

On regularized Shannon sampling formulas with localized sampling

Melanie Kircheis

Chemnitz University of Technology Faculty of Mathematics

joint work with Daniel Potts and Manfred Tasche

8th International Conference on Computational Harmonic Analysis 2022 Ingolstadt, September 12–16, 2022

Overview

Introduction

- Approximation error
- 8 Noisy samples
- Ø Numerical Example

On regularized Shannon sampling formulas with localized sampling Motivation

Motivation - reconstruction of functions

On regularized Shannon sampling formulas with localized sampling Motivation

Motivation - reconstruction of functions

On regularized Shannon sampling formulas with localized sampling
 Motivation

Motivation - reconstruction of functions

On regularized Shannon sampling formulas with localized sampling

Sampling theorem of Shannon-Whittaker-Kotelnikov

[Whittaker 1915], [Kotelnikov 1933], [Shannon 1949]

Let $f \in L^2(\mathbb{R})$ be bandlimited on $\left[-\frac{N}{2}, \frac{N}{2}\right]$ for some N > 0, i. e., its Fourier transform

$$\hat{f}(v) \coloneqq \int_{\mathbb{R}} f(t) e^{-2\pi i t v} dt$$

is supported on $\left[-\frac{N}{2}, \frac{N}{2}\right]$.

Then the function f is completely determined by its equispaced samples $f(\frac{\ell}{L})$, $\ell \in \mathbb{Z}$, with some $L \ge N$ and it holds

$$f(t) = \sum_{\ell \in \mathbb{Z}} f\left(\frac{\ell}{L}\right) \operatorname{sinc}\left(L\pi\left(t - \frac{\ell}{L}\right)\right), \quad t \in \mathbb{R},$$

where

sinc
$$x := \begin{cases} \frac{\sin x}{x} & x \in \mathbb{R} \setminus \{0\}, \\ 1 & x = 0. \end{cases}$$

Localized sampling

Problem:

$$f(t) = \sum_{\ell \in \mathbb{Z}} f\left(\frac{\ell}{L}\right) \operatorname{sinc}\left(L\pi\left(t - \frac{\ell}{L}\right)\right), \quad t \in \mathbb{R}$$

infinitely many samples ~> impossible in practice

Localized sampling

Problem:

$$f(t) = \sum_{\ell \in \mathbb{Z}} f\left(\frac{\ell}{L}\right) \operatorname{sinc}\left(L\pi\left(t - \frac{\ell}{L}\right)\right), \quad t \in \mathbb{R}$$

infinitely many samples ~> impossible in practice

Solution: truncation via localized sampling, i. e., for some $m \in \mathbb{N} \setminus \{1\}$ we consider

$$(R_{\operatorname{rect},m}f)(t) \coloneqq \sum_{\ell \in \mathbb{Z}} f\left(\frac{\ell}{L}\right) \operatorname{sinc}\left(L\pi\left(t - \frac{\ell}{L}\right)\right) \mathbf{1}_{[-m/L, m/L]}\left(t - \frac{\ell}{L}\right), \quad t \in \mathbb{R}$$
(*)

Localized sampling

Problem:

$$f(t) = \sum_{\ell \in \mathbb{Z}} f\left(\frac{\ell}{L}\right) \operatorname{sinc}\left(L\pi\left(t - \frac{\ell}{L}\right)\right), \quad t \in \mathbb{R}$$

infinitely many samples ~> impossible in practice

Solution: truncation via localized sampling, i. e., for some $m \in \mathbb{N} \setminus \{1\}$ we consider

$$(R_{\operatorname{rect},m}f)(t) \coloneqq \sum_{\ell \in \mathbb{Z}} f\left(\frac{\ell}{L}\right) \operatorname{sinc}\left(L\pi\left(t - \frac{\ell}{L}\right)\right) \mathbf{1}_{[-m/L, m/L]}\left(t - \frac{\ell}{L}\right), \quad t \in \mathbb{R}$$
(*)

Lemma (Micchelli, Xu, Zhang 09)

Let $f \in \mathcal{B}_{N/2}(\mathbb{R})$ with fixed $N \in \mathbb{N}$, $L := N(1 + \lambda)$ with $\lambda \ge 0$ and $m \in \mathbb{N} \setminus \{1\}$ be given. Then it holds

$$||f - R_{\operatorname{rect},m}f||_{C_0(\mathbb{R})} \le \frac{\sqrt{L}}{\pi} \sqrt{\frac{2}{m} + \frac{1}{m^2}} ||f||_{L^2(\mathbb{R})}.$$

 \Rightarrow Since sinc decays slowly at infinity, (*) is not a good approximation.

On regularized Shannon sampling formulas with localized sampling Introduction

Regularized Shannon sampling formula with localized sampling

Modification: multiply sinc with a more convenient window φ , i. e.,

$$(R_{\varphi,m}f)(t) = \sum_{\ell \in \mathbb{Z}} f\left(\frac{\ell}{L}\right) \operatorname{sinc}\left(L\pi\left(t - \frac{\ell}{L}\right)\right) \varphi_m\left(t - \frac{\ell}{L}\right), \quad t \in \mathbb{R},$$
[Qian 03],
[Lin, Zhang 17]

with $m \in \mathbb{N} \setminus \{1\}$ and $\varphi_m(x) \coloneqq \varphi(x) \mathbf{1}_{[-m/L, m/L]}(x)$ with compact support

On regularized Shannon sampling formulas with localized sampling

Regularized Shannon sampling formula with localized sampling

Modification: multiply sinc with a more convenient window φ , i. e.,

$$(R_{\varphi,m}f)(t) = \sum_{\ell \in \mathbb{Z}} f\left(\frac{\ell}{L}\right) \operatorname{sinc}\left(L\pi\left(t - \frac{\ell}{L}\right)\right) \varphi_m\left(t - \frac{\ell}{L}\right), \quad t \in \mathbb{R},$$
[Qian 03]

with $m \in \mathbb{N} \setminus \{1\}$ and $\varphi_m(x) \coloneqq \varphi(x) \mathbf{1}_{[-m/L, m/L]}(x)$ with compact support

On regularized Shannon sampling formulas with localized sampling

Regularized Shannon sampling formula with localized sampling

Modification: multiply sinc with a more convenient window φ , i. e.,

$$(R_{\varphi,m}f)(t) = \sum_{\ell \in \mathbb{Z}} f\left(\frac{\ell}{L}\right) \operatorname{sinc}\left(L\pi\left(t - \frac{\ell}{L}\right)\right) \varphi_m\left(t - \frac{\ell}{L}\right), \quad t \in \mathbb{R},$$
[Qian 03],
[Lin, Zhang 17]

with $m \in \mathbb{N} \setminus \{1\}$ and $\varphi_m(x) \coloneqq \varphi(x) \mathbf{1}_{[-m/L, m/L]}(x)$ with compact support

