
The well-known fast Fourier transform (FFT) is one of 
the most important and widely used algorithms in a 
multitude of disciplines including engineering, natural 
sciences, scientific computing, and signal processing. 
Nevertheless, its restriction to equispaced data 
represents a significant limitation in practice. 
Consequently, this has led to the development of the 
nonequispaced fast Fourier transform (NFFT), which 
permits the use of arbitrary nodes in the spatial 
domain.
In a variety of applications, such as magnetic 
resonance imaging (MRI), solution of partial 
differential equations (PDEs), etc., however, there is a 
need for the inverse transform, i.e., computing 
Fourier data from given nonequispaced function 
evaluations of trigonometric polynomials, or even of 
bandlimited functions. For this reason, this thesis 
focuses on the presentation of new efficient inversion 
methods for the NFFT, which can be realized with the 
complexity of a single NFFT, and on the 
generalization of these methods to the setting of 
bandlimited functions. Additionally, the evaluation 
problem for bandlimited functions is addressed as 
well. In particular, the present thesis provides the first 
comprehensive overview of the so-called regularized 
Shannon sampling formulas.
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1 Introduction

The well-known fast Fourier transform (FFT) is one of the most important
and widely used algorithms in a variety of fields including engineering,
natural sciences, scientific computing, and signal processing. The reason for
this is that the FFT enables the fast evaluation of trigonometric sums at
equispaced nodes, reducing the number of arithmetic operations from O(N2)
for the naive computation to only O(N logN), where N denotes the number
of given nodes. This efficient computation is based on a divide-and-conquer
strategy exploiting the underlying trigonometric structure, which was first
described by C.F. Gauss around 1800, cf. [HJB85, Pre16], and was brought
to a wider attention by Cooley and Tukey in 1965, see [CT65].

In the case of nonequispaced nodes, however, the evaluation of a trigono-
metric polynomial is not possible via the classical FFT, which led to
the development of the nonequispaced fast Fourier transform (NFFT),
also referred to as the nonuniform fast Fourier transform (NUFFT), see
for instance [DR93, Bey95, Ste98a, War98, DS99, PST01, GL04, KKP09,
BMK19, PT21a]. This efficient algorithm realizes the approximation of
a trigonometric polynomial by a linear combination of translates of a
1-periodic window function, resulting in a three-step approximation pro-
cedure that consists of a convolution step, an ordinary FFT, and a de-
convolution step, thus possessing the same arithmetic complexity as the
FFT.

Nevertheless, numerous applications such as magnetic resonance imaging
(MRI), cf. [NW01, GLI06, DAP22, EKP22], synthetic aperture radar (SAR),
cf. [GJG23], solution of partial differential equations (PDEs), cf. [Fas07],
etc., are interested in an inverse transform. In other words, there is a
demand for fast algorithms for the approximation of Fourier data from
given nonequispaced function evaluations of trigonometric polynomials, or
even of bandlimited functions. For this reason, the present thesis is divided
into two parts. The first part focuses on efficient inversion methods for
the nonequispaced fast Fourier transform (NFFT), while the second part
addresses the generalizations of these methods to the setting of bandlimited
functions.

More precisely, the first objective of this work is the study of efficient
methods for the discrete inversion problem, i. e., computing the Fourier
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coefficients f̂k ∈ C, k ∈ IM , of a trigonometric polynomial

f(x) =
∑

k∈IM

f̂k e
2πikx (1.1)

from given evaluations f(xj), j = 1, . . . , N , at given nonequispaced

points xj ∈
[
− 1

2 ,
1
2

)d
, where N ∈ N and IM := Zd ∩

[
−M

2 ,
M
2

)d
with

|IM | =Md. Since in general the number N of the nodes xj does not

coincide with the number |IM | of the Fourier coefficients f̂k, the nonequi-
spaced Fourier matrix

A =
(
e2πikxj

)N
j=1,k∈IM

∈ CN×|IM |,

is rectangular and hence a regular inverse does not exist. Therefore, we
can only expect approximate inverse nonequispaced fast Fourier transforms.
Here we describe two methods for finding a left-inverse matrix, which can
be seen as generalizations of the equispaced setting, where the inverse of
the FFT is simply given by its scaled adjoint. Thus, the main contribution
of the first part of this thesis is the presentation of fast methods that can be
realized with the complexity of an adjoint NFFT, due to a precomputation
that depends only on the nodes xj , j = 1, . . . , N . In particular, based
on an extensive study of the so-called density compensation methods,
which compute a diagonal matrix of weights, we introduce a condition for
exactness and consequently a scheme for the computation of weights that
are exact under proper assumptions on the nodes. Moreover, we successfully
generalize this concept of density compensation to the modification of a
sparse matrix in the factorization of the adjoint NFFT, thereby allowing
more freedom in the optimization and thus relaxing the assumptions to be
made.
The second objective of this work is the generalization of the obtained

efficient methods to the continuous inversion problem. In this case, instead
of trigonometric polynomials (1.1), we deal with bandlimited functions,
which are functions whose Fourier transform

f̂(v) :=

∫

Rd

f(x) e−2πivx dx, v ∈ Rd, (1.2)

is supported on
[
−M

2 ,
M
2

]d
. Accordingly, our goal is to compute point

evaluations f̂(k) ∈ C, k ∈ IM , of the Fourier transform f̂ from given

samples f(xj), j = 1, . . . , N , at nonequispaced nodes xj ∈
[
− 1

2 ,
1
2

)d
.
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The main contributions of this part can be summarized as follows. In
order to address this more challenging problem, we firstly examine bandlim-
ited functions in greater detail. Here, more efficient and accurate numerical
realizations of the famous Whittaker–Kotelnikov–Shannon sampling theo-
rem, see [Whi15, Kot01, Sha49], are obtained by the systematic transfer
of the NFFT window functions in combination with a new approach for
estimating the approximation error. In particular, we present the first
comprehensive overview of the regularized Shannon sampling formulas and,
for the first time, extend these results to the multivariate setting with d > 1.
Based on this, we introduce a new NFFT-like approach for the continuous
problem of computing the samples f(xj), j = 1, . . . , N , from given point

evaluations f̂(k) ∈ C, k ∈ IM , of the Fourier transform f̂ of a bandlimited
function f . Since this approach is specifically designed for the case of
bandlimited functions, it can be demonstrated that it yields a significant
improvement in comparison to the classical NFFT. Finally, considering
the continuous inversion problem, we give a detailed study of the relation
between the cases of trigonometric polynomials and bandlimited functions.
Thereby, we are able to show that the previously introduced efficient inver-
sion methods from the discrete setting can be generalized to the continuous
setting and that the error in the resulting reconstruction is dominated by
the fact that the bandlimited function f is typically not known on whole Rd,
but only on a bounded domain.

Outline of this thesis

In addition to this introductory part, the present thesis comprises five
chapters. In the following, we provide a brief overview of the individual
topics. For a more detailed introduction, please refer to the opening of
each chapter.

Chapter 2: Nonequispaced fast Fourier transforms

The second chapter is dedicated to the introduction of the fundamental
algorithms utilized for the efficient evaluation of trigonometric sums at
nonequispaced nodes. Initially, we recall some basic definitions and present
the concept of the well-known fast Fourier transform (FFT) in Section 2.1.
Subsequently, in Section 2.2 we describe the previously mentioned fast
Fourier transform for nonequispaced data in the spatial domain (NFFT),
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which is summarized in Algorithm 2.2. Its adjoint version for nonequispaced
data in the frequency domain, the adjoint NFFT, is then given in Algo-
rithm 2.5 in Section 2.3. Afterwards, this approach is further generalized
in Section 2.4, where the fast Fourier transform for nonequispaced data in
the spatial domain and in the frequency domain (NNFFT) is detailed and
finally stated in Algorithm 2.6.

Chapter 3: Direct inversion methods for the NFFT

Since numerous applications are interested in an inversion of the nonequi-
spaced fast Fourier transform, see above, the third chapter is attributed
to this task. That is to say, instead of the evaluation of a trigonometric
polynomial (1.1) at given points xj , j = 1, . . . , N , now the aim is computing

the Fourier coefficients f̂k, k ∈ IM , from given nonequispaced data f(xj),
j = 1, . . . , N .

Through a detailed study of the literature, we recognize that the existing
methods can be divided into two distinct categories: iterative and direct
procedures. While iteration schemes require multiple iteration steps, the
so-called direct methods consist of only one precomputational step and one
reconstruction step. Since in the context of the nonequispaced fast Fourier
transform (NFFT) being a direct method means that the reconstruction
can be realized with the same number of arithmetic operations as a single
application of an adjoint NFFT, the reconstruction step is very efficient.
Thus, although the necessary precomputations might be rather costly, they
need to be done only once for a given set of points xj , j = 1, . . . , N , and
therefore direct methods are especially beneficial in the case of multiple
measurements at the same points. For this reason, this work focuses on
approaches of this kind.

In Section 3.1 we introduce the general idea of our procedures. By
having a closer look at the special case of equispaced points and the fact
that the adjoint NFFT does not yield an inversion of the NFFT per se,
see (3.2), it becomes evident that in the nonequispaced case some kind of
re-weighting according to the points is compulsory. In particular, we aim
to find a left-inverse matrix X ∈ C|IM |×N with XA ≈ I |IM | that exhibits
a similar structure D∗F ∗B∗ as the adjoint NFFT. Therefore, we present
two different approaches for the realization of this precomputational step.

Firstly, in Section 3.2 we consider the very well-known approach
of so-called sampling density compensation. In these methods, the
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aforementioned precomputations consist of computing a diagonal ma-
trix W := diag(wj)

N
j=1 of suitable weights wj ∈ C. The subsequent re-

construction step then involves only one adjoint NFFT applied to the
scaled coefficient vector Wf , as illustrated in Algorithm 3.2. Through our
investigation, we demonstrate that optimal density compensation weights
need to fulfill the condition

N∑

j=1

wj e
2πikxj = δ0,k, k ∈ I2M ,

to ensure an exact reconstruction, as evidenced by Theorem 3.6. Based on
this fact, we show that the exactness condition can also be used to compute
the optimal weights numerically, leading to Algorithm 3.10.

Secondly, in Section 3.3 we generalize the idea of sampling density com-
pensation to find an optimal sparse matrix instead of a diagonal matrix
of weights. More precisely, here the idea is using the matrix representa-
tion A ≈ BFD of the NFFT to modify one of the matrix factors. Then the
precomputational step consists of computing the optimal sparse matrix Bopt

based on the minimization problem

Minimize
B̃∈RN×|IMσ

| : B̃ (2m+1)d-sparse

∥∥D∗F ∗B̃
∗
A− I |IM |

∥∥2
F
,

where ∥ · ∥F denotes the Frobenius norm. As outlined in Algorithm 3.21,
this enables that the actual reconstruction step includes only one modified
adjoint NFFT applied to the coefficient vector f . In addition to these
theoretical results, we also discuss methods for the numerical computation,
summarized in Algorithm 3.25.

Finally, several numerical examples are presented in Section 3.4, with
special emphasis on comparing the new approaches both among themselves
and with selected methods from the literature. Especially, in compliance
with the obtained exactness condition, the superiority of the newly proposed
density compensation factors computed by Algorithm 3.10 is demonstrated
in Figure 3.6. In addition, the enhanced results that can be achieved under
less rigorous assumptions using the novel matrix optimization approach,
in contrast to the density compensation approach, are clearly evident in
Figure 3.11.
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Chapter 4: Regularized Shannon sampling formulas

Having considered the evaluation problem and the reconstruction problem
for trigonometric polynomials (1.1), our aim is now to study the analogous
problems for the so-called bandlimited functions. While trigonometric
polynomials (1.1) are periodic functions on the torus Td with only a finite
number of nonzero Fourier coefficients, we now move on to functions on Rd
that exhibit a similar property with respect to the continuous Fourier
transform. More precisely, a function f : Rd → C is called bandlimited with
bandwidthM ∈ N, if the support of its (continuous) Fourier transform (1.2)

is contained in
[
−M

2 ,
M
2

]d
. For such a function, the fundamental Whittaker–

Kotelnikov–Shannon sampling theorem, see [Whi15, Kot01, Sha49], ensures
that for all L ≥M it can be recovered from its samples f

(
ℓ
L

)
, ℓ ∈ Zd, by

f(x) =
∑

ℓ∈Zd

f
(
ℓ
L

)
sinc

(
Lπ
(
x− ℓ

L

))
, x ∈ Rd, (1.3)

with the sinc function (3.31). In other words, this sampling theorem plays
an essential role in signal processing, as it describes the close relation
between a bandlimited function and its equidistant samples.

Unfortunately, the practical use of this sampling theorem is limited, since
it requires infinitely many samples, which is impossible in practice. The
partial sums, however, exhibit a rather poor convergence, due to the slow
decay of the sinc function, see [Jag66]. Moreover, in the presence of noise
or quantization in the samples f

(
ℓ
L

)
, ℓ ∈ Zd, the convergence of Shannon

sampling series may even break down completely, see [Fei92a, DD03].
Therefore, suitable methods for the numerical realization of the sampling

theorem are discussed in this fourth chapter. In particular, in Section 4.1
we specify some important preliminaries as well as the famous sampling
theorem of Whittaker–Kotelnikov–Shannon, while Section 4.2 gives evidence
for the poor convergence rate and the lack of numerical robustness of
classical Shannon sampling sums. To overcome these shortcomings, the
proposed numerical realizations of the sampling theorem are based on
additional regularization techniques, where a so-called window function is
employed. Since such a window function can be chosen either in frequency
domain or in spatial domain, we survey both approaches for the univariate
setting in Section 4.3. In doing so, we put a special emphasis on the
comparison of the two approaches in terms of error decay rates.
Firstly, in Section 4.3.1 we study the regularization with a window
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function in the frequency domain. In literature this is often realized by
substituting the sinc function in (1.3) by a function ψ that is compactly
supported in the frequency domain, cf. e. g. [Dau92, Nat86a, Rap96, Par97,
ST05]. More specifically, ones chooses a window function of the form

ψ̂(v) :=





1 : |v| ≤ M
2 ,

ξ(|v|) : M2 < |v| < L
2 ,

0 : |v| ≥ L
2 .

However, due to this structure, the uncertainty principle implies that
the corresponding sampling series still requires infinitely many samples.
Therefore, we approximate a function f by the T -th partial sum

(Pψ,T f)(x) :=
T∑

ℓ=−T

f
(
ℓ
L

) 1

L
ψ
(
x− ℓ

L

)
, x ∈ R.

In this work, we present the first general result on the uniform approximation
error

max
x∈[−1, 1]

∣∣f(x)− (Pψ,T f)(x)
∣∣.

in Theorem 4.10. Moreover, by specifying this result for several window
functions we obtain more explicit versions of previously existing bounds.
Nevertheless, our investigations show that for the regularization in the
frequency domain only algebraic error decay rates are achievable.
Secondly, in Section 4.3.2 we study the regularization with a window

function in the spatial domain. Here for somem ∈ N \ {1} a suitable window
function φm : R → [0, 1] with compact support

[
− m

L ,
m
L

]
and φm(0) = 1

is chosen, such that a function f can be approximated by the regularized
Shannon sampling formula

(Rφ,mf)(x) :=
∑

ℓ∈Z
f
(
ℓ
L

)
sinc

(
Lπ
(
x− ℓ

L

))
φm
(
x− ℓ

L

)
, x ∈ R.

Due to the assumptions made on the window function φm we show
that this regularized Shannon sampling formula exhibits the inter-
polation property (4.75) for x ∈ 1

L Z and requires only 2m+ 1 sam-

ples f
(
ℓ
L

)
for fixed x ∈ R \ 1

L Z. Note that in literature this approach
was only considered for the truncated Gaussian window function (4.60), cf.
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e. g. [Qia03, SS07, MXZ09, LZ17, CZ19]. In contrast, we present the first
general result on the uniform approximation error

∥f −Rφ,mf∥C0(R) := max
x∈R

∣∣f(x)− (Rφ,mf)(x)
∣∣

in Theorem 4.25. Furthermore, by specifying this result for window func-
tions which are known to be excellent in the context of the NFFT, we show
that exponential error decay rates are obtained.
All in all, we present the first systematic approach, comparing the

different regularization techniques and window functions both theoretically
and numerically, see also Table 4.1 in Section 4.3.3. As it turns out that
the best results are obtained by oversampling and the newly suggested
regularization in the spatial domain, these regularized Shannon sampling
formulas are generalized to the multivariate setting for the first time in
Section 4.4.
In the final Section 4.5 several numerical examples illustrate the theo-

retical results. These include a comparison of several window functions
in frequency domain in Figure 4.16 and a comparison of several window
functions in spatial domain in Figure 4.25. In addition, a concluding
comparison of the two approaches in Figure 4.26 clearly emphasizes the
superiority of the newly proposed NFFT window functions.

Chapter 5: Fast sinc methods

As already seen, the sinc function plays an important role in the context of
the sampling theorem and the regularized Shannon sampling formulas, but
is also needed in many other applications, see [LB92, Ste93]. Therefore,
this interluding fifth chapter emphasizes the value of the sinc function by
focusing on efficient and accurate algorithms in which the sinc function is
a crucial ingredient.
Firstly, in Section 5.1 we consider the so-called discrete sinc transform

(see [GLI06, LB11])

h(bℓ) =
∑

k∈IK

ck sinc
(
Mπ (bℓ − ak)

)
, ℓ ∈ IL, (1.4)

with complex coefficients ck ∈ C and given points ak, bℓ ∈
[
− 1

2 ,
1
2

]d
,

k ∈ IK and ℓ ∈ IL for K,L ∈ 2N, which can be nonequispaced. In order to
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derive a fast algorithm for the computation of these values, we approximate
the sinc function sinc(Mπx) for all x ∈ [−1, 1]d by an exponential sum

n∑

j=0

wj e
−2πiMzjx

with explicitly known coefficients wj > 0, j = 0, . . . , n, for given

points zj ∈
[
− 1

2 ,
1
2

]d
. Namely, by applying a Clenshaw–Curtis quadra-

ture rule to an integral representation of the sinc function, we derive a
new error estimate in Theorem 5.4. Thereby, the evaluation of the dis-
crete sinc transform (1.4) can be realized efficiently by means of two fast
Fourier transforms for nonequispaced data in the spatial domain and in
the frequency domain (NNFFTs). In addition, the explicit error estimate
indicates that for a given target accuracy, the parameters M and n can be
fixed, thereby enabling the realization of the so-called fast sinc transform
in Algorithm 5.10 with only O(K + L) arithmetic operations.
Subsequently, in Section 5.2 similar techniques are employed to extend

this fast sinc transform to the evaluation of the regularized Shannon sam-
pling formulas from Section 4.3. More precisely, in case these numerical
realizations of the sampling theorem still require a huge amount of samples
and therefore the direct evaluation is too costly, we describe analogous
efficient approximation procedures. In particular, in Section 5.2.1 we con-
centrate on the regularization in the frequency domain from Section 4.3.1.
The resulting approximation procedure is summarized in Algorithm 5.14,
whose accuracy is based on the new error estimate of Theorem 5.13. Addi-
tionally, in Section 5.2.2 we address the regularization in the spatial domain
from Section 4.3.2, with the resulting procedure outlined in Algorithm 5.15.
Afterwards, we are equipped with all the necessary tools to change

the focus and revisit the aforementioned evaluation problem for band-
limited functions in Section 5.3. More precisely, for given values f̂(k),
k ∈ IM , of the Fourier transform of a bandlimited function f , we are
looking for function evaluations f(xj) at given nonequispaced points xj ,
j = 1, . . . N . Note that if a trigonometric polynomial f ∈ L2(Td) is given, it
is already known by Chapter 2 that this evaluation of (1.1) can be realized
by means of the nonequispaced fast Fourier transform (NFFT). Hence,
for the first time we introduce an NFFT-like procedure for bandlimited
functions in Algorithm 5.16, which is based on the regularized Shannon
sampling formulas of Chapter 4 and therefore the sinc function plays an
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important role in this approximation. In particular, we discuss the relation
of this new method to the classical NFFT, where the evident superiority of
this novel approach is illustrated in Figure 5.1.

Finally, Section 5.4 contains several numerical examples that demonstrate
the accuracy and efficiency of the new approaches. Specifically, the accuracy
of the fast sinc transform is confirmed in Figure 5.5, while Figures 5.6
and 5.7 illustrate the quality of the analogous methods for the fast evaluation
of the regularized Shannon sampling formulas. Furthermore, a comparison
of the approximation errors of the newly proposed NFFT-like method
and the classical NFFT is displayed in Figure 5.8, once more showing
the considerable improvement that can be obtained through this novel
approach.

Chapter 6: Reconstruction of the Fourier transform of
bandlimited functions from nonequispaced spatial data

In the last chapter we address the reconstruction problem for bandlim-
ited functions. As previously discussed in Chapter 3, there are several
approaches that are based on the setting of trigonometric polynomials.
However, numerous applications, e. g. magnetic resonance imaging (MRI),
cf. [GLI06, EKP22], are concerned with the analogous continuous inversion

problem, where the aim is the reconstruction of point evaluations f̂(k) ∈ C,
k ∈ IM , of the Fourier transform f̂ from given measurements f(xj),
j = 1, . . . , N , of the form

f(x) =

∫

[−M
2 ,

M
2 )

d

f̂(v) e2πivx dv, x ∈ Rd.

To address this problem, note that the given problem can also be seen as a
generalization of the discrete problem in Chapter 3, such that we immedi-
ately obtain direct inversion methods by reviewing several approaches and
extending these techniques to the setting of bandlimited functions.
In particular, in Section 6.1 we investigate the aforementioned den-

sity compensation technique. Using the fact that the 1-periodization
f̃(x) =

∑
r∈Zd f(x+ r) of a bandlimited function can be represented in

the form

f̃(x) :=
∑

k∈Zd

ck(f̃) e
2πikx =

∑

k∈IM

f̂(k) e2πikx,
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it becomes evident that this is a trigonometric polynomial (1.1). Thus, if
we had access to the periodization f̃ , the density compensation approach
from Algorithm 3.2 using the weights computed by Algorithm 3.10 would
guarantee an exact reconstruction. However, in practical applications the
periodization f̃ cannot be sampled, since f is typically only known on a
bounded domain. Nevertheless, this shows that the density compensation
approach is also suitable for bandlimited functions.
Similarly, we also comment on the analogous use of the matrix opti-

mization approach from Algorithm 3.21 using the optimized sparse matrix
computed by Algorithm 3.25 in Section 6.2.

Finally, in Section 6.3 we show some numerical examples, where Figure 6.2
clearly demonstrates that the error in the approximation solely occurs
because the bandlimited function f is not known on whole Rd.

Publications by the author

Parts of this thesis have already been published in peer-reviewed journals
and proceedings. In particular, most of Chapter 3 on direct inversion meth-
ods for the nonequispaced fast Fourier transform (NFFT) can be found
similarly in [KP23a]. Moreover, the approach for exact density compen-
sation factors in Section 3.2.1 and the practical computations schemes in
Section 3.2.2 are also part of [KP23b], while Section 3.2.4 is based on an
analogous survey of density compensation methods in [EKP22] which was
done for the sinc matrix. In addition, the matrix optimization approach
in Section 3.3.1 was briefly introduced in [KP21], and the frame theo-
retical approach mentioned in Section 3.3.4 was studied more thoroughly
in [KP19]. Besides, the results of Sections 4.2 and 4.3 on the poor conver-
gence properties of Shannon sampling sums and the univariate regularized
Shannon sampling formulas are already known by [KPT24], except for
some generalizations and editorial changes. More precisely, the regularized
Shannon sampling formulas with localized sampling in Section 4.3.2 and the
corresponding numerical examples in Section 4.5 have already been subject
of study in [KPT22]. A one-dimensional version of the fast sinc transform
in Section 5.1 and the corresponding numerical examples in Section 5.4
have previously been established in [KPT23]. Furthermore, Sections 6.1.1
and 6.1.2 on the generalization of density compensation methods to band-
limited functions and the corresponding numerical examples in Section 6.3
are adapted from [KP23b], while the comments in the context of tempered
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distributions in Section 6.1.3 are already included in [KP23a]. Elements
such as lemmas, theorems, or examples that are taken almost verbatim are
identified as such in the appropriate sections.

Beyond that, all code files for the experiments presented in this thesis
are publicly available on [Kir].
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2 Nonequispaced fast Fourier transforms

This introductory chapter covers some important concepts in the field
of Fourier analysis and their numerical realizations. Among them, the
well-known fast Fourier transform (FFT) is one of the most important
algorithms for a wide range of applications in engineering, natural sciences,
scientific computing, and signal processing. Nevertheless, the limitation
to equispaced data represents a significant disadvantage, which led to the
development of the nonequispaced fast Fourier transform (NFFT).

In the following, we firstly introduce some fundamental notation and the
basic concept of the FFT in Section 2.1. Secondly, we describe the fast
evaluation of trigonometric sums at nonequispaced nodes. More specifically,
in Sections 2.2 and 2.3, a unified approach to the fast Fourier transform for
nonequispaced data in either the spatial domain (NFFT) or the frequency
domain (adjoint NFFT) is presented. Subsequently, this approach is further
generalized in Section 2.4, investigating the fast Fourier transform for
nonequispaced data in the spatial domain and in the frequency domain
(NNFFT).

2.1 Preliminaries and Definitions

Let

Td := Rd \ Zd ∼=
[
− 1

2 ,
1
2

)d
=
{
x ∈ Rd : − 1

2 ≤ xt <
1
2 , t = 1, . . . , d

}

denote the d-dimensional torus with d ∈ N. For M := (M1, . . . ,Md)
⊤

with Mt ∈ 2N for all t = 1, . . . , d, we define the multi-index set

IM := Zd ∩
d∏

t=1

[
−Mt

2 ,
Mt

2

)
=
{
k ∈ Zd : − Mt

2 ≤ kt <
Mt

2 , t = 1, . . . , d
}

(2.1)

with cardinality |IM | =∏d
t=1Mt. The inner product of two vectors

x,y ∈ Rd shall be defined as usual as xy := x1y1 + · · ·+ xdyd. Ad-
ditionally, we define the componentwise product of two vectors as
x⊙ y := (x1y1, . . . , xdyd)

⊤
, the all ones vector 1d := (1, . . . , 1)

⊤ ∈ Zd and
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the reciprocal of a vector M ∈ Zd with nonzero components shall be given

by M−1 :=
(
M−1

1 , . . . ,M−1
d

)⊤
.

We consider the Hilbert space L2(Td) of all 1-periodic, complex-valued
functions, which possesses the orthonormal basis {e2πikx : k ∈ Zd}. There-
fore, every function f ∈ L2(Td) is uniquely representable in the form

f(x) =
∑

k∈Zd

ck(f) e
2πikx (2.2)

with the coefficients

ck(f) :=

∫

Td

f(x) e−2πikx dx, k ∈ Zd, (2.3)

where the sum in (2.2) converges to f in the L2(Td)-norm, cf. [PPST23,
Theorem 4.5]. A series of the form (2.2) is called Fourier series with the
Fourier coefficients (2.3). Numerically, the Fourier coefficients (2.3) are
approximated on the uniform grid {M−1 ⊙ ℓ, ℓ ∈ IM} by the trapezoidal
rule for numerical integration as

ck(f) ≈
1

|IM |
∑

ℓ∈IM

f(M−1 ⊙ ℓ) e−2πik(M−1⊙ℓ), k ∈ Zd, (2.4)

which is an acceptable approximation for k ∈ IM , see e. g. [PPST23,
p. 248]. The fast evaluation of (2.4) can then be realized by means of
the famous fast Fourier transform (FFT) with an arithmetic complexity of
O(|IM | log(|IM |)). Here, the efficiency is obtained by a divide-and-conquer
strategy proposed by Cooley and Tukey [CT65] in 1965. Moreover, it is
know that this transformation is invertible and that the inverse problem of
computing

f(M−1 ⊙ ℓ) =
∑

k∈IM

f̂k e
2πik(M−1⊙ℓ), ℓ ∈ IM ,

with f̂k ≈ ck(f), k ∈ IM , can be realized by means of an inverse fast
Fourier transform (iFFT), which is basically the same algorithm except
for some reordering and scaling, cf. [PPST23, Lemma 3.17].
Since the restriction to equispaced data is a significant disadvantage

in a variety of applications, now suppose we are given nonequispaced
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nodes xj ∈ Td, j = 1, . . . , N , instead. For given f̂k ∈ C, k ∈ IM , we con-
sider the computation of the sums

fj := f(xj) =
∑

k∈IM

f̂k e
2πikxj , j = 1, . . . , N, (2.5)

as well as the adjoint problem of computing the sums

hk =
N∑

j=1

fj e
−2πikxj , k ∈ IM , (2.6)

for given values fj ∈ C, j = 1, . . . , N . By defining the nonequispaced Fourier
matrix

A = A|IM | :=
(
e2πikxj

)N
j=1,k∈IM

∈ CN×|IM |, (2.7)

as well as the vectors f := (fj)
N
j=1, f̂ := (f̂k)k∈IM

and h := (hk)k∈IM
, the

computation of sums of the form (2.5) and (2.6) can be written as f = Af̂

and h = A∗f , where A∗ := A
T
denotes the adjoint matrix of A in (2.7).

Note that the naive computation of (2.5) and (2.6) is of complex-
ity O(N · |IM |). Since this is not feasible for practical applications, a
fast approximate algorithm, the so-called nonequispaced fast Fourier trans-
form (NFFT), is briefly described below. We will demonstrate that the
NFFT asymptotically requires the same computational cost as the FFT,
as we only intend to compute the result up to a finite precision. For more
information see e. g. [DR93, Bey95, Ste98a, GL04, KKP09] or [PPST23,
pp. 413–417].

Remark 2.1. The algorithms presented in this chapter (Algorithms 2.2, 2.5
and 2.6) are part of the NFFT software package [KKP]. For algorithmic
details we refer to [KKP09]. Note that an alternative implementation is
available at [BMK]. ⋄

2.2 The NFFT

Firstly, we restrict our attention to problem (2.5), which is equivalent to
the evaluation of a trigonometric polynomial

f(x) =
∑

k∈IM

f̂k e
2πikx (2.8)



26 2 Nonequispaced fast Fourier transforms

with given f̂k ∈ C, k ∈ IM , at given nonequispaced nodes xj ∈ Td,
j = 1, . . . , N . Let φ ∈ L2(Rd) ∩ L1(Rd) be a so-called window function
φ : Rd → [0, 1]d, which is well localized in space and frequency domain.
For typical choices of window functions please refer to Remark 2.3. Now
we define the 1-periodic function φ̃(x) :=

∑
r∈Zd φ(x+ r) with absolute

convergent Fourier series. As a consequence, the Fourier coefficients of the
periodization φ̃ have the form

ck(φ̃) =

∫

Td

φ̃(x) e−2πikx dx =

∫

Rd

φ(x) e−2πikx dx =: φ̂(k), k ∈ Zd.

For a given d-dimensional oversampling factor σ := (σ1, . . . , σd)
⊤ ≥ 1d, we

define (Mσ)t := 2⌈ ⌈σtMt⌉/2 ⌉ ∈ 2N, t = 1, . . . , d, as well as the respective
vector Mσ := ((Mσ)1, . . . , (Mσ)d)

⊤. Then we approximate f by a linear
combination of translates of the periodized window function, i. e.,

f(x) ≈ s(x) :=
∑

ℓ∈IMσ

gℓ φ̃
(
x−M−1

σ ⊙ ℓ
)
, (2.9)

where the coefficients gℓ ∈ C, ℓ ∈ IMσ , are to be determined such that (2.9)
yields a good approximation. By means of the convolution theorem
(see [PPST23, Lemma 4.1]), the approximant s ∈ L2(Td) in (2.9) can be
represented as

s(x) =
∑

k∈Zd

ck(s) e
2πikx

=
∑

k∈IM

ĝk ck(φ̃) e
2πikx

+
∑

r∈Zd\{0}

∑

k∈IM

ĝk ck+Mσ⊙ r(φ̃) e
2πi(k+Mσ⊙ r)x, (2.10)

where the discrete Fourier transform of the coefficients gℓ is defined as

ĝk :=
∑

ℓ∈IMσ

gℓ e
−2πik(M−1

σ ⊙ ℓ), k ∈ IM . (2.11)

Comparing (2.5) and (2.10) then yields

ĝk =





f̂k
φ̂(k)

: k ∈ IM ,

0 : k ∈ IMσ \ IM .
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Consequently, the coefficients gℓ in (2.9) can be obtained by inverting (2.11),
i. e., by the application of an iFFT.

Furthermore, we assume that φ is well localized , such that it is small out-
side the square

∏d
t=1 [−m/(Mσ)t,m/(Mσ)t], m≪ (Mσ)t, for all t = 1, . . . , d.

In this case, the window function φ can be approximated by the compactly
supported function

φm(x) :=

{
φ(x) : x ∈∏d

t=1

[
− m

(Mσ)t
, m
(Mσ)t

]
,

0 : otherwise.

Then we approximate s(xj) in (2.9) by the short sums

f(xj) ≈ s(xj) ≈ f̃j :=
∑

ℓ∈IMσ

gℓ φ̃m
(
xj −M−1

σ ⊙ ℓ
)

=
∑

ℓ∈IMσ,m(xj)

gℓ φ̃m
(
xj −M−1

σ ⊙ ℓ
)
,

where the index set of the nonzero entries

IMσ,m(xj) :=
{
ℓ ∈ IMσ : ∃z ∈ Zd with

−m · 1d ≤ Mσ ⊙ (xj + z)− ℓ ≤ m · 1d} (2.12)

contains at most (2m+ 1)d entries for each fixed xj . Thus, the obtained
algorithm can be summarized as follows.

Algorithm 2.2 (NFFT).

For d,N ∈ N and M = (M1, . . . ,Md)
⊤ ∈ (2N)d let xj ∈ Td, j = 1, . . . , N,

be given nodes as well as f̂k ∈ C, k ∈ IM , given Fourier coefficients. Fur-
thermore, we are given the d-dimensional oversampling factor σ ≥ 1d, the
vector Mσ := ((Mσ)1, . . . , (Mσ)d)

⊤ with 2N ∋ (Mσ)t := 2⌈ ⌈σtMt⌉/2 ⌉, as
well as the window function φ, the truncated function φm with m≪ (Mσ)t,
t = 1, . . . , d, and their 1-periodic versions φ̃ and φ̃m.

0. Precomputation:

a) Compute the nonzero Fourier coefficients φ̂(k) for k ∈ IM ,
cf. (2.1).

b) Compute the values φ̃m
(
xj −M−1

σ ⊙ ℓ
)
for j = 1, . . . , N, and

ℓ ∈ IMσ,m(xj), cf. (2.12).
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1. Set O(|IM |)

ĝk :=

{
f̂k
φ̂(k) : k ∈ IM ,

0 : k ∈ IMσ \ IM .

2. Compute O(|IM | log(|IM |))

gℓ :=
1

|IMσ |
∑

k∈IM

ĝk e
2πik(M−1

σ ⊙ ℓ), ℓ ∈ IMσ ,

by means of a d-variate iFFT.

3. Compute the short sums O(N)

f̃j :=
∑

ℓ∈IMσ,m(xj)

gℓ φ̃m
(
xj −M−1

σ ⊙ ℓ
)
, j = 1, . . . , N.

Output: f̃j ≈ fj , j = 1, . . . , N , cf. (2.5).

Complexity: O(|IM | log(|IM |) +N)

Remark 2.3. As window function one usually uses d-variate func-
tions φ : Rd → R, that arise as the tensor product

φ(x) =

d∏

t=1

φ(xt), x = (x1, . . . , xd) ∈ Rd, (2.13)

of a univariate window function, which is also denoted by φ : R → R for
the sake of simplicity. For the Fourier transform of these d-variate window
functions we obtain

φ̂(k) =

d∏

t=1

φ̂(kt), k = (k1, . . . , kd) ∈ Zd.

Therefore, it suffices to specify the univariate window function φ and
compute its univariate Fourier transform φ̂.
For instance, in [DR93, DS99] the Gaussian window function was used,

cf. (4.60), while [Bey95, Ste98a] studied the B–spline window function,
cf. (4.61). More recent results like [PT21a] suggest for example the sinh-type
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window function, cf. (4.62), or the continuous Kaiser–Bessel window func-
tion, cf. (4.63). In addition, also related window functions, where an
analytic expression of the Fourier transform is unknown, were discussed
in [BMK, BMK19, Bar21]. Examples of this form include the continuous
exp-type window function

φexp(x) :=

{
1

eβ−1

(
eβ

√
1−(Mσx/m)2 − 1

)
: x ∈

[
− m

Mσ
, m
Mσ

]
,

0 : x ∈ R \
[
− m

Mσ
, m
Mσ

]
,

see [PT21a, Section 6], with a discontinuous version suggested in [BMK19,
Bar21], as well as the continuous cosh-type window function

φcosh(x) :=





cosh

(
β
√

1−(Mσx
m )

2
)
−1

cosh β−1 : x ∈
[
− m

Mσ
, m
Mσ

]
,

0 : x ∈ R \
[
− m

Mσ
, m
Mσ

]
,

see [PT21a, Section 7], with a discontinuous version proposed in [BMK19,
Remark 13]. We remark that the FINUFFT software [BMK] is based on
the exp-type window function φexp.
For more information on suitable window functions and corresponding

error estimates see e. g. [Fou03, GL04, KKP09, BMK19, PT21b, PPST23]
and references therein. ⋄
Next we give the matrix-vector representation of the NFFT. To this end,
we define the diagonal matrix

D := diag

(
1

|IMσ | · φ̂(k)

)

k∈IM

∈ C|IM |×|IM |, (2.14)

the truncated Fourier matrix

F :=
(
e2πik(M

−1
σ ⊙ ℓ)

)
ℓ∈IMσ ,k∈IM

∈ C|IMσ |×|IM |, (2.15)

and the sparse matrix

B :=

(
φ̃m
(
xj −M−1

σ ⊙ ℓ
))N

j=1, ℓ∈IMσ

∈ RN×|IMσ |, (2.16)

where by definition (2.12) each row of B contains at most (2m+ 1)d

nonzeros. In doing so, the NFFT in Algorithm 2.2 can be formulated in
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matrix-vector notation such that we receive the approximation A ≈ BFD
of (2.7), cf. [PPST23, p. 419]. This is to say, using the definition of the
matrices, the NFFT performs the approximation

e2πikxj ≈ 1

|IMσ | · φ̂(k)
∑

ℓ∈IMσ,m(xj)

e2πik(M
−1
σ ⊙ ℓ) φ̃m

(
xj −M−1

σ ⊙ ℓ
)
.

(2.17)

Remark 2.4. It should be noted that, for reasons of consistency, the fac-
tor |IMσ |−1 is here not located in the matrix F as usual but in the
matrix D. ⋄

2.3 The adjoint NFFT

Now we proceed with the adjoint problem (2.6). As shown above, this
can be written as h = A∗f with the adjoint matrix A∗ of (2.7). Thus,
using the matrices (2.14), (2.15) and (2.16) we receive the approximation
A∗ ≈ D∗F ∗B∗, such that the algorithm for the adjoint problem can be
denoted as follows.

Algorithm 2.5 (adjoint NFFT).

For d,N ∈ N let xj ∈ Td, j = 1, . . . , N, be given nodes as well as fj ∈ C
given coefficients. Furthermore, we are given the d-dimensional
oversampling factor σ ≥ 1d, the vector Mσ := ((Mσ)1, . . . , (Mσ)d)

⊤

with 2N ∋ (Mσ)t := 2⌈ ⌈σtMt⌉/2 ⌉ and M = (N1, . . . ,Md)
⊤ ∈ (2N)d, as

well as the window function φ, the truncated function φm with m≪ (Mσ)t,
t = 1, . . . , d, and their 1-periodic versions φ̃ and φ̃m.

0. Precomputation:

a) Compute the nonzero Fourier coefficients φ̂(k) for k ∈ IM ,
cf. (2.1).

b) Compute the values φ̃m
(
xj −M−1

σ ⊙ ℓ
)
for j = 1, . . . , N, and

ℓ ∈ IMσ,m(xj), cf. (2.12).

1. Compute the sparse sums O(N)

gℓ :=
N∑

j=1

fj φ̃m
(
xj −M−1

σ ⊙ ℓ
)
, ℓ ∈ IMσ . (2.18)
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2. Compute O(|IM | log(|IM |))

ĝk :=
1

|IMσ |
∑

ℓ∈IMσ

gℓ e
−2πik(M−1

σ ⊙ ℓ), k ∈ IM ,

by means of a d-variate FFT.

3. Set O(|IM |)

h̃k :=
ĝk
φ̂(k)

, k ∈ IM .

Output: h̃k ≈ hk, k ∈ IM , cf. (2.6)

Complexity: O(|IM | log(|IM |) +N)

2.4 The NNFFT

The previously presented algorithms of Sections 2.2 and 2.3 are methods
for nonequispaced nodes in the spatial domain or the frequency domain,
and equispaced nodes in the respective other domain. Next, we generalize
these methods to nonequispaced nodes in both the spatial domain and
the frequency domain, cf. [PPST23, Section 7.3]. For this purpose, let
the so-called the nonharmonic bandwidth M ∈ N with M ≫ 1 and the
numbers N1, N2 ∈ 2N be given. Then we consider the exponential sums

f(x) =
∑

k∈IN1

fk e
−2πiMvkx, x ∈

[
− 1

2 ,
1
2

]d
, (2.19)

where vk ∈
[
− 1

2 ,
1
2

]d
, k ∈ IN1

, are nonequispaced nodes in the frequency
domain and fk ∈ C are given coefficients. Note that in comparison to
the trigonometric polynomial (2.8), the exponential sum (2.19) is not
periodic, since for arbitrary points vk we have Mvk /∈ Zd. For arbitrary

nodes xj ∈
[
− 1

2 ,
1
2

]d
, j ∈ IN2 , in the spatial domain, we consider the fast

computation of the N2 values

f(xj) =
∑

k∈IN1

fk e
−2πiMvkxj , j ∈ IN2 . (2.20)
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A fast algorithm for the evaluation of the sums (2.20) is called fast Fourier
transform for nonequispaced data in spatial and frequency domain (NNFFT),
which was introduced in [Elb98, ES98], see also [PST01]. Note that this
algorithm is also called nonuniform FFT of type 3, see [LG05]. As known
(see [ES98, PST01]), the NNFFT is a combination of Algorithms 2.2 and 2.5,
which shall be explained in the following.

For a given window function φ1 : Rd → [0, 1]d we introduce the auxiliary
function

h(t) :=
∑

k∈IN1

fk φ1(t− vk), t ∈ Rd,

which has the continuous Fourier transform (cf. (4.1))

ĥ(Mx) =

∫

Rd

h(t) e−2πiMxt dt

=
∑

k∈IN1

fk

∫

Rd

φ1(t− vk) e
−2πiMxt dt (2.21)

=
∑

k∈IN1

fk e
−2πiMvkx φ̂1(Mx) = f(x) φ̂1(Mx), x ∈ Rd.

Hence, for arbitrary nodes xj ∈
[
− 1

2 ,
1
2

]d
, j ∈ IN2

, we have

f(xj) =
ĥ(Mxj)

φ̂1(Mxj)
, j ∈ IN2 .

Since the Fourier coefficients φ̂1(Mxj), j ∈ IN2
, can be precomputed for

a given window function φ1, it only remains to approximate the val-
ues ĥ(Mxj), j ∈ IN2

, in (2.21).
To this end, for a given oversampling factor σ1 > 1 we set Mσ1

:= σ1M
such that Mσ1 ∈ 2N, and choose a truncation parameter m1 ∈ N \ {1}
with 2m1 ≪Mσ1

. As the window function φ1 is assumed to be well-
localized in spatial domain, it can be approximated by the compactly
supported function

φm1(x) :=





φ1(x) : x ∈
[
− m1

Mσ1
, m1

Mσ1

]d
,

0 : otherwise.
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In addition, we introduce the constant a := 1 + 2m1

Mσ1
> 1 and, without loss

of generality, we assume that vk ∈
[
− 1

2a ,
1
2a

]d
, k ∈ IN1

. If vk ∈
[
− 1

2 ,
1
2

]d
,

then we replace the nonharmonic bandwidth M by M∗ :=M + ⌈ 2m1

σ1
⌉ and

set v∗
k := M

M∗ vk ∈
[
− 1

2a ,
1
2a

]d
such that M vk =M∗v∗

k, k ∈ IN1
.

Thereby, since supp(φm1
) =

[
− m1

Mσ1
, m1

Mσ1

]
we have for arbitrary

points vk ∈
[
− 1

2a ,
1
2a

]d
that

φm1
(t− vk) = 0 for all |t| > 1

2a + m1

Mσ1
= a

2 −
(
1
2 − 1

2a

)
.

This implies

supp(φm1(· − vk)) ⊂
[
−a

2 ,
a
2

]d
, k ∈ IN1 ,

since 1
2 − 1

2a > 0. Thus, by (2.21) we obtain

ĥ(Mx) ≈ s1(Mx) :=
∑

k∈IN1

fk

∫

[−a2 ,
a
2 ]

d

φm1
(t− vk) e

−2πiMxt dt, x ∈ Rd.

Discretization of this integral using the rectangular rule then yields the
approximation

ĥ(Mx) ≈ s1(Mx)

≈ s2(Mx) :=
∑

k∈IN1

fkM
−d
σ1

∑

ℓ∈IaMσ1

φm1

(
ℓ

Mσ1
− vk

)
e−2πixℓ/σ1

for all x ∈ Rd, where aMσ1
:= aMσ1 · 1d. Changing the order of summa-

tion we finally obtain

s2(Mx) =
∑

ℓ∈IaMσ1

(
M−d
σ1

∑

k∈IN1

fk φm1

(
ℓ

Mσ1
− vk

)
)
e−2πixℓ/σ1 , x ∈ Rd.

Note that the inner sums

gℓ :=M−d
σ1

∑

k∈IN1

fk φm1

(
ℓ

Mσ1
− vk

)
, ℓ ∈ IaMσ1

,



34 2 Nonequispaced fast Fourier transforms

are sparse since by supp(φm1
) =

[
− m1

Mσ1
, m1

Mσ1

]
we have for each fixed vk

that φm1

(
ℓ

Mσ1
− vk

)
̸= 0 only for ℓ ∈ I ′

Mσ1 ,m1
(vk), where

I ′
Mσ1 ,m1

(vk) :=
{
ℓ ∈ IaMσ1

:
∣∣ ℓ
Mσ1

− vk
∣∣ < m1

Mσ1

}
. (2.22)

The remaining outer sum

s2(Mx) =
∑

ℓ∈IaMσ1

gℓ e
−2πixℓ/σ1 , j ∈ IN2 .

can then be evaluated by means of an NFFT, see Algorithm 2.2. This NFFT
uses a second window function φ2 and Mσ2

:= σ2 aMσ1 ∈ 2N with param-
eters σ2 > 1 and m2 ∈ N \ {1} with 2m2 ≤

(
1− 1

σ1

)
Mσ2 . Denoting the

result of this NFFT as s(Mxj), then s(Mxj)/φ̂1(Mxj) is an approximate
value of f(xj), j ∈ IN2

. Hence, the obtained algorithm can be summarized
as follows.

Algorithm 2.6 (NNFFT).

For d,M ∈ N with M ≫ 1 and N1, N2 ∈ 2N let vk ∈
[
− 1

2a ,
1
2a

]d
, k ∈ IN1

,

and xj ∈
[
− 1

2 ,
1
2

]d
, j ∈ IN2 , be given nodes as well as fk ∈ C given coef-

ficients. Furthermore, we are given the oversampling factors σ1, σ2 > 1,
Mσ1

= σ1M ∈ 2N and Mσ2
= σ2 aMσ1

∈ 2N with a = 1 + 2m1

Mσ1
, as well

as the window functions φ1 and φ2, their truncated versions φm1 , φm2

with m1,m2 ∈ N \ {1}, 2m1 ≪Mσ1 and 2m2 ≤
(
1− 1

σ1

)
Mσ2 , and the

1-periodized function φ̃m2
.

0. Precomputation:

a) Compute the nonzero Fourier coefficients φ̂1(Mxj) for j ∈ IN2 ,
cf. (2.1).

b) Compute φm1

(
ℓ

Mσ1
− vk

)
for k ∈ IN1 and ℓ ∈ I ′

Mσ1 ,m1
(vk),

cf. (2.22).

c) Compute the nonzero Fourier coefficients φ̂2

(
ℓ
)
for ℓ ∈ IaMσ1

,
cf. (2.1).

d) Compute φ̃m2

(xj

σ1
− n

Mσ2

)
for j ∈ IN2 and n ∈ IMσ2 ,m2(xj),

cf. (2.12).
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1. Compute the sparse sums O(N1)

gℓ :=M−d
σ1

∑

k∈IN1

fk φm1

(
ℓ

Mσ1
− vk

)
, ℓ ∈ IaMσ1

.

2. Set O(|IM |)

ĝℓ :=
gℓ

φ̂2(ℓ)
, ℓ ∈ IaMσ1

.

3. Compute O(|IM | log(|IM |))

hn :=M−d
σ2

∑

ℓ∈IaMσ1

ĝℓ e
−2πiℓn/Mσ2 , n ∈ IMσ2

,

by means of a d-variate FFT.

4. Compute the short sums O(N2)

s(Mxj) :=
∑

n∈IMσ2 ,m2
(xj)

hn φ̃m2

(xj
σ1

− n

Mσ2

)
, j ∈ IN2

.

5. Set O(N2)

S(xj) :=
s(Mxj)

φ̂1(Mxj)
, j ∈ IN2

.

Output: S(xj) ≈ f(xj), cf. (2.20).

Complexity: O(|IM | log(|IM |) +N1 +N2)

Remark 2.7. For estimates on the approximation error of Algorithm 2.6 we
refer to [ES98, KPT23]. ⋄
Note that an important application of the NNFFT is the fast sinc

transform introduced in [KPT23], cf. Section 5.1.





3 Direct inversion methods for the
NFFT

Having introduced the fast Fourier transform for nonequispaced data
in the previous chapter, we remark that numerous applications such as
magnetic resonance imaging (MRI), cf. [NW01, GLI06, DAP22, EKP22],
synthetic aperture radar (SAR), cf. [GJG23], solution of partial differential
equations (PDEs), cf. [Fas07], etc., are interested in the inverse problem,
i. e., instead of the evaluation of the sums (2.5) the aim is computing

the Fourier coefficients f̂k, k ∈ IM , from given nonequispaced data f(xj),
j = 1, . . . , N . Therefore, the present chapter is attributed to this task.

Initially, in Section 3.1 we have a closer look at the inversion problem
itself and explain the main challenges of using nonequispaced data, which
can be seen by comparison to the case of equispaced data. Afterwards,
we provide an overview of existing methods, including a discussion of the
advantages of iterative and direct procedures, and introduce the idea of two
different direct approaches in a general framework. In Section 3.2 we firstly
examine the approach of so-called sampling density compensation, where
the general idea is to compute a diagonal matrix of weights to re-weight
the adjoint NFFT appropriately. Secondly, we study a matrix optimization
approach in Section 3.3, which can be viewed as a generalization, since
here the aim is to compute an optimal sparse matrix based on a certain
minimization problem. Finally, in Section 3.4 several numerical examples
are presented, justifying the accuracy of the new approaches and comparing
them with each other as well as with those mentioned from the literature,
followed by a short summary.

3.1 Problem formulation

To clarify the major dissimilarity between equispaced and nonequispaced
data, we start considering the equispaced case. In particular, when evaluat-
ing at the grid points xj = 1

nj ∈ Td, j ∈ In, with n := n · 1d and |In| = N ,

the nonequispaced Fourier matrix A ∈ CN×|IM | in (2.7) turns into the
equispaced Fourier matrix F ∈ C|IMσ |×|IM | from (2.15) with |IMσ | = N .
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Thereby, it results from the geometric sum formula that

F ∗F =

( ∑

j∈In

e2πi(k−ℓ)j/n

)

k,ℓ∈IM

= NI |IM |, if |IM | ≤ N, (3.1)

as well as

FF ∗ =

( ∑

k∈IM

e2πik(j−h)/n

)

j,h∈In

= |IM | · IN , if |IM | ≥ N

and |IM | is divisible by N . Thus, in the equispaced setting a one-sided
inverse is given by the (scaled) adjoint matrix. However, when considering
arbitrary points xj ∈ Td, j = 1, . . . , N , this property is lost, i. e., for the
nonequispaced Fourier matrix A ∈ CN×|IM | in (2.7) we have

A∗A ̸= NI |IM | and AA∗ ̸= |IM | · IN . (3.2)

Because of this, more effort is needed to obtain a solution to the inverse
problem in the nonequispaced setting. In general, we face the following
two problems.

(1) Solve the linear system

Af̂ = f , (3.3)

i. e., reconstruct the Fourier coefficients f̂ = (f̂k)k∈IM
from given

function values f = (f(xj))
N
j=1. This problem is referred to as inverse

NDFT (iNDFT) and an efficient solver shall be called inverse NFFT
(iNFFT).

(2) Solve the linear system

A∗f = h, (3.4)

i. e., reconstruct the spatial coefficients f = (fj)
N
j=1 from given

data h = (hk)k∈IM
. This problem is referred to as inverse adjoint

NDFT (iNDFT*) and an efficient solver shall be called inverse adjoint
NFFT (iNFFT*).
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Remark 3.1. We remark that according to the solvability criterion, the linear
system of equations (3.3) has at least one solution if and only if the matrix A
and the augmented coefficient matrix (A|f) have the same rank, which is
always satisfied since (2.5) is equivalent to the evaluation of a trigonometric
polynomial (2.8) at given nonequispaced nodes xj ∈ Td, j = 1, . . . , N . In
other words, the rank of the nonequispaced Fourier matrix A ∈ CN×|IM |

in (2.7) depends solely on the given points xj .

Additionally, note that in both problems (3.3) and (3.4), the number N
of nodes xj is generally independent of the number |IM | of Fourier coeffi-

cients f̂k. Hence, the nonequispaced Fourier matrix A ∈ CN×|IM | in (2.7)
is rectangular in most cases, and therefore a regular inverse matrix does
not exist. In general, this forces us to consider the least squares problem
of minimizing the residual norm ∥Af̂ − f∥2 instead. The correspond-
ing least squares solution is known to be unique in case the nonequi-
spaced Fourier matrix A has full rank. Indeed, eigenvalue estimates
in [FGS95, BG04, BP07, KP08, KN21] confirm that this condition is satis-
fied for sufficiently nice points xj , i. e., points that are not too far from being
equispaced. Certain measures for this “nonuniformity” will be discussed
later in this chapter. ⋄

In the literature a variety of approaches for an inverse NFFT (iNFFT)
can be found. This is why we give a short overview. First of all, we consider
iterative inversion procedures for the problem (3.3). These methods require
multiple iteration steps by definition, and therefore multiple matrix vector
multiplications with the system matrix A, or rather multiple applications of
the NFFT (see Algorithm 2.2), are needed to compute a solution. For the
one-dimensional setting d = 1 with |IM | = N an algorithm was published
in [RAT18], which is specifically designed for jittered equispaced points
and is based on the conjugate gradient (CG) algorithm in connection with
low rank approximation, while an approach for the overdetermined case
|IM | ≤ N can be found in [FGS95] that uses the Toeplitz structure of
the matrix product A∗WA with a diagonal matrix W := diag(wj)

N
j=1

of Voronoi weights in connection with the CG algorithm. For higher
dimensional problems with d ≥ 1 several approaches exist which compute a
least squares approximation to the linear system Af̂ = f . On the one hand,
in the overdetermined case |IM | ≤ N the given data can typically only be
approximated up to a residual r := Af̂ − f . Therefore, the weighted least
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squares problem

Minimize
f̂∈C|IM |

N∑

j=1

wj

∣∣∣∣∣
∑

k∈IM

f̂k e
2πikxj − f(xj)

∣∣∣∣∣

2

is considered, which is equivalent to solving the weighted normal equations of
first kind A∗WAf̂ = A∗Wf with the diagonal matrix W := diag(wj)

N
j=1

of weights in time domain. In [SFN01, FS03, KKP07] these normal equa-
tions are solved iteratively by means of the CG algorithm using the NFFT
to realize fast matrix-vector multiplications involving A, whereas in [PW01]
a fast convolution is used for this purpose. On the other hand, in the consis-
tent underdetermined case |IM | > N the data can be interpolated exactly
and therefore one can choose a specific solution, e. g. the one that solves
the constrained minimization problem

Minimize
f̂∈C|IM |

∑

k∈IM

|f̂k|2
ŵk

subject to Af̂ = f .

It was shown in [KP07] that this interpolation problem is equivalent to the
weighted normal equations of second kind AŴA∗y = f , f̂ = ŴA∗y with
the diagonal matrix Ŵ := diag(ŵk)k∈IM

of weights in frequency domain,
such that the CG method was used in connection with the NFFT to itera-
tively compute a solution to this problem, see also [PPST23, Section 7.6.2].

Moreover, there are several regularization techniques for the multidimen-
sional setting d ≥ 1. For example, [SRG10, WAG15, AGP16] all solve the
ℓ1-regularized problem

Minimize
f̂∈C|IM |

1
2∥Af̂ − f∥22 + λ∥Lmf̂∥1

with regularization parameter λ > 0 and the m-th order polynomial an-
nihilation operator Lm ∈ RN×|IM | as sparsifying transform, see [AGY05].
Based on this, weighted ℓp-schemes

Minimize
f̂∈C|IM |

1
2∥Af̂ − f∥22 + 1

p∥WLmf̂∥pp

were introduced in [CWB08, CY08, DDFG10, LMFL12], which are designed
to reduce the penalty at locations where Lmf̂ is nonzero. For instance,
[CAG19, SG19] each state a two step method, that firstly uses edge detection
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to create a mask, i. e., a weighting matrix which indicates where nonzero
entries are expected in the total variation (TV) domain, and then targets
weighted ℓ2-norm TV regularization appropriately to smooth regions of the
function in a second minimization step.

In contrast to these iterated procedures, we rather concentrate on so-
called direct methods to reduce the computational effort. In the setting of
problem (3.3) we hereby mean methods, where for a fixed set of points xj ,

j = 1, . . . , N , the reconstruction of f̂ ∈ C|IM | from given f ∈ CN can be
realized with the same number of arithmetic operations as a single applica-
tion of an adjoint NFFT (see Algorithm 2.5). To achieve this, a certain
precomputational step is compulsory, since the adjoint NFFT does not
yield an inversion of the NFFT per se, see (3.2). Although this precom-
putations might be rather costly, they need to be done only once for a
given set of points xj , j = 1, . . . , N , while the actual reconstruction step is
very efficient. This is why direct methods are especially beneficial in case
we are given fixed nodes for several problems with different measurement
vectors f = (f(xj))

N
j=1.

Already in [DR95] a direct method for the setting d = 1 and |IM | = N
was explained, which uses Lagrange interpolation in combination with fast
multipole methods (FMM). Based on this, further methods were deduced
for the same setting, which also use Lagrange interpolation, but additionally
incorporate an imaginary shift in [Sel18], or utilize the NFFT in [KP19] for
the fast evaluation of occurring sums, see also [PPST23, Section 7.6.1]. In
the overdetermined setting |IM | ≤ N another approach for computing an
inverse NFFT can be obtained by using the fact that A∗A is of Toeplitz
structure. Therefore, the Gohberg-Semencul formula, see [HR84], can
be used to solve the normal equations A∗Af̂ = A∗f exactly by analogy
with [ASS16]. Here the computation of the components of the Gohberg–
Semencul formula can be viewed as a precomputational step. In addition,
also a frame-theoretical approach is known from [GS14], which provides
a link between the adjoint NFFT and frame approximation, and could
therefore be seen as a way to invert the NFFT. Recently, a new fast
algorithm was presented in [WEB24] that exploits the structure of so-
called Cauchy-like matrices or rather a low-rank approximation of such,
and is especially useful for very irregular grids (e. g. pairwise colliding
points). For the multidimensional setting d > 1 several methods have been
developed in [ACD+06, ACD+08] that are tailored to the special structure
of the linogram or pseudo-polar grid, respectively, see Figure 3.4c, such
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that the inversion involves only one-dimensional FFTs and interpolations.
However, these techniques are exclusively applicable for the special case of
the linogram grid, whereas we are interested in more generally applicable
methods.

More specifically, we seek to find a suitable matrix X ∈ C|IM |×N

with XA ≈ I |IM |, since then we can simply compute an approximation

of the Fourier coefficients by means of Xf = XAf̂ ≈ f̂ . The previously
mentioned precomputational step then consists of computing an appropri-
ate matrix X. To find this left-inverse X, we utilize the fact that in the
equispaced case (3.1) holds. In addition, we also incorporate the approx-
imate factorization A∗ ≈ D∗F ∗B∗ of the adjoint NFFT, cf. Section 2.3,
with the matrices D ∈ C|IM |×|IM |, F ∈ C|IMσ |×|IM | and B ∈ RN×|IMσ |

defined in (2.14), (2.15) and (2.16). That is to say, in accordance with the
equispaced setting we choose X = D∗F ∗B∗ ·N−1.

Based on this observation, this chapter is organized as follows. At
first, in Section 3.2 we study so-called density compensation techniques,
which make use of the simplest generalization X = D∗F ∗B∗W with some
additional weighting W = diag(wj)

N
j=1 ∈ CN×N due to the nonequispaced

sampling. Afterwards, in Section 3.3 this approach is further generalized to
X = D∗F ∗B∗

opt, where Bopt ∈ RN×|IMσ | is a modified matrix resulting
from a certain matrix optimization problem. In the end, both approaches
are compared in the numerical examples of Section 3.4.

3.2 Density compensation factors

In this section we focus on a direct inversion method for solving prob-
lem (3.3) that utilizes so-called sampling density compensation , as done
in [KP23a]. To this end, we consider the Fourier coefficients in (2.3) and
introduce a new quadrature formula for this integral representation. In con-
trast to the already known equispaced approximation (2.4) we now assume
given arbitrary, nonequispaced points xj ∈ Td, j = 1, . . . , N . Thereby, the
Fourier coefficients (2.3) are approximated by a general quadrature rule
using quadrature weights wj ∈ C, j = 1, . . . , N , which are needed for sam-
pling density compensation due to the nonequispaced sampling. Thus, for



3.2 Density compensation factors 43

a trigonometric polynomial (2.8) we have

f̂k = ck(f) ≈ hwk :=

N∑

j=1

wj f(xj) e
−2πikxj , k ∈ IM . (3.5)

Using the nonequispaced Fourier matrix A ∈ CN×|IM | in (2.7), the di-
agonal matrix of weights W := diag(wj)

N
j=1 ∈ CN×N as well as the vec-

tor hw := (hwk )k∈IM
, the nonequispaced quadrature rule (3.5) can be writ-

ten as f̂ ≈ hw := A∗Wf . For achieving a fast computation method we
make use of the approximation of the adjoint NFFT, cf. Section 2.3, i. e.,
the final approximation is given by

f̂ ≈ h̃
w
:= D∗F ∗B∗Wf , (3.6)

with the matrices D ∈ C|IM |×|IM |, F ∈ C|IMσ |×|IM | and B ∈ RN×|IMσ |

defined in (2.14), (2.15) and (2.16). In other words, for density compensa-
tion methods the already mentioned precomputations consist of computing
the quadrature weights wj ∈ C, j = 1, . . . , N , while the actual reconstruc-
tion step includes only one adjoint NFFT (see Algorithm 2.5) applied to
the scaled measurement vector Wf . Hence, density compensation methods
can be summarized as follows.

Algorithm 3.2 (iNFFT – density compensation approach).

For d,N ∈ N let xj ∈ Td, j = 1, . . . , N , be given nodes as well as f ∈ CN
given coefficients. In addition, we are given M = (M1, . . . ,Md)

⊤ ∈ (2N)d.

0. Precompute a suitable weight matrix W = diag(wj)
N
j=1.

1. Compute h̃
w
:= D∗F ∗B∗Wf , cf. (3.6), by means of an adjoint

NFFT.

Output: h̃
w ≈ f̂ ∈ C|IM |, cf. (3.3).

Complexity: O(|IM | log(|IM |) +N)

The aim of all density compensation techniques is then to choose appropri-
ate weights wj ∈ C, j = 1, . . . , N , such that the underlying quadrature (3.5)
is preferably exact. In the following we have a look at the specific choice of
the so-called density compensation factors wj .
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An intuitive approach for density compensation is based on geometry,
where each sample is considered as representative of a certain surrounding
area, as in numerical integration. The weights for each sample can be
obtained for instance by constructing a Voronoi diagram and calculating
the area of each cell, see e. g. [RPS+99]. This approach of Voronoi weights
is well-known and widely used in practice. However, it does not necessarily
yield a good approximation (3.6), cf. Figure 3.6, which is why we examine
some more sophisticated approaches in the remainder of this section.

