
Faculty of Mathematics

Professorship of Applied Functional Analysis

Master’s Thesis

A frame-theoretical approach to the inversion of the NFFT

Melanie Kircheis, B.Sc.

Chemnitz, June 28, 2018

Advisor: Prof. Dr. Daniel Potts
Co-Advisor: Dr. Franziska Nestler



Kircheis, Melanie
A frame-theoretical approach to the inversion of the NFFT
Master’s Thesis, Faculty of Mathematics
Technische Universität Chemnitz, June 2018



Contents

1 Introduction 1

2 Fundamentals 3
2.1 Fourier series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Fast Fourier transform (FFT) . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Nonequispaced fast Fourier transform (NFFT) . . . . . . . . . . . . . 5

2.3.1 The NFFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3.2 The adjoint NFFT . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.3 Matrix-vector notation . . . . . . . . . . . . . . . . . . . . . . 10

3 Inversion of the NFFT 12
3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Inverse NFFT - underdetermined case . . . . . . . . . . . . . . . . . . 16
3.3 Inverse adjoint NFFT - overdetermined case . . . . . . . . . . . . . . 31
3.4 Inverse NFFT - overdetermined case . . . . . . . . . . . . . . . . . . . 35
3.5 Inverse adjoint NFFT - underdetermined case . . . . . . . . . . . . . 48

4 Frames 53
4.1 Basic information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2 Approximation of the inverse frame operator . . . . . . . . . . . . . . 55
4.3 Linking the frame-theoretical approach to the iNFFT . . . . . . . . . 56

4.3.1 Theoretical results . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.3.2 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Summary 63

Bibliography 64

i





1 Introduction

The NFFT, short hand for nonequispaced fast Fourier transform, is a fast algorithm
to evaluate a trigonometric polynomial

f(x) =

M
2
−1∑

k=−M
2

f̂k e2πikx (1.1)

at nonequispaced points xj ∈
[
−1

2 ,
1
2

)
, j = 1, . . . , N . In case we are given equispaced

points and M = N , this evaluation can be realized by means of the FFT, a fast
algorithm that is invertible. Hence, we are interested in an inversion also for non-
equispaced data, i. e., the Fourier coefficients f̂k shall be computed for given function
values f(xj) of the trigonometric polynomial (1.1). Moreover, the number N of

nodes xj is independent from the number M of Fourier coefficients f̂k and hence the
nonequispaced Fourier matrix

A :=
(

e2πikxj
)N, M

2
−1

j=1, k=−M
2

∈ CN×M

which we would have to invert is rectangular in most cases.
Nevertheless, several approaches have been developed to compute an inverse NFFT

(iNFFT). Already in [7] a method was explained which uses Lagrange interpolation
as well as fast multipole methods. An approach for the overdetermined case can be
found in [8] where the solution is computed iteratively by dint of the CG algorithm
using A∗WA with a diagonal matrix W with the voronoi weights. Furthermore, in
[18] the CG method in connection with the NFFT was used to formulate an iterative
algorithm for the underdetermined setting which deploys AŴA∗ with weights Ŵ
based on kernel approximation. Recently, a direct method for the quadratic setting,
i. e., N = M , was deduced in [17] which is also based on Lagrange interpolation but
utilizes fast summation to evaluate the occuring sums.

In this thesis we develop another direct method for inverting the NFFT in general.
For this purpose, we take as a motivation that for equispaced points an inversion can
be realized by AA∗ ≈ MIN and A∗A ≈ NIM , respectively. We aim to generalize
this result to find a good approximation of the inversion for nonequispaced nodes.
To this end, we make use of the decomposition A ≈ BFD known from the NFFT
approach and compute the sparse matrix B such that we receive approximations of
the form AF ∗D∗B∗ ≈ MIN and FDA∗B ≈ IMσ , respectively, where Mσ ≥ M .
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1 Introduction

In other words, we are able to compute an inverse NFFT by dint of a modified
adjoint NFFT. Analogously, an inverse adjoint NFFT can be obtained by modifying
the NFFT. Hence, the inversions can be computed in O(M logM +N) arithmetic
operations. The corresponding precomputations for the entries of the matrix B are
of complexity O(N2) and O(M2), respectively. Therefore, this method is especially
beneficial in case we are given fixed nodes for several problems. By means of iterative
solvers the approximation could be improved additionally. Finally, we show that these
approaches can also be explained by means of frame approximation.

The present thesis is organized as follows. In Chapter 2 we introduce some impor-
tant concepts from the field of Fourier analysis. There we mainly focus on the already
mentioned algorithm, the NFFT. Afterwards, in Chapter 3 we deal with the inver-
sion of this algorithm. A motivation for our approach is given and we will find out
that there are four different cases to be considered which shall be treated separately
in Sections 3.2 to 3.5. However, for all of these problems we use the minimization
of a certain Frobenius norm, similar to [19]. In each section we start by deducing
the main algorithm. Since we will see that those algorithms are of high complex-
ity, two more algorithms will be explained, each reducing the computational costs
of the previous. Given these algorithms, also numerical examples will be provided.
Finally, in Chapter 4 another approach for inverting the NFFT shall be deduced.
This happens based on ideas from the field of frame theory. Therefore, first of all,
the main ideas of frames and approximation via frames will be introduced in Sec-
tions 4.1 and 4.2. Subsequently, in Section 4.3 we will use these ideas to develop an
approach for the iNFFT, adapted from [14]. In the end, we will see that both derived
frame-theoretical approaches can be traced back to the methods for the inversion of
the NFFT as introduced in Chapter 3.
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2 Fundamentals

In this chapter we will have a look at some important ideas from the field of Fourier
analysis. Besides the term of Fourier series, two fast algorithms for the computation
of a discrete Fourier transform for differently spaced nodes will be introduced.

2.1 Fourier series

We consider the Hilbert space L2(T) of all 1-periodic, complex-valued functions,
where the so-called torus is given by T := R/Z '

[
−1

2 ,
1
2

)
.

Very important for the theory of Fourier series are functions of the form{
e2πikx : k ∈ Z

}
.

These constitute an orthonormal basis of L2(T), for a proof see e. g. [10, 24]. Thereby,
every function f ∈ L2(T) is uniquely representable in the form

f(x) =
∑
k∈Z

ck(f) e2πikx, (2.1)

where the sum converges to f in the L2(T)-norm, cf. [12, 26].

Definition 2.1 A series of the form (2.1) is named Fourier series. The coefficients

ck(f) :=

∫ 1
2

− 1
2

f(x) e−2πikx dx, k ∈ Z, (2.2)

are termed Fourier coefficients of the function f . �

2.2 Fast Fourier transform

In applications the Fourier coefficients (2.2) are mostly approximated by a quadrature
formula. For this purpose, we consider for M ∈ 2N the 1-periodic function f as well
as the equispaced points

xj = j
M ∈

[
−1

2 ,
1
2

)
, j = −M

2 , . . . ,
M
2 − 1.
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2 Fundamentals

The corresponding function values shall be defined as fj := f(xj). By using the
rectangular rule, which is equivalent to the trapezoidal rule in the periodic setting,
the Fourier coefficients can be approximated as follows.

ck(f) ≈ f̂k :=
1

M

M
2
−1∑

j=−M
2

fj e−2πijk/M , k ∈ Z.

One can show that

f̂k ≈ ck(f) ∀ k = −M
2 , . . . ,

M
2 − 1,

is an acceptable approximation, see e. g. [12].

Definition 2.2 The mapping

CM → CM , f :=
(
f−M

2
, . . . , fM

2
−1

)
7→ f̂ :=

(
f̂−M

2
, . . . , f̂M

2
−1

)
is called discrete Fourier transform (DFT) of order M . In matrix-vector notation
the DFT can also be noted as f̂ = FMf with the M -th Fourier matrix

FM =
(

e−2πijk/M
)M

2
−1

j, k=−M
2

,

cf. [24, 26]. It can be shown that this transformation is invertible. The inverse
discrete Fourier transform (iDFT) is given by

fj =

M
2
−1∑

k=−M
2

f̂k e2πijk/M , j = −M
2 , . . . ,

M
2 − 1.

�

If we want to calculate a DFT in practice, it becomes apparent that this becomes
costly very quickly. Thus, a DFT of length M requires overall M2 multiplications as
well as M(M − 1) additions and therefore O(M2) arithmetic operations. However,
this complexity remains out of the question for practical usage.

Another method for computing a DFT is the fast Fourier transform (FFT). For
M ∈ 2N it can be shown that the calculation of a DFT of length M can be done by a
computation of two DFT of length M

2 . These correspond again to the computation
of four DFT of length M

4 , and so on. By means of this strategy we end up with costs
of O(M logM) arithmetic operations, see also [25, 24].
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2.3 Nonequispaced fast Fourier transform (NFFT)

2.3 Nonequispaced fast Fourier transform

Given nonequispaced data instead, we need another fast algorithm to calculate a DFT
at arbitrarily distributed nodes. This algorithm is referred to as nonequispaced fast
Fourier transform (NFFT) and shall briefly be explained below, cf. [6, 2, 23, 22,
21, 16].

For given nodes xj ∈
[
−1

2 ,
1
2

)
, j = 1, . . . , N , M ∈ 2N, as well as arbitrary coeffi-

cients f̂k ∈ C, k = −M
2 , . . . ,

M
2 , we consider the computation of sums

fj =

M
2
−1∑

k=−M
2

f̂k e2πikxj , j = 1, . . . , N, (2.3)

and the adjoint problem of the computation of sums

hk =
N∑
j=1

fj e−2πikxj , k = −M
2 , . . . ,

M
2 − 1, (2.4)

for given values fj := f(xj) ∈ C, respectively.

2.3.1 The NFFT

We firstly restrict our attention to the problem (2.3). One can notice that this is
equivalent to the evaluation of a trigonometric polynomial

f(x) =

M
2
−1∑

k=−M
2

f̂k e2πikx (2.5)

at given points xj , j = 1, . . . , N . This function f can now be approximated by a
linear combination of translates of a 1-periodic function w̃, i. e.,

f(x) ≈ s1(x) :=

Mσ
2
−1∑

l=−Mσ
2

gl w̃
(
x− l

Mσ

)
,

where Mσ = σM with the so-called oversampling factor σ ≥ 1. This corresponds
to a discrete convolution. In the easiest case w̃ originates from periodization of a
function w : [−1

2 ,
1
2)→ R. Let this so-called window function be chosen such that

its 1-periodic version

w̃(x) =
∑
r∈Z

w(x+ r)

5



2 Fundamentals

has an absolute convergent Fourier series. By means of the convolution theorem and
the definition

ĝk :=

Mσ
2
−1∑

l=−Mσ
2

gl e
−2πikl/Mσ , k ∈ Z,

s1 can be represented as

s1(x) =

∞∑
k=−∞

ck(s1) e2πikx

=

∞∑
k=−∞

ĝk ck(w̃) e2πikx

=

Mσ
2
−1∑

k=−Mσ
2

ĝk ck(w̃) e2πikx +

∞∑
r=−∞
r 6=0

Mσ
2
−1∑

k=−Mσ
2

ĝk ck+Mσr(w̃) e2πi(k+Mσr)x. (2.6)

Comparing (2.5) and (2.6) gives the intention for the following definition. We set

ĝk :=

 f̂k
ŵ(k)

: k ∈ {−M
2 , . . . ,

M
2 − 1},

0 : k ∈ {−Mσ
2 , . . . ,

Mσ
2 − 1} \ {−M

2 , . . . ,
M
2 − 1}.

where

ŵ(k) =

∫ ∞
−∞

w(x) e−2πikx dx =

∫ 1
2

− 1
2

w̃(x) e−2πikx dx = ck(w̃) (2.7)

is the Fourier transform of w.
Further, we suppose that w is small outside the interval [−m/Mσ,m/Mσ] , m�Mσ.

Then w can be approximated by wm(x) = χ[−m/Mσ,m/Mσ] · w(x) which is compactly
supported since χ[−m/Mσ,m/Mσ] denotes the characteristic function of the interval
[−m/Mσ,m/Mσ] . Thus, w̃ can be approximated by the 1-periodic function w̃m with∑

k∈Z
ŵ(k) e2πikx = w̃(x) ≈ w̃m(x) =

∑
r∈Z

wm(x+ r).

Hence, we obtain the following approximation

f(xj) ≈ s1(xj) ≈ s(xj) :=

Mσ
2
−1∑

l=−Mσ
2

gl w̃m

(
xj − l

Mσ

)
=

bMσxjc+m∑
l=dMσxje−m

gl w̃m

(
xj − l

Mσ

)
,

where simplification arises because many summands vanish.
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2.3 Nonequispaced fast Fourier transform (NFFT)

Remark 2.3 Suitable window functions are for instance

• cardinal B-splines of order 2m

w(x) := B2m(Mσx), ŵ(k) =
1

Mσ
sinc2m

(
πk
Mσ

)
, (2.8)

• the Gaussian

w(x) :=
1√
πb

e−
(Mσx)

2

b , ŵ(k) =
1

Mσ
e
−b

(
πk
Mσ

)2

, (2.9)

with b := 2σ
2σ−1

m
π ,

• powers of the sinc function

w(x) :=
M(2σ − 1)

2m
sinc2m

(
πMx(2σ − 1)

2Mσ

)
,

ŵ(k) = B2m

(
2mk

(2σ − 1)M

)
,

(2.10)

with σ > 1

• and Kaiser-Bessel functions

w(x) :=
1

π



sinh(b
√
m2 −M2

σx
2)√

m2 −M2
σx

2
: |x| ≤ m

Mσ
,

sin(b
√
M2
σx

2 −m2)√
M2
σx

2 −m2
: otherwise,

(2.11)

ŵ(k) =


1
Mσ

I0

(
m

√
b2 −

(
2πk
Mσ

)2)
: k = −Mσ(1− 1

2σ ), . . . ,Mσ(1− 1
2σ ),

0 : otherwise,

where b := π(2− 1
σ ) and I0 denotes the modified zero-order Bessel function.