On regularized Shannon sampling formulas with localized sampling Introduction

Regularized Shannon sampling formula with localized sampling

Modification: multiply sinc with a more convenient window φ , i. e.,

$$(R_{\varphi,m}f)(t) = \sum_{\ell \in \mathbb{Z}} f\left(\frac{\ell}{L}\right) \operatorname{sinc}\left(L\pi\left(t - \frac{\ell}{L}\right)\right) \varphi_m\left(t - \frac{\ell}{L}\right), \quad t \in \mathbb{R},$$
[Qian 03],
[Lin, Zhang 17]

with $m \in \mathbb{N} \setminus \{1\}$ and $\varphi_m(x) \coloneqq \varphi(x) \mathbf{1}_{[-m/L, m/L]}(x)$ with compact support

Simplified notation:

For
$$t \in (0, \frac{1}{L})$$
:
 $(R_{\varphi,m}f)(t) = \sum_{\ell=-m+1}^{m} f\left(\frac{\ell}{L}\right) \operatorname{sinc}\left(L\pi\left(t-\frac{\ell}{L}\right)\right) \varphi_m\left(t-\frac{\ell}{L}\right)$

 \rightsquigarrow only 2m samples $f\left(\frac{\ell}{L}\right)$

On regularized Shannon sampling formulas with localized sampling Introduction

Regularized Shannon sampling formula with localized sampling

Modification: multiply sinc with a more convenient window φ , i. e.,

$$(R_{\varphi,m}f)(t) = \sum_{\ell \in \mathbb{Z}} f\left(\frac{\ell}{L}\right) \operatorname{sinc}\left(L\pi\left(t - \frac{\ell}{L}\right)\right) \varphi_m\left(t - \frac{\ell}{L}\right), \quad t \in \mathbb{R},$$
[Qian 03],
[Lin, Zhang 17]

with $m \in \mathbb{N} \setminus \{1\}$ and $\varphi_m(x) \coloneqq \varphi(x) \mathbf{1}_{[-m/L, m/L]}(x)$ with compact support

Simplified notation:

For $t \in (0, \frac{1}{L})$: $(R_{\varphi,m}f)(t+\frac{k}{L}) = \sum_{\ell=-m+1}^{m} f(\frac{\ell+k}{L}) \operatorname{sinc}(L\pi(t-\frac{\ell}{L})) \varphi_m(t-\frac{\ell}{L}),$ on $(\frac{k}{L}, \frac{k+1}{L}), k \in \mathbb{Z}$

 \rightarrow only 2m samples $f\left(\frac{\ell}{L}\right)$

- Gaussian window function:
 - [Qian 03], [Qian, Craemer 06], and references therein
 - [Lin, Zhang 17]: improvement of error bounds for L = N = 1
 - [Qian, Craemer 05]: noisy samples

- Gaussian window function:
 - [Qian 03], [Qian, Craemer 06], and references therein
 - [Lin, Zhang 17]: improvement of error bounds for L = N = 1
 - [Qian, Craemer 05]: noisy samples
- · Generalizations to holomorphic functions:
 - [Schmeisser, Stenger 07] using contour integration
 - [Tanaka, Sugihara, Murota 08] for approximation of derivatives of f

- Gaussian window function:
 - [Qian 03], [Qian, Craemer 06], and references therein
 - [Lin, Zhang 17]: improvement of error bounds for L = N = 1
 - [Qian, Craemer 05]: noisy samples
- Generalizations to holomorphic functions:
 - [Schmeisser, Stenger 07] using contour integration
 - [Tanaka, Sugihara, Murota 08] for approximation of derivatives of f
- survey of different approaches for window functions: [Qian 04]

- Gaussian window function:
 - [Qian 03], [Qian, Craemer 06], and references therein
 - [Lin, Zhang 17]: improvement of error bounds for L = N = 1
 - [Qian, Craemer 05]: noisy samples
- Generalizations to holomorphic functions:
 - [Schmeisser, Stenger 07] using contour integration
 - [Tanaka, Sugihara, Murota 08] for approximation of derivatives of f
- survey of different approaches for window functions: [Qian 04]
- approach in Fourier space: [Strohmer, Tanner 06]
 aim is to find a regularization function with smooth Fourier transform

- Gaussian window function:
 - [Qian 03], [Qian, Craemer 06], and references therein
 - [Lin, Zhang 17]: improvement of error bounds for L = N = 1
 - [Qian, Craemer 05]: noisy samples
- Generalizations to holomorphic functions:
 - [Schmeisser, Stenger 07] using contour integration
 - [Tanaka, Sugihara, Murota 08] for approximation of derivatives of f
- survey of different approaches for window functions: [Qian 04]
- approach in Fourier space: [Strohmer, Tanner 06]
 → aim is to find a regularization function with smooth Fourier transform

Now: propose new set of window functions φ with small support \rightsquigarrow high accuracy + fast evaluation

Window functions $\varphi : \mathbb{R} \to [0, 1]$

Let $L \coloneqq N(1 + \lambda)$, $\lambda \ge 0$, and $m \in \mathbb{N} \setminus \{1\}$ with $2m \ll L$.

We introduce a set $\Phi_{m,L}$ of window functions with the following properties:

- **()** $\varphi \in L^2(\mathbb{R})$ is even, positive on (-m/L, m/L) and continuous on $\mathbb{R} \setminus \{-m/L, m/L\}$
- **2** $\varphi|_{[0,\infty)}$ is non-increasing with $\varphi(0) = 1$
- **(3)** the Fourier transform $\hat{\varphi}(v) \coloneqq \int_{\mathbb{R}} \varphi(x) e^{-2\pi i v x} dx$ is explicitly known

Window functions $\varphi : \mathbb{R} \to [0, 1]$

Let $L \coloneqq N(1 + \lambda)$, $\lambda \ge 0$, and $m \in \mathbb{N} \setminus \{1\}$ with $2m \ll L$.

We introduce a set $\Phi_{m,L}$ of window functions with the following properties:

- **1** $\varphi \in L^2(\mathbb{R})$ is even, positive on (-m/L, m/L) and continuous on $\mathbb{R} \setminus \{-m/L, m/L\}$ **2** $\varphi|_{[0,\infty)}$ is non-increasing with $\varphi(0) = 1$
- **3** the Fourier transform $\hat{\varphi}(v) \coloneqq \int_{\mathbb{R}} \varphi(x) e^{-2\pi i v x} dx$ is explicitly known

Examples:

$$\varphi_{\mathrm{rect}}(x) := \mathbf{1}_{[-m/L, m/L]}(x)$$

$$\varphi_{\text{Gauss}}(x) \coloneqq e^{-x^2/(2\sigma^2)}, \sigma > 0$$

$$\varphi_{\mathrm{B}}(x) \coloneqq \frac{1}{M_{2s}(0)} M_{2s}\left(\frac{Lxs}{m}\right) \, , s > 0$$

 $\varphi_{\sinh}(x) \coloneqq \frac{1}{\sinh\beta} \sinh\left(\beta \sqrt{1 - (Lx/m)^2}\right), \beta > 0$