For this purpose, this section is organized as follows. Firstly, in Sec-
tion 3.2.1 we introduce density compensation factors wj , j = 1, . . . , N,
that lead to an exact reconstruction formula (3.5) for all trigonometric
polynomials (2.8) of degree M . In addition to the theoretical results, we
also discuss methods for the numerical computation in Section 3.2.2. Subse-
quently, in Section 3.2.3 we present an error bound on density compensation
factors computed based on the previous optimality condition. Finally, in
Section 3.2.4 we reconsider certain approaches from literature and illustrate
how they relate to each other and to the method from Section 3.2.1.

Remark 3.3. Before doing so, we have a closer look at some possible
interpretation perspectives on the reconstruction (3.6).

(i) If we define g := Wf , i. e., each entry of f is scaled with respect to
the nodes xj , j = 1, . . . , N , the approximation (3.6) can be written as

f̂ ≈ D∗F ∗B∗g. As mentioned before, this coincides with an ordinary
adjoint NFFT applied to a modified coefficient vector g.

(ii) By defining the matrix B̃ := W ∗B, i. e., scaling the rows of B with
respect to the nodes xj , j = 1, . . . , N , the approximation (3.6) can be

written as f̂ ≈ D∗F ∗B̃
∗
f . In this sense, density compensation can

also be seen as a modification of the adjoint NFFT and its application
to the original coefficient vector.

Note that (i) is the common viewpoint. However, we keep (ii) in mind, since
this allows treating density compensation methods as an optimization of the
sparse matrix B ∈ RN×|IMσ | in (2.16), as it shall be done in Section 3.3. In
addition, we remark that density compensation methods only use N degrees
of freedom. ⋄
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3.2.1 Exact quadrature weights for trigonometric
polynomials

Similar to [GKP09], we aim for density compensation factors wj ,
j = 1, . . . , N, that lead to an exact reconstruction formula (3.5) for all
trigonometric polynomials (2.8) of degree M . To this end, we firstly ex-
amine certain properties that arise from (3.5) being exact, as considered
in [KP23a, Theorem 3.2].

Theorem 3.4. Let a polynomial degree M ∈ (2N)d, nonequispaced
nodes xj ∈ Td, j = 1, . . . , N, and quadrature weights wj ∈ C be given. Then
an exact reconstruction formula (3.5) for trigonometric polynomials (2.8)
with maximum degree M satisfying

f̂k = ck(f) = hwk , k ∈ IM , (3.7)

implies the following equivalent statements.

(i) The quadrature rule

∫

Td

f(x) dx =
N∑

j=1

wjf(xj) (3.8)

is exact for all trigonometric polynomials (2.8) with maximum de-
gree M .

(ii) The linear system of equations

[
A⊤w

]
k
=

N∑

j=1

wj e
2πikxj = δ0,k =

{
1 : k = 0
0 : otherwise

}
, k ∈ IM ,

(3.9)

is fulfilled with the nonequispaced Fourier matrix A ∈ CN×|IM |

in (2.7), w := (wj)
N
j=1 and the Kronecker symbol δ0,k.

Proof.
(3.7)⇒ (i): By inserting the definition (2.8) of a trigonometric polynomial

of degree M into the integral considered in (3.8) we have
∫

Td

f(x) dx =
∑

k∈IM

f̂k ·
∫

Td

e2πikx dx =
∑

k∈IM

f̂k · δ0,k = f̂0. (3.10)
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Now using the property (3.7) as well as the definition (3.5) of hwk we proceed
with

f̂0 = hw0 =

N∑

j=1

wjf(xj) e
0 =

N∑

j=1

wjf(xj),

such that a combination with (3.10) yields the assertion (3.8).
(i) ⇒ (ii): Inserting the definition (2.8) of a trigonometric polynomial of

degree M into the right-hand side of (3.8) implies

N∑

j=1

wjf(xj) =
N∑

j=1

wj
∑

k∈IM

f̂k e
2πikxj =

∑

k∈IM

f̂k

N∑

j=1

wj e
2πikxj . (3.11)

This together with the property (i) and (3.10) leads to

f̂0 =
∑

k∈IM

f̂k

N∑

j=1

wj e
2πikxj

and thus to assertion (3.9).
(ii) ⇒ (i): Combining (3.10), (3.9) and (3.11) yields the assertion via

∫

Td

f(x) dx =
∑

k∈IM

f̂k · δ0,k =
∑

k∈IM

f̂k

N∑

j=1

wj e
2πikxj =

N∑

j=1

wjf(xj).

Remark 3.5. Comparable results can also be found in the literature. A
fundamental theorem in numerical integration, see [Tch57], states that for
any integral

∫
Td f(x) dx there exists an exact quadrature rule (3.8), i. e.,

optimal points xj ∈ Td and weights wj ∈ C, j = 1, . . . , N , such that (3.8) is
fulfilled. In [Grö20, Lemma 2.6] it was shown that for given points xj ∈ Td,
j = 1, . . . , N, certain quadrature weights wj can be stated by means of
frame theoretical considerations which lead to an exact quadrature rule (3.8)
by definition. Moreover, it was shown in [Grö20, Lemma 3.6] that these
weights are the ones with minimal (weighted) ℓ2-norm, which are already
known under the name “least squares quadrature”, see [Huy09]. According
to [Huy09, Section 2.1] these quadrature weights wj , j = 1, . . . , N, can be
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found by solving a linear system of equations Φw = v, where for a set of ba-
sis functions {ϕk}k∈IM

one defines Φk,j := ϕk(xj) and vk :=
∫
Td ϕk(x) dx.

In our setting we have ϕk(x) = e2πikx, and therefore

Φ =
(
e2πikxj

)
k,j

= A⊤ and vk =

∫

Td

1 · e2πikx dx = δ0,k,

i. e., the same linear system of equations as in (3.9). However, we remark
that both [Grö20] and [Huy09] state the results only in the case d = 1. ⋄

Note that the two statements (i) and (ii) of Theorem 3.4 are not equivalent
to the exact reconstruction property (3.7), since by (3.5) and (2.8) we have

hwk =
N∑

j=1

wj

( ∑

ℓ∈IM

f̂ℓ e
2πiℓxj

)
e−2πikxj =

∑

ℓ∈IM

f̂ℓ

N∑

j=1

wj e
2πi(ℓ−k)xj

=
∑

ℓ∈IM

(ℓ−k)∈IM

f̂ℓ

N∑

j=1

wj e
2πi(ℓ−k)xj

+
∑

ℓ∈IM

(ℓ−k)/∈IM

f̂ℓ

N∑

j=1

wj e
2πi(ℓ−k)xj , k ∈ IM .

Due to the fact that (3.9) only holds for k, ℓ ∈ IM with (ℓ− k) ∈ IM , this
implies

hwk = f̂k +
∑

ℓ∈IM

(ℓ−k)/∈IM

f̂ℓ

N∑

j=1

wj e
2πi(ℓ−k)xj , k ∈ IM ,

where for all k ∈ IM \ {0} there exists an ℓ ∈ IM with (ℓ− k) ∈ I2M \ IM .
In other words, the two statements (i) and (ii) of Theorem 3.4 only ensure

that hw0 = f̂0.
However, based on similar considerations as in Theorem 3.4 the following

result can be shown, cf. [KP23a, Corollary 3.4] and [KP23b, Theorem II.1].

Theorem 3.6. Let |I2M | ≤ N and xj ∈ Td, j = 1, . . . , N , be given. Then
the density compensation factors wj ∈ C satisfying

N∑

j=1

wj e
2πikxj = δ0,k, k ∈ I2M , (3.12)
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are optimal, since for all trigonometric polynomials of degree M , see (2.8),

an exact reconstruction of the Fourier coefficients f̂k is given by

f̂k = hwk =
N∑

j=1

wj f(xj) e
−2πikxj , k ∈ IM .

Proof. It is known that {e2πiℓx : ℓ ∈ Zd} forms an orthonormal basis of
the Hilbert space L2(Td) of all 1-periodic, complex-valued functions,
see [PPST23, p. 177]. To achieve an exact reconstruction for all trigono-
metric polynomials (2.8) with maximum degree M it suffices to consider
the set of basis functions with ℓ ∈ IM . For each of these basis functions
with fixed ℓ ∈ IM we have

hwk =
N∑

j=1

wj e
2πi(ℓ−k)xj , k ∈ IM ,

and

f̂k = ck(f) =

∫

Td

e2πi(ℓ−k)x dx = δk,ℓ, k ∈ IM ,

with the Kronecker symbol δk,ℓ = δ(ℓ−k),0. Thus, in order to obtain f̂k = hwk
for each of these basis functions we need to assure that the weights satisfy

N∑

j=1

wj e
2πi(ℓ−k)xj = δk,ℓ, ℓ,k ∈ IM . (3.13)

Since for k, ℓ ∈ IM we have (ℓ− k) ∈ I2M , the property (3.13) is fulfilled
by the more general condition (3.12). That is to say, the condition (3.12)
ensures the exact reconstruction for all trigonometric polynomials (2.8)
with maximum degree M . However, it was already shown in [Huy09,
Section 3.1] that the condition (3.12) can only be fulfilled exactly, if (3.12)
is an underdetermined system with |I2M | ≤ N .

In other words, by defining the nonequispaced Fourier matrix
A|I2M | ∈ CN×|I2M | as in (2.7) as well as w := (wj)

N
j=1, an exact solution

to the linear system of equations

A⊤
|I2M | w = e0 := (δ0,k)k∈I2M

(3.14)

yields an exact reconstruction for all trigonometric polynomials (2.8) of
degree M .
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Remark 3.7. We remark, that since δ(ℓ−k),0 = δk,ℓ, the condition (3.12)
implies

δk,ℓ =

N∑

j=1

wj e
2πi(ℓ−k)xj =

N∑

j=1

e−2πikxj
(
wj e

2πiℓxj
)
, k, ℓ ∈ IM .

By using the nonequispaced Fourier matrix A ∈ CN×|IM | in (2.7), the
diagonal matrix of weights W = diag(wj)

N
j=1 ∈ CN×N and the identity

matrix I |IM | of size |IM | this can be written in matrix-vector notation
as A∗WA = I |IM |. Note that this matrix equation immediately shows
that we have an exact reconstruction of the form (3.7), since by (3.3) the
properties A∗WA = I |IM | and f̂ = A∗Wf are equivalent. ⋄

Remark 3.8. Let f ∈ L2(Td) be an arbitrary 1-periodic function. Then by
definitions (3.5) and (2.2) the optimality condition (3.12) yields

hwk =
∑

ℓ∈Zd

cℓ(f)
N∑

j=1

wj e
2πi(ℓ−k)xj

=
∑

ℓ∈Zd

(ℓ−k)∈I2M

cℓ(f)
N∑

j=1

wj e
2πi(ℓ−k)xj +

∑

ℓ∈Zd

(ℓ−k)/∈I2M

cℓ(f)
N∑

j=1

wj e
2πi(ℓ−k)xj

= ck(f) +
∑

ℓ∈Zd

(ℓ−k)/∈I2M

cℓ(f)
N∑

j=1

wj e
2πi(ℓ−k)xj , k ∈ IM .

That is to say, for a function f ∈ L2(Td) we only have a good approximation
in case the coefficients cℓ(f) are small for ℓ /∈ IM , whereas this reconstruc-
tion can only be exact for f being a trigonometric polynomial (2.8). ⋄

Remark 3.9. In [Huy09, Section 2.3] it was stated that stability of a quadra-
ture rule (3.8) is directly imposed by its weights. Namely, if all quadrature
weights wj ∈ C, j = 1, . . . , N , are positive, the corresponding quadrature

rule is stable. A commonly used measure of stability is κ(w) :=
∑N
j=1 |wj |.

Note that if the quadrature rule (3.8) is exact for all trigonometric polynomi-
als (2.8) with maximum degree M , this especially holds for a trigonometric

polynomial of degree 0, i. e., a constant function f(x) = f̂0. In this case,
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the quadrature rule (3.8) can be written as

f̂0 =

∫

Td

f(x) dx =
N∑

j=1

wjf(xj) = f̂0

N∑

j=1

wj .

Thus, if wj > 0, j = 1, . . . , N , this implies

κ(w) =

N∑

j=1

wj = 1.

Additionally note that by Theorem 3.4 the properties (3.8) and (3.9) are
equivalent, and that for k = 0 the linear system (3.9) reads as

[
A⊤w

]
0
=

N∑

j=1

wj = 1.

In other words, the linear system of equations (3.9), and thus also (3.12), al-

ready includes the condition
∑N
j=1 wj = 1, which guarantees stable quadra-

ture in case of positive weights wj > 0, j = 1, . . . , N . ⋄

3.2.2 Practical computation schemes

Since by Theorem 3.6 an exact solution w = (wj)
N
j=1 of the linear sys-

tem (3.12) leads to an exact reconstruction formula (3.5) for all trigono-
metric polynomials (2.8) with maximum degree M , we now aim to use this
condition (3.12) to find the optimal density compensation factors wj ∈ C,
j = 1, . . . , N , numerically.

We remark that in contrast to (3.3) using the matrix A ∈ CN×|IM |,
in (3.14) we now deal with the enlarged matrix A|I2M | ∈ CN×|I2M |, such
that single matrix operations are more costly. Nevertheless, Theorem 3.6
yields a direct inversion method for (3.3), where the system (3.14) needs
to be solved only once for a fixed set of nodes xj ∈ Td, j = 1, . . . , N .

Its solution w can then be used to efficiently approximate f̂ ∈ C|IM | for
multiple measurement vectors f ∈ CN , whereas iterative methods for (3.3)
need to solve Af̂ = f each time.
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Practical computation in the underdetermined setting |I2M | ≤ N

As already mentioned in [Huy09, Section 3.1] an exact solution to (3.12)
can only be found if |I2M | ≤ N , i. e., in case (3.14) is an underdetermined
system of equations. By [Huy09, Lemma 3.1] this system has at least one
solution, which is why we may choose the one with minimal ℓ2-norm.
If rank(A|I2M |) = |I2M |, then the system (3.14) is consistent and the

unique solution is given by the normal equations of second kind

A⊤
|I2M |A|I2M | v = e0, A|I2M | v = w. (3.15)

More precisely, if the condition number of A|I2M | ∈ CN×|I2M | is sufficiently

small, we may compute the vector v ∈ C|I2M | in (3.15) using an iterative
procedure like the CG algorithm, such that only matrix multiplications
with A⊤

|I2M | and A|I2M | are needed. Since fast multiplication with A⊤
|I2M |

and A|I2M | can easily be realized by means of an adjoint NFFT (see Algo-
rithm 2.5) and an NFFT (see Algorithm 2.2), respectively, computing the
solution w = (wj)

N
j=1 to (3.15) is of complexity O(|I2M | log(|I2M |) +N),

where

|I2M | =
d∏

t=1

(2Mt) = 2d ·
d∏

t=1

Mt = 2d |IM |.

Hence, this procedure can be used to efficiently compute the exact quadra-
ture weights wj ∈ C, j = 1, . . . , N, via (3.15), as long as the full rank
condition rank(A|I2M |) = |I2M | is satisfied.
In case of a low rank matrix A|I2M | ∈ CN×|I2M | with |I2M | ≤ N , we

cannot expect a unique solution but we may still use (3.15) to obtain a
least squares approximation to (3.12), if the condition number of A|I2M | is
sufficiently small.

Practical computation in the overdetermined setting |I2M | > N

However, when |I2M | > N there is no theoretical guarantee and therefore
we cannot expect to find an exact solution w = (wj)

N
j=1 to (3.12), since we

have to deal with an overdetermined system possessing more conditions than
variables. Nevertheless, we still aim to find optimal density compensation
factors wj ∈ C, j = 1, . . . , N , numerically by considering a least squares

approximation to (3.12) that minimizes
∥∥A⊤

|I2M | w − e0
∥∥
2
.



52 3 Direct inversion methods for the NFFT

In [Bjö96, Theorem 1.1.2] it was shown that every least squares solution
satisfies the normal equations of first kind

A|I2M | A
⊤
|I2M | w = A|I2M | e0. (3.16)

By means of the definitions of the matrix A|I2M | ∈ CN×|I2M |, cf. (2.7),
and the vector e0 = (δ0,k)k∈I2M

we simplify the right-hand side of (3.16)
via

A|I2M | e0 =

( ∑

k∈I2M

δ0,k e
−2πikxj

)N

j=1

= 1N .

Since fast multiplication with A⊤
|I2M | and A|I2M | can easily be realized by

means of an adjoint NFFT (see Algorithm 2.5) and an NFFT (see Algo-
rithm 2.2), respectively, the solutionw = (wj)

N
j=1 to (3.16) can be computed

iteratively by means of the CG algorithm in O(|I2M | log(|I2M |) +N) arith-
metic operations. Note that the solution to (3.16) is only unique if the
full rank condition rank(A|I2M |) = N is satisfied, cf. [Bjö96, p. 7]. We
remark that the computed weight matrix W = diag(w) can also be used
in an iterative procedure as in [PPST23, Alg. 7.35] to further improve the
approximation of f̂ ∈ C|IM |.

The previous considerations lead to the following algorithm to compute
a suitable weight matrix W = diag(wj)

N
j=1 based on the condition (3.14).

For further details see [KP23a].

Algorithm 3.10 (Computation of the optimal density compensation factors).

For d,N ∈ N let the nonequispaced nodes xj ∈ Td, j = 1, . . . , N , as well
as the vector M = (M1, . . . ,Md)

⊤ ∈ (2N)d, be given.

1. If |I2M | ≤ N :

Compute the solution v ∈ C|I2M | to (3.15) iteratively using the
NFFT. O(|I2M | log(|I2M |) +N)

Compute the weights w = A|I2M | v, see (3.15), using an NFFT.
O(|I2M | log(|I2M |) +N)

elseif |I2M | > N :

Compute the solution w = (wj)
N
j=1 to (3.16) iteratively using

the NFFT. O(|I2M | log(|I2M |) +N)
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2. Compose W = diag(w) ∈ CN×N . O(N)

Output: weight matrix W

Complexity: O(|I2M | log(|I2M |) +N)

3.2.3 Bounds on the approximation error

Analogous to [KP23a, Theorem 3.14] we now summarize the previous
findings by presenting an error bound on density compensation factors
based on the optimality condition (3.12).

Theorem 3.11. Let p, q ∈ {1, 2,∞} with 1
p +

1
q = 1. For given d,N ∈ N,

vector M ∈ (2N)d and nonequispaced nodes xj ∈
[
− 1

2 ,
1
2

)d
, j = 1, . . . , N ,

let A ∈ CN×|IM | be the nonequispaced Fourier matrix in (2.7). Fur-
thermore, we assume that we can compute density compensation fac-
tors W = diag (wj)

N
j=1 ∈ CN×N by means of Algorithm 3.10, such that

N∑

j=1

wj e
2πikxj = δ0,k + εk, k ∈ I2M , (3.17)

with small εk ∈ R for all k ∈ I2M . Then there exists an ε ≥ 0 such that
the corresponding density compensation procedure satisfies the following
error bounds.

(i) For any trigonometric polynomial f ∈ L2(Td) of degree M as in (2.8)
we have

∥∥f̂ −A∗Wf
∥∥
p
≤ |IM | ε ·

∥∥f̂
∥∥
p
, (3.18)

where f̂ := (f̂k)k∈IM
are the coefficients in (2.8).

(ii) For any 1-periodic function f ∈ L2(Td) ∩ C(Td) as in (2.2) we have
∥∥f̂ −A∗Wf

∥∥
p
≤ |IM | ε ·

∥∥f̂
∥∥
p

+ (N |IM |)1/p ∥w∥q · ∥f − pM∥C(Td), (3.19)

where f̂ := (ck(f))k∈IM
are the first |IM | coefficients in (2.2) and

pM is the best approximating trigonometric polynomial of degree M
of f .
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Proof. We start with some general considerations that are independent
of the function f . By (3.17) we can find ε := maxk∈IM

|εk| ≥ 0, such
that |εk| ≤ ε, k ∈ I2M , and thereby

∣∣∣∣∣∣

N∑

j=1

wj e
2πikxj − δ0,k

∣∣∣∣∣∣
≤ ε, k ∈ I2M .

Then for all k, ℓ ∈ IM with (ℓ− k) ∈ I2M this yields

∣∣∣[Er]k,ℓ

∣∣∣ =

∣∣∣∣∣∣

N∑

j=1

wj e
2πi(ℓ−k)xj − δk,ℓ

∣∣∣∣∣∣
≤ ε,

where Er := A∗WA− I |IM |. Hence, we have

∥∥A∗WA− I |IM |
∥∥
1
= max

ℓ∈IM

∑

k∈IM

∣∣∣[Er]k,ℓ

∣∣∣ ≤ max
ℓ∈IM

∑

k∈IM

ε = |IM | ε,

(3.20)

∥∥A∗WA− I |IM |
∥∥
∞ = max

k∈IM

∑

ℓ∈IM

∣∣∣[Er]k,ℓ

∣∣∣ ≤ max
k∈IM

∑

ℓ∈IM

ε = |IM | ε,

(3.21)

and

∥∥A∗WA− I |IM |
∥∥
F
=

√ ∑

k∈IM

∑

ℓ∈IM

∣∣∣[Er]k,ℓ

∣∣∣
2

≤
√ ∑

k∈IM

∑

ℓ∈IM

ε2 = |IM | ε, (3.22)

where ∥ · ∥F denotes the Frobenius norm of a matrix. This can be used to
estimate the approximation error of (3.5), since

∥∥f̂ −A∗Wf
∥∥
p
≤
∥∥f̂ −A∗WAf̂

∥∥
p
+
∥∥A∗WAf̂ −A∗Wf

∥∥
p

(3.23)

=
∥∥(A∗WA− I |IM |

)
f̂
∥∥
p
+
∥∥A∗W

(
Af̂ − f

)∥∥
p

≤
∥∥A∗WA− I |IM |

∥∥
p
·
∥∥f̂
∥∥
p
+
∥∥A∗W

∥∥
p
·
∥∥Af̂ − f

∥∥
p
.
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Using A ∈ CN×|IM | from (2.7) as well as W = diag(wj)
N
j=1 = diag(w) we

have
∥∥A∗W

∥∥
1
= max
j=1,...,N

∑

k∈IM

|wj | ·
∣∣e−2πikxj

∣∣

≤ max
j=1,...,N

|wj | ·
∑

k∈IM

1 = |IM | · ∥w∥∞,

∥∥A∗W
∥∥
∞ = max

k∈IM

N∑

j=1

|wj | ·
∣∣e−2πikxj

∣∣ ≤
N∑

j=1

|wj | · max
k∈IM

1 = ∥w∥1,

and

∥∥A∗W
∥∥
F
=

√√√√ ∑

k∈IM

N∑

j=1

|wj |2 ·
∣∣e−2πikxj

∣∣2

≤

√√√√
N∑

j=1

|wj |2 · |IM | =
√
|IM | · ∥w∥2.

Hence, from (3.20) – (3.23) and ∥ · ∥2 ≤ ∥ · ∥F it follows that
∥∥f̂ −A∗Wf

∥∥
p
≤ |IM | ε ·

∥∥f̂
∥∥
p
+
∥∥Af̂ − f

∥∥
p
· |IM |1/p ∥w∥q (3.24)

for p ∈ {1, 2,∞} with 1
p +

1
q = 1. Now it merely remains to estimate∥∥Af̂ − f

∥∥
p
for the specific choice of f .

(i): Since a trigonometric polynomial (2.8) of degree M satifies Af̂ = f ,
the second term in (3.24) vanishes and we obtain the assertion (3.18).

(ii): When considering an arbitrary 1-periodic function given by (2.2) we
have

∣∣∣
[
Af̂ − f

]
j

∣∣∣ =
∣∣∣∣∣f(xj)−

∑

k∈IM

ck(f) e
2πikxj

∣∣∣∣∣

≤ max
x∈Td

∣∣∣∣∣
∑

k∈Zd\IM

ck(f) e
2πikx

∣∣∣∣∣

= ∥f − pM∥C(Td), j = 1, . . . , N,

with the best approximating trigonometric polynomial pM of de-
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gree M of f . This yields
∥∥Af̂ − f

∥∥
p
≤ N1/p ∥f − pM∥C(Td) and

by (3.24) the assertion (3.19).

Remark 3.12. For the solution of (3.12) we consider the least squares solu-
tion with ∥w∥2 → min, which is the straightforward approach. Note that
since the error bound in Theorem 3.11 is based on the condition (3.17),
it might be possible to obtain even better results by considering the con-
straints ∥w∥1 → min or |εk| < ε, k ∈ I2M . However, these modifications
are not addressed in this investigation and might be subject to further
research. ⋄

As known by Remark 3.7, an exact reconstruction (3.7) of trigonometric
polynomials (2.8) is equivalent to the matrix product A∗WA being equal
to identity I |IM |. Note that there is a similar relation between the error of
the reconstruction (3.5) and the error matrix Er = A∗WA− I |IM |. More
specifically, as an immediate implication of Theorem 3.11, the following
estimate on the condition of the matrix A∗WA can be given, cf. [KP23a,
Theorem 3.15].

Corollary 3.13. Let A ∈ CN×|IM | in (2.7), W = diag(wj)
N
j=1 and ε ≥ 0 be

given as in Theorem 3.11. If additionally ε |IM | < 1 is fulfilled, this implies

1 ≤ κ2(A
∗WA) ≤ 1 + ε |IM |

1− ε |IM |

with the condition number κ2(X) := ∥X∥2∥X−1∥2.

Proof. In order to estimate the condition number κ2(A
∗WA) we need to

determine the norms
∥∥A∗WA

∥∥
2
and

∥∥(A∗WA)−1
∥∥
2
. To this end, we

use the fact that by (3.17) it is known that A∗WA = I |IM | + E, where
E := (εℓ−k)ℓ,k∈IM

, and therefore we have

∥∥A∗WA
∥∥
2
=
∥∥I |IM | + E

∥∥
2
≤
∥∥I |IM |

∥∥
2
+ ∥E∥2. (3.25)

Moreover, it is known by the theory of Neumann series, cf. [Ste98b, The-
orem 4.20], that if

∥∥I |IM | − T
∥∥
2
< 1 holds for a matrix T ∈ C|IM |×|IM |,

then T is invertible and its inverse is given by

T−1 =
∞∑

n=0

(
I |IM | − T

)n
.
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Using this property for T = A∗WA we have

∥∥(A∗WA)−1
∥∥
2
=

∥∥∥∥∥
∞∑

n=0

(
I |IM | −A∗WA

)n
∥∥∥∥∥
2

=

∥∥∥∥∥
∞∑

n=0

En
∥∥∥∥∥
2

≤
∞∑

n=0

∥En∥2 ,

(3.26)

in case that
∥∥I |IM | −A∗WA

∥∥
2
= ∥E∥2 < 1. Hence, by (3.25) and (3.26)

we find

κ2(A
∗WA) ≤ (1 + ∥E∥2) ·

( ∞∑

n=0

∥En∥2
)
. (3.27)

Additionally, we know that |εk| ≤ ε, k ∈ I2M , with some ε ≥ 0, and there-
fore

∥E∥2 ≤ ∥E∥F =

√ ∑

k∈IM

∑

ℓ∈IM

|εℓ−k|2 ≤
√ ∑

k∈IM

∑

ℓ∈IM

ε2 = ε |IM |.

(3.28)

In other words, the correctness of (3.26) is ensured if ε |IM | < 1. Since
the spectral norm is a sub-multiplicative norm, the estimate (3.28) also im-
plies ∥En∥2 ≤ ∥E∥n2 ≤ (ε |IM |)n. Consequently, we have by the geometric
sum formula that

∞∑

n=0

∥En∥2 ≤
∞∑

n=0

(ε |IM |)n =
1

1− ε |IM | . (3.29)

Thus, combining (3.27), (3.28) and (3.29) yields the assertion.

3.2.4 Linking to approaches in literature

In the literature a variety of density compensation approaches can be found.
Although many of them use a variant of (3.5) incorporating the sinc matrix

C :=

(
|IM | sinc

(
Mπ

(
xj −M−1 ⊙ ℓ

)))N

j=1, ℓ∈IM

∈ RN×|IM | (3.30)

with the d-variate sinc function

sinc(x) :=
d∏

t=1

sinc(xt), sinc(x) :=

{
sin x
x : x ∈ R \ {0},

1 : x = 0,
(3.31)
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instead of the nonequispaced Fourier matrix A ∈ CN×|IM | in (2.7), some
of these approaches shall be reconsidered here using a unified optimization
approach, cf. [EKP22]. Similar to [KP23a, Section 3.4] we focus in particular
on the connection of the approaches among each other as well as to the
method introduced in Section 3.2.1.

Density compensation using the pseudoinverse

Due to the fact that the inversion problem (3.3) is in general not exactly
solvable, we study the corresponding least squares problem, i. e., we look for
the approximant that minimizes the residual norm

∥∥f −Af̂
∥∥
2
. It is known

(e. g. [Bjö96, p. 15]) that this problem always has the unique solution

f̂ ≈ h̃
pinv

:= A†f (3.32)

with the Moore-Penrose pseudoinverse A† ∈ C|IM |×N . Since the pseudoin-
verse generally is a dense matrix, the evaluation of (3.32) is not computa-
tionally efficient. However, comparing (3.32) to the density compensation
approach (3.5), the weights wj ∈ C, j = 1, . . . , N , should be chosen such

that the matrix product A∗W approximates the pseudoinverse A† as best
as possible. In other words, we consider the approximation error

∥∥hw − h̃
pinv∥∥2

2
=
∥∥A∗Wf −A†f

∥∥2
2
≤
∥∥A∗W −A†∥∥2

F
·
∥∥f
∥∥2
2
,

and study the optimization problem

Minimize
W=diag(wj)Nj=1

∥∥A∗W −A†∥∥2
F
. (3.33)

Based on the definition of the Frobenius norm of a matrix and the Euclidean
norm of a vector, we obtain for zj ∈ Cn being the columns of a ma-
trix Z ∈ Ck×n that

∥Z∥2F =
k∑

i=1

n∑

j=1

|zij |2 =
n∑

j=1

∥zj∥22. (3.34)

Hence, we rewrite the norm of the error matrixE := A∗W −A† ∈ C|IM |×N

in (3.33) as

∥E∥2F =
∥∥A∗W −A†∥∥2

F
=

N∑

j=1

∥∥A∗wj − (A†)j
∥∥2
2
, (3.35)
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where the vectors wj ∈ CN and (A†)j ∈ C|IM | are the columns of the ma-

trices W = diag(wj)
N
j=1 ∈ CN×N and A† ∈ C|IM |×N , respectively. Since

we aim for a diagonal matrix W , only the diagonal entries wj = [W ]j,j
shall be nonzero and therefore it suffices to consider only these entries. In
doing so, we may rewrite (3.35) requiring only the j-th column aj ∈ C|IM |

of A∗ ∈ C|IM |×N as

∥E∥2F =

N∑

j=1

∥∥ajwj − (A†)j
∥∥2
2
.

In other words, we found that the optimization problem (3.33) is equivalent
to

Minimize
wj∈C

∥∥ajwj − (A†)j
∥∥2
2
, j = 1, . . . , N.

The solution of these least-squares problems can be computed using the pseu-
doinverse as wj = a†

j(A
†)j ∈ C, and since the column vectors aj ∈ C|IM |

have full column rank, this can be written as

wj =
(
a∗
jaj
)−1

a∗
j (A

†)j =
[AA†]j,j
[AA∗]j,j

, j = 1, . . . N. (3.36)

By (2.7) it is easy to see that for the denominators we have

[AA∗]j,j =
∑

k∈IM

e2πik(xj−xj) = |IM |.

For the numerators we utilize the singular value decomposition (SVD) of the
matrix A ∈ CN×|IM | in (2.7), which is given by A = ΘΣΩ∗ with unitary
matrices Θ ∈ CN×N , Ω ∈ C|IM |×|IM | and the rectangular diagonal ma-
trix Σ ∈ RN×|IM |. Then the pseudoinverse A† possesses the factorization
A† = ΩΣ†Θ∗, see e. g. [Bjö96, p. 15], such that for r := rank(A) we may
notate

AA† = (ΘΣΩ∗)(ΩΣ†Θ∗) = ΘΣΣ†Θ∗ = Θ

(
Ir 0r×(N−r)

0(N−r)×r 0N−r

)
Θ∗.

(3.37)

An analogous approach for full column rank was studied in [SN00]
considering the sinc matrix (3.30) instead of the nonequispaced Fourier
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matrix A in (3.5). There it was claimed (without proof) that weights
obtained by a scheme analogous to (3.36) are always positive. In order to
show this, let Z ∈ Ck×n as well as zj ∈ Ck be the j-th column of Z. Then
we have

[ZInZ
∗]j,j = zjz

∗
j = |zj,1|2 + · · ·+ |zj,n|2 ≥ 0.

Hence, choosing n = r and Z = [Θt]
n
t=1 for the numerator in (3.36),

where Θt ∈ CN is the t-th column of Θ ∈ CN×N , yields the non-negativity
of the weights computed by (3.36).

Nevertheless, it can be seen that the calculations in (3.36) are very costly
due to the SVD, which is necessary to compute the numerators by (3.37).
Since we end up lacking a fast computation technique for AA† ∈ CN×N ,
we remain with the high complexity of O(N2 |IM |+ |IM |3). Moreover, to
compute an SVD the matrix A ∈ CN×|IM | in (2.7) has to be assembled
completely, which results in huge memory requirements for larger problems.
Therefore, this density compensation technique is in general not feasible
in practice, which is why we study some more sophisticated approaches in
the remainder of this section.

Density compensation using weighted normal equations of first kind

Having a closer look at least squares problems, it is known, see e. g. [Bjö96,
Theorem 1.1.2], that every least squares solution satisfies the weighted
normal equations of first kind

A∗WAf̂ = A∗Wf . (3.38)

We remark that a unique solution to (3.38) exists if and only
if rank(A) = |IM |, cf. [Bjö96, p. 7], i. e., if A ∈ CN×|IM | in (2.7) has full
column rank. Note that by Remark 3.7 an exact reconstruction f̂ = A∗Wf
is equivalent to A∗WA = I |IM |. We also recognize by (3.38) that one
may try to find suitable weights by considering the optimization problem

Minimize
W=diag(wj)Nj=1

∥∥A∗WA− I |IM |
∥∥2
F
. (3.39)

In other words, we look for the multilevel block Toeplitz matrix

A∗WA =




N∑

j=1

wj e
−2πi(k−ℓ)xj




k,ℓ∈IM

, (3.40)
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that approximates the identity best, and therefore yields the smallest recon-
struction error in (3.5). Since rank(A∗WA) = rank(A) ≤ min{N, |IM |},
we observe that we only receive a full-rank approximation if the con-
dition N ≥ |IM | is satisfied, i. e., if we are in the overdetermined set-
ting of (3.3). Otherwise, when considering the underdetermined set-
ting N < |IM | we can only expect rank-deficient approximations.

An analogous approach has already been studied in [Ros98, SN00], where
the sinc matrix C ∈ RN×|IM | in (3.30) was used instead of the nonequi-
spaced Fourier matrix A ∈ CN×|IM | in (2.7). By similar considerations as
in [SN00] the optimization problem (3.39) could also be derived from (3.33)
by introducing an additional right-hand scaling in the domain of measured
data and minimizing the Frobenius norm of the weighted error matrix
Er := (E ·A) ∈ C|IM |×|IM |, where E = (A∗W −A†) ∈ C|IM |×N is the
error matrix in (3.33).
By inserting the equation (2.5) into the approximation (3.5), i. e., con-

sidering f̂ ≈ hw = A∗Wf = A∗WAf̂ , we recognize that we can control
the approximation error by

∥∥hw − f̂
∥∥2
2
=
∥∥A∗WAf̂ − f̂

∥∥2
2
≤
∥∥A∗WA− I |IM |

∥∥2
F
·
∥∥f̂
∥∥2
2
. (3.41)

Thus, the minimization of the Frobenius norm as in (3.39) results in a
decrease of the approximation error as well.

Obviously, the easiest choice for W ∈ CN×N satisfying A∗WA ≈ I |IM |

would be the dense pseudoinverse W = (A∗)†A†. However, since the aim is
achieving a diagonal matrix of weights, we have to search for the best diag-
onal approximation of this dense matrix. To this end, we rewrite the norm
in (3.39) using (3.40), the Kronecker symbol δk,ℓ and the property (3.34)
as

∥∥A∗WA− I |IM |
∥∥2
F

=

∥∥∥∥∥∥




N∑

j=1

wj e
−2πi(k−ℓ)xj




k,ℓ∈IM

− (δk,ℓ)k,ℓ∈IM

∥∥∥∥∥∥

2

F

=
∑

ℓ∈IM

∥∥∥∥
(
e−2πi(k−ℓ)xj

)N
k∈IM , j=1

· (wj)Nj=1 −
(
δk,ℓ

)
k∈IM

∥∥∥∥
2

2

=
∑

ℓ∈IM

∥∥Xℓ w − eℓ
∥∥2
2
, (3.42)
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where

Xℓ :=
(
e−2πi(k−ℓ)xj

)N
k∈IM , j=1

, w := (wj)
N
j=1 , eℓ := (δk,ℓ)k∈IM

.

However, this formulation (3.42) is not separable for single wj ∈ C,
j = 1, . . . , N, and inconsistent solutions w ∈ CN may occur when sepa-
rating for different ℓ ∈ IM . To circumvent this issue, we reshape (3.42) by
stacking into the highly overdetermined system

∑

ℓ∈IM

∥∥Xℓ w − eℓ
∥∥2
2
=
∥∥(Xℓ)ℓ∈IM

·w − (eℓ)ℓ∈IM

∥∥2
2
,

where we used the property

∥y1∥22 + · · ·+ ∥yn∥22 =
∥∥(y1 . . . yn)

⊤∥∥2
2
.

Thus, similar to [Ros98], the density compensation factors w ∈ CN can be
found by solving the normal equations Sw = b, where by definition (2.7)
we have

AA∗ =

( ∑

k∈IM

e2πik(xj−xh)

)N

j,h=1

, (3.43)

and therefore

S := ((Xℓ)ℓ∈IM
)
∗ · (Xℓ)ℓ∈IM

=
∑

ℓ∈IM

X∗
ℓXℓ

=
∑

ℓ∈IM

(
e2πi(k−ℓ)xj

)N
j=1,k∈IM

·
(
e−2πi(k−ℓ)xh

)N
k∈IM , h=1

=

(( ∑

k∈IM

e2πik(xj−xh)

)( ∑

ℓ∈IM

e−2πiℓ(xj−xh)

))N

j,h=1

=
( ∣∣∣[AA∗]j,h

∣∣∣
2 )N

j,h=1
∈ RN×N (3.44)

as well as

b := ((Xℓ)ℓ∈IM
)
∗ · (eℓ)ℓ∈IM

=
∑

ℓ∈IM

X∗
ℓeℓ =

( ∑

ℓ∈IM

e0

)N

j=1

= |IM | · 1N .
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Nevertheless, these normal equations Sw = b are still not separable for
single wj ∈ C. Therefore, the solution w ∈ CN shall be computed itera-
tively by means of the CG algorithm, which is of high complexity O(N3).
Analogous to Section 3.2.4, there is also the problem of memory requirement
for assembling huge matrices. This is why the authors in [SN00] restricted
themselves to a maximal image size of 64× 64 pixels, which corresponds
to setting M = (64, 64)⊤.

Remark 3.14. The CG algorithm requires a symmetric, positive semidefinite
system matrix. Obviously, the symmetry property is fulfilled for S ∈ RN×N

in (3.44). In order to show that S is also positive semidefinite, we use the
Schur product theorem, see [HJ13, Theorem. 7.5.3]. This theorem states
that for two positive semidefinite matrices P ,R ∈ Ck×n the elementwise
product, also called Hadamard product ,

[P ◦R]j,h := pj,h · rj,h

is positive semidefinite as well. Therefore, let P := AA∗ ∈ CN×N

and R := AA∗ ∈ CN×N . Since a matrix is positive semidefinite if and
only if it can be decomposed as a product of a matrix and its adjoint,
cf. [HJ13, Theorem 7.2.7], both matrices are positive semidefinite. More-
over, we have

[S]j,h = [P ◦R]j,h = [AA∗]j,h · [AA∗]j,h =
∣∣∣[AA∗]j,h

∣∣∣
2

,

such that S ∈ RN×N is positive semidefinite as well. ⋄
We notice that for the normal equations Sw = b we have S ∈ RN×N as

well as b ∈ RN , and therefore w ∈ RN , whereas non-negativity cannot be
guaranteed.

Remark 3.15. Since the high complexity in the computation of the
weights w ∈ CN by Sw = b arises from solving with the system matrix S,
we investigate if the multiplication with the matrix S ∈ RN×N in (3.44)
could be improved by means of the NFFT from Section 2.2. To this end,
note that by (3.44) we have

[S]j,h =
∑

k∈IM

∑

ℓ∈IM

e2πi(k(xj−xh)+ℓ(xh−xj)) =
∑

s∈I2d
M

e2πis(yj−yh),
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where we introduced the double-length vectors

s :=

(
k
ℓ

)
∈ R2d, yj :=

(
xj
−xj

)
∈ R2d and yh :=

(
xh
−xh

)
∈ R2d.

Hence, the multiplication of S ∈ RN×N with a vector v ∈ CN can be
written as

[Sv]j =

N∑

h=1

vh
∑

t∈I2d
M

e2πis(yj−yh) =
∑

t∈I2d
M

e2πisyj

(
N∑

h=1

vh e
−2πisyh

)
,

(3.45)

with the 2d-dimensional multi-index set

I2d
M := Z2d ∩

2d∏

t=1

[
−Mt

2 ,
Mt

2

)

=
{
k ∈ Z2d : − Mt

2 ≤ kt <
Mt

2 , t = 1, . . . , 2d
}
,

cf. (2.1). In other words, the inner sum in (3.45) corresponds to a
2d-dimensional adjoint NFFT and the outer sum to a 2d-dimensional NFFT.
Therefore, the multiplication of the matrix S ∈ RN×N by a vector v ∈ CN
is of arithmetic complexity

O(|I2d
M | log(|I2d

M |) +N) = O(|IM |2 log(|IM |) +N).

For computing a solution to the system Sw = b this technique would need
to be incorporated into an iterative procedure such as the CG algorithm,
i. e., multiple iteration steps and therefore multiple applications of the
2d-dimensional NFFT are needed. Note, however, that the NFFT is only
feasible for small dimensions d ∈ {1, 2, 3}, such that this approach is already
not applicable for d = 2 since the 4-dimensional NFFT quickly becomes
unaffordable, while for d = 1 it only pays off for very large problem sizes,
where the naive computation fails due to memory limitations. Thus, this
technique can be helpful as it may enable the computation of the weights
when this is not possible otherwise, even though this technique is still
costly. ⋄
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Density compensation using weighted normal equations of second kind

Another approach for density compensation factors is based on the weighted
normal equations of second kind

AA∗Wy = f , A∗Wy = f̂ . (3.46)

We remark that there exists a unique solution to (3.46) if and only
if rank(A) = N , i. e., if A ∈ CN×|IM | in (2.7) has full row rank, cf. [Bjö96,
p. 7].
In order to achieve an approximation f̂ ≈ A∗Wf of the Fourier

coefficients as in (3.5), we recognize by (3.46) that we need to ful-
fill AA∗W ≈ IN , since then y ≈ f . To achieve this, we consider the
optimization problem

Minimize
W=diag(wj)Nj=1

∥AA∗W − IN∥2F. (3.47)

Since rank(AA∗W ) = rank(A) ≤ min{N, |IM |}, we observe that we only
receive a full-rank approximation, if the condition N ≤ |IM | is satisfied, i. e.,
if we are in the underdetermined setting of (3.3). Otherwise, when consider-
ing the overdetermined setting N > |IM | we can only expect rank-deficient
approximations. As in Section 3.2.4, we remark that the optimization prob-
lem (3.47) could also be derived from (3.33) by introducing an additional
left-hand scaling in the Fourier domain and minimizing the Frobenius norm
of the weighted error matrix El := (A ·E) ∈ CN×N .

Remark 3.16. An analogous approach was already studied in [PM99], consid-
ering the sinc matrix C ∈ RN×|IM | in (3.30) instead of the nonequispaced
Fourier matrix A ∈ CN×|IM | in (2.7). Another version of a sinc matrix
was studied in [CM98, GLI06], cf. Section 6.1.2, where it was claimed that
this approach coincides with the one in [PM99]. However, we will show in
Remark 6.3 that this claim only holds asymptotically for |IM | → ∞ in the
setting of the sinc matrix (3.30).

In contrast, when using the nonequispaced Fourier matrix A ∈ CN×|IM |

in (2.7) this equality can directly be seen. In this case, the analog
to [GLI06] utilizes an approximation of the form f ≈ HWf , where the
matrix H ∈ CN×N is defined as the system matrix of (3.3) evaluated at
pointwise differences of the nonequispaced nodes, i. e.,

H :=

( ∑

k∈IM

e2πik(xj−xh)

)N

j,h=1

.
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Since H = AA∗ by (3.43), we recognize that considering the minimization
of the approximation error

∥H∗Wf − f∥22 = ∥AA∗Wf − f∥22 ≤ ∥AA∗W − IN∥2F · ∥f∥22 ,

leads to the optimization problem (3.47) as well. ⋄

Remark 3.17. Note that by left-hand multiplication with A ∈ CN×|IM |

in (2.7) and insertion of (3.3), an exact reconstruction of the form (3.7)
immediately implies

f = Af̂ = AA∗Wf ,

and thereby the property AA∗W = IN . However, in constrast to Re-
mark 3.7 these two properties are not equivalent, since AA∗W = IN does
not imply an exact reconstruction of the form f̂ = A∗Wf . ⋄
Obviously, the easiest choice for W ∈ CN×N satisfying AA∗W ≈ IN

would be the dense pseudoinverse W = (AA∗)†. However, since we aim
for a diagonal matrix of weights, we have to search for the best diagonal
approximation of this dense matrix. In other words, since only the diag-
onal entries wj = [W ]j,j of W are nonzero, we may rewrite (3.47) only
considering the j-th column of AA∗ ∈ CN×N . For this purpose we denote
the j-th column of A∗ ∈ C|IM |×N once more as aj ∈ C|IM | as well as the
columns of W and IN as wj ∈ CN and ej ∈ RN , respectively. Then we
have by (3.34) that

∥AA∗W − IN∥2F =
N∑

j=1

∥AA∗wj − ej∥22 =
N∑

j=1

∥Aajwj − ej∥22,

such that the solution to the minimization problem can be computed using
the pseudoinverse as wj = (Aaj)

†ej ∈ C, j = 1, . . . , N . Since

Aaj =
(
e2πikxh

)N
h=1,k∈IM

·
(
e−2πikxj

)
k∈IM

=

( ∑

k∈IM

e−2πik(xj−xh)

)N

h=1

∈ CN

as a vector has full column rank, these weights can be written
as wj = ((Aaj)

∗Aaj)
−1

(Aaj)
∗ej . Similar to (3.44) this can be simplified
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via

(Aaj)
∗Aaj =



( ∑

k∈IM

e2πik(xj−xh)

)N

h=1




⊤( ∑

ℓ∈IM

e−2πiℓ(xj−xh)

)N

h=1

=

N∑

h=1

( ∑

k∈IM

e2πik(xj−xh)

)( ∑

ℓ∈IM

e−2πiℓ(xj−xh)

)

=
N∑

h=1

∣∣∣[AA∗]j,h

∣∣∣
2

and

(Aaj)
∗ej =

N∑

h=1

δj,h
∑

k∈IM

e−2πik(xj−xh) =
∑

k∈IM

e0 = |IM |,

such that we obtain

wj =
|IM |

∑N
h=1

∣∣[AA∗]j,h
∣∣2 , j = 1, . . . , N. (3.48)

Note that in (3.48) we only deal with the nonnegative numbers |IM |
and

∣∣[AA∗]j,h
∣∣2, j, h = 1, . . . , N , such that wj in (3.48) are nonnegative

for all j = 1, . . . , N .
Due to the representation (3.43), the computation of [AA∗]j,h,

h = 1, . . . , N, for fixed j is of arithmetic complexity O(N · |IM |), such
that the overall complexity for the naive computation of the weights (3.48)
is given by O(N2 · |IM |).
Remark 3.18. Similar to Remark 3.15 one might also try to incorporate the
NFFT from Section 2.2 for the computation of (3.48). On the one hand,
one could apply an NFFT for the computation of [AA∗]j,h, h = 1, . . . , N,
for fixed j, such that this step takes O(|IM | log(|IM |) +N) arithmetic op-
erations and the overall complexity is given by O(N · |IM | log(|IM |) +N2).
On the other hand, one could use the procedure in (3.45) with v = 1N yield-
ing the complexity O(|I2d

M | log(|I2d
M |) +N) = O(|IM |2 log(|IM |) +N).

However, a similar comment as in Remark 3.15 applies to this second
method, as it is not applicable for d = 2 and for d = 1 it is only beneficial
for very large problem sizes with N ≥ 40000. ⋄
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As mentioned in [PM99] one could also consider a simplified version of
the optimization problem (3.47) by reducing the number of conditions, e. g.
by summing the columns on both sides of AA∗W = IN as

N∑

j=1

wj
∑

k∈IM

e2πik(xh−xj) =
N∑

j=1

δj,h = 1, h = 1, . . . , N.

By means of (3.43) this can be written as

AA∗w = 1N . (3.49)

Note that due to the summation over the columns every solu-
tion W = diag(w) = diag(wj)

N
j=1 of the original problem AA∗W = IN

also solves the relaxed problem (3.49), while the reversal only holds true, if
the matrix AA∗ ∈ CN×N is diagonal.

Since a fast multiplication with AA∗ can easily be realized by applying
an adjoint NFFT (see Algorithm 2.5) and an NFFT (see Algorithm 2.2)
afterwards, a solution to problem (3.49) can be computed by means of an
iterative procedure such as the CG algorithm in O(|IM | log(|IM |) +N)
arithmetic operations.

Remark 3.19. Finally, we investigate the connection of this approach
to the method introduced in Section 3.2.1. To this end, assume that
the linear system (3.9) is fulfilled with exactness for given w ∈ CN , i. e.,
by A∗ = A⊤ we have (δ0,k)k∈IM

= A⊤w = A∗w. Then left-hand multi-

plication with A ∈ CN×|IM | in (2.7) yields

AA∗w = A · (δ0,k)k∈IM
=

( ∑

k∈IM

δ0,k · e2πikxj

)N

j=1

= 1N .

In other words, an exact solution w to the linear system (3.9) implies that
the conjugate complex weights w exactly solve the system (3.49). However,
the reversal does not hold true and therefore (3.49) is not equivalent to (3.9).
Moreover, we have seen in Theorem 3.6 that an augmented variant of (3.9),

namely (3.12), is necessary to obtain an exact reconstruction f̂k = hwk
in (3.5) for trigonometric polynomials (2.8) of maximum degree M , which
is why this relaxation approach is not expected to work properly. ⋄
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Summary

Overall, in this section a broad variety of density compensation approaches
has been presented. For a comparison of the mentioned methods, we refer to
the numerical examples in Section 3.4. More specifically, in Example 3.32
we investigate the accuracy of the density compensation method from
Algorithm 3.2 with the weights computed by Algorithm 3.10 and check the
theoretical error bound of Theorem 3.11. In addition, a comparison with
the approaches of Section 3.2.4 is shown in Example 3.33, i. e., the weights
computed by means of Algorithm 3.10 are compared to the approaches
from Section 3.2.4 for using Algorithm 3.2.

In summary, we will see the optimality of the weights computed by
means of Algorithm 3.10 for the setting |I2M | ≤ N , cf. Figure 3.6. How-
ever, in the setting |I2M | > N we will see that Algorithm 3.10 is not
capable of producing a good reconstruction. In this setting the weights
computed using (3.44) and (3.48), respectively, appear to be more promis-
ing, cf. Figures 3.8d and 3.8e. Nevertheless, we have to keep in mind that
comparatively small choices of M are necessary for these methods to be
computationally affordable, see Remarks 3.15 and 3.18.

3.3 Optimization of the sparse matrix B

As observed in Remark 3.3, the density compensation techniques studied so
far can be viewed as an optimization of the sparse matrix B ∈ RN×|IMσ |

in (2.16) from the NFFT decomposition, see Section 2.2. However, since
density compensation presumably suffers from the fact that only N degrees
of freedom are used, this restriction shall now be relaxed, i. e., instead of
searching for optimal scaling factors for the rows of B, we now study the
optimization of each nonzero entry of the sparse matrix B, as introduced
in [KP21, KP23a]. More precisely, we aim to modify the matrix B such that
its sparse structure with at most (2m+ 1)d entries per row and consequently
the arithmetic complexity of its application to a vector is preserved. Note
that a matrix satisfying this property we call (2m+ 1)d-sparse.

To this end, this section is organized as follows. Firstly, in Section 3.3.1
we introduce the Frobenius norm minimization problem and the resulting
modified matrix Bopt. In addition to the theoretical results, we also discuss
methods for the numerical computation in Section 3.3.2. Subsequently,
in Section 3.3.3 we present an error bound on the approximation error
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based on the previously considered optimization approach. Finally, in
Section 3.3.4 we reconsider certain approaches from literature and illustrate
their connection to the method in Section 3.3.1.

3.3.1 Frobenius norm minimization

Let B̃ ∈ RN×|IMσ | be a (2m+ 1)d-sparse matrix. By defining the ap-

proximation h̃ := D∗F ∗B̃
∗
f and inserting (3.3), we recognize that the

minimization of the approximation error

∥∥h̃− f̂
∥∥
2
=
∥∥D∗F ∗B̃

∗
f − f̂

∥∥
2
=
∥∥D∗F ∗B̃

∗
Af̂ − f̂

∥∥
2

=
∥∥(D∗F ∗B̃

∗
A− I |IM |

)
f̂
∥∥
2

≤
∥∥D∗F ∗B̃

∗
A− I |IM |

∥∥
F

∥∥f̂
∥∥
2

(3.50)

implies the optimization problem

Minimize
B̃∈RN×|IMσ

| : B̃ (2m+1)d-sparse

∥∥D∗F ∗B̃
∗
A− I |IM |

∥∥2
F
. (3.51)

Note that a similar approach for the one-dimensional setting was firstly
explored in [KP19], while a similar idea for the forward problem, i. e., the
evaluation of (2.5), was already studied in [NS03].

Remark 3.20. We remark that in (3.50) we estimated the Euclidean
vector norm ∥ · ∥2 not by its induced matrix norm ∥Z∥2 = σmax(Z),
where σmax(Z) denotes the largest singular value of a matrix Z ∈ Ck×n,
but by means of the consistent Frobenius norm ∥ · ∥F. This is mainly due
to the expensive computation of this so-called spectral norm ∥ · ∥2 and the
fact that we especially target our minimization to the sparse structure of
the matrix B, which is hard to implement for the spectral norm as well.
However, note that for the Frobenius norm (3.34) we are given the

equivalent characterization by the Schatten 2-norm as

∥Z∥F =




min{k,n}∑

j=1

σj(Z)2




1
2

,

cf. e. g. [Bjö96, pp. 25]. Therefore, the Frobenius norm may be larger
than necessary, which tends to make the bound (3.50) not as sharp as it
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might be. Nevertheless, as we still have 1√
n
∥Z∥F ≤ ∥Z∥2 ≤ ∥Z∥F for any

matrix Z ∈ Ck×n, the minimization of the Frobenius norm in (3.51) also
implies a decrease in the spectral norm of the same matrix. ⋄
To derive an explicit representation of the optimal (2m+ 1)d-sparse

matrix B, some rearrangement of the optimization problem (3.51) has to
be done, cf. [KP21, KP23a]. By the definition of the Frobenius norm we
have ∥Z∥F = ∥Z∗∥F, such that (3.51) is equivalent to its adjoint

Minimize
B̃∈RN×|IMσ

| : B̃ (2m+1)d-sparse

∥∥A∗B̃FD − I |IM |
∥∥2
F
. (3.52)

Since it is known by (2.15) that F ∗F = |IMσ | I |IM | and D ∈ R|IM |×|IM |

is diagonal by (2.14), we have 1
|IMσ |D

−1F ∗FD = I |IM |. Thus, due to the

fact that the Frobenius norm is a submultiplicative norm, this implies

∥∥A∗B̃FD − I |IM |
∥∥
F
=
∥∥(A∗B̃ − 1

|IMσ |D
−1F ∗)FD

∥∥
F

≤
∥∥A∗B̃ − 1

|IMσ |D
−1F ∗∥∥

F

∥∥FD
∥∥
F
. (3.53)

Therefore, we proceed with the modified optimization problem

Minimize
B̃∈RN×|IMσ

| : B̃ (2m+1)d-sparse

∥∥A∗B̃ − 1
|IMσ |D

−1F ∗∥∥2
F
. (3.54)

Since we aim to preserve the property that B ∈ RN×|IMσ | in (2.16) is
a (2m+ 1)d-sparse matrix, we rewrite the norm in (3.54) by the prop-
erty (3.34) in terms of the columns of B̃, additionally considering only the
nonzero entries of each column. To this end, analogous to (2.12), we define
the index set

IMσ,m(ℓ) :=
{
j∈{1, . . . , N} : ∃z ∈ Zd with

−m · 1d ≤ Mσ ⊙ (xj + z)− ℓ ≤ m · 1d} (3.55)

of the nonzero entries of the ℓ-th column of B ∈ RN×|IMσ |. Thus, by (3.34)
we have

∥∥A∗B̃ − 1
|IMσ |D

−1F ∗∥∥2
F
=

∑

ℓ∈IMσ

∥∥Hℓb̃ℓ − 1
|IMσ |D

−1fℓ

∥∥2
2
, (3.56)
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where b̃ℓ ∈ R|IMσ,m(ℓ)| denote the vectors of the nonzeros of each column
of B̃ ∈ RN×|IMσ |, the matrices

Hℓ :=
(
e−2πikxj

)
k∈IM , j∈IMσ,m(ℓ)

∈ C|IM |×|IMσ,m(ℓ)| (3.57)

are the corresponding submatrices of A∗ ∈ C|IM |×N , cf. (2.7), and the
vectors fℓ ∈ C|IM | are the columns of F ∗ ∈ C|IM |×|IMσ |, cf. (2.15). Hence,
we may rewrite (3.54) as

Minimize
b̃ℓ∈R|IMσ,m(ℓ)|

∥∥Hℓb̃ℓ − 1
|IMσ |D

−1fℓ

∥∥2
2
, ℓ ∈ IMσ . (3.58)

Thus, if the matrix (3.57) has full column rank, the solution of the least

squares problem (3.58) can be computed by means of the pseudoinverse H†
ℓ

as

boptℓ := 1
|IMσ | (H

∗
ℓHℓ)

−1
H∗

ℓD
−1f ℓ, ℓ ∈ IMσ . (3.59)

Having these vectors boptℓ we compose the optimized matrix Bopt, ob-

serving that boptℓ only consist of the nonzero entries of Bopt. Then the
approximation of the Fourier coefficients is given by

f̂ ≈ hopt := D∗F ∗B∗
optf , (3.60)

i. e., our approach for an inverse NFFT by modifying the adjoint NFFT
can be summarized as follows.

Algorithm 3.21 (iNFFT – optimization approach).

For d,N ∈ N let xj ∈ Td, j = 1, . . . , N, be given nodes as well as f ∈ CN .
Furthermore, let the d-dimensional oversampling factor σ ≥ 1d, the
vector Mσ := ((Mσ)1, . . . , (Mσ)d)

⊤ with 2N ∋ (Mσ)t := 2⌈ ⌈σtMt⌉/2 ⌉
and M = (M1, . . . ,Md)

⊤ ∈ (2N)d, as well as a truncation parame-
ter m≪ (Mσ)t, t = 1, . . . , d, be given.

0. Precompute the optimal (2m+ 1)d-sparse matrix Bopt ∈ RN×|IMσ |,
cf. (3.59).

1. Compute hopt := D∗F ∗B∗
optf , cf. (3.60), by means of a modified

adjoint NFFT.

Output: hopt ≈ f̂ ∈ C|IM |, cf. (3.3).

Complexity: O(|IM | log(|IM |) +N)



3.3 Optimization of the sparse matrix B 73

Remark 3.22. Note that since

rank(D∗F ∗B∗
optA) ≤ rank(A) ≤ min{N, |IM |},

we can only obtain a full-rank approximation D∗F ∗B∗
optA ≈ I |IM | of the

identity in (3.51), if the constraint |IM | ≤ N is fulfilled, i. e., if we are
in the overdetermined setting of (3.3). This is why, our procedure in
Algorithm 3.21 works best in the overdetermined setting |IM | ≤ N , while
in the underdetermined setting |IM | > N it produces rather poor results,
see Example 3.34.

We further remark that if (3.3) is underdetermined, we have found that
the straightforward analogue to (3.51), i. e., searching for an approximation
of the form BoptFDA∗ ≈ IN , does not succeed either. Rather, additional
assumptions on the data and more sophisticated regularization techniques
are supposedly needed, but were not considered in this work. ⋄
Remark 3.23. Up to now, we focused only on the problem (3.3). Never-
theless, considering the inverse adjoint NFFT in (3.4), we recognize that
this problem can also be solved by means of the optimization procedure
above. As in Remark 3.22 assume |IM | ≤ N , which is the underdetermined
setting of the adjoint problem (3.4). Therefore, the minimum norm solution
of (3.4) is given by the normal equations of second kind

A∗Ay = h, f = Ay.

Incorporating the matrix decomposition of the NFFT, cf. Section 2.2, we rec-
ognize that a modification Bopt ∈ RN×|IMσ | of the matrix B ∈ RN×|IMσ |

such that A∗BoptFD ≈ I |IM | implies y ≈ h and hence f ≈ BoptFDh.
Thus, the optimization problem (3.52) is also the one to consider for (3.4).
In other words, our approach provides both, an inverse NFFT as well as
an inverse adjoint NFFT. ⋄

3.3.2 Practical computation schemes

To receive an efficient algorithm for the computation of the least squares
solution (3.59), we now have a closer look at its computation scheme. For
this purpose, let

Dn(x) :=
n∑

k=−n

e2πikx =
sin((2n+ 1)πx)

sin(πx)
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denote the one-dimensional Dirichlet kernel , cf. [PPST23, Example 1.14].
Then the matrix H∗

ℓHℓ in (3.59) can be stated explicitly by (3.57) as

H∗
ℓHℓ =

( ∑

k∈IM

e2πik(xh−xj)

)

h,j∈IMσ,m(ℓ)

(3.61)

=




d∏

t=1




Mt
2 −1∑

kt=−Mt
2

e2πikt(xht−xjt)






h,j∈IMσ,m(ℓ)

=

(
d∏

t=1

(
DMt

2 −1
(xht − xjt) + e−Mtπi(xht−xjt)

))

h,j∈IMσ,m(ℓ)

.

In other words, in contrast to the naive computation with a complexity
of O(|IM | · |IMσ,m(ℓ)|2), for fixed ℓ ∈ IMσ the matrix H∗

ℓHℓ can be
determined in O(|IMσ,m(ℓ)|2) operations. Considering the right hand
sides vℓ :=

1
|IMσ |H

∗
ℓD

−1fℓ of (3.59), we have by definitions (3.57), (2.14)

and (2.15) that

vℓ =

( ∑

k∈IM

φ̂(k) e2πik(xj−M−1
σ ⊙ ℓ)

)

j∈IMσ,m(ℓ)

, ℓ ∈ IMσ . (3.62)

Thus, since 1
|IMσ |D

−1 = diag(φ̂(k))k∈IM
, the computation of vℓ in (3.62)

involves neither multiplication with nor division by the (possibly) huge
number |IMσ | and is therefore numerically stable. Nevertheless, for a gen-
eral window function φ : Rd → [0, 1]d and fixed ℓ ∈ IMσ the computation
of vℓ in (3.62) is still of high complexity O(|IM | · |IMσ,m(ℓ)|).