For more details see [6, 2, 23, 5, 11, 9, 20, 16]. �
Thus, the algorithm can be summarized as follows.
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2 Fundamentals

Algorithm 2.4 (NFFT)

For N ∈ N, M ∈ 2N let xj ∈
[
−1

2 ,
1
2

)
, j = 1, . . . , N, be given nodes as well as

Fourier coefficients f̂k ∈ C with k = −M
2 , . . . ,

M
2 − 1. Furthermore, we are given

the oversampling factor σ ≥ 1 and Mσ := σM as well as the window function w, the
truncated function wm with m�Mσ and their 1-periodic versions w̃ and w̃m.

1. Set

ĝk :=

{
f̂k
ŵ(k) : k ∈ {−M

2 , . . . ,
M
2 − 1},

0 : k ∈ {−Mσ
2 , . . . ,

Mσ
2 − 1} \ {−M

2 , . . . ,
M
2 − 1}.

O(M)

2. Compute

gl :=
1

Mσ

Mσ
2
−1∑

k=−Mσ
2

ĝk e2πikl/Mσ

for all l = −Mσ
2 , . . . ,

Mσ
2 − 1, by an inverse FFT. O(M logM)

3. Compute

f̃j :=

Mσ
2
−1∑

l=−Mσ
2

gl w̃m

(
xj − l

Mσ

)
, j = 1, . . . , N.

O(N)

Output: f̃j ≈ fj from (2.3), j = 1, . . . , N .

Complexity: O(M logM +N)

2.3.2 The adjoint NFFT

Now we consider the problem (2.4). Therefore, we define analogously to [20] the
function

g̃(x) :=

N∑
j=1

fj w̃(xj − x) (2.12)

8



2.3 Nonequispaced fast Fourier transform (NFFT)

and calculate the Fourier coefficients of g̃.

ck(g̃) =

∫ 1
2

− 1
2

g̃(x) e−2πikx dx

=

∫ 1
2

− 1
2

N∑
j=1

fj w̃(xj − x) e−2πikx dx

=
N∑
j=1

fj e−2πikxj
∫ 1

2

− 1
2

w̃(y) e2πiky dy

= hk c−k(w̃).

In other words, the values hk sought-after can be computed if c−k(w̃) and ck(g̃) are
known. The Fourier coefficients of g̃ will be determined approximately by dint of the
trapezoidal rule

ck(g̃) ≈ 1

Mσ

Mσ
2
−1∑

l=−Mσ
2

N∑
j=1

fj w̃
(
xj − l

Mσ

)
e−2πikl/Mσ .

Let the function w moreover be well localized in time so that w̃ can be replaced by
w̃m again. Then we obtain the approximation

ck(g̃)

c−k(w̃)
≈ 1

Mσŵ(−k)

Mσ
2
−1∑

l=−Mσ
2

N∑
j=1

fj w̃m

(
xj − l

Mσ

)
e−2πikl/Mσ =: h̃k. (2.13)

Hence, a fast algorithm can be formulated as follows.

Algorithm 2.5 (adjoint NFFT)

For N ∈ N let xj ∈
[
−1

2 ,
1
2

)
be given nodes as well as fj ∈ C, j = 1, . . . , N . Fur-

thermore, we are given the oversampling factor σ ≥ 1, M ∈ 2N and Mσ := σM as
well as the window function w, the truncated function wm with m � Mσ and their
1-periodic versions w̃ and w̃m.

1. Compute

gl :=
N∑
j=1

fj w̃m

(
xj − l

Mσ

)
, l = −Mσ

2 , . . . ,
Mσ
2 − 1.

O(N)

9



2 Fundamentals

2. Compute

ĝk :=
1

Mσ

Mσ
2
−1∑

l=−Mσ
2

gl e
−2πikl/Mσ

for all k = −Mσ
2 , . . . ,

Mσ
2 − 1, by an FFT. O(M logM)

3. Set

h̃k :=
ĝk

ŵ(−k)
, k = −M

2 , . . . ,
M
2 − 1.

O(M)

Output: h̃k ≈ hk from (2.4), k = −M
2 , . . . ,

M
2 − 1.

Complexity: O(M logM +N)

2.3.3 Matrix-vector notation

By defining the nonequispaced Fourier matrix

A :=
(

e2πikxj
)N, M

2
−1

j=1, k=−M
2

∈ CN×M (2.14)

as well as the vectors

f := (fj)
N
j=1 , f̂ :=

(
f̂k

)M
2
−1

k=−M
2

and h := (hk)
M
2
−1

k=−M
2

,

the computation of the sums (2.3) can be rewritten as

f = Af̂ .

Likewise the computation of the sums (2.4) can be rewritten as

h = A∗f ,

where A∗ = A
T

denotes the adjoint matrix of A. In addition, we define

• the diagonal matrix

D := diag

(
1

Mσŵ(k)

)M
2
−1

k=−M
2

∈ CM×M ,

10



2.3 Nonequispaced fast Fourier transform (NFFT)

• the truncated Fourier matrix

F :=
(

e2πik
l
Mσ

)Mσ
2
−1, M

2
−1

l=−Mσ
2
, k=−M

2

∈ CMσ×M ,

• and the sparse matrix

B :=

(
w̃m

(
xj − l

Mσ

))N, Mσ2 −1
j=1, l=−Mσ

2

∈ RN×Mσ . (2.15)

Therefore, also the steps of Algorithm 2.4 can be perceived as matrix-vector products.
Now having a look at Algorithm 2.5 and keeping in mind that for real-valued w we
have

ŵ(−k) =

∫ ∞
−∞

w(x) e2πikx dx =

∫ ∞
−∞

w(x) e−2πikx dx = ŵ(k),

we recognize that this is exactly the adjoint of Algorithm 2.4. Hence, we receive the
approximations

A ≈ BFD and A∗ ≈D∗F ∗B∗.

Remark 2.6 It must be pointed out that because of consistency the factor 1
Mσ

is here
not located in the matrix F as usual but in the matrix D. �

11



3 Inversion of the NFFT

Now having introduced the fast algorithms for nonequispaced data, our aim is to
find an inversion for these algorithms. This idea is encouraged by the fact that
for equispaced data the inversion is well-known. Hence, we are now looking for an
inversion of the NFFT as well as an inversion of the adjoint NFFT. To this end, we
face the following two problems.

(1) Solve

Af̂ = f ,

given: f ∈ CN , find: f̂ ∈ CM ,
(3.1)

i. e., reconstruct the Fourier coefficients f̂ = (f̂k)k=−M
2
,...,M

2
−1 from function

values f = (fj)j=1,...,N . This is called inverse NFFT.

(2) Solve

A∗f = h,

given: h ∈ CM , find: f ∈ CN ,
(3.2)

i. e., reconstruct the coefficients f = (fj)j=1,...,N from the given data
h = (hk)k=−M

2
,...,M

2
−1. This is named inverse adjoint NFFT.

In both problems the numbers M and N are independent. Therefore, different rela-
tions between them are possible so that underdetermined and overdetermined cases
occur.

Firstly we consider the inverse NFFT in (3.1). It is obvious that except for the
quadratic setting M = N there are two different ways to choose M and N . The first
possibility is M < N , i. e., we are given more function values than Fourier coefficients,
which we are supposed to find. That means, we are given more data than we have
to compute and thus we are in an overdetermined setting. The second variation is
the converse setting M > N . There we have to find more Fourier coefficients than
we are given initial data. Hence, this is the underdetermined case. Analogously, the
same relations can be considered for the inverse adjoint NFFT in (3.2). There M
belongs to the given data while N goes with the wanted solution. In other words,
the overdetermined case in now M > N whereas the problem is underdetermined for
M < N .

12



3.1 Motivation

Therefore, we end up with four different cases which shall be considered separately
below. In Section 3.2 we start with the underdetermined case of the inverse NFFT.
Secondly, we survey the overdetermined case of the inverse adjoint NFFT in Sec-
tion 3.3. Afterwards, in Section 3.4 the overdetermined case of the inverse NFFT
will be explained and finally, in Section 3.5, we examine the underdetermined case of
the inverse adjoint NFFT. Though, first of all, we motivate our approach.

3.1 Motivation

To clarify the idea of our approach we consider the case of equispaced points
xj = j

N ∈
[
−1

2 ,
1
2

)
, j = −N

2 , . . . ,
N
2 − 1. Thereby, we obtain the Fourier matrices in

(2.14) as

A =
(

e2πik
j
N

)N
2
−1, M

2
−1

j=−N
2
, k=−M

2

and A∗ =
(

e−2πik
j
N

)M
2
−1, N

2
−1

k=−M
2
, j=−N

2

,

respectively. Now we study the composition of these two matrices, i. e., we have a
look at products of both, starting with A∗A. Thus, we have

A∗A =

 N
2
−1∑

j=−N
2

e−2πik
j
N e2πil

j
N


M
2
−1

k, l=−M
2

=

 N
2
−1∑

j=−N
2

e2πij(l−k)/N


M
2
−1

k, l=−M
2

.

This matrix has obviously main diagonal N because there we have l = k and therefore

(A∗A)k,k =
∑N

2
−1

j=−N
2

e0 = N . For the remaining entries with l 6= k it results from the

geometric sum formula that

(A∗A)k,l =

N
2
−1∑

j=−N
2

(
e2πi(l−k)/N

)j
=

N−1∑
j=0

(
e2πi(l−k)/N

)j
·
(

e2πi(l−k)/N
)−N/2

=

(
e2πi(l−k)/N

)N − 1

e2πi(l−k)/N − 1
· e−πi(l−k) =

e2πi(l−k) − 1

e2πi(l−k)/N − 1
· e−πi(l−k),

if N - (l − k). Hence, it follows that (A∗A)k,l = 0 because the enumerator vanishes
because of e2πir = 1 for all r ∈ Z. Thus, it ensues A∗A = NIM for N - (l − k) ∀l, k,
which means N ≥M .

For the second matrix product we have

AA∗ =

 M
2
−1∑

k=−M
2

e2πik
j
N e−2πil

j
N


N
2
−1

j, h=−N
2

=

 M
2
−1∑

k=−M
2

e2πik(j−h)/N


N
2
−1

j, h=−N
2

.

13



3 Inversion of the NFFT

Here one can also immediately see the main diagonal because for j = h we have

(AA∗)j,j =
∑M

2
−1

j=−M
2

e0 = M. It arises analogously that for the remaining entries we

have

(AA∗)j,h =

M
2
−1∑

k=−M
2

(
e2πi(j−h)/N

)k
=

M−1∑
k=0

(
e2πi(j−h)/N

)k
·
(

e2πi(j−h)/N
)−M/2

=

(
e2πi(j−h)/N

)M − 1

e2πi(j−h)/N − 1
· e−πi(j−h)M/N .

Now we claim N | M(j − h) ∀j 6= h so that we receive only zeros again. But by
definition we have N - (j − h), so we need N | M , i. e., we obtain AA∗ = MIN for
M ≥ N with N |M .

Accordingly, in these special cases we are given an inversion of the NFFT since by
composition of the two matrices and application to a vector we are able to retrieve
the original vector only multiplied by a certain known constant.

Therefore, we seek to use this result and look for a good approximation of the
inversion in the general case. This should be done by modification of the matrix B
so that we receive an approximation of the form AD∗F ∗B∗ ≈ MIN similar to the
equispaced case. For that purpose, the entries of this matrix B should be calculated
such that its sparse structure with at most (2m+1) entries per row and consequently
the arithmetic complexity of the algorithms is preserved. A matrix B satisfying this
property we call (2m+1)-sparse.

Having this in mind we give an outline how to handle problems (3.1) and (3.2).

(1) To solve (3.1) our aim is to compute a sparse matrix B∗ from given nodes xj
such that by application of Algorithm 2.5 we obtain a fast inverse NFFT.

We suppose we are given the approximation AD∗F ∗B∗ ≈ MIN . Then it
would also be true that

1

M
AD∗F ∗B∗f ≈ f ∀f ∈ CN . (3.3)

If we set

f̌ :=
1

M
D∗F ∗B∗f ,

we are able to rewrite the above approximation (3.3) as Af̌ ≈ f . Since we
already know that Af̂ = f , this would mean that we have f̌ ≈ f̂ , which could
be interpreted as a reconstruction of the Fourier coefficients by modifying the
adjoint NFFT.
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3.1 Motivation

To achieve a good approximation we want f̌ to be as close as possible by f̂ .
This works best if we optimize the approximation Af̌ ≈ f . In other words, we
aim to solve the optimization problem

Minimize
f̌∈CM

‖Af̌ − f‖2. (3.4)

Using the definition of f̌ this norm can be estimated by

‖MAf̌ −Mf‖2 = ‖AD∗F ∗B∗f −Mf‖2
= ‖(AD∗F ∗B∗ −MIN )f‖2
≤ ‖AD∗F ∗B∗ −MIN‖F ‖f‖2.

Because f is given we minimize the expression above by solving

Minimize
B∈RN×Mσ : B (2m+1)-sparse

‖AD∗F ∗B∗ −MIN‖2F.

(2) To solve (3.2) we aim to compute a sparse matrix B from given nodes xj such
that by application of Algorithm 2.4 we obtain a fast inverse adjoint NFFT.

Again we suppose AD∗F ∗B∗ ≈ MIN . It can be seen that this is equivalent
to the transpose

BFDA∗ ≈M IN and
1

M
BFD (A∗f) ≈ f ∀f ∈ CN ,

respectively. Because we know that h = A∗f holds, this could be interpreted
as a reconstruction of the function values by modifying the NFFT.

To achieve a good approximation we want to solve the optimization problem

Minimize
f∈CN

‖BFDh−Mf‖2,

where the norm could be estimated as follows.

‖BFDh−Mf‖2 = ‖BFDA∗f −Mf‖2
= ‖(BFDA∗ −MIN )f‖2
≤ ‖BFDA∗ −MIN‖F ‖f‖2.

Because f is the wanted solution we minimize the expression above by solving
the optimization problem

Minimize
B∈RN×Mσ : B (2m+1)-sparse

‖BFDA∗ −MIN‖2F.
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3 Inversion of the NFFT

So, all in all, this would mean with the chosen approach we are able to generate an
inverse NFFT as well as an inverse adjoint NFFT by modifying the matrix B∗ and
B, respectively, and applying Algorithm 2.5 and Algorithm 2.4 with these modified
matrices.