[Potts, Tasche 21]

Melanie Kircheis, Chemnitz University of Technology, Faculty of Mathematics

Estimate of the uniform approximation error

Theorem (K., Potts, Tasche 22)

Let $f \in \mathcal{B}_{\delta}(\mathbb{R})$ with $\delta = \tau N$, $\tau \in (0, 1/2)$, $N \in \mathbb{N}$, $L = N(1 + \lambda)$ with $\lambda \ge 0$ and $m \in \mathbb{N} \setminus \{1\}$. Further let $\varphi \in \Phi_{m,L}$ with $\varphi_m(x) \coloneqq \varphi(x) \mathbf{1}_{[-m/L, m/L]}(x)$ be given. Then it holds

$$||f - R_{\varphi,m}f||_{C_0(\mathbb{R})} \le (E_1(m,\delta,L) + E_2(m,\delta,L)) ||f||_{L^2(\mathbb{R})},$$

where the corresponding error constants are defined by

$$E_1(m,\delta,L) \coloneqq \sqrt{2\delta} \max_{v \in [-\delta,\delta]} \left| 1 - \int_{v-\frac{L}{2}}^{v+\frac{L}{2}} \hat{\varphi}(u) \,\mathrm{d}u \right| ,$$
$$E_2(m,\delta,L) \coloneqq \frac{\sqrt{2L}}{\pi m} \left(\varphi^2(\frac{m}{L}) + L \int_{\frac{m}{L}}^{\infty} \varphi^2(t) \,\mathrm{d}t \right)^{1/2}$$

regularization error $e_1(t)$

truncation error $e_{2,0}(t)$

with $\psi(x) \coloneqq \operatorname{sinc}(L\pi x) \varphi(x)$.

Only consider $t \in \left[0, \frac{1}{L}\right]$ and split the approximation error

$$f(t) - (R_{\varphi,m}f)(t) = \underbrace{f(t) - \sum_{\ell \in \mathbb{Z}} f\left(\frac{\ell}{L}\right) \psi\left(t - \frac{\ell}{L}\right)}_{\text{regularization error } e_1(t)} + \underbrace{\sum_{\ell \in \mathbb{Z}} f\left(\frac{\ell}{L}\right) \psi\left(t - \frac{\ell}{L}\right) - (R_{\varphi,m}f)(t)}_{\text{truncation error } e_{2,0}(t)}$$

with $\psi(x) \coloneqq \operatorname{sinc}(L\pi x) \varphi(x)$.

(i) Regularization error: Fourier transform yields

$$\hat{e}_1(v) = \hat{f}(v) - \left(\sum_{\ell \in \mathbb{Z}} f\left(\frac{\ell}{L}\right) \frac{1}{L} e^{-2\pi i v \ell/L} \right) \int_{v-L/2}^{v+L/2} \hat{\varphi}(u) \, \mathrm{d}u \qquad , \quad v \in [-\delta, \delta]$$

Only consider $t \in \left[0, \frac{1}{L}\right]$ and split the approximation error

$$f(t) - (R_{\varphi,m}f)(t) = \underbrace{f(t) - \sum_{\ell \in \mathbb{Z}} f\left(\frac{\ell}{L}\right) \psi\left(t - \frac{\ell}{L}\right)}_{\text{regularization error } e_1(t)} + \underbrace{\sum_{\ell \in \mathbb{Z}} f\left(\frac{\ell}{L}\right) \psi\left(t - \frac{\ell}{L}\right) - (R_{\varphi,m}f)(t)}_{\text{truncation error } e_{2,0}(t)}$$

with
$$\psi(x) \coloneqq \operatorname{sinc}(L\pi x) \varphi(x)$$
.

(i) Regularization error: Fourier transform yields

$$\hat{e}_1(v) = \hat{f}(v) - \underbrace{\left(\sum_{\ell \in \mathbb{Z}} f\left(\frac{\ell}{L}\right) \frac{1}{L} e^{-2\pi i v \ell/L}\right)}_{\hat{f}(v)} \int_{v-L/2}^{v+L/2} \hat{\varphi}(u) \, \mathrm{d}u \eqqcolon \hat{f}(v) \, \eta(v) \,, \quad v \in [-\delta, \delta]$$

Only consider $t \in \left[0, \frac{1}{L}\right]$ and split the approximation error

$$f(t) - (R_{\varphi,m}f)(t) = \underbrace{f(t) - \sum_{\ell \in \mathbb{Z}} f\left(\frac{\ell}{L}\right) \psi\left(t - \frac{\ell}{L}\right)}_{\text{regularization error } e_1(t)} + \underbrace{\sum_{\ell \in \mathbb{Z}} f\left(\frac{\ell}{L}\right) \psi\left(t - \frac{\ell}{L}\right) - (R_{\varphi,m}f)(t)}_{\text{truncation error } e_{2,0}(t)}$$

with
$$\psi(x) \coloneqq \operatorname{sinc}(L\pi x) \varphi(x)$$
.

(i) Regularization error: Fourier transform yields

$$\hat{e}_1(v) = \hat{f}(v) - \underbrace{\left(\sum_{\ell \in \mathbb{Z}} f\left(\frac{\ell}{L}\right) \frac{1}{L} e^{-2\pi i v \ell/L}\right)}_{\hat{f}(v)} \int_{v-L/2}^{v+L/2} \hat{\varphi}(u) \, \mathrm{d}u \eqqcolon \hat{f}(v) \, \eta(v) \,, \quad v \in [-\delta, \delta]$$

and thereby

$$|e_1(t)| \leq \int_{\mathbb{R}} |\hat{e}_1(v)| \, \mathrm{d}v \leq \max_{v \in [-\delta, \delta]} |\eta(v)| \int_{-\delta}^{\delta} |\hat{f}(v)| \, \mathrm{d}v$$

Only consider $t \in \left[0, \frac{1}{L}\right]$ and split the approximation error

$$f(t) - (R_{\varphi,m}f)(t) = \underbrace{f(t) - \sum_{\ell \in \mathbb{Z}} f\left(\frac{\ell}{L}\right) \psi\left(t - \frac{\ell}{L}\right)}_{\text{regularization error } e_1(t)} + \underbrace{\sum_{\ell \in \mathbb{Z}} f\left(\frac{\ell}{L}\right) \psi\left(t - \frac{\ell}{L}\right) - (R_{\varphi,m}f)(t)}_{\text{truncation error } e_{2,0}(t)}$$

with
$$\psi(x) \coloneqq \operatorname{sinc}(L\pi x) \varphi(x)$$
.