Remark 3.24. Note that in the previous explanations we basically assumed
a given matrix B ∈ RN×|IMσ | in (2.16) and subsequent optimization of its
entries, i. e., a fixed window function φ : Rd → [0, 1]d and a fixed trunca-
tion parameter m ∈ N. In fact, we are free to choose a suitable window
function φ, as it also appears in the matrix D = 1

|IMσ | diag(φ̂(k)
−1)k∈IM

,

see (2.14). The corresponding truncation parameter m can also be chosen
freely. More specifically, this parameter acts as a scaling parameter to
adjust the number (2m+ 1)d of entries to be chosen in each row of B, but
with a trade-off in the complexity of the resulting algorithms. ⋄
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Therefore, we aim to find a good window function φ : Rd → [0, 1]d that
further reduces the complexity of the computation of (3.62), and hence
the entire algorithm. It is easy to see that the complexity of comput-
ing (3.62) is greatly decreased if φ̂(k) is independent of k ∈ IM , e. g., by
setting φ̂(k) = 1, k ∈ IM , we obtain for each ℓ ∈ IMσ that

vℓ =

( ∑

k∈IM

e2πik(xj−M−1
σ ⊙ ℓ)

)

j∈IMσ,m(ℓ)

(3.63)

=

(
d∏

t=1

(
DM

2 −1

(
xjt − lt

σtMt

)
+ e

−Mπi

(
xjt−

lt
σtMt

)))
j∈IMσ,m(ℓ)

In other words, for fixed ℓ ∈ IMσ each entry of vℓ can be stated explic-
itly and thus the computation of vℓ in (3.63) simplifies to a complexity
of O(|IMσ,m(ℓ)|). Note that for this specific choice of the φ̂(k), k ∈ IM ,
the matrix D ∈ C|IM | in (2.14) reduces to D = 1

|IMσ | I |IM |. The corre-

sponding window function is given by the (asymmetric) Dirichlet window
function

φD :=
∑

k∈IM

e2πikx =
d∏

t=1

(
DMt

2 −1
(xt) + e−Mtπixt

)
. (3.64)

We additionally remark that the theoretical results in Theorem 3.28 also
support the assumption that φD in (3.64) is the best window function
to use. Therefore, Algorithm 3.25 is given only for this window function.
Nevertheless, this algorithm could still be used for some general window
function φ : Rd → [0, 1]d, as in Example 3.34, only changing the complex-
ity of the computation of vℓ in (3.62), and thus resulting in an overall
complexity of O(|IM |2 · |IMσ,m(ℓ)|+ |IM | · |IMσ,m(ℓ)|3), instead.
In summary, this leads to the following algorithm.

Algorithm 3.25 (Optimization of the sparse matrix B).

For d,N ∈ N let xj ∈ Td, j = 1, . . . , N, be given nodes. Further-
more, we are given the d-dimensional oversampling factor σ ≥ 1d,
the vector Mσ := ((Mσ)1, . . . , (Mσ)d)

⊤ with 2N ∋ (Mσ)t := 2⌈ ⌈σtMt⌉/2 ⌉
and M = (M1, . . . ,Md)

⊤ ∈ (2N)d, as well as a truncation parame-
ter m≪ (Mσ)t, t = 1, . . . , d.
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1. For ℓ ∈ IMσ :

Determine the index set IMσ,m(ℓ), cf. (3.55). O(|IMσ,m(ℓ)|)
Compute the right side vℓ via (3.63). O(|IMσ,m(ℓ)|)
Determine H∗

ℓHℓ via (3.61). O(|IMσ,m(ℓ)|2)
Solve (H∗

ℓHℓ) b
opt
ℓ = vℓ for boptℓ , cf. (3.59). O(|IMσ,m(ℓ)|3)

2. Compose Bopt ∈ RN×|IMσ | columnwise of the boptℓ ∈ R|IMσ,m(ℓ)| ob-
serving sparsity and periodicity. O(|IM |)

Output: optimized matrix Bopt

Complexity: O(|IM | ·maxℓ∈IMσ
|IMσ,m(ℓ)|3)

Remark 3.26. Note that it is not possible to give a general statement
about the dimensions of the matrix Hℓ ∈ C|IM |×|IMσ,m(ℓ)| in (3.57), since
the size of the index set IMσ,m(ℓ) in (3.55) strongly depends on the
distribution of the nonequispaced nodes xj ∈ Td, j = 1, . . . , N . To visualize
this circumstance, we depicted some exemplary patterns of the nonzero
entries of the original matrix B ∈ RN×|IMσ | in (2.16) in Figure 3.1. It can
easily be seen that for all choices of the nodes, each row contains the same
number of nonzero entries, i. e., all index sets (2.12) are of the same size
of maximum (2m+ 1)d. However, when considering the columns instead,
we recognize an evident discrepancy in the number of nonzero entries. We
notice that, due to the fact that each row of B ∈ RN×|IMσ | contains at
most (2m+ 1)d entries, each column contains N

|IMσ | (2m+ 1)d entries on

average, while a more precise statement about the maximum size of the
index sets (3.55) cannot be made. Roughly speaking, the more irregular the
distribution of the nodes xj ∈ Td is, the larger the index sets (3.55) can be.
In general, however, the number |IMσ,m(ℓ)| is a small constant compared
to |IM |, such that Algorithm 3.25 ends up with a total computational cost
of approximately O(|IM |).

Note that if |IMσ,m(ℓ)| is large for all ℓ, i. e., |IMσ,m(ℓ)| ∼ N , ℓ ∈ IMσ ,
then the complexity of Algorithm 3.21 amounts to O(|IM |N3), which is
way too costly for applications. However, in this case we can make use of
the NFFT to accelerate the procedure. For fixed ℓ ∈ IMσ , the NFFT can
be used to compute the vectors vℓ in (3.62) and can be incorporated into
an iterative solver such as the CG algorithm to solve (H∗

ℓHℓ) b
opt
ℓ = vℓ.

Since both steps require O(|IM | log(|IM |) +N) arithmetic operations, the
total complexity is then O(|IM |2 log(|IM |) +N |IM |). ⋄
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(a) Equispaced
points

(b) Jittered points (c) Chebyshev
points

(d) Random points

Figure 3.1: Nonzero entries of the matrix B ∈ RN×|IMσ | for
several choices of the nodes xj ∈ Td, j = 1, . . . , N,
with d = 1, Mσ =M = 16, N = 2M and m = 2.

Remark 3.27. As a measure for the “nonuniformity” of the given
nodes xj ∈ Td, j = 1, . . . , N , one could utilize the mesh norm and the
separation distance

δ := 2max
z∈Td

min
j=1,...,N

dist(xj , z), q := min
j,h=1,...,N

j ̸=h

dist(xj ,xh),

where for two points on the torus Td the notion of distance is defined by

dist(x,y) := min
k∈Zd

∥(y + k)− x∥∞.

While the separation distance q is the minimal distance between neigh-
boring nodes, the mesh norm δ can be interpreted as the correspond-
ing maximum distance. A visualization of the mesh norm for equi-
spaced nodes can be found in Figure 3.2. It is known from [KP07]
that q ≤ N−1/d ≤ δ, with equality for equispaced nodes. Therefore, sam-
pling points xj ∈ Td, j = 1, . . . , N , are said to be highly nonuniform, if the
separation distance q is very small compared to the mesh norm δ. ⋄
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(a) d = 1
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−0.5

0

0.5

(b) d = 2

Figure 3.2: Visualization of the mesh norm for equispaced grids in one and
two dimensions.

3.3.3 Bounds on the approximation error

Analogous to [KP23a, Theorem 4.5] we now summarize the previous find-
ings by presenting an error bound on the optimization procedure in Algo-
rithm 3.21, which also provides a criterion for the choice of the window
function φ : Rd → [0, 1]d used for the diagonal matrix D ∈ C|IM |×|IM |

in (2.14).

Theorem 3.28. Let Bopt ∈ RN×|IMσ | be the optimized matrix composed by
the vectors in (3.59) and let hopt = D∗F ∗B∗

optf ∈ C|IM | be the correspond-

ing approximation of f̂ computed by means of Algorithm 3.21. Furthermore,
assume that each column boptℓ ∈ R|IMσ,m| of Bopt ∈ RN×|IMσ | as solution
to (3.58) possesses a small residual

∥∥Hℓb
opt
ℓ − 1

|IMσ |D
−1fℓ

∥∥2
2
= εℓ > 0, ℓ ∈ IMσ . (3.65)

Then there exists an ε > 0 such that

∥∥hopt − f̂
∥∥2
2
≤ ε

∑

k∈IM

1

φ̂(k)2
·
∥∥f̂
∥∥2
2
.

Moreover, the (asymmetric) Dirichlet window function φD in (3.64) is the
optimal window function for the inverse NFFT in Algorithm 3.21.
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Proof. As in (3.50) the approximation error can be estimated by

∥∥hopt − f̂
∥∥2
2
=
∥∥(D∗F ∗B∗

optA− I |IM |
)
f̂
∥∥2
2

≤
∥∥D∗F ∗B∗

optA− I |IM |
∥∥2
F

∥∥f̂
∥∥2
2
. (3.66)

Using the same arguments as for (3.52) and (3.53) we proceed with

∥∥D∗F ∗B∗
optA− I |IM |

∥∥2
F
=
∥∥A∗BoptFD − I |IM |

∥∥2
F

≤
∥∥A∗Bopt − 1

|IMσ |D
−1F ∗∥∥2

F

∥∥FD
∥∥2
F
. (3.67)

To estimate the first Frobenius norm in (3.67), we rewrite it by analogy
with (3.56) columnwise as

∥∥A∗Bopt − 1
|IMσ |D

−1F ∗∥∥2
F
=

∑

ℓ∈IMσ

∥∥Hℓb
opt
ℓ − 1

|IMσ |D
−1f ℓ

∥∥2
2
,

where boptℓ ∈ R|IMσ,m(ℓ)| denote the nonzero entries of the columns
of Bopt ∈ RN×|IMσ |, Hℓ ∈ C|IM |×|IMσ,m(ℓ)| in (3.57) are the correspond-
ing submatrices of A∗ ∈ C|IM |×N , cf. (2.7), and fℓ ∈ C|IM | are the
columns of F ∗ ∈ C|IM |×|IMσ |, cf. (2.15). Since boptℓ ∈ R|IMσ,m| as so-
lutions to the least squares problems (3.58) satisfy (3.65), we can
find ε := maxℓ∈IMσ

εℓ ≥ 0, such that εℓ ≤ ε, ℓ ∈ IMσ , and thereby

∑

ℓ∈IMσ

∥∥Hℓb
opt
ℓ − 1

|IMσ |D
−1f ℓ

∥∥2
2
≤

∑

ℓ∈IMσ

εℓ ≤ ε |IMσ |.

Thus, we may write (3.67) as

∥∥D∗F ∗B∗
optA− I |IM |

∥∥2
F
≤ ε |IMσ | ·

∥∥FD
∥∥2
F
. (3.68)

Hence, it remains to estimate the Frobenius norm
∥∥FD

∥∥2
F
. By the def-

initions of the Frobenius norm and the trace tr(Z) =
∑n
j=1 zj,j of a ma-

trix Z = (zj,k)
n
j,k=1 ∈ Cn×n, we have ∥Z∥2F = tr(Z∗Z). Since in addi-

tion F ∗F = |IMσ | I |IM | by (2.15), this yields

∥∥FD
∥∥2
F
= tr(D∗F ∗FD) = |IMσ | · tr(D∗D) = |IMσ | ·

∥∥D
∥∥2
F
. (3.69)
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Using the definition (2.14) of the diagonal matrix D ∈ R|IM |×|IM |, we
obtain

∥∥D
∥∥2
F
=

1

|IMσ |2
∑

k∈IM

1

φ̂(k)2
.

Then combining this with (3.68) and (3.69) implies

∥∥D∗F ∗B∗
optA− I |IM |

∥∥2
F
≤ ε

∑

k∈IM

1

φ̂(k)2
, (3.70)

such that (3.66) yields the assertion.
Since 0 ≤ φ̂(k) ≤ 1, k ∈ IM , holds for suitable window functions of the

NFFT, cf. [PT21b], we have

1 ≤ 1

φ̂(k)
≤ 1

φ̂(k)2

and therefore

∑

k∈IM

1

φ̂(k)2
≥
∑

k∈IM

1 = |IM |.

Hence, the smallest constant is obtained in (3.70) when φ̂(k) = 1, k ∈ IM ,
i. e., the (asymmetric) Dirichlet window function (3.64) is the optimal
window function for the inverse NFFT in Algorithm 3.21.

Note that for the reconstruction of trigonometric polynomials (2.8) the
error bound of Theorem 3.28 with the optimal window function (3.64) gives
the same guarantee as (3.18) in Theorem 3.11 with the optimal density
compensation factors of Algorithm 3.10.

Remark 3.29. We remark that due to the fact that we consider the op-

timization problem (3.54) while actually aiming for D∗F ∗B̃
∗
A ≈ I |IM |,

cf. (3.50), one might ask whether this approximation may be improved by
a subsequent optimization of the diagonal matrix D, i. e., considering the
optimization problem

Minimize
D̃∈C|IM |×|IM | : D̃ diagonal

∥∥A∗BoptFD̃ − I |IM |
∥∥2
F
.
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By the property (3.34) and the fact that D̃ is a diagonal matrix, this
Frobenius norm can be rewritten as

∥∥A∗BoptFD̃ − I |IM |
∥∥2
F
=
∑

k∈IM

∥∥A∗BoptF d̃k − ek
∥∥2
2

=
∑

k∈IM

∥∥A∗BoptF k d̃k,k − ek
∥∥2
2
,

where F k, d̃k and ek denote the k-th columns of the matri-
ces F ∈ C|IMσ |×|IM | in (2.15), D̃ ∈ C|IM |×|IM | and I |IM | ∈ C|IM |×|IM |,

and d̃k,k ∈ C is the diagonal entry of D̃ ∈ C|IM |×|IM |. Thus, since the
vector βk = (βk,ℓ)ℓ∈IM

:= A∗BoptF k ∈ C|IM | has full column rank for

all k ∈ IM , the solutionDopt = diag
(
d opt
k,k

)
k∈IM

of the above least squares

problem can be computed by means of the pseudoinverse as

d opt
k,k := (β∗

kβk)
−1β∗

kek =
βk,k∑

ℓ∈IM
|βk,ℓ|2

∈ C, k ∈ IM . (3.71)

However, the theoretical results in Theorem 3.28 suggest that the (asym-
metric) Dirichlet window function φD in (3.64) with D = 1

|IMσ | I |IM | is

already optimal, i. e., that the norm (3.70) cannot be made smaller. Note
that the numerical results in Example 3.34 confirm this to be true, also
showing that by the optimization of the matrix D there is barely any
difference in the norm for other window functions φ as well. In other words,
this shows that the optimization procedure in Algorithm 3.25 is indeed
optimal with respect to the minimization problem (3.51). ⋄

3.3.4 Linking to approaches in literature

There are also some approaches in the literature that attempt to expand the
notion of density compensation. This is why, we examine these approaches
more closely, presenting them using a unified optimization approach. Similar
to Section 3.2.4, we particularly focus on the connection of these approaches
to the method introduced in Section 3.3.1.

Sparse approximation of the pseudoinverse

First of all, let us recall the basic idea mentioned in Section 3.1
that we seek to find a matrix X ∈ C|IM |×N that fulfills XA ≈ I |IM |
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and therefore Xf = XAf̂ ≈ f̂ . By incorporating the approximate
factorization A ≈ BFD of the NFFT, cf. Section 2.2, with the ma-
trices D ∈ C|IM |×|IM |, F ∈ C|IMσ |×|IM | and B ∈ RN×|IMσ | defined
in (2.14), (2.15) and (2.16), this can be reformulated that we are look-
ing for a matrix X with XBFD ≈ I |IM |. Additionally, using the fact
that F ∗F = |IMσ | I |IM | by (2.15) and D in (2.14) is a diagonal matrix,
we know that

1
|IMσ | D

−1F ∗B†BFD ≈ I |IM |, (3.72)

if the pseudoinverse B† ∈ R|IMσ |×N of (2.16) exists. In other words,
the simplest method to obtain a suitable left-inverse matrix X is by us-
ing the pseudoinverse B†. However, in general the pseudoinverse B†

of the sparse matrix B will be a full matrix, so the reconstruction us-
ing X = 1

|IMσ | D
−1F ∗B† will not be efficient. Therefore, we look for a

sparse approximation S of B† with S ≈ 1
|IMσ | B

†, or more precisely we

consider the matrix optimization problem

Minimize
S∈R|IMσ

|×N : S (2m+1)d-sparse

∥∥SB − 1
|IMσ | I |IMσ |

∥∥2
F
. (3.73)

We remark that a similar approach, the so-called block uniform resampling
algorithm was introduced in [Ros98] using the sinc matrix C ∈ RN×|IM |

in (3.30) instead of the sparse matrix B ∈ CN×|IMσ | in (2.16).
To find a solution to the optimization problem (3.73) we rewrite the

respective norm by the property (3.34) as

∥∥SB − 1
|IMσ | I |IMσ |

∥∥2
F
=
∥∥B∗S∗ − 1

|IMσ | I |IMσ |
∥∥2
F

=
∑

ℓ∈IMσ

∥∥B∗
ℓ s̃ℓ − 1

|IMσ | eℓ
∥∥2
2
,

where eℓ ∈ R|IMσ | again denote the columns of the identity matrix I |IMσ |,

s̃ℓ ∈ R|IMσ,m(ℓ)| denote the vectors of the nonzeros of the columns
of S∗ ∈ RN×|IMσ |, and B∗

ℓ ∈ R|IMσ |×|IMσ,m(ℓ)| are the corresponding sub-
matrices of B∗ ∈ R|IMσ |×N , cf. (2.16). Hence, the solution to (3.73) can
be computed using the pseudoinverse as

s̃ opt
ℓ := (B∗

ℓ)
† · 1

|IMσ | eℓ.
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That is to say, the nonzero entries of the columns of the optimized ma-
trix S∗

opt are set as the elements of the columns of the pseudoinverse

matrix (B∗
ℓ)

†
.

Note that so far we have used the same techniques as in Section 3.3.1
applied to a different matrix optimization problem in order to exploit
the structure of the desired matrix. In [Ros98], however, the authors
take one step further and introduce a second simplification by consid-

ering only a submatrix B̃
∗
ℓ ∈ Rn×|IMσ,m(ℓ)| of B∗

ℓ ∈ R|IMσ |×|IMσ,m(ℓ)|

and therefore also a subvector ẽℓ ∈ Rn of eℓ ∈ R|IMσ |. In particu-
lar, the size n = (2r + 1)d ≤ |IMσ | results from considering only the
indices k ∈ IMσ in (2.16) with ∥ℓ− k∥∞ ≤ r ∈ N. In other words,
for n < |IMσ | this means a loss of information by omitting data, and
therefore considering a different problem instead of simply rewriting by
using the structure. However, we have seen in our numerical experiments,
see Example 3.35, that except for very tiny choices of r, the results using
this additional simplification seem to be as good as the untruncated version
above.

Frame theoretical approach

A completely different path is taken in [GS14, KP19], where for d = 1 the
frame approximation is connected to the adjoint NFFT, which can thus be
seen as a method for inverting the NFFT. In order to explain this method,
we firstly summarize the main ideas of frames and frame approximation,
basically adapted from [GS14] and [Chr16].
Let H be a separable Hilbert space with inner product ⟨·, ·⟩. Then a

sequence {ϑj}∞j=1 ⊂ H is called frame if there exist constants A,B > 0 such
that

A∥f∥2 ≤
∞∑

j=1

|⟨f, ϑj⟩|2 ≤ B∥f∥2, f ∈ H.

The operator S : H → H, Sf =
∑∞
j=1⟨f, ϑj⟩ϑj , is named the frame opera-

tor . Then one of the most important results in frame theory, the so-called
frame decomposition, states that every element of H can be represented as
a linear combination of the elements of the frame, i. e.,

f =
∞∑

j=1

⟨f, S−1ϑj⟩ϑj =
∞∑

j=1

⟨f, ϑj⟩S−1ϑj , f ∈ H, (3.74)
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which is a property similar to an orthonormal basis. However, to ap-
ply (3.74), it is necessary to explicitly state the inverse operator S−1,
which is usually difficult or even impossible, and thus it is necessary to
approximate S−1. It was shown in [GS13, GS14] that if {ψℓ}∞ℓ=−∞ is a
so-called admissible frame with respect to the frame {ϑj}∞j=1, see [GS14,

Definition 1], the dual frame {S−1ϑj}∞j=1 can be approximated by

S−1ϑj ≈ ϑ̃j :=
∑

ℓ∈IMσ

pℓ,j ψℓ, j = 1, . . . , N, (3.75)

where Θ† =: (pℓ,j)
N
ℓ∈IMσ , j=1 is the Moore-Penrose pseudoinverse of the

matrix

Θ := (⟨ϑj , ψℓ⟩)Nj=1, ℓ∈IMσ
. (3.76)

Thus, truncating the series (3.74) and inserting (3.75) yields the approxi-
mation

f ≈
N∑

j=1

∑

ℓ∈IMσ

⟨f, ϑj⟩ pℓ,j ψℓ. (3.77)

Now, in order to link the frame approximation (3.77) and the adjoint
NFFT from Section 2.3, we consider a discrete version of the frames
proposed in [GS14], i. e.,

{ϑj(k) := e−2πikxj , j ∈ N},
{
ψℓ(k) :=

e−2πikℓ/Mσ

Mσ φ̂(k)
, ℓ ∈ Z

}
, k ∈ Z.

(3.78)

Note that in comparison to [GS14] we changed time and frequency domain
to match our notations in Section 2.2. Thereby, we receive the scalar
product

⟨ϑj , ψℓ⟩ℓ2 =
∞∑

k=−∞

ϑj(k)ψℓ(k) =
∞∑

k=−∞

1

Mσ φ̂(k)
e−2πik(xj− ℓ

Mσ
),

such that truncating the infinite sum to k ∈ IM yields an approximation
of the matrix Θ in (3.76) by

Θℓ2 = (FDA∗)
⊤
= AD∗F ∗ (3.79)

withA ∈ CN×|IM| in (2.7),D ∈ C|IM|×|IM| in (2.14), and F ∈ C|IMσ|×|IM|

in (2.15).
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Remark 3.30. It was already mentioned in [GS14, DGS16] that for
points xj ∈ T other than the jittered equispaced nodes, cf. (3.85), the
admissibility condition for (3.78) may not hold or even the conditions for
constituting a frame may fail. In addition, it was observed that for a general
window function φ the corresponding conditions can only be satisfied for
finite frames, i. e., finite versions of (3.78). In what follows, we assume that
all conditions for the frame reconstruction are met. For a detailed study of
when this is fulfilled, we refer to [GS13, GS14, DGS16]. ⋄

Finally, to apply this method to the problem (3.3) we now consider the

frame approximation (3.77) for a function f̂ in the frequency domain, i. e.,

f̂(k) ≈ ˜̃
h(k) =

N∑

j=1

∑

ℓ∈IMσ

⟨f̂ , ϑj⟩ pℓ,j ψℓ(k)

=
∑

ℓ∈IMσ

dℓ ψℓ(k), k ∈ IM , (3.80)

where by the definition of pℓ,j , cf. (3.75), the coefficients can be abbreviated

as d := (dℓ)ℓ∈IMσ
= Θ†f with f :=

(
⟨f̂ , ϑj⟩

)N
j=1

= (fj)
N
j=1, cf. [GS14]. In

other words, the equispaced samples of the function f̂ , which are now treated
as Fourier coefficients of the respective function f , shall be reconstructed
from given data ⟨f̂ , ϑj⟩ =: fj , j = 1, . . . , N . Note that this can be seen as
a generalization of the problem (3.3) and will be studied more closely in
Chapter 6.

Now given this very accurate but hard to compute approximation (3.80),
the aim of [GS14, KP19] is to modify the adjoint NFFT in Algorithm 2.5
appropriately, such that we can use this simple method to invert the NFFT,

i. e., we are looking for an approximation of the form h̃ ≈ ˜̃h ≈ f̂ , where

h̃ := (h̃k)k∈IM
,
˜̃
h := (

˜̃
hk)k∈IM

and f̂ := (f̂(k))k∈IM
.

In [GS14, Section 2.3] firstly the approximation (3.6) using density
compensation is considered, which can be written as

h̃wk =
∑

ℓ∈IMσ

N∑

j=1

wjfj φ̃m

(
xj − l

Mσ

)
ψℓ(k)

=
∑

ℓ∈IMσ

cℓ ψℓ(k), k ∈ IM , (3.81)
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with coefficients vector c := (cℓ)ℓ∈IMσ
= B∗Wf . By additionally defining

the matrix Ψ := (ψℓ(k))k∈IM , ℓ∈IMσ
= D∗F ∗, the approximations (3.80)

and (3.81) can be denoted as
˜̃
h = Ψd and h̃

w
= Ψc. Hence, the aim is to

improve the approximation (3.81) by modifying the diagonal matrix W ,
such that the difference to approximation (3.80) is minimal. It was shown

in [GS14, Theorem 2.4] that this norm
∥∥h̃− ˜̃

h
∥∥
2
is bounded from above by

the Frobenius norm ∥Θ∗ΘB∗W −Θ∗∥2F. We remark that by (3.79) and
additionally using the fact that the Frobenius norm is a submultiplicative
norm, we have

∥Θ∗ΘB∗W −Θ∗∥F =
∥∥FDA∗AD∗F ∗B∗W − FDA∗∥∥

F

≤
∥∥FDA∗∥∥

F

∥∥AD∗F ∗B∗W − IN
∥∥
F
,

such that this approach yields the optimization problem

Minimize
W=diag(wj)Nj=1

∥AD∗F ∗B∗W − IN∥2F,

cf. (3.47). Based on this, a generalization using a (2s− 1)-sparse ma-
trix Λ ∈ RN×N instead of the diagonal matrix W was considered in [GS14,
Remark 3], which implies the optimization problem

Minimize
Λ∈RN×N : Λ (2s−1)-sparse

∥AD∗F ∗B∗Λ− IN∥2F. (3.82)

In other words, instead of scaling the entries of B∗ as in density compensa-
tion methods, this approach employs a linear combination of the entries
of B∗.

Nevertheless, compared to the approach in Section 3.3.1, where we are
free to optimize each entry of B by itself, this approach is still less flexible.
Thus, by analogy with [KP19], we also rewrite the approximation h̃k of the
adjoint NFFT in Algorithm (2.5) as

h̃k =
∑

ℓ∈IMσ

gℓ ψℓ(k), k ∈ IM ,

with coefficients vector g := (gℓ)ℓ∈IMσ
= B∗f , see (2.18), Then it was

shown in [KP19, Theorem 4.3], that the difference
∥∥h̃− ˜̃h

∥∥
2
is upper
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bounded by the Frobenius norm ∥B∗Θ− I |IMσ |∥F. Note that by (3.79) we

have B∗Θ = (FDA∗B)
⊤

and hence this yields the optimization problem

Minimize
B∈RN×|IMσ

| : B (2m+1)-sparse

∥FDA∗B − IMσ∥2F. (3.83)

We remark that this is closely connected to the optimization prob-
lem (3.54). Similar to (3.53) we can use that F ∗F = |IMσ | I |IM |
by (2.15) and D ∈ R|IM |×|IM | in (2.14) is diagonal, such that we have

1
|IMσ |D

−1F ∗FD = I |IM |. Additionally using the fact that the Frobenius

norm is a submultiplicative norm, this implies
∥∥A∗B̃ − 1

|IMσ |D
−1F ∗∥∥

F
=
∥∥ 1
|IMσ |D

−1F ∗FDA∗B̃ − 1
|IMσ |D

−1F ∗∥∥
F

≤
∥∥ 1
|IMσ |D

−1F ∗∥∥
F

∥∥FDA∗B̃ − I |IMσ |
∥∥
F
,

such that the approach of [KP19] also implies a decrease in (3.54). However,
as the method in [KP19] is designed for d = 1 and we have encountered
that it can not be generalized to d = 2, we rather prefer the optimization
problem (3.54). For a closer study of the frame theoretic approach we refer
to [KP19].

Summary

In summary, in this section we presented approaches that broaden the notion
of the previously considered density compensation procedures. Namely,
instead of searching optimal scaling factors for the rows of B, now the
optimization of each nonzero entry of the sparse matrix B ∈ RN×|IMσ |

in (2.16) was studied.
For numerical results, we refer to the examples in Section 3.4. More

specifically, in Example 3.34 we examine the norm minimization properties
of the optimized matrix computed by Algorithm 3.25. Additionally, a
comparison with the optimization approaches of Section 3.3.4 is shown in
Example 3.35, while a comparison to the density compensation methods
from Section 3.2 is given in Example 3.36.

3.4 Numerical examples & summary

Concluding this chapter, we have a look at some numerical examples,
cf. [KP23a]. Besides comparing the density compensation approach from
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Section 3.2 to the optimization approach from Section 3.3 (see Exam-
ple 3.36), we also demonstrate the accuracy of both approaches (see Exam-
ples 3.32–3.33 as well as Examples 3.34–3.35).

Remark 3.31. Before getting started, firstly we introduce some exemplary
grids. For the sake of simplicity, we restrict ourselves here to the two-
dimensional setting d = 2.

(i) On the one hand, we study sampling schemes that possess a random
part. The simplest choice for this is the random grid

xs,t :=
1

2
(η1, η2)

⊤
, s = 1, . . . , N1, t = 1, . . . , N2, (3.84)

where η1, η2 ∼ U(−1, 1), and U(−1, 1) denotes the uniform distribu-
tion on the interval (−1, 1), see Figure 3.3a. Additionally, we also
consider a sampling scheme, that is somehow closer to the Carte-
sian grid. More precisely, we start with a Cartesian grid and add a
two-dimensional perturbation, i. e.,

xs,t :=

(
−1

2
+

2t− 1

N1
, −1

2
+

2s− 1

N2

)⊤

+

(
1

N1
η1,

1

N2
η2

)⊤

,

(3.85)

with s = 1, . . . , N1, t = 1, . . . , N2, and η1, η2 ∼ U(−1, 1). A visualiza-
tion of this jittered grid can be found in Figure 3.3b.

-0.5 0 0.5
-0.5

0

0.5

(a) Random grid (3.84)

-0.5 0 0.5
-0.5

0

0.5

(b) Jittered grid (3.85)

Figure 3.3: Exemplary grids of random kind of size N1 = N2 = 12.

(ii) On the other hand, we examine grids of polar kind, as men-
tioned in [FKP07]. For R, T ∈ 2N the points of the so-called polar
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grid are given by a signed radius rs :=
s
R ∈

[
− 1

2 ,
1
2

)
and an angle

θt :=
πt
T ∈

[
−π

2 ,
π
2

)
as

xs,t := rs (cos θt, sin θt)
⊤
, (s, t)⊤ ∈ IR × IT . (3.86)

Since it is known that the inversion problem is ill-conditioned for this
grid, we additionally consider a modification. For the modified polar
grid

xs,t := rs (cos θt, sin θt)
⊤
, (s, t)⊤ ∈ I√2R × IT , (3.87)

we added more concentric circles and excluded the points outside
the unit square, see Figure 3.4b. Another sampling scheme which is
known for more stable results than the polar grid is the linogram or
pseudo-polar grid , where the points lie on concentric squares instead
of concentric circles, see Figure 3.4c, as defined by the two sets of
points

xBHs,t :=

(
s

R
,
4st

RT

)⊤

, xBVs,t :=

(
− 4st

RT
,
s

R

)⊤

,

(s, t)⊤ ∈ IR × IT
2
. (3.88)

(iii) A further modification of these polar grids was introduced in [H+19],
where the angles θt are not chosen equidistantly, but are obtained
by golden angle increments. For the golden angle polar grid we only
exchange the equispaced angles of the polar grid by

θt = mod
(π
2
+ t

2π

1 +
√
5
, π
)
− π

2
, t = 0, . . . , T − 1, (3.89)

see Figure 3.4d. The golden angle linogram grid is given by

xs,t :=

{ (
2s+1
2R , 2s+1

2R tan
(
θt − π

4

))⊤
: θt ∈

[
0, π2

)
(
− 2s+1

2R cot
(
θt − π

4

)
, 2s+1

2R

)⊤
: θt ∈

[
−π

2 , 0
)

}
,

s ∈ IR, (3.90)

with θt in (3.89), as illustrated in Figure 3.4e.
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Figure 3.4: Exemplary grids of polar kind of size R = 12 and T = 2R.

(iv) In addition, we also consider the spiral grid , which consists of the
3 sets of points

xs,t := rs ·Rt−1
2π
3

(cos(αs), sin(αs))
⊤
, t ∈ {1, 2, 3}, (3.91)

where radius and angle are given by

rs =

√
15(s− 1)

4
√
RT

, αs = π

√
15(s− 1)

8RT

(√
RT

5
− 1

)
,

for s = 1, . . . , ⌊ 8
15RT ⌋, respectively, and the matrix

R 2π
3

:=

(
cos
(
2π
3 ) − sin

(
2π
3 )

sin
(
2π
3 ) cos

(
2π
3 )

)

realizes a rotation by 120 degrees. Again, we have excluded the points
outside the unit square, see Figure 3.4f.
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Note that in all the definitions above it was necessary to denote the
sampling points by xs,t with different index sets for s and t in order to
obtain a rigorous representation. However, using some suitable reordering
and N being the total number of points, we may again use the notation xj ,
j = 1, . . . , N , as in the remainder of this work. ⋄

Now we examine the quality of the different approaches from Sections 3.2
and 3.3 for the grids mentioned in Remark 3.31.

Density compensation

Firstly, we investigate the accuracy of the density compensation method
from Algorithm 3.2 with the weights computed by Algorithm 3.10. More
specifically, in Example 3.32 we check the theoretical error bound of Theo-
rem 3.11, and in Example 3.33 we show a comparison with the approaches
of Section 3.2.4.

Example 3.32. As in [KP23a, Example 5.2], we first examine the qual-
ity of our density compensation factors in Algorithm 3.10 for a trigono-
metric polynomial f in (2.8) with given Fourier coefficients f̂k ∈ [1, 10],
k ∈ IM . For the corresponding function evaluations of (2.8) at given

points xj ∈
[
− 1

2 ,
1
2

)d
, j = 1, . . . , N , we test how well these Fourier coef-

ficients can be approximated. More precisely, we consider the estimate
h̃
w
= D∗F ∗B∗Wf , cf. (3.6), with the matrix W = diag (wj)

N
j=1 of density

compensation factors computed by means of Algorithm 3.10, i. e., by (3.15),
in case |I2M | ≤ N , or by (3.16), if |I2M | > N . Subsequently, we compute
the relative errors

ep :=
∥h̃w − f̂∥p

∥f̂∥p
, p ∈ {2,∞}, (3.92)

and we demonstrate that

ep ≤ |IM | ε, p ∈ {2,∞},

holds with the residual ε =
∥∥A⊤

|I2M | w − e0
∥∥
∞ ≥ 0, cf. (3.17), as stated by

the theoretical error bound (3.18).
This test is performed for several dimensions d ∈ {1, 2, 3}. In our ex-

periment we use random points (3.84) with Nt = 29−d, t = 1, . . . , d, and
for several problem sizes M =M · 1d, M = 2c with c = 1, . . . , 11− d, we
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choose random Fourier coefficients f̂k ∈ [1, 10], k ∈ IM . Afterwards, we
compute the evaluations of the trigonometric polynomial (2.8) by means of
an NFFT and use the resulting vector f as input for the reconstruction.
Due to the randomness we repeat this process 10 times and then calculate
the maximum error. The corresponding results are displayed in Figure 3.5.
We recognize that for |I2M | < N , i. e., as long as M < N1

2 = 28−d is sat-
isfied, the weights computed by means of (3.15) indeed yield an exact
reconstruction of the given Fourier coefficients. However, it can be seen
that for |I2M | > N the least squares approximation via (3.16) no longer
produces good results. In both cases the theoretical error estimate (3.18)
provides a suitable upper bound on the relative errors (3.92). This shows
that the approximation error is indeed mainly influenced by the residual of
the linear system (3.12). ⋄
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|IM |
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e∞

|IM | ε

(a) d = 1

101 102 103 104 105
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|IM |

e2
e∞

|IM | ε

(b) d = 2
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10−5
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|IM |

e2
e∞

|IM | ε

(c) d = 3

Figure 3.5: Relative errors (3.92) of the reconstruction of the Fourier coeffi-

cients of a trigonometric polynomial (2.8) with given f̂k ∈ [1, 10],
k ∈ IM , computed using the density compensation factors from
Algorithm 3.10, for random grids with Nt = 29−d, t = 1, . . . , d,
and M =M · 1d, M = 2c with c = 1, . . . , 11− d.

Example 3.33. Next, we survey the different density compensation methods
from Section 3.2, i. e., we compare the weights computed by means of
Algorithm 3.10 with the approaches from Section 3.2.4 when using Algo-
rithm 3.2.
(a) Firstly, we consider the setting |I2M | ≤ N and show the optimality of
the weights computed by means of Algorithm 3.10, i. e., using (3.15). For

this purpose, we compare the reconstruction of given Fourier coefficients f̂k,
k ∈ IM , of a trigonometric polynomial (2.8) computed by means of Algo-
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rithm 3.2 using Voronoi weights as well as the density compensation factors
from (3.15), (3.36), (3.44), and (3.48) for several M = 2c, c = 1, . . . , 10. To
make this affordable for all the approaches, we restrict ourselves to the
one-dimensional setting d = 1.

In this experiment, the Fourier coefficients shall be chosen deterministi-
cally as integer evaluations of the triangular pulse function

g(v) := (1−
∣∣ v
b

∣∣) · χ[−b,b](v), b :=
⌈
3M
8

⌉
. (3.93)

Then for given jittered points (3.85) with N = 2M we compute the eval-
uations of the trigonometric polynomial (2.8) by means of an NFFT and
use the resulting vector as input for Algorithm 3.2. For the corresponding
reconstruction h̃

w
we compute the relative errors (3.92). Due to the ran-

domness in the nodes we repeat this process 10 times and then calculate the
maximum error. The corresponding results are depicted in Figure 3.6. It is
easy to see that the density compensation factors computed using Algo-
rithm 3.10, or more precisely by (3.15), indeed produce the best results and
therefore are the optimal ones. Note additionally that (3.36) and (3.48) are
not even as good as the Voronoi weights. Merely the density compensation
factors computed using (3.44) provide reasonable results, although not as
good as (3.15).

101 102 103
10−17

10−13

10−9

10−5

10−1

M

e 2

Use of (3.15)
Use of Voronoi weights

Use of (3.36)
Use of (3.44)
Use of (3.48)

Figure 3.6: Relative errors (3.92) of the reconstruction of the Fourier co-

efficients of a trigonometric polynomial (2.8) with given f̂k,
k ∈ IM , computed by means of Algorithm 3.2 using Voronoi
weights as well as the density compensation factors from (3.15),
(3.36), (3.44), (3.48), for one-dimensional jittered grids (3.85)
with N = 2M and M = 2c, c = 1, . . . , 10.
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In addition, for the setting M = 8 and N = 16, Figure 3.7 shows the
distribution of some exemplarily chosen jittered nodes xj ∈ T, j = 1, . . . , N ,
cf. (3.85), and the corresponding density compensation factors wj ∈ R. We
recognize that the weights computed using (3.44) indeed look most similar
to those computed by means of (3.15) and (3.16), which are identical, and
that (3.48) basically resembles the Voronoi weights. Moreover, note that
except for (3.36), all density compensation factors are nonnegative.
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-0.5 0 0.5
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(b) Use of (3.16)
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(c) Voronoi weights
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(d) Use of (3.36)
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w
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(e) Use of (3.44)
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w
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(f) Use of (3.48)

Figure 3.7: Exemplary density compensation factors wj for given jittered
nodes xj , j = 1, . . . , N , cf. (3.85), computed using (3.15), (3.16),
(3.36), (3.44) and (3.48), as well as Voronoi weights with d = 1,
M = 8 and N = 2M .

(b) Secondly, we consider |I2M | > N for the two-dimensional setting d = 2.
For this purpose, analogous to [KP23b, Example IV.1], we have a look at
the reconstruction of the Shepp-Logan phantom, see Figure 3.8a. Here
the phantom data shall be treated as Fourier coefficients f̂ := (f̂k)k∈IM

of
a trigonometric polynomial (2.8). For given points xj ∈ T2, j = 1, . . . , N ,
we then compute the evaluations of the trigonometric polynomial (2.8)
by means of an NFFT and use the resulting vector as input for the re-
construction. More precisely, for the spiral grid (3.91), cf. Figure 3.4f, of
size R =M , T = 2R, we study (3.16), (3.44) and (3.48).
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The corresponding reconstruction of the phantom of size M = 64 is
presented in Figure 3.8 (top) including a detailed view of the 52nd row
(bottom). Since the exactness condition |I2M | ≤ N (see Theorem 3.4)
is violated, the weights computed by (3.15) do not yield an exact recon-
struction, cf. Figure 3.8b. Moreover, note that the results using the least
squares approximation by (3.16) are just as bad, cf. Figure 3.8c. In fact,
in this setting the weights computed using (3.44) and (3.48), respectively,
appear to be more promising, see Figures 3.8d and 3.8e, since there are no
artifacts and the differences to the original phantom are no longer visible.
However, we remark that the comparatively small choice of M = 64 is
necessary for (3.44) and (3.48) to be computationally affordable, cf. also
Remarks 3.15 and 3.18. ⋄

-32 0 32
0

1

(a) Original
phantom

-32 0 32
0

1

(b) Use of
(3.15) with

e2=2.11e–01

-32 0 32
0

1

(c) Use of
(3.16) with

e2=2.11e–01

-32 0 32
0

1

(d) Use of
(3.44) with

e2=2.83e–02

-32 0 32
0

1

(e) Use of
(3.48) with

e2=3.61e–02

Figure 3.8: Reconstruction of the Shepp-Logan phantom of size M = 64
(top) via Algorithm 3.2 using density compensation factors
computed by (3.15), (3.16), (3.44) and (3.48) for the spiral
grid (3.91) of size R =M , T = 2R; as well as a detailed view
of the 52nd row (bottom).

Matrix optimization

Secondly, we investigate the accuracy of the matrix optimization method
from Algorithm 3.21 with the optimized sparse matrix computed by Al-
gorithm 3.25. More precisely, in Example 3.34 we investigate whether the
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norm minimization aimed at in Section 3.3 is successful and in Example 3.35
we show the superiority of this procedure compared to the approaches from
Section 3.3.4.

Example 3.34. (a) In order to study the quality of our optimization method
from Section 3.3, we compare the original and optimized Frobenius norms

nF(φ,m, σ) :=
∥∥A∗BFD − I |IM |

∥∥
F
, (3.94)

noptF (φ,m, σ) :=
∥∥A∗BoptFD − I |IM |

∥∥
F
, (3.95)

as well as the respective spectral norms

n2(φ,m, σ) :=
∥∥A∗BFD − I |IM |

∥∥
2
, (3.96)

nopt2 (φ,m, σ) :=
∥∥A∗BoptFD − I |IM |

∥∥
2
, (3.97)

similar to [KP23a, Example 5.3], where B denotes the original matrix (2.16)
from the NFFT and Bopt denotes the optimized matrix generated by
Algorithm 3.25. Since we are free to choose a suitable window function
used in the computation of this optimized matrix Bopt, we now compare
the common B–spline window function φB, cf. (4.61) with the Dirichlet
window function φD in (3.64), which is optimal by Theorem 3.28. For the
original matrix B we utilize only the B–spline window function φB, since
the Dirichlet window function φD is not an appropriate window for the
NFFT.

Due to memory limitations in the computation of the norms (3.94)–(3.97),
we have to be content with very small problems, which nevertheless show
the functionality of Algorithm 3.25. For this reason we consider d = 2
and choose M = (12, 12)⊤ as well as N1 = N2 = R = 2µ, µ ∈ {2, . . . , 7},
and T = 2R for the grids mentioned in Remark 3.31. In other words, we
test Algorithm 3.25 in the underdetermined setting |IM | > N as well as in
the overdetermined setting |IM | ≤ N .
Having a look at the results for the grids of Remark 3.31, it becomes

apparent that they separate into two groups. Figure 3.9a displays the
results for the polar grid (3.86), which are the same as for the golden angle
polar grid, cf. (3.89). In these cases, the optimization yields only a slight
improvement. However, for all other grids mentioned, the minimization
procedure in Algorithm 3.25 is very effective. The results for these grids
are depicted in Figure 3.9b, exemplified for the modified polar grid (3.87).
One reason for the different behavior of polar and modified polar grid

could be the ill-posedness of the inversion problem for the polar grid, which
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(b) Modified polar grid (3.87)

Figure 3.9: Frobenius norms (3.94) and (3.95) as well as spectral
norms (3.96) and (3.97) of the original matrix B and
the optimized matrix Bopt generated by Algorithm 3.25
using the B–spline window function φB as well as the
Dirichlet window function φD from (3.64) with R = 2µ,
µ ∈ {2, . . . , 7}, and T = 2R as well as M = (12, 12)⊤,
m ∈ {2, 4}, and σ ∈ {1, 2}.

results in huge condition numbers of H∗
ℓHℓ, while the problem is well-

posed for the modified polar grid. Another reason might be found in the
optimization procedure itself. Having a closer look at the polar grid, see
Figure 3.4a, we recognize that there are no grid points in the corners of
the unit square. Therefore, some of the index sets IMσ,m(ℓ) in (3.55)
are empty and no optimization can be done for the corresponding matrix
columns. This could also lead to worse minimization properties of the polar
grid.

Furthermore, it can be seen that our optimization procedure in Algo-
rithm 3.25 is most effective in the overdetermined setting |IM | ≤ N , and
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for the use of the Dirichlet window function (3.64). The choice of the trun-
cation parameter m and the oversampling factor σ, however, only seems to
have a minor impact. Additionally, note that although our optimization
procedure in Algorithm 3.25 focuses on the Frobenius norm, the spectral
norm behaves similarly, as stated in Remark 3.20.

(b) Finally, considering the approach of subsequent optimization of the
diagonal matrix D from Remark 3.29, we recorded the norms

∥∥A∗BoptFDopt − I |IM |
∥∥
F

(3.98)

and ∥D −Dopt∥∞ as well. The respective results for the modified polar
grid (3.87) with m = 2 and σ = 1 are printed in Table 3.1. It can be
seen that for both window functions this approach provides hardly any
improvement, and thus our optimization procedure in Algorithm 3.25 is
indeed optimal with respect to problem (3.51). ⋄

nopt
F (φ,m, σ) in (3.95) ñopt

F (φ,m, σ) in (3.98) ∥D −Dopt∥∞
N φB φD φB φD φB φD

31 1.07e+01 1.07e+01 1.07e+01 1.07e+01 1.24e+01 1.54e–03
131 7.57e+00 7.25e+00 7.43e+00 7.20e+00 2.83e+01 1.40e–03
555 2.47e – 01 2.92e–01 2.47e–01 2.88e–01 8.50e–02 1.13e–04
2239 5.11e – 06 1.96e–06 5.11e–06 1.96e–06 3.00e–07 1.93e–10
9083 8.62e – 06 2.90e–06 8.62e–06 2.89e–06 2.24e–07 3.45e–10
36535 1.58e – 05 9.15e–06 1.58e–05 9.12e–06 6.83e–07 1.22e–09

Table 3.1: Matrix norms using the original matrix D in (2.14) and the
optimized matrix Dopt generated by (3.71) for the B–spline
window function φB as well as the Dirichlet window function φD

from (3.64) using the modified polar grid (3.87) with R = 2µ,
µ ∈ {2, . . . , 7}, and T = 2R as well as M = (12, 12)⊤, m = 2
and σ = 1.

Example 3.35. Next, we survey the different matrix optimization methods
from Section 3.3, i. e., we compare our method from Algorithm 3.21 to
the approaches mentioned in Section 3.3.4. Note that since all of these
approaches are designed for the overdetermined setting |IM | < N and some
only for d = 1, we restrict ourselves to this setting and study the pointwise
reconstruction and error for a specific set of parameters with M = 64,
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σ = 1.0 and m = 2. Similar to Example 3.33, the Fourier coefficients f̂
shall be chosen deterministically as integer evaluations of the triangular
pulse function (3.93). Then for given jittered points (3.85) with N = 2M
we compute the evaluations of the trigonometric polynomial (2.8) by means
of an NFFT and use the resulting vector f as input for the different recon-
struction methods. For the corresponding reconstruction h̃ we compute
the pointwise errors |f̂ − h̃|.
In particular, we examine the reconstruction 1

|IMσ | D
−1F ∗B†f using

the pseudoinverse, cf. (3.72), the reconstruction D−1F ∗Soptf , cf. [Ros98],
where Sopt is the solution to (3.73), and D∗F ∗B∗Λf , where Λ is the
solution to (3.82) with s = ⌈log(N)⌉ = 5 as proposed in [GS14]. For com-

parison to [Ros98], we also considered the matrix B†
sub, which is formed

by simply stamping out the desired sparsity pattern from B†. Note that
in all of these approaches we choose the B–spline window function φB.
Moreover, we also study the reconstruction by Algorithm 3.21, where we
use B̃opt as solution to (3.83), cf. [KP19], and Bopt computed by means
of Algorithm 3.25. In these two cases we make use of the Dirichlet window
function φD in (3.64), such that D = 1

|IMσ | I |IM |.

The corresponding results are depicted in Figure 3.10. It can clearly be
seen that cutting the desired sparsity pattern out of B† is somewhat differ-
ent and much worse than the optimization procedure in (3.73). However,
also the sparse approximation S from (3.73) is not as good as the dense pseu-
doinverse B†. Interestingly, for using a submatrix with n = 2r + 1 < |IMσ |
as proposed in [Ros98] we found that for all r ≥ 3 we receive the same
maximum reconstruction error, only for r ≤ 2 the error got worse. Con-
sidering the frame theoretical approach in (3.82), we recognize that this
yields results similar to the sparse approximation of the pseudoinverse,
cf. (3.73). Only our optimization procedure from Algorithm 3.25 and the
related method from [KP19], cf. (3.83), produce much better reconstruc-
tions, which is presumably due to the highest degree of freedom in the
optimization process. ⋄

Comparison of the two approaches

Finally, we compare the density compensation approach from Section 3.2
with the matrix optimization approach from Section 3.3, as done in [KP23a,
Example 5.4].
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(b) Pointwise reconstruction error

Figure 3.10: Reconstructions of the triangular pulse (3.93) and pointwise
errors for the different matrix optimization methods from
Section 3.3 with d = 1, M = 64, σ = 1.0, m = 2 and N = 2M
jittered points (3.85).

Example 3.36. To compare the density compensation approach of Algo-
rithm 3.2 using the weights computed by Algorithm 3.10, with the op-
timization approach of Algorithm 3.21 using the modified matrix Bopt

computed by Algorithm 3.25, we restrict ourselves to the two-dimensional
setting d = 2 to simplify the visualization of the results. In addition,
we again consider the Shepp-Logan phantom as Fourier coefficients of a
trigonometric polynomial (2.8) of degree M .

(a) In a first experiment, we test the inversion methods of Sec-
tions 3.2 and 3.3 as in [ACD+08] for increasing input sizes. For
this we choose M = (M,M)⊤, M = 2c with c = 3, . . . , 10, and lino-
gram grids (3.88) of size R = 2M , T = 2R, i. e., we consider the set-
ting |I2M | < N . To use Algorithm 3.21, we additionally choose the over-
sampling factor σ = 1.0 and the truncation parameter m = 4. For each
input size we measure the computation time of the precomputational
steps, i. e., the computation of the weight matrix W = diag(wj)

N
j=1 or the

computation of the optimized sparse matrix Bopt ∈ RN×|IMσ |, see Algo-
rithms 3.10 and 3.25, as well as the time needed for the reconstruction, i. e.,
the corresponding adjoint NFFT, see Algorithms 3.2 and 3.21. Moreover,
for the reconstruction h̃ ∈ {h̃w

,hopt}, cf. (3.6) and (3.60), we consider the
relative errors

e2 :=
∥h̃− f̂∥2
∥f̂∥2

. (3.99)
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The corresponding results can be found in Table 3.2. We remark that since
we ensured |I2M | < N , the density compensation method in Algorithm 3.2
with weights computed by (3.15) indeed produces nearly exact results.
Although, our optimization procedure from Algorithm 3.21 achieves small
errors as well, this reconstruction is not as good as the one by means of
our density compensation method.
Note that in comparison to [ACD+08] our method in Algorithm 3.2

using density compensation produces errors of the same order, but is much
more effective for solving multiple problems with the same points xj ∈ Td,
j = 1, . . . , N , for different input values f ∈ CN . Since our precomputations
have to be done only once in this setting, we strongly benefit from the fact
that we only need to perform an adjoint NFFT as reconstruction, which
is very fast, whereas in [ACD+08] they would need to execute their whole
routine each time again.

Relative error e2 Precomputation time Reconstruction time

M Alg. 3.2 Alg. 3.21 Alg. 3.10 Alg. 3.25 Alg. 3.2 Alg. 3.21

8 1.33e–15 6.86e–14 9.83e–02 1.92e+00 6.25e–04 2.24e–03
16 7.23e–15 1.57e–07 1.62e–01 8.33e+00 2.51e–03 3.48e–03
32 2.34e–14 4.58e–07 3.30e–01 4.32e+01 3.19e–03 7.48e–03
64 2.59e–14 4.75e–07 3.43e+00 2.41e+02 5.04e–03 4.93e–03
128 7.90e–14 6.00e–07 9.47e+00 1.21e+03 2.99e–02 5.51e–02
256 2.64e–13 4.09e–06 3.84e+01 5.84e+03 6.64e–02 6.78e–01
512 1.09e–12 2.02e–06 1.40e+02 2.92e+04 2.17e–01 3.27e+00
1024 4.26e–12 1.35e–05 7.22e+02 1.43e+05 7.49e–01 1.61e+01

Table 3.2: Relative errors (3.99) of the reconstruction of the Shepp-Logan
phantom of size M as well as the runtime in seconds for the den-
sity compensation method from Algorithm 3.2 compared to Algo-
rithm 3.21 with σ = 1.0 and m = 4, using linogram grids (3.88)
of size R = 2M , T = 2R.

(b) In a second experiment we aim to decrease the amount of overdeter-
mination, i. e., we keep the size |IM | of the phantom, but reduce the
number N of the nonequispaced points xj ∈ Td, j = 1, . . . , N . To this
end, we now consider linogram grids (3.88) of the smaller size R =M ,
T = 2R, i. e., we now have |I2M | > N . The reconstruction of the phantom
of size 1024× 1024 is presented in Figure 3.11 (top) including a detailed
view of the 832nd row of this reconstruction (bottom) for both the density
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compensation method of Algorithm 3.2 using weights computed by means
of Algorithm 3.10 as well as the optimization method of Algorithm 3.21
using the modified matrix computed by means of Algorithm 3.25. The
corresponding relative errors (3.99) are included in Figure 3.11 as well.

Note that although we have previously seen that in the setting |I2M | > N
the weights computed using (3.44) and (3.48) might be more promising than
the weights computed by means of Algorithm 3.10, these weights cannot be
computed for the considered phantom size of Figure 3.11, cf. Remarks 3.15
and 3.18.

Due to the fact that the exactness condition |I2M | < N (cf. Section 3.2.2)
is violated, it can be seen in Figure 3.11b that the density compensation
method using the weights computed by means of (3.16) does not yield an
exact reconstruction in this setting. On the contrary, we recognize that our
optimization method, see Figure 3.11c, achieves a huge improvement in
comparison to the density compensation technique in Figure 3.11b, since
is does not show any artifacts. Presumably, this is due to the higher
amount of degrees of freedom in the optimization of the matrix B from
Section 3.3 than in the density compensation techniques from Section 3.2,
cf. Remark 3.3. We remark that although the errors are not as small as in
Table 3.2, by comparing Figures 3.11a and 3.11c it becomes apparent that
the differences are not even visible anymore.

Finally, note that for this result the number N of points is about 4 times
lower than for the results shown in Table 3.2. That is to say, we needed
only twice as many function values as Fourier coefficients, whereas e. g.
in [ACD+08] they needed a factor of more than 4. ⋄

Remark 3.37. Note that the code files for all the experiments in this
section are available at [Kir] under https://github.com/melaniekircheis/

dissertation/tree/main/3-Direct_inversion_methods_for_the_NFFT. ⋄

Summary

In this chapter, we have investigated direct inversion methods for solving
problem (3.3) and gave a comprehensive overview of the existing approaches.
In particular, we have presented a recently developed sampling density
compensation technique as well as matrix optimization procedure, which
can be seen as a generalized approach. In addition, both methods were
considered and compared to several approaches known from the literature.

https://github.com/melaniekircheis/dissertation/tree/main/3-Direct_inversion_methods_for_the_NFFT
https://github.com/melaniekircheis/dissertation/tree/main/3-Direct_inversion_methods_for_the_NFFT
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-512 0 512
0

1

(a) Original
phantom

-512 0 512

0

1

(b) Algorithm 3.2
with

e2=5.0585e-01

-512 0 512
0

1

(c) Algorithm 3.21
with

e2=2.2737e-03

Figure 3.11: Reconstruction of the Shepp-Logan phantom of
size 1024× 1024 (top) via the density compensation
method from Algorithm 3.2 using weights computed by
Algorithm 3.10 compared to the optimization method from
Algorithm 3.21 using the modified matrix computed by Algo-
rithm 3.25 for the linogram grid (3.88) of size R =M = 1024,
T = 2R; as well as a detailed view of the 832nd row each
(bottom).

All in all, we have seen that our new methods introduced in Sections 3.2
and 3.3 both are optimal in their appropriate setting, outperforming com-
parable approaches. More specifically, in case of the highly overdetermined
setting |I2M | < N of problem (3.3) it was demonstrated that the density
compensation approach from Algorithm 3.2 using the weights computed by
means of Algorithm 3.10 does indeed yield exact results. Considering the
overdetermined setting of problem (3.3) with |IM | < N < |I2M |, instead,
the matrix optimization approach from Algorithm 3.21 using the optimized
sparse matrix computed by means of Algorithm 3.25 has proven to be the
best.





4 Regularized Shannon sampling
formulas

So far, we have focused exclusively on trigonometric polynomials (2.8),
which are periodic functions on the torus Td possessing only a finite number
of nonzero Fourier coefficients. Moving forward, we will broaden our
attention to functions on Rd that exhibit a similar property with respect
to the continuous Fourier transform, known as bandlimited functions.

For this purpose, we start Section 4.1 with some important preliminaries,
including the definition and properties of bandlimited functions, as well as
the famous sampling theorem of Whittaker–Kotelnikov–Shannon. Secondly,
in Section 4.2 we proceed with practical aspects regarding this theorem,
presenting evidence for the poor convergence rate and the lack of numerical
robustness of classical Shannon sampling sums. Therefore, the proposed
numerical realizations of the Whittaker–Kotelnikov–Shannon sampling
theorem are based on an additional regularization. These regularized
Shannon sampling formulas are presented in Section 4.3 for the univariate
setting and generalized to the multivariate setting in Section 4.4. In
conclusion, the final Section 4.5 includes several numerical examples, such
as visualizations of theoretical results and comparisons of the different
approaches, as well as a short summary.

4.1 Bandlimited functions and the sampling
theorem

A function f : Rd → C is said to be bandlimited with bandwidth M ∈ N, if
the support of its (continuous) Fourier transform

f̂(v) :=

∫

Rd

f(x) e−2πivx dx, v ∈ Rd, (4.1)

is contained in
[
−M

2 ,
M
2

]d
. Since |f(x) e−2πivx| = |f(x)|, the Fourier trans-

form (4.1) is well-defined on the Banach space L1(Rd) of measurable func-



106 4 Regularized Shannon sampling formulas

tions f : Rd → C with finite norm

∥f∥L1(Rd) :=

∫

Rd

|f(x)| dx <∞,

where almost equal functions are identified. Additionally, it is known
(see e. g. [PPST23, Theorem 4.21] or [Par97, Proposition 7.1.2]) that the
Fourier transform (4.1) on L1(Rd) is a continuous mapping into the Banach
space C0(Rd) of continuous functions f : Rd → C vanishing as ∥x∥2 → ∞,
with the norm

∥f∥C0(Rd) := max
x∈Rd

|f(x)|. (4.2)

Since function evaluations of f will be relevant for our purposes, we re-
quire at least f ∈ L1(Rd) ∩ C0(Rd). Additionally, considering the Hilbert
space L2(Rd) with inner product and norm

⟨f, g⟩L2(Rd) :=

∫

Rd

f(x) g(x) dx, ∥f∥L2(Rd) :=

(∫

Rd

|f(x)|2 dx
)1/2

,

we obviously have L1(Rd) ∩ C0(Rd) ⊆ L2(Rd), since

∥f∥2L2(Rd) =

∫

Rd

|f(x)|2 dx ≤ max
x∈Rd

|f(x)| ·
∫

Rd

|f(x)| dx

= ∥f∥2C0(Rd) · ∥f∥2L1(Rd).

Furthermore, the Fourier transform can be uniquely extended to L2(Rd),
see e. g. [PPST23, Theorem 4.25]. Therefore, let the space of all bandlimited
functions with bandwidth M ∈ N be denoted by

BM/2(Rd) :=
{
f ∈ L2(Rd) : supp(f̂) ⊆

[
−M

2 ,
M
2

]d }
, (4.3)

which is also known as the Paley–Wiener space.
By definition, the Paley–Wiener space BM/2(Rd) consists of equivalence

classes of almost equal functions. However, it can be shown that there is
always a smooth representation. To this end, let Cr(Rd) denote the class
of r-times continuously differentiable functions, where for all multi-indices
α := (αt)

d
t=1 ∈ Nd0 with |α| := α1 + · · ·+ αd ≤ r the partial derivatives

(Dαf)(x) :=
∂αf

∂xα1
1 ∂xα2

2 . . . ∂xαd

d

exist and are continuous. Then the following embedding can be shown.
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Lemma 4.1. For the Paley–Wiener space (4.3) we have

BM/2(Rd) ⊆ L2(Rd) ∩ C0(Rd) ∩ C∞(Rd).

Proof. Let f ∈ BM/2(Rd). By the theorem of Plancherel (see e. g. [PPST23,
Theorem 4.25]) the Fourier transform is a linear, continuous and invertible

mapping from L2(Rd) onto itself with ∥f∥L2(Rd) = ∥f̂∥L2(Rd), i. e., we have

f̂ ∈ L2(Rd). Now using the Cauchy–Schwarz inequality we obtain

∥f̂∥L1(Rd) =

∫

Rd

|f̂(v)| dv =

∫

[−M
2 ,

M
2 ]

d
1 · |f̂(v)| dv

≤
(∫

[−M
2 ,

M
2 ]

d
12 dv

)1/2(∫

[−M
2 ,

M
2 ]

d
|f̂(v)|2 dv

)1/2

=
√
|IM | · ∥f̂∥L2(Rd) <∞.

In other words, we have f ∈ L2(Rd) and f̂ ∈ L1(Rd). Thus, by the Fourier
inversion theorem, see e. g. [PPST23, Theorem 2.23], the inverse Fourier
transform of f can be written as

f(x) =

∫

Rd

f̂(v) e2πivx dv =

∫

[−M
2 ,

M
2 ]

d

f̂(v) e2πivx dv, x ∈ Rd. (4.4)

Since it is additionally known that the inverse Fourier transform (4.4) is
a continuous mapping from L1(Rd) into C0(Rd) (see e. g. [Par97, Proposi-
tion 7.1.2]), we have BM/2(Rd) ⊆ L2(Rd) ∩ C0(Rd). Moreover, the inverse
Fourier transform (4.4) also implies

(Dαf)(x) =

∫

[−M
2 ,

M
2 ]

d

f̂(v)
(
Dαe2πivx

)
(x) dv

=

∫

[−M
2 ,

M
2 ]

d

f̂(v) (2πiv)α e2πivx dv.

Using the Cauchy–Schwarz inequality again, one can show that
(2πi·)αf̂ ∈ L1(Rd) such that Dαf ∈ C0(Rd) for all α ∈ Nd0, and therefore
f ∈ C∞(Rd) as well.
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To examine further properties of the bandlimited functions f ∈ BM/2(Rd),
let us consider the set

{√
|IM | sinc(Mπ(·− ℓ

M )) : ℓ ∈ Zd
}
. It is easy to

see that this set constitutes an orthonormal system in L2(Rd), since by
the shifting property of the Fourier transform and the definition of the
sinc function (3.31) the Fourier transform of sinc(Mπ(·− ℓ

M )) is equal to

1

|IM | e
−2πiℓv/M χ

[−M
2 ,

M
2 ]

d(v), v ∈ Rd,

and by Parseval’s identity we have for all k, ℓ ∈ Zd that
〈√

|IM | sinc(Mπ(·− k
M )),

√
|IM | sinc(Mπ(·− ℓ

M ))
〉
L2(Rd)

=
1

|IM |

∫

[−M
2 ,

M
2 ]

d

e2πi(ℓ−k)v/M dv = δk,ℓ (4.5)

with the Kronecker symbol

δk,ℓ :=

d∏

t=1

δkt,ℓt =

{
1 : k = ℓ,
0 : k ̸= ℓ.