Remark 3.1 We investigate below if the reconstruction error can be reduced by ap-
propriate choice of the entries of the matrix B∗, cf. [19]. There they analyzed the
minimization of the Frobenius norm ‖A −BFD‖F regarding a sparse matrix B to
achieve an error as small as possible for the NFFT. In contrast, we study the mini-
mization of ‖AD∗F ∗B∗−MIN‖2F to achieve a minimum error for the inverse NFFT
as well as the minimization of ‖BFDA∗ −MIN‖2F to achieve a minimum error for
the inverse adjoint NFFT. �

3.2 Inverse NFFT - underdetermined case

For solving the problem (3.1) we consider the matrix AD∗F ∗B∗ for given nodes
xj ∈ T, j = 1, . . . , N . Apparently, we have

D∗F ∗ =

[
1

Mσŵ(−k)
e−2πik

l
Mσ

]M
2
−1, Mσ

2
−1

k=−M
2
, l=−Mσ

2

.

Multiplying by the matrix A yields

AD∗F ∗ =

 1

Mσ

M
2
−1∑

k=−M
2

1

ŵ(−k)
e
2πik

(
xj− l

Mσ

)
N,Mσ

2
−1

j=1, l=−Mσ
2

. (3.5)

By defining the “inverse window function”

K(x) =
1

Mσ

M
2
−1∑

k=−M
2

1

ŵ(−k)
e2πikx (3.6)

we receive

K := AD∗F ∗ =
(
K
(
xh − l

Mσ

))N, Mσ
2
−1

h=1, l=−Mσ
2

.

Having a closer look at the matrix B∗ it becomes apparent that there are only a few
nonzero entries. Thus, we are going to study the window function w̃m for further
simplification. For the window wm we have

supp(wm) =
[
− m
Mσ

, m
Mσ

]
,
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3.2 Inverse NFFT - underdetermined case

i. e., for the 1-periodic version w̃m(x) :=
∑

z∈Zwm(x+ z) we have

w̃m

(
xj − l

Mσ

)
6= 0 ⇐⇒ ∃ z ∈ Z : wm

(
xj − l

Mσ
+ z
)
6= 0

⇐⇒ ∃ z ∈ Z : − m
Mσ
≤ xj − l

Mσ
+ z ≤ m

Mσ

⇐⇒ ∃ z ∈ Z : −m ≤Mσxj − l +Mσz ≤ m.

By defining the set

IMσ ,m(xj) :=
{
l ∈
{
−Mσ

2 , . . . ,
Mσ
2 − 1

}
: ∃ z ∈ Z with−m ≤Mσxj − l +Mσz ≤ m

}
(3.7)

we can therefore write

(KB∗)h,j = (AD∗F ∗B∗)h,j

=
∑

l∈IMσ,m(xj)

M
2
−1∑

k=−M
2

1

Mσŵ(−k)
e
2πik

(
xh− l

Mσ

)
w̃m

(
xj − l

Mσ

)

=

M
2
−1∑

k=−M
2

e2πikxh

 ∑
l∈IMσ,m(xj)

1

Mσŵ(−k)
e−2πik

l
Mσ w̃m

(
xj − l

Mσ

) .

Hence, we have

‖AD∗F ∗B∗ −MIN‖2F =

=
N∑
h=1

N∑
j=1

∣∣∣∣∣∣∣∣
M
2
−1∑

k=−M
2

e2πikxh

 ∑
l∈IMσ,m(xj)

1

Mσŵ(−k)
e−2πik

l
Mσ w̃m

(
xj − l

Mσ

)
︸ ︷︷ ︸

−Nδhj

∣∣∣∣∣∣∣∣
2

.

=
1

Mσŵ(−k)

∑
l∈IMσ,m(xj)

e−2πik
l
Mσ w̃m

(
xj − l

Mσ

)
(3.8)

Based on the definition of the Frobenius norm of a matrix A ∈ Rk×n and the definition
of the Euclidean norm of a vector x ∈ Rn we obtain for aj being columns of a
matrix A ∈ Rk×n that

‖A‖2F =
k∑
i=1

n∑
j=1

|aij |2 =

n∑
j=1

‖aj‖22.

In our setting this means that (3.8) can be rewritten by dint of

T j =
(

e−2πik
l
Mσ

)M
2
−1

k=−M
2
, l∈IMσ,m(xj)

, bj =

(
w̃m

(
xj − l

Mσ

))
l∈IMσ,m(xj)

,
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3 Inversion of the NFFT

and ej = (δhj)
N
h=1,

as

‖AD∗F ∗B∗ −MIN‖2F =
N∑
j=1

‖AD∗T jbj −Mej‖22.

This expression gets minimal if and only if ‖AD∗T jbj −Mej‖22 gets minimal for all
j = 1, . . . , N . As a result, we obtain the optimization problem

Minimize
b̃j∈R2m+1

‖AD∗T j b̃j −Mej‖22, j = 1, . . . , N, (3.9)

because the columns of the matrix B∗ contain at most (2m + 1) nonzeros. This
corresponds to a least squares problem of the form ‖Cx − y‖22 → min . To solve it
we consider

‖Cx− y‖22 = (Cx− y)∗(Cx− y).

By means of the first-order optimality condition

∇‖Cx− y‖22 = 2C∗(Cx− y)
!

= 0,

we receive the normal equations

C∗Cx = C∗y.

These are always solvable and they are unambiguously solvable if and only if C has
full column rank. Then the matrix C∗C is regular and we obtain the solution

x = (C∗C)−1C∗y.

Thus, if the matrix AD∗T j ∈ CN×(2m+1) has full rank the solution of problem (3.9)
is given by

b̃j = [(AD∗T j)
∗AD∗T j ]

−1 (AD∗T j)
∗Mej , j = 1, . . . , N. (3.10)

For generating a matrix again it must be pointed out that the vectors b̃j only contain
the nonzeros of the matrix. Hence, attention should be paid to the periodicity which
one can also see in the structure of the matrix B. This leads to Algorithm 3.3.

Remark 3.2 Whether the matrix AD∗T j has full rank only depends on the matrix A.
The conditions when this one has full rank can be found e. g. in [15] and [18]. �
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3.2 Inverse NFFT - underdetermined case

Algorithm 3.3 (Optimization of the matrix B∗)

For N ∈ N let xj ∈
[
−1

2 ,
1
2

)
, j = 1, . . . , N, be given nodes as well as M ∈ 2N, σ ≥ 1

and Mσ = σM . Furthermore, we are given the matrices A,D∗ and F ∗.

1. For j = 1, . . . , N :

Determine the set IMσ ,m(xj), cf. (3.7). O(1)

Determine the matrix T j =
(

e−2πik
l
Mσ

)M
2
−1

k=−M
2
, l∈IMσ,m(xj)

. O(1)

Compute O(NM)

Kj := AD∗T j =

 1

Mσ

M
2
−1∑

k=−M
2

1

ŵ(−k)
e
2πik

(
xh− l

Mσ

)
N

h=1, l∈IMσ,m(xj)

.

(3.11)

Solve the normal equations for Kj ∈ CN×(2m+1), i. e.,

compute b̃j , cf. (3.10). O(N)

2. Compose B̃
∗

column-wise of the vectors b̃j observing the periodicity. O(N)

Output: optimized matrix B̃
∗

Complexity: O(N2M)

It can be seen that this algorithm is of high complexity O(N2M), so our next step
is to improve these computational costs. The most costly step is the computation of
the matrix Kj . Thus, we aim to accelerate this process.

We already know from Section 2.3 that sums of the form

fj =

M
2
−1∑

k=−M
2

f̂k e2πikyj

can be computed in O(M logM + N) arithmetic operations for given nodes
yj ∈

[
−1

2 ,
1
2

)
, j = 1, . . . , N, and coefficients f̂k ∈ C, k = −M

2 , . . . ,
M
2 − 1, see Al-

gorithm 2.4. If we have a look at the matrix Kj it becomes apparent that we can
compute its entries by dint of the NFFT with coefficients

f̂k =
1

Mσŵ(−k)
, k = −M

2 , . . . ,
M
2 − 1, (3.12)
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3 Inversion of the NFFT

and nodes

yh,l := xh − l
Mσ

, h = 1, . . . , N, l ∈ IMσ ,m(xj),

which are at most N(2m + 1) many. If we put the columns of Kj one below the
other into a vector, we are able to compute these entries only using one NFFT of
length N(2m+ 1). In so doing, we have to reshape the obtained vector into a matrix
afterwards.

Another point to mention is that the coefficients f̂k are the same for the computa-
tion of all matrices Kj , j = 1, . . . , N . This is to say, we can precompute step 1 and
step 2 of Algorithm 2.4 since there is no information needed about the corresponding
nodes. Only the last step of Algorithm 2.4 has to be performed separately for every
j = 1, . . . , N . Hence, we receive the following algorithm.

Algorithm 3.4 (Fast optimization of the matrix B∗)

For N ∈ N let xj ∈
[
−1

2 ,
1
2

)
, j = 1, . . . , N, be given nodes as well as M ∈ 2N, σ ≥ 1

and Mσ = σM . Furthermore, we are given the oversampling factor σ2 ≥ 1 and the
cut-off parameter m2 for an NFFT.

1. Compute step 1 and step 2 of Algorithm 2.4 with f̂k in (3.12). O(M logM)

2. For j = 1, . . . , N :

Determine the set IMσ ,m(xj), cf. (3.7). O(1)

Perform step 3 of Algorithm 2.4 for the vector of nodes

y :=
(
yT1 , . . . , y

T
s

)T
for yn being the columns of the matrix Y := (yh,l)

N
h=1, l∈IMσ,m(xj)

. O(N)

Reshape the obtained vector into the matrix Kj ∈ CN×(2m+1). O(N)

Solve the normal equations for Kj , i. e., compute b̃j , cf. (3.10). O(N)

3. Compose ˜̃B
∗

column-wise of the vectors b̃j observing the periodicity. O(N)

Output: optimized matrix ˜̃B
∗

Complexity: O(N2 +M logM)

Numerical results

Now we have a look at some numerical examples.
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3.2 Inverse NFFT - underdetermined case

Example 3.5 First of all, we want to verify that the optimization was successful.
Therefore, we compare the norms

‖AD∗F ∗B∗ −MIN‖F, (3.13)

where B∗ denotes the original matrix from the adjoint NFFT as well as

‖AD∗F ∗B̃
∗ −MIN‖F and ‖AD∗F ∗ ˜̃B

∗
−MIN‖F (3.14)

with the optimized matrices B̃
∗

and ˜̃B
∗

generated by our Algorithms 3.3 and 3.4.

(i) As mentioned in [14, 4, 1] we examine as a first example what happens if we
choose so-called jittered equispaced nodes

xj = −1

2
+
j − 1

N
+

1

4N
θ, j = 1, . . . , N, with θ ∼ U(0, 1), (3.15)

where U(0, 1) denotes the uniform distribution on the interval (0, 1). Here we
choose N = 128 and consider the norms (3.13) and (3.14) for M = 2c with
c = 4, . . . , 12.

In Figure 3.1 one can find the comparison of the norms for B-Splines of different
order, cf. (2.8), and for different values of the oversampling factor σ for the
adjoint NFFT. There it can be seen that the minimization was really successful
especially for large values ofM compared toN . Then it is obvious that the norm
of the original matrix is still getting bigger while the norms using the optimized
matrices get much smaller. It also becomes apparent that the optimization was
less successful in case we have M < N because until the point where these
sizes are equal all curves rise and are quite close to each other. In this case our
optimization is not able to improve the approximation. But in fact, this is not
really surprising because then we try to approximate the identity by a low rank
matrix since AD∗F ∗B∗ ∈ CN×N has at most rank M .

This tendency can be seen for all tested B-Spline orders as well as for different
oversampling factors for the adjoint NFFT. And also for other window functions
like the Gaussian, cf. (2.9), illustrated in Figure 3.2, sinc functions, cf. (2.10),
presented in Figure 3.3 and the Kaiser-Bessel window, cf. (2.11), depicted in
Figure 3.4 one can see the same behavior of the considered norms. It can also

be seen that the norms using the two optimized matrices B̃
∗

and ˜̃B
∗

are quite
indistinguishable.

In Algorithm 3.4 we chose the Kaiser-Bessel window, an oversampling of
σ2 = 2.0 and a cut-off m2 twice as large as the cut-off parameter m from
the adjoint NFFT to calculate the NFFT. With these chosen parameters we
are able to receive a high accuracy in computation. But also lower choices for
the parameters are possible, see Example 3.6.
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3 Inversion of the NFFT

(ii) Now we repeat the same example only changing the arrangement of the nodes.
What we consider next are the Chebyshev nodes

xj =
1

2
cos

(
2(N − j) + 1

2N
π

)
, j = 1, . . . , N. (3.16)

The corresponding results are found in Figure 3.5. Here only the outcome for
B-Splines is presented but for the other windows the graphs look almost the
same. For these nodes one can see that the optimization problem is much
more complicated since the minimization only works if we have M � N . If
we have a look at the same setting from above one can see that for N = 128
the optimization was not too effective because the Frobenius norm is still rising
for growing M . Choosing N = 16 instead the norm could again be minimized.
However, the gap between M and N has to be huge to get results similar to
those from above.

(iii) Again we only change the nodes, so now we choose logarithmically spaced nodes

xj =

(
6

5

)j−N
− 1

2
, j = 1, . . . , N, (3.17)

like suggested in [14]. Figure 3.6 shows the results for B-Splines and again the
other window functions are left out because the curves look similar.

In this case one can also see the same behavior as for Chebyshev nodes, namely
that the optimization can only be successful if we have a large difference between
M and N but now even worse than for Chebyshev nodes. �

Example 3.6 Next we examine the accuracy of Algorithm 3.4 in comparison to
Algorithm 3.3. Since we now have another computation of an NFFT in Algorithm 3.4
in addition to the adjoint NFFT for the inversion we are able to choose parameters
for this additional NFFT properly such that the fast computation provides matrices
minimizing the norms as well as the slow algorithm does. Here we are free to choose
another window function as well as another cut-off m2 and oversampling factor σ2.