(i) Regularization error: Fourier transform yields

$$\hat{e}_1(v) = \hat{f}(v) - \underbrace{\left(\sum_{\ell \in \mathbb{Z}} f\left(\frac{\ell}{L}\right) \frac{1}{L} e^{-2\pi i v \ell/L}\right)}_{\hat{f}(v)} \int_{v-L/2}^{v+L/2} \hat{\varphi}(u) \, \mathrm{d}u \eqqcolon \hat{f}(v) \, \eta(v) \,, \quad v \in [-\delta, \delta]$$

and thereby

$$|e_1(t)| \le \int_{\mathbb{R}} |\hat{e}_1(v)| \, \mathrm{d}v \le \max_{v \in [-\delta, \delta]} |\eta(v)| \int_{-\delta}^{\delta} |\hat{f}(v)| \, \mathrm{d}v \le \sqrt{2\delta} \max_{v \in [-\delta, \delta]} |\eta(v)| \cdot \|f\|_{L^2(\mathbb{R})}.$$

(ii) Truncation error: Let $\mathcal{J}_m \coloneqq \{-m+1, \ldots, m\}$, then

$$e_{2,0}(t) = \sum_{\ell \in \mathbb{Z}} f\left(\frac{\ell}{L}\right) \psi\left(t - \frac{\ell}{L}\right) \left[1 - \mathbf{1}_{\left[-m/L, m/L\right]}\left(t - \frac{\ell}{L}\right)\right] = \sum_{\ell \in \mathbb{Z} \setminus \mathcal{J}_{m}} f\left(\frac{\ell}{L}\right) \psi\left(t - \frac{\ell}{L}\right)$$

(ii) Truncation error: Let $\mathcal{J}_m \coloneqq \{-m+1,\ldots,m\}$, then

$$e_{2,0}(t) = \sum_{\ell \in \mathbb{Z}} f\left(\frac{\ell}{L}\right) \psi\left(t - \frac{\ell}{L}\right) \left[1 - \mathbf{1}_{\left[-m/L, m/L\right]}\left(t - \frac{\ell}{L}\right)\right] = \sum_{\ell \in \mathbb{Z} \setminus \mathcal{J}_m} f\left(\frac{\ell}{L}\right) \psi\left(t - \frac{\ell}{L}\right)$$

such that

$$|e_{2,0}(t)| \leq \sum_{\ell \in \mathbb{Z} \setminus \mathcal{J}_m} \left| f\left(\frac{\ell}{L}\right) \right| \left| \operatorname{sinc}\left(L\pi\left(t - \frac{\ell}{L}\right)\right) \right| \varphi\left(t - \frac{\ell}{L}\right) \leq \frac{1}{\pi m} \sum_{\ell \in \mathbb{Z} \setminus \mathcal{J}_m} \left| f\left(\frac{\ell}{L}\right) \right| \varphi\left(t - \frac{\ell}{L}\right)$$

(ii) Truncation error: Let $\mathcal{J}_m \coloneqq \{-m+1,\ldots,m\}$, then

$$e_{2,0}(t) = \sum_{\ell \in \mathbb{Z}} f\left(\frac{\ell}{L}\right) \psi\left(t - \frac{\ell}{L}\right) \left[1 - \mathbf{1}_{\left[-m/L, m/L\right]}\left(t - \frac{\ell}{L}\right)\right] = \sum_{\ell \in \mathbb{Z} \setminus \mathcal{J}_m} f\left(\frac{\ell}{L}\right) \psi\left(t - \frac{\ell}{L}\right)$$

such that

$$|e_{2,0}(t)| \leq \sum_{\ell \in \mathbb{Z} \setminus \mathcal{J}_m} |f(\frac{\ell}{L})| \left| \operatorname{sinc} \left(L\pi \left(t - \frac{\ell}{L} \right) \right) \right| \varphi(t - \frac{\ell}{L}) \leq \frac{1}{\pi m} \sum_{\ell \in \mathbb{Z} \setminus \mathcal{J}_m} |f(\frac{\ell}{L})| \varphi(t - \frac{\ell}{L})$$
$$\leq \frac{1}{\pi m} \sqrt{L} \|f\|_{L^2(\mathbb{R})} \left(\sum_{\ell \in \mathbb{Z} \setminus \mathcal{J}_m} \varphi^2(t - \frac{\ell}{L}) \right)^{1/2}$$

 $\ell \in \mathbb{Z} \setminus \mathcal{J}_m$

(ii) Truncation error: Let $\mathcal{J}_m \coloneqq \{-m+1,\ldots,m\}$, then

 $\overline{\ell - m}$

$$e_{2,0}(t) = \sum_{\ell \in \mathbb{Z}} f\left(\frac{\ell}{L}\right) \psi\left(t - \frac{\ell}{L}\right) \left[1 - \mathbf{1}_{\left[-m/L, m/L\right]}\left(t - \frac{\ell}{L}\right)\right] = \sum_{\ell \in \mathbb{Z} \setminus \mathcal{J}_m} f\left(\frac{\ell}{L}\right) \psi\left(t - \frac{\ell}{L}\right)$$

such that

$$\begin{aligned} |e_{2,0}(t)| &\leq \sum_{\ell \in \mathbb{Z} \setminus \mathcal{J}_m} \left| f\left(\frac{\ell}{L}\right) \right| \left| \operatorname{sinc}\left(L\pi\left(t - \frac{\ell}{L}\right)\right) \right| \varphi\left(t - \frac{\ell}{L}\right) &\leq \frac{1}{\pi m} \sum_{\ell \in \mathbb{Z} \setminus \mathcal{J}_m} \left| f\left(\frac{\ell}{L}\right) \right| \varphi\left(t - \frac{\ell}{L}\right) \\ &\leq \frac{1}{\pi m} \sqrt{L} \, \|f\|_{L^2(\mathbb{R})} \left(\sum_{\ell \in \mathbb{Z} \setminus \mathcal{J}_m} \varphi^2\left(t - \frac{\ell}{L}\right) \right)^{1/2} \\ \text{and} \\ &\sum \varphi^2\left(t - \frac{\ell}{L}\right) = \sum_{\ell \in \mathbb{Z} \setminus \mathcal{J}_m} \varphi^2\left(t + \frac{\ell}{L}\right) + \sum_{\ell \in \mathbb{Z} \setminus \mathcal{J}_m} \varphi^2\left(t - \frac{\ell}{L}\right) \leq 2 \sum_{\ell \in \mathbb{Z} \setminus \mathcal{J}_m} \varphi^2\left(\frac{\ell}{L}\right) \end{aligned}$$