Moreover, it is known that the system
{√

|IM | sinc(Mπ(·− ℓ
M )) : ℓ ∈ Zd

}

even forms an orthonormal basis of BM/2(Rd), see e. g. [LB92, Theorem 2.7].

That is to say, all f ∈ BM/2(Rd) possess the unique representation

f(x) =
∑

ℓ∈Zd

νℓ sinc(Mπ(x− ℓ
M )), x ∈ Rd,

where the coefficients are given by

νℓ = |IM | ·
〈
f, sinc(Mπ(·− ℓ

M ))
〉
L2(Rd)

= |IM |
∫

Rd

f(x) sinc(Mπ(x− ℓ
M )) dx, ℓ ∈ Zd. (4.6)

In addition, since
∫ M/2

−M/2

e2πiv(x−ℓ/M) dv =
eMπi(x− ℓ

M ) − e−Mπi(x− ℓ
M )

2i · π(x− ℓ
M )

=M sinc(Mπ(x− ℓ
M )),
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we can rewrite the coefficients (4.6) by means of (4.1) and (4.4) as

νℓ =

∫

Rd

f(x)

∫

[−M
2 ,

M
2 ]

d

e2πiv(x−ℓ/M) dv dx

=

∫

[−M
2 ,

M
2 ]

d



∫

Rd

f(x) e2πivx dx


 e−2πivℓ/M dv

=

∫

[−M
2 ,

M
2 ]

d

f̂(v) e2πivℓ/M dv = f( ℓ
M ), ℓ ∈ Zd.

A more general version of this result is known as the classical Whittaker–
Kotelnikov–Shannon sampling theorem, see Theorem 4.2, which plays a
fundamental role in signal processing, since it describes the close relation be-
tween a bandlimited function and its equidistant samples. It was discovered
independently by the mathematician E. T. Whittaker [Whi15] as well as the
electrical engineers V. A. Kotelnikov [Kot01] and C. E. Shannon [Sha49].
However, since Shannon was the first to recognize the relevance of the
sampling theorem in digital signal processing, it is frequently attributed to
him exclusively.

Theorem 4.2 (Sampling theorem of Whittaker–Kotelnikov–Shannon).
Let f ∈ BM/2(Rd) be bandlimited with bandwidth M ∈ N. Further

let L ≥M , L ∈ N. Then f is completely determined by its values f
(
ℓ
L

)
,

ℓ ∈ Zd, and f can be represented in the form

f(x) =
∑

ℓ∈Zd

f
(
ℓ
L

)
sinc

(
Lπ
(
x− ℓ

L

))
, x ∈ Rd, (4.7)

where the series converges absolutely and uniformly on Rd.

Proof. (cf. e. g. [PPST23, Theorem 2.31])
(i) For L ≥M we have BM/2(Rd) ⊆ BL/2(Rd) by definition (4.3), be-

cause of the simple embedding
[
−M

2 ,
M
2

]d ⊆
[
−L

2 ,
L
2

]d
. Hence, each

f ∈ BM/2(Rd) can be regarded as a function f ∈ BL/2(Rd) and there-
fore (4.7) holds as shown above.
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(ii) Considering the absolute convergence, the Cauchy–Schwarz inequality
implies

∑

ℓ∈Zd

∣∣f
(
ℓ
L

)∣∣ ·
∣∣sinc

(
Lπ
(
x− ℓ

L

))∣∣

≤
( ∑

ℓ∈Zd

∣∣f
(
ℓ
L

)∣∣2
)1/2( ∑

ℓ∈Zd

[
sinc(Lπx− πℓ)

]2
)1/2

. (4.8)

For the first term it is known by the representation (4.7) and the orthonor-
mality property (4.5) that for any f ∈ BM/2(Rd) ⊆ BL/2(Rd) with L ≥M
we have

∥f∥2L2(Rd) = ⟨f, f⟩L2(Rd) =
1

Ld

∑

ℓ∈Zd

∣∣f
(
ℓ
L

)∣∣2, (4.9)

cf. [Nik75]. For the second term we consider the 1-periodic func-

tion h(t) := e2πiLtx, t ∈
[
− 1

2 ,
1
2

)d
, for fixed x ∈ Rd, whose Fourier series is

given by

h(t) =
∑

k∈Zd

ck(h) e
2πikt, t ∈

[
− 1

2 ,
1
2

)d
,

with the Fourier coefficients

ck(h) =

∫

[− 1
2 ,

1
2 ]

d
e2πit(Lx−k) dt = sinc(Lπx− πk), k ∈ Zd.

Then, using the Parseval’s identity we obtain for each fixed x ∈ Rd that
∑

k∈Zd

[
sinc(Lπx− πk)

]2
= ∥h∥

L2

(
[− 1

2 ,
1
2 ]

d
) = 1. (4.10)

Thus, by (4.8), (4.9), and (4.10), for each x ∈ Rd the series in (4.7) is
absolutely convergent with

∑

ℓ∈Zd

∣∣f
(
ℓ
L

)∣∣ · |sinc
(
Lπ
(
x− ℓ

L

))
| ≤ Ld/2 ∥f∥L2(Rd).

(iii) Regarding the uniform convergence, we need to show that

lim
T→∞

∥f − ST f∥C0(Rd) = 0, (4.11)
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where ST f denotes the T -th Shannon sampling sum

(ST f)(x) :=
∑

∥ℓ∥∞≤T

f
(
ℓ
L

)
sinc(Lπx− πℓ), x ∈ Rd. (4.12)

By the representations (4.7) and (4.12) we have

f(x)− (ST f)(x) =
∑

∥ℓ∥∞>T

f
(
ℓ
L

)
sinc(Lπx− πℓ), x ∈ Rd.

Then the Cauchy–Schwarz inequality yields

∣∣f(x)− (ST f)(x)
∣∣

≤
( ∑

∥ℓ∥∞>T

∣∣f
(
ℓ
L

)∣∣2
)1/2( ∑

∥ℓ∥∞>T

[
sinc(Lπx− πℓ)

]2
)1/2

. (4.13)

Since both series converge by (4.9) and (4.10), the partial sums satisfy

lim
T→∞

∑

∥ℓ∥∞>T

∣∣f
(
ℓ
L

)∣∣2 = 0 and lim
T→∞

∑

∥ℓ∥∞>T

[
sinc(Lπx− πℓ)

]2
= 0.

(4.14)

Hence, the uniform convergence property (4.11) is implied by (4.13)
and (4.14).

Unfortunately, the numerical use of this classical Whittaker–Kotelnikov–
Shannon sampling theorem (see Theorem 4.2) is limited, since it requires
infinitely many samples, which is impossible in practice. Based on this
observation, numerous approaches for numerical realizations have been
developed. To provide an overview on this subject, this chapter is organized
as follows. Firstly, in Section 4.2 we show the poor convergence and non-
robustness of the classical Shannon sampling sums (4.12) and improve
results on the upper and lower bounds of the norm of the Shannon sampling
operator. Consequently, we study several regularization techniques that
can mitigate these drawbacks. Specifically, in Section 4.3 we firstly limit
our focus to the simpler univariate setting. Afterwards, the most efficient
method is generalized to the multivariate setting in Section 4.4. Finally,
we compare the approaches from Sections 4.3.1 and 4.3.2, and illustrate
our theoretical findings by the numerical examples in Section 4.5.
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4.2 Poor convergence of Shannon sampling sums

Due to the fact that the sinc function has rather poor decay, the Shannon
sampling series

∑

ℓ∈Zd

f
(
ℓ
L

)
sinc(Lπx− πℓ), x ∈ Rd, (4.15)

converges very slowly. In order to demonstrate this fact, we truncate the
series (4.15) with T ∈ N and analyze the T -th Shannon sampling sum (4.12)
in greater detail. More precisely, since these sums can be constructed for
every f ∈ C0(Rd), we firstly examine the norm ∥ST ∥ of the corresponding
operator.

Lemma 4.3. The linear operator ST : C0(Rd) → C0(Rd) in (4.12) has the
norm

∥ST ∥ = max
x∈Rd

∑

∥ℓ∥∞≤T

|sinc(Lπx− πℓ)|. (4.16)

Proof. For each f ∈ C0(Rd) and x ∈ Rd the definition (4.12) of the T -th
Shannon sampling operator and the definition of the norm (4.2) imply

∣∣(ST f)(x)| ≤
∑

∥ℓ∥∞≤T

∣∣f
(
ℓ
L

)∣∣ ∣∣sinc(Lπx− ℓπ)
∣∣

≤
∑

∥ℓ∥∞≤T

∣∣sinc(Lπx− ℓπ)
∣∣ ∥f∥C0(Rd),

such that

∥ST f∥C0(Rd) ≤ max
x∈Rd

∑

∥ℓ∥∞≤T

∣∣sinc(Lπx− ℓπ)
∣∣ ∥f∥C0(Rd).

Thus, assuming that the even nonnegative function

sT (x) :=
∑

∥ℓ∥∞≤T

∣∣sinc(Lπx− ℓπ)
∣∣, x ∈ Rd, (4.17)
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which is contained in C0(Rd), has its maximum at a point we denote
as x∗ := (x∗1, . . . , x

∗
d)

⊤ ∈ Rd, this yields

∥ST ∥ = sup
{
∥ST f∥C0(Rd) : ∥f∥C0(Rd) = 1

}
≤ sT (x

∗).

The other way around, we consider the linear spline g ∈ C0(R) with

g
(
ℓ
L

)
=

{
sign

(
sinc(Lπx∗t − ℓπ)

)
: ℓ = −T, . . . , T,

0 : ℓ ∈ Z \ {−T, . . . , T}.

Then its tensorized version g(ℓ) :=
∏d
t=1 g(ℓt) satisfies ∥g∥C0(Rd) = 1 and

by the product structure of the sinc function (3.31) we have

(ST g)(x) =
∑

∥ℓ∥∞≤T

(
d∏

t=1

sign
(
sinc(Lπx∗t − ℓtπ)

)
)
sinc(Lπx− ℓπ)

≤ sT (x
∗).

Thus, evaluation at the point x = x∗, i. e.,

(ST g)(x
∗) =

∑

∥ℓ∥∞≤T

∣∣sinc(Lπx∗ − ℓπ)
∣∣ = max

x∈Rd
sT (x) = sT (x

∗),

implies

∥ST ∥ ≥ ∥ST g∥C0(Rd) = max
x∈Rd

∣∣(ST g)(x)
∣∣ = sT (x

∗).

and hence (4.16).

Note that Lemma 4.3 generalizes the result from [KPT24, Lemma 2.1]
to d > 1. Now we show that the norm ∥ST ∥ is unbounded with respect
to T ∈ N.

Lemma 4.4. The norm of the operator ST : C0(Rd) → C0(Rd) can be esti-
mated by

(
2

π
(lnT + c)− 1

πT (2T + 1)

)d
< ∥ST ∥ (4.18)

<

(
2

π
(lnT + c) +

T + 2

πT (T + 1)

)d
,
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where c := 2 ln 2 + γ with the Euler constant

γ = lim
T→∞

(
T∑

k=1

1

k
− lnT

)
= 0.57721566 . . . .

Proof. For ease of notation we start with the case d = 1, as done in [KPT24,
Theorem 2.2]. As suggested in [Ste93, Problem 3.1.5] we represent (4.17)
in the form

sT (x) =
T+1∑

ℓ=1

aℓ(x), x ∈ R,

with

aℓ(x) :=

{ ∣∣sinc(Lπx− ℓπ)
∣∣+
∣∣sinc(Lπx+ (ℓ− 1)π)

∣∣ : ℓ = 1, . . . , T,
∣∣sinc(Lπx+ Tπ)

∣∣ : ℓ = T + 1.

Since the function sT in (4.17) is even, we estimate its maximum only
for x ≥ 0. For ℓ = 1, . . . , T, we have aℓ(0) = aℓ

(
1
L

)
= 0 and by the trigono-

metric identities we obtain for x ∈
(
0, 1

L

)
that

aℓ(x) =
sin(Lπx)

π

(
1

ℓ− 1 + Lx
+

1

ℓ− Lx

)
=

(2ℓ− 1) sin(Lπx)

π
[
(ℓ− 1)ℓ+ Lx (1− Lx)

] .

By defining the functions bℓ : (0, 1) → R, ℓ = 1, . . . , T , via

bℓ(x) :=
π

(2ℓ− 1)
aℓ
(
x
L

)
=

sin(πx)

(ℓ− 1)ℓ+ x(1− x)
, x ∈ (0, 1),

we have the symmetry property bℓ(x) = bℓ(1− x), i. e., each bℓ is symmetric
with respect to 1

2 . Furthermore, by b′ℓ(x) ≥ 0 for x ∈
(
0, 1

2

]
, the function bℓ

is non-decreasing on
(
0, 1

2

]
and therefore has its maximum at x = 1

2 . Thus,

the function aℓ :
[
0, 1

L

]
→ R has its maximum at x = 1

2L , i. e.,

max
x∈[0, 1/L]

aℓ(x) = aℓ
(

1
2L

)
=

4

(2ℓ− 1)π
, ℓ = 1, . . . , T.

Additionally, the function aT+1(x) can be written as

aT+1(x) =
sin(Lπx)

π (T + Lx)
, x ∈

[
0, 1

L

]
,
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such that

0 < max
x∈[0, 1/L]

aT+1(x) <
1

πT
.

Note that in the case T ≫ 1 the function aT+1 :
[
0, 1

L

]
→ R has its maxi-

mum close to x = 1
2L . Hence, in summary this yields

4

π

T∑

ℓ=1

1

2ℓ− 1
< max
x∈[0, 1/L]

sT (x) <
4

π

T∑

ℓ=1

1

2ℓ− 1
+

1

πT
.

For x ∈
[
k
L ,

k+1
L

]
with arbitrary k ∈ N, the sum sT (x) in (4.17)

is less than it is for x ∈
[
0, 1

L

]
, since for each x ∈

(
0, 1

L

)
we

have sin(Lπx− nπ) = (−1)n sin(Lπx), n ∈ Z, and
T∑

ℓ=−T

sin(Lπx)

|Lπx− (ℓ− k)π| <
T∑

ℓ=−T

sin(Lπx)

|Lπx− ℓπ| , k ∈ N,

such that sT
(
k
L + x

)
< sT (x). Thus, for the even function sT (x) in (4.17)

we obtain

4

π

T∑

ℓ=1

1

2ℓ− 1
< max

x∈R
sT (x) <

4

π

T∑

ℓ=1

1

2ℓ− 1
+

1

πT
,

which, by Lemma 4.3, can also be written as

4

π

T∑

ℓ=1

1

2ℓ− 1
< ∥ST ∥ <

4

π

T∑

ℓ=1

1

2ℓ− 1
+

1

πT
. (4.19)

Note that for T ≫ 1 the value

sT
(

1
2L

)
=

4

π

T∑

ℓ=1

1

2ℓ− 1
+

2

π (2T + 1)
(4.20)

is a good approximation of the norm ∥ST ∥.
Now we estimate ∥ST ∥ by lnT . For this purpose we denote the T -th

harmonic number by

HT :=
T∑

k=1

1

k
, T ∈ N,
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such that

T∑

ℓ=1

1

2ℓ− 1
=

T∑

ℓ=1

(
1

2ℓ− 1
+

1

2ℓ

)
−

T∑

ℓ=1

1

2ℓ
= H2T − 1

2
HT . (4.21)

Using Euler’s constant γ := limT→∞
(
HT − lnT

)
, the estimates

1

2T + 2
< HT − lnT − γ <

1

2T

are known, cf. [You91], such that

1

2
(lnT + 2 ln 2 + γ)− 1

4T (2T + 1)
< H2T − 1

2
HT (4.22)

<
1

2
(lnT + ln 2 + γ) +

1

4T (T + 1)
.

Therefore, applying (4.19), (4.21), and (4.22) yields the assertion (4.18)
for d = 1.
For d > 1 we then use the fact that by the product structure of the

d-variate sinc function (3.31) we have

sT (x) =
∑

∥ℓ∥∞≤T

|sinc(Lπx− πℓ)|

=
d∏

t=1

(
T∑

ℓ=−T

|sinc(Lπxt − πℓ)|
)

=
d∏

t=1

sT (xt), (4.23)

and thus

∥ST ∥ = max
x∈Rd

sT (x) = max
x∈Rd

(
d∏

t=1

sT (xt)

)
=

(
max
x∈R

sT (x)

)d
(4.24)

in connection with the previous result for d = 1 implies the assertion (4.18).

Note that Lemma 4.4 improves a former result of [Ste93, p. 142, Prob-
lem 3.1.5], which only contains a coarse proof sketch for the upper bound,
while (4.18) gives a very precise nesting, see also Figure 4.14.
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In addition, it should be pointed out that Lemma 4.4 shows that although
the Shannon sampling sums (4.12) can be formed for each f ∈ C0(Rd), this
is not a meaningful operator in this general setting. Since by Lemma 4.4
the norm of the linear operator ST : C0(Rd) → C0(Rd) is unbounded with
respect to T , the theorem of Banach–Steinhaus implies that an arbitrary
function f ∈ C0(Rd) cannot be represented in the form (4.15). For bandlim-
ited functions f ∈ BM/2(Rd) ⊆ C0(Rd), however, the series (4.15) converges
absolutely and uniformly on whole Rd, as known from the Whittaker–
Kotelnikov–Shannon sampling theorem, see Theorem 4.2. Therefore, the
Shannon sampling operator ST should be considered for bandlimited func-
tions f ∈ BM/2(Rd) only.
Nevertheless, also for bandlimited functions the convergence of the

Shannon sampling series (4.15) is very slow due to the poor decay of
the sinc function, as can be seen from the sharp upper and lower bounds
of the norm of the Shannon sampling operator, see Lemma 4.4. More pre-
cisely, considering the one-dimensional setting we only have a convergence
rate of 1/

√
T , as mentioned in [Jag66, Zay93, ST06]. For the multivariate

setting we will provide a rigorous analysis of the approximation error in
Lemma 4.6. Before doing so, we need the following intermediate lemma,
which is frequently referred to as the integral test for convergence of series ,
also known as the Maclaurin–Cauchy test , see e. g. [WW20, p. 71].

Lemma 4.5. Let g : R → R be a function, which is continuous and
monotonously decreasing on the interval [A, ∞) with A ∈ N0. Then the
series

∑∞
k=A g(k) converges if and only if the improper integral

∫∞
A
g(x) dx

is finite. More precisely, we have

∫ ∞

A

g(x) dx ≤
∞∑

k=A

g(k) ≤ g(A) +

∫ ∞

A

g(x) dx. (4.25)

Proof. Since the function g is monotonously decreasing on the inter-
val [A, ∞) by assumption, we have g(k) ≤ g(x) for all k ≥ x ≥ A. Hence,
this yields

g(k) =

∫ k

k−1

g(k) dx ≤
∫ k

k−1

g(x) dx, k ≥ A+ 1,

since g is continuous and therefore integrable on the interval [A, ∞). By
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summation over all k ∈ {A,A+ 1, . . . , B}, B ∈ N, we obtain

B∑

k=A

g(k) = g(A) +
B∑

k=A+1

g(k)

≤ g(A) +
B∑

k=A+1

∫ k

k−1

g(x) dx = g(A) +

∫ B

A

g(x) dx, (4.26)

such that the limit process B → ∞ implies the right-hand side of (4.25).
Analogously, one can also show the left inequality in (4.25). This completes
the proof.

Now we are fully equipped to provide a rigorous analysis of the approxi-
mation error, which can be seen as a generalization of [Jag66, Theorem 1]
to d > 1.

Lemma 4.6. Let f ∈ BM/2(R) be a bandlimited function with band-
width M ∈ N. Then, for T, L ∈ N with T > L ≥M we obtain the error
estimate

max
x∈[−1, 1]d

∣∣f(x)− (ST f)(x)
∣∣ ≤

(
2L

π2

)d/2
(T − L)−d/2 ∥f∥L2(Rd).

Proof. By (4.13) and (4.9) we immediately have

∣∣f(x)− (ST f)(x)
∣∣ ≤ Ld/2 ∥f∥L2(Rd)

( ∑

∥ℓ∥∞>T

[
sinc(Lπx− πℓ)

]2
)1/2

.

For estimating the sinc series we recognize that equivalently to (4.23) we
can write

∑

∥ℓ∥∞>T

[
sinc(Lπx− πℓ)

]2
=

d∏

t=1

( ∑

|ℓ|>T

[
sinc(Lπxt − πℓ)

]2
)

≤ 1

π2d
·
d∏

t=1

( ∞∑

ℓ=T+1

1

(Lxt − ℓ)2
+

∞∑

ℓ=T+1

1

(Lxt + ℓ)2

)
.

Then the integral test for convergence of series, see Lemma 4.5, yields

∞∑

ℓ=T+1

1

(Lxt − ℓ)2
<

∫ ∞

T

1

(Lxt − v)2
dv =

1

T − Lxt
, T > Lxt,
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∞∑

ℓ=T+1

1

(Lxt + ℓ)2
<

∫ ∞

T

1

(Lxt + v)2
dv =

1

T + Lxt
, T > −Lxt,

cf. [Jag66, Theorem 1], such that for T > L we obtain

max
x∈[−1, 1]d

( ∑

∥ℓ∥∞>T

[
sinc(Lπx− πℓ)

]2
)1/2

≤ 1

πd
·
(

d∏

t=1

2

T − L

)1/2

and thereby the assertion.

Note that several works, such as [Jag66, YT66, Pip75, BES82, CM82,
Mar92, Zay93], have studied a pointwise error decay when additional
conditions are imposed on f ∈ BM/2(Rd). General results on whole Rd,
however, are not feasible for arbitrary f ∈ BM/2(Rd). Rather, the uniform
approximation error ∥f − ST f∥C0(Rd) can only be studied under the ad-

ditional assumption that f ∈ BM/2(Rd) satisfies certain decay conditions,
see [Li98, JG03].

In addition to this rather poor convergence, it is known, see [Fei92a,
Fei92b, DD03], that in the presence of noise in the samples f

(
ℓ
L

)
, ℓ ∈ Zd,

of a bandlimited function f ∈ BM/2(Rd), the convergence of Shannon
sampling series (4.15) may even break down completely. To show this,
let f ∈ BM/2(Rd) be a given bandlimited function with bandwidth M ∈ N
and let T ∈ N be sufficiently large. For given samples f

(
ℓ
L

)
with ℓ ∈ Zd

and L ≥M , L ∈ N, we consider finitely many erroneous samples

f̃ℓ :=

{
f
(
ℓ
L

)
+ εℓ : ∥ℓ∥∞ ≤ T,

f
(
ℓ
L

)
: ∥ℓ∥∞ > T,

with error terms εℓ which are uniformly bounded by |εℓ| ≤ ε for ∥ℓ∥∞ ≤ T .
Then the approximation

f̃(x) :=
∑

ℓ∈Zd

f̃ℓ sinc(Lπx− πℓ)

= f(x) +
∑

∥ℓ∥∞≤T

εℓ sinc(Lπx− πℓ), x ∈ Rd.

satisfies the following error bounds, see [KPT24, Theorem 2.3].
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Theorem 4.7. Let f ∈ BM/2(Rd) be an arbitrary bandlimited function with
bandwidth M ∈ N. Further let T, L ∈ N with L ≥M , and ε > 0 be given.
Then we have

∥∥f̃ − f
∥∥
C0(Rd)

< ε

(
2

π
lnT +

5

4
+

1

2T

)d
. (4.27)

Moreover, for the special error terms

εℓ = ε sign
(
sinc(π21d − πℓ)

)
= ε (−1)ℓ1+...+ℓd+d

d∏

t=1

sign(2ℓt − 1) (4.28)

for ℓ = (ℓ1, . . . , ℓd) ∈ Zd with ∥ℓ∥∞ ≤ T we have

∥∥f̃ − f
∥∥
C0(Rd)

≥ ε

(
2

π
lnT +

4

π
ln 2 +

2γ

π

)d
> ε

(
2

π
lnT +

5

4

)d
, (4.29)

such that the Shannon sampling series (4.15) is not numerically robust.

Proof. By (4.24), (4.19) and (4.22) we are given the upper error bound

∥∥f̃ − f
∥∥
C0(Rd)

≤ ε max
x∈Rd

sT (x) < ε

(
4

π

T∑

ℓ=1

1

2ℓ− 1
+

1

πT

)d

<
2ε

π

(
lnT + 2 ln 2 + γ +

T + 2

2T (T + 1)

)d
.

Since

4

π
ln 2 +

2γ

π
= 1.2500093 . . . (4.30)

and the sequence µT := T+2
T+1 = 1 + 1

T+1 is monotonously decreasing

with maxT∈N µT = µ1 = 3
2 , we have

4

π
ln 2 +

2γ

π
+

1

πT
· µT ≤ 5

4
+

1

2T
,

which yields (4.27).



4.2 Poor convergence of Shannon sampling sums 121

Next, we proceed with the lower bound. By the special choice of the
finitely many error terms εℓ in (4.28) we obtain

f̃(x)− f(x) = ε
∑

∥ℓ∥∞≤T

sign
(
sinc(π21d − πℓ)

)
sinc(Lπx− πℓ), x ∈ Rd.

(4.31)

Thus, by (4.23) as well as (4.20) – (4.22) we conclude that

∥∥f̃ − f
∥∥
C0(R)d

≥
∣∣f̃( 1

2L1d)− f( 1
2L1d)

∣∣ = ε
∑

∥ℓ∥∞≤T

∣∣sinc(π21d − πℓ)
∣∣

= ε
(
sT
(

1
2L

))d
> ε

(
2

π
lnT +

4

π
ln 2 +

2γ

π

)d
,

such that (4.30) completes the proof.

Note that (4.27) specifies a corresponding remark of [DD03, p. 681]
as it makes the constant explicit. In addition, we remark that the
norm

∥∥f̃ − f
∥∥
C0(Rd)

does not depend on the special choice of the func-

tion f ∈ BM/2(Rd) or the so–called oversampling parameter λ := L−M
M ≥ 0

for L ≥M , see Figure 4.14. Furthermore, Figure 4.14 also illustrates that
for T → ∞ the error behavior shown in Theorem 4.7 is not satisfactory.
Thus, in the presence of noise in the samples f

(
ℓ
L

)
, ℓ ∈ Zd, the convergence

of the Shannon sampling series (4.15) may even break down completely.

Remark 4.8. In the above worst case analysis we have seen that the approx-
imation of f ∈ BM/2(Rd) by the T -th partial sum (4.12) of its Shannon
sampling series with L ≥M is not numerically robust in the determinis-
tic sense. On the other hand, a simple average case study, see [KPT24,
Remark 2.5], shows that this approximation is numerically robust in the
stochastic sense. Therefore, we compute (4.12) as an inner product of the
real (2T + 1)d-dimensional vectors

(
f
(
ℓ
L

))
∥ℓ∥∞≤T

and
(
sinc(Lπx− ℓπ)

)
∥ℓ∥∞≤T .

Now assume that instead of the exact samples f
(
ℓ
L

)
, ∥ℓ∥∞ ≤ T , only per-

turbed samples f̃
(
ℓ
L

)
:= f

(
ℓ
L

)
+Xℓ, ∥ℓ∥∞ ≤ T , are given. In this case,

the error terms are modeled as real random variables Xℓ, ℓ ∈ Zd, that
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are uncorrelated, each having vanishing expectation E(Xℓ) = 0 and con-
stant variance V(Xℓ) = E(|Xℓ|2) = ρ2 with ρ > 0. Then we consider the
stochastic approximation error

∆T :=
∑

∥ℓ∥∞≤T

f̃
(
ℓ
L

)
sinc(Lπx− ℓπ)−

∑

∥ℓ∥∞≤T

f
(
ℓ
L

)
sinc(Lπx− ℓπ)

=
∑

∥ℓ∥∞≤T

Xℓ sinc(Lπtx− ℓπ) .

Obviously, this error term ∆T has the expectation

E(∆T ) =
∑

∥ℓ∥∞≤T

sinc(Lπx− ℓπ)E(Xℓ) = 0

and the variance

V(∆T ) =
∑

∥ℓ∥∞≤T

∣∣sinc(Lπx− ℓπ)
∣∣2 V(Xℓ)

= ρ2
∑

∥ℓ∥∞≤T

∣∣sinc(Lπx− ℓπ)
∣∣2 .

Thus, by (4.10) we obtain V(∆T ) ≤ ρ2. ⋄

4.3 Univariate regularized Shannon sampling
formulas

As seen in Section 4.2, the practical use of the classical Shannon sampling
series (4.15) is limited, since it requires infinitely many samples, has rather
poor convergence, and is not numerically robust in the deterministic sense.
Therefore, we will now discuss some numerical realizations of the Whittaker–
Kotelnikov–Shannon sampling theorem, where for the sake of simplicity,
we initially focus on the univariate setting d = 1.

To address the demonstrated shortcomings, a so-called oversampling is
frequently used, i. e., a function f ∈ BM/2(R) of bandwidth M ∈ N is sam-

pled on a finer grid 1
L Z with L > M , where the oversampling is quantified

by the oversampling parameter λ := L−M
M ≥ 0. In addition, we study sev-

eral regularization techniques, i. e., generalizations of the classical Shannon
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sampling series (4.15) which are of the form

∑

ℓ∈Z
f
(
ℓ
L

)
ψ
(
x− ℓ

L

)
(4.32)

with some suitable function ψ : R → [−1, 1]. More precisely, similar
to [SS00], we examine regularization functions ψ that are either bandlimited
or timelimited, meaning that they are compactly supported in the frequency
domain or in the spatial domain, respectively.

On the one hand, we investigate the regularization in frequency do-
main, as done for instance in [Dau92, Nat86a, Rap96, Par97, ST05]. This

approach is based on choosing a so–called window function ψ̂ that is
compactly supported in the frequency domain. Afterwards, in order to
compute the approximation (4.32), the corresponding function ψ in spatial
domain has be to determined by means of inverse Fourier transform (4.4).
However, by the uncertainty principle (see [PPST23, Lemma 2.39]) it is
known that supp(ψ) = R, such that (4.32) still requires infinitely many
samples. Thus, for numerical realizations an additional truncation of the
series is required, such that we approximate a function f ∈ BM/2(R) by
the T -th partial sum of (4.32).

On the other hand, we consider the regularization in spatial do-
main, which was introduced for example in [Qia03, SS07, MXZ09, LZ17,
CZ19, KPT22]. Here for some m ∈ N \ {1} a suitable window func-
tion φm : R → [0, 1] with compact support

[
− m

L ,
m
L

]
and φm(0) = 1 is

chosen in spatial domain. Then the regularization function ψ in (4.32) is
given by ψ(x) = sinc(Lπx)φm(x). Since this implies ψ

(
x− ℓ

L

)∣∣
x= k

L

= δk,ℓ

for all k, ℓ ∈ Z, this method is an interpolating approximation. Moreover,
by the use of the compactly supported window function φm the computation
of (4.32) for x ∈ R \ 1

L Z only requires 2m+ 1 samples f
(
ℓ
L

)
, where ℓ ∈ Z

fulfills the condition |ℓ− Lx| ≤ m.

In the following, we study both approaches, propose new error estimates
for several choices of the window functions ψ̂ and φm, and compare the
theoretical and numerical approximation properties in terms of error decay
rates.

To this end, this section is organized as follows. Firstly, in Section 4.3.1
we start with the regularization using a window function in frequency
domain. After recapitulating a known general result in Theorem 4.9, we
consider several window functions of different regularity and present the
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corresponding algebraic error decay rates based on a general result in Theo-
rem 4.10. Subsequently, in Section 4.3.2 we proceed with the regularization
using a window function in spatial domain. Here we also review a known
general result in Theorem 4.25 and demonstrate the exponential decay of
the considered window functions afterwards.

4.3.1 Regularization with a window function in frequency
domain

To overcome the drawbacks of poor convergence and numerical instability
of the Shannon sampling series (4.15), one can apply regularization with
a convenient window function either in the frequency domain or in the
spatial domain.

Similar to [KPT24], we firstly consider the regularization with a frequency
window function of the form

ψ̂(v) :=





1 : |v| ≤ M
2 ,

ξ(|v|) : M2 < |v| < L
2 ,

0 : |v| ≥ L
2 ,

(4.33)

cf. [Dau92, Par97, ST05], where ξ :
[
M
2 ,

L
2

]
→ [0, 1] is frequently chosen

as some monotonously decreasing, continuous function with ξ
(
M
2

)
= 1

and ξ
(
L
2

)
= 0. Applying the inverse Fourier transform (4.4), we determine

the corresponding function in spatial domain by

ψ(x) =

∫

R
ψ̂(v) e2πivx dv = 2

∫ L/2

0

ψ̂(v) cos(2πvx) dv. (4.34)

Analogous to [Dau92, p. 19] and [Par97, Theorem 7.2.5], we obtain the
following representation result, see also [KPT24, Theorem 3.3].

Theorem 4.9. Let f ∈ BM/2(R) be a bandlimited function with band-
width M ∈ N and let L :=M (1 + λ) ∈ N with λ > 0. Further assume that
the samples f

(
ℓ
L

)
, ℓ ∈ Z, fulfill the condition

∑

ℓ∈Z

∣∣f
(
ℓ
L

)∣∣ <∞. (4.35)

Using oversampling and regularization with a frequency window function ψ̂
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of the form (4.33), the function f can be represented as

f(x) =
∑

ℓ∈Z
f
(
ℓ
L

) 1

L
ψ
(
x− ℓ

L

)
, x ∈ R, (4.36)

where the series (4.36) converges absolutely and uniformly on R.

Proof. Since by assumption f ∈ BM/2(R) is bandlimited with bandwidthM ,

we have supp(f̂) ⊆
[
−M

2 ,
M
2

]
⊂
[
−L

2 ,
L
2

]
and therefore the function f̂

restricted on
[
−L

2 ,
L
2

]
can be represented by its L-periodic Fourier series

f̂(v) =
∑

ℓ∈Z
cℓ(f̂) e

2πiℓv/L, v ∈
[
−L

2 ,
L
2

]
,

with the Fourier coefficients

cℓ(f̂) =
1

L

∫ L/2

−L/2
f̂(v) e−2πiℓv/L dv.

Using the definition of the inverse Fourier transform (4.4), we recognize

that cℓ(f̂) =
1
L f
(
− ℓ

L

)
. Hence, we may denote f̂ as

f̂(v) =
1

L

∑

ℓ∈Z
f
(
ℓ
L

)
e−2πiℓv/L, v ∈

[
−L

2 ,
L
2

]
. (4.37)

By the Weierstrass M-test and assumption (4.35), the Fourier series (4.37)
converges absolutely and uniformly on

[
−L

2 ,
L
2

]
. Additionally, by assump-

tion we have supp(f̂) ⊆
[
−M

2 ,
M
2

]
as well as ψ̂(v) = 1 for v ∈

[
−M

2 ,
M
2

]

by (4.33), such that f̂(v) = f̂(v) ψ̂(v) for all v ∈ R. Therefore, by insert-
ing (4.37) into the inverse Fourier transform (4.4), we obtain

f(x) =

∫

R
f̂(v) e2πixv dv =

∫ L/2

−L/2
f̂(v) e2πixv dv

=

∫ L/2

−L/2
f̂(v) ψ̂(v) e2πixv dv =

∑

ℓ∈Z

1

L
f
(
ℓ
L

) ∫ L/2

−L/2
ψ̂(v) e2πi(x−ℓ/L)v dv

=
∑

ℓ∈Z
f
(
ℓ
L

) 1

L
ψ
(
x− ℓ

L

)
, x ∈ R,
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where summation and integration may be interchanged by the theorem of
Fubini–Tonelli, if

1

L

∑

ℓ∈Z

∣∣f
(
ℓ
L

)∣∣ ·
∫ L/2

−L/2
|ψ̂(v)| dv <∞ ,

which is fulfilled, since we have (4.35) and |ψ̂(v)| ≤ 1 by definition (4.33).
Additionally, note that from (4.33) and (4.34) it follows that

|ψ(x)| ≤ 2

∫ L/2

0

∣∣ cos(2πvx)
∣∣ dv < L , x ∈ R .

Hence, we have 1
L

∣∣ψ
(
x− ℓ

L

)∣∣ < 1 for all x ∈ R and ℓ ∈ Z, and consequently
the series (4.36) converges absolutely and uniformly on R by (4.35) and
the Weierstrass M-test.

Note that (4.36) is not an interpolating representation, since in general
we have

1

L
ψ
(
x− ℓ

L

) ∣∣∣∣
x= k

L

̸= δk,ℓ, k, ℓ ∈ Z.

Moreover, since the frequency window function ψ̂ in (4.33) is compactly
supported, the uncertainty principle (see e. g. [PPST23, Lemma 2.39])
yields supp(ψ) = R, such that (4.36) does not imply localized sampling for

any choice of ψ̂. In other words, the representation (4.36) still requires
infinitely many samples f

(
ℓ
L

)
, ℓ ∈ Z.

For practical realizations we therefore need to consider a truncated
version of (4.36). Hence, for T ∈ N we introduce the T -th partial sum

(Pψ,T f)(x) :=
T∑

ℓ=−T

f
(
ℓ
L

) 1

L
ψ
(
x− ℓ

L

)
, x ∈ R, (4.38)

and show the following new convergence result.

Theorem 4.10. Let f ∈ BM/2(R) be a bandlimited function with band-
width M ∈ N and let L =M (1 + λ) ∈ N with λ > 0. Further assume that
the samples f

(
ℓ
L

)
, ℓ ∈ Z, fulfill the condition (4.35). Using oversampling

and regularization with a frequency window function of the form (4.33), the
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T -th partial sums Pψ,T f uniformly converge to f on [−1, 1] as T → ∞. If
additionally the decay condition

∣∣ψ(x)
∣∣ ≤ c |x|−r, x ∈ R \ {0}, (4.39)

holds, for T > L we obtain the error estimate

max
x∈[−1, 1]

∣∣f(x)− (Pψ,T f)(x)
∣∣ ≤ cLr−1

√
2L

2r−1 (T − L)(−2r+1)/2 ∥f∥L2(R).

(4.40)

Proof. By (4.36) and (4.38) we have

f(x)− (Pψ,T f)(x) =
∑

|ℓ|>T

f
(
ℓ
L

) 1

L
ψ
(
x− ℓ

L

)
,

such that the Cauchy–Schwarz inequality implies

∣∣f(x)− (Pψ,T f)(x)
∣∣ ≤

( ∑

|ℓ|>T

∣∣f
(
ℓ
L

)∣∣2
)1/2( ∑

|ℓ|>T

∣∣ 1
L ψ
(
x− ℓ

L

)∣∣2
)1/2

.

(4.41)

Since f ∈ BM/2(R) is bandlimited with bandwidth M ∈ N and L > M , we
obtain by (4.9) that

( ∑

|ℓ|>T

∣∣f
(
ℓ
L

)∣∣2
)1/2

≤
√
L ∥f∥L2(R). (4.42)

Since by assumption the decay condition (4.39) is satisfied, we have
∣∣ψ
(
x− ℓ

L

)∣∣2 ≤ c2L2r (Lx− ℓ)−2r.

Thus, for T > L and x ∈ [−1, 1] we obtain

( ∑

|ℓ|>T

∣∣ 1
L ψ
(
x− ℓ

L

)∣∣2
)1/2

≤ cLr−1

( ∑

|ℓ|>T

(Lx− ℓ)−2r

)1/2

= cLr−1

( ∞∑

ℓ=T+1

(Lx+ ℓ)−2r +

∞∑

ℓ=T+1

(Lx− ℓ)−2r

)1/2

≤ cLr−1

(
2

∞∑

ℓ=T+1

(ℓ− L)−2r

)1/2

.
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Using the integral test for convergence of series, see Lemma 4.5, we conclude

∞∑

ℓ=T+1

(ℓ− L)−2r ≤
∫ ∞

T

(y − L)−2r dy = 1
2r−1 (T − L)−2r+1,

which yields

( ∑

|ℓ|>T

∣∣ψ
(
x− ℓ

L

)∣∣2
)1/2

≤ cLr−1
√

2
2r−1 (T − L)(−2r+1)/2. (4.43)

Hence, the estimates (4.41), (4.42), and (4.43) imply the assertion (4.40).

Note that for the frequency window functions ψ̂ in (4.33) only error
estimates on certain compact intervals (such as for example [−1, 1]) can
be given, while results on whole R are not feasible. We remark that in the
univariate setting d = 1 the error estimate in Lemma 4.6 coincides with
the one of Theorem 4.10 using r = 1 and c = 1

π . Therefore, the result in
Theorem 4.10 can be viewed as a generalization to window functions ψ
in (4.34) with faster decay than the sinc function (3.31).

Remark 4.11. In [SS00, Lemma 2] it was shown that by considering the
Bernstein spaces of bandlimited functions

B p
M/2(R) :=

{
f ∈ S ′(R) ∩ Lp(R) : supp(f̂) ⊆

[
−M

2 ,
M
2

] }
⊆ C∞(R) ,

where S ′(R) denotes the set of tempered distributions, cf. Section 6.1.3,
the Marcinkiewicz–Zygmund–like inequality

1

L

(∑

ℓ∈Z

∣∣f
(
ℓ
L

)∣∣p
)1/p

≤
(
1 +

1

2 + 2λ

)
∥f∥Lp(R)

holds for all f ∈ B p
M/2(R) with 1 ≤ p <∞. Thus, by using Hölder’s in-

equality

∣∣f(x)− (Pψ,T f)(x)
∣∣ ≤

( ∑

|ℓ|>T

∣∣f
(
ℓ
L

)∣∣p
)1/p( ∑

|ℓ|>T

∣∣ 1
L ψ
(
x− ℓ

L

)∣∣q
)1/q
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with 1
p +

1
q = 1 instead of (4.41), the Lp-version

max
x∈[−1, 1]

∣∣f(x)− (Pψ,T f)(x)
∣∣

≤ cLr (3 + 2λ)

2 + 2λ

(
2

qr − 1

)1/q

(T − L)−r+1/q ∥f∥Lp(R)

of Theorem 4.10 can be shown analogously for all f ∈ B p
M/2(R) with

1 ≤ p <∞. ⋄
Additionally, note that in Theorem 4.10 we require the inverse Fourier

transform ψ in (4.34) of the frequency window function ψ̂ in (4.33) to
satisfy the decay condition (4.39), since this is the property used in the
proof of the error bound (4.40). However, there is a correlation between

the smoothness of ψ̂ in (4.33) and the decay rate of ψ in (4.34) given by
the following lemma.

Lemma 4.12. For r ≥ 0 let ψ̂ ∈ Cr(R) with smoother ξ ∈ Cr+2
([
−M

2 ,
L
2

])

in (4.33). Then the corresponding function ψ in spatial domain fulfills the
decay condition (4.39).

Proof. Considering (4.33) we recognize that ψ̂ ∈ Cr(R) holds if and only if

ξ
(
M
2

)
= 1, ξ(p)

(
M
2

)
= 0, p = 1, . . . , r,

ξ(p)
(
L
2

)
= 0, p = 0, . . . , r.

By means of this fact and the (r + 2)-times differentiability of ξ, the
function ψ in (4.34) can be computed using (r + 2)-fold application of
partial integration as

ψ(x) = 2

∫ M/2

0

cos(2πvx) dv + 2

∫ L/2

M/2

ξ(v) cos(2πvx) dv

= − 2

2πx

∫ L/2

M/2

ξ′(v) sin(2πvx) dv = . . .

=





(−1)
r+1
2

2

(2πx)r+1

∫ L/2

M/2

ξ(r+1)(v) cos(2πvx) dv : r odd,

(−1)
r+2
2

2

(2πx)r+1

∫ L/2

M/2

ξ(r+1)(v) sin(2πvx) dv : r even,



130 4 Regularized Shannon sampling formulas

=





2 · (−1)
r+1
2

(2πx)r+2

([
ξ(r+1)(v) sin(2πvx)

]L/2
M/2

−
∫ L/2

M/2

ξ(r+2)(v) sin(2πvx) dv

)
: r odd,

2 · (−1)
r
2

(2πx)r+2

([
ξ(r+1)(v) cos(2πvx)

]L/2
M/2

−
∫ L/2

M/2

ξ(r+2)(v) cos(2πvx) dv

)
: r even.

Therefore, employing the triangle inequality twice we obtain

|ψ(x)| ≤ |x|−(r+2) · 2

(2π)r+2

(
max

v∈[M2 ,
L
2 ]
ξ(r+1)(v) · 2

+ max
v∈[M2 ,

L
2 ]
ξ(r+2)(v) ·

∫ L/2

M/2

dv

)

and thus an estimate of the form (4.39).

Remark 4.13. Let us consider the issue of numerical robustness, i. e., sup-
pose that the samples f

(
ℓ
L

)
, ℓ ∈ Z, of a bandlimited function f ∈ BM/2(R)

are not known exactly, but rather erroneous samples f̃ℓ := f
(
ℓ
L

)
+ εℓ

with |εℓ| ≤ ε, ℓ ∈ Z, and ε > 0 are given. Then for T ∈ N we denote
the T -th partial sum with erroneous samples f̃ℓ by

(Pψ,T f̃)(x) :=
1

L

T∑

ℓ=−T

f̃ℓ ψ
(
x− ℓ

L

)
, x ∈ R.

Using this definition as well as (4.38) we have

(Pψ,T f̃)(x)− (Pψ,T f)(x) =
1

L

T∑

ℓ=−T

(
f̃ℓ − f

(
ℓ
L

))
ψ
(
x− ℓ

L

)

=
1

L

T∑

ℓ=−T

εℓ ψ
(
x− ℓ

L

)
, x ∈ R.
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Since we already know that 1
L

∣∣ψ
(
x− ℓ

L

)∣∣ < 1 for all x ∈ R and ℓ ∈ Z, the
uniform perturbation error can be estimated by

∥∥Pψ,T f̃ − Pψ,T f
∥∥
C0(R)

≤ max
x∈R

T∑

ℓ=−T

|εℓ| · 1
L

∣∣ψ
(
x− ℓ

L

)∣∣

≤ ε
T∑

ℓ=−T

1 = ε (2T + 1).

Thus, for fixed T ∈ N the T -th partial sum (4.38) is numerically robust.
However, since a lower bound similar to Theorem 4.7 is not yet known,
the numerical robustness of the regularization (4.36) in the Fourier domain
remains unclear. ⋄

Linear frequency window function

Now given the general results, let us consider some possible choices of win-
dow functions. A simple example of a window function (4.33) in frequency
domain is the linear frequency window function

ψ̂lin(v) :=





1 : |v| ≤ M
2 ,

1− 2|v|−M
L−M : M2 < |v| < L

2 ,

0 : |v| ≥ L
2 ,

(4.44)

cf. [Dau92, pp. 18–19], [Par97, pp. 210–212] or [SS00, Example 2]. Note
that in the trigonometric setting a function of the form (4.44) is also often
referred to as trapezoidal or de La Vallée-Poussin type window function,
respectively. Obviously, the window function ψ̂lin(v) is a continuous linear
spline supported on

[
−L

2 ,
L
2

]
, see Figure 4.1a. By (4.34) we obtain the

corresponding function in spatial domain as

ψlin(x) = 2

∫ M/2

0

cos(2πvx) dv + 2

∫ L/2

M/2

(
1− 2v −M

L−M

)
cos(2πvx) dv

=
1

(L−M) (πx)2
(
cos(Mπx)− cos(Lπx)

)

=
L+M

2
sinc

(
L+M

2 πx
)
sinc

(
L−M

2 πx
)
, x ∈ R \ {0}, (4.45)
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and ψlin(0) =
L+M

2 . This function 1
L ψlin is even, supported on whole R,

and has its maximum at x = 0 such that
∥∥∥∥
1

L
ψlin

∥∥∥∥
C0(R)

=
1

L
ψlin(0) =

L+M

2L
< 1.

In addition, the function 1
L ψlin(x) has a faster decay than sinc(Lπx)

for |x| → ∞, cf. Figure 4.1b, while for L→ +M we have

lim
L→+M

1

L
ψlin(x) = sinc(Mπx).

Moreover, for the linear frequency window function (4.44) we have the
following convergence result, cf. [KPT24, Theorem 3.4].

−L
2 −M

2
0 M

2
L
2

0

0.5

1

v

χ[−M
2
,M
2 ]
(v)

ψ̂lin(v)

(a) ψ̂lin in (4.44)

−10
L − 5

L
0 5

L
10
L

0

0.5

1

x

sinc(Lπx)
1
L
ψlin(x)

(b) 1
L
ψlin in (4.45)

Figure 4.1: The linear frequency window function (4.44) and its scaled
inverse Fourier transform (4.45).

Theorem 4.14. Let f ∈ BM/2(R) be a bandlimited function with band-
width M ∈ N and let L =M (1 + λ) ∈ N with λ > 0. Further assume that
the samples f

(
ℓ
L

)
, ℓ ∈ Z, fulfill the condition (4.35). Using oversampling

and regularization with the linear frequency window function (4.44), the
T -th partial sums Plin,T f converge uniformly to f on [−1, 1] as T → ∞.
For T > L we obtain the error estimate

max
x∈[−1, 1]

∣∣f(x)− (Plin,T f)(x)
∣∣ ≤

√
2L

3

2 (1 + λ)

π2λ
(T − L)−3/2 ∥f∥L2(R).

(4.46)
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Proof. By Theorem 4.10 we only have to check the decay rate of the
function ψlin corresponding to the linear frequency window function (4.44).
It can easily be seen that ψlin in (4.45) satisfies the decay condition

∣∣ψlin(x)
∣∣ ≤ 2

Mλπ2
|x|−2, x ∈ R \ {0},

and thus (4.40) implies the estimate (4.46).

Higher order frequency window functions by means of interpolation

In order to obtain convergence rates better than the one in Theorem 4.14,
one may consider frequency window functions (4.33) of higher smoothness,
cf. Corollary 4.12. Therefore, our next step is to construct a continuously
differentiable frequency window function by polynomial interpolation as
done in [KPT24]. Since the frequency window function (4.33) is even, it
suffices to consider ξ :

[
M
2 ,

L
2

]
→ [0, 1] only at the interval boundaries M

2

and L
2 . Clearly, the linear frequency window function ψ̂lin in (4.44) fulfills

lim
v→M

2

ξ(v) = 1, lim
v→L

2

ξ(v) = 0.

Thus, to obtain a smoother frequency window function, we need to addi-
tionally satisfy the first order conditions

lim
v→M

2

ξ′(v) = 0, lim
v→L

2

ξ′(v) = 0.

Then the corresponding interpolation polynomial yields the cubic frequency
window function

ψ̂cub(v) :=





1 : |v| ≤ M
2 ,

16
(L−M)3

(
|v| − L

2

)2(|v| − 3M−L
4

)
: M2 < |v| < L

2 ,

0 : |v| ≥ L
2 ,

(4.47)

see Figure 4.2a. By (4.34) the inverse Fourier transform of (4.47) is given
by

ψcub(x) =
L+M

2
sinc

(
L+M

2 πx
)
· 12

(
sinc

(
L−M

2 πx
)
− cos

(
L−M

2 πx
))

π2x2(L−M)2

(4.48)
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for x ∈ R \ {0} and ψcub(0) =
L+M

2 , cf. Figure 4.2b. Hence, analogous to
Theorem 4.10, the following error estimate can be derived, cf. also [KPT24,
Theorem 3.7].

Theorem 4.15. Let f ∈ BM/2(R) be a bandlimited function with band-
width M ∈ N and let L =M (1 + λ) ∈ N with λ > 0. Further assume that
the samples f

(
ℓ
L

)
, ℓ ∈ Z, fulfill the condition (4.35). Using oversampling

and regularization with the cubic frequency window function (4.47), the
T -th partial sums Pcub,T f converge uniformly to f on [−1, 1] as T → ∞.
For T > L the following estimate holds

max
x∈[−1, 1]

∣∣f(x)− (Pcub,T f)(x)
∣∣ ≤

√
2L

5

14 (1 + λ)2

π3λ2
(T − L)−5/2 ∥f∥L2(R).

(4.49)

Proof. By Theorem 4.10 we only have to check the decay of the func-
tion ψcub corresponding to the cubic frequency window function (4.47). It
can easily be seen by graphical representation that ψcub in (4.48) satisfies
the decay condition

∣∣ψcub(x)
∣∣ ≤ 14

π3(L−M)2
|x|−3, x ∈ R \ {0},

and thus (4.40) implies the estimate (4.49).

Remark 4.16. Another continuously differentiable frequency window func-
tion is given in [Rap96] as the raised cosine frequency window function

ψ̂cos(v) :=





1 : |v| ≤ M
2 ,

1
2 + 1

2 cos
(

2|v|−M
L−M π

)
: M2 < |v| < L

2 ,

0 : |v| ≥ L
2 ,

(4.50)

see Figure 4.2a. By (4.34) the corresponding function in spatial domain
can be determined as

ψcos(x) =
L+M

2
sinc

(
L+M

2 πx
)
· cos

(
L−M

2 πx
)

1− x2(L−M)2
, x ∈ R \

{
± 1

L−M
}
,

(4.51)
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and ψcos

(
± 1
L−M

)
= L−M

4 cos
(
Mπ
L−M

)
, cf. also [SS00, Example 6]

and [QO05, Corollary 2.1], see Figure 4.2b. Note that graphical repre-
sentation shows that this function ψcos satisfies the decay condition

∣∣ψcos(x)
∣∣ ≤ 2

π(L−M)2
|x|−3, x ∈ R \ {0},

and thus (4.40) implies an error decay of the same rate as in (4.49), but
with a slightly larger constant. By Corollary 4.12 this can also be seen
in (4.50) and (4.47), since ψ̂cos ∈ C1(R) and ψ̂cub ∈ C1(R) possess the same
regularity, and therefore both frequency window functions meet the same
error bound (4.49), cf. Figure 4.16. ⋄
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(a) ψ̂cub and ψ̂cos
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Figure 4.2: The frequency window functions (4.47) and (4.50), and their
scaled inverse Fourier transforms (4.48) and (4.51).

Higher order frequency window functions by means of convolution

Note that by (4.45) and the convolution property

(f ∗ g)̂ = f̂ ĝ ∈ C0(R), f, g ∈ L1(R), (4.52)

of the Fourier transform, where for f, g ∈ L1(R) the convolution is defined
by

(f ∗ g)(x) :=
∫

R
f(x− t) g(t) dt, x ∈ R,
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the linear frequency window function (4.44) can be written as

ψ̂lin(v) =
2

L−M

(
χ[−L+M

4 , L+M
4 ] ∗ χ[−L−M

4 , L−M
4 ]

)
(v).

Therefore, instead of determining smoother frequency window functions of
the form (4.33) by means of interpolation, they can also be constructed by
means of convolution, cf. [Nat86b] and [KPT24, Lemma 3.9].

Lemma 4.17. Let L > M be given. Further assume that ρ : R → [0, ∞) is an
even integrable function with supp(ρ) =

[
−L−M

4 , L−M4
]
and

∫
R ρ(v) dv = 1.

Then the convolution

ψ̂conv(v) =
(
χ[−L+M

4 , L+M
4 ] ∗ ρ

)
(v), v ∈ R, (4.53)

is a frequency window function of the form (4.33).

Proof. By assumption we have ρ ∈ L1(R). Since χ[−L+M
4 , L+M

4 ] ∈ L1(R) as

well, their convolution ψ̂conv ∈ L1(R) can be written as

ψ̂conv(v) =

∫ (L+M)/4

−(L+M)/4

ρ(v − w) dw =

∫ v+(L+M)/4

v−(L+M)/4

ρ(w) dw. (4.54)

Since the convolution of two even functions is again an even function, it is
sufficient to consider (4.54) only for v ≥ 0.
For v ∈

[
0, M2

]
we have v − L+M

4 ≤ −L−M
4 < L−M

4 ≤ v + L+M
4 and

thus the assumption supp(ρ) =
[
−L−M

4 , L−M4
]
yields

ψ̂conv(v) =

∫ (L−M)/4

−(L−M)/4

ρ(w) dw = 1, v ∈
[
0, M2

]
.

For v ∈
[
M
2 ,

L
2

]
we can write

ψ̂conv(v) =

∫ (L−M)/4

v−(L+M)/4

ρ(w) dw ≥ 0, v ∈
[
M
2 ,

L
2

]
,

where ψ̂conv

(
M
2

)
= 1, ψ̂conv

(
L
2

)
= 0, and ψ̂conv :

[
M
2 ,

L
2

]
→ [0, 1] is

monotonously non-increasing, since ρ(w) ≥ 0 for all w ∈ R by assump-
tion. Finally, for v ∈

[
L
2 , ∞

)
we have v − L+M

4 ≥ L−M
4 , which implies by

assumption supp(ρ) =
[
−L−M

4 , L−M4
]
that

ψ̂conv(v) =

∫ v+(L+M)/4

v−(L+M)/4

ρ(w) dw = 0, v ≥ L
2 .
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Thus, the window function ψ̂conv defined by (4.53) is of the form (4.33).

Given such a frequency window function ψ̂conv in (4.53), its inverse
Fourier transform (4.34) is known by the convolution property (4.52) as

ψconv(x) =
L+M

2
sinc

(
L+M

2 πx
)
ρ̌(x). (4.55)

Thus, to obtain a suitable window function (4.53), we need to assure that
the inverse Fourier transform

ρ̌(x) =

∫

R
ρ(v) e2πixv dv =

∫ (L−M)/4

−(L−M)/4

ρ(v) e2πixv dv

of ρ is explicitly known.

Remark 4.18. We remark that the frequency window functions ψ̂cub in (4.47)

and ψ̂cos in (4.50) lack a convolutional representation (4.53). Although
the corresponding functions (4.48) and (4.51) in spatial domain are of
the form (4.55), for both frequency windows the Fourier transform of the
respective function ρ̌ is not explicitly known (only in the sense of tempered
distributions, cf. Section 6.1.3). ⋄
As before, proper error estimates for the convolutional frequency win-

dow function ψ̂conv in (4.53) can be achieved by means of Theorem 4.10.
However, note that Lemma 4.12 is not applicable in this setting, since the
smoothness properties of the function ξ in (4.33) are unknown. Neverthe-
less, it can be shown that the smoothness of the window function (4.53)
in spatial domain as well as the decay of the respective function (4.55) is
determined by the smoothness of the chosen function ρ in (4.53), as the
following lemma shows.

Lemma 4.19. For r > 0 let the function ρ in (4.53) satisfy ρ ∈ Cr−1(R)
as well as ρ ∈ Cr+1(R \

{
− L−M

4 , L−M4
}
). Then ψ̂conv ∈ Cr(R) and the

corresponding function ψconv in (4.55) in spatial domain fulfills the decay
condition (4.39).

Proof. Obviously, the function ρ is integrable, since ρ ∈ C(R) by assump-
tion. Let P be an antiderivative of ρ, then the representation (4.54) yields

ψ̂′
conv(v) =

(∫ v+(L+M)/4

v−(L+M)/4

ρ(w) dw

)′

=
(
P
(
v + L+M

4

)
− P

(
v − L+M

4

))′
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= ρ
(
v + L+M

4

)
− ρ
(
v − L+M

4

)
∈ Cr−1(R),

such that ψ̂conv ∈ Cr(R).
In addition, analogous to the proof of Corollary 4.12, it can be shown

that by ρ ∈ Cr−1(R) we have ρ(r−1)
(
± L−M

4

)
= 0, and therefore

|ρ̌(x)| ≤ cρ |x|−(r+1), x ∈ R \ {0}.
Since it is additionally known that

χ̌[−L+M
4 , L+M

4 ] = χ̂[−L+M
4 , L+M

4 ] =
L+M

2
sinc

(
L+M

2 πx
)
,

we obtain

|ψconv(x)| =
∣∣∣
(
χ[−L+M

4 , L+M
4 ] ∗ ρ

)̌
(x)
∣∣∣

=
∣∣∣χ̌[−L+M

4 , L+M
4 ](x) · ρ̌(x)

∣∣∣ ≤ 1

π|x| · cρ |x|
−(r+1)

and thus the assertion.

For the special choice of ρn(v) =
2n

L−M Bn
(

2n
L−M v

)
with n ∈ N, where Bn

is the centered cardinal B–spline of order n, cf. [SS00, Example 3], we have

ρ̌n(x) =
(
sinc

(
L−M
2n πx

))n
. (4.56)

The corresponding convolutional frequency window functions (4.53) shall

be denoted as ψ̂conv,n and their inverse Fourier transforms (4.55) as ψconv,n,
see Figure 4.3 for a visualization for n ∈ {1, . . . , 6}. Note that using n = 1
again yields (4.45), whereas for n = 2 we obtain

ψconv,2(x) =
L+M

2
sinc

(
L+M

2 πx
) (

sinc
(
L−M

4 πx
))2

. (4.57)

It is easy to see that this function (4.57) satisfies the decay condition

∣∣ψconv,2(x)
∣∣ ≤ 16

π3(L−M)2
|x|−3, x ∈ R \ {0},

and thus (4.40) implies an error decay of the same rate as in (4.49), but with
a slightly larger constant. This can also be seen by Corollary 4.12, since
ψ̂conv,2 ∈ C1(R) in (4.57) possesses the same regularity as ψ̂cub ∈ C1(R)
in (4.47) and ψ̂cos ∈ C1(R) in (4.50), and therefore they all meet the same
error bound (4.49), cf. Figure 4.16.
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Figure 4.3: The convolutional frequency window functions ψ̂conv,n in (4.53)
with ρn(v) =

2n
L−M Bn

(
2n

L−M v
)
for n ∈ {1, . . . , 6}, and their

scaled inverse Fourier transforms (4.55).

Remark 4.20. Note that the convolutional frequency window func-
tions ψ̂conv,n as well as their inverse Fourier transforms ψconv,n are properly
defined for all n ∈ N. Therefore, one could attempt to find an infinitely dif-
ferentiable frequency window function ψ̂conv,n with accompanying rapidly
decaying function in time domain ψconv,n by sending n→ ∞. To com-
pute the corresponding limit of (4.56) we set a := L−M

2 π and define the
sequence β(n) := sinc

(
ax
n

)
− 1, i. e., we consider

lim
n→∞

(
sinc

(
ax
n

))n
= lim
n→∞

[(
1 + β(n)

) 1
β(n)

]n·β(n)
.

Obviously, the term in brackets tends to e, such that we only need to
compute the limit of the exponent. By substituting y = 1

n we see that this
exponent can be written as

n · β(n) = sinc
(
ax
n

)
− 1 =

sin(axy)
axy − 1

y
=

sin(axy)− axy

axy2
.

As n→ ∞ we have y → 0, such that both numerator and denominator of
this term tend to zero. Thus, applying the rule of l’Hospital twice, the
limit of the exponent can be computed by

lim
y→0

sin(axy)− axy

axy2
= lim
y→0

ax cos(axy)− ax

2axy
= lim
y→0

−a2x2 sin(axy)

2ax
= 0.
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For (4.56) we thereby obtain

lim
n→∞

ρ̌n(x) = lim
n→∞

[(
1 + β(n)

) 1
β(n)

]n·β(n)
= e0 = 1, x ∈ R,

yielding

ψconv,∞(x) := lim
n→∞

ψconv,n(x) =
L+M

2
sinc

(
L+M

2 πx
)
, (4.58)

which obviously has slower decay than ψconv,n for all n ∈ N. This is to say,
although ψconv,n is defined for all n ∈ N and the limit for n→ ∞ exists,
this approach does not provide a rapidly decaying function and therefore
fast convergence of (4.38). ⋄

Remark 4.21. Also in the literature several attempts were made to achieve
an infinitely differentiable frequency window function ψ̂conv in (4.53) with
accompanying rapidly decaying function (4.55). For instance, in [Nat86b]
the infinitely differentiable function

ρ∞(v) =

{
c exp

([(
4v

L−M
)2 − 1

]−1)
: |v| < L−M

4 ,

0 : otherwise,

with the scaling factor

c =
1

2

(∫ (L−M)/4

0

exp
([(

4v
L−M

)2 − 1
]−1)

dv

)−1

is considered. The corresponding frequency window function (4.53) is

denoted by ψ̂∞. However, since for this function ρ∞ the inverse Fourier
transform ρ̌∞ cannot explicitly be stated, the function (4.55) in spatial
domain can only be approximated, which was done by a piecewise rational
approximation ρ̌rat in [Nat86b]. We remark that because of this additional
approximation a numerical decay of the expected rate is doubtful, since
the issue of robustness of the corresponding regularized Shannon series
remained unclear. This effect can also be seen in Figure 4.16, where the
corresponding frequency window function (4.53), denoted by ψ̂rat, shows
similar behavior as the classical Shannon sampling sums (4.12).
A similar comment applies to [ST05], where an infinitely differentiable

window function ψ̂ is aimed for as well. Since no such ψ̂ with explicit
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inverse Fourier transform (4.34) is known, in [ST05] the function ψ in
spatial domain is estimated with some Gabor approximation. Although
an efficient computation scheme via fast Fourier transform (FFT) was
introduced in [ST06], the numerical nonrobustness of this approximation
seems to be neglected in this work as well. ⋄

Summary

Finally, it should be noted that it has already been established in [Dau92,

p. 19] that a faster decay than for ψ̂lin in (4.44) can be obtained by

choosing ψ̂ in (4.33) smoother, but at the price of a very large constant.
This can also be seen in Figure 4.16, where the results for the window
functions ψ̂cub in (4.47), ψ̂cos in (4.50), ψ̂conv,n with n ∈ {2, 3, 4}, cf. (4.57),
and ψ̂rat from Remark 4.21 are plotted as well. For this reason many authors
such as [Dau92, Par97] restricted themselves to the linear frequency window

function ψ̂lin in (4.44).
In contrast, we have reviewed several existing approaches and proposed

general convergence results based on a rigorous analysis of the respective
properties. Additionally, we have put special emphasis on the relations
among the considered approaches. For a comparison of the theoretical
error decay rates of the frequency window functions we refer to Table 4.1
in Section 4.3.3, while a visualization of the error decay rates can be
found in Examples 4.67 and 4.68. However, so far, only approaches with
algebraic error decay rates are known, and all attempts to design infinitely
differentiable window functions have seemingly been unsuccessful. Note
that the numerical results in Figure 4.16 also encourage the suggestion that
in practice only algebraic decay rates are achievable for the regularization
with a frequency window function.

