℓ/L) + εℓ, where |εℓ| ≤ ε for all ℓ ∈ Z, with ε > 0 be given.

Then it holds

∥Rφ,mf̃ −Rφ,mf∥C0(R) ≤ ε
(
2 + L φ̂(0)

)
,

∥f −Rφ,mf̃∥C0(R) ≤ ∥f −Rφ,mf∥C0(R) + ε
(
2 + L φ̂(0)

)
.
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On regularized Shannon sampling formulas with localized sampling
Estimate of the uniform perturbation error

Proof sketch
Only consider t ∈

[
0, 1

L

]
and

ẽ0(t) := (Rφ,mf̃)(t)− (Rφ,mf)(t) =
∑
ℓ∈Z

(
f̃ℓ − f

(
ℓ
L

))
︸ ︷︷ ︸

= εℓ

sinc
(
Lπ
(
t− ℓ

L

))
φm

(
t− ℓ

L

)

such that

|ẽ0(t)| ≤ ε

m∑
ℓ=−m+1

φ
(
t− ℓ

L

)
≤ ε

m−1∑
ℓ=0

φ
(

ℓ
L

)
+ ε

m∑
ℓ=1

φ
(

1
L
− ℓ

L

)
= 2 ε

m−1∑
ℓ=0

φ
(

ℓ
L

)
< 2 ε

(
φ(0) +

∫ m−1

0

φ
(

t
L

)
dt

)
= 2 ε

(
1 + L

∫ (m−1)/L

0

φ(t) dt

)
.

By definition of Fourier transform

φ̂(0) =

∫
R
φ(t) dt ≥

∫ m/L

−m/L

φ(t) dt = 2

∫ m/L

0

φ(t) dt ,

and therefore

|ẽ0(t)| ≤ 2 ε

(
1 + L

∫ (m−1)/L

0

φ(t) dt

)
≤ 2 ε

(
1 + L

2
φ̂(0)

)
= ε
(
2 + L φ̂(0)

)
.
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|ẽ0(t)| ≤ ε

m∑
ℓ=−m+1

φ
(
t− ℓ

L

)
≤ ε

m−1∑
ℓ=0

φ
(

ℓ
L

)
+ ε

m∑
ℓ=1

φ
(

1
L
− ℓ

L

)
= 2 ε

m−1∑
ℓ=0

φ
(

ℓ
L

)
< 2 ε

(
φ(0) +

∫ m−1

0

φ
(

t
L

)
dt

)
= 2 ε

(
1 + L

∫ (m−1)/L

0

φ(t) dt

)
.

By definition of Fourier transform

φ̂(0) =

∫
R
φ(t) dt ≥

∫ m/L

−m/L

φ(t) dt = 2

∫ m/L

0

φ(t) dt ,

and therefore
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On regularized Shannon sampling formulas with localized sampling
Estimate of the uniform perturbation error

Results for special window functions

∥Rφ,mf̃ −Rφ,mf∥C0(R) ≤ ε
(
2 + L φ̂(0)

)
⇝ Only have to compute φ̂(0).

⇒ uniform perturbation error only grows as O(
√
m) for

• Gaussian window function [Qian, Craemer 05]

∥RGauss,mf̃ −RGauss,mf∥C0(R) ≤ ε

(
2 +

√
2 + 2λ

λ+ 1− 2τ

√
m

)

• modified B–spline window function

∥RB,mf̃ −RB,mf∥C0(R) ≤ ε
(
2 + 3

2

√
m
)

• sinh-type window function

∥Rsinh,mf̃ −Rsinh,mf∥C0(R) ≤ ε

(
2 +

√
2 + 2λ

1 + λ− 2τ

1

1− e−2β

√
m

)

Melanie Kircheis, Chemnitz University of Technology, Faculty of Mathematics 16



On regularized Shannon sampling formulas with localized sampling
Estimate of the uniform perturbation error

Results for special window functions

∥Rφ,mf̃ −Rφ,mf∥C0(R) ≤ ε
(
2 + L φ̂(0)

)
⇝ Only have to compute φ̂(0).