We stick to the norms in (3.14) and consider the relative error∣∣∣‖AD∗F ∗B̃
∗ −MIN‖F − ‖AD∗F ∗ ˜̃B

∗
−MIN‖F

∣∣∣
‖AD∗F ∗B̃

∗ −MIN‖F
(3.18)

for different sizes of the oversampling factor σ2 and growing cut-off parameter m2.
We decided for the Kaiser-Bessel function because it is known that this leads to the
best results, cf. [11].
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3.2 Inverse NFFT - underdetermined case
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Figure 3.1: Comparison of Frobenius norms (3.13) and (3.14) of the original matrix B

as well as the optimized matrices B̃ generated by Algorithm 3.3 and ˜̃B
generated by Algorithm 3.4 for N = 128 jittered equispaced nodes and
M = 2c with c = 4, . . . , 12 using B-Spline window functions.
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(b) m = 2 and σ = 2.0
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Figure 3.2: Comparison of Frobenius norms (3.13) and (3.14) of the original matrix B

as well as the optimized matrices B̃ generated by Algorithm 3.3 and ˜̃B
generated by Algorithm 3.4 for N = 128 jittered equispaced nodes and
M = 2c with c = 4, . . . , 12 using Gaussian window functions.

101 102 103

101

102

103

104

size of M

F
ro
b
en

iu
s
n
or
m

original matrix
optimized matrix
fast optimized matrix

(a) m = 2 and σ = 1.2
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(b) m = 2 and σ = 2.0
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Figure 3.3: Comparison of Frobenius norms (3.13) and (3.14) of the original matrix B

as well as the optimized matrices B̃ generated by Algorithm 3.3 and ˜̃B
generated by Algorithm 3.4 for N = 128 jittered equispaced nodes and
M = 2c with c = 4, . . . , 12 using powers of the sinc function.
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(b) m = 2 and σ = 2.0
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Figure 3.4: Comparison of Frobenius norms (3.13) and (3.14) of the original matrix B

as well as the optimized matrices B̃ generated by Algorithm 3.3 and ˜̃B
generated by Algorithm 3.4 for N = 128 jittered equispaced nodes and
M = 2c with c = 4, . . . , 12 using Kaiser-Bessel windows.
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(a) N = 16
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Figure 3.5: Comparison of Frobenius norms (3.13) and (3.14) of the original matrix B

as well as the optimized matrices B̃ generated by Algorithm 3.3 and ˜̃B
generated by Algorithm 3.4 for different numbers of Chebyshev nodes for
M = 2c with c = 4, . . . , 12 using the B-Spline of order 4 with σ = 1.0.
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Figure 3.6: Comparison of Frobenius norms (3.13) and (3.14) of the original matrix B

as well as the optimized matrices B̃ generated by Algorithm 3.3 and ˜̃B
generated by Algorithm 3.4 for different numbers of logarithmic nodes for
M = 2c with c = 4, . . . , 12 using the B-Spline of order 4 with σ = 1.0.

24



3.2 Inverse NFFT - underdetermined case

Figure 3.7 displays the observed relative errors (3.18) for the inversion with
B-Splines and Kaiser-Bessel windows for N = 128 jittered equispaced nodes and
M = 256 Fourier coefficients with σ = 1.0 and therefore Mσ = M . We recognize
that the error is smallest when we choose the oversampling σ2 as high as possible
and a cut-off m2 slightly bigger than the double of the cut-off m from the inversion.
Whereas it can be seen that the results are never that good if one chooses σ2 = 1.0
and get even worse for high cut-off m2. Taking an oversampling factor σ > 1 for the
inversion instead the outcomes are nearly the same.

For the other known window functions, here exemplified for the Kaiser-Bessel win-
dow, the behavior is nearly the same except that the best results may be obtained
for higher values of the cut-off m2.

For Chebyshev nodes or logarithmically spaced nodes one can receive similar re-
sults. This is why this should be left out here. �
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Figure 3.7: Comparison of the relative errors (3.18) for different window functions
for the inversion with σ = 1.0 for N = 128 jittered equispaced nodes
and M = 256 Fourier coefficients for growing cut-off parameter m2 and
different oversampling factors σ2.

Further simplification

Regarding Algorithm 3.3 and Algorithm 3.4 we have currently seen that the inversion
can be done similarly for every of our known window functions. Therefore, we want to
use this fact and simplify the algorithms even more by replacing the window function
by the Dirichlet kernel

DM
2
−1(x) =

M
2
−1∑

k=−M
2
+1

e2πikx =
sin((M − 1)πx)

sin(πx)
, (3.19)

i. e., we set ŵ(k) = 1 for all k = −M
2 + 1, . . . , M2 − 1 and the last nonzero entry 1

ŵ(M
2
)

shall be set to zero. Hence, the entries of the matrix Kj in (3.11) can explicitly be

25



3 Inversion of the NFFT

stated as seen in (3.19) and therefore the term M logM in the computational costs
of Algorithm 3.4 can be eliminated. Thus, we obtain the following algorithm.

Algorithm 3.7 (Fast optimization of the matrix B∗ using the Dirichlet kernel)

For N ∈ N let xj ∈
[
−1

2 ,
1
2

)
, j = 1, . . . , N, be given nodes as well as M ∈ 2N, σ ≥ 1

and Mσ = σM .

1. For j = 1, . . . , N :

Determine the set IMσ ,m(xj), cf. (3.7). O(1)

Compute O(N)

Kj =

[
1

Mσ
DM

2
−1

(
xh − l

Mσ

)]N
h=1, l∈IMσ,m(xj)

.

Solve the normal equations for Kj , i. e., compute b̃j , cf. (3.10). O(N)

2. Compose
˜̃
B̃
∗

column-wise of the vectors b̃j observing the periodicity. O(N)

Output: optimized matrix
˜̃̃
B
∗

Complexity: O(N2)

Example 3.8 Again we do the same experiment as in Example 3.5, now comparing
Algorithms 3.3 and 3.4 using B-Spline window functions and our new Algorithm 3.7
with the Dirichlet kernel DM

2
−1(x). Figure 3.8 displays the corresponding outcomes.

It is obvious that the minimization using the Dirichlet kernel works as well as the
original optimization does or even better for large M .

Next we have a look at the run-times of our algorithms. Here we choose the
B-Spline of order 4 and σ = 1.0 for the inversion. For the NFFT in Algorithm 3.4
we choose the Kaiser-Bessel window with the double cut-off parameter m2 = 4 and
an oversampling of σ2 = 2.0.

Having a look at Figure 3.9 it can be seen that the computational costs of Algo-
rithm 3.3 rise rapidly if M grows whereas those of Algorithm 3.4 only increase slowly
for growing M . Though, for small sizes of M it is obvious that Algorithm 3.3 is even
faster than our improved Algorithm 3.4. This arises because many precomputations
have to be done in Algorithm 3.4 whereas the original algorithm only evaluates the
matrix which can be done quickly if M is small. Hence, the fast Algorithm 3.4 is
most effective if we have a large number of Fourier coefficients. Having a look at the
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3.2 Inverse NFFT - underdetermined case

run-time of our latest Algorithm 3.7, it can be seen that this step again reduced the
run-time considerably since now this algorithm is the fastest for all sizes of M .

This results can also be seen for differently spaced nodes as well as for other
parameters of the inversion. What can also change the time needed for computation
is the number of nodes and the parameters chosen for the fast computation via NFFT.
The higher the oversampling or the cut-off parameter are the longer it will take to
calculate the optimized matrix. However, this additional tests shall be left out. �
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Figure 3.8: Comparison of Frobenius norms (3.13) and (3.14) of the original matrix B

with the optimized matrices B̃ generated by Algorithm 3.3 and ˜̃B gen-
erated by Algorithm 3.4 using B-Spline window functions as well as the

optimized matrix
˜̃
B̃ generated by Algorithm 3.7 using the Dirichlet kernel

for N = 128 jittered equispaced nodes and M = 2c with c = 4, . . . , 12.
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Figure 3.9: Comparison of run-times of Algorithms 3.3 and 3.4 using the B-Spline of
order 4 as well as Algorithm 3.7 for N = 128 jittered equispaced nodes
and M = 2c with c = 4, . . . , 12 without oversampling.

Example 3.9 We have already seen that the minimization of the norm was really
successful in the underdetermined case. Now our purpose is to check if also the
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3 Inversion of the NFFT

inverse NFFT, see problem (3.1), can be approximated. Like mentioned in (3.3) the
approximation 1

M AD∗F ∗B∗f ≈ f implies that f̂ ≈ f̌ = 1
M D∗F ∗B∗f . Therefore,

we examine the norm ‖Af̌ − f‖2 mentioned in (3.4) for specific f ∈ CN . To this
end, we choose a trigonometric polynomial

f(x) =

M
2
−1∑

k=−M
2

f̂k e2πikx (3.20)

with random coefficients f̂k ∈ (1, 100), k = −M
2 , . . . ,

M
2 − 1, and compute the vec-

tor f = (f(xj))
N
j=1 at nonequispaced nodes xj ∈

[
−1

2 ,
1
2

)
, j = 1, . . . , N . Then we

consider the approximation

f̌ =
(
f̌k
)M

2
−1

k=−M
2

=
1

M
D∗F ∗B∗f (3.21)

with the original matrix B∗ from the adjoint NFFT as well as

ˇ̌f =
(

ˇ̌fk

)M
2
−1

k=−M
2

=
1

M
D∗F ∗O∗f (3.22)

where the matrix O denotes a placeholder for the optimized matrix B̃ generated by

Algorithm 3.3, ˜̃B generated by Algorithm 3.4 and
˜̃
B̃ generated by Algorithm 3.7.

Given these approximations we study the corresponding relative errors

‖Af̌ − f‖2
‖f‖2

and
‖A ˇ̌f − f‖2
‖f‖2

. (3.23)

We remark that AA∗ 6≈ MIN for nonequispaced nodes so that we do not expect a
small error for ‖Af̌ − f‖2. We only use it for comparative purposes.

For this test we take N = 128 nodes and compute the relative errors for M = 2c

with c = 3, . . . , 13. The results for jittered equispaced nodes, see (3.15), using the
B-Spline window function are depicted in Figure 3.10. There it can be seen that again
the optimization works best if we are in the underdetermined setting M > N . Then
the errors of all optimized matrices get much smaller than the original ones while the
smallest error can be achieved using Algorithm 3.7 with the Dirichlet kernel. If we
haveM < N instead then our latest algorithm is somewhat worse than Algorithms 3.3
and 3.4 but in this setting the optimization was not quite successful anyway. Another
point to mention is that in case we use oversampling, the errors are even worse for
high numbers of M while there are improvements for M < N .

For the other window functions the outcomes are essentially the same and hence
they are omitted here. In case we are given Chebyshev nodes, see (3.16), or log-
arithmically spaced nodes, see (3.17), we refer to the appropriate results in Exam-
ple 3.5 since the relative errors show the same descent as the matrix norms mentioned
there. �
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3.2 Inverse NFFT - underdetermined case
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Figure 3.10: Comparison of relative errors (3.23) using the original matrix B, the

optimized matrices B̃ generated by Algorithm 3.3 and ˜̃B generated
by Algorithm 3.4 using B-Spline window functions as well as the op-

timized matrix
˜̃
B̃ generated by Algorithm 3.7 using the Dirichlet kernel

for N = 128 jittered equispaced nodes and M = 2c with c = 3, . . . , 13.

Example 3.10 Finally, we figure out if this approach allows us to perform an inverse
NFFT for a given function f . To this end, we choose the trigonometric function

f(x) = cos2(πx2) sin(10x2), x ∈
[
−1

2 ,
1
2

)
, (3.24)

like suggested in [14]. Now we aim to approximate the Fourier coefficients ck(f). For
this purpose, we consider the function

g(x) :=

∫ 1
2

− 1
2

f(y) w̃(y − x) dy. (3.25)

Hence, by means of the convolution operator we can write g = f ∗ w̃(−·). Then the

convolution theorem implies ck(g) = ck(f) c−k(w̃) such that we have ck(f) = ck(g)
c−k(w̃)

.

If we now suppose we are not given the function g but only evaluations at points
xj ∈

[
−1

2 ,
1
2

)
, we can use a quadrature rule with weights 1

M so that we obtain the
approximation

g(x) ≈ 1

M

N∑
j=1

f(xj) w̃(xj − x) =
1

M
g̃(x) (3.26)

with the function g̃(x) as in (2.12). Then we can approximate ck(g) by 1
M ck(g̃) and

therefore we have the approximation

ck(f) =
ck(g)

c−k(w̃)
≈ ck(g̃)

M · c−k(w̃)

(2.13)
= 1

M h̃k =
(

1
M D∗F ∗B∗f

)
k

(3.21)
= f̌k.

Thus, we consider for f = (f(xj))
N
j=1 the approximations f̌ and ˇ̌f of the Fourier

coefficients, see (3.21) and (3.22), and compare them to the exact Fourier coefficients
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3 Inversion of the NFFT

of f which we can compute analytically via the formula

ck(f) :=

∫ 1
2

− 1
2

f(x) e−2πikx dx, k = −M
2 , . . . ,

M
2 − 1.

For this example we reconstruct M = 32 Fourier coefficients from function values
f(xj) given for jittered equispaced nodes xj once in an overdetermined and once in
an underdetermined setting, namely N = 128 and N = 8. To this end, we choose
the B-Spline window of order 4 as well as the Dirichlet kernel without oversampling
for computing the approximations.