4.3.2 Regularization with a window function in spatial
domain

In order to obtain preferably better decay rates, we now consider a second
regularization technique, namely regularization with a convenient window
function in the spatial domain as done in [KPT22, KPT24].
For this purpose, we introduce the set Φ of all window functions

φ : R → [0, 1] with the following properties:
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• The window function φ belongs to L1(R) ∩ C0(R) and is even.

• The function φ restricted to [0, ∞) is monotonously non-increasing with
φ(0) = 1.

Note that it is especially beneficial for obtaining explicit error estimates
(cf. Theorems 4.24, 4.25 and 4.29), if the Fourier transform

φ̂(v) =

∫

R
φ(x) e−2πivx dx = 2

∫ ∞

0

φ(x) cos(2πvx) dx , v ∈ R , (4.59)

of φ ∈ Φ is explicitly known.

Remark 4.22. As examples of such window functions we consider the
Gaussian window function

φGauss(x) := e−x
2/(2α2), x ∈ R, (4.60)

with some α > 0, the modified B–spline window function

φB(x) :=
1

B2s(0)
B2s

(
Lxs

m

)
, x ∈ R, (4.61)

where B2s is the centered cardinal B–spline of even order 2s ∈ N and m ∈ N
with 2m≪ L, the sinh-type window function

φsinh(x) :=





1
sinh β sinh

(
β

√
1−

(
Lx
m

)2 )
: x ∈

[
−m
L ,

m
L

]
,

0 : x ∈ R \
[
−m
L ,

m
L

]
,

(4.62)

with certain β > 0, and the continuous Kaiser–Bessel window function

φcKB(x) :=





1
I0(β)−1

(
I0

(
β

√
1−

(
Lx
m

)2 )− 1

)
: x ∈

[
−m
L ,

m
L

]
,

0 : x ∈ R \
[
−m
L ,

m
L

]
,

(4.63)

with certain β > 0, where I0 denotes the modified Bessel function of first
kind . All these window functions are well-studied, see e. g. [PT21b] and
references therein, in the context of the nonequispaced fast Fourier transform
(NFFT), cf. Section 2. ⋄
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Then, for a fixed window function φ ∈ Φ we study the regularized Shannon
sampling formula

(Rφf)(x) :=
∑

ℓ∈Z
f
(
ℓ
L

)
sinc

(
Lπ
(
x− ℓ

L

))
φ
(
x− ℓ

L

)
, x ∈ R. (4.64)

Since by assumption φ(0) = 1 and sinc(π(k − ℓ)) = δk,ℓ for all k, ℓ ∈ Z with
the Kronecker symbol δk,ℓ, we obtain

sinc
(
Lπ
(
x− ℓ

L

))
φ
(
x− ℓ

L

) ∣∣
x= k

L

= δk,ℓ.

Therefore, this procedure Rφf is an interpolating approximation of f on
1
L Z, i. e., we have

f
(
k
L

)
= (Rφf)

(
k
L

)
, k ∈ Z. (4.65)

Before proceeding with error estimates of the regularized Shannon sam-
pling formula (4.64), we need the following lemma on the convolution prop-
erty of the Fourier transform in L2(R). Note that for f, g ∈ L2(R) the convo-
lution property of the Fourier transform is not true in the form (4.52), since

by Young’s inequality f ∗ g ∈ C0(R) and by Hölder’s inequality f̂ ĝ ∈ L1(R),
but the Fourier transform does not map C0(R) onto L1(R). Instead, it
was shown in [KPT22, Lemma 2.1 and Lemma 2.2] that the convolution
property of the Fourier transform in L2(R) has the following form.

Lemma 4.23. For all f, g ∈ L2(R) we have

f ∗ g = (f̂ ĝ)̌ ∈ C0(R),

f̂ ∗ ĝ = (f g)̂ ∈ C0(R). (4.66)

Proof. See [KPT22, Lemma 2.1 and Lemma 2.2].

Now we estimate the uniform regularization error

∥f −Rφf∥C0(R) := max
x∈R

∣∣f(x)− (Rφf)(x)
∣∣

of the regularized Shannon sampling formula (4.64), cf. [KPT22, Theo-
rem 3.2].
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Theorem 4.24. Let f ∈ BM/2(R) with M,L ∈ N and L > M be given. Fur-
ther let φ ∈ Φ be a given window function. Then the regularized Shannon
sampling formula (4.64) satisfies

∥f −Rφf∥C0(R) ≤
√
M max

v∈[−M
2 ,

M
2 ]

∣∣∣∣1−
∫ v+L/2

v−L/2
φ̂(u) du

∣∣∣∣ ∥f∥L2(R)

=: Er(φ,M,L) ∥f∥L2(R). (4.67)

Proof. For the regularized Shannon sampling formula (4.64) we define the
regularization error

er(x) := f(x)− (Rφf)(x) = f(x)−
∑

ℓ∈Z
f
(
ℓ
L

)
ψ
(
x− ℓ

L

)
, x ∈ R, (4.68)

with the regularized sinc function

ψ(x) := sinc(Lπx)φ(x). (4.69)

By Lemma 4.23, the Fourier transform of ψ reads as

ψ̂(v) =
1

L

∫

R
χ[−L

2 ,
L
2 ]
(v − u) φ̂(u) du =

1

L

∫ v+L/2

v−L/2
φ̂(u) du. (4.70)

Hence, using the shifting property of the Fourier transform, the Fourier
transform of ψ

(
· − ℓ

L

)
is given by

1

L
e−2πivℓ/L

∫ v+L/2

v−L/2
φ̂(u) du.

Therefore, the Fourier transform of the regularization error (4.68) has the
form

êr(v) = f̂(v)−
(∑

ℓ∈Z
f
(
ℓ
L

) 1

L
e−2πivℓ/L

) ∫ v+L/2

v−L/2
φ̂(u) du, v ∈ R.

(4.71)

Since f ∈ BM/2(R), it is known that f̂ can be represented by (4.37) as

f̂(v) = f̂(v)χ[−M
2 ,

M
2 ]
(v)

=

(∑

k∈Z

1

L
f
(
k
L

)
e−2πikv/L

)
χ[−M

2 ,
M
2 ]
(v), v ∈ R.
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Inserting this into (4.71) we see that êr(v) = f̂(v) η(v) with the auxiliary
function

η(v) := χ[−M
2 ,

M
2 ]
(v)−

∫ v+L/2

v−L/2
φ̂(u) du, v ∈ R, (4.72)

and thereby |êr(v)| ≤ |f̂(v)| |η(v)|. Thus, by inverse Fourier transform (4.4)
we get

|er(x)| =
∣∣∣∣
∫

R
êr(v) e

2πixv dv

∣∣∣∣ ≤
∫

R
|êr(v)| dv ≤

∫ M/2

−M/2

|f̂(v)| |η(v)| dv

≤ max
v∈[−M

2 ,
M
2 ]

|η(v)|
∫ M/2

−M/2

|f̂(v)| dv, x ∈ R.

Using the Cauchy–Schwarz inequality and Parseval’s identity, we see that

∫ M/2

−M/2

|f̂(v)| dv ≤
(∫ M/2

−M/2

12 dv

)1/2(∫ M/2

−M/2

|f̂(v)|2 dv
)1/2

=
√
M ∥f̂∥L2(R) =

√
M ∥f∥L2(R).

In summary, this yields

∥er∥C0(R) ≤ Er(φ,M,L) ∥f∥L2(R)

with the regularization error constant (4.67).

Nevertheless, we recognize that the evaluation of the regularized Shannon
sampling formula (4.64) still requires an infinite number of samples f

(
ℓ
L

)
,

ℓ ∈ Z. Therefore, in practice we have to deal with a truncated version
of (4.64) as well.

Similar to (4.12) and (4.38), one could consider a uniform truncation by
introducing a truncation parameter T ∈ N and studying the partial sums

(Rφ,T f)(x) :=
T∑

ℓ=−T

f
(
ℓ
L

)
sinc

(
Lπ
(
x− ℓ

L

))
φ
(
x− ℓ

L

)
, x ∈ R.

However, as before, in this case bounds on the uniform approximation error
∥f −Rφ,T f∥C0(R) are unattainable and only weaker results of the form

max
x∈[−1, 1]

∣∣f(x)− (Rφ,T f)(x)
∣∣



146 4 Regularized Shannon sampling formulas

can be obtained, cf. Sections 4.2 and 4.3.1. Therefore, to achieve uniform
error bounds and faster decay rates, a different approach is taken here.

In view of the slow convergence of the sinc function it has been pro-
posed to modify the Shannon sampling series (4.15) by multiplying the
sinc function with a more convenient window function, cf. e. g. [Qia03,
LZ17]. For this purpose, for a given window function φ ∈ Φ and m ∈ N
with 2m≪ L we now define the truncated window function

φm(x) := φ(x)χ[−m
L ,

m
L ]
(x), x ∈ R, (4.73)

and study the regularized Shannon sampling formula with localized sampling

(Rφ,mf)(x) :=
∑

ℓ∈Z
f
(
ℓ
L

)
sinc

(
Lπ
(
x− ℓ

L

))
φm
(
x− ℓ

L

)
, x ∈ R. (4.74)

Note that the truncation of the window function φ ∈ Φ preserves the
interpolation property (4.65), i. e., we still have

f
(
k
L

)
= (Rφ,mf)

(
k
L

)
, k ∈ Z. (4.75)

Furthermore, the use of the compactly supported window func-
tion φm in (4.73) leads to localized sampling of the bandlimited func-
tion f ∈ BM/2(R). Namely, due to the definition of the characteristic
function χ[−m

L ,
m
L ]
, the computation of (Rφ,mf)(x) requires only 2m+ 1

samples f
(
ℓ
L

)
for fixed x ∈ R \ 1

L Z, where ℓ ∈ Z fulfills the condi-
tion |ℓ− Lx| ≤ m. Therefore, we approximate f by Rφ,mf separately
on each open interval

(
k
L ,

k+1
L

)
, k ∈ Z. Especially for x ∈

(
0, 1

L

)
, the

regularized Shannon sampling formula with localized sampling (4.74) reads
as

(Rφ,mf)(x) =
∑

ℓ∈Jm

f
(
ℓ
L

)
sinc

(
Lπ
(
x− ℓ

L

))
φm
(
x− ℓ

L

)

=
∑

ℓ∈Jm

f
(
ℓ
L

)
ψ
(
x− ℓ

L

)

with the regularized sinc function (4.69) and the index set

Jm := {−m+ 1, −m+ 2, . . . , m}. (4.76)
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For the reconstruction of f on any open interval
(
k
L ,

k+1
L

)
with k ∈ Z, we

use the representation

(Rφ,mf)
(
x+ k

L

)
=
∑

ℓ∈Jm

f
(
ℓ+k
L

)
ψ
(
x− ℓ

L

)
, x ∈

(
0, 1

L

)
. (4.77)

This concept of regularized Shannon sampling formulas with localized
sampling has already been studied by numerous authors. A survey of
different approaches for window functions can be found in [Qia04], while
the prominent Gaussian window function (4.60) was examined for example
in [Qia03, QC06a, QC06b, SS07, TSM08, LZ17, CZ19]. In the following,
we will focus on the window functions φ ∈ Φ mentioned in Remark 4.22,
similar to the approach in [KPT22, KPT24].
Analogous to [KPT22, Theorem 3.2], the uniform approximation error

∥f −Rφ,mf∥C0(R) := max
x∈R

∣∣f(x)− (Rφ,mf)(x)
∣∣ (4.78)

of the regularized Shannon sampling formula with localized sampling (4.74)
can be estimated for given f ∈ BM/2(R) and φ ∈ Φ as follows.

Theorem 4.25. Let f ∈ BM/2(R) withM ∈ N, L =M(1 + λ)∈ N with λ ≥ 0
and m ∈ N \ {1}. Further let φ ∈ Φ with the truncated window func-
tion (4.73) be given. Then the regularized Shannon sampling formula
with localized sampling (4.74) satisfies

∥f −Rφ,mf∥C0(R) ≤
(
Er(φ,M,L) + Et(φ,m,L)

)
∥f∥L2(R), (4.79)

with the regularization error constant (4.67) and the truncation error con-
stant

Et(φ,m,L) :=

√
2L

π

(
1

m2
φ2
(
m
L

)
+

1

L

∫ ∞

m/L

φ2(t)

t2
dt

)1/2

. (4.80)

Proof. Initially, we consider only the interval
[
0, 1

L

]
. Here we split the

approximation error

f(x)− (Rφ,mf)(x) = er(x) + et,0(x), x ∈
[
0, 1

L

]
,

into the regularization error (4.68) and the truncation error

et,0(x) := (Rφf)(x)− (Rφ,mf)(x), x ∈
[
0, 1

L

]
.
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Since the regularization error (4.68) has already been estimated in (4.67),
only the truncation error has to be considered. For x ∈

(
0, 1

L

)
we have

by (4.64) and (4.74) that

et,0(x) =
∑

ℓ∈Z
f
(
ℓ
L

)
sinc

(
Lπ
(
x− ℓ

L

))
φ
(
x− ℓ

L

) [
1− χ[−m

L ,
m
L ]
(
x− ℓ

L

)]

=
∑

ℓ∈Z\Jm

f
(
ℓ
L

)
sinc

(
Lπ
(
x− ℓ

L

))
φ
(
x− ℓ

L

)
.

Now we introduce the auxiliary function

hm(x) :=
∑

ℓ∈Z\Jm

1

π2 |Lx− ℓ|2 φ
2
(
x− ℓ

L

)
≥ 0, x ∈

[
0, 1

L

]
. (4.81)

Then the Cauchy–Schwarz inequality and (4.9) imply

|et,0(x)| ≤
∑

ℓ∈Z\Jm

∣∣f
(
ℓ
L

)∣∣ ∣∣sinc
(
Lπ
(
x− ℓ

L

))
φ
(
x− ℓ

L

)∣∣

≤
√ ∑

ℓ∈Z\Jm

∣∣f
(
ℓ
L

)∣∣2 ·
√ ∑

ℓ∈Z\Jm

[
sinc

(
Lπ
(
x− ℓ

L

))
φ
(
x− ℓ

L

)]2

≤
√
L ∥f∥L2(R)

√
hm(x).

Since φ|[0,∞) is monotonously non-increasing by assumption φ ∈ Φ, we can

estimate the series hm(x) for x ∈
(
0, 1

L

)
by

hm(x) =
1

π2

( −m∑

ℓ=−∞

+
∞∑

ℓ=m+1

)
φ2
(
x− ℓ

L

)

|Lx− ℓ|2

=
1

π2

( ∞∑

ℓ=m

φ2
(
x+ ℓ

L

)

|Lx+ ℓ|2 +
∞∑

ℓ=m+1

φ2
(
x− ℓ

L

)

|Lx− ℓ|2

)

≤ 1

π2

( ∞∑

ℓ=m

φ2
(
ℓ
L

)

ℓ2
+

∞∑

ℓ=m+1

φ2
(
ℓ−1
L

)

(ℓ− 1)2

)
=

2

π2

∞∑

ℓ=m

φ2
(
ℓ
L

)

ℓ2
. (4.82)
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Using the integral test for convergence of series (see Lemma 4.5), we obtain
that

∞∑

ℓ=m

φ2
(
ℓ
L

)

ℓ2
=
φ2
(
m
L

)

m2
+

∞∑

ℓ=m+1

φ2
(
ℓ
L

)

ℓ2
<
φ2
(
m
L

)

m2
+

1

L

∫ ∞

m/L

φ2(t)

t2
dt.

(4.83)

By the interpolation property (4.75) ofRφ,mf we have et,0(0) = et,0
(
1
L

)
= 0,

such that we obtain by (4.80) that

max
x∈[0,1/L]

|et,0(x)| ≤ Et(φ,m,L) ∥f∥L2(R).

By the same technique, this error estimate can be shown for each inter-
val

[
k
L ,

k+1
L

]
with k ∈ Z. On any open interval

(
k
L ,

k+1
L

)
with k ∈ Z, we

split the error by (4.77) as

f
(
x+ k

L

)
− (Rφ,mf)

(
x+ k

L

)
= er

(
x+ k

L

)
+ et,k(x), x ∈

(
0, 1

L

)
,

with the regularization error (4.68) and the truncation errors

et,k(x) :=
∑

ℓ∈Z\Jm

f
(
ℓ+k
L

)
ψ
(
x− ℓ

L

)
.

As shown above, we have

|et,k(x)| ≤ Et(φ,m,L) ∥f∥L2(R), x ∈
(
0, 1

L

)
,

and et,0
(
k
L

)
= et,0

(
k+1
L

)
= 0 for each k ∈ Z by the interpolation property

of Rφ,mf . Hence, it follows that

max
x∈[k/L, (k+1)/L]

|f(x)− (Rφ,mf)(x)| ≤ ∥er∥C0(R) + max
x∈[0, 1/L]

|et,k(x)|

≤
(
Er(φ,M,L) + Et(φ,m,L)

)
∥f∥L2(R).

This completes the proof.

Note that it is especially beneficial for the estimation of the error con-
stant (4.67), if the Fourier transform (4.59) of φ ∈ Φ is explicitly known.
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Corollary 4.26. The error estimate of Theorem 4.25 can be simplified, if
the window function φ ∈ Φ vanishes on R \

[
−m
L ,

m
L

]
. Then the trunca-

tion errors et,k(x) are equal to zero for all x ∈
(
0, 1

L

)
and k ∈ Z, such

that Et(φ,m,L) = 0. For such window functions φ ∈ Φ we obtain the
simple error estimate

∥f −Rφ,mf∥C0(R) ≤ Er(φ,M,L) ∥f∥L2(R).

Remark 4.27. Note that Corollary 4.26 applies to the modified B–spline
window function (4.61), the sinh-type window function (4.62), and the con-
tinuous Kaiser–Bessel window function (4.63). The only window function of
Remark 4.22, where Corollary 4.26 does not hold, is the Gaussian window
function (4.60), since φGauss does not vanish. ⋄
Remark 4.28. Additionally, note that although the constant window func-
tion

φconst(x) := 1, x ∈ R, (4.84)

does not meet the criteria of the set Φ, since it is neither in L1(R) ∩ C0(R)
nor does it have an explicit Fourier transform, one can still use Theorem 4.25
to obtain a suitable error estimate for this window function. Since no
regularization is done for the constant window function (4.84), we obviously
have Er(φ,M,L) = 0. Then Theorem 4.25 provides an estimate of the
truncation error as

∥f −Rconst,mf∥C0(R) ≤ Et(φ,m,L) ∥f∥L2(R) =

√
2L

π

√
1

m
+

1

m2
∥f∥L2(R),

which can be seen as a consequence of a result in [MXZ09]. In other words,
only using localized sampling without further regularization is not sufficient
to obtain fast convergence results for the Shannon sampling series (4.15). ⋄

Now let us move on to the numerical robustness. As seen in Theorem 4.7,
if the samples f

(
ℓ
L

)
, ℓ ∈ Z, of a bandlimited function f ∈ BM/2(R) are not

known exactly, i. e., only erroneous samples f̃ℓ := f
(
ℓ
L

)
+ εℓ with |εℓ| ≤ ε,

ℓ ∈ Z, and ε > 0 are available, the corresponding Shannon sampling se-
ries (4.15) may differ appreciably from f . Here we denote the regularized
Shannon sampling formula with erroneous samples f̃ℓ by

(Rφ,mf̃)(x) =
∑

ℓ∈Z
f̃ℓ sinc

(
Lπ
(
x− ℓ

L

))
φm
(
x− ℓ

L

)
, x ∈ R. (4.85)
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Then, in contrast to the Shannon sampling series (4.15), the regularized
Shannon sampling formula with localized sampling (4.74) is numerically
robust, i. e., the uniform perturbation error

∥Rφ,mf̃ −Rφ,mf∥C0(R) (4.86)

is small, as the following theorem shows, cf. [KPT22, Theorem 3.4].

Theorem 4.29. Let f ∈ BM/2(R) withM ∈ N, L =M(1 + λ)∈ N with λ ≥ 0
and m ∈ N \ {1} be given. Further let φ ∈ Φ with the truncated window
function (4.73) as well as f̃ℓ = f

(
ℓ
L

)
+ εℓ, where |εℓ| ≤ ε for all ℓ ∈ Z,

with ε > 0. Then the regularized Shannon sampling sum with localized
sampling (4.74) satisfies

∥Rφ,mf̃ −Rφ,mf∥C0(R) ≤ ε
(
2 + L φ̂(0)

)
, (4.87)

∥f −Rφ,mf̃∥C0(R) ≤ ∥f −Rφ,mf∥C0(R) + ε
(
2 + L φ̂(0)

)
. (4.88)

Proof. Initially, we only consider the interval
[
0, 1

L

]
. By (4.74) and (4.85)

we have

ẽ0(x) := (Rφ,mf̃)(x)− (Rφ,mf)(x)

=
∑

ℓ∈Z

(
f̃ℓ − f

(
ℓ
L

))
sinc

(
Lπ
(
x− ℓ

L

))
φm
(
x− ℓ

L

)

=
∑

ℓ∈Jm

εℓ sinc
(
Lπ
(
x− ℓ

L

))
φm
(
x− ℓ

L

)
, x ∈

(
0, 1

L

)
.

Using the non-negativity of φ and |εℓ| ≤ ε, we receive

|ẽ0(x)| ≤
∑

ℓ∈Jm

|εℓ|
∣∣sinc

(
Lπ
(
x− ℓ

L

))∣∣φ
(
x− ℓ

L

)
≤ ε

∑

ℓ∈Jm

φ
(
x− ℓ

L

)
.

Since φ|[0,∞) is monotonously non-increasing by assumption φ ∈ Φ, we can

estimate the sum for x ∈
(
0, 1

L

)
by

∑

ℓ∈Jm

φ
(
x− ℓ

L

)
=

(
0∑

ℓ=−m+1

+
m∑

ℓ=1

)
φ
(
x− ℓ

L

)

=
m−1∑

ℓ=0

φ
(
x+ ℓ

L

)
+

m∑

ℓ=1

φ
(
x− ℓ

L

)
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≤
m−1∑

ℓ=0

φ
(
ℓ
L

)
+

m∑

ℓ=1

φ
(
1
L − ℓ

L

)
= 2

m−1∑

ℓ=0

φ
(
ℓ
L

)
.

Using the integral test for convergence of series (4.26), we obtain that

m−1∑

ℓ=0

φ
(
ℓ
L

)
< φ(0) +

∫ m−1

0

φ
(
t
L

)
dt = φ(0) + L

∫ (m−1)/L

0

φ(t) dt.

By the definition of the Fourier transform (4.1) we have for φ ∈ Φ that

φ̂(0) =

∫

R
φ(t) dt ≥

∫ m/L

−m/L
φ(t) dt = 2

∫ m/L

0

φ(t) dt

≥ 2

∫ (m−1)/L

0

φ(t) dt,

and therefore

|ẽ0(x)| ≤ 2 ε
m−1∑

ℓ=0

φ
(
ℓ
L

)
≤ 2 ε

(
φ(0) + L

2 φ̂(0)
)

= ε
(
2φ(0) + L φ̂(0)

)
, x ∈

(
0, 1

L

)
.

Additionally, by the interpolation property (4.75) we have |ẽ0(0)| = |ε0| ≤ ε
as well as

∣∣ẽ0
(
1
L

)∣∣ = |ε1| ≤ ε. Since by φ ∈ Φ we have φ(0) = 1, we
therefore obtain

max
x∈[0,1/L]

|ẽ0(x)| ≤ ε
(
2 + L φ̂(0)

)
.

By the same technique, this error estimate can be shown for each inter-
val

[
k
L ,

k+1
L

]
with k ∈ Z. On any open interval

(
k
L ,

k+1
L

)
with k ∈ Z, we

use (4.77) to denote the error in the form

ẽk(x) := (Rφ,mf̃)
(
x+ k

L

)
− (Rφ,mf)

(
x+ k

L

)

=
∑

ℓ∈Jm

εℓ+k ψ
(
x− ℓ

L

)
, x ∈

(
0, 1

L

)
.

As shown above, we have

|ẽk(x)| ≤ ε
(
2φ(0) + L φ̂(0)

)
, x ∈

(
0, 1

L

)
,
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and
∣∣ẽ0
(
k
L

)∣∣ = |εk| ≤ ε,
∣∣ẽ0
(
k+1
L

)∣∣ = |εk+1| ≤ ε

for each k ∈ Z by the interpolation property (4.75). Hence, we obtain

max
x∈[k/L, (k+1)/L]

|(Rφ,mf̃)(x)− (Rφ,mf)(x)| ≤ ε
(
2 + L φ̂(0)

)
.

Finally, the triangle inequality implies (4.88), which completes the proof.

In the remainder of this section we specify the results of Theorems 4.25
and 4.29 for the window functions in Remark 4.22. For this purpose, it
merely remains to estimate the regularization error constant (4.67), the
truncation error constant (4.80) as well as φ̂(0) for the different window
functions φ ∈ Φ, which shall be done in the subsequent subsections.

Remark 4.30. We remark that these results for the regularized Shannon sam-
pling formulas with compactly supported window functions have recently
been extended to a more general version of the Fourier transform (4.1).
More precisely, in [FTV23] the authors focus on regularized Shannon sam-
pling formulas related to the special affine Fourier transform (SAFT)

FAf(v) :=

∫

R
f(x)ϕA(x, v) dx, v ∈ R,

where

ϕA(x, v) :=
1√
2π|b|

exp

(
i

2b

(
ax2 + 2px− 2vx+ dv2 + 2(bq − dp)v

))

denotes a kernel depending on a vector A = (a, b, c, d, p, q)⊤ ∈ R6

which satisfies the conditions ad− cb = 1 and b ̸= 0. Note that
for A = (0, 1,−1, 0, 0, 0)⊤ this transform reduces to the classical Fourier
transform (4.1) and in this case the results of [FTV23] coincide with the
ones in this section. ⋄

Gaussian window function

Firstly, we consider the Gaussian window function (4.60) with some α > 0
and the corresponding Gaussian regularized sinc function, cf. (4.69), given
by

ψGauss(x) := sinc(Lπx) e−x
2/(2α2), x ∈ R. (4.89)
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Lemma 4.31. Let L ∈ N and α > 0 be given. Then the Fourier transform
of the Gaussian regularized sinc function (4.89) reads as

ψ̂Gauss(v) =
1

L
√
π

∫ √
2πα(v+L/2)

√
2πα(v−L/2)

e−x
2

dx (4.90)

=
1

2L

[
erf
(√

2πα
(
v + L

2

))
− erf

(√
2πα

(
v − L

2

))]
,

with the error function defined by

erf(x) :=
2√
π

∫ x

0

e−x
2

dx < 1, x ∈ R.

The function ψ̂Gauss in (4.90) is even, positive, belongs to C∞(R), and is
monotonously decreasing on [0, ∞) with

max
v∈R

ψ̂Gauss(v) = ψ̂Gauss(0) =
1

L
erf
(√

2πα L
2

)
<

1

L
.

Proof. To compute the Fourier transform of (4.89) we apply the convolu-

tion property (4.66) using f(x) = sinc(Lπx) and g(x) = e−x
2/(2α2). These

functions possess the Fourier transforms

f̂(v) = 1
L χ[−L

2 ,
L
2 ]
(v), v ∈ R,

ĝ(v) =
√
2π α e−2π2α2v2 , v ∈ R, (4.91)

see e. g. [PPST23]. Thus, we obtain

ψ̂Gauss(v) = (f g)̂ (v) = (f̂ ∗ ĝ)(v) =
∫

R
f̂(v − u) ĝ(u) du

=
1

L

∫ v+L/2

v−L/2
ĝ(u) du =

√
2π α

L

∫ v+L/2

v−L/2
e−2π2α2u2

du

and by substituting x =
√
2παu we have the assertion (4.90). It is easy

to see by (4.90) that ψ̂Gauss is even, positive on R, and belongs to C∞(R).
Moreover, since (4.90) is an integral of fixed length over a positive,
monotonously decreasing function, and v → ∞ shifts the integral bounds
towards infinity, which makes the integral smaller, the function (4.90) is
monotonously decreasing on [0, ∞) and attains its maximum at v = 0.
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A visualization of the Gaussian regularized sinc function (4.89) and its
Fourier transform (4.90) can be found in Figure 4.4. Note that in comparison

to Section 4.3.1 the function ψ̂Gauss is not of the form (4.34). In addition, the
Gaussian regularized sinc function ψGauss is not bandlimited on any interval.
However, the following lemma shows that this function (4.89) is essentially
bandlimited on the interval

[
−L

2 (1 + ε), L2 (1 + ε)
]
with certain ε > 0, such

that ψ̂Gauss is negligible for |v| > L
2 (1 + ε).

−2m
L

−m
L

0 m
L

2m
L

0

0.5

1

x

sinc(Lπx)
φGauss(x)
ψGauss(x)

(a) ψGauss in (4.89)

−L −L
2 −M

2
0 M

2
L
2

L

0

1
2L

1
L

v

1
L
χ[−M

2
,M
2 ]
(v)

ψ̂Gauss(v)

(b) ψ̂Gauss in (4.90)

Figure 4.4: The Gaussian regularized sinc function ψGauss as well as its

Fourier transform ψ̂Gauss with m = 5 and α = 1
L

√
10
π .

Lemma 4.32. The Gaussian regularized sinc function ψGauss in (4.89) is
essentially bandlimited on the interval

[
−L

2 (1 + ε), L2 (1 + ε)
]
with cer-

tain ε ∈ (0, 1), i. e., for all v ∈ R \
[
−L

2 (1 + ε), L2 (1 + ε)
]
we have

0 < ψ̂Gauss(v) ≤
1√

2π L2παε
e−π

2α2L2ε2/2.

Proof. Since (4.90) is an integral over a positive function, we can estimate
the Fourier transform of ψGauss for v ∈ R \

[
−L

2 (1 + ε), L2 (1 + ε)
]
as

0 < ψ̂Gauss(v) =
1

L
√
π

∫ √
2πα(v+L/2)

√
2πα(v−L/2)

e−x
2

dx

≤ 1

L
√
π

∫ ∞

√
2πα(|v|−L/2)

e−x
2

dx.
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By [AS72, p. 298, Formula 7.1.13] we have the inequality

1

t+
√
t2 + 2

e−t
2 ≤

∫ ∞

t

e−x
2

dx ≤ 1

t+
√
t2 + 4/π

e−t
2

, t ≥ 0,

which can be simplified to

1

(t+ 2)2
e−t

2 ≤
∫ ∞

t

e−x
2

dx ≤ 1

2t
e−t

2

, t > 0. (4.92)

Thereby, for v ∈ R \
[
−L

2 (1 + ε), L2 (1 + ε)
]
it follows by |v| − L

2 >
L
2 ε that

0 < ψ̂Gauss(v) ≤
1

2
√
2π Lπα (|v| − L/2)

e−2π2α2 (|v|−L/2)2

≤ 1√
2π L2παε

e−π
2α2L2ε2/2.

Thus, for fixed α > 0 and convenient ε > 0, the Fourier transform ψ̂Gauss

is negligible for |v| > L
2 (1 + ε).

Now we show that for the regularization with the Gaussian window
function (4.60) the uniform approximation error (4.78) decays exponentially
with respect to m, cf. [KPT22, Theorem 4.1].

Theorem 4.33. Let f ∈ BM/2(R) withM ∈ N, L =M(1 + λ)∈N with λ > 0,
and m ∈ N \ {1} be given. Then the regularized Shannon sampling formula
with localized sampling (4.74) using the Gaussian window function (4.60)

and α = 1
M

√
m

π(1+λ)λ satisfies the error estimate

∥f −RGauss,mf∥C0(R) ≤
√
2Lm+

√
2Lλ(1 +m)

πm
√
λ

e−mπλ/(2+2λ) ∥f∥L2(R).

Proof (cf. [Qia03] and [LZ17]). By Theorem 4.25 we only need to com-
pute the error constants (4.67) and (4.80) for the Gaussian window func-
tion (4.60). Firstly, we study the regularization error constant (4.67).
By (4.91) we recognize that the auxiliary function (4.72) is given by

ηGauss(v) = χ[−M
2 ,

M
2 ]
(v)− 1√

π

∫ √
2πα(v+L/2)

√
2πα(v−L/2)

e−x
2

dx, v ∈ R.
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Note that by Lemma 4.31 we have

ηGauss(v) = 1− L ψ̂Gauss(v) ∈ [0, 1], v ∈
[
−M

2 ,
M
2

]
. (4.93)

Since
∫
R e−x

2

dx =
√
π holds, this function ηGauss can be evaluated

for v ∈
[
−M

2 ,
M
2

]
as

ηGauss(v) =
1√
π

[∫

R
e−x

2

dx−
∫ √

2πα(v+L/2)

√
2πα(v−L/2)

e−x
2

dx

]

=
1√
π

[∫ √
2πα(v−L/2)

−∞
e−x

2

dx+

∫ ∞

√
2πα(v+L/2)

e−x
2

dx

]

=
1√
π

[∫ ∞

√
2πα(L/2−v)

e−x
2

dx+

∫ ∞

√
2πα(v+L/2)

e−x
2

dx

]
.

Using (4.92) we obtain the estimate

ηGauss(v) <
1√
π

(
e−2π2α2(L

2 −v)2

2
√
2πα(L2 − v)

+
e−2π2α2(L

2 +v)2

2
√
2πα(L2 + v)

)
, v ∈

[
−M

2 ,
M
2

]
.

Since L
2 − v, L2 + v ∈

[
L−M

2 , L+M2
]

by v ∈
[
−M

2 ,
M
2

]
, and the func-

tion 1
x e

−x2/4 decreases for x > 0, we conclude that

ηGauss(v) <
2 e−π

2α2(L−M)2/2

√
2π πα(L−M)

, v ∈
[
−M

2 ,
M
2

]
.

Hence, by (4.67) and (4.72) we receive

Er(φGauss,M,L) ≤
√
2M√

π πα(L−M)
e−π

2α2(L−M)2/2. (4.94)

Now we examine the truncation error constant (4.80). For the Gaussian
window function (4.60) we have

1

m2
φ2
Gauss

(
m
L

)
+

1

L

∫ ∞

m/L

φ2
Gauss(t)

t2
dt

=
1

m2
e−m

2/(α2L2) +
1

αL

∫ ∞

m/(αL)

e−t
2

t2
dt.
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By substituting z = 1/t, performing partial integration, and further substi-
tuting y = 1/z, we obtain

∫ ∞

m/(αL)

e−t
2

t2
dt =

∫ αL/m

0

e−1/z2 dz

=
αL

m
e−m

2/(α2L2) − 2

∫ αL/m

0

e−1/z2

z2
dz

=
αL

m
e−m

2/(α2L2) − 2

∫ ∞

m/(αL)

e−y
2

dy.

Moreover, from (4.92) it follows

2

∫ ∞

m/(αL)

e−y
2

dy ≥ 2α2L2

(
m+ 2αL

)2 e−m
2/(α2L2) > 0.

Thus, by (4.80) we obtain

Et(φGauss,m,L) ≤
√
2L

π

√
1

m2
+

1

m
e−m

2/(2α2L2). (4.95)

For the special parameter α =
√

m
πL (L−M) =

1
M

√
m

π(1+λ)λ , both error

terms (4.94) and (4.95) have the same exponential decay such that

Er(φGauss,M,L) ≤ 1

π

√
2L

mλ
e−mπλ/(2+2λ),

Et(φGauss,m,L) ≤
√
2L

π

√
1

m2
+

1

m
e−mπλ/(2+2λ).

This completes the proof.

Remark 4.34. Note that Theorem 4.33 enhances the corresponding results
in [Qia03] and [LZ17] by improving the exponential decay rate from (m− 1)
to m. In addition, the constant factor is slightly improved in comparison
to [KPT22].
Furthermore, we remark that in [CZ19] a different parameter α is pre-

sented as the optimal one for the Gaussian window function (4.60), where,
however, a slightly different truncation than in (4.74) was considered. More-
over, the rather artificial analysis in [CZ19] estimates the error only up to an
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unknown constant and seems less intuitive than our result in Theorem 4.33.
Nevertheless, both results, Theorem 4.33 and [CZ19, Theorem 1.1], possess
the same asymptotic behavior. ⋄

Remark 4.35. In [QO05, Theorem 2.3], the modified Gaussian window
function

φmodGauss(x) := e−x
2/(2α2) cos(λx) , x ∈ R ,

was used for the regularized Shannon sampling formulas (4.74), which
could be seen as a combination of a regularization in the frequency domain,
cf. (4.51), and a regularization in the spatial domain, cf. (4.60). However,
by the same techniques as in Theorem 4.33 it can be shown that the
approximation error of the regularized Shannon sampling formula with the
modified Gaussian function φmodGauss has the best exponential decay in the
case λ = 0, i. e., when using the original Gaussian window function (4.60).

⋄
Now we show that for the regularization with the Gaussian window

function (4.60) the uniform perturbation error (4.86) only grows as O(
√
m),

cf. [KPT22, Theorem 4.3]. We remark that a similar result can also be
found in [QC06a].

Theorem 4.36. Let f ∈ BM/2(R) withM ∈ N, L =M(1 + λ)∈ N with λ > 0

and m ∈ N \ {1} be given. Further let RGauss,mf̃ be as in (4.85)

with the noisy samples f̃ℓ = f
(
ℓ
L

)
+ εℓ, where |εℓ| ≤ ε for all ℓ ∈ Z

and 0 < ε≪ 1. Then the regularized Shannon sampling formula with
localized sampling (4.74) using the Gaussian window function (4.60)

and α = 1
M

√
m

π(1+λ)λ satisfies

∥RGauss,mf̃ −RGauss,mf∥C0(R) ≤ ε

(
2 +

√
2 + 2λ

λ

√
m

)
.

Proof. By Theorem 4.29 we only need to compute φ̂Gauss(0) for the Gaus-
sian window function (4.60). By (4.91) we recognize that

φ̂Gauss(0) =
√
2π α =

1

L

√
2 + 2λ

λ

√
m,

such that (4.87) yields the assertion.
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We remark that the triangle inequality combined with Theo-
rems 4.33 and 4.36 also implies an estimate on the perturbation er-
ror ∥f −RGauss,mf̃∥C0(R), cf. (4.88).

B–spline window function

Secondly, we consider the modified B–spline window function (4.61). Note
that (4.61) is supported on

[
−m
L ,

m
L

]
. According to (4.69) we form the

B–spline regularized sinc function

ψB(x) := sinc(Lπx)φB(x), x ∈ R. (4.96)

Lemma 4.37. Let L ∈ N and s, m ∈ N \ {1} be given. Then the Fourier
transform of the B–spline regularized sinc function (4.96) reads as

ψ̂B(v) =
m

sL2B2s(0)

∫ v+L/2

v−L/2

(
sinc

(πum
sL

))2s
du. (4.97)

The function (4.97) is even, positive, and belongs to C∞(R), where

max
v∈R

ψ̂B(v) = ψ̂B(0) <
1

L
.

Proof. To compute the Fourier transform of (4.96) we apply the convolution
property (4.66) using f(x) = sinc(Lπx) and g(x) = φB(x). These functions
possess the Fourier transforms

f̂(v) = 1
L χ[−L

2 ,
L
2 ]
(v),

ĝ(v) =
m

sLB2s(0)

(
sinc

(πvm
sL

))2s
, v ∈ R, (4.98)

see [PT21b, PPST23]. Thus, we obtain

ψ̂B(v) = (f g)̂(v) = (f̂ ∗ ĝ)(v) =
∫

R
f̂(v − u) ĝ(u) du

=
1

L

∫ v+L/2

v−L/2
ĝ(u) du =

m

sL2B2s(0)

∫ v+L/2

v−L/2

(
sinc

(πum
sL

))2s
du

and thereby the assertion (4.97). It is easy to see by (4.97) that ψ̂B is even,
positive, and belongs to C∞(R). Moreover, since (4.97) is an integral of
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fixed length over a positive function decaying as u−2s, and v → ∞ shifts
the integral bounds towards infinity, its maximum is attained at v = 0. By
inverse Fourier transform we have

1 = φB(0) =

∫

R
φ̂B(v) dv =

m

sLB2s(0)

∫

R

(
sinc

(πvm
sL

))2s
dv,

such that
∫

R

(
sinc

(πvm
sL

))2s
dv =

sL

m
B2s(0). (4.99)

Then from (4.97) and (4.99) it follows that

ψ̂B(0) =
m

sL2B2s(0)

∫ L/2

−L/2

(
sinc

(πum
sL

))2s
du <

1

L
.

This completes the proof.
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2m
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(a) ψB in (4.96)
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2
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2
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1
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1
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1
L
χ[−M

2
,M
2 ]
(v)

ψ̂B(v)

(b) ψ̂B in (4.97)

Figure 4.5: The B–spline regularized sinc function ψB as well as its Fourier
transform ψ̂B with m = 5 and s = 3.

A visualization of the B–spline regularized sinc function (4.96) and its
Fourier transform (4.97) can be found in Figure 4.5. Note that in comparison

to Section 4.3.1 the function ψ̂B is not of the form (4.34). In addition, the
B–spline regularized sinc function ψB is not bandlimited on any interval.
However, the following lemma shows that this function (4.96) is essentially
bandlimited on the interval

[
−L

2 (1 + ε), L2 (1 + ε)
]
with certain ε > 0, such

that ψ̂B is negligible for |v| > L
2 (1 + ε).
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Lemma 4.38. The B–spline regularized sinc function ψB in (4.96) is essen-
tially bandlimited on the interval

[
−L

2 (1 + ε), L2 (1 + ε)
]
with ε > 2s

mπ , i. e.,

for all v ∈ R \
[
−L

2 (1 + ε), L2 (1 + ε)
]
we have

0 < ψ̂B(v) <
1

Lπ (2s− 1)B2s(0)

(
2s

επm

)2s−1

.

Proof. Since (4.97) is an integral over a positive function, we can estimate
the Fourier transform of ψB for v ∈ R \

[
−L

2 (1 + ε), L2 (1 + ε)
]
as

0 < ψ̂B(v) ≤
m

sL2B2s(0)

∫ ∞

|v|−L/2

(
sinc

(πum
sL

))2s
du

≤ s2s−1 L2s−2

π2sm2s−1B2s(0)

∫ ∞

|v|−L/2
u−2s du

=
s2s−1 L2s−2

π2sm2s−1B2s(0)
· 1

(2s− 1)
(
|v| − L

2

)2s−1 .

Then by |v| − L
2 >

L
2 ε the assertion follows. In other words, for 2s

επm < 1,

namely ε > 2s
πm , the Fourier transform ψ̂B is negligible for |v| > L

2 (1 + ε).

In order to estimate the uniform approximation error (4.78) when using
the modified B–spline window function (4.61), we require the following
lemma, cf. [KPT22, Lemma 5.1].

Lemma 4.39. The sequence
(√

2sB2s(0)
)∞
s=2

is monotonously increasing
with

lim
s→∞

√
2sB2s(0) =

√
6

π
≈ 1.3820, (4.100)

such that we have

4

3
≤

√
2sB2s(0) <

√
6

π
, s ∈ N \ {1}. (4.101)
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2 10 20 30 40 50

4
3

√
6
π

s

√
2sB2s(0)

Figure 4.6: The sequence
(√

2sB2s(0)
)50
s=2

.

Proof. By (4.99) we have

B2s(0) =
m

sL

∫

R

(
sinc

(πvm
sL

))2s
dv

=
1

π

∫

R

(
sinc(v)

)2s
dv =

2

π

∫ ∞

0

(
sinc(v)

)2s
dv.

The above integral can be determined in explicit form as

∫ ∞

0

(
sinc(w)

)2s
dw =

π

2 (2s− 1)!

s−1∑

j=0

(−1)j
(
2s

j

)
(s− j)2s−1,

see [MR65], [Obe90, p. 20, 5.12] or [Chu92, (4.1.12)]. Especially, we
have B2(0) = 1, B4(0) =

2
3 , B6(0) =

11
20 , B8(0) =

151
315 , B10(0) =

15619
36288 ,

and B12(0) =
655177
1663200 . A table including the decimal values of B2s(0)

for s = 15, . . . , 50, can be found in [MR65]. In Figure 4.6 we can see that

the sequence
(√

2sB2s(0)
)50
s=2

increases monotonously. For larger s we can
use the asymptotic expansion

√
2sB2s(0) ≈√

6

π

[
1− 3

40 s
− 13

4480 s2
+

27

25600 s3
+

52791

63078400 s4
+

482427

2129920000 s5

]
,

see [MR65], such that the whole sequence
(√

2sB2s(0)
)∞
s=2

increases
monotonously. Moreover, by [UAE92, (3.6)] there exists the pointwise
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limit

lim
s→∞

√
s

6
B2s

(√
s

6
x

)
=

1√
2π

e−x
2/2,

such that for x = 0 we obtain (4.100) and hence we have (4.101).

Now we show that for the regularization with the modified B–spline
window function (4.61) the uniform approximation error (4.78) decays
exponentially with respect to m, cf. [KPT22, Theorem 5.3].

Theorem 4.40. Let f ∈ BM/2(R) with M ∈ N, L =M (1 + λ) ∈ N,
and m ∈ N \ {1} be given, where

λ >
m+ 2

πm− (m+ 2)
. (4.102)

Then the regularized Shannon sampling formula with localized sam-
pling (4.74) using the modified B–spline window function (4.61)
and s =

⌈
m+1
2

⌉
satisfies the error estimate

∥f −RB,mf∥C0(R) ≤
3
√
sM√

2 (2s− 1)π
e−m (ln(πmλ)−ln(2s(1+λ))) ∥f∥L2(R).

Proof. By Corollary 4.26 we only need to estimate the regularization error
constant (4.67), since we have supp(φB) =

[
−m
L ,

m
L

]
and therefore the

truncation error constant (4.80) vanishes for the modified B–spline window
function (4.61).

By (4.98) we recognize that the auxiliary function (4.72) is given by

ηB(v) = χ[−M
2 ,

M
2 ]
(v)− m

sLB2s(0)

∫ v+L/2

v−L/2

(
sinc

(πum
sL

))2s
du, v ∈ R.

Note that by Lemma 4.37 we have

ηB(v) = 1− L ψ̂B(v) ∈ [0, 1], v ∈
[
−M

2 ,
M
2

]
. (4.103)

Since (4.99) holds, this function ηB can be evaluated for v ∈
[
−M

2 ,
M
2

]
as
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ηB(v) =
m

sLB2s(0)

(∫

R

(
sinc

(πum
sL

))2s
du

−
∫ v+L/2

v−L/2

(
sinc

(πum
sL

))2s
du

)

=
m

sLB2s(0)

(∫ v−L/2

−∞

(
sinc

(πum
sL

))2s
du

+

∫ ∞

v+L/2

(
sinc

(πum
sL

))2s
du

)

=
m

sLB2s(0)

(∫ ∞

L/2−v

(
sinc

(πum
sL

))2s
du

+

∫ ∞

v+L/2

(
sinc

(πum
sL

) )2s
du

)
.

Applying the simple estimate

∫ ∞

A

(
sinc

(πum
sL

))2s
du ≤ s2s L2s

π2sm2s

∫ ∞

A

u−2s du

=
s2s L2s

(2s− 1)π2sm2sA2s−1
,

for A > 0, we obtain for v ∈
[
−M

2 ,
M
2

]
that

ηB(v) ≤
s2s−1 L2s−1

(2s− 1)π2sm2s−1B2s(0)

(
1

(
L
2 − v

)2s−1 +
1

(
L
2 + v

)2s−1

)
.

Since L
2 − v, L2 + v ∈

[
L−M

2 , L+M2
]

by v ∈
[
−M

2 ,
M
2

]
, and the func-

tion x1−2s decreases for x > 0, we conclude that

ηB(v) ≤
22s s2s−1 L2s−1

(2s− 1)π2sm2s−1B2s(0) (L−M)2s−1
, v ∈

[
M
2 ,

M
2

]
.

Hence, by (4.67), (4.72) and (4.101) we receive

Er(φB,M,L) ≤ 2
√
M

(2s− 1)π B2s(0)

(
2sL

πm(L−M)

)2s−1
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≤ 3
√
sM√

2 (2s− 1)π

(
2sL

πm(L−M)

)2s−1

. (4.104)

For achieving convergence we need to satisfy

2sL

πm(L−M)
=

2s(1 + λ)

πmλ
=: c < 1.

By logarithmic laws we recognize that c 2s−1 = eln(c
2s−1) = e(2s−1) ln c.

Thus, the condition c < 1 yields ln c < 0 and therefore an exponential
decay of (4.104) with respect to (2s− 1). To obtain an exponential decay
rate of at least m, the condition 2s− 1 ≥ m can now be used to pick a
suitable parameter s ∈ N in the form s =

⌈
m+1
2

⌉
. Then

c 2s−1 = e(2s−1) ln c = e(2s−1) (ln(2s(1+λ))−ln(πmλ))

= e−(2s−1) (ln(πmλ)−ln(2s(1+λ))) ≤ e−m (ln(πmλ)−ln(2s(1+λ)))

yields the assertion. In addition, the choice of s=
⌈
m+1
2

⌉
implies

m+ 2 ≥ 2s ≥ m+ 1, such that c < 1 is ensured by πmλ > (m+ 2)(1 + λ),
which can be rewritten as (4.102).

Now we show that for the regularization with the modified B–spline
window function (4.61) the uniform perturbation error (4.87) only grows
as O(

√
m), cf. [KPT22, Theorem 5.5].

Theorem 4.41. Let f ∈ BM/2(R) withM ∈ N, L =M(1 + λ)∈ N with λ ≥ 0

and m ∈ N \ {1} be given. Further let RB,mf̃ be as in (4.85) with the noisy

samples f̃ℓ = f
(
ℓ
L

)
+ εℓ, where |εℓ| ≤ ε for all ℓ ∈ Z and 0 < ε≪ 1. Then

the regularized Shannon sampling formula with localized sampling (4.74)
using the modified B–spline window function (4.61) and s =

⌈
m+1
2

⌉
satisfies

∥RB,mf̃ −RB,mf∥C0(R) ≤ ε

(
2 +

3

2

√
m

)
.

Proof. By Theorem 4.29 we only need to compute φ̂B(0) for the modified
B–spline window function (4.61). By (4.98) and (4.101) we recognize that

φ̂B(0) =
m

sLB2s(0)
≤ 3m

√
2s

4sL
=

3m

2
√
2sL

.

Due to s =
⌈
m+1
2

⌉
we have

√
2s ≥ √

m, such that (4.87) yields the assertion.
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We remark that the triangle inequality combined with Theo-
rems 4.40 and 4.41 also implies an estimate on the perturbation er-
ror ∥f −RB,mf̃∥C0(R), cf. (4.88).

sinh-type window function

Next, we proceed with the sinh-type window function (4.62) with the scal-

ing parameter β := bπ (1+2λ)
1+λ for b > 0. Note that (4.62) is supported

on
[
−m
L ,

m
L

]
. According to (4.69) we form the sinh-type regularized

sinc function

ψsinh(x) := sinc(Lπx)φsinh(x), x ∈ R. (4.105)

Lemma 4.42. Let L ∈ N and β := bπ (1+2λ)
1+λ with b > 0 be given. Then the

Fourier transform of the sinh-type regularized sinc function (4.105) reads
as

ψ̂sinh(v) =
mβ

2L2 sinhβ

∫ v+L/2

v−L/2

J1

(
2π
√

m2u2

L2 − b2(1+2λ)2

(2+2λ)2

)

√
m2u2

L2 − b2(1+2λ)2

(2+2λ)2

du, (4.106)

where Jα denotes the Bessel function of first kind. The function (4.106) is
even, real-valued, and belongs to C∞(R).

Proof. To compute the Fourier transform of (4.105) we apply the convo-
lution property (4.66) using f(x) = sinc(Lπx) and g(x) = φsinh(x). These
functions possess the Fourier transforms

f̂(v) = 1
L χ[−L

2 ,
L
2 ]
(v),

ĝ(v) =
πmβ

L sinhβ
·
{
(w2 − β2)−1/2 J1

(√
w2 − β2

)
: w ∈ R \ {−β, β},

1
2 : w = ±β,

(4.107)

where w := 2πmv/L denotes a scaled frequency, see [Obe90, p. 38, 7.58]
or [PT21a]. Thus, we obtain
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ψ̂sinh(v) = (f g)̂(v) = (f̂ ∗ ĝ)(v) =
∫

R
f̂(v − u) ĝ(u) du

=
1

L

∫ v+L/2

v−L/2
ĝ(u) du

=
mβ

2L2 sinhβ

∫ v+L/2

v−L/2

J1

(
2π
√

m2u2

L2 − b2(1+2λ)2

(2+2λ)2

)

√
m2u2

L2 − b2(1+2λ)2

(2+2λ)2

du

and thereby the assertion (4.106). Note that the integrand of (4.106) is
real-valued, since J1(i z) = i I1(z) for z ∈ C, where Iα denotes the modified
Bessel function of first kind. Moreover, it is easy to see by (4.106) that

ψ̂sinh is even and belongs to C∞(R).

A visualization of the sinh-type regularized sinc function (4.105) and
its Fourier transform (4.106) can be found in Figure 4.7. Note that in

comparison to Section 4.3.1 the function ψ̂sinh is not of the form (4.34). In
addition, the sinh-type regularized sinc function ψsinh is not bandlimited on
any interval. However, the following lemma shows that this function (4.105)
is essentially bandlimited on the interval

[
−L

2 (1 + ε), L2 (1 + ε)
]
with cer-

tain ε > 0, such that ψ̂sinh is negligible for |v| > L
2 (1 + ε).
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(a) ψsinh in (4.105)
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Figure 4.7: The sinh-type regularized sinc function ψsinh as well as its
Fourier transform ψ̂sinh with m = 5 and β = 5

2 π.
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Lemma 4.43. The sinh-type regularized sinc function ψsinh in (4.105) is
essentially bandlimited on the interval

[
−L

2 (1 + ε), L2 (1 + ε)
]
with ε ≥ 4b

m ,

i. e., for all v ∈ R \
[
−L

2 (1 + ε), L2 (1 + ε)
]
we have

∣∣ψ̂sinh(v)
∣∣ < 5

√
2bβ

4L
√
mε sinhβ

.

Proof. Due to the fact that (4.106) is an even function, it suffices to consider
only v > L

2 (1 + ε). Assume that for all u ∈
[
v − L

2 , v +
L
2

]
we have

m2u2

L2
− b2 (1 + 2λ)2

(2 + 2λ)2
> 0, (4.108)

such that from (4.106) it follows that

|ψ̂sinh(v)| ≤
mβ

2L2 sinhβ

∫ v+L/2

v−L/2

∣∣∣∣J1
(
2π
√

m2u2

L2 − b2(1+2λ)2

(2+2λ)2

)∣∣∣∣
√

m2u2

L2 − b2(1+2λ)2

(2+2λ)2

du.

Since we have |J1(x)| < 1√
x
for all x > 0, cf. [PT21b, (3.4)], we obtain

|ψ̂sinh(v)| ≤
mβ

2L2
√
2π sinhβ

∫ v+L/2

v−L/2

(
m2u2

L2
− b2(1 + 2λ)2

(2 + 2λ)2

)−3/4

du

<
mβ

2L2
√
2π sinhβ

∫ ∞

εL/2

(
m2u2

L2
− b2(1 + 2λ)2

(2 + 2λ)2

)−3/4

du.

Substituting u = bL (1+2λ)
m(2+2λ) w, we conclude

|ψ̂sinh(v)| <
√
β

2L sinhβ

∫ ∞

εm (1+λ)/(b+2bλ)

(w2 − 1)−3/4 dw

≤
√
β

2L sinhβ

∫ ∞

εm/(2b)

(w2 − 1)−3/4 dw,

because of εm (1+λ)
b+2bλ ≥ εm

2b for λ ≥ 0. Then by

max
w≥2

w3/2

(w2 − 1)3/4
<

5

4
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we receive

|ψ̂sinh(v)| <
5
√
β

8L sinhβ

∫ ∞

εm/(2b)

w−3/2 dw =
5
√
2bβ

4L
√
mε sinhβ

for εm/(2b) ≥ 2, that means ε ≥ 4b
m . Note that in this setting also (4.108)

is fulfilled, such that for ε ≥ 4b
m the Fourier transform ψ̂sinh is negligible

for |v| > L
2 (1 + ε).

Now we show that for the regularization with the sinh-type window
function (4.62) the uniform approximation error (4.78) decays exponentially
with respect to m, cf. [KPT22, Theorem 6.1].

Theorem 4.44. Let f ∈ BM/2(R) with M ∈ N, L =M (1 + λ) ∈ N with
λ > 0, and m ∈ N \ {1} be given. Then the regularized Shannon sam-
pling formula with localized sampling (4.74) using the sinh-type window
function (4.62) and β = πmλ

1+λ satisfies the error estimate

∥f −Rsinh,mf∥C0(R) ≤
√
M e−mπλ/(1+λ) ∥f∥L2(R).

Proof. By Corollary 4.26 we only need to estimate the regularization er-
ror constant (4.67), since we have supp(φsinh) =

[
−m
L ,

m
L

]
and therefore

the truncation error constant (4.80) vanishes for the sinh-type window
function (4.62).

By (4.107) and the definition β = bπ (1+2λ)
1+λ we recognize that the auxiliary

function (4.72) is given by

ηsinh(v) = χ[−M
2 ,

M
2 ]
(v)

− mβ

2L sinhβ

∫ v+L/2

v−L/2

J1

(
2π
√

m2u2

L2 − b2(1+2λ)2

(2+2λ)2

)

√
m2u2

L2 − b2(1+2λ)2

(2+2λ)2

du, v ∈ R.

Substituting u = bL (1+2λ)
m(2+2λ) w, we obtain

ηsinh(v) = 1− β

2 sinhβ

∫ w1(v)

−w1(−v)

J1
(
β
√
w2 − 1

)
√
w2 − 1

dw, v ∈
[
−M

2 ,
M
2

]
,

(4.109)
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with

w1(v) :=
(2v + L)m (1 + λ)

bL (1 + 2λ)
> 0, v ∈

[
−M

2 ,
M
2

]
. (4.110)

By definition, w1(v) is linear and monotonously increasing, such that

min
v∈

[
−M2 ,

M
2

]w1(v) = w1

(
− M

2

)
and max

v∈
[
−M2 ,

M
2

]w1(v) = w1

(
M
2

)
.

In the following we aim for an optimal parameter b = b(M,m, λ) > 0,
such that |ηsinh(v)| is as small as possible for all v ∈

[
−M

2 ,
M
2

]
. To this

end, we have a closer look at the integral in (4.109). As known, the
Bessel function J1 oscillates on [0, ∞) and has the non-negative simple
zeros j1,n, n ∈ N0, where j1,0 = 0 and j1,n, n = 1, . . . , 40, are tabulated
in [Wat80, p. 748]. Therefore, the integrand of (4.109) has the zeros ±ξn
with ξn :=

√( j1,n
β

)2
+ 1 ≥ 1, n ∈ N, and limβ→∞ ξ1 = 1. It is easy to see

that

∫ b

−a

J1
(
β
√
w2 − 1

)
√
w2 − 1

dw ≥ 0, a, b ≥ 0,

and that this integral is maximal for a = b = ξ1, cf. Figure 4.8. Moreover,
note that by [GR07, 6.681–3] and [AS72, 10.2.13] as well as J1(i z) = i I1(z)
for z ∈ C we have

∫ 1

−1

J1
(
β
√
w2 − 1

)
√
w2 − 1

dw =

∫ 1

−1

I1
(
β
√
1− w2

)
√
1− w2

dw =

∫ π/2

−π/2
I1(β cos t) dt

= π

(
I1/2

(β
2

))2

=
4

β

(
sinh

β

2

)2

, (4.111)

and hence

h(β) :=
β

2 sinhβ

∫ 1

−1

J1
(
β
√
w2 − 1

)
√
w2 − 1

dw

=
2
(
sinh β

2

)2

sinhβ
=

eβ − 2 + e−β

eβ − e−β
∈ [0, 1],

where h(β) is a monotonously increasing function with limβ→0 h(β) = 0
and limβ→∞ h(β) = 1. Thus, in order to achieve |ηsinh(v)| in (4.109) as
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0 ξ1 ξ3 ξ5−ξ1−ξ3−ξ5

0

I1(β)

w

J1(β
√
w2−1)√

w2−1

Figure 4.8: The function J1(β
√
w2−1)√

w2−1
.

small as possible, we request w1(v) ≥ 1 for all v ∈
[
−M

2 ,
M
2

]
, which can be

obtained by setting w1

(
− M

2

)
= 1. Rearranging this by (4.110) in terms

of b we obtain b = mλ
1+2λ and therefore β = πmλ

1+λ .
Now given this scaling parameter β we are able to provide an estimate

on the regularization error constant (4.67). From (4.109) it follows that

ηsinh(v) = η1(v)− η2(v), v ∈
[
−M

2 ,
M
2

]
,

with

η1(v) := 1− β

2 sinhβ

∫ 1

−1

I1
(
β
√
1− w2

)
√
1− w2

dw,

η2(v) :=
β

2 sinhβ

(∫ −1

−w1(−v)
+

∫ w1(v)

1

)
J1
(
β
√
w2 − 1

)
√
w2 − 1

dw.

By (4.111) we obtain

η1(v) = 1− 2
(
sinh β

2

)2

sinh β
=

2 e−β

1 + e−β
> 0.

Further we have

η2(v) =
β

2 sinhβ

(∫ w1(−v)

1

+

∫ w1(v)

1

)
J1
(
β
√
w2 − 1

)
√
w2 − 1

dw.

Substituting w = coshx in above integrals, we have

η2(v) =
β

2 sinhβ

(∫ arcosh(w1(−v))

0

+

∫ arcosh(w1(v))

0

)
J1(β sinhx) dx.



4.3 Univariate regularized Shannon sampling formulas 173

0 arcosh
(
w1

(
M
2

))

0

x

J1(β sinhx)

Figure 4.9: The function J1(β sinhx) on the interval
[
0, arcosh

(
w1

(
M
2

))]
.

In order to estimate these integrals properly we now have a closer look
at the integrand. On each interval

[
arsinh

( j1,2n
β

)
, arsinh

( j1,2n+2

β

)]
, n ∈ N0,

the integrand J1(β sinhx) is firstly non-negative and then non-positive,
see Figure 4.9. Due to these properties and the fact that the ampli-
tude is decreasing when x→ ∞, the integrals are positive on each inter-
val
[
arsinh

( j1,2n
β

)
, arsinh

( j1,2n+2

β

)]
, n ∈ N0. Note that by [GR07, 6.645–1]

we have

∫ ∞

0

J1(β sinhx) dx = I1/2

(β
2

)
K1/2

(β
2

)

=
2√
πβ

sinh
β

2
·
√
π

β
e−β/2 =

1− e−β

β
,

whereKα denotes themodified Bessel function of second kind and I1/2, K1/2

denote modified Bessel functions of half order (see [AS72, 10.2.13, 10.2.14,
and 10.2.17]). In addition, numerical experiments have shown that for
all T ≥ 0 we have

0 ≤
∫ T

0

J1(β sinhx) dx ≤ 3 (1− e−β)

2β
.

Therefore, we obtain

0 ≤ η2(v) ≤
β

2 sinhβ
· 3 (1− e−β)

β
=

3 e−β

1 + e−β
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and hence

max
v∈[−M

2 ,
M
2 ]

|ηsinh(v)| = max
v∈[−M

2 ,
M
2 ]

|η1(v)− η2(v)| ≤
e−β

1 + e−β
≤ e−β ≤ 1.