 $\ell = m + 1$

 $\ell = m$

(ii) Truncation error: Let $\mathcal{J}_m \coloneqq \{-m+1,\ldots,m\}$, then

$$e_{2,0}(t) = \sum_{\ell \in \mathbb{Z}} f\left(\frac{\ell}{L}\right) \psi\left(t - \frac{\ell}{L}\right) \left[1 - \mathbf{1}_{\left[-m/L, m/L\right]}\left(t - \frac{\ell}{L}\right)\right] = \sum_{\ell \in \mathbb{Z} \setminus \mathcal{J}_m} f\left(\frac{\ell}{L}\right) \psi\left(t - \frac{\ell}{L}\right)$$

such that

$$\begin{aligned} |e_{2,0}(t)| &\leq \sum_{\ell \in \mathbb{Z} \setminus \mathcal{J}_m} \left| f\left(\frac{\ell}{L}\right) \right| \left| \operatorname{sinc}\left(L\pi\left(t - \frac{\ell}{L}\right)\right) \right| \varphi\left(t - \frac{\ell}{L}\right) &\leq \frac{1}{\pi m} \sum_{\ell \in \mathbb{Z} \setminus \mathcal{J}_m} \left| f\left(\frac{\ell}{L}\right) \right| \varphi\left(t - \frac{\ell}{L}\right) \\ &\leq \frac{1}{\pi m} \sqrt{L} \, \|f\|_{L^2(\mathbb{R})} \left(\sum_{\ell \in \mathbb{Z} \setminus \mathcal{J}_m} \varphi^2\left(t - \frac{\ell}{L}\right) \right)^{1/2} \\ \text{and} \\ &\sum_{\ell \in \mathbb{Z} \setminus \mathcal{J}_m} \varphi^2\left(t - \frac{\ell}{L}\right) = \sum_{\ell = m}^{\infty} \varphi^2\left(t + \frac{\ell}{L}\right) + \sum_{\ell = m+1}^{\infty} \varphi^2\left(t - \frac{\ell}{L}\right) \leq 2 \sum_{\ell = m}^{\infty} \varphi^2\left(\frac{\ell}{L}\right) \\ &< 2 \, \varphi^2\left(\frac{m}{L}\right) + 2 \int_m^{\infty} \varphi^2\left(\frac{t}{L}\right) \, \mathrm{d}t = 2 \, \varphi^2\left(\frac{m}{L}\right) + 2L \, \int_{m/L}^{\infty} \varphi^2(t) \, \mathrm{d}t. \end{aligned}$$

Simplified result

This theorem can be simplified, if the window function $arphi \in \Phi_{m,L}$

- (1) is continuous on ${\mathbb R}$
- **2** vanishes on $\mathbb{R} \setminus \left[-\frac{m}{L}, \frac{m}{L} \right]$

Simplified result

This theorem can be simplified, if the window function $arphi \in \Phi_{m,L}$

- $oldsymbol{0}$ is continuous on $\mathbb R$
- **2** vanishes on $\mathbb{R} \setminus \left[-\frac{m}{L}, \frac{m}{L} \right]$
- \Rightarrow truncation errors vanish \Rightarrow $E_2(m, \delta, L) = 0$
- \Rightarrow simple error estimate

$$||f - R_{\varphi,m}f||_{C_0(\mathbb{R})} \le E_1(m,\delta,L) ||f||_{L^2(\mathbb{R})}$$

Simplified result

This theorem can be simplified, if the window function $arphi \in \Phi_{m,L}$

- $oldsymbol{0}$ is continuous on $\mathbb R$
- **2** vanishes on $\mathbb{R} \setminus \left[-\frac{m}{L}, \frac{m}{L} \right]$
- \Rightarrow truncation errors vanish \Rightarrow $E_2(m, \delta, L) = 0$
- \Rightarrow simple error estimate

$$||f - R_{\varphi,m}f||_{C_0(\mathbb{R})} \le E_1(m,\delta,L) ||f||_{L^2(\mathbb{R})}$$

Examples:

✓ B-spline
✓ Gaussian
→ does not vanish on $\mathbb{R} \setminus \left[-\frac{m}{L}, \frac{m}{L} \right]$ ✓ sinh-type
✓ characteristic
→ not continuous on \mathbb{R}

Results for special window functions & parameter choice

Only have to estimate the error constants $E_j(m, \delta, L)$, j = 1, 2.

 \Rightarrow uniform approximation error decays exponentially with respect to m for

Results for special window functions & parameter choice

Only have to estimate the error constants $E_j(m, \delta, L)$, j = 1, 2.

 \Rightarrow uniform approximation error decays exponentially with respect to m for

Gaussian window function

$$||f - R_{\text{Gauss},m}f||_{C_0(\mathbb{R})} \le c_1 \,\mathrm{e}^{-m \cdot c_2} \,||f||_{L^2(\mathbb{R})}, \quad \sigma = \sqrt{\frac{m}{\pi L \,(L-2\delta)}}$$

ightarrow improves decay rate in [Qian 03] and [Lin, Zhang 17] from (m-1) to m

Results for special window functions & parameter choice

Only have to estimate the error constants $E_j(m, \delta, L)$, j = 1, 2.

 \Rightarrow uniform approximation error decays exponentially with respect to m for

Gaussian window function

$$\|f - R_{\text{Gauss},m}f\|_{C_0(\mathbb{R})} \le \frac{2\sqrt{\pi\delta Lm} + L(m+1)}{\pi m \sqrt{\pi(L-2\delta)}} \,\mathrm{e}^{-m \cdot \pi(\frac{1}{2} - \frac{\delta}{L})} \,\|f\|_{L^2(\mathbb{R})} \,, \quad \sigma = \sqrt{\frac{m}{\pi L \,(L-2\delta)}} \,.$$

ightarrow improves decay rate in [Qian 03] and [Lin, Zhang 17] from (m-1) to m

Results for special window functions & parameter choice

Only have to estimate the error constants $E_j(m, \delta, L)$, j = 1, 2.

 \Rightarrow uniform approximation error decays exponentially with respect to m for

Gaussian window function

$$\|f - R_{\text{Gauss},m}f\|_{C_0(\mathbb{R})} \le \frac{2\sqrt{\pi\delta Lm} + L(m+1)}{\pi m \sqrt{\pi(L-2\delta)}} \,\mathrm{e}^{-m \cdot \pi(\frac{1}{2} - \frac{\delta}{L})} \,\|f\|_{L^2(\mathbb{R})} \,, \quad \sigma = \sqrt{\frac{m}{\pi L \,(L-2\delta)}} \,.$$

ightarrow improves decay rate in [Qian 03] and [Lin, Zhang 17] from (m-1) to m

modified B-spline window function

$$||f - R_{\mathrm{B},m}f||_{C_0(\mathbb{R})} \le c_1 \,\mathrm{e}^{-m \cdot c_2} \,||f||_{L^2(\mathbb{R})}, \quad s = \left\lceil \frac{m+1}{2} \right\rceil$$

Results for special window functions & parameter choice

Only have to estimate the error constants $E_j(m, \delta, L)$, j = 1, 2.