Figure 3.12 depicts on the one hand side the reconstruction, i. e., the exact

Fourier coefficients ck(f) compared to the computed approximations f̌k and ˇ̌fk, and

on the other hand side the pointwise errors |ck(f) − f̌k| as well as |ck(f) − ˇ̌fk|,
k = −M

2 , . . . ,
M
2 − 1, for each of the developed algorithms. There it can be seen that

the algorithms work best in the overdetermined case, namely M < N . But since
we could minimize the norm the most in the underdetermined case we also managed
computing a better approximation for M > N . The approximations could further be
improved for M < N by making use of a higher oversampling or larger cut-off whereas
it may be worsened for M > N . This can be seen in Figure 3.11. There the max-

imum absolute errors maxk=−N
2
,...,N

2
−1 |ck(f)− f̌k| and maxk=−N

2
,...,N

2
−1 |ck(f)− ˇ̌fk|

are displayed for all the algorithms using different parameters.

When using other window functions or considering Chebyshev nodes and logarith-
mically spaced nodes the results look quite the same. Hence, all these tests shall be
omitted here. �
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Figure 3.11: Comparison of maximum absolute errors of Algorithms 2.5, 3.3 and 3.4
using the B-Spline window as well as Algorithm 3.7 using the Dirichlet
kernel for jittered equispaced nodes and N = 2c with c = 2, . . . , 11.
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3.3 Inverse adjoint NFFT - overdetermined case
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Figure 3.12: Reconstruction of the Fourier coefficients (top) and pointwise errors
(bottom) for M = 32 Fourier coefficients, generated by Algorithms 2.5,
3.3 and 3.4 using the B-Spline of order 4 as well as Algorithm 3.7 using
the Dirichlet kernel without oversampling for jittered equispaced nodes.

3.3 Inverse adjoint NFFT - overdetermined case

Now we want to solve the problem (3.2), so we search an approximation of the form
BK∗ = BFDA∗ ≈MIN . Therefore, we consider the optimization problem

Minimize
B∈RN×Mσ : B (2m+1)-sparse

‖BFDA∗ −MIN‖2F.
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3 Inversion of the NFFT

This is equivalent to the transposed problem

Minimize
B∈RN×Mσ : B (2m+1)-sparse

‖(BFDA∗)∗ −MI∗N‖2F,

i. e., to
Minimize

B∈RN×Mσ : B (2m+1)-sparse
‖AD∗F ∗B∗ −MIN‖2F.

However, this is exactly the problem we already discussed in Section 3.2 and hence
could be solved likewise.

Numerical results

Here some examples analogous to those mentioned above are discussed.

Example 3.11 First of all, we check if the optimization was successful, cf. Exam-
ple 3.5. Therefore, we examine the norms

‖BFDA∗ −MIN‖F (3.27)

as well as
‖B̃FDA∗ −MIN‖F and ‖ ˜̃BFDA∗ −MIN‖F, (3.28)

where B denotes the original matrix of the NFFT and B̃, ˜̃B denote the adjoint of
the matrices computed by Algorithm 3.3 and Algorithm 3.4, respectively.

In Figure 3.13 the outcome for N = 128 jittered equispaced nodes using B-Spline
window functions is displayed. Like already mentioned above, this optimization prob-
lem is the same as in Section 3.2 and therefore these pictures are exactly the same
as in Figure 3.1. Hence, we refer to Example 3.5 for further results. �
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Figure 3.13: Comparison of Frobenius norms (3.27) and (3.28) of the original ma-
trix B as well as the optimized matrices B̃ generated by Algorithm 3.3

and ˜̃B generated by Algorithm 3.4 for N = 128 jittered equispaced nodes
and M = 2c with c = 4, . . . , 12 using B-Spline window functions.
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3.3 Inverse adjoint NFFT - overdetermined case

Example 3.12 Analogously to Example 3.9, we test if the inverse adjoint NFFT in
(3.2) can successfully be computed. Thus, we also choose a trigonometric polynomial
with random coefficients f̂k ∈ (1, 100), k = −M

2 , . . . ,
M
2 −1, and determine the vector

f = (f(xj))
N
j=1 for xj ∈

[
−1

2 ,
1
2

)
, j = 1, . . . , N . We know that BFDA∗ ≈ MIN

implies 1
M BFD(A∗f) ≈ f so that we consider the approximations

f̃ =
(
f̃j

)N
j=1

=
1

M
BFD(A∗f) (3.29)

with the original matrix B from the NFFT as well as

˜̃f =
(

˜̃
fj

)N
j=1

=
1

M
OFD(A∗f), (3.30)

where O is a placeholder for the optimized matrix B̃ generated by Algorithm 3.3,
˜̃B generated by Algorithm 3.4 and

˜̃
B̃ generated by Algorithm 3.7. Given these

approximations we study the corresponding relative errors

‖f̃ − f‖2
‖f‖2

and
‖ ˜̃
f − f‖2
‖f‖2

. (3.31)

Like in Example 3.9 we choose N = 128 and M = 2c with c = 3, . . . , 13.

The results for jittered equispaced nodes using the B-Spline window function can
be found in Figure 3.14 where almost the same behavior as in Example 3.9 can be
seen. Again the graphs for other window functions or nodes are left out. �
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Figure 3.14: Comparison of relative errors (3.31) using the original matrix B, the

optimized matrices B̃ generated by Algorithm 3.3 and ˜̃B generated
by Algorithm 3.4 using B-Spline window functions as well as the op-

timized matrix
˜̃
B̃ generated by Algorithm 3.7 using the Dirichlet kernel

for N = 128 jittered equispaced nodes and M = 2c with c = 3, . . . , 13.
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(d) M = 128

Figure 3.15: Reconstruction of function values (top) and pointwise errors (bottom)
for N = 32 nodes, generated by Algorithms 2.4, 3.3 and 3.4 using the
B-Spline of order 4 as well as Algorithm 3.7 using the Dirichlet kernel
without oversampling for jittered equispaced nodes.

Example 3.13 Like in Example 3.10 we are going to check if we are able to per-
form an inverse adjoint NFFT for the trigonometric function (3.24). In this case
we consider the approximations (3.29) and (3.30) for f = (f(xj))

N
j=1 and compare

them to the function values for N = 32 jittered equispaced nodes xj . Similar to
Example 3.10 we consider the reconstruction, in this case the approximations f̃ and
˜̃f compared to the real function values f as well as the pointwise errors |f̃j − f(xj)|
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3.4 Inverse NFFT - overdetermined case

and | ˜̃fj − f(xj)|, j = 1, . . . , N .

The corresponding results can be found in Figure 3.15. There we see that our
new algorithms lead to better approximations in both, the underdetermined and the
overdetermined case but obviously they work best in the setting M > N . This is to
be seen in Figure 3.16. There the maximum absolute errors maxj=1,...,N |fj − f̃j | and

maxj=1,...,N |fj − ˜̃
fj | are displayed for fixed N and growing M . It becomes apparent

that the errors can be minimized for having a large gap between M and N .

Further results are left out for the same reasons as in Example 3.10. �
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Figure 3.16: Comparison of maximum absolute errors of Algorithms 2.4, 3.3 and 3.4
using the B-Spline window as well as Algorithm 3.7 using the Dirichlet
kernel for jittered equispaced nodes and M = 2c with c = 2, . . . , 11.

3.4 Inverse NFFT - overdetermined case

Previously, we studied KB∗ and BK∗, where

K = AD∗F ∗ ∈ CN×Mσ and B ∈ RN×Mσ .

Considering the problem Af̂ = f for given f ∈ CN , mentioned in (3.1), we already
introduced algorithms for the underdetermined case M > N in Section 3.2. How-
ever, often we are given N > M nonequispaced samples and search a corresponding
trigonometric polynomial of degree M . Hence, we look for another approach and
therefore investigate B∗K next. Initially, we consider the function

g̃(x) =

N∑
j=1

fj w̃m(xj − x).
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3 Inversion of the NFFT

Evaluating g̃(x) at equispaced points x = l
Mσ

, l = −Mσ
2 , . . . ,

Mσ
2 − 1, yields

g̃
(

l
Mσ

)
=

N∑
j=1

fj w̃m

(
xj − l

Mσ

)
. (3.32)

That means, by defining the vector

g̃ :=
(
g̃
(

l
Mσ

))Mσ
2
−1

l=−Mσ
2

,

(3.32) can be expressed in matrix-vector notation as g̃ = B∗f . Furthermore, we
know from (2.13) that the approximation of the adjoint NFFT can be written as

h̃k =
1

Mσŵ(−k)

Mσ
2
−1∑

l=−Mσ
2

N∑
j=1

fj w̃m

(
xj − l

Mσ

)
e−2πikl/Mσ

(3.32)
=

1

Mσŵ(−k)

Mσ
2
−1∑

l=−Mσ
2

g̃
(

l
Mσ

)
e−2πikl/Mσ , k = −M

2 , . . . ,
M
2 − 1, (3.33)

and thereby we have (h̃k)
M
2
−1

k=−M
2

=: h̃ = D∗F ∗g̃. Now we claim h̃
!≈ f̂ . Thus, it

follows

g̃
(3.32)

= B∗f = B∗Af̂
!≈ B∗Ah̃

(3.33)
= B∗AD∗F ∗g̃,

i. e., we seek B∗ as solution of the optimization problem

Minimize
B∈RN×Mσ : B (2m+1)-sparse

‖B∗AD∗F ∗ − IMσ‖2F = ‖B∗K − IMσ‖2F .

This is equivalent to the transposed problem

Minimize
B∈RN×Mσ : B (2m+1)-sparse

‖K∗B − IMσ‖2F = ‖FDA∗B − IMσ‖2F . (3.34)

By means of definitions (3.5) and (2.15) we obtain

FDA∗B =

 N∑
j=1

M
2
−1∑

k=−M
2

1

Mσŵ(k)
e
−2πik

(
xj− s

Mσ

)
w̃m

(
xj − l

Mσ

)
Mσ
2
−1

s, l=−Mσ
2

. (3.35)

Analogously to (3.7), we define the set

IMσ ,m(l) := {j ∈ {1, . . . , N} : ∃ z ∈ Z with−m ≤Mσxj − l +Mσz ≤ m} . (3.36)
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3.4 Inverse NFFT - overdetermined case

Hence, we can rewrite the optimization problem (3.34) by analogy with Section 3.2
as

‖FDA∗B − IMσ‖2F =

Mσ
2
−1∑

l=−Mσ
2

‖FDH lbl − el‖22,

where

bl :=

(
w̃m

(
xj − l

Mσ

))
j∈IMσ,m(l)

, H l :=
(

e−2πikxj
)M

2
−1

k=−M
2
, j∈IMσ,m(l)

and el denote the columns of the identity matrix IMσ . Thereby we receive the
optimization problems

Minimize
b̃l∈R2m+1

‖FDH lb̃l − el‖22, l = −Mσ
2 , . . . ,

Mσ
2 − 1.

If the matrix FDH l ∈ CMσ×|IMσ,m(l)| has full rank the solution of the problem (3.34)
is given by

b̃l =
((
FDH l

)∗
FDH l

)−1 (
FDH l

)∗
el, l = −Mσ

2 , . . . ,
Mσ
2 − 1. (3.37)

In so doing, we obtain an approximation of the Fourier coefficients by

f̂ ≈ h̃
(3.33)

= D∗F ∗g̃
(3.32)

= D∗F ∗B∗f . (3.38)

In other words, this approach yields another way to invert the NFFT by also modi-
fying the adjoint NFFT. Thus, we obtain Algorithm 3.15.

Remark 3.14 This approach could also be deduced from the explanations in Sec-
tion 3.1 if we suppose σ = 1.0 and therefore Mσ = M . Here we consider A∗A
instead of AA∗, cf. Section 3.2. Again we want to find a generalization of this ap-
proximation by modifying the matrix B, i. e., we look for an approximation of the
form

A∗BFD ≈ IM .

Multiplying right-hand by the inverse of D yields

A∗BF ≈D−1.

Since F ∈ CMσ×M is quadratic in this setting we can multiply right-hand by the
inverse of F such that

A∗B ≈D−1F−1.

Now we can multiply left-hand by D and afterwards left-hand by F so that we receive

FDA∗B ≈ IMσ ,

which leads to the optimization problem (3.34) as well. �
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3 Inversion of the NFFT

Algorithm 3.15 (Optimization of the matrix B)

For N ∈ N let xj ∈
[
−1

2 ,
1
2

)
, j = 1, . . . , N, be given nodes as well as M ∈ 2N, σ ≥ 1

and Mσ = σM . Furthermore, we are given the matrices A∗,D and F .

1. For l = −Mσ
2 , . . . ,

Mσ
2 − 1:

Determine the set IMσ ,m(l), cf. (3.36). O(N)

Determine the matrix H l :=
(
e−2πikxj

)M
2
−1

k=−M
2
, j∈IMσ,m(l)

. O(N)

Compute O(M2N)

K∗l =: FDH l =

 1

Mσ

M
2
−1∑

k=−M
2

1

ŵ(k)
e
2πik

(
l
Mσ
−xj

)
Mσ
2
−1

l=−Mσ
2
, j∈IMσ,m(l)

. (3.39)

Solve the normal equations for K∗l ∈ CMσ×|IMσ,m(l)|, i. e.,

compute b̃l, cf. (3.37). O(N3 +N2M)

2. Compose B̃ column-wise of the vectors b̃l observing the periodicity. O(M)

Output: optimized matrix B̃

Complexity: O(M3N +N2M2 +N3M)

Remark 3.16 Here we cannot tell anything about the dimensions of K∗l in general
since the size of the set IMσ ,m(l) depends on several parameters. Without further
information we have to assume that this size will be depending on N .