(4.112)

Thus, by (4.67) and (4.72) we conclude that

Er(φsinh,M,L) ≤
√
M e−β .

This completes the proof.

Now we show that for the regularization with the sinh-type window
function (4.62) the uniform perturbation error (4.87) only grows as O(

√
m),

cf. [KPT22, Theorem 6.3].

Theorem 4.45. Let f ∈ BM/2(R) withM ∈ N, L =M(1 + λ)∈ N with λ > 0

andm ∈ N \ {1} be given. Further let Rsinh,mf̃ be as in (4.85) with the noisy

samples f̃ℓ = f
(
ℓ
L

)
+ εℓ, where |εℓ| ≤ ε for all ℓ ∈ Z and 0 < ε≪ 1. Then

the regularized Shannon sampling formula with localized sampling (4.74)
using the sinh-type window function (4.62) and β = πmλ

1+λ satisfies

∥Rsinh,mf̃ −Rsinh,mf∥C0(R) ≤ ε

(
2 +

√
2 + 2λ

λ

1

1− e−2β

√
m

)
.

Proof. By Theorem 4.29 we only need to compute φ̂sinh(0) for the sinh-type
window function (4.62). By (4.107) we recognize that

φ̂sinh(0) =
πmβ

L sinhβ
· I1
(
β
)

β
=
πmI1

(
β
)

L sinhβ
.

Since
√
2πβ e−β I1(β) < 1, see [PT21b, Lemma 7], we have

πmI1(β)

sinhβ
≤ πm eβ√

2πβ sinhβ
=

√
2πm√

β (1− e−2β)
,

such that (4.87) using β = πmλ
1+λ yields the assertion.

We remark that the triangle inequality combined with Theo-
rems 4.44 and 4.45 also implies an estimate on the perturbation er-
ror ∥f −Rsinh,mf̃∥C0(R), cf. (4.88).
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Continuous Kaiser–Bessel window function

Finally, we consider the continuous Kaiser–Bessel window function (4.63)

with the scaling parameter β := bπ (1+2λ)
1+λ for b > 0. Note that (4.63) is

supported on
[
−m
L ,

m
L

]
. According to (4.69) we form the continuous

Kaiser–Bessel regularized sinc function

ψcKB(x) := sinc(Lπx)φcKB(x), x ∈ R. (4.113)

Lemma 4.46. Let L ∈ N and β := bπ (1+2λ)
1+λ with b > 0 be given. Then

the Fourier transform of the continuous Kaiser–Bessel regularized
sinc function (4.113) reads as

ψ̂cKB(v) =
β

Lπ
(
I0(β)− 1

)
∫ 2πm

βL (v+L/2)

2πm
βL (v−L/2)

sinh
(
β
√
1− w2

)

β
√
1− w2

− sinc(βw) dw.

(4.114)

The function (4.114) is even, real-valued, and belongs to C∞(R).

Proof. To compute the Fourier transform of (4.113) we apply the convo-
lution property (4.66) using f(x) = sinc(Lπx) and g(x) = φcKB(x). These
functions possess the Fourier transforms

f̂(v) = 1
L χ[−L

2 ,
L
2 ]
(v),

ĝ(v) =
2m(

I0(β)− 1
)
L

·





sinh
(
β
√
1−w2

)
β
√
1−w2

− sinc(βw) : w ∈ R \ {−1, 1},
1− sinc(β) : w = ±1,

(4.115)

where w = 2πmv/(βL) denotes a scaled frequency, see [Obe90, p. 3, 1.1,
and p. 95, 18.31] or [PT21b]. Thus, by substituting u = βLw/(2πm) we
obtain

ψ̂cKB(v) = (f g)̂(v) = (f̂ ∗ ĝ)(v) =
∫

R
f̂(v − u) ĝ(u) du

=
1

L

∫ v+L/2

v−L/2
ĝ(u) du

=
β

Lπ
(
I0(β)− 1

)
∫ 2πm

βL (v+L/2)

2πm
βL (v−L/2)

sinh
(
β
√
1− w2

)

β
√
1− w2

− sinc(βw) dw
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and thereby the assertion (4.114). Note that the integrand of (4.114) is
real-valued, since sinh(i z) = i sin(z) for z ∈ C. Moreover, it is easy to see

by (4.114) that ψ̂cKB is even and belongs to C∞(R).

A visualization of the continuous Kaiser–Bessel regularized sinc func-
tion (4.113) and its Fourier transform (4.114) can be found in Figure 4.10.

Note that in comparison to Section 4.3.1 the function ψ̂cKB is not of
the form (4.34). In addition, the continuous Kaiser–Bessel regularized
sinc function ψcKB is not bandlimited on any interval. However, the fol-
lowing lemma shows that this function (4.96) is essentially bandlimited on

the interval
[
−L

2 (1 + ε), L2 (1 + ε)
]
with certain ε > 0, such that ψ̂cKB is

negligible for |v| > L
2 (1 + ε).

−2m
L

−m
L

0 m
L

2m
L

0

0.5

1

x

sinc(Lπx)
φcKB(x)
ρcKB(x)

(a) ψcKB in (4.113)

−L −L
2 −M

2
0 M

2
L
2

L

0

1
2L

1
L

v

1
L
χ[−M

2
,M
2 ]
(v)

ψ̂cKB(v)

(b) ψ̂cKB in (4.114)

Figure 4.10: The continuous Kaiser–Bessel regularized sinc function ψcKB

as well as its Fourier transform ψ̂cKB with m = 5 and β = 5
2 π.

Lemma 4.47. The continuous Kaiser–Bessel regularized sinc function ψcKB

in (4.113) is essentially bandlimited on the interval
[
−L

2 (1 + ε), L2 (1 + ε)
]

with certain ε > β
πm , i. e., for all v ∈ R \

[
−L

2 (1 + ε), L2 (1 + ε)
]
we have

∣∣ψ̂cKB(v)
∣∣ < 2β2

Lπ2mε
(
I0(β)− 1

) .

Proof. Due to the fact that (4.114) is an even function, it suffices to consider
only v > L

2 (1 + ε). Assume that for all w ∈ 2πm
βL

[
v − L

2 , v +
L
2

]
we have

1− w2 < 0, (4.116)
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such that from (4.114) it follows that

∣∣ψ̂cKB(v)
∣∣

≤ β

Lπ
(
I0(β)− 1

)
∫ 2πm

βL (v+L/2)

2πm
βL m(v−L/2)

∣∣sinc
(
β
√
w2 − 1

)
− sinc(βw)

∣∣ dw.

Since we have

∣∣∣sinc
(
β
√
w2 − 1

)
− sinc(βw)

∣∣∣ ≤ 2

w2
(4.117)

for |w| ≥ 1, see [PT21a, Lemma 4], we obtain

∣∣ψ̂cKB(v)
∣∣ ≤ β

Lπ
(
I0(β)− 1

)
∫ 2πm(v+L/2)/(βL)

2πm(v−L/2)/(βL)

2

w2
dw

<
β

Lπ
(
I0(β)− 1

)
∫ ∞

πmε/β

2

w2
dw =

2β2

Lπ2mε
(
I0(β)− 1

) .

Note that (4.116) is fulfilled in case πmε
β > 1, such that for ε ≥ β

πm the

Fourier transform ψ̂cKB is negligible for |v| > L
2 (1 + ε).

Now we show that for the regularization with the continuous Kaiser–
Bessel window function (4.63) the uniform approximation error (4.78)
decays exponentially with respect to m, cf. [KPT24, Theorem 4.3].

Theorem 4.48. Let f ∈ BM/2(R) with M ∈ N, L =M (1 + λ) ∈ N with

λ ≥ 1
m−1 , and m ∈ N \ {1} be given. Then the regularized Shannon sam-

pling formula with localized sampling (4.74) using the continuous Kaiser–
Bessel window function (4.63) and β = πmλ

1+λ satisfies the error estimate

∥f −RcKB,mf∥C0(R) ≤
7
√
M πmλ (1 + λ+ 4mλ)

4 (1 + λ)2
e−mπλ/(1+λ) ∥f∥L2(R).

Proof. By Corollary 4.26 we only need to estimate the regularization error
constant (4.67), since we have supp(φcKB) =

[
−m
L ,

m
L

]
and therefore the

truncation error constant (4.80) vanishes for the continuous Kaiser–Bessel
window function (4.63).
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By (4.115) and substituting w = 2πm
βL u we recognize that the auxiliary

function (4.72) is given by

ηcKB(v) = 1− β

π
(
I0(β)− 1

)
∫ a(v)

−a(−v)

(
sinh

(
β
√
1− w2

)

β
√
1− w2

− sinc(βw)

)
dw

(4.118)

with the increasing linear function a(v) := 2mπ
βL

(
v + L

2

)
.

Similar to Theorem 4.44 we now aim to choose an optimal parame-
ter β > 0, such that |ηcKB(v)| is as small as possible for all v ∈

[
−M

2 ,
M
2

]
.

To this end, we have a closer look at the integral in (4.118). It is easy to
see that

∫ b

−a

(
sinh

(
β
√
1− w2

)

β
√
1− w2

− sinc(βw)

)
dw ≥ 0, a, b ≥ 0,

and that this integral is maximal for a = b = ξ1, when denoting the zeros
of the integrand as ±ξn, cf. Figure 4.11. Numerical experiments have
shown that ξn ≥ 1, n ∈ N, and limβ→∞ ξ1 = 1. Moreover, by substituting
w = sin(s) and [GR07, 3.997–1] we have

∫ 1

−1

sinh
(
β
√
1− w2

)

β
√
1− w2

dw =
2

β

∫ 1

0

sinh
(
β
√
1− w2

)
√
1− w2

dw

=
2

β

∫ π/2

0

sinh(β cos s) ds =
π

β
L0(β),

where L0(x) denotes the modified Struve function given by (see [AS72,
12.2.1])

L0(x) :=
∞∑

k=0

(
x
2

)2k+1

(
Γ
(
k + 3

2

))2 =
2x

π

∞∑

k=0

x2k
(
(2k + 1)!!

)2 .

Note that the function I0(x)− L0(x) is completely monotonic on [0, ∞)
(see [BP14, Theorem 1]) and tends to zero as x→ ∞. Applying the sine
integral function

Si(x) :=

∫ x

0

sin(w)

w
dw =

∫ x

0

sinc(w) dw, x ∈ R,



4.3 Univariate regularized Shannon sampling formulas 179

0 ξ1 ξ3 ξ5−ξ1−ξ3−ξ5

0

w

sinh
(
β
√
1−w2

)
β
√
1−w2 − sinc(βw)

Figure 4.11: The function
sinh
(
β
√
1−w2

)
β
√
1−w2

− sinc(βw).

implies

∫ 1

−1

sinc(βw) dw = 2

∫ 1

0

sinc(βw) dw =
2

β

∫ β

0

sinc(y) dy =
2

β
Si(β),

and hence

h(β) :=
β

π
(
I0(β)− 1

)
∫ 1

−1

(
sinh

(
β
√
1− w2

)

β
√
1− w2

− sinc(βw)

)
dw

=
1

I0(β)− 1

(
L0(β)−

2

π
Si(β)

)
, β > 0. (4.119)

Numerical experiments have shown that h(β) ∈ [0, 1] is monotonously
increasing with limβ→0 h(β) = 0 and limβ→∞ h(β) = 1, similar to The-
orem 4.44. Thus, in order to achieve |ηcKB(v)| in (4.118) as small as
possible, we request a(v) ≥ 1 for all v ∈

[
−M

2 ,
M
2

]
, which can be obtained

by setting a
(
− M

2

)
= 1. Rearranging this by the definition of a(v) we

obtain β = πmλ
1+λ .

Now given this scaling parameter β we are able to provide an estimate
on the regularization error constant (4.67). Using (4.118), we decom-
pose ηcKB(v) in the form

ηcKB(v) = η3(v)− η4(v), v ∈
[
−M

2 ,
M
2

]
,
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with

η3(v) = 1− β

π
(
I0(β)− 1

)
∫ 1

−1

(
sinh

(
β
√
1− w2

)

β
√
1− w2

− sinc(βw)

)
dw,

η4(v) =
β

π
(
I0(β)− 1

)
(∫ −1

−a(−v)

(
sinc

(
β
√
w2 − 1

)
− sinc(βw)

)
dw

+

∫ a(v)

1

(
sinc

(
β
√
w2 − 1

)
− sinc(βw)

)
dw

)
.

By (4.119), we obtain

η3(v) = 1− 1

I0(β)− 1

(
L0(β)−

2

π
Si(β)

)

=
1

I0(β)− 1

(
I0(β)− L0(β)− 1 +

2

π
Si(β)

)
.

Note that for suitable β > 0 we find
[
I0(β)− L0(β)− 1 + 2

π Si(β)
]
∈
[
0, 9

20

)
,

cf. Figure 4.12. In addition, it is known that I0(β) ≥ 1, β > 0, such
that η3(v) > 0.

0 10 20 30

0

9
20

β

I0(β)−L0(β)−1+ 2
π
Si(β)

Figure 4.12: Visualization of
[
I0(β)− L0(β)− 1 + 2

π Si(β)
]
∈
[
0, 9

20

)
for

suitable β > 0.
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Further, we estimate η4(v) for v ∈
[
−M

2 ,
M
2

]
by the triangle inequality

as

|η4(v)| ≤
β

π
(
I0(β)− 1

)
(∫ −1

−a(−v)

∣∣∣sinc
(
β
√
w2 − 1

)
− sinc(βw)

∣∣∣ dw

+

∫ a(v)

1

∣∣∣sinc
(
β
√
w2 − 1

)
− sinc(βw)

∣∣∣ dw
)
.

Thus, by (4.117) we conclude

|η4(v)| ≤
4β

π
(
I0(β)− 1

)
∫ ∞

1

1

w2
dw =

4β

π
(
I0(β)− 1

) .

Combined with the estimate shown in Figure 4.12, this yields

|ηcKB(v)| ≤ η3(v) + |η4(v)|

≤ 1

I0(β)− 1

(
I0(β)− L0(β)− 1 +

2

π
Si(β) +

4β

π

)

≤ 1

I0(β)− 1

(
9

20
+

4β

π

)
.

Note that this last term is strictly decreasing on [0,∞) and that by the
assumption λ ≥ 1

m−1 we have β = πmλ
1+λ ≥ π for all m ∈ N \ {1}, such that

|ηcKB(v)| ≤
1

I0(π)− 1

(
9

20
+

4π

π

)
= 0.993781 · · · ≤ 1, v ∈

[
−M

2 ,
M
2

]
.

(4.120)

By [Bar10, p. 577] the function ex

I0(x)
is strictly decreasing on [0,∞) and

tends to zero as x→ ∞. Numerical experiments have shown that ex

x (I0(x)−1)

is strictly decreasing on [π,∞) as well. Hence, it follows that

eβ

β (I0(β)− 1)
≤ eπ

π (I0(π)− 1)
= 1.644967 . . . <

7

4

and thus we conclude that

|ηcKB(v)| ≤
1

I0(β)− 1

(
9

20
+

4β

π

)
<

7β

4

(
1 +

4β

π

)
e−β .

Using β = πmλ
1+λ this completes the proof.
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Now we show that for the regularization with the continuous Kaiser–
Bessel window function (4.63) the uniform perturbation error (4.87) only
grows as O(

√
m), cf. [KPT24, Theorem 4.6].

Theorem 4.49. Let f ∈ BM/2(R) withM ∈ N, L =M(1 + λ)∈ N with λ > 0

and m ∈ N \ {1} be given. Further let RcKB,mf̃ be as in (4.85) with the

noisy samples f̃ℓ = f
(
ℓ
L

)
+ εℓ, where |εℓ| ≤ ε for all ℓ ∈ Z and 0 < ε≪ 1.

Then the regularized Shannon sampling formula with localized sam-
pling (4.74) using the continuous Kaiser–Bessel window function (4.63)
and β = πmλ

1+λ satisfies

∥RcKB,mf̃ −RcKB,mf∥C0(R) ≤ ε

(
2 +

√
2 + 2λ

λ

√
m

)
.

Proof. By Theorem 4.29 we only need to compute φ̂cKB(0) for the con-
tinuous Kaiser–Bessel window function (4.63). By (4.115) we recognize
that

φ̂cKB(0) =
2m(

I0(β)− 1
)
L

(
sinh(β)

β
− 1

)
=

2m

L
√
β
· sinh(β)− β√

β
(
I0(β)− 1

) .

Since it is known by [AS72, 9.7.1] that

lim
x→∞

√
2πx e−xI0(x) = 1,

we also have

lim
x→∞

√
2πx e−x

(
I0(x)− 1

)
= 1.

Moreover, for β ∈ [0, ∞) the term sinh(β)−β
√
β
(
I0(β)−1

) is monotonously increasing

with

lim
β→∞

sinh(β)− β√
β
(
I0(β)− 1

) = lim
β→∞

1− e−2β − 2β e−β

2
√
β e−β

(
I0(β)− 1

) =

√
π

2
,

such that (4.87) using β = πmλ
1+λ yields the assertion.

We remark that the triangle inequality combined with Theo-
rems 4.48 and 4.49 also implies an estimate on the perturbation er-
ror ∥f −RcKB,mf̃∥C0(R), cf. (4.88).
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Summary

Summarizing, we have seen that by the use of certain window func-
tions φ ∈ Φ in spatial domain, or rather their truncated versions (4.73), the
regularized Shannon sampling sums with localized sampling (4.74) possess
exponential error decay rates. For a comparison of the theoretical error
decay rates of the spatial window functions mentioned in Remark 4.22 we
refer to Table 4.1, while a visualization of the error decay rates can be
found in Examples 4.69 – 4.77.

4.3.3 Comparison of the two regularization methods

Finally, we compare the regularization methods studied in Sections 4.3.1
and 4.3.2. Similar to [KPT24], a summary of the theoretical error decay
rates presented for the window functions in the frequency domain and in
the spatial domain can be found in Table 4.1. It becomes apparent that
regularization with a frequency window function is less effective, as an
exponential decay can (up to now) only be realized using the regularization
with a spatial window function. For a numerical comparison of these
methods we refer to Example 4.78, which demonstrates that also in practice
this second approach using window functions in spatial domain performs
much better than window functions in frequency domain, since it produces
much smaller errors using the same amount of samples.
In summary, we found that the regularized Shannon sampling formulas

with localized sampling of Section 4.3.2 are much more powerful, since this
approach is easy to compute, robust in the worst case error, and requires
less data (for comparable accuracy) than the classical Shannon sampling
sums or the regularization with a frequency window function, see also
Section 4.5.

4.4 Multivariate regularized Shannon sampling
formulas

In the following, we generalize the previous findings to d > 1 and present
new d-dimensional regularized Shannon sampling formulas. As seen be-
fore, for regularizations with a window function in frequency domain from
Section 4.3.1 only algebraic error decay rates are achievable, while regular-
izations with a window function in spatial domain from Section 4.3.2 possess
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window function error decay rate see

sinc(Lπ ·) (T − L)−1/2 Lemma 4.6

ψ̂lin in (4.44) (T − L)−3/2 Theorem 4.14

ψ̂cub in (4.47) (T − L)−5/2 Theorem 4.15

ψ̂cos in (4.50) (T − L)−5/2 Remark 4.16

ψ̂conv,2, cf. (4.57) (T − L)−5/2 cf. Lemma 4.12

φconst in (4.84)
√

1
m + 1

m2 Remark 4.28

φGauss in (4.60) e−mπλ/(2+2λ) Theorem 4.33
φB in (4.61) e−m (ln(πmλ)−ln(2s(1+λ))) Theorem 4.40
φsinh in (4.62) e−mπλ/(1+λ) Theorem 4.44
φcKB in (4.63) e−mπλ/(1+λ) Theorem 4.48

Table 4.1: Summary of the theoretical results on decay rates for the window
functions in frequency domain considered in Section 4.3.1 and the
window functions in spatial domain considered in Section 4.3.2.

an exponential error decay and are numerically robust with respect to noisy
samples, see also Section 4.5. Therefore, for d > 1 we consider only the
second approach and focus on regularized Shannon sampling formulas with
localized sampling, cf. (4.74), using window functions in spatial domain,
cf. Remark 4.22.
For given φ ∈ Φ let φm be the truncated window function (4.73) and

let (2.13) be the corresponding d-variate window function, where for sim-
plicity we denote the d-variate versions by φ and φm as well. Then we
approximate a function f ∈ BM/2(Rd) by the d-dimensional regularized
Shannon sampling formula

(Rφ,mf)(x) :=
∑

ℓ∈Zd

f
(
ℓ
L

)
sinc

(
Lπ
(
x− ℓ

L

))
φm
(
x− ℓ

L

)
, x ∈ Rd.

(4.121)

As for the univariate version (4.74), this procedure is an interpolating
approximation of f on the grid 1

L Zd, i. e.,

(Rφ,mf)
(
k
L

)
= f

(
k
L

)
, k ∈ Zd, (4.122)



4.4 Multivariate regularized Shannon sampling formulas 185

is fulfilled, since sinc(πk) = 0 for each k ∈ Zd \ {0}. Furthermore, the
use of the compactly supported window function φm in (4.73) leads to
localized sampling of the bandlimited function f ∈ BM/2(Rd), i. e., the com-

putation of (Rφ,mf)(x) for fixed x ∈ Rd \ 1
L Zd requires only (2m+ 1)d

samples f
(
ℓ
L

)
, where ℓ ∈ Zd fulfills the conditions |ℓt − Lxt| ≤ m

for t = 1, . . . , d.
Note that in comparison to the univariate regularized Shannon sampling

formula (4.74) in the multivariate setting it is not sufficient to approxi-

mate f by Rφ,mf in (4.121) only on the open sets k
L +

(
0, 1

L

)d
, k ∈ Zd,

since by the interpolation property (4.122) we obtain equality only for
the corners but not the whole edges of the respective hypercube. Hence,
we have to approximate f by Rφ,mf separately on each closed hyper-

cube k
L +

[
0, 1

L

]d
, k ∈ Zd. For this reason, we also have to slightly enlarge

the corresponding index set used for each hypercube, such that we now work
with J d

m+1 := {−m, . . . , m+ 1}d, cf. (4.76). More precisely, by introducing
the d-variate regularized sinc function

ψ(x) := sinc(Lπx)φ(x), x ∈ Rd, (4.123)

analogous to (4.69), for x ∈
[
0, 1

L

]d
the d-dimensional regularized Shannon

sampling formula (4.121) reads as

(Rφ,mf)(x) :=
∑

ℓ∈J d
m+1

f
(
ℓ
L

)
ψ
(
x− ℓ

L

)
, x ∈

[
0, 1

L

]d
.

Indeed, on any shifted hypercube k
L +

[
0, 1

L

]d
with k ∈ Zd the

d-dimensional regularized Shannon sampling formula (4.121) has the form

(Rφ,mf)
(
x+ k

L

)
=

∑

ℓ∈J d
m+1

f
(
ℓ+k
L

)
ψ
(
x− ℓ

L

)
, x ∈

[
0, 1

L

]d
, (4.124)

cf. (4.77).
Now for given f ∈ BM/2(Rd) and φ ∈ Φ, we estimate the uniform ap-

proximation error

∥f −Rφ,mf∥C0(Rd) = max
x∈Rd

∣∣f(x)− (Rφ,mf)(x)
∣∣ (4.125)

of the d-dimensional regularized Shannon sampling formula (4.121). Note
that for d = 1 the following theorem coincides with Theorem 4.25.
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Theorem 4.50. Let f ∈ BM/2(Rd) with M ∈ N, L =M(1 + λ) ∈ N
with λ ≥ 0 and m ∈ N \ {1}. Further let φ ∈ Φ with the truncated window
function (4.73) as well as their d-variate versions (2.13) be given. Then
the d-dimensional regularized Shannon sampling formula (4.121) satisfies

∥f −Rφ,mf∥C0(Rd) ≤
(
Er(φ,M,L, d) + Et(φ,m,L, d)

)
∥f∥L2(Rd),

where the corresponding error constants are defined by

Er(φ,M,L, d) :=Md/2 max
v∈[−M

2 ,
M
2 ]

d

∣∣∣∣∣1−
d∏

t=1

∫ vt+L/2

vt−L/2
φ̂(u) du

∣∣∣∣∣, (4.126)

Et(φ,m,L, d) :=

√
2dLd/2

π

(
1

m2
φ2
(
m
L

)
+

1

L

∫ ∞

m/L

φ2(t)

t2
dt

)1/2

.

(4.127)

Proof. By (4.124) we approximate f by Rφ,mf separately for each shifted
hypercube k

L + [0, 1
L ]
d, k ∈ Zd, where we split the approximation error

f
(
x+ k

L

)
− (Rφ,mf)

(
x+ k

L

)
= er

(
x+ k

L

)
+ et,k(x), x ∈

[
0, 1

L

]d
,

into the regularization error

er(x) := f(x)−
∑

ℓ∈Zd

f
(
ℓ
L

)
ψ
(
x− ℓ

L

)
, x ∈ Rd, (4.128)

and the truncation error

et,k(x) :=
∑

ℓ∈Zd

f
(
ℓ+k
L

)
ψ
(
x− ℓ

L

)
− (Rφ,mf)(x), x ∈

[
0, 1

L

]d
. (4.129)

Initially, we restrict ourselves to the hypercube
[
0, 1

L

]d
.

We start with the estimation of the regularization error (4.128). By the
tensor product structure of ψ in (4.123) the d-dimensional Fourier trans-

form ψ̂(v) equals the tensor product of one-dimensional Fourier transforms,
see Remark 2.3, such that we obtain by (4.70) that

ψ̂(v) =
1

Ld

d∏

t=1

∫ vt+L/2

vt−L/2
φ̂(u) du.
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Using the shifting property of the Fourier transform, the Fourier transform
of ψ

( ·− ℓ
L

)
, ℓ ∈ Zd, reads as

1

Ld
e−2πivℓ/L

d∏

t=1

∫ vt+L/2

vt−L/2
φ̂(u) du.

Therefore, the Fourier transform of the regularization error (4.128) has the
form

êr(v) = f̂(v)−
∑

ℓ∈Zd

1

Ld
f
(
ℓ
L

)
e−2πivℓ/L

d∏

t=1

∫ vt+L/2

vt−L/2
φ̂(u) du. (4.130)

Since f ∈ BM/2(Rd) and L ≥M by assumption, we have

supp(f̂) ⊆
[
−M

2 ,
M
2

]d ⊂
[
−L

2 ,
L
2

]d
.

Hence, the restriction of f̂ to
[
−L

2 ,
L
2

]d
belongs to L2

([
− L

2 ,
L
2

]d)
and thus

possesses the convergent L-periodic Fourier expansion

f̂(v) =
∑

ℓ∈Zd

cℓ(f̂) e
2πivℓ/L, v ∈

[
−L

2 ,
L
2

]d
,

with the Fourier coefficients

cℓ(f̂) =
1

Ld

∫

[−L
2 ,

L
2 ]

d
f̂(v) e−2πivℓ/L dv =

1

Ld
f
(
− ℓ
L

)
, ℓ ∈ Zd.

In other words, since f ∈ BM/2(Rd) is bandlimited with bandwidth M , its

Fourier transform f̂(v) with v ∈ Zd can be represented as

f̂(v) = f̂(v)χ
[−M

2 ,
M
2 ]

d(v) =

( ∑

ℓ∈Zd

1

Ld
f
(
ℓ
L

)
e−2πivℓ/L

)
χ
[−M

2 ,
M
2 ]

d(v).

(4.131)

Introducing the auxiliary function

η(v) := χ
[−M

2 ,
M
2 ]

d(v)−
d∏

t=1

∫ vt+L/2

vt−L/2
φ(u) du,
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cf. (4.72), we see by inserting (4.131) into (4.130) that êr(v) = f̂(v) η(v)

and thereby |êr(v)| = |f̂(v)| |η(v)|. Thus, by inverse Fourier transform (4.4)
we obtain

|er(x)| ≤
∫

Rd

|êr(v)| dv =

∫

[−M
2 ,

M
2 ]

d
|f̂(v)| |η(v)| dv

≤ max
v∈[−M

2 ,
M
2 ]

d
|η(v)|

∫

[−M
2 ,

M
2 ]

d
|f̂(v)| dv.

Using the Cauchy–Schwarz inequality and Parseval’s identity, we see that

∫

[−M
2 ,

M
2 ]

d
|f̂(v)| dv ≤

(∫

[−M
2 ,

M
2 ]

d
12 dv

)1/2(∫

[−M
2 ,

M
2 ]

d
|f̂(v)|2 dv

)1/2

=Md/2 ∥f̂∥L2(Rd) =Md/2 ∥f∥L2(Rd),

which yields the estimate

∥er∥C0(Rd) ≤ Er(φ,M,L, d) ∥f∥L2(Rd)

with the error constant (4.126).
Now we estimate the truncation error (4.129). For k = 0 the representa-

tion (4.124) implies

et,0(x) =
∑

ℓ∈Zd\J d
m+1

f
(
ℓ
L

)
ψ
(
x− ℓ

L

)
, x ∈

[
0, 1

L

]d
.

Then by the Cauchy–Schwarz inequality and (4.9) it follows that

|et,0(x)| ≤
( ∑

ℓ∈Zd\J d
m+1

∣∣f
(
ℓ
L

)∣∣2
)1/2( ∑

ℓ∈Zd\J d
m+1

∣∣ψ
(
x− ℓ

L

)∣∣2
)1/2

≤ Ld/2 ∥f∥L2(Rd) ·
( ∑

ℓ∈Zd\J d
m+1

∣∣ψ
(
x− ℓ

L

)∣∣2
)1/2

.

Since

Zd \ J d
m+1 ⊆

d⋃

t=1

{ℓ ∈ Zd : ℓt ∈ Z \ Jm+1},
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we conclude by (4.123), the product structure of
[
sinc(Lπx− πℓ)

]2
and[

φ(x− ℓ
L )
]2

as well as (4.10) that

∑

ℓ∈Zd\J d
m+1

∣∣ψ
(
x− ℓ

L

)∣∣2 ≤
d∑

t=1

( ∑

ℓ∈Z\Jm+1

∣∣ψ
(
xt − ℓ

L

)∣∣2
)

·
∏

n=1

n̸=t

(∑

ℓ∈Z

[
sinc(Lπxn − πℓ)

]2
)

≤
d∑

t=1

hm+1(xt) · 1, x ∈
[
0, 1

L

]d
,

with the auxiliary function

hm+1(x) :=
∑

ℓ∈Z\Jm+1

1

π2 |Lx− ℓ|2 φ
2
(
x− ℓ

L

)
≥ 0, x ∈

[
0, 1

L

]
,

cf. (4.81). By analogy with (4.82) and (4.83) we can estimate

hm+1(x) ≤
2

π2

∞∑

ℓ=m+1

φ2( ℓL )

ℓ2
≤ 2

π2

∞∑

ℓ=m

φ2( ℓL )

ℓ2

≤ 2

π2

(
φ2(mL )

m2
+

1

L

∫ ∞

m/L

φ2( yL )

y2
dy

)

for all x ∈ [0, 1
L ], and hence we obtain

max
x∈[0, 1/L]d

|et,0(x)| ≤ Et(φ,m,L, d) ∥f∥L2(Rd)

with the error constant (4.127).

By the same technique, these error estimates can be obtained for each

shifted hypercube k
L +

[
0, 1

L

]d
with arbitrary k ∈ Zd, which completes the

proof.
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Corollary 4.51. Analogous to Corollary 4.26 the error estimate of The-
orem 4.50 can be simplified, if the window function φ ∈ Φ vanishes
on R \

[
−m
L ,

m
L

]
. Then the truncation errors et,k(x) are equal to zero

for all x ∈
[
0, 1

L

]d
and k ∈ Zd, such that Et(φ,m,L, d) = 0 and we obtain

the simple error estimate

∥f −Rφ,mf∥C0(Rd) ≤ Er(φ,M,L, d) ∥f∥L2(Rd).

Remark 4.52. As mentioned in Remark 4.27 for the univariate setting also
the multivariate version in Corollary 4.51 applies to the modified B–spline
window function (4.61), the sinh-type window function (4.62) and the
continuous Kaiser–Bessel window function (4.63). Similarly, Corollary 4.51
does not hold for the Gaussian window function (4.60), since φGauss does
not vanish. ⋄

Remark 4.53. Additionally, as in Remark 4.28, note that Theorem 4.50
could also be used to obtain a suitable error estimate for the constant
window function (4.84). Since no regularization is done for the constant
window function (4.84), we obviously have Er(φ,M,L, d) = 0 and therefore
Theorem 4.50 provides the error estimate

∥f −Rconst,mf∥C0(Rd) ≤ Et(φ,m,L, d) ∥f∥L2(Rd)

=

√
2d

π
Ld/2

√
1

m
+

1

m2
∥f∥L2(Rd),

which can be seen as a consequence of a result in [MXZ09]. This again
emphasizes that using localized sampling is not enough for obtaining
fast convergence results for the Shannon sampling series (4.15), rather
regularization is crucial as well. ⋄
In order to apply Theorem 4.50 for a given window function φ ∈ Φ, it

merely remains to estimate the error constants (4.126) and (4.127). Since
the estimation of the multivariate truncation error constant (4.127) reduces
to the knowledge of the univariate truncation error constant (4.80), we
now aim to simplify the multivariate regularization error constant (4.126)
similarly. For this purpose, note that by definition (4.72) we have

∫ v+L/2

v−L/2
φ̂(u) du = 1− η(v), v ∈

[
−M

2 ,
M
2

]
.
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Consequently, with regard to (4.126), we consider the expression

1−
d∏

t=1

∫ vt+L/2

vt−L/2
φ̂(u) du = 1−

d∏

t=1

(
1− η(vt)

)
, v = (v1, . . . , vd).

(4.132)

Lemma 4.54. If the auxiliary function η :
[
−M

2 ,
M
2

]
→ R defined in (4.72)

satisfies 0 ≤ η(v) ≤ 1 for v ∈
[
−M

2 ,
M
2

]
, we have

1−
d∏

t=1

(
1− η(vt)

)
≤

d∑

t=1

η(vt), v = (v1, . . . , vd) ∈
[
−M

2 ,
M
2

]d
. (4.133)

If η in (4.72) at least fulfills |η(v)| ≤ 1 for v ∈
[
−M

2 ,
M
2

]
, then we have

∣∣∣∣∣1−
d∏

t=1

(
1− η(vt)

)
∣∣∣∣∣ ≤

2d − 1

d

d∑

t=1

|η(vt)|, v = (v1, . . . , vd) ∈
[
−M

2 ,
M
2

]d
,

(4.134)

where the factor 2d−1
d is best possible.

Proof. The inequality (4.133) can easily be shown by induction. Obvi-
ously, the assertion (4.133) is valid for d = 1 and d = 2, since η(v) ≥ 0,
v ∈

[
−M

2 ,
M
2

]
, by assumption. Assume that (4.133) holds for arbi-

trary d ≥ 2. Then we conclude

1−
d+1∏

t=1

(
1− η(vt)

)
=

(
1−

d∏

t=1

(
1− η(vt)

)
)

+ η(vd+1)
d∏

t=1

(
1− η(vt)

)

≤
d∑

t=1

η(vt) + η(vd+1)

=
d+1∑

t=1

η(vt), (v1, . . . , vd+1) ∈
[
−M

2 ,
M
2

]d+1
,

since 0 ≤ 1− η(v) ≤ 1 for v ∈
[
−M

2 ,
M
2

]
by assumption.

In case |η(v)| ≤ 1 for v ∈
[
−M

2 ,
M
2

]
, the inequality (4.134) can be shown

by the triangle inequality and the inequality of geometric and arithmetic
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means d
√
x1 · · · · · xd ≤ 1

d (x1 + · · ·+ xd). Since (4.134) is obviously valid
for d = 1, we demonstrate (4.134) only for d = 2 for simplicity. Here we
have

∣∣∣∣∣1−
d∏

t=1

(
1− η(vt)

)
∣∣∣∣∣ = |η(v1) + η(v2)− η(v1) η(v2)|

≤ |η(v1)|+ |η(v2)|+ |η(v1) η(v2)|
≤ |η(v1)|+ |η(v2)|+

√
|η(v1) η(v2)|

≤ |η(v1)|+ |η(v2)|+ 1
2

(
|η(v1)|+ |η(v2)|

)

= 3
2

(
|η(v1)|+ |η(v2)|

)
.

Analogously, the inequality (4.134) can be shown for d > 2. Moreover, the

factor 2d−1
d is the best possible, since in case η(vt) = −1, t = 1, . . . , d, we

obtain equality in (4.134).

Based on these properties, we can now simplify the estimate of the
regularization error constant (4.126) from Theorem 4.50 as follows.

Corollary 4.55. For a given window function φ ∈ Φ let η :
[
−M

2 ,
M
2

]
→ R

be its corresponding auxiliary function defined in (4.72). Then the following
holds.

(i) If η in (4.72) fulfills the condition 0 ≤ η(v) ≤ 1 for v ∈
[
−M

2 ,
M
2

]
,

then the error constant (4.126) can be bounded by

Er(φ,M,L, d) ≤ dMd/2 max
v∈[−M

2 ,
M
2 ]
η(v). (4.135)

(ii) If η in (4.72) fulfills the condition |η(v)| ≤ 1 for v ∈
[
−M

2 ,
M
2

]
, then

the error constant (4.126) can be bounded by

Er(φ,M,L, d) ≤
(
2d − 1

)
Md/2 max

v∈[−M
2 ,

M
2 ]

|η(v)|. (4.136)

Proof. (i) If for φ ∈ Φ the auxiliary function (4.72) fulfills the condi-
tion 0 ≤ η(v) ≤ 1 for v ∈

[
−M

2 ,
M
2

]
, then we conclude by (4.126), (4.132)

and (4.133) that

Er(φ,M,L, d) =Md/2 max
v∈[−M

2 ,
M
2 ]

d

∣∣∣∣∣1−
d∏

t=1

∫ vt+L/2

vt−L/2
φ̂(u) du

∣∣∣∣∣
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=Md/2 max
v∈[−M

2 ,
M
2 ]

d

∣∣∣∣∣1−
d∏

t=1

(
1− η(vt)

)
∣∣∣∣∣

≤Md/2 max
v∈[−M

2 ,
M
2 ]

d

(
d∑

t=1

η(vt)

)
= dMd/2 max

v∈[−M
2 ,

M
2 ]
η(v).

(ii) If for φ ∈ Φ the auxiliary function (4.72) fulfills the condi-
tion |η(v)| ≤ 1 for v ∈

[
−M

2 ,
M
2

]
, then we conclude by (4.126), (4.132)

and (4.134) that

Er(φ,M,L, d) =Md/2 max
v∈[−M

2 ,
M
2 ]

d

∣∣∣∣∣1−
d∏

t=1

∫ vt+L/2

vt−L/2
φ̂(u) du

∣∣∣∣∣

=Md/2 max
v∈[−M

2 ,
M
2 ]

d

∣∣∣∣∣1−
d∏

t=1

(
1− η(vt)

)
∣∣∣∣∣

≤ 2d − 1

d
Md/2 max

v∈[−M
2 ,

M
2 ]

d

(
d∑

t=1

|η(vt)|
)

=
(
2d − 1

)
Md/2 max

v∈[−M
2 ,

M
2 ]

|η(v)|.

This completes the proof.

Remark 4.56. As shown in (4.93) and (4.103), the Gaussian window func-
tion (4.60) and the B–spline window function (4.61) both satisfy the con-
dition 0 ≤ η(v) ≤ 1, i. e., for both window functions the estimate (4.135)
can be applied.
Furthermore, it was demonstrated in (4.112) and (4.120), that the con-

dition |η(v)| ≤ 1 is satisfied for the sinh-type window function (4.62) and
the continuous Kaiser–Bessel window function (4.63) with β ≥ π, such that
the estimate (4.136) can be applied for these window functions. ⋄
Now, we will move on to the issue of numerical robustness. As seen

in Theorem 4.7, if the samples f
(
ℓ
L

)
, ℓ ∈ Zd, of a bandlimited func-

tion f ∈ BM/2(Rd) are not known exactly, i. e., only erroneous sam-

ples f̃ℓ := f
(
ℓ
L

)
+ εℓ with |εℓ| ≤ ε, ℓ ∈ Zd, with sufficiently small ε > 0

are known, the corresponding Shannon sampling series (4.15) may differ
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appreciably from f . Analogous to (4.85) we denote the d-dimensional
regularized Shannon sampling formula with erroneous samples f̃ℓ by

(Rφ,mf̃)(x) =
∑

ℓ∈Zd

f̃ℓ sinc
(
Lπ
(
x− ℓ

L

))
φm
(
x− ℓ

L

)
, x ∈ Rd. (4.137)

Then, in contrast to the Shannon sampling series (4.15), the d-dimensional
regularized Shannon sampling formula (4.121) is numerically robust, i. e.,
the uniform perturbation error

∥Rφ,mf̃ −Rφ,mf∥C0(Rd) (4.138)

is small, as the following theorem shows. Note that for d = 1 the following
theorem coincides with Theorem 4.29.

Theorem 4.57. Let f ∈ BM/2(Rd) with M ∈ N, L =M(1 + λ) ∈ N
with λ ≥ 0 and m ∈ N \ {1}. Further let φ ∈ Φ be a univariate window
function with its d-variate version (2.13). Moreover, let f̃ℓ = f

(
ℓ
L

)
+ εℓ,

ℓ ∈ Zd, be given, where we have |εℓ| ≤ ε for all ℓ ∈ Zd and 0 < ε < 1. Then
the d-dimensional regularized Shannon sampling formula (4.121) satisfies

∥Rφ,mf̃ −Rφ,mf∥C0(Rd) ≤ ε
(
2 + L φ̂(0)

)d
,

∥f −Rφ,mf̃∥C0(Rd) ≤ ∥f −Rφ,mf∥C0(Rd) + ε
(
2 + L φ̂(0)

)d
.

(4.139)

Proof. By (4.124) we denote the error on each shifted hypercube k
L +

[
0, 1

L

]d

with k ∈ Zd and x ∈
[
0, 1

L

]d
as

ẽk(x) := (Rφ,mf̃)
(
x+ k

L

)
− (Rφ,mf)

(
x+ k

L

)
=

∑

ℓ∈J d
m+1

εℓ+k ψ
(
x− ℓ

L

)
.

We start with the hypercube
[
0, 1

L

]d
. Using |εℓ| ≤ ε, the definition (4.123),

and the non-negativity as well as the product structure of φ ∈ Φ, we receive

∣∣ẽ0(x)
∣∣ ≤

∑

ℓ∈J d
m+1

|εℓ|
∣∣ψ
(
x− ℓ

L

)∣∣

≤ ε
∑

ℓ∈J d
m+1

φ
(
x− ℓ

L

)
= ε

d∏

t=1

( ∑

ℓ∈Jm+1

φ
(
xt − ℓ

L

))
.
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Analogous to the proof of Theorem 4.29 it can be shown that for φ ∈ Φ
and x ∈

[
0, 1

L

]
we have

∑

ℓ∈Jm+1

φ
(
x− ℓ

L

)
≤ 2

m∑

ℓ=0

φ
(
ℓ
L

)

< 2φ(0) + 2L

∫ m/L

0

φ(t) dt ≤ 2φ(0) + L φ̂(0).

Thus, we obtain

max
x∈[0, 1/L]d

∣∣ẽ0(x)
∣∣ ≤ ε

(
2 + L φ̂(0)

)d
.

By the same technique, this error estimate can be shown for each shifted

hypercube k
L +

[
0, 1

L

]d
with arbitrary k ∈ Zd.

In addition, the triangle inequality yields (4.139), which completes the
proof.

In the remainder of this section we specify the results of Theorems 4.50
and 4.57 for the window functions in Remark 4.22. For this purpose, it
merely remains to estimate the regularization error constant (4.126), the
truncation error constant (4.127) as well as φ̂(0) for the different window
functions, which shall be done in the following subsections.

Gaussian window function

Firstly, we consider the d-dimensional regularized Shannon sampling for-
mula (4.121) with the Gaussian window function (4.60) and show that its
uniform approximation error (4.125) decays exponentially with respect to m.
Note that in case d = 1 the following theorem coincides with Theorem 4.33.

Theorem 4.58. Let f ∈ BM/2(Rd) with M ∈ N, L =M (1 + λ) ∈ N
with λ > 0 and m ∈ N \ {1} be given. Then the d-dimensional regular-
ized Shannon sampling formula (4.121) using the Gaussian window func-

tion (4.60) and α = 1
M

√
m

π(1+λ)λ satisfies the error estimate

∥f −RGauss,mf∥C0(Rd) (4.140)

≤ dMd/2
√
2m(1 + λ) +

√
2dLd/2

√
λ(1 +m)

mπ
√
λ

e−mπλ/(2+2λ) ∥f∥L2(Rd).
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Proof. By Theorem 4.50 we only have to estimate the error constants (4.126)
and (4.127) for the Gaussian window function (4.60). For the regularization
error constant (4.126) we have seen in Corollary 4.55 and Remark 4.56
that this can easily be done by (4.135), i. e., we only have to consider
the univariate function (4.72). Since the truncation error constant (4.127)
also depends only on the univariate window function φ ∈ Φ, and these
univariate functions have already been estimated in Theorem 4.33, this
completes the proof.

Now we show that the d-dimensional regularized Shannon sampling
formula with the Gaussian window function (4.60) is numerically robust
with respect to noisy samples and that the uniform perturbation error (4.86)
only grows as O(md/2). Note that in case d = 1 the following theorem
coincides with Theorem 4.36.

Theorem 4.59. Let f ∈ BM/2(Rd) with M ∈ N, L = (1 + λ)M ∈ N
with λ > 0 and m ∈ N \ {1} be given. Further let RGauss,mf̃ be defined

as in (4.137) with the noisy samples f̃ℓ = f
(
ℓ
L

)
+ εℓ, where |εℓ| ≤ ε for

all ℓ ∈ Zd and 0 < ε≪ 1. Then the d-dimensional regularized Shannon
sampling formula (4.121) using the Gaussian window function (4.60)

and α = 1
M

√
m

π(1+λ)λ satisfies

∥RGauss,mf̃ −RGauss,mf∥C0(Rd) ≤ ε

(
2 +

√
2 + 2λ

λ

√
m

)d
. (4.141)

Proof. By Theorem 4.57 we only need to compute φ̂Gauss(0) for the
Gaussian window function (4.60), which has already been done in Theo-
rem 4.36.

We remark that the triangle inequality combined with Theo-
rems 4.58 and 4.59 also implies an estimate on the perturbation er-
ror ∥f −RGauss,mf̃∥C0(Rd), cf. (4.139).

B–spline window function

Secondly, we consider the d-dimensional regularized Shannon sampling
formula (4.121) with the modified B–spline window function (4.61) and
show that its uniform approximation error (4.125) decays exponentially
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with respect to m, if the oversampling condition (4.102) is fulfilled. Note
that in case d = 1 the following theorem coincides with Theorem 4.40.

Theorem 4.60. Let f ∈ BM/2(Rd) with M ∈ N, L =M (1 + λ) ∈ N
and m ∈ N \ {1} be given, where λ > 0 fulfills the oversampling con-
dition (4.102). Then the d-dimensional regularized Shannon sampling
formula (4.121) using the modified B–spline window function (4.61)
and s =

⌈
m+1
2

⌉
satisfies the error estimate

∥f −RB,mf∥C0(Rd) ≤
3d

√
sMd

√
2 (2s− 1)π

e−m (ln(πmλ)−ln(2s(1+λ))) ∥f∥L2(Rd).

(4.142)

Proof. By Corollary 4.51 we only have to estimate the regularization error
constant (4.126) for the modified B–spline window function (4.61). As seen
in Corollary 4.55 and Remark 4.56 this can easily be done by (4.135), i. e.,
we only have to consider the univariate function (4.72). Since this function
has already been estimated in Theorem 4.40, this completes the proof.

Now we show that the d-dimensional regularized Shannon sampling
formula with the modified B–spline window function (4.61) is numerically
robust with respect to noisy samples and that the uniform perturbation
error (4.138) only grows as O(md/2). Note that in case d = 1 the following
theorem coincides with Theorem 4.41.

Theorem 4.61. Let f ∈ BM/2(Rd) with M ∈ N, L = (1 + λ)M ∈ N
with λ > 0 and m ∈ N \ {1} be given. Further let RB,mf̃ be as in (4.137)

with the noisy samples f̃ℓ = f
(
ℓ
L

)
+ εℓ, where |εℓ| ≤ ε for all ℓ ∈ Zd

and 0 < ε≪ 1. Then the d-dimensional regularized Shannon sampling
formula (4.121) using the B–spline window function (4.61) and s = ⌈m+1

2 ⌉
satisfies

∥RB,mf̃ −RB,mf∥C0(Rd) ≤ ε
(
2 + 3

2

√
m
)d
. (4.143)

Proof. By Theorem 4.57 we only need to compute φ̂B(0) for the B–spline
window function (4.61), which has already been done in Theorem 4.41.

We remark that the triangle inequality combined with Theo-
rems 4.60 and 4.61 also implies an estimate on the perturbation er-
ror ∥f −RB,mf̃∥C0(Rd), cf. (4.139).
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sinh-type window function

We proceed with the d-dimensional regularized Shannon sampling for-
mula (4.121) with the sinh-type window function (4.62) and show that its
uniform approximation error (4.125) decays exponentially with respect to m.
Note that in case d = 1 the following theorem coincides with Theorem 4.44.

Theorem 4.62. Let f ∈ BM/2(Rd) with M ∈ N, L =M (1 + λ) ∈ N
with λ > 0 and m ∈ N \ {1} be given. Then the d-dimensional regular-
ized Shannon sampling formula (4.121) using the sinh-type window func-
tion (4.62) and β = πmλ

1+λ satisfies the error estimate

∥f −Rsinh,mf∥C0(Rd) ≤
(
2d − 1

)
Md/2 e−mπλ/(1+λ) ∥f∥L2(Rd). (4.144)

Proof. By Corollary 4.51 we only have to estimate the regularization error
constant (4.126) for the sinh-type window function (4.62). As seen in
Corollary 4.55 and Remark 4.56 this can easily be done by (4.136), i. e., we
only have to consider the univariate function (4.72). Since this function
has already been estimated in Theorem 4.44, this completes the proof.

Now we show that the d-dimensional regularized Shannon sampling
formula with the sinh-type window function (4.62) is numerically robust
with respect to noisy samples and that the uniform perturbation error (4.86)
only grows as O(md/2). Note that in case d = 1 the following theorem
coincides with Theorem 4.45.

Theorem 4.63. Let f ∈ BM/2(Rd) with M ∈ N, L = (1 + λ)M ∈ N
with λ > 0 and m ∈ N \ {1} be given. Further let Rsinh,mf̃ be defined

as in (4.137) with the noisy samples f̃ℓ = f
(
ℓ
L

)
+ εℓ, where |εℓ| ≤ ε for

all ℓ ∈ Zd and 0 < ε≪ 1. Then the d-dimensional regularized Shan-
non sampling formula (4.121) using the sinh-type window function (4.62)
and β = πmλ

1+λ satisfies

∥Rsinh,mf̃ −Rsinh,mf∥C0(Rd) ≤ ε

(
2 +

√
2 + 2λ

λ

1

1− e−2β

√
m

)d
.

(4.145)

Proof. By Theorem 4.57 we only need to compute φ̂sinh(0) for the sinh-type
window function (4.62), which has already been done in Theorem 4.45.
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We remark that the triangle inequality combined with Theo-
rems 4.62 and 4.63 also implies an estimate on the perturbation er-
ror ∥f −Rsinh,mf̃∥C0(Rd), cf. (4.139).

Continuous Kaiser–Bessel window function

Finally, we consider the d-dimensional regularized Shannon sampling for-
mula (4.121) with the continuous Kaiser–Bessel window function (4.63) and
show that its uniform approximation error (4.125) decays exponentially
with respect to m. Note that in case d = 1 the following theorem coincides
with Theorem 4.48.

Theorem 4.64. Let f ∈ BM/2(Rd) with M ∈ N, L =M (1 + λ) ∈ N
with λ ≥ 1

m−1 and m ∈ N \ {1} be given. Then the d-dimensional regular-
ized Shannon sampling formula (4.121) using the continuous Kaiser–Bessel
window function (4.63) and β = πmλ

1+λ satisfies the error estimate

∥f −RcKB,mf∥C0(Rd) (4.146)

≤ (2d − 1)Md/2 7πmλ(1 + λ+ 4mλ)

4 (1 + λ)2
e−mπλ/(1+λ) ∥f∥L2(Rd).

Proof. By Corollary 4.51 we only have to estimate the regularization error
constant (4.126) for the continuous Kaiser–Bessel window function (4.63).
As seen in Corollary 4.55 and Remark 4.56 this can easily be done by (4.136),
i. e., we only have to consider the univariate function (4.72). Since this
function has already been estimated in Theorem 4.48, this completes the
proof.

Now we show that the d-dimensional regularized Shannon sampling
formula with the continuous Kaiser–Bessel window function (4.63) is nu-
merically robust with respect to noisy samples and that the uniform per-
turbation error (4.86) only grows as O(md/2). Note that in case d = 1 the
following theorem coincides with Theorem 4.49.

Theorem 4.65. Let f ∈ BM/2(Rd) with M ∈ N, L = (1 + λ)M ∈ N
with λ > 0 and m ∈ N \ {1} be given. Further let RcKB,mf̃ be defined

as in (4.137) with the noisy samples f̃ℓ = f
(
ℓ
L

)
+ εℓ, where |εℓ| ≤ ε for

all ℓ ∈ Zd and 0 < ε≪ 1. Then the d-dimensional regularized Shannon
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sampling formula (4.121) using the continuous Kaiser–Bessel window func-
tion (4.63) and β = πmλ

1+λ satisfies

∥RcKB,mf̃ −RcKB,mf∥C0(Rd) ≤ ε

(
2 +

√
2 + 2λ

λ

√
m

)d
. (4.147)

Proof. By Theorem 4.57 we only need to compute φ̂cKB(0) for the continu-
ous Kaiser–Bessel window function (4.63), which has already been done in
Theorem 4.49.

We remark that the triangle inequality combined with Theo-
rems 4.64 and 4.65 also implies an estimate on the perturbation er-
ror ∥f −RcKB,mf̃∥C0(Rd), cf. (4.139).

Summary

In summary, we have shown that for the window functions mentioned in
Remark 4.22 the uniform approximation error (4.125) of the regularized
Shannon sampling formula (4.121) can be bounded for all d ∈ N, analogously
to Section 4.3.2. For small d ∈ {1, 2, 3} this is also useful in practice, see the
numerical experiments in Section 4.5. Note, however, that for large values
of d these error constants may not be appropriate due to the exponential
term Md/2. We remark that this behavior is similar to what is known for
the FFT and the NFFT in Section 2 for dimensions d > 1.

4.5 Numerical examples & summary

Concluding this chapter, we have a look at some numerical examples,
cf. [KPT22, KPT24]. Besides illustrating the nonrobustness of classical
Shannon sampling series proven in Section 4.2 (see Example 4.66), we
also visualize the error decay rates shown for the regularization using the
frequency window functions considered in Section 4.3.1 (see Examples 4.67
and 4.68) as well as the spatial window functions studied in Sections 4.3.2
and 4.4 (see Examples 4.69 – 4.77). Finally, in a direct comparison of these
methods (see Example 4.78), we demonstrate that this second approach
using window functions in spatial domain is indeed more powerful as it
produces much smaller errors using the same amount of samples.
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Poor convergence of Shannon sampling sums

We start by visualizing that the convergence of the classical Shannon
sampling series (4.15) may break down completely in the presence of noise
in the samples.

Example 4.66. First of all, we exemplify the error bounds of the perturbation
error in Theorem 4.7, similar to [KPT24, Figure 2.1]. Since the norm
∥f̃ − f∥C0(Rd) as well as the lower and upper bounds (4.29) and (4.27)

do not depend on the actual choice of the function f ∈ BM/2(Rd), it is
sufficient to consider only the sums (4.31) when using the special error
terms (4.28). Note that by the tensor product structure of the sign and
the sinc function (3.31) we may rewrite (4.31) for all x ∈ Rd as

f̃(x)− f(x) = ε

d∏

t=1

(
T∑

kt=−T

sign
(
sinc(π2 − πkt)

)
sinc(Lπxt − πkt)

)
.

Therefore, the computation of the multivariate approximation error

max
x∈[−1, 1]d

∣∣f̃(x)− f(x)
∣∣

= ε max
x∈[−1, 1]d

∣∣∣∣∣
d∏

t=1

(
T∑

kt=−T

sign
(
sinc(π2 − πkt)

)
sinc(Lπxt − πkt)

)∣∣∣∣∣

= ε

(
max

x∈[−1, 1]

∣∣∣∣∣
T∑

k=−T

sign
(
sinc(π2 − πk)

)
sinc(Lπx− πk)

∣∣∣∣∣

)d
(4.148)

reduces to computing its univariate analogue, similar to the lower and
upper bounds (4.29) and (4.27), respectively.

In this experiment the maximum approximation error (4.148) is estimated
by evaluation at equidistant points xs = −1 + s

S ∈ [−1, 1], s = 0, . . . , 2S,
with S = 105. For this purpose, we fix the bandwidth M = 128 and a
maximum perturbation of ε = 10−3, and consider the error behavior for in-
creasing truncation parameters T ∈ N, and several L =M(1 + λ) with over-
sampling parameters λ ∈ {0, 0.5, 1, 2}. The respective results for T = 2c,
c ∈ {0, . . . , 15}, are depicted in Figure 4.14, while Figure 4.13 displays a
detail for T ∈ {1, . . . , 10}. As mentioned before, we recognize that the
norm ∥f̃ − f∥C0(Rd) does not depend on the choice of the oversampling
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parameter λ = L−M
M ≥ 0. It can clearly be seen that the numerical out-

comes perfectly fit the theoretical bounds, which are indeed very close to
each other, see Figure 4.13. However, since for increasing dimension d the
maximum approximation error (4.148) rises exponentially, Figure 4.14 also
illustrates that for T → ∞ the error behavior shown in Theorem 4.7 is
not satisfactory and therefore the convergence of the Shannon sampling
series (4.15) may even break down completely in the presence of noise in
the samples f

(
k
L

)
, k ∈ Zd. ⋄
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Figure 4.13: The maximum approximation error (4.148) as well as its
lower and upper bounds (4.29) and (4.27), respectively,
for T ∈ {1, . . . , 10}, and L =M(1 + λ) with λ ∈ {0, 0.5, 1, 2},
where M = 128 and ε = 10−3 are chosen.
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Figure 4.14: The maximum approximation error (4.148) as well as its lower
and upper bounds (4.29) and (4.27), respectively, for T = 2c,
c ∈ {0, . . . , 15}, and L =M(1 + λ) with λ ∈ {0, 0.5, 1, 2},
where M = 128 and ε = 10−3 are chosen.
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Regularization with a window function in frequency domain

Next, we proceed with the illustration of the theoretical results regarding
the regularization using the frequency window functions from Section 4.3.1.
More precisely, in the following two examples we verify the error bounds
of Theorems 4.14 and 4.15, and compare the frequency window functions
considered throughout Section 4.3.1.

We start examining the linear frequency window ψlin in (4.45).

Example 4.67. As in [KPT24, Example 3.5], we now visualize the er-
ror bound of Theorem 4.14, i. e., for a given function f ∈ BM/2(R)
with L =M(1 + λ), λ > 0, we show that for the linear frequency window
function ψlin in (4.45) the approximation error satisfies the estimate (4.46).
For this purpose, the maximum approximation error

max
x∈[−1, 1]

∣∣f(x)− (Plin,T f)(x)
∣∣ (4.149)

is estimated by evaluating the given function f as well as its approx-
imation Plin,T f , cf. (4.38), at equidistant points xs = −1 + s

S ∈ [−1, 1],
s = 0, . . . , 2S, with S = 105. In this experiment we study the func-
tion f(x) =

√
M sinc(Mπx), x ∈ R, such that ∥f∥L2(R) = 1. More specifi-

cally, we fix M = 128 and consider the error behavior for increasing trunca-
tion parameters T ∈ N and several oversampling parameters λ ∈ {0.5, 1, 2}.
The corresponding results are depicted in Figure 4.15. Note that the error
bound in (4.40) is only valid for T > L. Therefore, we have additionally
marked the point T = L for each λ as a vertical dash-dotted line. It
can easily be seen that the numerical error results are also much better
when T > L. Note, however, that increasing the oversampling parameter λ
requires a much larger truncation parameter T to obtain errors of the
same size. Hence, for the regularization with the linear frequency window
function ψlin in (4.45) a small oversampling λ > 0 is desirable. ⋄

As the error bound of Theorem 4.15 applies not only to the cubic
frequency window function ψcub in (4.48) but also to the raised cosine
frequency window function ψcos in (4.51) and the convolutional frequency
window function ψconv,2 in (4.57), the next example combines the verifi-
cation of this error bound with the comparison of all frequency window
functions considered in Section 4.3.1.
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Figure 4.15: Maximum approximation error (4.149) (solid) and error con-
stant (4.40) (dashed) using the linear frequency window ψlin

from (4.45) in (4.38) for the function f(x) =
√
M sinc(Mπx)

with M = 128, λ ∈ {0.5, 1, 2}, and different T ∈ N.

Example 4.68. Similar to [KPT24, Section 5], we compare the behavior
of the regularization in frequency domain Pψ,T f in (4.38) of Section 4.3.1
to the classical Shannon sampling sums ST f in (4.12), i. e., for a given
function f ∈ BM/2(R) with L =M(1 + λ), λ > 0, we consider the approxi-
mation errors

max
x∈[−1, 1]

∣∣f(t)− (ST f)(x)
∣∣ and max

x∈[−1, 1]

∣∣f(x)− (Pψ,T f)(x)
∣∣ (4.150)

for ψ ∈ {ψlin, ψcub, ψcos, ψconv,2, ψconv,3, ψconv,4, ψconv,∞, ψrat}, cf. (4.45),
(4.48), (4.51), (4.57), (4.58), and Remark 4.21, as well as the corresponding
error constants (4.46) and (4.49). As in Example 4.67 the errors (4.150)
shall be estimated by evaluating a given function f and its approximation
at equidistant points xs = −1 + s

S ∈ [−1, 1], s = 0, . . . , 2S, with S = 105.
Analogous to [Obe90, Section IV, C] we choose the function

f(x) =
√

4N
5

[
sinc(Mπx) + 1

2 sinc(Mπ(x− 1))
]
, x ∈ R, (4.151)

with ∥f∥2 = 1. Since the error bounds (4.46) and (4.49) are only valid
for T > L, we fix M = 256 and consider several values of T = L+m
with m ∈ N \ {1} and λ > 0.

The associated results are displayed in Figure 4.16. We see that for all
window functions the theoretical error behavior perfectly coincides with the
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numerical outcomes. In this regard, see also Table 4.1 which summarizes
the theoretical results. In particular, it can be seen that ψcub in (4.48),
ψcos in (4.51), and ψconv,2 in (4.57) all meet the same error bound (4.49),
while the error decay for ψconv,n becomes faster as n increases. Moreover,
note that ψconv,∞ in (4.58) as well as ψrat from Remark 4.21 indeed behave
similarly to the classical Shannon sampling sums (4.12), and thus the
corresponding approaches for designing optimal window functions have not
been successful. ⋄
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Figure 4.16: Maximum approximation error (4.150) (solid) and error con-
stants (dashed) using classical Shannon sampling sums com-
pared to regularizations (4.36) with several frequency window
functions for the function (4.151) where M = 256, T = L+m
with m ∈ {2, 3, . . . , 10}, and λ ∈ {0.5, 1, 2}.

Regularization with a window function in spatial domain

Now let us move on to the regularization using the spatial window functions
from Sections 4.3.2 and 4.4. Here we study the theoretical results regarding
the uniform approximation error of Theorems 4.25 and 4.50 as well as the
uniform perturbation error of Theorems 4.29 and 4.57. More specifically,
we visualize the specified error bounds for each of the window functions
mentioned in Remark 4.22 separately.

Gaussian window function We begin with the Gaussian window func-
tion (4.60).

Example 4.69. Analogous to [KPT22, Example 4.2] we now visualize
the error bound of Theorems 4.33 and 4.58, respectively. For a given
function f ∈ BM/2(Rd) with fixed M ∈ N, L =M(1 + λ) ∈ N with λ ≥ 0,
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and m ∈ N \ {1}, we consider the approximation error

em,λ(f) := max
x∈[−1, 1]d

|f(x)− (Rφ,mf)(x)|. (4.152)

Using the Gaussian window function φGauss in (4.60) with α = 1
M

√
m

π(1+λ)λ

we show that by (4.140) we have em,λ(f) ≤ Em,λ ∥f∥L2(Rd), where

Er(φGauss,M,L, d) + Et(φGauss,m,L, d) ≤ Em,λ

:=
dMd/2

√
2m(1 + λ) +

√
2dLd/2

√
λ(1 +m)

mπ
√
λ

e−mπλ/(2+2λ).