⇒ uniform perturbation error only grows as O(
√
m) for

• Gaussian window function [Qian, Craemer 05]

∥RGauss,mf̃ −RGauss,mf∥C0(R) ≤ ε

(
2 +

√
2 + 2λ

λ+ 1− 2τ

√
m

)

• modified B–spline window function

∥RB,mf̃ −RB,mf∥C0(R) ≤ ε
(
2 + 3

2

√
m
)

• sinh-type window function

∥Rsinh,mf̃ −Rsinh,mf∥C0(R) ≤ ε

(
2 +

√
2 + 2λ

1 + λ− 2τ

1

1− e−2β

√
m

)

Melanie Kircheis, Chemnitz University of Technology, Faculty of Mathematics 16



On regularized Shannon sampling formulas with localized sampling
Estimate of the uniform perturbation error

Results for special window functions

∥Rφ,mf̃ −Rφ,mf∥C0(R) ≤ ε
(
2 + L φ̂(0)

)
⇝ Only have to compute φ̂(0).

⇒ uniform perturbation error only grows as O(
√
m) for

• Gaussian window function [Qian, Craemer 05]

∥RGauss,mf̃ −RGauss,mf∥C0(R) ≤ ε

(
2 +

√
2 + 2λ

λ+ 1− 2τ

√
m

)

• modified B–spline window function

∥RB,mf̃ −RB,mf∥C0(R) ≤ ε
(
2 + 3

2

√
m
)

• sinh-type window function

∥Rsinh,mf̃ −Rsinh,mf∥C0(R) ≤ ε

(
2 +

√
2 + 2λ

1 + λ− 2τ

1

1− e−2β

√
m

)

Melanie Kircheis, Chemnitz University of Technology, Faculty of Mathematics 16



On regularized Shannon sampling formulas with localized sampling
Estimate of the uniform perturbation error

Results for special window functions

∥Rφ,mf̃ −Rφ,mf∥C0(R) ≤ ε
(
2 + L φ̂(0)

)
⇝ Only have to compute φ̂(0).

⇒ uniform perturbation error only grows as O(
√
m) for

• Gaussian window function [Qian, Craemer 05]

∥RGauss,mf̃ −RGauss,mf∥C0(R) ≤ ε

(
2 +

√
2 + 2λ

λ+ 1− 2τ

√
m

)

• modified B–spline window function

∥RB,mf̃ −RB,mf∥C0(R) ≤ ε
(
2 + 3

2

√
m
)

• sinh-type window function

∥Rsinh,mf̃ −Rsinh,mf∥C0(R) ≤ ε

(
2 +

√
2 + 2λ

1 + λ− 2τ

1

1− e−2β

√
m

)

Melanie Kircheis, Chemnitz University of Technology, Faculty of Mathematics 16



On regularized Shannon sampling formulas with localized sampling
Numerical Examples

Numerical example – comparison of window functions φ
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(a) λ = 0.5
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(c) λ = 2

Figure: Maximum approximation error (solid) and error constant (dashed) for f(x) = δ sinc2(δπx)
with N = 256, τ = 0.45, δ = τN , as well as m ∈ {2, 3, . . . , 10}, and λ ∈ {0.5, 1, 2}.

⇒ smallm ∈ N sufficient for high precision ⇒ fast algorithms with O(2m) flops
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On regularized Shannon sampling formulas with localized sampling
Summary

Summary

• overcome drawbacks of Shannon series (poor convergence, non-robustness)
• proposed new window functions with compact support (B–spline, sinh-type)
• general setting: unified approach to error estimates

unified approach to numerical robustness
• special windows: uniform approximation error ∼ O(e−m)

uniform perturbation error ∼ O(
√
m)

• seen superiority of new sinh-type (smallm ∈ N for high precision in O(2m) flops)

• K., Potts, Tasche: On regularized Shannon sampling formulas with localized
sampling. arXiv:2203.09973, 2022.

Thank you for your attention!

Melanie Kircheis, Chemnitz University of Technology, Faculty of Mathematics 18



On regularized Shannon sampling formulas with localized sampling
Summary

Summary

• overcome drawbacks of Shannon series (poor convergence, non-robustness)
• proposed new window functions with compact support (B–spline, sinh-type)
• general setting: unified approach to error estimates

unified approach to numerical robustness
• special windows: uniform approximation error ∼ O(e−m)

uniform perturbation error ∼ O(
√
m)

• seen superiority of new sinh-type (smallm ∈ N for high precision in O(2m) flops)

• K., Potts, Tasche: On regularized Shannon sampling formulas with localized
sampling. arXiv:2203.09973, 2022.

Thank you for your attention!

Melanie Kircheis, Chemnitz University of Technology, Faculty of Mathematics 18


	On regularized Shannon sampling formulas with localized sampling