 \Rightarrow uniform approximation error decays exponentially with respect to m for

Gaussian window function

$$\|f - R_{\text{Gauss},m}f\|_{C_0(\mathbb{R})} \le \frac{2\sqrt{\pi\delta Lm} + L(m+1)}{\pi m \sqrt{\pi(L-2\delta)}} \,\mathrm{e}^{-m \cdot \pi (\frac{1}{2} - \frac{\delta}{L})} \,\|f\|_{L^2(\mathbb{R})} \,, \quad \sigma = \sqrt{\frac{m}{\pi L \,(L-2\delta)}} \,.$$

ightarrow improves decay rate in [Qian 03] and [Lin, Zhang 17] from (m-1) to m

modified B-spline window function

$$\|f - R_{\mathrm{B},m}f\|_{C_0(\mathbb{R})} \le \frac{3\sqrt{\delta s}}{(2s-1)\pi} \mathrm{e}^{-m \cdot \ln\left(\frac{\pi m \left(1+\lambda-2\tau\right)}{2s(1+\lambda)}\right)} \|f\|_{L^2(\mathbb{R})}, \quad s = \left\lceil \frac{m+1}{2} \right\rceil$$

Results for special window functions & parameter choice

Only have to estimate the error constants $E_j(m, \delta, L)$, j = 1, 2.

 \Rightarrow uniform approximation error decays exponentially with respect to m for

Gaussian window function

$$\|f - R_{\text{Gauss},m}f\|_{C_0(\mathbb{R})} \le \frac{2\sqrt{\pi\delta Lm} + L(m+1)}{\pi m \sqrt{\pi(L-2\delta)}} \,\mathrm{e}^{-m \cdot \pi (\frac{1}{2} - \frac{\delta}{L})} \,\|f\|_{L^2(\mathbb{R})} \,, \quad \sigma = \sqrt{\frac{m}{\pi L \,(L-2\delta)}} \,.$$

ightarrow improves decay rate in [Qian 03] and [Lin, Zhang 17] from (m-1) to m

modified B-spline window function

$$\|f - R_{\mathrm{B},m}f\|_{C_0(\mathbb{R})} \le \frac{3\sqrt{\delta s}}{(2s-1)\pi} \mathrm{e}^{-m \cdot \ln\left(\frac{\pi m \left(1+\lambda-2\tau\right)}{2s(1+\lambda)}\right)} \|f\|_{L^2(\mathbb{R})}, \quad s = \left\lceil \frac{m+1}{2} \right\rceil$$

sinh-type window function

$$||f - R_{\sinh,m}f||_{C_0(\mathbb{R})} \le c_1 e^{-m \cdot c_2} ||f||_{L^2(\mathbb{R})}, \quad \beta = \frac{\pi m (1 + \lambda - 2\tau)}{1 + \lambda}$$

Results for special window functions & parameter choice

Only have to estimate the error constants $E_j(m, \delta, L)$, j = 1, 2.

- \Rightarrow uniform approximation error decays exponentially with respect to m for
 - Gaussian window function

$$\|f - R_{\text{Gauss},m}f\|_{C_0(\mathbb{R})} \le \frac{2\sqrt{\pi\delta Lm} + L(m+1)}{\pi m \sqrt{\pi(L-2\delta)}} \,\mathrm{e}^{-m \cdot \pi(\frac{1}{2} - \frac{\delta}{L})} \,\|f\|_{L^2(\mathbb{R})} \,, \quad \sigma = \sqrt{\frac{m}{\pi L \,(L-2\delta)}} \,.$$

ightarrow improves decay rate in [Qian 03] and [Lin, Zhang 17] from (m-1) to m

modified B-spline window function

$$\|f - R_{\mathrm{B},m}f\|_{C_0(\mathbb{R})} \le \frac{3\sqrt{\delta s}}{(2s-1)\pi} \mathrm{e}^{-m \cdot \ln\left(\frac{\pi m \left(1+\lambda-2\tau\right)}{2s(1+\lambda)}\right)} \|f\|_{L^2(\mathbb{R})}, \quad s = \left\lceil \frac{m+1}{2} \right\rceil$$

sinh-type window function

$$\|f - R_{\sinh,m}f\|_{C_0(\mathbb{R})} \le 3\sqrt{2\delta} \,\mathrm{e}^{-\beta} \,\|f\|_{L^2(\mathbb{R})} \,, \quad \beta = \frac{\pi m \left(1 + \lambda - 2\tau\right)}{1 + \lambda}$$

Estimate of the uniform perturbation error

Consider noisy samples $\tilde{f}_{\ell} \coloneqq f\left(\frac{\ell}{L}\right) + \varepsilon_{\ell}$ with $|\varepsilon_{\ell}| \leq \varepsilon$, $\ell \in \mathbb{Z}$, and $\varepsilon > 0$.

- [Daubechies, DeVore 03]: classical Shannon series is not robust
- But: regularized Shannon sampling formula is

Estimate of the uniform perturbation error

Consider noisy samples $\tilde{f}_{\ell} \coloneqq f\left(\frac{\ell}{L}\right) + \varepsilon_{\ell}$ with $|\varepsilon_{\ell}| \leq \varepsilon$, $\ell \in \mathbb{Z}$, and $\varepsilon > 0$.

- [Daubechies, DeVore 03]: classical Shannon series is not robust
- But: regularized Shannon sampling formula is

Define

$$(R_{\varphi,m}\tilde{f})(t) = \sum_{\ell \in \mathbb{Z}} \tilde{f}_{\ell} \operatorname{sinc} \left(L\pi \left(t - \frac{\ell}{L} \right) \right) \varphi_m \left(t - \frac{\ell}{L} \right), \quad t \in \mathbb{R}.$$

Theorem (K., Potts, Tasche 22)

Let $f \in \mathcal{B}_{\delta}(\mathbb{R})$ with $\delta = \tau N$, $\tau \in (0, 1/2)$, $N \in \mathbb{N}$, $L = N(1 + \lambda)$ with $\lambda \ge 0$ and $m \in \mathbb{N} \setminus \{1\}$. Further let $\varphi \in \Phi_{m,L}$ and $\tilde{f}_{\ell} = f(\ell/L) + \varepsilon_{\ell}$, where $|\varepsilon_{\ell}| \le \varepsilon$ for all $\ell \in \mathbb{Z}$, with $\varepsilon > 0$ be given. Then it holds

$$\begin{split} \|R_{\varphi,m}\tilde{f} - R_{\varphi,m}f\|_{C_0(\mathbb{R})} &\leq \varepsilon \left(2 + L\,\hat{\varphi}(0)\right), \\ \|f - R_{\varphi,m}\tilde{f}\|_{C_0(\mathbb{R})} &\leq \|f - R_{\varphi,m}f\|_{C_0(\mathbb{R})} + \varepsilon \left(2 + L\,\hat{\varphi}(0)\right). \end{split}$$