(4.153)

For this purpose, the error (4.152) shall be approximated by evaluat-
ing a given function f and its approximation Rφ,mf on the equidistant
grid ⊗dt=1(x0, . . . , x2S1/d)⊤ with xs = −1 + s

S ∈ [−1, 1], s = 0, . . . , 2S1/d,
and S = 212. By the definition of the regularized Shannon sampling for-
mula with localized sampling in (4.74) and (4.121), respectively, it can be
seen that for x ∈ [−1, 1]d we have

(Rφ,mf)(x) =
∑

ℓ∈J d
m,L

f( ℓ
L )ψ(x− ℓ

L )χ[−m
L ,

m
L ]
(x− ℓ

L ) (4.154)

with the regularized sinc function (4.123) and the index set

J d
m,L := Zd ∩ [−m− L, m+ L]

d

= {ℓ ∈ Zd : −m− L ≤ ℓt ≤ m+ L, t = 1, . . . , d}.

Here we study the function f(x) =
(
3M
4

)d/2
sinc2

(
M
2 πx

)
, x ∈ Rd, such

that we have ∥f∥L2(Rd) = 1. For d ∈ {1, 2, 3} we fix M = 26/d and choose
different values for the truncation parameter m ∈ N \ {1} and the over-
sampling parameter λ ≥ 0. Note that the error bound of Theorem 4.60
only holds for λ > 0, whereas the approximation error (4.152) can also be
computed for λ = 0, since for the Gaussian window function (4.60) we have
limλ→0 φGauss(x) = 1 for all x ∈ R.
The associated results for m ∈ {2, 3, . . . , 10} and λ ∈ {0, 0.5, 1, 2} are

displayed in Figure 4.17. For all tested dimensions d ∈ {1, 2, 3} it becomes
evident that increasing the truncation parameter m and the oversampling



4.5 Numerical examples & summary 207

parameter λ results in strongly enhanced error results. Moreover, we remark
that the experimental approximation error fully fits the theoretical bounds
and the predicted decay rates. Note that for larger choices of M , the lines
in Figure 4.17 would be shifted slightly upwards. ⋄
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Figure 4.17: Maximum approximation error (4.152) (solid) and error con-
stant (4.153) (dashed) using the Gaussian window func-

tion φGauss in (4.60) with α = 1
M

√
m

π(1+λ)λ for the func-

tion f(x) =
(
3M
4

)d/2
sinc2

(
M
2 πx

)
with fixedM = 26/d as well

as m ∈ {2, 3, . . . , 10}, and λ ∈ {0, 0.5, 1, 2}.

Example 4.70. Next, analogous to [KPT22, Example 4.4], we visualize the
error bound of Theorems 4.36 and 4.59, respectively. Similar to Exam-
ple 4.69, we consider the perturbation error

ẽm,λ(f) := max
x∈[−1, 1]d

|(Rφ,mf̃)(x)− (Rφ,mf)(x)|. (4.155)

Using the Gaussian window function φGauss in (4.60) with α = 1
M

√
m

π(1+λ)λ

we show that by (4.141) we have ẽm,λ(f) ≤ Ẽm,λ, where

Ẽm,λ := ε

(
2 +

√
2 + 2λ

λ

√
m

)d
. (4.156)

We conduct the same experiment as in Example 4.69 and introduce a max-
imum perturbation of ε = 10−3 as well as uniformly distributed random
numbers εℓ ∈ (−ε, ε), ℓ ∈ J d

m,L. Due to the randomness we perform the
experiment ten times and then consider the maximum error. The corre-
sponding outcomes are depicted in Figure 4.18. Clearly, the experimental
error fully fits the theoretical bounds. ⋄
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Figure 4.18: Maximum perturbation error (4.155) (solid) and error con-
stant (4.156) (dashed) using the Gaussian window func-

tion φGauss in (4.60) with α = 1
M

√
m

π(1+λ)λ for the func-

tion f(x) =
(
3M
4

)d/2
sinc2

(
M
2 πx

)
with fixedM = 26/d as well

as ε = 10−3, m ∈ {2, 3, . . . , 10}, and λ ∈ {0, 0.5, 1, 2}.

B–spline window function Secondly, we consider the modified B–spline
window function (4.61).

Example 4.71. Analogous to Example 4.69 and [KPT22, Example 5.4], we
now visualize the error bound of Theorems 4.40 and 4.60, respectively, i. e.,
using the modified B–spline window function φB in (4.61) with s =

⌈
m+1
2

⌉

we show that for the approximation error (4.152) we have by (4.142)
that em,λ(f) ≤ Em,λ ∥f∥L2(Rd), where

Er(φB,M,L, d) ≤ Em,λ :=
3d

√
sMd

√
2 (2s− 1)π

e−m (ln(πmλ)−ln(2s(1+λ))).

(4.157)

Additionally, we now have to observe the condition (4.102). Note that

m+ 2

mπ − (m+ 2)
≥ 12

10π − 12
≈ 0.6180, m ∈ {2, 3, . . . , 10}.

Therefore, in Figure 4.19 the error bounds are plotted only for λ ∈ {1, 2},
since only then the requirements of Theorem 4.60 are fulfilled, while the
approximation error (4.152) is computed for all constellations of the param-
eters as in Example 4.69. For all tested dimensions d ∈ {1, 2, 3} it becomes
evident that the experimental approximation error fully fits the theoretical
results and that higher truncation parameters m and oversampling parame-
ters λ reduce the error significantly. However, we recognize that compared
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to Figure 4.17 there is hardly any improvement using the modified B–spline
window function φB in (4.61) in comparison to the well-studied Gaussian
window function φGauss in (4.60). ⋄
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Figure 4.19: Maximum approximation error (4.152) (solid) and error con-
stant (4.157) (dashed) using the modified B–spline win-
dow function φB in (4.61) with s =

⌈
m+1
2

⌉
for the func-

tion f(x) =
(
3M
4

)d/2
sinc2

(
M
2 πx

)
with fixedM = 26/d as well

as m ∈ {2, 3, . . . , 10}, and λ ∈ {0, 0.5, 1, 2}.

Example 4.72. Next, we visualize the error bound of Theorems 4.41 and 4.61,
respectively. Using the modified B–spline window function φB in (4.61)
with s =

⌈
m+1
2

⌉
, we show, similar to Example 4.70, that for the perturbation

error (4.155) we have by (4.143) that ẽm,λ(f) ≤ Ẽm,λ, where

Ẽm,λ := ε
(
2 + 3

2

√
m
)d
. (4.158)

For the same experiment as in Example 4.70 the outcomes are depicted
in Figure 4.20. Clearly, the experimental error fully fits the theoretical
bounds. ⋄

sinh-type window function We proceed with the sinh-type window func-
tion (4.62).

Example 4.73. Analogous to Example 4.69 and [KPT22, Example 6.2], we
now visualize the error bound of Theorems 4.44 and 4.62, respectively,
i. e., using the sinh-type window function φsinh in (4.62) with β = πmλ

1+λ
we show that for the approximation error (4.152) we have by (4.144)
that em,λ(f) ≤ Em,λ ∥f∥L2(Rd), where

Er(φsinh,M,L, d) ≤ Em,λ :=
(
2d − 1

)
Md/2 e−mπλ/(1+λ). (4.159)
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ẽm 1(f )
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Figure 4.20: Maximum perturbation error (4.155) (solid) and error con-
stant (4.158) (dashed) using the modified B–spline win-
dow function φB in (4.61) with s =

⌈
m+1
2

⌉
for the func-

tion f(x) =
(
3M
4

)d/2
sinc2

(
M
2 πx

)
with fixedM = 26/d as well

as ε = 10−3, m ∈ {2, 3, . . . , 10}, and λ ∈ {0, 0.5, 1, 2}.

Note that the error bound of Theorem 4.62 only holds for λ > 0, whereas the
approximation error (4.152) can also be computed for λ = 0, since for the

sinh-type window function (4.62) we have limλ→0 φsinh(x) =

√
1−

(
Lx
m

)2
.

The associated results are displayed in Figure 4.21. For all tested dimen-
sions d ∈ {1, 2, 3} it becomes evident that the experimental approximation
error fully fits the theoretical results and that higher truncation param-
eters m and oversampling parameters λ reduce the error significantly.
Moreover, we see a substantial improvement in the results compared to
both Figure 4.17 and 4.19. ⋄
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Figure 4.21: Maximum approximation error (4.152) (solid) and er-
ror constant (4.159) (dashed) using the sinh-type win-
dow function φsinh in (4.62) with β = πmλ

1+λ for the func-

tion f(x) =
(
3M
4

)d/2
sinc2

(
M
2 πx

)
with fixedM = 26/d as well

as m ∈ {2, 3, . . . , 10}, and λ ∈ {0, 0.5, 1, 2}.
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Example 4.74. Next, we visualize the error bound of Theorems 4.45
and 4.63, respectively. Using the sinh-type window function φsinh in (4.62)
with β = πmλ

1+λ , we show, similar to Example 4.70, that for the perturbation

error (4.155) we have by (4.145) that ẽm,λ(f) ≤ Ẽm,λ where

Ẽm,λ := ε

(
2 +

√
2 + 2λ

λ

1

1− e−2β

√
m

)d
. (4.160)

For the same experiment as in Example 4.70 the outcomes are depicted
in Figure 4.22. Clearly, the experimental error fully fits the theoretical
bounds. ⋄
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Figure 4.22: Maximum perturbation error (4.155) (solid) and error
constant (4.160) (dashed) using the sinh-type window
function φsinh in (4.62) with β = πmλ

1+λ for the func-

tion f(x) =
(
3M
4

)d/2
sinc2

(
M
2 πx

)
with fixedM = 26/d as well

as ε = 10−3, m ∈ {2, 3, . . . , 10}, and λ ∈ {0, 0.5, 1, 2}.

Continuous Kaiser–Bessel window function Finally, we study the con-
tinuous Kaiser–Bessel window function (4.63).

Example 4.75. Analogous to Example 4.69, we now visualize the er-
ror bound of Theorems 4.48 and 4.64, respectively, i. e., using the con-
tinuous Kaiser–Bessel window function φcKB in (4.63) with β = πmλ

1+λ
we show that for the approximation error (4.152) we have by (4.146)
that em,λ(f) ≤ Em,λ ∥f∥L2(Rd), where

Er(φcKB,M,L, d) ≤ Em,λ (4.161)

:= (2d − 1)Md/2 7πmλ(1 + λ+ 4mλ)

4 (1 + λ)2
e−mπλ/(1+λ).
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Note that the error bound of Theorem 4.64 only holds for λ ≥ 1
m−1 ≥ 1,

m ∈ {2, 3, . . . , 10}. Therefore, Figure 4.23 displays the associated results
only for λ ∈ {1, 2} and λ = 0.5 with m ≥ 3, whereas the approximation
error (4.152) can also be computed for λ = 0, since for the continuous Kaiser–

Bessel window function (4.63) we have limλ→0 φcKB(x) = 1−
(
Lx
m

)2
.

For all tested dimensions d ∈ {1, 2, 3} it becomes evident that the experi-
mental approximation error fully fits the theoretical results and that higher
truncation parameters m and oversampling parameters λ reduce the error
significantly. Note that we see a substantial improvement in the results
compared to both Figure 4.17 and 4.19, just as in Figure 4.21. ⋄
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Figure 4.23: Maximum approximation error (4.152) (solid) and error con-
stant (4.161) (dashed) using the continuous Kaiser–Bessel
window function φcKB in (4.63) with β = πmλ

1+λ for the func-

tion f(x) =
(
3M
4

)d/2
sinc2

(
M
2 πx

)
with fixedM = 26/d as well

as m ∈ {2, 3, . . . , 10}, and λ ∈ {0, 0.5, 1, 2}.

Example 4.76. Next, we visualize the error bound of Theorems 4.49 and 4.65,
respectively. Using the continuous Kaiser–Bessel window function φcKB

in (4.63) with β = πmλ
1+λ , we show, similar to Example 4.70, that for the

perturbation error (4.155) we have by (4.147) that ẽm,λ(f) ≤ Ẽm,λ where

Ẽm,λ := ε

(
2 +

√
2 + 2λ

λ

√
m

)d
. (4.162)

For the same experiment as in Example 4.70 the outcomes are depicted
in Figure 4.24. Clearly, the experimental error fully fits the theoretical
bounds. ⋄
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ẽm 0(f )
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ẽm 0(f )
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Ẽm 1
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Figure 4.24: Maximum perturbation error (4.155) (solid) and error con-
stant (4.162) (dashed) using the continuous Kaiser–Bessel
window function φcKB in (4.63) with β = πmλ

1+λ for the func-

tion f(x) =
(
3M
4

)d/2
sinc2

(
M
2 πx

)
with fixedM = 26/d as well

as ε = 10−3, m ∈ {2, 3, . . . , 10}, and λ ∈ {0, 0.5, 1, 2}.

Comparison of the spatial window functions Summarizing, we compare
the results for the spatial window functions considered above.

Example 4.77. Similar to [KPT22, Section 7], we consider a comparison
using φ ∈ {φconst, φGauss, φB, φsinh, φcKB} in (4.84), (4.60), (4.61), (4.62),
and (4.63). Here we restrict ourselves to d = 1, as we have previously ob-
served that the regularized Shannon sampling sums with localized sampling
exhibit analogous behavior for d > 1. For a given function f ∈ BM/2(R)
with L =M(1 + λ), λ > 0, the maximum approximation error (4.152)
shall be estimated by evaluating f and its approximation at equidistant
points xs = −1 + s

S ∈ [−1, 1], s = 0, . . . , 2S, with S = 105. As in Exam-
ple 4.68 we choose the function (4.151) with ∥f∥2 = 1, fix M = 256 and
consider several values of m ∈ N \ {1} and λ > 0. Comparing the cor-
responding results in Figure 4.25, the superiority of the sinh-type and
continuous Kaiser–Bessel window function becomes apparent, since for all
parameter choices these window functions yield by far the best results. ⋄

Comparison of the two regularization methods

Finally, we draw a comparison between the regularization using a window
function in frequency domain of Sections 4.3.1 and the regularization using
a window function in spatial domain of Section 4.3.2.
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Figure 4.25: Maximum approximation error (4.152) (solid)
and error constant (4.79) (dashed) using
φ ∈ {φconst, φGauss, φB, φsinh, φcKB} for the function (4.151)
with M = 256, d = 1, as well as m ∈ {2, 3, . . . , 10},
and λ ∈ {0.5, 1, 2}.

Example 4.78. Concluding, we compare the regularization methods pre-
sented in Sections 4.3.1 and 4.3.2, similar to [KPT24, Section 5]. Note that
in the univariate setting d = 1 the regularized Shannon sampling formula
with localized sampling (4.74) reads as

(Rφ,mf)(x) =
L+m∑

ℓ=−L−m

f
(
ℓ
L

)
ψ
(
x− ℓ

L

)
, x ∈ [−1, 1], (4.163)

with the regularized sinc function (4.69). Thus, in order to compare (4.163)
to Pψ,T f in (4.38), we need to set T = L+m, such that both approx-
imations use the same number of samples f

(
ℓ
L

)
. This is to say, we

conduct exactly the same experiment as already done in Examples 4.68
and 4.77, and therefore select only the best window functions for each
of the approaches. In other words, for a given function f ∈ BM/2(R)
with L =M(1 + λ), λ > 0, we consider the approximation error in (4.150)
for ψconv,n with n ∈ {1, 2, 3, 4}, cf. (4.45) and (4.57), as well as the ap-
proximation error (4.152) with φ ∈ {φsinh, φcKB}, see (4.62) and (4.63),
accompanied by the corresponding error constants (4.46), (4.49), (4.159)
and (4.161).

The associated results are displayed in Figure 4.26. It can clearly be seen
that for increasing oversampling parameter λ and truncation parameter m,
the error results using the regularization (4.74) in spatial domain get much
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better than the ones using the regularization (4.36) in frequency domain,
due to the exponential error decay rate shown for (4.74). This is to say, our
numerical results show that regularization with a spatial window function
performs much better than regularization with a frequency window function,
since an exponential decay can (up to now) only be realized using spatial
window functions. ⋄
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Figure 4.26: Maximum approximation error (solid) and error constants
(dashed) using regularizations (4.36) in frequency domain com-
pared to regularizations (4.163) in spatial domain with se-
lected window functions each, for the function (4.151), where
M = 256, m ∈ {2, 3 . . . , 10}, and λ ∈ {0.5, 1, 2}.

Remark 4.79. Note that the code files for all the experiments in this
chapter are available at [Kir] under https://github.com/melaniekircheis/

dissertation/tree/main/4-Regularized_Shannon_sampling_formulas. ⋄

In summary, comparing the proposed regularization methods as done
in Figure 4.25, the superiority of the sinh-type and continuous Kaiser–
Bessel window function can easily be seen, since rather small choices of
the truncation parameter m ≤ 10 are sufficient for achieving high precision.
Due to the usage of localized sampling, the evaluation of (4.74) on an
interval [0, 1/L] requires only 2m samples and therefore has a computational
cost of O(2m) flops. Thus, a reduction of the truncation parameter m is
desirable to obtain an efficient method.

So, all in all, we found that the regularized Shannon sampling for-
mula (4.74) with spatial window functions is the best of the considered
methods, since this approach is the most accurate, easy to compute, robust
in the worst case error, and requires less data (for comparable accuracy)
than the classical Shannon sampling sums (4.12) or the regularization (4.36)
with a frequency window function.

https://github.com/melaniekircheis/dissertation/tree/main/4-Regularized_Shannon_sampling_formulas
https://github.com/melaniekircheis/dissertation/tree/main/4-Regularized_Shannon_sampling_formulas
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Summary

In this chapter, we gave the first comprehensive overview of the regularized
Shannon sampling formulas along with a detailed comparison of the different
regularization methods. For this purpose, the theoretical and numerical
properties of several known as well as newly proposed window functions
have been analyzed. In particular, we have adopted certain compactly
supported window functions established in the context of the NFFT, which
have been shown to be superior to previously known approaches. For the
first time, the multivariate setting d > 1 is considered as well and we have
presented error bounds that are valid for all d ∈ N. However, since this
error constant includes the term Md/2, it has been noted that this estimate
is only suitable for small d ∈ {1, 2, 3}.
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Previously, we have seen that the sinc function plays an important role in
the context of the Whittaker–Kotelnikov–Shannon sampling theorem and
the regularized Shannon sampling formulas. To emphasize the significance
of the sinc function, in this chapter we focus especially on fast sinc methods,
i. e., efficient and accurate algorithms, where the sinc function is a crucial
ingredient.

Firstly, in Section 5.1 we consider the so-called discrete sinc transform and
present an efficient evaluation scheme for these sinc sums. More precisely,
we approximate the sinc function by means of an exponential sum, such
that the NNFFT, see Algorithm 2.6, can be applied for a fast evaluation.
Secondly, this fast sinc transform is generalized for the evaluation of the
regularized Shannon sampling sums in Section 5.2. Afterwards, we slightly
change the focus in Section 5.3 and introduce a new NFFT-like procedure
for bandlimited functions, i. e., a fast method to approximate the function
evaluations f(xj) at given nonequispaced points xj , j = 1, . . . N , from given

values f̂(k), k ∈ IM , of the Fourier transform (4.4) of the bandlimited
function f ∈ BM/2(Rd). Subsequently, the concluding Section 5.4 contains
several numerical examples that demonstrate the accuracy and efficiency
of the new approaches, including a comparison with existing methods, as
well as a brief summary.

5.1 Discrete sinc transform

In this section we consider an interesting signal processing application

of the NNFFT, see Section 2.4. If a signal h :
[
− 1

2 ,
1
2

]d → C is to be

reconstructed from its samples at arbitrary points ak ∈
[
− 1

2 ,
1
2

]d
, k ∈ IK

with K ∈ 2N, then h is often modeled as a linear combination of shifted
sinc functions (3.31), i. e.,

h(x) =
∑

k∈IK

ck sinc
(
Mπ (x− ak)

)
, x ∈

[
− 1

2 ,
1
2

]d
, (5.1)

with complex coefficients ck ∈ C, k ∈ IK . Since sums of the form (5.1) are
often needed in practical applications, see for instance [LB92, Ste93], we
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propose a fast algorithm for the approximate evaluation of the discrete
sinc transform

h(bℓ) =
∑

k∈IK

ck sinc
(
Mπ (bℓ − ak)

)
, ℓ ∈ IL, (5.2)

where bℓ ∈
[
− 1

2 ,
1
2

]d
, ℓ ∈ IL with L ∈ 2N, are given arbitrary points and

the coefficients ck ∈ C, k ∈ IK , are known.

Remark 5.1. Such a function (5.1) occurs for instance in numerical realiza-
tions of the famous sampling theorem of Whittaker–Kotelnikov–Shannon,
see Theorem 4.2. By (4.7) a function f ∈ BM/2(Rd) can be represented in
the form

f(x) =
∑

k∈Zd

f
(

k
M

)
sinc

(
Mπ

(
x− k

M

))
, x ∈ Rd.

Truncation of this series yields the Shannon sampling sum
∑

∥k∥∞≤K

f
(

k
M

)
sinc

(
Mπ

(
x− k

M

))
, x ∈ Rd,

cf. (4.12), which is a linear combination of shifted sinc functions and has
the same form as (5.1) with ak = k

M equispaced. ⋄
Since the naive computation of (5.2) requires O(KL) arithmetic opera-

tions, the aim is to find a more efficient method for the evaluation of (5.2).
Up to now, several approaches for a fast computation of the discrete
sinc transform (5.2) are known. In [GLI06] the discrete sinc transform (5.2)
is realized by applying a Gauss–Legendre quadrature rule to a certain in-
tegral, such that the result can then be approximated by means of two
NNFFTs with O(K + L) arithmetic operations. For the univariate setting
with d = 1, a similar approach is taken in [LGBM18] using a corrected
trapezoidal quadrature rule, cf. [KR97], and in [KPT23] using a Clenshaw–
Curtis quadrature rule instead. Likewise, for d = 1 a multilevel algorithm
with O(L log(1/δ)) arithmetic operations, where δ is the desired evaluation
accuracy, is presented in [LB11] which is most effective for equispaced
points ak and bℓ and, as the authors claim themselves, is only practical for
rather large δ, i. e., low accuracy.

In the following, we present a multivariate approach for a fast approximate
computation of the discrete sinc transform (5.2) in the fashion of [GLI06,
KPT23], where we make use of exponential sums of the form (2.19).
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5.1.1 Approximation of the sinc function by exponential
sums

In order to approximate the discrete sinc transform (5.2), we firstly study
the approximation of the sinc function sinc(Mπx), which shall be realized
by means of the exponential sums (2.19). For simplicity we start with the
univariate setting d = 1, analogous to [KPT23].

Univariate setting

By [BM02] the exponential sums (2.19) can be used for a local approxima-
tion of functions F of the form

F (x) :=

∫ 1/2

−1/2

w(τ) e−2πiMτx dτ, x ∈ R, (5.3)

where w :
[
− 1

2 ,
1
2

]
→ [0, ∞) is an integrable function with

∫ 1/2

−1/2
w(τ) dτ > 0.

Substituting v = −Mτ these functions (5.3) can be written as

F (x) =
1

M

∫ M/2

−M/2

w
(
− v
M

)
e2πivx dv,

such that by (4.4) the Fourier transform F̂ (v) = 1
M w

(
− v
M

)
of F is sup-

ported on
[
−M

2 ,
M
2

]
, i. e., the function F in (5.3) is bandlimited with

bandwidth M . Note that for w(τ) := 1, τ ∈
[
− 1

2 ,
1
2

]
, we obtain the

sinc function F (x) = sinc(Mπx), see (3.31).

Theorem 5.2. Let F ∈ BM/2(R) with M ∈ N be a bandlimited function of
the form (5.3) and let ε > 0 be a given target accuracy. Then for sufficiently
large n ∈ N with n+ 1 ≥ 2M , there exist quadrature weights wj > 0 and
quadrature points zj ∈

(
− 1

2 ,
1
2

)
, j = 0, . . . , n, such that

∣∣∣∣∣F (x)−
n∑

j=0

wj e
−2πiMzjx

∣∣∣∣∣ < ε, x ∈
[
− 1

2 ,
1
2

]
. (5.4)

Proof. This result is a simple consequence of [BM02, Theorem 6.1]. Intro-
ducing N ∈ N with N ≥ 2M such that ν := M

N ≤ 1
2 , we obtain by substi-

tuting τ := − t
2ν in (5.3) that

F (x) =

∫ 1/2

−1/2

w(τ) e−2πiMτx dτ =
1

2ν

∫ ν

−ν
w
(
− t

2ν

)
eπiNtx dt.
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By setting σ(t) := 1
2ν w

(
− t

2ν

)
and y := Nx ∈

[
−N

2 ,
N
2

]
, this yields

F
(
y
n

)
=

∫ ν

−ν
σ(t) eπity dt. (5.5)

Then [BM02, Theorem 6.1 with d = 1
2 ] implies the existence of κj > 0

and |θj | < ν, j = 1, . . . , N , such that

∣∣∣∣∣

∫ ν

−ν
σ(t) eπity dt−

N∑

j=1

κj e
πiθjy

∣∣∣∣∣ < ε, y ∈
[
−N

2 − 1, N2 + 1
]
.

Hence, for all x = y
N ∈

[
− 1

2 ,
1
2

]
, we conclude by (5.5) as well as an index

shift that

∣∣∣∣∣F (x)−
N−1∑

j=0

κj+1 e
πiθj+1Nx

∣∣∣∣∣ =
∣∣∣∣∣F (x)−

n∑

j=0

wj e
−2πiMzjx

∣∣∣∣∣ < ε,

where we set wj := κj+1 and zj := − θj+1

2ν ∈
(
− 1

2 ,
1
2

)
, j = 0, . . . , n,

for n := N − 1. This yields the assumption (5.4).

We remark that the above Theorem 5.2 is a generalized version of [KPT23,
Theorem 5.1], where only the sinc function F (x) = sinc(Mπx) was consid-
ered.

Moreover, note that since we have ak, bℓ ∈
[
− 1

2 ,
1
2

]
for k ∈ IK , ℓ ∈ IL,

in (5.2), we need to approximate the sinc function sinc(Mπx) for
all x ∈ [−1, 1] to compute the discrete sinc transform (5.2). Therefore,
we modify Theorem 5.2 by substituting x = t

2 , t ∈ [−1, 1], and replacing
the bandwidth M by 2M , such that we obtain the following uniform
approximation of the sinc function on the interval [−1, 1], see [KPT23,
Corollary 5.2].

Corollary 5.3. Let ε > 0 be a given target accuracy. Then for sufficiently
large n ∈ N with n+ 1 ≥ 4M , there exist quadrature weights wj > 0 and
quadrature points zj ∈

(
− 1

2 ,
1
2

)
, j = 0, . . . , n, such that

∣∣∣∣∣ sinc(Mπx)−
n∑

j=0

wj e
−2πiMzjx

∣∣∣∣∣ < ε, x ∈ [−1, 1]. (5.6)



5.1 Discrete sinc transform 221

In practice, the approximation of the sinc function sinc(Mπx) by means
of an exponential sum on the interval [−1, 1] shall be simplified by assuming
that the points zj ∈

[
− 1

2 ,
1
2

]
, j = 0, . . . , n, are given. Thus, we consider

an approximation procedure using approximate values wj . Apparently,
the easiest way to obtain appropriate weights wj , j = 0, . . . , n, is a least
squares approach, i. e., for suitable given evaluation points yp ∈ [−1, 1],
p ∈ IP , we consider the minimization problem

Minimize
wj∈C, j=0,...,n

∑

p∈IP

∣∣∣∣∣ sinc(Mπyp)−
n∑

j=0

wj e
−2πiMzjyp

∣∣∣∣∣

2

. (5.7)

As in [KPT23], we might also approximate the sinc function using Clenshaw–
Curtis quadrature, see [Tre13, pp. 143–153] or [PPST23, pp. 393–400],
where for given Chebyshev points

zj =
1
2 cos

(
jπ
n

)
∈
[
− 1

2 ,
1
2

]
, j = 0, . . . , n, (5.8)

the weights wj > 0 are explicitly known. In this case, we obtain the following
explicit version of the error estimate (5.6), cf. [KPT23, Theorem 5.3].

Theorem 5.4. Let the nonharmonic bandwidth M ∈ 2N with M ≫ 1 be
given. Then for sufficiently large n ∈ N with n+ 1 ≥ 4M , the estimate
∣∣∣∣∣sinc(Mπx)−

n∑

j=0

wj e
−2πiMzjx

∣∣∣∣∣ ≤
48

35
2−n cosh

(
3πM

4

)
, x ∈ [−1, 1],

(5.9)

holds for the explicitly known quadrature points (5.8) and quadrature weights

wj = εn(j)
2 1

n

n/2∑

k=0

εn(2k)
2 2

1− 4k2
cos

(
2kjπ

n

)
> 0, j = 0, . . . , n,

(5.10)

where εn(0) = εn(n) =
√
2
2 and εn(k) = 1 for k = 1, . . . , n− 1.

Proof. Initially, we rewrite the sinc function in the form

sinc(Mπx) =
1

2

∫ 1

−1

e−πiMtx dt =
1

2

∫ 1

−1

cos(Mπtx) dt. (5.11)
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Then, for given Chebyshev points zj =
1
2 cos(

jπ
n ) ∈

[
− 1

2 ,
1
2

]
, j = 0, . . . , n,

as well as n ∈ 2N with n ≥ 4M , we apply the Clenshaw–Curtis
quadrature rule, cf. [PPST23, Theorem 6.51], to the analytic func-
tion f(t, x) = 1

2 cos(Mπtx) with t ∈ [−1, 1] and fixed x ∈ [−1, 1]. In doing
so, the integral (5.11) is approximated by

sinc(Mπx) ≈
n∑

j=0

wj cos(2Mπzjx) =

n∑

j=0

wj e
−2πiMzjx, x ∈ [−1, 1],

(5.12)

with the explicit weights (5.10). If n is odd, then a similar formula holds,
see [PPST23, Theorem 6.51]. Note that in (5.12) and (5.9) we may use the
exponential form, since the imaginary part satisfies

Im




n∑

j=0

wj e
−2πiMzjx


 = −

n∑

j=0

wj sin(2Mπzjx) = 0, x ∈ [−1, 1],

due to the symmetry property of the weights wj = wn−j , j = 0, . . . , n,
cf. [PPST23, p. 395], and the symmetry property of the Chebyshev
points zj = −zn−j , j = 0, . . . , n2 − 1, and zn/2 = 0, which can be seen by
trigonometric identities.
For the estimation of the approximation error, we make use of [Tre13],

where an error estimate is given when |f(z, x)| is bounded above for z on
the Bernstein ellipse

Eρ :=
{
z ∈ C : z = 1

2 (ρ+ ρ−1)(cos θ + i sin θ), θ ∈ [0, 2π)
}
.

Note that for all z ∈ C and fixed x ∈ [−1, 1] we have

|cos(Mπzx)| = 1

2

∣∣∣eiMπx(Re(z)+i Im(z)) + e−iMπx(Re(z)+i Im(z))
∣∣∣

≤ 1

2

∣∣∣eiMπxRe(z)
∣∣∣ e−Mπx Im(z) +

1

2

∣∣∣e−iMπxRe(z)
∣∣∣ eMπx Im(z)

≤ cosh(Mπx Im(z)) .

Therefore, the integrand f(t, x) = 1
2 cos(Mπtx) is bounded on the interior

of the Bernstein ellipse Eρ with

|f(z, x)| ≤ 1

2
cosh(Mπx Im(z)) ≤ 1

2
cosh

(
Mπ (ρ− ρ−1)

2

)
, x ∈ [−1, 1],
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since cosh is even and monotonously increasing on [0,∞). Accordingly, the
estimate in [Tre13, Theorem 19.3] with ρ = 2 yields the assertion (5.9).

In practice, the weights wj in (5.10) can be computed by means of a
fast algorithm, the so-called discrete cosine transform of type I (DCT-I) of
length n+ 1 (see [PPST23, Algorithm 6.28]), which uses the orthogonal
cosine matrix of type I

CI
n+1 :=

√
2

n

(
εn(k) εn(j) cos

(
kjπ

n

))n

k,j=0

.

In doing so, the computation of the weights wj in (5.10) can be summarized
as follows, cf. [KPT23, Algorithm 5.4].

Algorithm 5.5 (Fast computation of the weights wj).

For n ∈ N \ {1} let εn(0) = εn(n) =
√
2
2 and εn(k) = 1 for k = 1, . . . , n− 1,

be given.

1. Form the vector (υk)
n
k=0 with O(n)

υk :=

{
εn(2ℓ)

2
1−4ℓ2 : k = 2ℓ, ℓ = 0, . . . , n2 ,

0 : k = 2ℓ+ 1, ℓ = 0, . . . , n2 − 1.

2. Compute (υ̂j)
n
j=0 := CI

n+1(υk)
n
k=0 by means of a fast DCT-I.

O(n log(n))

3. Set ω̃j :=
1√
2n
εn(j) υ̂j , j = 0, . . . , n. O(n)

Output: ω̃j ≈ wj , j = 0, . . . , n, cf. (5.10).

Complexity: O(n log(n))

Remark 5.6. In [GLI06] a Gauss–Legendre quadrature was applied to obtain
explicit weights wj for given Legendre points

zj =
1
2 ζj ∈

[
− 1

2 ,
1
2

]
, j = 0 . . . , n, (5.13)

where ζj denote the zeros of the (n+ 1)-th Legendre polynomial. Due to
their error estimate the authors claimed that n ∈ N with n ≥ π

2M would
be sufficient in this setting. However, the computation of the weights wj
using our approach in Algorithm 5.5 is more effective for large M even
though here an oversampling of n ≥ 4M is needed, see Example 5.17. ⋄
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Multivariate setting

Now we proceed with the approximation of the sinc function sinc(Mπx)
in the multivariate setting d > 1. By the tensor product structure of
the d-variate sinc function (3.31), we recognize that by means of (5.12) we
are immediately given the approximation

sinc(Mπx) =

d∏

t=1

sinc(Mπxt)

≈
d∏

t=1




n∑

j=0

wj e
−2πiMzjxt


 , x = (x1, . . . , xd)

⊤ ∈ [−1, 1]d.

(5.14)

Note that also the error estimate of Theorem 5.4 can be extended to d > 1
with the help of the following lemma.

Lemma 5.7. For d ∈ N let the vectors a := (at)
d
t=1, b := (bt)

d
t=1 ∈ Cd with

|at|, |bt| ≤ 1, t = 1, . . . , d, be given. Then we have
∣∣∣∣∣
d∏

t=1

at −
d∏

t=1

bt

∣∣∣∣∣ ≤
d∑

t=1

|at − bt| . (5.15)

Proof. This statement can be shown by induction. Since the inequality is
trivial for d = 1, we start with d = 2. By using a constructive zero, the
triangle inequality as well as the assumption |at|, |bt| ≤ 1, t = 1, . . . , d, we
obtain

|a1a2 − b1b2| = |a1(a2 − b2) + b2(a1 − b1)|
≤ |a1| · |a2 − b2|+ |b2| · |a1 − b1|
≤ |a2 − b2|+ |a1 − b1| .

Now assume the assertion holds for d = 1, . . . , k. Then we conclude
for d = k + 1 by the same techniques as used above that
∣∣∣∣∣
k+1∏

t=1

at −
k+1∏

t=1

bt

∣∣∣∣∣ =
∣∣∣∣∣ak+1 ·

(
k∏

t=1

at −
k∏

t=1

bt

)
+ (ak+1 − bk+1) ·

k∏

t=1

bt

∣∣∣∣∣

≤ |ak+1| ·
∣∣∣∣∣
k∏

t=1

at −
k∏

t=1

bt

∣∣∣∣∣+ |ak+1 − bk+1| ·
k∏

t=1

|bt|
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≤
k∑

t=1

|at − bt|+ |ak+1 − bk+1| =
k+1∑

t=1

|at − bt| .

This completes the proof.

Now we can give an error estimate for the approximation (5.14).

Corollary 5.8. Let the nonharmonic bandwidth M ∈ 2N with M ≫ 1, the
quadrature points (5.8), and the quadrature weights (5.10) be given. Then
for sufficiently large n ∈ N with n+ 1 ≥ 4M , we obtain the error estimate
∣∣∣∣∣∣
sinc(Mπx)−

d∏

t=1




n∑

j=0

wj e
−2πiMzjxt



∣∣∣∣∣∣
≤ d · 48

35
2−n cosh

(
3πM

4

)
,

x ∈ [−1, 1]d.

Proof. The given error estimate is a simple consequence of Lemma 5.7 and
Theorem 5.4. Note that we have sinc(Mπx) =

∏d
t=1 sinc(Mπxt) =

∏d
t=1 at

and |sinc(Mπx)| ≤ 1, x ∈ Rd. Additionally, by the triangle inequality
and [PPST23, Theorem 6.51] we obtain

|bt| =

∣∣∣∣∣∣

n∑

j=0

wj e
−2πiMzjxt

∣∣∣∣∣∣
≤

n∑

j=0

|wj | ·
∣∣e−2πiMzjxt

∣∣

≤
n∑

j=0

wj = 1, t = 1, . . . , d,

such that combining (5.15) and (5.9) yields the assertion.

Remark 5.9. We remark that for the approximation (5.14) we used a product
of one-dimensional exponential sums instead of a d-dimensional exponential
sum of the form (2.19). However, using suitable tensor decompositions,
it can be shown that the corresponding d-dimensional exponential sum
and the tensor product (5.14) are identical. To do so, we introduce the
notations

w⃗ := (w⃗j)
n⃗
j=0 ∈ Cn⃗+1 and z⃗ := (z⃗j)

n⃗
j=0 ∈ C(n⃗+1)×d, n⃗ ∈ N, (5.16)

for the d-dimensional expressions, as distinct from the one-dimensional
quadrature weights wj in (5.10) and quadrature points zj , j = 0, . . . , n,
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in (5.8) with n ≥ 4M . Then the corresponding d-dimensional exponential
sum of the form (2.19) can be written as

n⃗∑

j=0

w⃗j e
−2πiM z⃗jx, x = (x1, . . . , xd)

⊤ ∈ [−1, 1]d. (5.17)

In order to establish the connection between (5.17) and (5.14), the no-
tions (5.16) still need to be defined properly in accordance with (5.10)
and (5.8). For instance, for d = 2 the right-hand side of (5.14) reads as

2∏

t=1




n∑

j=0

wj e
−2πiMzjxt




=




n∑

j1=0

wj1 e
−2πiMzj1x1






n∑

j2=0

wj2 e
−2πiMzj2x2




=
n∑

j1=0

n∑

j2=0

wj1wj2 e
−2πiM(zj1x1+zj2x2).

Thus, by defining the notions (5.16) as

w⃗ := w ⊗w =



w0 ·w

...
wn ·w


 ∈ C(n+1)2 (5.18)

and

z⃗ := (z ⊗ 1n+1,1n+1 ⊗ z) =



z0 · 1n+1 z

...
zn · 1n+1 z


 ∈ C(n+1)2×2, (5.19)

where w = (wj)
n
j=0 ∈ Rn+1 with the weights wj > 0, j = 0, . . . , n, in (5.10)

and z = (zj)
n
j=0 ∈ Rn+1 with the points zj =

1
2 cos(

jπ
n ) ∈

[
− 1

2 ,
1
2

]
in (5.8),

as well as setting n⃗ := (n+ 1)2 − 1, both representations (5.17) and (5.14)
can be used interchangeably. For d > 2 this construction is repeated
sequentially, such that we deal with

w⃗ := w ⊗
(
w ⊗

(
· · · ⊗ (w ⊗w)

))
∈ C(n+1)d (5.20)
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and

z⃗ :=
(
z ⊗ 1(n+1)d−1 ,1n+1 ⊗

(
· · · ⊗ (z ⊗ 1n+1,1n+1 ⊗ z)

))
∈ C(n+1)d×d.

(5.21)

However, despite the equality of these representations (5.17) and (5.14),
comparing them in terms of the computational complexity, it turns out
that the computation of (5.14) is much more efficient. This can be shown
by assuming that both representations shall be evaluated at P arbitrary
points xp, p = 1, . . . , P . Then the computation of (5.14) can be real-
ized by means of d one-dimensional NNFFTs, cf. Algorithm 2.6, and
(d− 1) multiplications, such that we obtain a total arithmetic complexity
of O(dM logM + dn+ dP ). In contrast, for (5.17) it is sufficient to employ
a single d-dimensional NNFFT (in addition to assembling the tensor prod-
ucts of the vectors), but this has a complexity of O(dMd logM + nd + P ).
Accordingly, although both representations (5.17) and (5.14) are identical,
for evaluation purposes it is recommended to use the much more efficient
product of one-dimensional exponential sums (5.14) whenever possible. ⋄

5.1.2 The fast sinc transform

Given the approximation of the sinc function sinc(Mπx) by means of the
exponential sums (2.19), we can now state a fast approximate algorithm
for the discrete sinc transform (5.2).

For simplicity, we start again with the univariate setting d = 1, analogous
to [KPT23, Section 6]. Inserting the approximation (5.12) into the discrete
sinc transform (5.2) with given ak, bℓ ∈

[
− 1

2 ,
1
2

]
yields

h(bℓ) =
∑

k∈IK

ck sinc
(
Mπ(bℓ − ak)

)
≈
∑

k∈IK

ck

n∑

j=0

wj e
−2πiMzj(bℓ−ak)

=
n∑

j=0

wj

( ∑

k∈IK

ck e
2πiMzjak

)
e−2πiMzjbℓ , ℓ ∈ IL. (5.22)

Note that the term inside the brackets is an exponential sum of the
form (2.19), which can be computed using an NNFFT, see Algorithm 2.6.
The remaining outer sum is of the same form, and thus can also be computed
using an NNFFT. Hence, similar to [GLI06], we may approximate the dis-
crete sinc transform (5.2) for d = 1 by means of an NNFFT, a multiplication
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by the given weights wj , and another NNFFT in O(M logM +K + L+ n)
arithmetic operations. We remark that for a fixed bandwidth M also
the number n of quadrature points can be fixed for given target accuracy
in Theorem 5.4, such that the actual computational complexity reduces
to O(K + L).

In the multivariate setting with d > 1 we recognize that the decomposi-
tion (5.14) into a product of one-dimensional exponential sums is generally
not useful, unless (5.2) possesses a certain tensor structure. In general,
we rather have to make use of the tensor notation (5.17) introduced in
Remark 5.9, such that the discrete sinc transform (5.2) is approximated by

h(bℓ) =
∑

k∈IK

ck sinc
(
Mπ(bℓ − ak)

)
≈
∑

k∈IK

ck




n⃗∑

j=0

w⃗j e
−2πiM z⃗j(bℓ−ak)




=
n⃗∑

j=0

w⃗j

( ∑

k∈IK

ck e
2πiM z⃗jak

)
e−2πiM z⃗jbℓ , ℓ ∈ IL, (5.23)

with the tensorized quadrature weights (5.20) and the tensorized quadrature
points (5.21). Thus, for d > 1 the discrete sinc transform (5.2) can be com-
puted the same way as in the univariate setting (5.22) using d-dimensional
NNFFTs, see Algorithm 2.6, which results in an arithmetic complexity
of O(dMd logM +K + L+ nd). Similarly, for fixed parameters M and n
this complexity reduces to O(K + L). In addition, note that this is basically
the same procedure as in [GLI06], where the arithmetic complexity was
overestimated as O((K + L) log(K + L)).
However, in the special case that the coefficients c := (ck)k∈IK

as well
as the points a := (ak)k∈IK

possess a tensor decomposition of the form

c = γ1 ⊗ γ2 =



γ11 · γ2

...
γ1κ · γ2


 ∈ CK , γ1,γ2 ∈ Cκ, (5.24)

and

a = (α⊗ 1κ,1κ ⊗α) =



α1 · 1κ α

...
ακ · 1κ α


 ∈ CK×2, α ∈ Cκ, (5.25)
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with κ ∈ N and κ2 = K, the fast sinc transform can be accelerated as
follows. Note that, for the sake of simplicity, the procedure is described
only for d = 2, while the generalization to d > 2 is straightforward with
tensor decompositions analogous to (5.20) and (5.21). Using the structure
of (5.24) and (5.25), as well as the quadrature points (5.19), the vector of
the inner sums in (5.23) can be denoted as

g⃗ = (g⃗j)
n⃗
j=0

:=

( ∑

k∈IK

ck e
2πiM z⃗jak

)n⃗

j=0

=

( ∑

k1∈Iκ

∑

k2∈Iκ

γ1k1γ2k2 e
2πiMz⃗j,1αk1 e2πiMz⃗j,2αk2

)n⃗

j=0

=




( ∑

k1∈Iκ

∑

k2∈Iκ

γ1k1γ2k2 e
2πiMz0αk1 e2πiMzj2αk2

)n

j2=0

...( ∑

k1∈Iκ

∑

k2∈Iκ

γ1k1γ2k2 e
2πiMznαk1 e2πiMzj2αk2

)n

j2=0




=

( ∑

k1∈Iκ

γ1k1 e
2πiMzj1αk1

)n

j1=0

⊗
( ∑

k2∈Iκ

γ2k2 e
2πiMzj2αk2

)n

j2=0

=: g1 ⊗ g2.

Therefore, by additionally using the decomposition (5.18) of the quadrature
weights, the outer sum in (5.23) can be computed by

hℓ :=
n⃗∑

j=0

w⃗j g⃗j e
−2πiM z⃗jbℓ

=

n∑

j1=0

n∑

j2=0

wj1 wj2 g1j1 g2j2 e
−2πiMzj1bℓ,1 e−2πiMzj2bℓ,2

=




n∑

j1=0

wj1 g1j1 e
−2πiMzj1bℓ,1






n∑

j2=0

wj2 g2j2 e
−2πiMzj2bℓ,2


 , ℓ ∈ IL.

In other words, given a suitable tensor structure, we decomposed the dis-
crete sinc transform (5.2) into a product of one-dimensional exponential
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sums (5.14), as recommended in Remark 5.9. Thereby, instead of a single
d-dimensional NNFFT we may use d one-dimensional NNFFTs, cf. Algo-
rithm 2.6, which is much more efficient. Accordingly, in this setting the
fast sinc transform, as an application of the NNFFT, can be summarized
for all d ≥ 1 as follows, cf. [KPT23, Algorithm 6.1].

Algorithm 5.10 (Fast sinc transform).

For d,M ∈ N andK,L ∈ 2N let ak ∈
[
− 1

2 ,
1
2

]d
, k ∈ IK , and bℓ ∈

[
− 1

2 ,
1
2

]d
,

ℓ ∈ IL, be given nodes, as well as ck ∈ C given coefficients. In
addition, let κ ∈ N with κd = K, such that the coefficients satisfy
the tensor decomposition (ck)k∈IK

=
⊗d

t=1(γtk)k∈Iκ
and the nodes

fulfill (ak)k∈IK
=
(
α⊗ 1κd−1 ,1d−1 ⊗

(
· · · ⊗ (α⊗ 1κ,1κ ⊗α)

))
∈ CK×d

with α = (α1, . . . , ακ)
⊤ ∈ Cκ. Furthermore, we are given the quadrature

points zj ∈
[
− 1

2 ,
1
2

]
, j = 0, . . . , n, with n ≥ 4M .

0. Precomputation: Compute the quadrature weights wj , j = 0, . . . , n,
either by solving the least squares problem (5.7) or by means of
Algorithm 5.5.

1. For t = 1, . . . , d:

a) Approximate the sums O(M logM + κ+ n)

gj ≈
∑

k∈Iκ

γtk e
2πiMzjαk , j = 0, . . . , n,

by means of an NNFFT in Algorithm 2.6.

b) Form the products O(n)

τj := wj · gj , j = 0, . . . , n.

c) Approximate the sums O(M logM + L+ n)

h̃ℓ,t ≈
n∑

j=0

τj e
−2πiMzjbℓ,t , ℓ ∈ IL,

by means of an NNFFT in Algorithm 2.6.
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2. Compute O(dL)

h̃ℓ :=

d∏

t=1

h̃ℓ,t, ℓ ∈ IL. (5.26)

Output: h̃ℓ ≈ h(bℓ), ℓ ∈ IL, cf. (5.2).
Complexity: O(dM logM + dκ+ dL+ dn)

Remark 5.11. Note that in the univariate case with d = 1 the error

max
ℓ∈IL

|h(bℓ)− h̃ℓ| (5.27)

of the fast sinc transform in Algorithm 5.10 was estimated in [KPT23,
Theorem 6.2]. There it was shown that (5.27) depends mainly on the quality
of the precomputation of the weights wj , j = 0, . . . , n. More precisely, when
using the precomputation in Algorithm 5.5, this result ensures that we
only need to choose n large enough such that 48

35 2
−n cosh

(
3πM
4

)
≤ ε holds

for a given target accuracy ε > 0, cf. Theorem 5.4. In other words, for
a given target accuracy, the explicit error estimate (5.9) allows us to fix
the parameters M and n, such that the complexity of Algorithm 5.10 is
independent of these parameters. Consequently, the fast sinc transform
can be realized with only O(dκ+ dL) arithmetic operations.

For the least squares problem (5.7), however, the error of the precomputa-
tion depends strongly on the choice of the quadrature points zj , j = 0, . . . , n,
and the accuracy of the iteration procedure, which makes it impossible to
bound the resulting error (5.27) or introduce such a simplification.

Finally, it should be noted that in case the coefficients vector c in (5.24)
satisfies

∑
k∈Iκ

|γtk| ≤ 1, t = 1, . . . , d, the estimate of the error (5.27)
in [KPT23, Theorem 6.2] can be generalized to d > 1 by means of
Lemma 5.7. ⋄

Remark 5.12. Summarizing, we examine certain special cases, where the
fast sinc transform in Algorithm 5.10 simplifies.

(i) If the coefficients of (5.2) satisfy c =
⊗d

t=1 γ, i. e., the factors in
the decomposition (5.24) are all identical, then the steps a) and b)
of Algorithm 5.10 are independent of d, and the overall complexity
reduces to O(dM logM + κ+ dL+ dn).
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(ii) If the evaluation points b := (bℓ)ℓ∈IL
of (5.2) also possess a tensor

decomposition of the form

b = (β ⊗ 1λ,1λ ⊗ β) =



β1 · 1λ β

...
βλ · 1λ β


 ∈ CL×2, β ∈ Cλ, (5.28)

with λ ∈ N and λ2 = L for d = 2, or analogous to (5.19) for d > 2,
respectively, the outer sums in (5.23) can be computed by

(hℓ)ℓ∈IL
=

(
n⃗∑

j=0

w⃗j g⃗j e
−2πiM z⃗jbℓ

)

ℓ∈IL

=

(
n∑

j1=0

n∑

j2=0

wj1 wj2 g1j1 g2j2 e
−2πiMzj1bℓ,1 e−2πiMzj2bℓ,2

)

ℓ∈IL

=




( n∑

j1=0

n∑

j2=0

wj1 wj2 g1j1 g2j2 e
−2πiMzj1β1 e−2πiMzj2βℓ2

)λ

ℓ2=1

...( n∑

j1=0

n∑

j2=0

wj1 wj2 g1j1 g2j2 e
−2πiMzj1βλ e−2πiMzj2βℓ2

)λ

ℓ2=1




=

(
n∑

j1=0

wj1 g1j1 e
−2πiMzj1βℓ1

)λ

ℓ1=1

⊗
(

n∑

j2=0

wj2 g2j2 e
−2πiMzj2βℓ2

)λ

ℓ2=1

=: h1 ⊗ h2.

Consequently, the complexity of step c) in Algorithm 5.10 re-
duces to O(M logM + λ+ n), and instead of computing the prod-
uct (5.26) in step 2 of Algorithm 5.10, we have to compute the

tensor product (hℓ)ℓ∈IL
=
⊗d

t=1 ht in O(λd) = O(L) arithmetic op-
erations. Therefore, the overall complexity of Algorithm 5.10 reduces
to O(dM logM + dκ+ L+ dn).

(iii) In case that both of the aforementioned conditions are met, all the
steps a), b) and c) are independent of d, thereby reducing the overall
complexity of Algorithm 5.10 to O(M logM + κ+ L+ n).
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(iv) For equispaced points ak with α =
(
k̃
M

)
k̃∈IM

and κ =M in (5.25),

the NNFFT in step a) of Algorithm 5.10 turns into an NFFT, see
Algorithm 2.2, such that the overall complexity of Algorithm 5.10
reduces to O(dM logM + dL+ dn).

(v) For equispaced evaluation points bℓ in (5.2), i. e., points satisfying a

decomposition of the form (5.28) with β =
(
ℓ̃
M

)
ℓ̃∈IM

and λ =M , the

NNFFT in step c) of Algorithm 5.10 simplifies to an adjoint NFFT,
see Algorithm 2.5. Note, however, that the overall complexity of
Algorithm 5.10 remains O(dM logM + dκ+Md + dn).

(vi) In case that both sets of nodes ak and bℓ are equispaced, both steps a)
and c) of Algorithm 5.10 turn into an (adjoint) NFFT and thus the
computational cost reduces to O(dM logM + dn+Md). ⋄

5.2 Application to regularized Shannon sampling
formulas

In this section we consider a generalization of the fast sinc transform in
Algorithm 5.10 to the regularized Shannon sampling sums from Section 4.3.
More precisely, in case the direct evaluation of the partial sums (4.38) is
too costly, we describe an efficient approximation procedure analogous to
Algorithm 5.10 in Section 5.2.1. Similarly, an approximation procedure
can also be derived for the regularized Shannon sampling formula with
localized sampling (4.74) in Section 5.2.2.

5.2.1 Fast approximation using frequency window functions

Firstly, we introduce a method analogous to the fast sinc transform in
Algorithm 5.10 for the regularization with a window function in frequency
domain from Section 4.3.1. As observed previously, the partial sums (4.38)
are dense, which is why a direct computation is rather costly, similar
to (4.12). Likewise, by definition of the frequency window function (4.33)
its corresponding function (4.34) in spatial domain is bandlimited with band-
width L. Thereby, we immediately obtain the existence of suitable quadra-
ture weights wj > 0 and quadrature points zj ∈

(
− 1

2 ,
1
2

)
, j = 0, . . . , n, by
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means of Theorem 5.2. However, note that by Theorem 5.2 we only receive
a good approximation of ψ on the interval

[
− 1

2 ,
1
2

]
. Since the partial

sums Pψ,T f in (4.38) shall be evaluated at x ∈ [−1, 1] with ℓ ∈ {−T, . . . , T},
T > L, we have |x− ℓ

L | ≤ 1 + T
L . Therefore, we adjust the result analo-

gous to Corollary 5.3, such that the number of quadrature points needs to
fulfill n+ 1 ≥ 4

(
1 + T

L

)
M .

Similar to Section 5.1.1, the practical approximation of the function ψ by
means of an exponential sum shall be realized efficiently using Clenshaw–
Curtis quadrature. To this end, explicit weights can be derived analogous
to Theorem 5.4 by rewriting the function (4.34) as

ψ(x) =

∫

R
ψ̂(v) e2πivx dv =

∫ L/2

−L/2
ψ̂(v) e2πivx dv

=

∫ 1

−1

L
2 ψ̂(

Lu
2 ) e−πiLux du.

Thus, by utilizing the Clenshaw–Curtis quadrature rule for the inte-
grand h(u) := L

2 ψ̂(
Lu
2 ) e−πiLux with fixed parameter x ∈

[
− 1− T

L , 1 +
T
L

]
,

we obtain

1

L
ψ(x) =

1

L

∫ 1

−1

h(u) du ≈ 1

L

n∑

j=0

2wj h(2zj) =

n∑

j=0

wj ψ̂(Lzj) e
−2πiLzjx,

with given Chebyshev points zj in (5.8) and the quadrature weights wj
in (5.10). In other words, now we have the scaled weights

wψ̂j := wj ψ̂(Lzj), (5.29)

where in practice the weights wj in (5.10) can be precomputed by means
of the fast procedure in Algorithm 5.5 again.
In addition, we obtain the following error estimate analogous to Theo-

rem 5.4.

Theorem 5.13. Let the nonharmonic bandwidth M ∈ 2N with M ≫ 1 be
given. Then for sufficiently large n ∈ N with n+ 1 ≥ 4

(
1 + T

L

)
M , the

estimate
∣∣∣∣∣
1

L
ψ(x)−

n∑

j=0

wψ̂j e−2πiLzjx

∣∣∣∣∣ ≤
48

35
2−n L cosh

(
3πL

4

)
,
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holds for all x ∈
[
− 1− T

L , 1 +
T
L

]
with the Chebyshev points zj in (5.8)

and the scaled quadrature weights (5.29).

Proof. Analogous to the proof of Theorem 5.4.

Finally, the T -th partial sums (4.38) can be approximated by

(Pψ,T f)(x) ≈ (P̃ψ,T f)(x) :=
T∑

ℓ=−T

f
(
ℓ
L

) n∑

j=0

wψ̂j e−2πiLzj

(
x− ℓ

L

)

=
n∑

j=0

wψ̂j

(
T∑

ℓ=−T

f
(
ℓ
L

)
e2πizjℓ

)
e−2πiLzjx, x ∈ [−1, 1],

(5.30)

and thus a variant of the fast sinc transform in Algorithm 5.10 with the
scaled weights (5.29) can be applied, where we only have d = 1. Note that
by Remark 5.12 (iv) the fast sinc transform in Algorithm 5.10 simplifies
since the inner sum of (5.30) can be computed by means of an NFFT.
Hence, the obtained algorithm can be summarized as follows.

Algorithm 5.14 (Fast sinc transform for frequency regularization).

For M,P ∈ N and T > L :=M (1 + λ) ∈ N with λ > 0, let xp ∈ [−1, 1],
p = 1, . . . , P , be given nodes, as well as f

(
ℓ
L

)
, ℓ = −T, . . . , T , given sam-

ples of a bandlimited function f ∈ BM/2(R). Furthermore, we are given the

quadrature points zj ∈
[
− 1

2 ,
1
2

]
, j = 0, . . . , n, with n+ 1 ≥ 4

(
1 + T

L

)
M

and the corresponding evaluations ψ̂(Lzj) of the frequency window func-
tion (4.33).

0. Precomputation: Compute the quadrature weights wj , j = 0, . . . , n,
either by solving the least squares problem (5.7) or by means of
Algorithm 5.5.

1. Approximate the sums O(T log T + n)

gj ≈
T∑

ℓ=−T

f
(
ℓ
L

)
e2πizjℓ, j = 0, . . . , n,

by means of an NFFT in Algorithm 2.2.
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2. Form the products O(n)

τj := wj ψ̂(Lzj) · gj , j = 0, . . . , n.

3. Approximate the sums O(L logL+ P + n)

(P̃ψ,T f)(xp) ≈
n∑

j=0

τj e
−2πiLzjxp , p = 1, . . . , P,

by means of an NNFFT in Algorithm 2.6.

Output: (P̃ψ,T f)(xp) ≈ (Pψ,T f)(xp), p = 1, . . . , P , cf. (4.38).

In order to compare the computational cost of the direct computation
of Pψ,T in (4.38) and its approximation P̃ψ,T in (5.30), we assume that
both representations shall be evaluated at P arbitrary points xp ∈ [−1, 1],
p = 1, . . . , P . Then the direct computation of Pψ,T in (4.38) has a
total arithmetic complexity of O(TP ), while the approximation by
means of the fast sinc transform in Algorithm 5.14 has a complexity
of O(L logL+ T log T + n+ P ). Thus, for the evaluation at a single point,
i. e., for P = 1, the direct computation of (4.38) is obviously much faster,
whereas for increasing numbers P the approximation by means of the fast
sinc transform in Algorithm 5.14 becomes more efficient. For the numerical
comparison of these two methods, we refer to Example 5.19.

5.2.2 Fast approximation using spatial window functions

A similar method can also be derived for the regularization with a window
function in spatial domain from Sections 4.3.2 and 4.4. Namely, in case
the regularized Shannon sampling formula with localized sampling (4.74)
or (4.121) is too costly to be computed directly, an efficient approximation
procedure analogous to Algorithm 5.10 can be used. Note, however, that
in general these sums are sparse due to the characteristic function in their
definition, i. e., this method might only be useful for rather large truncation
parameters m ∈ N or higher dimensions d > 1. For the sake of simplicity,
we firstly describe only the univariate version with d = 1.

As already observed in Lemmas 4.32, 4.38, 4.43, and 4.47, for
the window functions mentioned in Remark 4.22 the regularized
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sinc function ψ(x) = sinc(Lπx)φ(x) is essentially bandlimited on the in-
terval

[
−L

2 (1 + ε), L2 (1 + ε)
]
with certain ε > 0, where in practice ε = 1

always seems sufficient, cf. Figures 4.4, 4.5, 4.7, and 4.10. Thus, although
Theorem 5.2 is not applicable since ψ is not bandlimited, we aim to use the
fact that ψ is essentially bandlimited. To this end, similar to Section 5.1.1,
the practical approximation of the function ψ by means of an exponen-
tial sum shall be realized efficiently using Clenshaw–Curtis quadrature.
Note that since the regularized Shannon sampling formula with localized
sampling (4.74) can be written as

(Rφ,mf)(x) :=
∑

ℓ∈Z
f
(
ℓ
L

)
ψ
(
x− ℓ

L

)
χ[−m

L ,
m
L ]
(
x− ℓ

L

)
, x ∈ R,

we only need to evaluate ψ for
∣∣x− ℓ

L

∣∣ ≤ m
L with 2m ≤ L. Hence, it

suffices to consider the approximation of ψ(x) for x ∈
[
− 1

2 ,
1
2

]
. In other

words, although Theorem 5.2 is not applicable since ψ is only essentially
bandlimited, we assume that the number of quadrature points should
satisfy n+ 1 ≥ 2M as well.

Since we have seen that ψ̂ is negligible for |v| > L, we have by the inverse
Fourier transform (4.4) that

ψ(x) =

∫

R
ψ̂(v) e2πivx dv ≈

∫ L

−L
ψ̂(v) e2πivx dv =

∫ 1

−1

L ψ̂(Lu) e−2πiLux du.

We remark that we additionally used the fact that for the considered
window functions from Remark 4.22 the regularized sinc function ψ̂ is even
by Lemmas 4.31, 4.37, 4.42, and 4.46. Then explicit weights can be derived
analogous to Theorem 5.4 by means of Clenshaw–Curtis quadrature for
the integrand h(u) := L ψ̂(Lu) e−2πiLux with fixed parameter x ∈

[
− 1

2 ,
1
2

]
.

This reads as

ψ(x) ≈
∫ 1

−1

h(u) du

≈
n∑

j=0

2wj L ψ̂(2Lzj) e
−2πi(2L)zjx = L̃

n∑

j=0

wj ψ̂(L̃zj) e
−2πiL̃zjx

with given Chebyshev points zj =
1
2 cos

(
jπ
n

)
∈
[
− 1

2 ,
1
2

]
, j = 0, . . . , n,

in (5.8), the quadrature weights wj in (5.10), and L̃ := 2L. In other words,
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now we have the scaled weights

wφj := L̃wj ψ̂(L̃zj). (5.31)

In practice, the weights wj in (5.10) can again be precomputed by means

of the fast procedure in Algorithm 5.5, and the evaluations of ψ̂ need to be
precomputed according to Lemmas 4.31, 4.37, 4.42, and 4.46.

Finally, using the representation (4.77) the regularized Shannon sampling
formula with localized sampling (4.74) can be approximated on any open
interval

(
k
L ,

k+1
L

)
with k ∈ Z by

(Rφ,mf)
(
x+ k

L

)
≈ (R̃φ,mf)

(
x+ k

L

)
(5.32)

:=
∑

ℓ∈Jm

f
(
ℓ+k
L

) n∑

j=0

wφj e−2πiL̃zj

(
x− ℓ

L

)

=

n∑

j=0

wφj

( ∑

ℓ∈Jm

f
(
ℓ+k
L

)
e2πiL̃zjℓ/L

)
e−2πiL̃zjx, x ∈

(
0, 1

L

)
,

with the index set Jm defined in (4.76). Thus, a variant of the fast
sinc transform in Algorithm 5.10 with the scaled weights (5.31) can be
applied, where we only have d = 1. Note that by Remark 5.12 (iv) the fast
sinc transform in Algorithm 5.10 simplifies since the inner sum of (5.32) is
computed by means of an NFFT. Hence, the obtained algorithm can be
summarized as follows.