As soon as the parameters are given one can calculate the dimensions of K∗l . For
example for jittered equispaced nodes it can be seen that the size of IMσ ,m(l) fulfills
the relation |IMσ ,m(l)| = 2mN

Mσ
. But also for other nodes we recognized that this size

rises with growing m and decreases for bigger Mσ. Assuming we are given jittered
equispaced nodes, the complexity related to N can be eliminated and we end up with
arithmetic costs of O(M3). �

We also wish to accelerate this algorithm like shown in Section 3.2. The problem
is that in general the most costly step is not the computation of the matrix K∗l but
solving the normal equations. This arises since the matrix K lK

∗
l is not that small

anymore. But considering Remark 3.16 we can assume that there are settings where
the matrix dimensions also get small so that it is reasonable to think about a faster
computation of the matrix K∗l .
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3.4 Inverse NFFT - overdetermined case

Analogously to Section 3.2, we are able to calculate the entries of the matrix K∗l ,
see (3.39), by dint of an NFFT with the M coefficients

f̂k =
1

Mσŵ(k)
, k = −M

2 , . . . ,
M
2 − 1, (3.40)

and the nodes

yl,j :=
l

Mσ
− xj , l = −Mσ

2 , . . . ,
Mσ
2 − 1, j ∈ IMσ ,m(l),

which are at most MσN many. Here we also compute only one NFFT by writing
the columns of K∗l one below the other. Therefore, we obtain a vector including
all entries of K∗l which we have to reshape afterwards. This leads to the following
algorithm.

Algorithm 3.17 (Fast optimization of the matrix B)

For N ∈ N let xj ∈
[
−1

2 ,
1
2

)
, j = 1, . . . , N, be given nodes as well as M ∈ 2N, σ ≥ 1

and Mσ = σM .

1. Compute step 1 and step 2 of Algorithm 2.4 with f̂k in (3.40). O(M logM)

2. For l = −Mσ
2 , . . . ,

Mσ
2 − 1:

Determine the set IMσ ,m(l), cf. (3.36). O(N)

Perform step 3 of Algorithm 2.4 for the vector of nodes

y :=
(
yT1 , . . . , y

T
s

)T
for yn being the columns of the matrix Y := (yl,j)

Mσ
2
−1

l=−Mσ
2
, j∈IMσ,m(l)

. O(N)

Reshape the obtained vector into the matrix K∗l ∈ CMσ×|IMσ,m(l)|. O(N)

Solve the normal equations for K∗l , i. e., compute b̃l, cf. (3.37). O(N3+N2M)

3. Compose ˜̃B column-wise of the vectors b̃l observing the periodicity. O(M)

Output: optimized matrix ˜̃B

Complexity: O(M logM +N2M2 +N3M)

Remark 3.18 If we assume again we are given nodes which are somewhat uniformly
distributed, like for instance jittered equispaced nodes, we can get rid of the com-
plexity related to N and end up with arithmetic costs of O(M2). �
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3 Inversion of the NFFT

Example 3.19 Like in Example 3.5 we want to verify at first that the optimization
was successful. On that account, we compare the norms

‖FDA∗B − IMσ‖F (3.41)

where B denotes the original matrix from the NFFT as well as

‖FDA∗B̃ − IMσ‖F and ‖FDA∗ ˜̃B − IMσ‖F (3.42)

with the optimized matrices B̃ and ˜̃B generated by our Algorithms 3.15 and 3.17.

(i) Again we examine at first what happens for jittered equispaced nodes, see
(3.15). Here we choose M = 128 and consider the norms (3.41) and (3.42) for
N = 2c nodes with c = 2, . . . , 14.

In Figure 3.17 one can find the comparison of the norms for B-Splines of differ-
ent order, cf. (2.8), and for different oversampling for the inversion. Without
oversampling it can be seen that the minimization was very successful espe-
cially for large values of N compared to M . There it is obvious that the norm
of the original matrix is still rising while the norms using the optimized ma-
trices decrease. For the relation N < M we have somewhat the same result
as in Example 3.5, namely that the minimization was not that successful in
this setting. Like already discussed before this results from the fact that the
considered matrix FDA∗B is of low rank. Having a look at the graphs with
high oversampling we recognize that the norms of the optimized matrices re-
main stable for all sizes of N . Furthermore, in that case the two lines of the
optimized algorithms are indistinguishable.

Also for other window functions like the Gaussian, cf. (2.9), illustrated in
Figure 3.18, sinc functions, cf. (2.10), presented in Figure 3.19 and the Kaiser-
Bessel window, cf. (2.11), depicted in Figure 3.20 one can see the same behavior
of the considered norms. Only one big difference can be seen for the sinc
function with the parameter choice m = 2 and σ = 1.2. In this case the
minimization does not work as well as for the other window functions since the
norm does not get smaller.

In order to calculate the NFFT in Algorithm 3.17 we chose the Kaiser-Bessel
window, an oversampling of σ2 = 2.0 and m2 twice as large as the cut-off
parameter m from the inversion to calculate the NFFT in Algorithm 3.17 to
achieve results comparable to Example 3.5. But one could also choose a larger
cut-off to receive more accuracy for growing N , see Example 3.20.

(ii) Next we repeat the same example using Chebyshev nodes, cf. (3.16). The
corresponding results can be found in Figure 3.21. It can be seen that these
graphs look nearly the same as for jittered equispaced nodes.
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3.4 Inverse NFFT - overdetermined case
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Figure 3.17: Comparison of Frobenius norms (3.41) and (3.42) of the original ma-
trix B as well as the optimized matrices B̃ generated by Algorithm 3.15

and ˜̃B generated by Algorithm 3.17 for M = 128 and N = 2c jittered
equispaced nodes with c = 2, . . . , 14 using B-Spline window functions.
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Figure 3.18: Comparison of Frobenius norms (3.41) and (3.42) of the original ma-
trix B as well as the optimized matrices B̃ generated by Algorithm 3.15

and ˜̃B generated by Algorithm 3.17 for M = 128 and N = 2c jittered
equispaced nodes with c = 2, . . . , 14 using Gaussian window functions.
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Figure 3.19: Comparison of Frobenius norms (3.41) and (3.42) of the original ma-
trix B as well as the optimized matrices B̃ generated by Algorithm 3.15

and ˜̃B generated by Algorithm 3.17 for M = 128 and N = 2c jittered
equispaced nodes with c = 2, . . . , 14 using powers of the sinc function.
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Figure 3.20: Comparison of Frobenius norms (3.41) and (3.42) of the original ma-
trix B as well as the optimized matrices B̃ generated by Algorithm 3.15

and ˜̃B generated by Algorithm 3.17 for M = 128 and N = 2c jittered
equispaced nodes with c = 2, . . . , 14 using Kaiser-Bessel windows.
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Figure 3.21: Comparison of Frobenius norms (3.41) and (3.42) of the original ma-
trix B as well as the optimized matrices B̃ generated by Algorithm 3.15

and ˜̃B generated by Algorithm 3.17 for M = 128 and N = 2c Chebyshev
nodes with c = 2, . . . , 14 using B-Spline window functions.
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Figure 3.22: Comparison of Frobenius norms (3.41) and (3.42) of the original ma-
trix B as well as the optimized matrices B̃ generated by Algorithm 3.15

and ˜̃B generated by Algorithm 3.17 for M = 128 and N = 2c logarithmic
nodes with c = 2, . . . , 14 using B-Spline window functions.
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3.4 Inverse NFFT - overdetermined case

Here only the outcome for B-Splines is presented but for the other windows the
curves look quite the same.

(iii) Now we have a look at logarithmically spaced nodes, cf. (3.17). Figure 3.22
shows the results for B-Splines and again the other window functions are left
out because the graphs look similar.

For this sampling pattern one can see a different behavior of the matrix norms.
While the graphs start the same as for other nodes, it can be recognized that for
N > M there is no line for the fast algorithm. The reason is that the matrices
needed for calculation get extremely bad conditioned so that the computation
via Algorithm 3.17 is not possible anymore. But having a look at the condition
number of A it becomes apparent that this problem is simply to ill-posed since
cond(A) > 1017 for all N > M . Therefore, the norms cannot be made small
like for other samplings. �

Example 3.20 Like in Example 3.6 we investigate the accuracy of Algorithm 3.17
in comparison to Algorithm 3.15. Analogously, we consider the relative error∣∣∣‖FDA∗B̃ − IMσ‖F − ‖FDA∗ ˜̃B − IMσ‖F

∣∣∣
‖FDA∗B̃ − IMσ‖F

(3.43)

for different sizes of the oversampling factor σ2 and increasing cut-off parameter m2

when using the Kaiser-Bessel window for the computation of the NFFT. Here we
choose N = 256 jittered equispaced nodes, M = 128 and test for different choices of
the parameters when using the B-Spline window for the inversion. The corresponding
results are depicted in Figure 3.23. There it can be seen that the smallest errors are
achieved for high oversampling σ2 = 2.0 and a cut-off m2 much higher than m.
Another point to mention is that a larger cut-off m for the inversion does not lead
to higher accuracy whereas high oversampling σ can improve the results. For the
other window functions we obtained comparable results and hence the graphs shall
be omitted here. �

Example 3.21 Now we have a look at the run-times of Algorithm 3.15 and Algo-
rithm 3.17. For this purpose, we consider again N = 2c jittered equispaced nodes
with c = 2, . . . , 14 and use the B-Spline of order 4 without oversampling for the in-
version and the Kaiser-Bessel window with m2 = 4 and σ2 = 2.0 for the NFFT. The
outcomes for M = 128 and M = 1024 are displayed in Figure 3.24. There it can
be seen that for small sizes of M the optimized algorithm is as slow as the original
Algorithm 3.15 or even needs more time. But if we choose a higher number M of
Fourier coefficients, Algorithm 3.17 is much faster.

Similar results can also be achieved for other parameters of the inversion. �
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Figure 3.23: Comparison of the relative errors (3.43) using B-Spline window functions
for the inversion with N = 256 jittered equispaced nodes and M = 128
for growing cut-off parameter m2 and different oversampling σ2.

Further simplification

Like already shown in Section 3.2 we can simplify the computation of the matrix K∗l
even further. Again we want to incorporate the Dirichlet kernel (3.19) so that the
entries of the matrix K∗l in (3.39) can explicitly be stated and therefore the term
M logM in the computational costs of Algorithm 3.17 can be eliminated. Hence, we
obtain the following algorithm.

Algorithm 3.22 (Fast optimization of the matrix B using the Dirichlet kernel)

For N ∈ N let xj ∈
[
−1

2 ,
1
2

)
, j = 1, . . . , N, be given nodes as well as M ∈ 2N, σ ≥ 1

and Mσ = σM .

1. For l = −Mσ
2 , . . . ,

Mσ
2 − 1:

Determine the set IMσ ,m(l), cf. (3.36). O(N)

Compute O(MN)

K∗l =

[
1

Mσ
DM

2
−1

(
l
Mσ
− xj

)]Mσ2 −1
l=−Mσ

2
, j∈IMσ,m(l)

.

Solve the normal equations for K∗l , i. e., compute b̃l, cf. (3.37). O(N3+N2M)

2. Compose
˜̃̃
B column-wise of the vectors b̃l observing the periodicity. O(M)

Output: optimized matrix
˜̃
B̃

Complexity: O(M2N +N2M2 +N3M)
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Figure 3.24: Comparison of the run-times of Algorithm 3.15 and Algorithm 3.17 for
N = 2c jittered equispaced nodes with c = 2, . . . , 14 using the B-Spline
of order 4 without oversampling for the inversion and the Kaiser-Bessel
window with m2 = 4 and σ2 = 2.0 for the NFFT in Algorithm 3.17.

Example 3.23 Again we do a test similar to Example 3.19 now comparing Al-
gorithms 3.15 and 3.17 using B-Spline window functions as well as our new Algo-
rithm 3.22. In Figure 3.25 the corresponding outcomes are displayed. It is obvious
that the minimization using the Dirichlet kernel works as well as the original opti-
mization does or even better.

While the computational costs could not be scaled down, it can be seen that this
step now reduced the run-time for all sizes of M , represented in Figure 3.26. �
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(c) m = 4 and σ = 2.0

Figure 3.25: Comparison of Frobenius norms (3.41) and (3.42) of the original ma-

trix B, the optimized matrices B̃ generated by Algorithm 3.15 and ˜̃B
generated by Algorithm 3.17 using B-Spline window functions as well
as the optimized matrix generated by Algorithm 3.22 using the Dirich-
let kernel for M = 128 and N = 2c jittered equispaced nodes with
c = 2, . . . , 14.
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Figure 3.26: Comparison of run-times of Algorithms 3.15 and 3.17 using the B-Spline
of order 4 as well as Algorithm 3.22 for M = 128 and N = 2c jittered
equispaced nodes with c = 2, . . . , 14 without oversampling.

Example 3.24 In the previous examples we found out that the minimization of the
norm was quite successful in the overdetermined case. Like in Example 3.9 we are
now interested in calculating an inverse NFFT, see problem (3.1). Hence, we choose
again a trigonometric polynomial, cf. (3.20), with random coefficients f̂k ∈ (1, 100),
k = −M

2 , . . . ,
M
2 − 1, and compute the vector f = (f(xj))

N
j=1 at nonequispaced nodes

xj ∈
[
−1

2 ,
1
2

)
, j = 1, . . . , N . Since it was already explained in (3.38) that we are now

given the approximation f̂ ≈D∗F ∗B∗f we consider

f̌ = D∗F ∗B∗f (3.44)

with the original matrix B∗ from the adjoint NFFT as well as

ˇ̌f = D∗F ∗O∗f (3.45)

where the matrix O denotes a place marker for the optimized matrix B̃ generated by

Algorithm 3.15, ˜̃B generated by Algorithm 3.17 and
˜̃̃
B generated by Algorithm 3.22.

Given these approximations we study the corresponding relative errors

‖f̌ − f̂‖2
‖f̂‖2

and
‖ ˇ̌f − f̂‖2
‖f̂‖2

. (3.46)

For this test we use M = 128 and compute the relative errors for N = 2c nodes with
c = 3, . . . , 13. The results for jittered equispaced nodes using the B-Spline window
function are displayed in Figure 3.27. There it can be seen that the optimization
works best if we are in the overdetermined setting N > M . Then the errors of
all optimized matrices get much smaller than the original one. If we have N < M
instead all algorithms do not optimize as much as in the converse setting. Another
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3.4 Inverse NFFT - overdetermined case

point to mention is that in case we use oversampling the outcomes are better than
the Frobenius norms in Figure 3.17 suggest.