Only consider $t \in \left[0, \frac{1}{L}\right]$ and

$$\tilde{e}_0(t) \coloneqq (R_{\varphi,m}\tilde{f})(t) - (R_{\varphi,m}f)(t) = \sum_{\ell \in \mathbb{Z}} \underbrace{\left(\tilde{f}_\ell - f\left(\frac{\ell}{L}\right)\right)}_{=\varepsilon_\ell} \operatorname{sinc}\left(L\pi\left(t - \frac{\ell}{L}\right)\right)\varphi_m\left(t - \frac{\ell}{L}\right)$$

m

Only consider $t \in \left[0, \frac{1}{L}\right]$ and

$$\tilde{e}_{0}(t) \coloneqq (R_{\varphi,m}\tilde{f})(t) - (R_{\varphi,m}f)(t) = \sum_{\ell \in \mathbb{Z}} \underbrace{\left(\tilde{f}_{\ell} - f\left(\frac{\ell}{L}\right)\right)}_{=\varepsilon_{\ell}} \operatorname{sinc}\left(L\pi\left(t - \frac{\ell}{L}\right)\right)\varphi_{m}\left(t - \frac{\ell}{L}\right)$$
such that

$$|\tilde{e}_0(t)| \le \varepsilon \sum_{\ell=-m+1}^m \varphi(t - \frac{\ell}{L})$$

m

Only consider $t \in \left[0, \frac{1}{L}\right]$ and

$$\begin{split} \tilde{e}_{0}(t) &:= (R_{\varphi,m}\tilde{f})(t) - (R_{\varphi,m}f)(t) = \sum_{\ell \in \mathbb{Z}} \underbrace{\left(\tilde{f}_{\ell} - f\left(\frac{\ell}{L}\right)\right)}_{=\varepsilon_{\ell}} \operatorname{sinc}\left(L\pi\left(t - \frac{\ell}{L}\right)\right)\varphi_{m}\left(t - \frac{\ell}{L}\right) \\ \text{such that} \\ |\tilde{e}_{0}(t)| &\leq \varepsilon \sum_{\ell=-m+1}^{m} \varphi\left(t - \frac{\ell}{L}\right) \leq \varepsilon \sum_{\ell=0}^{m-1} \varphi\left(\frac{\ell}{L}\right) + \varepsilon \sum_{\ell=1}^{m} \varphi\left(\frac{1}{L} - \frac{\ell}{L}\right) = 2\varepsilon \sum_{\ell=0}^{m-1} \varphi\left(\frac{\ell}{L}\right) \end{split}$$

Only consider $t \in [0, \frac{1}{L}]$ and $\tilde{e}_0(t) \coloneqq (R_{\varphi,m}\tilde{f})(t) - (R_{\varphi,m}f)(t) = \sum_{\ell \in \mathbb{Z}} \underbrace{\left(\tilde{f}_\ell - f\left(\frac{\ell}{L}\right)\right)}_{=\varepsilon_\ell} \operatorname{sinc}\left(L\pi\left(t - \frac{\ell}{L}\right)\right) \varphi_m\left(t - \frac{\ell}{L}\right)$ such that $|\tilde{e}_0(t)| \le \varepsilon \sum_{\ell=-m+1}^m \varphi\left(t - \frac{\ell}{L}\right) \le \varepsilon \sum_{\ell=0}^{m-1} \varphi\left(\frac{\ell}{L}\right) + \varepsilon \sum_{\ell=1}^m \varphi\left(\frac{1}{L} - \frac{\ell}{L}\right) = 2\varepsilon \sum_{\ell=0}^{m-1} \varphi\left(\frac{\ell}{L}\right)$ $< 2\varepsilon \left(\varphi(0) + \int_0^{m-1} \varphi\left(\frac{t}{L}\right) \operatorname{d}t\right)$

Only consider $t \in [0, \frac{1}{L}]$ and $\tilde{e}_0(t) \coloneqq (R_{\varphi,m}\tilde{f})(t) - (R_{\varphi,m}f)(t) = \sum_{\ell \in \mathbb{Z}} \underbrace{\left(\tilde{f}_\ell - f\left(\frac{\ell}{L}\right)\right)}_{=\varepsilon_\ell} \operatorname{sinc}\left(L\pi\left(t - \frac{\ell}{L}\right)\right) \varphi_m\left(t - \frac{\ell}{L}\right)$ such that $|\tilde{e}_0(t)| \le \varepsilon \sum_{\ell=-m+1}^m \varphi\left(t - \frac{\ell}{L}\right) \le \varepsilon \sum_{\ell=0}^{m-1} \varphi\left(\frac{\ell}{L}\right) + \varepsilon \sum_{\ell=1}^m \varphi\left(\frac{1}{L} - \frac{\ell}{L}\right) = 2\varepsilon \sum_{\ell=0}^{m-1} \varphi\left(\frac{\ell}{L}\right)$ $< 2\varepsilon \left(\varphi(0) + \int_0^{m-1} \varphi\left(\frac{t}{L}\right) \mathrm{d}t\right) = 2\varepsilon \left(1 + L \int_0^{(m-1)/L} \varphi(t) \mathrm{d}t\right).$

Only consider $t \in \left[0, \frac{1}{L}\right]$ and

$$\tilde{e}_0(t) := (R_{\varphi,m}\tilde{f})(t) - (R_{\varphi,m}f)(t) = \sum_{\ell \in \mathbb{Z}} \underbrace{\left(\tilde{f}_\ell - f\left(\frac{\ell}{L}\right)\right)}_{\tau \in \mathcal{I}} \operatorname{sinc}\left(L\pi\left(t - \frac{\ell}{L}\right)\right)\varphi_m\left(t - \frac{\ell}{L}\right)$$

such that

m

$$\begin{split} \tilde{e}_{0}(t) &| \leq \varepsilon \sum_{\ell=-m+1}^{m} \varphi\left(t - \frac{\ell}{L}\right) \leq \varepsilon \sum_{\ell=0}^{m-1} \varphi\left(\frac{\ell}{L}\right) + \varepsilon \sum_{\ell=1}^{m} \varphi\left(\frac{1}{L} - \frac{\ell}{L}\right) = 2\varepsilon \sum_{\ell=0}^{m-1} \varphi\left(\frac{\ell}{L}\right) \\ &< 2\varepsilon \left(\varphi(0) + \int_{0}^{m-1} \varphi\left(\frac{t}{L}\right) \mathrm{d}t\right) = 2\varepsilon \left(1 + L \int_{0}^{(m-1)/L} \varphi(t) \mathrm{d}t\right). \end{split}$$

By definition of Fourier transform

$$\hat{\varphi}(0) = \int_{\mathbb{R}} \varphi(t) \, \mathrm{d}t \ge \int_{-m/L}^{m/L} \varphi(t) \, \mathrm{d}t = 2 \int_{0}^{m/L} \varphi(t) \, \mathrm{d}t,$$