For other window functions the results are nearly the same except that for sinc
functions the best method is always Algorithm 3.22. However, the graphs shall be
omitted here. Given Chebyshev nodes the results are similar, but given logarithmi-
cally spaced nodes instead, this test is quite useless since we know from Figure 3.22
that the optimization does not work. Thus, both are left out. �
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(c) m = 4 and σ = 2.0

Figure 3.27: Comparison of relative errors (3.46) using the original matrix B, the

optimized matrices B̃ generated by Algorithm 3.15 and ˜̃B generated
by Algorithm 3.17 using B-Spline window functions as well as the opti-
mized matrix generated by Algorithm 3.22 using the Dirichlet kernel for
M = 128 and N = 2c jittered equispaced nodes with c = 3, . . . , 13.

Example 3.25 Again we have a look at the trigonometric function (3.24), cf. Ex-
ample 3.10. Similarly, we want to compare our approximations (3.44) and (3.45) to
the exact Fourier coefficients ck(f) but now we approximate the function (3.25) with
a quadrature rule using weights 1 so that we receive the approximation g(x) ≈ g̃(x)
instead of (3.26) and hence ck(f) ≈ f̌k. Considering the reconstruction and the er-
rors like mentioned in Example 3.10 we obtain the results displayed in Figure 3.28.
There we can see that we are not able to reconstruct the Fourier coefficients in the
underdetermined case M > N whereas the approximation in the overdetermined
setting N > M is even better than in Example 3.10. These results could even
be improved by making use of a higher oversampling factor like it can be seen in
Figure 3.29. There the maximum absolute errors maxk=−N

2
,...,N

2
−1 |ck(f) − f̌k| and

maxk=−N
2
,...,N

2
−1 |ck(f)− ˇ̌fk| are depicted.

Using Chebyshev nodes instead we see quite the same outcomes and even for log-
arithmically spaced nodes the approximation can largely be improved in the tested
setting. However, all these tests are left out here. �

47



3 Inversion of the NFFT
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(b) N = 128
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Figure 3.28: Reconstruction of the Fourier coefficients (top) and pointwise errors
(bottom) for M = 32 Fourier coefficients, generated by Algorithms 2.5,
3.15 and 3.17 using the B-Spline of order 4 as well as Algorithm 3.22
using the Dirichlet kernel without oversampling for jittered equispaced
nodes.

3.5 Inverse adjoint NFFT - underdetermined case

Now we have a look at the last remaining matrix product K∗B and the corresponding
optimization problem

Minimize
B∈RN×Mσ : B (2m+1)-sparse

‖K∗B − IMσ‖2F .
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and σ = 1.0
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(b) M = 32,m = 2
and σ = 1.0
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Figure 3.29: Comparison of maximum absolute errors of Algorithms 2.5, 3.15 and 3.17
using the B-Spline window as well as Algorithm 3.22 using the Dirichlet
kernel for jittered equispaced nodes and N = 2c with c = 2, . . . , 11.

However, we have already solved this problem in Section 3.4 to find a solution for
the transposed problem

Minimize
B∈RN×Mσ : B (2m+1)-sparse

‖B∗K − IMσ‖2F .

Hence, we only examine the actual approximation. Due to the minimization we have

FDA∗B = K∗B ≈ IMσ .

Because B ∈ RN×Mσ is a rectangular matrix and therefore not invertible we multiply
this approximation by a right-inverse of B, i. e., a matrix B′ ∈ RMσ×N that holds
BB′ = IN , and receive

FDA∗ ≈ B′.

Multiplying this by our wanted vector f yields

FDA∗f ≈ B′f ,

which can be rewritten by means of A∗f = h as

FDh ≈ B′f .

Finally, we multiply left-hand by B which results in the approximation

BFDh ≈ f

and thus provides another method to invert the adjoint NFFT by modifying the
NFFT.
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3 Inversion of the NFFT

Example 3.26 Since we know that we are in the transposed setting of Section 3.4
and have already seen that in this case the matrix norms are exactly the same, cf.
Example 3.11, we refer to Example 3.19 for results with respect to the matrix norms.

Analogously to Example 3.24, we test if we are able to successfully approximate
the inverse adjoint NFFT in (3.2). Hence, we also choose a trigonometric polynomial
with random coefficients f̂k ∈ (1, 100), k = −M

2 , . . . ,
M
2 −1, and determine the vector

f = (f(xj))
N
j=1 for xj ∈

[
−1

2 ,
1
2

)
, j = 1, . . . , N . We consider the approximations

f̃ = BFD(A∗f) = BFDh (3.47)

with the original matrix B from the NFFT as well as

˜̃f = OFD(A∗f) = OFDh, (3.48)

where O is a place marker for the optimized matrix B̃ generated by Algorithm 3.15,
˜̃B generated by Algorithm 3.17 and

˜̃̃
B generated by Algorithm 3.22. Given these

approximations we examine the relative errors

‖A∗f̃‖2
‖h‖2

and
‖A∗ ˜̃

f‖2
‖h‖2

(3.49)

Like in Example 3.24 we choose M = 128 and N = 2c with c = 3, . . . , 13.

The results for jittered equispaced nodes using the B-Spline window function can be
found in Figure 3.30. There quite the same behavior can be seen as in Example 3.24.
Again the graphs for other window functions or nodes are left out. �
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(a) m = 2 and σ = 1.0
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(b) m = 2 and σ = 2.0
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(c) m = 4 and σ = 2.0

Figure 3.30: Comparison of relative errors (3.49) using the original matrix B, the

optimized matrices B̃ generated by Algorithm 3.15 and ˜̃B generated
by Algorithm 3.17 using B-Spline window functions as well as the opti-
mized matrix generated by Algorithm 3.22 using the Dirichlet kernel for
M = 128 and N = 2c jittered equispaced nodes with c = 3, . . . , 13.
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3.5 Inverse adjoint NFFT - underdetermined case

Example 3.27 Finally, we do the same test as in Example 3.13, namely the re-
construction of the trigonometric function (3.24). For this purpose, we consider the
approximations (3.47) and (3.48) and compare them to the function values for jittered
equispaced nodes. The results are depicted in Figure 3.31. These graphs show that
our optimization was not successful for N > M since there is no reasonable chance
to approximate the function values in this setting. But also in the overdetermined
case N < M the approximations are not that good as in Example 3.13. Moreover,
Figure 3.32 shows that the errors cannot be made smaller for this approach. �
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(d) M = 128

Figure 3.31: Reconstruction of function values (top) and pointwise errors (bottom)
for N = 32 nodes, generated by Algorithms 2.4, 3.15 and 3.17 using the
B-Spline of order 4 as well as Algorithm 3.22 using the Dirichlet kernel
without oversampling for jittered equispaced nodes.
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(a) N = 8,m = 2
and σ = 1.0
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(b) N = 32,m = 2
and σ = 1.0
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Figure 3.32: Comparison of maximum absolute errors of Algorithms 2.4, 3.15 and 3.17
using the B-Spline window as well as Algorithm 3.22 using the Dirichlet
kernel for jittered equispaced nodes and M = 2c with c = 2, . . . , 11.
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4 Frames

In this chapter we will have a look at the concept of frames and discuss another
approach for inverting the NFFT based on frame theory. Besides the main ideas
of frames and the basic information about the approximation of the inverse frame
operator, a link to the ideas explained in Chapter 3 will be provided.

4.1 Basic information

Let H be a Hilbert space. The main characteristic of a basis {ϕj}∞j=1 of H is that
every element f ∈ H can be uniquely represented as a linear combination of the basis
elements, i. e.,

f =

∞∑
j=1

cj(f)ϕj . (4.1)

However, the constraints for being a basis are very restrictive. We need linear inde-
pendence and often we also claim orthogonality. Frequently these requirements make
it hard to construct bases with additional properties.

For this reason, we will have a look at a generalization of the concept of a basis. A
frame is also a sequence {ϕj}∞j=1 in H which allows to represent each element f ∈ H
via (4.1). Even if the coefficients cj(f) are not necessarily unique anymore this
definition is much more flexible. Thus, we will introduce the essential characteristics
of frames below, which are basically adapted from explanations in [3] and [14].

Definition 4.1 A sequence {ϕj}∞j=1 ⊂ H is called frame for H if there exist two
constants A,B > 0 such that

A‖f‖2 ≤
∞∑
j=1

|〈f, ϕj〉|2 ≤ B‖f‖2 ∀f ∈ H.

The numbers A and B are named frame bounds and they are not unique.

(i) A frame {ϕj}∞j=1 is referred to as tight if one can choose A = B.

(ii) If the frame condition is violated for a frame {ϕj}∞j=1 as soon as an arbitrary
element is removed, the frame is termed exact. �

For illustration we examine a few examples next.
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4 Frames

Example 4.2 Let {ej}∞j=1 be an orthonormal basis for H.

(i) By repeating each element of {ej}∞j=1 twice we receive the tight frame

{ϕj}∞j=1 = {e1, e1, e2, e2, . . . }

with A = B = 2.

(ii) If we only repeat e1 we obtain the frame

{ϕj}∞j=1 = {e1, e1, e2, e3, . . . }

with frame bounds A = 1 and B = 2.

(iii) Now we consider

{ϕj}∞j=1 =

{
e1,

1√
2
e2,

1√
2
e2,

1√
3
e3,

1√
3
e3,

1√
3
e3, . . .

}
,

i. e., the k-fold repetition of the vector 1√
k
ek. This is a tight frame because for

every element f ∈ H we have

∞∑
j=1

|〈f, ϕj〉|2 =
∞∑
k=1

k |〈f, 1√
k
ek〉|2 =

∞∑
k=1

|〈f, ek〉|2.

Together with Parsevals equation

∞∑
k=1

|〈f, ek〉|2 = ‖f‖2, f ∈ H,

this yields A = B = 1. �

Definition 4.3 The operator

S : H → H, Sf =
∞∑
j=1

〈f, ϕj〉ϕj ,

is called frame operator. �

Lemma 4.4 Let {ϕj}∞j=1 be a frame with frame operator S. Then the following holds.

(i) S is bounded, invertible, self-adjoint and positive.

(ii) {S−1ϕj}∞j=1 is a frame with frame operator S−1.

Proof. see [3], Lemma 5.1.5.
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4.2 Approximation of the inverse frame operator

Theorem 4.5 (frame decomposition)
If {ϕj}∞j=1 is a frame with frame operator S, then

f =
∞∑
j=1

〈f, S−1ϕj〉ϕj =
∞∑
j=1

〈f, ϕj〉S−1ϕj ∀f ∈ H. (4.2)

In other words, every element in H can be represented as a linear combination of the
elements of the frame.

Proof. With Definition 4.3 and Lemma 4.4 we have

f = SS−1f =

∞∑
j=1

〈S−1f, ϕj〉ϕj =

∞∑
j=1

〈f, S−1ϕj〉ϕj .

The second notation in (4.2) we obtain from the relation f = S−1Sf .

Definition 4.6 A frame {ψj}∞j=1 is named dual frame of {ϕj}∞j=1 if we have

f =

∞∑
j=1

〈f, ψj〉ϕj ∀f ∈ H.

This holds for example for the frame {ψj := S−1ϕj}∞j=1 which is termed canonical

dual frame. The numbers 〈f, S−1ϕj〉 and 〈f, ϕj〉, respectively, are referred to as
frame coefficients. �

The frame decomposition (4.2) is one of the most important results of the frame
theory. Though, in practice it is mostly difficult (or even impossible) to apply this
decomposition directly. The reason for this is that H is in general an infinite dimen-
sional Hilbert space what makes it hard to invert the frame operator. Hence, it is
necessary to be able to approximate the frame operator S−1.

4.2 Approximation of the inverse frame operator

For approximating the inverse frame operator we use the method from [13] by analogy
with [14]. This method is based on the projection onto a finite dimensional subspace
of H. For this purpose, we need the term of an admissible frame. Therefore, we
primarily consider the following definition, cf. [14].

Definition 4.7 A frame {ψl}∞l=−∞ is called admissible frame with respect to a
frame {ϕj}∞j=1 if the following conditions hold.
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4 Frames

(i) There exist positive constants c0 and t > 1 such that

|〈ψj , ψl〉| ≤ c0(1 + |j − l|)−t, j, l ∈ Z.

(ii) There exist positive constants c1 and s > 1
2 such that

|〈ϕj , ψl〉| ≤ c1(1 + |j − l|)−s, j ∈ N, l ∈ Z.

�

We suppose {ψl}∞l=−∞ is an admissible frame with respect to the frame {ϕj}∞j=1.

As shown in [13], the dual frame {S−1ϕj}∞j=1 can then be approximated by

S−1ϕj ≈ ϕ̃j :=

Mσ
2
−1∑

l=−Mσ
2

pl,j ψl, j = 1, . . . , N, (4.3)

where Φ† =: [pl,j ]
Mσ
2
−1, N

l=−Mσ
2
, j=1

is the Moore-Penrose pseudoinverse of the matrix

Φ := [〈ϕj , ψl〉]
N, Mσ

2
−1

j=1, l=−Mσ
2

. (4.4)

In doing so, the matrix dimensions have to fulfill the condition N ≥ Mσ + cM
1

2s−1
σ

with a constant c > 0. Given this approximation of the dual frame, inserting (4.3) in
(4.2) and cutting off the infinite sum yields the approximation

f ≈ f̃ :=
N∑
j=1

Mσ
2
−1∑

l=−Mσ
2

〈f, ϕj〉 pl,j ψl. (4.5)

4.3 Linking the frame-theoretical approach to the iNFFT

Now we aim to find a link between the frame approximation (4.5) and the inversion
of the NFFT from Chapter 3. As recommended in [14], the frames

{ϕj(k) := e−2πikxj , j ∈ N} (4.6)

and {
ψl(k) :=

e−2πikl/Mσ

Mσŵ(−k)
, l ∈ Z

}
(4.7)
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4.3 Linking the frame-theoretical approach to the iNFFT

shall be chosen for k ∈ R, where xj ∈ [−1
2 ,

1
2) denote the nonequispaced nodes. Note

that we changed time and frequency domain to match our notations in Chapter 2.
Thereby we obtain the scalar products

〈ϕj , ψl〉L2 =

∫ ∞
−∞

ϕj(k)ψl(k) dk =

∫ ∞
−∞

1

Mσŵ(k)
e
−2πik

(
xj− l

Mσ

)
dk. (4.8)

For 1
ŵ(k) ∈ L1(R) we consider the Fourier transform∫ ∞

−∞

1

Mσŵ(k)
e−2πiky dk =: FL2(y).