Only consider $t \in [0, \frac{1}{L}]$ and

$$\tilde{e}_0(t) := (R_{\varphi,m}\tilde{f})(t) - (R_{\varphi,m}f)(t) = \sum_{\ell \in \mathbb{Z}} \underbrace{\left(\tilde{f}_\ell - f\left(\frac{\ell}{L}\right)\right)}_{=\varepsilon_\ell} \operatorname{sinc}\left(L\pi\left(t - \frac{\ell}{L}\right)\right)\varphi_m\left(t - \frac{\ell}{L}\right)$$

such that

$$\begin{split} \tilde{e}_{0}(t) &| \leq \varepsilon \sum_{\ell=-m+1}^{m} \varphi\left(t - \frac{\ell}{L}\right) \leq \varepsilon \sum_{\ell=0}^{m-1} \varphi\left(\frac{\ell}{L}\right) + \varepsilon \sum_{\ell=1}^{m} \varphi\left(\frac{1}{L} - \frac{\ell}{L}\right) = 2\varepsilon \sum_{\ell=0}^{m-1} \varphi\left(\frac{\ell}{L}\right) \\ &< 2\varepsilon \left(\varphi(0) + \int_{0}^{m-1} \varphi\left(\frac{t}{L}\right) \mathrm{d}t\right) = 2\varepsilon \left(1 + L \int_{0}^{(m-1)/L} \varphi(t) \mathrm{d}t\right). \end{split}$$

By definition of Fourier transform

$$\hat{\varphi}(0) = \int_{\mathbb{R}} \varphi(t) \, \mathrm{d}t \ge \int_{-m/L}^{m/L} \varphi(t) \, \mathrm{d}t = 2 \int_{0}^{m/L} \varphi(t) \, \mathrm{d}t \,,$$

and therefore

$$|\tilde{e}_0(t)| \le 2\varepsilon \left(1 + L \int_0^{(m-1)/L} \varphi(t) \,\mathrm{d}t\right) \le 2\varepsilon \left(1 + \frac{L}{2}\,\hat{\varphi}(0)\right) = \varepsilon \left(2 + L\,\hat{\varphi}(0)\right).$$

Results for special window functions

$$\|R_{\varphi,m}\tilde{f} - R_{\varphi,m}f\|_{C_0(\mathbb{R})} \le \varepsilon \left(2 + L\,\hat{\varphi}(0)\right)$$

 \rightsquigarrow Only have to compute $\hat{\varphi}(0)$.

 \Rightarrow uniform perturbation error only grows as $\mathcal{O}(\sqrt{m})$ for

Results for special window functions

$$\|R_{\varphi,m}\tilde{f} - R_{\varphi,m}f\|_{C_0(\mathbb{R})} \le \varepsilon \left(2 + L\,\hat{\varphi}(0)\right)$$

 \rightsquigarrow Only have to compute $\hat{\varphi}(0)$.

 \Rightarrow uniform perturbation error only grows as $\mathcal{O}(\sqrt{m})$ for

• Gaussian window function

[Qian, Craemer 05]

$$\|R_{\text{Gauss},m}\tilde{f} - R_{\text{Gauss},m}f\|_{C_0(\mathbb{R})} \le \varepsilon \left(2 + \sqrt{\frac{2+2\lambda}{\lambda+1-2\tau}}\sqrt{m}\right)$$

Results for special window functions

$$\|R_{\varphi,m}\tilde{f} - R_{\varphi,m}f\|_{C_0(\mathbb{R})} \le \varepsilon \left(2 + L\,\hat{\varphi}(0)\right)$$

 \rightsquigarrow Only have to compute $\hat{\varphi}(0)$.

- \Rightarrow uniform perturbation error only grows as $\mathcal{O}(\sqrt{m})$ for
 - Gaussian window function

[Qian, Craemer 05]

$$\|R_{\text{Gauss},m}\tilde{f} - R_{\text{Gauss},m}f\|_{C_0(\mathbb{R})} \le \varepsilon \left(2 + \sqrt{\frac{2+2\lambda}{\lambda+1-2\tau}}\sqrt{m}\right)$$

modified B-spline window function

$$||R_{\mathrm{B},m}\tilde{f} - R_{\mathrm{B},m}f||_{C_0(\mathbb{R})} \le \varepsilon \left(2 + \frac{3}{2}\sqrt{m}\right)$$

Results for special window functions

$$\|R_{\varphi,m}\tilde{f} - R_{\varphi,m}f\|_{C_0(\mathbb{R})} \le \varepsilon \left(2 + L\,\hat{\varphi}(0)\right)$$

 \rightsquigarrow Only have to compute $\hat{\varphi}(0)$.

- \Rightarrow uniform perturbation error only grows as $\mathcal{O}(\sqrt{m})$ for
 - Gaussian window function

[Qian, Craemer 05]

$$\|R_{\text{Gauss},m}\tilde{f} - R_{\text{Gauss},m}f\|_{C_0(\mathbb{R})} \le \varepsilon \left(2 + \sqrt{\frac{2+2\lambda}{\lambda+1-2\tau}}\sqrt{m}\right)$$

modified B-spline window function

$$||R_{\mathrm{B},m}\tilde{f} - R_{\mathrm{B},m}f||_{C_0(\mathbb{R})} \le \varepsilon \left(2 + \frac{3}{2}\sqrt{m}\right)$$

sinh-type window function

$$\|R_{\sinh,m}\tilde{f} - R_{\sinh,m}f\|_{C_0(\mathbb{R})} \le \varepsilon \left(2 + \sqrt{\frac{2+2\lambda}{1+\lambda-2\tau}} \frac{1}{1-\mathrm{e}^{-2\beta}}\sqrt{m}\right)$$

On regularized Shannon sampling formulas with localized sampling Numerical Examples

Numerical example – comparison of window functions φ

Figure: Maximum approximation error (solid) and error constant (dashed) for $f(x) = \delta \operatorname{sinc}^2(\delta \pi x)$ with N = 256, $\tau = 0.45$, $\delta = \tau N$, as well as $m \in \{2, 3, \dots, 10\}$, and $\lambda \in \{0.5, 1, 2\}$.

 \Rightarrow small $m \in \mathbb{N}$ sufficient for high precision

 \Rightarrow fast algorithms with $\mathcal{O}(2m)$ flops

Summary

- overcome drawbacks of Shannon series (poor convergence, non-robustness)
- proposed new window functions with compact support (B-spline, sinh-type)
- general setting: unified approach to error estimates unified approach to numerical robustness
- special windows: uniform approximation error $\sim \mathcal{O}(\mathrm{e}^{-m})$ uniform perturbation error $\sim \mathcal{O}(\sqrt{m})$
- seen superiority of new sinh-type (small $m \in \mathbb{N}$ for high precision in $\mathcal{O}(2m)$ flops)
- K., Potts, Tasche: On regularized Shannon sampling formulas with localized sampling. arXiv:2203.09973, 2022.

Summary

- overcome drawbacks of Shannon series (poor convergence, non-robustness)
- proposed new window functions with compact support (B-spline, sinh-type)
- general setting: unified approach to error estimates unified approach to numerical robustness
- special windows: uniform approximation error $\sim \mathcal{O}(\mathrm{e}^{-m})$ uniform perturbation error $\sim \mathcal{O}(\sqrt{m})$
- seen superiority of new sinh-type (small $m \in \mathbb{N}$ for high precision in $\mathcal{O}(2m)$ flops)
- K., Potts, Tasche: On regularized Shannon sampling formulas with localized sampling. arXiv:2203.09973, 2022.

Thank you for your attention!