In combination with (4.8) this yields

〈ϕj , ψl〉L2 = FL2

(
xj − l

Mσ

)
.

Hence, the matrix Φ from (4.4) is of the form

ΦL2 =

(
FL2

(
xj − l

Mσ

))N, Mσ2 −1
j=1, l=−Mσ

2

.

Considering a discrete version of the frames instead, i. e., let (4.6) and (4.7) be only
defined for k ∈ Z, we receive the scalar product

〈ϕj , ψl〉`2 =
∞∑

k=−∞
ϕj(k)ψl(k) =

∞∑
k=−∞

1

Mσŵ(k)
e
−2πik

(
xj− l

Mσ

)
=: F`2

(
xj − l

Mσ

)
.

By truncating the infinite sum we obtain an approximation of the matrix Φ from
(4.4) by

Φ`2 =

(
K
(
xj − l

Mσ

))N, Mσ2 −1
j=1, l=−Mσ

2

(4.9)

with the kernel as seen in (3.6), i. e.,

K(x) =

M
2
−1∑

k=−M
2

1

Mσŵ(k)
e−2πikx.

In the following explanations we decide to choose Φ = Φ`2 .

Remark 4.8 In general, we do not have admissible frames for our known window
functions w because of the factor 1

ŵ(k) , k = −∞, . . . ,∞, cf. Remark 2.3. Only if we
consider finite frames the appropriate conditions can be satisfied.

In addition, it must be pointed out that for other sampling patterns than the
jittered equispaced nodes it was already mentioned in [4] that the admissibility con-
dition may not hold or even the conditions for constituting a frame may fail, cf.
[14].

�
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4.3.1 Theoretical results

Now we consider the frame approximation (4.5) again. Our aim is to show that the
inversion of the NFFT illustrated in Chapter 3 can also be expressed by means of a
frame-theoretical approach, i. e., by approximating a function f̂ in frequency domain,
cf. (2.7), and subsequently sampling at equispaced points k = −M

2 , . . . ,
M
2 − 1.

The frame approximation of the function f̂ sought-after is given by

f̂ ≈ ˜̂
f =

N∑
j=1

Mσ
2
−1∑

l=−Mσ
2

〈f̂ , ϕj〉`2 pl,j ψl (4.10)

with pl,j as defined in (4.4). Hence, we are acquainted with two different methods to

compute the Fourier coefficients f̂k from given data 〈f̂ , ϕj〉 =: fj ; the frame approxi-
mation (4.10) as well as the adjoint NFFT (2.13). In what follows, we suppose that
we can achieve a reconstruction via frames. Utilizing this, we are going to modify
the adjoint NFFT so that we can use this simple method to invert the NFFT. Thus,
we are looking for an approximation of the form

h̃k ≈ ˜̂
f(k) ≈ f̂k, k = −M

2 , . . . ,
M
2 − 1.

To compare the adjoint NFFT and the frame approximation we firstly rewrite the
approximation (2.13) from Algorithm 2.5 by analogy to [14]. This yields

h̃k =
1

Mσ

Mσ
2
−1∑

l=−Mσ
2

N∑
j=1

fj w̃m

(
xj − l

Mσ

)
︸ ︷︷ ︸

=:cl

e−2πikl/Mσ

ŵ(−k)︸ ︷︷ ︸
=Mσψl(k)

=

Mσ
2
−1∑

l=−Mσ
2

cl ψl(k), k = −M
2 , . . . ,

M
2 − 1, (4.11)

with coefficients vector

c =

 N∑
j=1

fj w̃m

(
xj − l

Mσ

)
Mσ
2
−1

l=−Mσ
2

= B∗f , (4.12)

where

f := (fj)
N
j=1 =

(
〈f̂ , ϕj〉`2

)N
j=1

.
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4.3 Linking the frame-theoretical approach to the iNFFT

Likewise we can rewrite the frame approximation (4.10), cf. [14], as

˜̃
hk :=

˜̂
f(k) =

Mσ
2
−1∑

l=−Mσ
2

dl ψl(k), k = −M
2 , . . . ,

M
2 − 1, (4.13)

where

d := (dl)
Mσ
2
−1

l=−Mσ
2

= Φ†f . (4.14)

Furthermore, we define the vectors

h̃ :=
(
h̃k

)M
2
−1

k=−M
2

and
˜̃
h :=

(
˜̃
hk

)M
2
−1

k=−M
2

as well as the matrix

Ψ := (ψl(k))
M
2
−1, Mσ

2
−1

k=−M
2
, l=−Mσ

2

.

Therefore, (4.11) and (4.13) can be represented by

h̃ = Ψc and
˜̃
h = Ψd. (4.15)

Hence, now we can estimate the difference between both approximations.

Theorem 4.9 (cf. Theorem 2.4. in [14])
Let

ŵ :=

(
1

ŵ(−k)

)M
2
−1

k=−M
2

be a vector satisfying ‖ŵ‖2 <∞. Then the following estimates hold.

(i) For Mσ < N we have∥∥∥h̃− ˜̃
h
∥∥∥
2
≤ 1√

Mσ
‖ŵ‖2 ‖ΦB∗ − IN‖F ‖Φ†f‖2, (4.16)

(ii) For Mσ > N we have∥∥∥h̃− ˜̃
h
∥∥∥
2
≤ 1√

Mσ
‖ŵ‖2 ‖B∗Φ− IMσ‖F ‖Φ†f‖2. (4.17)

where B∗ denotes the adjoint matrix of (2.15) and Φ := Φ`2 is given as in (4.9).
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Proof. By analogy with [14] Definition (4.15) combined with the definition of the
Frobenius norm implies∥∥∥h̃− ˜̃

h
∥∥∥
2

= ‖Ψc−Ψd‖2 = ‖Ψ(c− d)‖2 ≤ ‖Ψ‖F ‖c− d‖2

=

√√√√√√
M
2
−1∑

k=−M
2

Mσ
2
−1∑

l=−Mσ
2

|ψl(k)|2 · ‖c− d‖2

=

√√√√√√
M
2
−1∑

k=−M
2

Mσ
2
−1∑

l=−Mσ
2

∣∣∣∣ 1

Mσŵ(−k)
e−2πikl/Mσ

∣∣∣∣2 · ‖c− d‖2

=
1

Mσ

√√√√√√
M
2
−1∑

k=−M
2

∣∣∣∣ 1

ŵ(−k)

∣∣∣∣2
Mσ
2
−1∑

l=−Mσ
2

∣∣∣e−2πikl/Mσ

∣∣∣2︸ ︷︷ ︸
≤1

· ‖c− d‖2

≤ 1

Mσ

√
Mσ ·

√√√√√ M
2
−1∑

k=−M
2

∣∣∣∣ 1

ŵ(−k)

∣∣∣∣2 · ‖c− d‖2

=
1√
Mσ
‖ŵ‖2 ‖c− d‖2 .

Now we consider the norm ‖c− d‖2 separately.

(i) For Mσ < N we have by (4.12) and (4.14) that

c− d =
(
B∗ −Φ†

)
f =

(
B∗ − (Φ∗Φ)−1Φ∗

)
f

=
(
(Φ∗Φ)−1Φ∗

)
(ΦB∗ − IN )f .

This leads to

‖c− d‖2 ≤ ‖ΦB∗ − IN‖F ‖
(
(Φ∗Φ)−1Φ∗

)
f‖2

≤ ‖ΦB∗ − IN‖F ‖Φ†f‖2.

(ii) In analogy, for Mσ > N we have that

c− d =
(
B∗ −Φ†

)
f =

(
B∗ −Φ∗(ΦΦ∗)−1

)
f

= (B∗Φ− IMσ)
(
Φ∗(ΦΦ∗)−1

)
f

and thereby

‖c− d‖2 ≤ ‖B∗Φ− IMσ‖F ‖
(
Φ∗(ΦΦ∗)−1

)
f‖2

≤ ‖B∗Φ− IMσ‖F ‖Φ†f‖2.
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4.3 Linking the frame-theoretical approach to the iNFFT

4.3.2 Optimization

Now we aim to use the result above to modify the adjoint NFFT such that we achieve
an inversion of the NFFT. Therefore, we want to minimize the distance shown in
(4.16) and (4.17), respectively. To this end, we suppose we are given nodes xj as well
as frames {ϕj} and {ψl} and thereby the matrix Φ = Φ`2 . Then our purpose is to
improve the approximation of the adjoint NFFT by modifying the matrix B∗.

Connection to the first approach

At first we consider the case Mσ < N . By dint of the ideas above the optimization
problem

Minimize
B∈RN×Mσ : B (2m+1)-sparse

‖ΦB∗ − IN‖2F (4.18)

arises from the estimate (4.16). For solving this problem we will have a closer look
at the matrix ΦB∗. Definitions (2.15) and (4.9) yield

ΦB∗ =

 Mσ
2
−1∑

l=−Mσ
2

M
2
−1∑

k=−M
2

1

Mσŵ(k)
e
−2πik

(
xj− l

Mσ

)
w̃m

(
xh − l

Mσ

)
N

j, h=1

. (4.19)

In addition, we consider analogously to (3.35)

BFDA∗ =

 Mσ
2
−1∑

l=−Mσ
2

M
2
−1∑

k=−M
2

1

Mσŵ(k)
e
−2πik

(
xj− l

Mσ

)
w̃m

(
xh − l

Mσ

)
N

h, j=1

. (4.20)

Comparing the matrices (4.19) and (4.20) it can be recognized that (4.19) is exactly
the transposed of (4.20), i. e.,

ΦB∗ = (BFDA∗)T = (BK∗)T .

Since the optimization problem (4.18) is thereby equivalent to the transposed problem

Minimize
B∈RN×Mσ : B (2m+1)-sparse

‖BFDA∗ − IN‖2F,

(4.18) can be solved like already seen in Section 3.3. It may be recognized that the
objective is a slightly different one than in Chapter 3 since now we are looking for an
approximation of the form BFDA∗ ≈ IN instead of BFDA∗ ≈MIN . However,
in other words, only a constant is missing which does not change the method.
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4 Frames

Connection to the second approach

For Mσ > N the ideas above lead to the optimization problem

Minimize
B∈RN×Mσ : B (2m+1)-sparse

‖B∗Φ− IMσ‖2F. (4.21)

Again we have a closer look at the appropriate matrix

B∗Φ =

 N∑
j=1

M
2
−1∑

k=−M
2

1

Mσŵ(k)
e
−2πik

(
xj− s

Mσ

)
w̃m

(
xj − l

Mσ

)
Mσ
2
−1

l, s=−Mσ
2

. (4.22)

Furthermore, we also consider the matrix from (3.35)

FDA∗B =

 N∑
j=1

M
2
−1∑

k=−M
2

1

Mσŵ(k)
e
−2πik

(
xj− s

Mσ

)
w̃m

(
xj − l

Mσ

)
Mσ
2
−1

s, l=−Mσ
2

.

Once again, a comparison of the matrices (4.22) and (3.35) yields that they are equal
except for transposition, i. e.,

B∗Φ = (FDA∗B)T = (K∗B)T .

Because the optimization problem (4.21) is hence equivalent to the transposed prob-
lem

Minimize
B∈RN×Mσ : B (2m+1)-sparse

‖FDA∗B − IMσ‖2F,

(4.21) can be solved like already discussed in Section 3.5.
Therefore, we have shown that both frame-theoretical attempts can be traced back

to the methods for inverting the NFFT which were already introduced in Chapter 3.
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Summary

In the present thesis we developed a new direct method for computing an inverse
NFFT, i. e., for the reconstruction of the Fourier coefficients f̂k from given function
values fj . Furthermore, a solution for the adjoint problem, the reconstruction of
function values fj from given data hk, was proposed. Therefore, these problems were
split up to overdetermined and underdetermined cases which then could be solved
separately.

The main idea for finding a solution in each of these cases was the minimization of
a certain Frobenius norm. Hence, the appropriate matrices were studied thoroughly
so that the solution of the optimization problem could be deduced by means of the
least squares method. This already led to first algorithms.

Moreover, these algorithms were improved and efficient methods for computation
were presented. As a first approach we were able to reduce the computational costs
by approximating the entries of the corresponding matrices via NFFT. Though, in
numerical experiments it became apparent that the developed inversion works the
same for all common window functions. Therefore, we managed to improve the com-
plexity even further in a second step by making use of the Dirichlet kernel instead of
the window functions. So, all in all, we ended up with precomputational algorithms of
complexity O(N2) and O(M2), respectively, whereas the algorithms for the inversion
require only O(M logM +N) arithmetic operations.

These algorithms were finally tested and compared to the original NFFT algo-
rithms. There it could be seen that each algorithm substantially minimizes the norm
it was supposed to and that the fastest method is even the best. Regarding the
reconstruction of a given function we also showed that each algorithm leads to much
better approximations especially in the setting it was developed for.

Last but not least, we investigated another approach for inverting the NFFT. This
was done by dint of the frame approximation which could be used to approximate a
function f̂ in frequency domain and subsequently sample at equispaced points. This
procedure could then be compared to the adjoint NFFT so that the last-mentioned
could be modified to achieve a good approximation. In so doing, we found out that
the thereby obtained approaches can be traced back to the methods for the inversion
of the NFFT which were introduced before.
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chemnitz.de/~potts, 2003.

[21] D. Potts and G. Steidl. Fast summation at nonequispaced knots by NFFTs.
SIAM J. Sci. Comput., 24:2013–2037, 2003.

[22] D. Potts, G. Steidl, and M. Tasche. Fast Fourier transforms for nonequispaced
data: A tutorial. In J. J. Benedetto and P. J. S. G. Ferreira, editors, Modern
Sampling Theory: Mathematics and Applications, pages 247–270, Boston, MA,
USA, 2001. Birkhäuser.
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