Algorithm 5.15 (Fast sinc transform for spatial regularization).

ForM,P ∈ N, L :=M (1 + λ) ∈ N with λ > 0, and L̃ := 2L let xp ∈
(
0, 1

L

)
,

p = 1, . . . , P , be given nodes, as well as f
(
ℓ+k
L

)
, ℓ ∈ Jm, cf. (4.76), given

samples of a bandlimited function f ∈ BM/2(R). Furthermore, we are

given the quadrature points zj ∈
[
− 1

2 ,
1
2

]
, j = 0, . . . , n, with n+ 1 ≥ 2M

and the corresponding evaluations ψ̂(L̃zj) of the Fourier transform of the
regularized sinc function (4.69).

0. Precomputation: Compute the quadrature weights wj , j = 0, . . . , n,
either by solving the least squares problem (5.7) or by means of
Algorithm 5.5.
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1. Approximate the sums O(m logm+ n)

gj ≈
∑

ℓ∈Jm

f
(
ℓ+k
L

)
e2πiL̃zjℓ/L, j = 0, . . . , n,

by means of an NFFT in Algorithm 2.2.

2. Form the products O(n)

τj := L̃wj ψ̂(L̃zj) · gj , j = 0, . . . , n.

3. Approximate the sums O(L logL+ P + n)

(R̃φ,mf)(xp) ≈
n∑

j=0

τj e
−2πiL̃zjxp , p = 1, . . . , P,

by means of an NNFFT in Algorithm 2.6.

Output: (R̃φ,mf)(xp) ≈ (Rφ,mf)(xp), p = 1, . . . , P , cf. (4.74).

In order to compare the computational cost of the direct computation
of Rφ,mf in (4.74) and its approximation R̃φ,mf in (5.32), we assume that
both representations shall be evaluated at P arbitrary points xp ∈

(
0, 1

L

)
,

p = 1, . . . , P . Then the direct computation of Rφ,mf in (4.74) has
a total arithmetic complexity of O(mP ), while the approximation by
means of the fast sinc transform in Algorithm 5.15 has a complexity
of O(L logL+m logm+ n+ P ). Thus, for the evaluation at a single
point, i. e., for P = 1, the direct computation of (4.74) is obviously much
faster, whereas for increasing numbers P the approximation by means of
the fast sinc transform in Algorithm 5.15 becomes more efficient. For the
numerical comparison of these two methods, we refer to Example 5.20.
Additionally, we remark that this procedure can be generalized to the

multivariate setting (4.124) analogous to (5.23).

5.3 Approximation of bandlimited functions
based on Fourier data

So far, this chapter was dedicated to the task of efficiently computing certain
sinc sums including only terms in the spatial domain. In this section, we
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consider a completely different problem, where the sinc function still plays
an important role as it provides a fast and accurate approximation. More
precisely, for given values f̂(k), k ∈ IM , of the Fourier transform (4.4) of
a bandlimited function f ∈ BM/2(Rd), we are looking for function evalu-
ations f(xj) at given nonequispaced points xj , j = 1, . . . N . Note that if
a trigonometric polynomial f ∈ L2(Td) is given, it is already known that
this problem can be solved by means of the NFFT, see Algorithm 2.2.
Hence, we aim to introduce a new NFFT-like procedure for bandlimited
functions, which is based on the regularized Shannon sampling formulas,
see Section 4.4.

5.3.1 Derivation of the fast algorithm

To this end, note that it is known by Section 4.3.2 that the regu-
larized Shannon sampling formula Rφf in (4.64) with suitable win-
dow function φ ∈ Φ yields a good approximation of f . Further as-
sume that the bandlimited function f ∈ BM/2(Rd) fulfills the condi-
tion (4.35) with L > M . Thus, inserting the approximation (4.64) into the
Fourier transform (4.1) and using the definition (4.69) of the regularized
sinc function ψ(x) := sinc(Lπx)φ(x), we have

f̂(v) =

∫

Rd

f(x) e−2πivx dx ≈
∫

Rd

(Rφf)(x) e
−2πivx dx

=

∫

Rd

∑

ℓ∈Zd

f
(
ℓ
L

)
ψ
(
x− ℓ

L

)
e−2πivx dx

=
∑

ℓ∈Zd

f
(
ℓ
L

)
e−2πivℓ/L

∫

Rd

ψ(y) e−2πivy dy

=

( ∑

ℓ∈Zd

f
(
ℓ
L

)
e−2πivℓ/L

)
· ψ̂(v). (5.33)

We remark that summation and integration may be interchanged in (5.33)
by the theorem of Fubini–Tonelli, since

∑

ℓ∈Zd

∣∣f
(
ℓ
L

)∣∣ ·
∫

Rd

|φ
(
x− ℓ

L

)
| dx <∞
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is fulfilled, by (4.35) and φ ∈ L1(Rd) for all φ ∈ Φ. By defining

ν̂(v) :=
∑

ℓ∈Zd

f
(
ℓ
L

)
e−2πivℓ/L, v ∈ Rd, (5.34)

we recognize that this function ν̂ is L-periodic, since

ν̂(v + L) =
∑

ℓ∈Zd

f
(
ℓ
L

)
e−2πi(v+L)ℓ/L

=
∑

ℓ∈Zd

f
(
ℓ
L

)
e−2πivℓ/L e−2πiℓ = ν̂(v), v ∈ Rd,

by e2πir = 1, r ∈ Z. Thus, due to the fact that the Fourier transform of
the bandlimited function f ∈ BM/2(Rd) is non-periodic, the approxima-

tion (5.33) can only be reasonable for v ∈
[
− L

2 ,
L
2

]d
.

As the goal is to recover the nonequispaced samples f(xj), j = 1, . . . , N ,

from given values f̂(k), k ∈ IM , we aim to use the approximation (5.34) in
combination with a regularized Shannon sampling formula (4.121). For this
purpose, we need access to as many equispaced samples f

(
ℓ
L

)
as possible,

i. e., we are looking for an inversion formula for (5.34). To this end, note
that (5.34) can be written as

ν̂(v) =
∑

ℓ∈IΘ

f
(
ℓ
L

)
e−2πivℓ/L

+
∑

r∈Zd\{0}

∑

ℓ∈IΘ

f
(
ℓ+rΘ
L

)
e−2πiv(ℓ+rΘ)/L, v ∈ Rd,

where the index set IΘ is given in (2.1) with Θ = Θ · 1d, Θ ∈ 2N.
Since f ∈ BM/2(Rd) ⊆ C0(Rd), see Lemma 4.1, the equispaced sam-

ples f
(
ℓ
L

)
are negligible for all ∥ℓ∥∞ ≥ Θ

2 with suitably chosen Θ. In
order to avoid aliasing in the computation we assume that Θ = L is suffi-
cient. Hence, we consider

ν̂(v) ≈ ϑ̂(v) :=
∑

ℓ∈IL

f
(
ℓ
L

)
e−2πivℓ/L, v ∈ Rd, (5.35)

and thus by (5.33) the approximation

f̂(v) ≈ ϑ̂(v) · ψ̂(v), v ∈
[
− L

2 ,
L
2

]d
. (5.36)
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Since it is additionally known that f̂(v) = 0 for all v /∈
[
− M

2 ,
M
2

]d
and

ψ̂(v) ̸= 0 for all v ∈
[
− L

2 ,
L
2

]d
, we might use (5.36) and (5.35) for given

f̂(k), k ∈ IM , to approximate the equispaced samples f
(
ℓ
L

)
, ℓ ∈ IL, by

setting

ϑ̂(k) =

{
f̂(k)

ψ̂(k)
: k ∈ IM ,

0 : k ∈ IL \ IM ,

and subsequently computing

f
(
ℓ
L

)
≈ ϑℓ :=

1

|IL|
∑

k∈IL

ϑ̂(k) e2πikℓ/L, ℓ ∈ IL, (5.37)

by means of an iFFT.
To finally approximate the samples f(xj), j = 1, . . . , N , we make use

of the regularized Shannon sampling formula Rφ,mf with localized sam-
pling in (4.121). This means, analogous to the NFFT we now assume
that the window function φ ∈ Φ is well localized, such that it is small

outside the square
[
−m
L ,

m
L

]d
and can be approximated by the compactly

supported function φm in (4.73). In doing so, we benefit from the good
approximation properties of the regularized Shannon sampling formula
with localized sampling in (4.121) known by Section 4.4 as well as from
its efficiency, since the computation of (Rφ,mf)(x) for fixed x ∈ Rd \ 1

L Zd

requires only (2m+ 1)d samples f
(
ℓ
L

)
, where ℓ ∈ Zd fulfills the condi-

tions |ℓt − Lxt| ≤ m for t = 1, . . . , d. However, we have already encoun-
tered that using (5.37) we might approximate only the equispaced sam-
ples f

(
ℓ
L

)
with ℓ ∈ IL. Thereby, the regularized Shannon sampling for-

mula (Rφ,mf)(x) can be evaluated only for x ∈ [− 1
2 + m

L ,
1
2 − m

L )
d, since

only in this case exclusively the evaluations f
(
ℓ
L

)
, ℓ ∈ IL, are needed for

the computation due to the fact that

φm
(
x− ℓ

L

)
̸= 0 ⇐⇒

(
x− ℓ

L

)
∈
[
−m
L ,

m
L

]d

⇐⇒ −m+ Lx ≤ ℓ ≤ m+ Lx.

In other words, in order to avoid aliasing in the computation of the in-
verse Fourier transform in (5.37), we are confronted with a limitation
of the feasible interval for the points xj , j = 1, . . . , N . Nevertheless, for
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given xj ∈ [− 1
2 + m

L ,
1
2 − m

L )
d, j = 1, . . . , N , we may insert the approxi-

mated samples (5.37) into the definition of the regularized Shannon sam-
pling formula with localized sampling (4.121). Thereby, the final approxi-
mation is computed by

(Rφ,mf)(xj) ≈ fj :=
∑

ℓ∈IL

ϑℓ sinc
(
Lπ
(
xj − ℓ

L

))
φm
(
xj − ℓ

L

)
(5.38)

=
∑

ℓ∈JL,m(xj)

ϑℓ sinc
(
Lπ
(
xj − ℓ

L

))
φm
(
xj − ℓ

L

)
,

where the index set of the nonzero entries

JL,m(xj) :=
{
ℓ ∈ Zd : −m+ Lxj ≤ ℓ ≤ m+ Lxj

}
(5.39)

contains at most (2m+ 1)d entries for each fixed xj , cf. (2.12). Thus, the
obtained algorithm can be summarized as follows.

Algorithm 5.16 (NFFT-like procedure for bandlimited functions).

For d,m,N ∈ N and M ∈ 2N let xj ∈ [− 1
2 + m

L ,
1
2 − m

L )
d, j = 1, . . . , N , be

given nodes as well as f̂(k) ∈ C, k ∈ IM , given evaluations of the Fourier
transform of the bandlimited function f ∈ BM/2(Rd). Furthermore, we are
given the oversampling parameter λ ≥ 0 with L =M(1 + λ) ∈ N, as well
as the window function φ ∈ Φ, the truncated window function φm, the
corresponding regularized sinc function ψ and its Fourier transform ψ̂.

0. Precomputation:

a) Compute the nonzero values ψ̂(k) for k ∈ IM , cf. (2.1).

b) Compute the evaluations sinc
(
Lπ
(
xj − ℓ

L

))
φm
(
xj − ℓ

L

)
for

j = 1, . . . , N, and ℓ ∈ JL,m(xj), cf. (5.39).

1. Set O(|IM |)

ϑ̂(k) :=

{
f̂(k)

ψ̂(k)
: k ∈ IM ,

0 : k ∈ IL \ IM .

2. Compute O(|IM | log(|IM |))

ϑℓ :=
1

|IL|
∑

k∈IL

ϑ̂(k) e2πikℓ/L, ℓ ∈ IL,

by means of a d-variate iFFT.
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3. Compute the short sums O(N)

fj :=
∑

ℓ∈JL,m(xj)

ϑℓ sinc
(
Lπ
(
xj − ℓ

L

))
φm
(
xj − ℓ

L

)
, j = 1, . . . , N.

Output: fj ≈ f(xj), cf. (4.4), j = 1, . . . , N .

Complexity: O(|IM | log(|IM |) +N)

Note that by defining the vectors ϑ := (ϑℓ)ℓ∈IL
and f̂ := (f̂(k))k∈IM

,
as well as the matrix

Dψ̂
:= diag

(
1

|IL| · ψ̂(k)

)

k∈IM

∈ C|IM |×|IM |, (5.40)

the definition (5.37) can be written as

ϑ = FDψ̂f̂ ,

where F ∈ C|IL|×|IM | denotes the Fourier matrix (2.15) with L =Mσ. By

additionally defining the vector f := (f(xj))
N
j=1 and the (2m+ 1)d-sparse

matrix

Ψ :=

(
sinc

(
Lπ
(
xj − ℓ

L

))
φm
(
xj − ℓ

L

))N

j=1, ℓ∈IL

∈ RN×|IL|, (5.41)

the approximation (5.38) can be written as f ≈ Ψϑ. Thereby, the overall
approximation of Algorithm 5.16 is given by

f ≈ Ψϑ = ΨFDψ̂f̂ . (5.42)

5.3.2 Comparison to the classical NFFT

Due to the fact that f ∈ BM/2(Rd) is a bandlimited function one could
also directly apply an equispaced quadrature rule to the inverse Fourier
transform (4.4), i. e., consider the approximation

f(x) =

∫

Rd

f̂(v) e2πivx dv =

∫

[−M
2 ,

M
2 ]d

f̂(v) e2πivx dv ≈
∑

k∈IM

f̂(k) e2πikx.
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Thereby, the function evaluations f(xj), j = 1, . . . , N , might also be ap-
proximated efficiently by means of the NFFT, see Algorithm 2.2. Since
this raises the question of which of the two methods, Algorithm 2.2 or Al-
gorithm 5.16, is more advantageous, this section deals with the comparison
of the two approaches.
Considering the matrix notations

BFD and ΨFDψ̂,

cf. (2.17) and (5.42), the first thing to realize is that for B ∈ RN×|IL|

in (2.16) the window function φm(x) is used, while for Ψ ∈ RN×|IL|

in (5.41) we consider the sinc regularized window function sinc(Lπx)φm(x).
A similar remark can also be made about the diagonal matri-
ces D ∈ C|IM |×|IM | in (2.14) and Dψ̂ ∈ C|IM |×|IM | in (5.40).

It is also important to note that the two methods can only be compared
for x ∈ [− 1

2 + m
L ,

1
2 − m

L )
d, as the approximation by Algorithm 5.16 is only

reasonable in this case. This implies that the matrix B is, unlike usual,
non-periodic in this setting, whereas the matrix Ψ is inherently non-periodic
by definition.

To study the quality of both approaches, note that for k ∈ IM fixed the
NFFT gives the approximation

e2πikx ≈ 1

|IL| · φ̂(k)
∑

ℓ∈IL

e2πikℓ/L φ̃m
(
x− ℓ

L

)
, x ∈ Td, (5.43)

cf. (2.17) with L =Mσ, where φ̃m(x) =
∑

r∈Zd φm(x+ r) denotes the
1-periodic version of the compactly supported window function φm. Thus,
we look for a comparable approximation of the exponential function
using our newly proposed method in Algorithm 5.16. For this pur-
pose, we consider the regularized Shannon sampling formula with lo-
calized sampling (4.121), which is known to provide a good approxima-
tion f(x) ≈ (Rφ,mf)(x), x ∈ Rd, for bandlimited functions f ∈ BM/2(Rd).
It is easy to see that f(x) = ψ̂(x) e2πikx with k ∈ Rd fixed, possesses the

Fourier transform f̂(v) = ψ(k − v). Therefore, we have f ∈ BM/2(Rd)
for all k ∈

[
− M

2 + m
L ,

M
2 − m

L

]d
using the regularized sinc functions ψB

in (4.96), ψsinh in (4.105) and ψcKB in (4.113), and f is essentially ban-

dlimited with bandwidth M for all k ∈
[
− M

2 + m
L ,

M
2 − m

L

]d
using ψGauss

in (4.89). Hence, inserting this function f(x) = ψ̂(x) e2πikx in (4.121) we
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obtain

ψ̂(x) e2πikx ≈
∑

ℓ∈Zd

ψ̂
(
ℓ
L

)
e2πikℓ/L sinc

(
Lπ
(
x− ℓ

L

))
φm
(
x− ℓ

L

)
, x ∈ Rd,

or rather

e2πikx ≈
∑

ℓ∈IL

ψ̂
(
ℓ
L

)

ψ̂(x)
e2πikℓ/L sinc

(
Lπ
(
x− ℓ

L

))
φm
(
x− ℓ

L

)
,

x ∈
[
− 1

2 + m
L ,

1
2 − m

L

)d
.

Numerical experiments, cf. Figures 4.4, 4.5, 4.7, and 4.10, have shown

that ψ̂(y) ≈ 1
|IL| , y ∈

[
− M

2 ,
M
2

)d
, for all the window functions mentioned

in Remark 4.22. Thereby, the above approximation simplifies to

e2πikx ≈
∑

ℓ∈IL

e2πikℓ/L sinc
(
Lπ
(
x− ℓ

L

))
φm
(
x− ℓ

L

)
, (5.44)

x ∈
[
− 1

2 + m
L ,

1
2 − m

L

)d
,

which equals the approximationΨFDψ̂ of Algorithm 5.16 since ψ̂(k) ≈ 1
|IL| ,

k ∈ IM . Therefore, we can compare the quality of the two methods by
considering the approximations (5.43) and (5.44) of the exponential func-
tion.

For the sake of simplicity in the visualization, we restrict ourselves to the
one-dimensional setting d = 1. To estimate the quality of the approaches,
we consider the approximation error

e(v) := max
xp, p=1,...,P

∣∣e2πivxp − h(xp)
∣∣, (5.45)

where the term h(xp) is a placeholder for the right hand sides of (5.43)
and (5.44), respectively, evaluated at a fine grid of P = 105 equispaced
points xp, p = 1, . . . , P . This approximation error (5.45) shall now be
computed for several values

vs = −M
2 −m+ s

S ∈
[
− M

2 −m, M2 +m
]
, s = 0, . . . , S(M + 2m),

(5.46)

where S = 1 corresponds to integer evaluation, whereas we use S = 32 to
examine the approximation at non-integer points as well. Note that (5.43)
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is expected to provide a good approximation only for v ∈
[
− M

2 ,
M
2

]
,

while (5.44) is expected to do so only for v ∈
[
− M

2 + m
L ,

M
2 − m

L

]
. Never-

theless, we test for v from a larger interval to confirm this assumption.
The corresponding outcomes when computing the approximations (5.43)

and (5.44) using the sinh-type window function (4.62) as well as the parame-
ters M = 20, λ = 1, L = (1 + λ)M , and m = 5, are displayed in Figure 5.1.
For x ∈

[
− 1

2 ,
1
2

)
it is easy to see that our newly proposed method (5.44)

indeed does not provide reasonable results, while the approximation (5.43)
by means of the NFFT is only useful at integer points v. For the trun-
cated interval x ∈

[
− 1

2 + m
L ,

1
2 − m

L

)
, however, both approximations (5.43)

and (5.44) are clearly beneficial for non-integer points v as well, but as
expected these methods only succeed when |v| ≤ M

2 . Nevertheless, al-
though also the approximation (5.43) by means of the NFFT yields better
results in this setting, the approximation (5.44) by means of our newly
proposed method easily outperforms the classical NFFT in terms of the
approximation error (5.45).

−M
2

0 M
2

10−5

10−3

10−1

101

103

105

v

BFD
ΨFDψ̂

(a) x ∈
[
− 1

2
, 1
2

)
−M

2
0 M

2

10−5

10−3

10−1

101

v

BFD
ΨFDψ̂

(b) x ∈
[
− 1

2
+ m

L
, 1
2
− m

L

)
Figure 5.1: Maximum approximation error (5.45) for P = 105 com-

puted for (5.46) with S = 32 using the sinh-type window
function (4.62) as well as the parameters M = 20, λ = 1,
L = (1 + λ)M , and m = 5 in the one-dimensional setting d = 1.

That is to say, Figure 5.1 demonstrates that the novel NFFT-like approach
in Algorithm 5.16 is better suited for bandlimited functions, as the errors
are smaller. Note that this superiority is not limited to k ∈ IM but extends
to the entire domain v ∈

[
− M

2 ,
M
2

]
. Moreover, the error of Algorithm 5.16
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is bounded by the error estimates of the regularized Shannon sampling
formulas in Section 4.4, whereas the quadrature error of the NFFT is
completely unclear.

5.4 Numerical examples & summary

Concluding this chapter, we have a look at some numerical examples. After
investigating the accuracy of the fast sinc transform from Section 5.1 (see
Examples 5.17 and 5.18), we also examine the quality and efficiency of its
generalized versions for the evaluation of the regularized Shannon sampling
sums introduced in Section 5.2 (see Examples 5.19 and 5.20). Moreover,
also a test of the NFFT-like procedure for bandlimited functions from
Section 5.3 is included (see Example 5.21).

Discrete sinc transform

We start by examining the quality of the approximation of the sinc function
using the exponential sums (2.19).

Example 5.17. (a) Analogous to [KPT23, Example 5.5], we verify the result
of Theorem 5.4, i. e., we visualize the error constant and the maximum
approximation error, cf. (5.9). To this end, we compute the discrete
maximum error

max
r∈IR

∣∣∣∣∣sinc(Mπxr)−
n∑

j=0

wj e
−2πiMzjxr

∣∣∣∣∣ (5.47)

on a fine evaluation grid xr =
2r
R ∈ [−1, 1], r ∈ IR, with R = 106 fixed

for certain bandwidths M = 2s, s ∈ {1, . . . , 15}. More precisely, for sev-
eral choices of n = cM with c ∈ {1, . . . , 10} we compute the weights wj ,
j = 0, . . . , n, using Algorithm 5.5. Subsequently, the approximation (5.12)
of the sinc function is computed by means of the NFFT, see Algorithm 2.2.
The corresponding results are depicted in Figure 5.2. Note that Figure 5.2a
shows only the error bound (5.9), thereby clearly illustrating the fact
that n+ 1 ≥ 4M is a necessary condition for the error constant to decay
with respect to the bandwidth M . In Figure 5.2b it can be seen that
the maximum approximation error (5.47) also gets as small as possible
for n+ 1 ≥ 4M , where the optimal choice of the constant c appears to
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depend on the size of the bandwidth M , with smaller c being sufficient
for larger M . It should be noted that not all of the tested parameter
constellations could be shown in Figure 5.2 since the error constant (5.9)
might be huge for small c < 4 or smaller than machine precision for c ≥ 4
depending on the size of M . Additionally, we remark that although Fig-
ure 5.2 displays only the results for d = 1, the results for d > 1 look the
same due to tensorization, see (5.14) and Corollary 5.8, respectively.

2 4 8 16 3210−6

10−1

104

109

1014

M

c = 1
c = 2
c = 3
c = 4
c = 5

(a) Error constant (5.9)

2 4 6 8 10
10−15

10−11

10−7

10−3

c

M = 4
M = 16
M = 64
M = 256
M = 1024

(b) Maximum error (5.47)
and error constant (5.9)

Figure 5.2: Error constant (5.9) (dashed) and maximum error (5.47) (solid)
of the approximation of sinc(Mπx), x ∈ [−1, 1], with R = 106

for certain bandwidths M = 2s, s ∈ {1, . . . , 15}, using the
Chebyshev nodes (5.8) and the weigths computed by Algo-
rithm 5.5, where n = cM with c ∈ {1, . . . , 10}.

(b) Having verified the quality of the approximation (5.12) using the
weights computed by means of Algorithm 5.5, we proceed with a com-
parison to other methods for choosing the weights wj , j = 0, . . . , n. Es-
pecially, we consider the method from [GLI06] mentioned in Remark 5.6,
where a Gauss–Legendre quadrature was used instead of the Clenshaw–
Curtis quadrature in Theorem 5.4. For certain bandwidths M = 2s,
s ∈ {1, . . . , 15}, we compute the maximum error (5.47) of the approxi-
mation of the sinc function sinc(Mπx), x ∈ [−1, 1], with R = 106 using the
Legendre points (5.13) and the weights proposed in [GLI06] with n = 2M .
The corresponding results are depicted in Figure 5.3. Comparing Fig-
ures 5.3a and 5.2b it becomes apparent that indeed a smaller number n
of quadrature weights is sufficient for the Gauss–Legendre weights men-
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tioned in Remark 5.6. However, comparing the time needed to compute
the approximation of the sinc function, we see that our method using the
Clenshaw–Curtis weights computed by Algorithm 5.5 with n = 4M is more
efficient than the procedure of [GLI06] using the Gauss–Legendre weights
mentioned in Remark 5.6 with n = 2M , see Figure 5.3b. Therefore, we
consider our method to be at least a slight improvement on [GLI06].

2 4 6 8 10
10−15

10−11

10−7

10−3

c

M = 4
M = 16
M = 64
M = 256
M = 1024

(a) Maximum error (5.47) using
the weights mentioned in

Remark 5.6

101 102 103 104

10−1

10−2

10−2

10−4

M

Clenshaw–Curtis with n = 4M
Gauss–Legendre with n = 2M

(b) Time needed to compute the
approximation (in seconds)

Figure 5.3: Comparison of the approximation of sinc(Mπx), x ∈ [−1, 1], for
certain bandwidths M = 2s, s ∈ {1, . . . , 15}, using the Gauss–
Legendre weights mentioned in Remark 5.6 and the Clenshaw–
Curtis weights computed by Algorithm 5.5.

(c) Finally, we compare the analytic result of Theorem 5.4 to the empirical
least squares approach (5.7), where for simplicity we describe only the
one-dimensional case d = 1. Note that for (5.7) we are free to choose
the quadrature points zj ∈ [− 1

2 ,
1
2 ], j = 0, . . . , n, as well as the evaluation

points yp ∈ [−1, 1], p ∈ IP . Therefore, we consider different combinations
of the equispaced points

zj = − 1
2 + j

n ∈ [− 1
2 ,

1
2 ], j = 0 . . . , n, (5.48)

the Chebyshev points (5.8) and the Legendre points (5.13) with similarly
chosen evaluation points yp ∈ [−1, 1], p ∈ IP , and investigate which choices
of yp and zj lead to the best approximation results. More precisely, for
the given sets of points we compute the corresponding weights wj ∈ C,
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(b) Legendre points yp
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(c) Chebyshev points yp

Figure 5.4: Discrete maximum error (5.47) of the approximation of the
sinc function sinc(Mπx), x ∈ [−1, 1], with R = 106 for certain
bandwidths M = 2s, s ∈ {3, . . . , 13}, shown for several choices
of yp ∈ [−1, 1], p ∈ IP , with P = 2.5n and n = 4M , where the
weights wequi, wcheb and wleg are computed using the least
squares approach (5.7) for zj ∈ [− 1

2 ,
1
2 ], j = 0, . . . , n, in (5.48),

(5.8), and (5.13), compared to the analytic weights wcc com-
puted by Algorithm 5.5.

j = 0, . . . , n, iteratively as the least squares solution to the linear sys-
tem (5.7), where for equispaced yp we employ an NFFT and for nonequis-
paced yp we make use of an NNFFT, respectively. Note that according to
the choice of the quadrature points zj we denote the weights as w

equi, wcheb

and wleg. For comparison, we also compute the analytic weights wcc in (5.10)
by means of Algorithm 5.5. Consequently, we calculate the discrete maxi-
mum error (5.47), again choosing R = 106 with R≫ P , where P = 2.5n
and n = 4M .

The corresponding outcomes are depicted in Figure 5.4, where it becomes
apparent that, except for very small bandwidthsM , the analytic weights wcc

in (5.10) are superior to all tested least squares weights. Only in case of
equispaced evaluation points yp we see that choosing Chebyshev points (5.8)
or Legendre points (5.13) leads to comparable results. Considering only the
results of the least squares approach, we find that, regardless of the special
choice, the approximation is best when equispaced points are combined
with nonequispaced points. Furthermore, we observe that the best results
can be obtained when (5.7) is an overdetermined problem with P > 2n,
where P = 2.5n has proven to be a good ratio. Additionally, we remark
that for yp other than equispaced we observe that the iteration procedure
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did not yet converge to the desired accuracy 10−11 although 10000 iteration
steps were permitted. Thus, for the least squares approach (5.7) the best
choice is equispaced evaluation points yp and nonequispaced quadrature
points (5.8) or (5.13), since in this setting we obtain the best results with
the least effort due to the NFFT. Nevertheless, these results are still being
outperformed by the analytic approach using (5.10). ⋄

Next we study the accuracy of the fast sinc transform in Algorithm 5.10.

Example 5.18. Similar to [KPT23, Example 6.3], we now compare the
discrete sinc transform (5.2) with its approximation (5.26) by means of
the fast sinc transform in Algorithm 5.10. To this end, we choose ran-

dom nodes ak, bℓ ∈
[
− 1

2 ,
1
2

]d
, k ∈ IK , ℓ ∈ IL, as well as random coeffi-

cients ck ∈ [0, 1]d, and compute the maximum error (5.27). Due to the
randomness of the given values, this test is repeated one hundred times
and afterwards the maximum error over all repetitions is computed. In
this experiment we consider certain bandwidths M = 2s, s ∈ {5, . . . , 13},
and without loss of generality we choose d = 1 and K = L =M for the
visualization.

The only thing left to do to compute the fast sinc transform in Algo-
rithm 5.10 is the specification of the precomputation scheme, which shall
be either the least squares problem (5.7) or Algorithm 5.5. For the ana-
lytic weights wj , j = 0, . . . , n, computed by means of Algorithm 5.5 the
Chebyshev points (5.8) are used, such that only the number n of quadrature
weights is free to choose. For the weights wj computed by solving the least
squares problem (5.7) we have seen in Example 5.17 that the best choice
are equispaced evaluation points yp =

2l
P , p ∈ IP , with P = 2.5n, and the

nonequispaced quadrature points (5.8), such that also the parameter n is
left to choose. To this end, we compare both approaches for several choices
of n = cM with c ∈ {2, 4, 6, 8}.

The corresponding outcomes are shown in Figure 5.5. For both precom-
putation schemes we recognize that for n = 2M the approximation results
are not as good as for larger n. This indicates that also for the least squares
approach (5.7) the condition n ≥ 4M seems to be necessary to obtain the
best approximation possible. Moreover, it can be seen that there is hardly
any difference between the results for c ∈ {4, 6, 8}. However, we point out
that a larger parameter n = cM heavily increases the computational costs
of the fast sinc transform in Algorithm 5.10. Therefore, it is recommended
to use the smallest possible choice n = 4M .
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(a) Analytic weights
obtained by Algorithm 5.5
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(b) Least squares weights
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Figure 5.5: Maximum approximation error (5.27) of the fast sinc transform
in Algorithm 5.10 for certain bandwidthsM = 2s, s = 5, . . . , 13,
shown for several choices of n = cM with c ∈ {2, 4, 6, 8} when
using random nodes ak, bℓ ∈

[
− 1

2 ,
1
2

]
and random coeffi-

cients ck ∈ [0, 1] with d = 1 and K = L =M , compared for
different weights wj , j = 0, . . . , n, obtained by Algorithm 5.5
or the least squares approach (5.7) with zj in (5.8) each.

Comparing the two approaches in Figure 5.5a and 5.5b we recognize
that, as expected by Figure 5.4, the errors obtained by using the analytic
weights computed by Algorithm 5.5 are much smaller than by using the
least squares weights computed by means of (5.7). Note that identical
results are obtained for ak or bℓ equispaced, for d > 1 and for K ̸= L ̸=M .
This once more emphasizes the superiority of the analytic weights com-
puted by Algorithm 5.5 and hence we strongly recommend to make use of
Algorithm 5.5 in the precomputational step of Algorithm 5.10. ⋄

Application to regularized Shannon sampling formulas

Next, we proceed with the examination of the generalization of the fast
sinc transform introduced in Section 5.2. More precisely, we study the
quality and efficiency for the evaluation of the regularized Shannon sampling
sums, where Example 5.19 deals with the method for the regularization
with a window function in frequency domain presented in Section 5.2.1 and
Example 5.20 is concerned with the method for the regularization with a
window function in spatial domain suggested in Section 5.2.2.
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Example 5.19. Firstly, we have a look at the fast evaluation of the regular-
ized Shannon sampling formulas with regularization in the frequency do-
main, see Section 5.2.1. More precisely, for the bandlimited function (4.151)
we compare the regularization in frequency domain Pψ,T f in (4.38) of

Section 4.3.1 with its approximation P̃ψ,T f in (5.30) by means of the
fast sinc transform in Algorithm 5.14, where the weights wj in (5.10) are
precomputed by Algorithm 5.5. To this end, we consider the maximum
approximation error

max
x∈[−1, 1]

∣∣(P̃ψ,T f)(x)− (Pψ,T f)(x)
∣∣ (5.49)

for several frequency window functions ψ ∈ {ψlin, ψcub, ψcos, ψconv,2},
see (4.45), (4.48), (4.51), and (4.57). Similar to Example 4.67, the er-
rors (5.49) shall be estimated by evaluating the approximations Pψ,T f

and P̃ψ,T f at a fine grid of equidistant points xs = −1 + s
S ∈ [−1, 1],

s = 0, . . . , 2S, with S = 105. In addition, we also quantify the time needed
for the naive computation of Pψ,T f in (4.38) as well as the computation

of its approximation P̃ψ,T f in (5.30) by means of the fast sinc transform
in Algorithm 5.14, where the precomputation of the corresponding coeffi-
cients ψ̂(Lzj) and weights wj , j = 0, . . . , n, is excluded.
The results for fixed M = 64, λ = 1, and L = (1 + λ)M , as well as sev-

eral values of the truncation parameter T = cL with c ∈ {1, . . . , 10} are
depicted in Figure 5.6. It can be seen in Figure 5.6a that the accuracy
of the approximation P̃ψ,T f in (5.30) seems to depend strongly on the
choice of the window function, as the maximum approximation error (5.49)
differs appreciably for the considered ψ ∈ {ψlin, ψcub, ψcos, ψconv,2}. More-

over, we recognize that the approximation P̃ψ,T f in (5.30) inexplicably
improves for larger truncation parameter T , which was only expected for
the approximation of f by means of Pψ,T f and P̃ψ,T f , respectively. When
considering Figure 5.6b, however, it becomes apparent that by using the
fast sinc transform in Algorithm 5.14 the computation times are reduced
by approximately two orders of magnitude for all considered window func-
tions, thereby yielding a significant acceleration in the computation of
the regularization in frequency domain Pψ,T f . Thus, since we observed
that the approximation of the bandlimited function f is almost equally
good for Pψ,T f and P̃ψ,T f , it is recommended to make use of the fast
sinc transform in Algorithm 5.14, especially for large truncation parame-
ters T . ⋄
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Figure 5.6: Comparison of the regularization Pψ,T f in (4.38) in fre-

quency domain (dashed) and its approximation P̃ψ,T f
in (5.30) by means of the fast sinc transform in Algo-
rithm 5.14 (dotted), for several T = cL with c ∈ {1, . . . , 10}
and ψ ∈ {ψlin, ψcub, ψcos, ψconv,2}, in (4.45), (4.48), (4.51),
and (4.57), for the bandlimited function (4.151) with M = 64,
λ = 1, and L = (1 + λ)M .

Example 5.20. Secondly, we study the fast evaluation of the regularized
Shannon sampling formulas with regularization in the spatial domain, see
Section 5.2.2. Namely, for the bandlimited function (4.151) we compare
the regularization in spatial domain Rφ,mf in (4.74) of Section 4.3.2 with

its approximation R̃φ,mf in (5.32) by means of the fast sinc transform
in Algorithm 5.15, where the weights wj in (5.10) are precomputed by
Algorithm 5.5. Similar to Example 5.19 we consider the approximation
error

max
x∈[−1, 1]

∣∣(R̃φ,mf)(x)− (Rφ,mf)(x)
∣∣ (5.50)

for φ ∈ {φGauss, φB, φsinh, φcKB}, see (4.60), (4.61), (4.62), and (4.63),
which shall be estimated by evaluating the approximations Rφ,mf

and R̃φ,mf at a fine grid of equidistant points xs = −1 + s
S ∈ [−1, 1],

s = 0, . . . , 2S, with S = 105. Moreover, we also quantify the time needed
for the naive computation of Rφ,mf in (4.74) as well as the computation

of its approximation R̃φ,mf in (5.32) by means of the fast sinc transform
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Figure 5.7: Comparison of the regularization Rφ,mf in (4.74) in spatial

domain (dashed) and its approximation R̃φ,mf in (5.32) by
means of the fast sinc transform in Algorithm 5.15 (dotted),
for several m ∈ {1, . . . , 10} and φ ∈ {φGauss, φB, φsinh, φcKB},
in (4.60), (4.61), (4.62), and (4.63), for the bandlimited func-
tion (4.151) with M = 64, λ = 1, and L = (1 + λ)M .

in Algorithm 5.15, where the precomputation of the corresponding coeffi-
cients ψ̂(L̃zj) and weights wj , j = 0, . . . , n, is excluded.

The results for fixed M = 64, λ = 1, and L = (1 + λ)M , as well as sev-
eral values of the truncation parameter m ∈ {1, . . . , 10} are displayed in
Figure 5.7. Considering Figure 5.7a we recognize that, in contrast to
Example 5.19, the accuracy of the approximation R̃φ,mf in (5.32) does
not depend much on the choice of the window function, as the maximum
approximation error (5.50) is almost identical for all considered window
functions φ, except for φGauss in (4.60) being slightly worse. However,
similarly as already observed in Example 5.19, it can be seen that the
approximation R̃φ,mf in (5.32) inexplicably improves for larger truncation
parameter m, which was only expected for the approximation of f by means
of Rφ,mf and R̃φ,mf , respectively. In Figure 5.7b we see that the compu-
tation times are only slightly reduced by using the fast sinc transform in
Algorithm 5.15. This means, when factoring in also the time needed for the
precomputational step of Algorithm 5.15, there is hardly any difference be-
tween the two computation schemes. Hence, the approximate computation
of R̃φ,mf by means of the fast sinc transform in Algorithm 5.15 might only
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be useful for high dimension d > 1 or very large truncation parameters m,
due to the sparse structure of Rφ,mf in (4.74). ⋄

NFFT-like procedure for bandlimited functions

Finally, we test the NFFT-like procedure for bandlimited functions intro-
duced in Section 5.3 in comparison to the classical NFFT.

Example 5.21. To examine the approximation quality of the NFFT-like
procedure for bandlimited functions in Algorithm 5.16 we provide a func-
tion f with its corresponding Fourier transform f̂ in (4.1), such that we

have access to the exact values f̂(k), k ∈ IM , as input for Algorithm 5.16,
as well as the exact function evaluations f(xj), j = 1, . . . , N . In doing
so, we can compare the result fj , j = 1, . . . , N , of Algorithm 5.16 to the
exact function evaluations f(xj), j = 1, . . . , N , by computing the maximum
approximation error

max
j=1,...,N

|fj − f(xj)|. (5.51)

For the reason of comparison, we also compute the approximation er-
ror (5.51) when fj , j = 1, . . . , N , is the result of the classical NFFT in
Algorithm 2.2.

Here we consider the one-dimensional setting with d = 1 and for sev-
eral bandwidth parameters M ∈ {20, 40, . . . , 1000} we study the func-
tion f(x) = sinc2

(
M
2 πx

)
with the Fourier transform

f̂(v) =
2

M
·
{
1−

∣∣ 2v
M

∣∣ : |v| ≤ M
2 ,

0 : otherwise.

Note that the function f is scaled appropriately such that maxx∈R f(x) = 1
independent of the bandwidth M and thereby the approximation er-
rors (5.51) are comparable for all considered M . As evaluation
points xj ∈

[
− 1

2 + m
L ,

1
2 − m

L

]
, j = 1, . . . , N , we choose the scaled Cheby-

shev nodes

xj = cos

(
(j − 1)π

N

)
·
(
1

2
− m

L

)
, j = 1, . . . , N, (5.52)

with N = M
2 , m = 5, as well as Mσ = L =M(1 + λ) with λ = 1, and we

use the sinh-type window function (4.62).
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The corresponding results are depicted in Figure 5.8. As expected by
the previous comparison of the two approaches in Figure 5.1, the new
NFFT-like procedure for bandlimited functions presented in Algorithm 5.16
performs much better than the classical NFFT in Algorithm 2.2. While
for M ≤ 80 both approaches exhibit the same maximum approximation
error (5.51), for larger bandwidth M the approximation error (5.51) gets
smaller only for the NFFT-like procedure in Algorithm 5.16. That is to say,
when approximating the evaluations f(xj), j = 1, . . . , N , of the bandlimited

function f ∈ BM/2(R) by given samples f̂(k), k ∈ IM , of the corresponding
Fourier transform (4.1), reasonable results can be obtained by the NFFT in
Algorithm 2.2, yet evidence indicated that our newly proposed NFFT-like
procedure for bandlimited functions in Algorithm 5.16 yields results that
are at least as good, if not superior. Accordingly, the NFFT-like procedure
in Algorithm 5.16 is the preferred approach in this context. ⋄

0 200 400 600 800 1000

10−5

10−4

10−3

M

BFD
ΨFDψ̂

Figure 5.8: Maximum approximation error (5.51) of the NFFT-like pro-
cedure for bandlimited functions in Algorithm 5.16 and the
classical NFFT in Algorithm 2.2 using the sinh-type window
function (4.62) computed for the function f(x) = sinc2

(
M
2 πx

)

using several bandwidth parameters M ∈ {20, 40, . . . , 1000}
and the scaled Chebyshev nodes (5.52) with N = M

2 , m = 5,
Mσ = L = (1 + λ)M , as well as λ = 1 and d = 1.

Remark 5.22. Note that the code files for all the experiments in this
section are available at [Kir] under https://github.com/melaniekircheis/

dissertation/tree/main/5-Fast_sinc_methods. ⋄

https://github.com/melaniekircheis/dissertation/tree/main/5-Fast_sinc_methods
https://github.com/melaniekircheis/dissertation/tree/main/5-Fast_sinc_methods
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Summary

In this chapter, we have studied several fast approximation schemes in which
the sinc function plays an important role. On the one hand, we presented
efficient and accurate algorithms for the evaluation of the Shannon sampling
sums (4.12) and the regularized Shannon sampling formulas introduced in
Sections 4.3.1 and 4.3.2, which were both theoretically and numerically
verified. On the other hand, we proposed a new NFFT-like procedure
for the approximation of function evaluations f(xj), j = 1, . . . , N , of a

bandlimited function f ∈ BM/2(Rd) from given samples f̂(k), k ∈ IM , in
the frequency domain. It has been shown that this new approach, which is
based on regularized Shannon sampling formulas, can indeed outperform
the classical NFFT in this context, thereby highlighting the importance of
the sinc function.





6 Reconstruction of the Fourier
transform of bandlimited functions
from nonequispaced spatial data

So far, we have studied inversion approaches only for the NFFT, i. e.,
to efficiently find a solution to the discrete inversion problem (3.3) of

computing the Fourier coefficients f̂k ∈ C, k ∈ IM , from given function
evaluations f(xj) ∈ C, j = 1, . . . , N , of the trigonometric polynomial (2.8).
Various applications such as MRI, cf. [DAP22, EKP22], etc., how-

ever, deal with the analogous continuous problem, considering bandlim-
ited functions f ∈ BM/2(Rd), cf. (4.3), instead of trigonometric polyno-
mials (2.8). In this case the aim is the reconstruction of point evalu-

ations f̂(k) ∈ C, k ∈ IM , of an object f̂ in (4.1) from given measure-
ments f(xj), j = 1, . . . , N , of the form (4.4). Note that this can be seen
as a generalization of the problem (3.3), as already mentioned in the frame
theoretical approach in Section 3.3.4. Therefore, known approaches for
the direct inversion of the NFFT from Section 3 shall now be extended
to bandlimited functions f ∈ BM/2(Rd) with maximum bandwidth M ,
cf. [KP23b].

To this end, this chapter is organized as follows. Initially, in Section 6.1 we
investigate the extension properties of the density compensation technique
from Section 3.2.1, that leads to an exact reconstruction for all trigonometric
polynomials (2.8) of degree M . Subsequently, in Section 6.2 we comment
on the analogous use of the matrix optimization approach from Section 3.3
for bandlimited functions. Finally, in Section 6.3 we show some numerical
examples to investigate the accuracy of our approaches, including a short
summary.

6.1 Density compensation factors

In this section the aim is to extend the density compensation method from
Section 3.2.1 to bandlimited functions f ∈ BM/2(Rd) with maximum band-
width M , as done in [KP23b]. For this purpose, we show in Section 6.1.1
that for any bandlimited function f there exists a certain corresponding



262 6 Reconstruction of the Fourier transform

trigonometric polynomial f̃ that could be used for the reconstruction of
the values f̂(k), k ∈ IM . Moreover, we show that it is reasonable to con-
sider the inversion problem (3.3) for bandlimited functions f ∈ BM/2(Rd)
as well. Besides, we describe a connection to some related approaches
from the literature in Section 6.1.2. Finally, we provide some additional
observations that can be made using the theory of tempered distributions
in Section 6.1.3.

6.1.1 Reconsideration as trigonometric polynomials

To find a suitable reconstruction technique for a bandlimited func-
tion f ∈ BM/2(Rd), we assume that additionally f ∈ L1(Rd) holds, such
that we can consider its 1-periodized version

f̃(x) :=
∑

r∈Zd

f(x+ r), x ∈ Rd.

Further assume that
∑

k∈Zd |f̂(k)| <∞. Then the Poisson summation

formula, cf. [PPST23, Theorem 4.28], yields that f̃ ∈ L1(Td) is uniquely
representable in form of its absolute convergent Fourier series

f̃(x) :=
∑

k∈Zd

ck(f̃) e
2πikx, (6.1)

where the Fourier coefficients are given by

ck(f̃) =

∫

Td

f̃(x) e−2πikx dx =

∫

Rd

f(x) e−2πikx dx = f̂(k), k ∈ Zd, (6.2)

cf. (4.1). In addition, it is known that f ∈ BM/2(Rd) is a bandlimited func-

tion with bandwidth M , i. e., we have f̂(k) = 0, k ∈ Zd \ IM . Therefore,
the periodic function (6.1) in fact is a trigonometric polynomial of degree M
as in (2.8), which makes it reasonable to utilize the result from Section 3.2.1
to reconstruct the Fourier coefficients (6.2). In other words, for an exact
solution of the linear system (3.12) we obtain an exact reconstruction of
the form

f̂(k) = ck(f̃) =
N∑

j=1

wj f̃(xj) e
−2πikxj , k ∈ IM . (6.3)
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Note that using the nonequispaced Fourier matrix A ∈ CN×|IM |

in (2.7), the weight matrix W = diag(wj)
N
j=1 as well as the vectors

f̃ := (f̃(xj))
N
j=1 and f̂ := (f̂(k))k∈IM

, the reconstruction (6.3) can be

denoted as f̂ = A∗Wf̃ . Moreover, by (6.1) we have f̃ = Af̂ , such that
the property A∗WA = I |IM | is fulfilled, cf. Remark 3.7.

However, in practical applications, such as MRI, this is only a hypothetical
case, since the periodization f̃ in (6.1) cannot be sampled. Due to a
limited coverage of space by the acquisition, the bandlimited function f is
typically not known on whole Rd, but only on a bounded domain, w.l.o.g.

for x ∈
[
− 1

2 ,
1
2

)d
, cf. [EKP22]. Thus, we need to assume that the given

function f is small outside this interval
[
− 1

2 ,
1
2

)d
, such that f̃(xj) ≈ f(xj),

j = 1, . . . , N , holds. Hence, we have to deal with the approximation

f̂(k) ≈
N∑

j=1

wj f(xj) e
−2πikxj , k ∈ IM , (6.4)

which can also be written as f̂ ≈ A∗Wf with W = diag(wj)
N
j=1

from (3.12).
That is to say, by (6.3) the error in the approximation (6.4) solely occurs

because the bandlimited function f is not known on whole Rd. If we had
access to the periodization f̃ or the function f would be supported on

the interval
[
− 1

2 ,
1
2

)d
, respectively, then (6.3) would guarantee an exact

reconstruction. Therefore, the density compensation approach from Algo-
rithm 3.2 using the weights computed by Algorithm 3.10, is also suitable
for bandlimited functions f ∈ BM/2(Rd).

Remark 6.1. Typically, the approximation (6.4) is motivated the following
way, cf. [KP23a, Section 3.2]. Considering the integral representation (4.1)
we are provided with an exact formula for the evaluation of the Fourier
transform f̂ . However, since in practical applications the function f is only

known on a bounded domain, w.l.o.g. for x ∈
[
− 1

2 ,
1
2

)d
, we have to deal

with the approximation

f̂(v) ≈
∫

[
− 1

2 ,
1
2

)d

f(x) e−2πivx dx, v ∈
[
−M

2 ,
M
2

)d
. (6.5)

Then applying a nonequispaced quadrature rule, the evaluations of (6.5)
at uniform grid points k ∈ IM can be approximated via (6.4). However,
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since this perspective does not immediately reveal the connection to the
inversion problem (3.3) or directly suggests suitable quadrature weights,
we prefer the explanation above. ⋄

Summarizing, we present an error bound on density compensation factors
computed by means of (3.12), analogous to Theorem 3.11, that applies to
bandlimited functions f ∈ BM/2(Rd), cf. [KP23a, Theorem 3.14].

Theorem 6.2. Let p, q ∈ {1, 2,∞} with 1
p +

1
q = 1. For given d,N ∈ N,

vector M =M · 1d ∈ (2N)d and nonequispaced nodes xj ∈
[
− 1

2 ,
1
2

)d
,

j = 1, . . . , N , let A ∈ CN×|IM | be the nonequispaced Fourier matrix
in (2.7). Furthermore, we assume that we can compute density com-

pensation factors W = diag (wj)
N
j=1 ∈ CN×N by means of Algorithm 3.10,

such that

N∑

j=1

wj e
2πikxj = δ0,k + εk, k ∈ I2M ,

with small εk ∈ R for all k ∈ I2M . Then there exists an ε ≥ 0 such that for
any bandlimited function f ∈ BM/2(Rd) with bandwidthM the corresponding
density compensation procedure satisfies

∥∥f̂ −A∗Wf
∥∥
p
≤ |IM | ε ·

∥∥f̂
∥∥
p
+ (N |IM |)1/p ∥w∥q · ∥Q∥C(Td), (6.6)

where f̂ := (f̂(k))k∈IM
are the integer evaluations of (4.1) and Q is defined

as the pointwise quadrature error

Q(x) :=

∫

[−M
2 ,

M
2 )

d
f̂(v) e2πivx dv −

∑

k∈IM

f̂(k) e2πikx, x ∈ Td. (6.7)

Proof. Note that by (3.24) it only remains to estimate the error
term

∥∥Af̂ − f
∥∥
p
. For any bandlimited function f ∈ BM/2(Rd) with band-

width M we may use the notation f̂ := (f̂(k))k∈IM
as well as the inverse

Fourier transform (4.4) to estimate

∣∣∣
[
Af̂ − f

]
j

∣∣∣ =
∣∣∣∣∣f(xj)−

∑

k∈IM

f̂(k) e2πikxj

∣∣∣∣∣

= |Q(xj)| ≤ ∥Q∥C(Td), j = 1, . . . , N,
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with the pointwise quadrature error (6.7). For detailed investigations of
quadrature errors of bandlimited functions we refer to [GR23, KPT23].
Hence, we obtain

∥∥Af̂ − f
∥∥
p
≤ N1/p ∥Q∥C(Td), which by (3.24) implies

the assertion (6.6).

6.1.2 Linking to approaches in literature

In the literature, a density compensation approach is known which is closely
related to our representation (6.3). Therefore, this approach is studied in
the following.

Analogous to [GLI06] we now aim to compute weights wj , j = 1, . . . , N ,
such that not only (6.3) holds, but its extension onto the whole interval,
i. e.,

f̂(v) ≈ h̃(v) :=
N∑

j=1

wj f̃(xj) e
−2πivxj , v ∈

[
−M

2 ,
M
2

)d
, (6.8)

is preferably a good approximation. Note that by inserting (6.8) into the
inverse Fourier transform (4.4), we obtain the equivalent characterization

f(x) =

∫

[−M
2 ,

M
2 )

d

f̂(v) e2πivx dv ≈
∫

[−M
2 ,

M
2 )

d

h̃(v) e2πivx dv

=
N∑

j=1

wj f̃(xj)

∫

[−M
2 ,

M
2 )

d

e−2πiv(xj−x) dv

=
N∑

j=1

wj f̃(xj) · |IM | sinc
(
Mπ(xj − x)

)
, x ∈ Rd,

with the d-variate sinc function (3.31). Since f̃ in (6.1) is still unknown in
practical applications, we have to deal with the overall approximation

f(x) ≈
N∑

j=1

wj f(xj) · |IM | sinc
(
Mπ(xj − x)

)
, x ∈ Rd. (6.9)

That is to say, to obtain an approximation of the form (6.8) one might aim
to choose suitable weights wj ∈ C, j = 1, . . . , N , based on (6.9). Especially,
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by evaluation of (6.9) at the given nonequispaced nodes x = xh we obtain
the condition

f(xh) ≈
N∑

j=1

wj f(xj) · |IM | sinc
(
Mπ(xj − xh)

)
, h = 1, . . . , N.

By defining the nonequispaced sinc matrix

Cn :=

(
sinc

(
Mπ(xj − xh)

))N

j,h=1

∈ RN×N , (6.10)

and f = (f(xj))
N
j=1 we see that this means that one may try to find a weight

matrix W = diag(wj)
N
j=1 such that the approximation f ≈ |IM | ·CnWf

is best as possible. Ideally, one would aim for equality IN = |IM | ·CnW .
Considering the main diagonal of 1

|IM |IN = CnW the weights are given as

1
|IM | = wj sinc

(
Mπ(xj − xj)

)
= wj sinc(0) = wj , j = 1, . . . , N.

For all other entries with j ̸= h, however, the condition

sinc(Mπ(xj − xh)) = 0

can only be fulfilled for xj equispaced. In other words, for arbitrarily spaced
points xj equality in |IM | ·CnW ≈ IN is not possible for any weights.

Hence, one can only look for an approximate solution, e. g. by considering
the least squares problem

Minimize
W=diag(wj)Nj=1

∥|IM | ·CnW − IN∥2F. (6.11)

By denoting the j-th column of IN ,Cn ∈ RN×N and W ∈ CN×N

as ej , [Cn]j ∈ RN andwj ∈ CN , respectively, we may rewrite the Frobenius
norm in (6.11) by means of the property (3.34), only considering the nonzero
entries, as

∥|IM | ·CnW − IN∥2F =

N∑

j=1

∥|IM | ·Cnwj − ej∥22

=
N∑

j=1

∥|IM | · [Cn]j wj − ej∥22 .
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Thus, as stated in [GLI06] (without proof) the least squares solution to the
minimization problem (6.11) is given by

wj =
1

|IM | [Cn]
†
j ej =

1

|IM |
(
[Cn]

∗
j [Cn]j

)−1
[Cn]

∗
j ej (6.12)

=
sinc

(
Mπ(xj − xj)

)

|IM | ∑N
h=1 sinc2(Mπ(xj − xh))

=
1

|IM |

(
N∑

h=1

sinc2(Mπ(xj − xh))

)−1

. (6.13)

However, we see in the numerical examples in Section 6.3 that the recon-
struction using the weights (6.12) seems to be much worse than the recon-
struction (6.4) with weights computed such that the linear system (3.12)
holds.

Remark 6.3. As already mentioned in Remark 3.16, it was claimed
in [GLI06] that this approach coincides with the one in [PM99], considering
finite sections of the sinc operator

C :=

(
sinc

(
Mπ

(
xj − ℓ

M

)))N

j=1, ℓ∈Zd

(6.14)

with ℓ ∈ IM . However, in the following we show that this claim only holds
asymptotically for |IM | → ∞, i. e., when using C in (6.14), cf. [KP23b,
Remark 3.2].
By the classical sampling theorem of Whittaker–Kotelnikov–Shannon,

see Theorem 4.2, any bandlimited function f ∈ BM/2(Rd) can be recovered

from its uniform samples f
(

ℓ
M

)
, ℓ ∈ Zd, as

f(x) =
∑

ℓ∈Zd

f
(

ℓ
M

)
sinc

(
Mπ

(
x− ℓ

M

))
, x ∈ Rd. (6.15)

Applying this sampling theorem to the shifted sinc function

f(x) = sinc(Mπ(xj − x)) ∈ BM/2(Rd)

with j fixed, we find the equality

sinc
(
Mπ(xj − x)

)
=
∑

ℓ∈Zd

sinc
(
Mπ

(
xj − ℓ

M

))
sinc

(
Mπ

(
x− ℓ

M

))
. (6.16)
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Note that using the sinc operator C in (6.14) and the nonequispaced
sinc matrix in (6.10), the evaluation of (6.16) at the given nonequispaced
points x = xh, h = 1, . . . , N , can be written as

Cn = CC∗ ∈ RN×N . (6.17)

Hence, a restriction to finitely many ℓ in (6.16) corresponds to a uniform
truncation of the Shannon sampling series (6.15), which is known as a
poor approximation due to the slow convergence of the sinc function, see
Section 4.2. Thus, equality in (6.17) is only satisfied using the operator C
in (6.14), while considering finite sections of (6.14) with ℓ ∈ IM implies a
poor approximation of Cn. ⋄
Remark 6.4. Additionally, note that the sinc operator (6.14) has an in-
teresting property, cf. [KP23b, Remark 3.1]. First of all, by [LB92, Ex-
ample 1.22] it is known that the M -periodization of the function e2πitx,

t ∈
[
−M

2 ,
M
2

)d
, with x ∈ Cd fixed, possesses the absolutely and uniformly

convergent Fourier series

e2πitx =
∑

ℓ∈Zd

sinc
(
Mπ

(
x− ℓ

M

))
e2πitℓ/M . (6.18)

Therefore, the terms sinc
(
Mπ

(
x− ℓ

M

))
as the Fourier coefficients of (6.18)

are ℓ2-summable, and thus the sinc operator (6.14) is well-defined, see
also (4.10).
Based on this, by additionally defining the one-sided infinite Fourier

matrix

F :=
(
e2πikℓ/M

)
ℓ∈Zd,k∈IM

,

cf. (2.15), the matrix product CF can be written as

CF =

( ∑

ℓ∈Zd

e2πikℓ/M sinc
(
Mπ

(
xj − ℓ

M

))
)N

j=1,k∈IM

= A (6.19)

with the nonequispaced Fourier matrix A ∈ CN×|IM | in (2.7), since the
components of (6.19) coincide with point evaluations of (6.18) at x = xj ,
j = 1, . . . , N , and t = k ∈ IM .

Note that in comparison to the series expansion (6.18) we already found
the approximation (5.44) of the exponential function, where we obtained a
finite sum by the use of the compactly supported window function φm and

the restriction of x ∈ Cd to x ∈
[
− 1

2 + m
L ,

1
2 − m

L

)d
. ⋄
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6.1.3 Exactness condition in the sense of tempered
distributions

Similar to [KP23a], we now present some additional observations that can
be made regarding the conditions for an exact reconstruction using the
density compensation method. For this purpose, analogous to (6.8), we

extend the approximation (6.4) onto the whole interval
[
−M

2 ,
M
2

)d
, i. e.,

we consider

f̂(v) ≈ h(v) :=

N∑

j=1

wj f(xj) e
−2πivxj , v ∈

[
−M

2 ,
M
2

)d
. (6.20)

Note that in comparison to (6.8) here we directly consider the samples f(xj)

of the bandlimited function f ∈ BM/2(Rd) instead of the samples f̃(xj) of
its periodization.
Analogous to Section 3.2.1 we analyze (6.20) being exact and start our

investigations with the continuous analogon of Theorem 3.4, cf. [KP23a,
Theorem 3.8]

Theorem 6.5. Let nonequispaced nodes xj ∈
[
− 1

2 ,
1
2

)d
as well as quadrature

weights wj ∈ C, j = 1, . . . , N, be given. Then an exact reconstruction for-
mula (6.20) for bandlimited functions f ∈ BM/2(Rd) with bandwidthM ∈ N,
i. e.,

f̂(v) = h(v) =
N∑

j=1

wjf(xj) e
−2πivxj , v ∈

[
−M

2 ,
M
2

)d
, (6.21)

implies that the quadrature rule

∫

Rd

f(x) dx =
N∑

j=1

wjf(xj)

is exact for all bandlimited functions f ∈ BM/2(Rd) with bandwidth M .

Proof. Given the Fourier transform (4.1) we can express (6.21) as

∫

Rd

f(x) e−2πivx dx = f̂(v) =
N∑

j=1

wjf(xj) e
−2πivxj , v ∈

[
−M

2 ,
M
2

)d
.

(6.22)
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In particular, evaluating (6.22) at v = 0 yields the assertion.

However, in contrast to Theorem 3.4, an explicit condition for the compu-
tation of suitable weights wj ∈ C, j = 1, . . . , N , such that the reconstruction
formula (6.20) is preferably exact, could not be given in the above Theo-
rem 6.5. Thus, in order to obtain a condition for exactness, we generalize
the concept of an exact reconstruction h of f and employ the theory of
tempered distributions. To this end, let

S (Rd) :=
{
φ ∈ C∞(Rd) : xβ(Dαφ)(x) ∈ C0(Rd), α,β ∈ Nd0

}

be the Schwartz space of rapidly decreasing functions, see [PPST23, Sec-
tion 4.2.1]. Then a tempered distribution is a continuous linear functional
on the Schwartz space S (Rd) and the set of all tempered distributions is
denoted by S ′(Rd), see [PPST23, Section 4.3.1]. For any slowly increasing
function f : Rd → C, satisfying |f(x)| ≤ c(1 + ∥x∥2)n almost everywhere
with c > 0 and n ∈ N0, the induced tempered distribution Tf shall be defined
by

⟨Tf , φ⟩ :=
∫

Rd

φ(x) f(x) dx, φ ∈ S (Rd).

The simplest tempered distribution, which cannot be described this way, is
the tempered Dirac distribution δ defined by

⟨δ, φ⟩ :=
∫

Rd

φ(v) δ(v) dv = φ(0), φ ∈ S (Rd),

cf. [PPST23, Example 4.37]. For a detailed introduction to the topic we
refer to [PPST23, Sections 4.2.1 and 4.3.1].

Finally, utilizing these concepts of tempered distributions, the following
generalized exactness property can be shown, cf. [KP23a, Theorem 3.9].

Theorem 6.6. Let nonequispaced nodes xj ∈
[
− 1

2 ,
1
2

)d
, j = 1, . . . , N, and

quadrature weights wj ∈ C be given. Further let Tf be the distribution
induced by some bandlimited function f ∈ BM/2(Rd) with bandwidth M ∈ N.
Then

⟨δ, φ⟩ = ⟨Tξ, φ⟩, φ ∈ S (Rd), (6.23)



6.1 Density compensation factors 271

with

ξ(v) :=
N∑

j=1

wj e
2πivxj , v ∈ Rd,

implies

⟨Tf̂ , φ⟩ = ⟨Th, φ⟩, φ ∈ S (Rd), (6.24)

with the function h defined in (6.20).

Proof. Using the definition (6.20) of the function h as well as the fact that
the inversion formula (4.4) holds for all x ∈ Rd, we have

⟨Th, φ⟩ =
∫

Rd

h(v)φ(v) dv =

∫

Rd

φ(v)
N∑

j=1

wjf(xj) e
−2πivxj dv

=

∫

Rd

φ(v)
N∑

j=1

wj

(∫

Rd

f̂(u) e2πiuxj du

)
e−2πivxj dv.

Since f ∈ BM/2(Rd) implies f̂ ∈ L1(Rd), see the proof of Lemma 4.1,

and φ ∈ S (Rd), we obtain by Fubini’s theorem that

⟨Th, φ⟩ =
∫

Rd

f̂(u)

∫

Rd

φ(v)

N∑

j=1

wj e
2πi(u−v)xj dv du

=

∫

Rd

f̂(u)

∫

Rd

φ(u− v)

N∑

j=1

wj e
2πivxj dv du

=

∫

Rd

f̂(u)

∫

Rd

φ(u− v) ξ(v) dv du.

Then we make of the equality (6.23), such that

⟨Th, φ⟩ =
∫

Rd

f̂(u)

∫

Rd

φ(u− v) δ(v) dv du

=

∫

Rd

f̂(u)

∫

Rd

φ(v) δ(u− v) dv du =

∫

Rd

f̂(u)φ(u) du = ⟨Tf̂ , φ⟩

yields the assertion.
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Note that the property (6.24) states that h in (6.20) is an exact recon-

struction of the function f̂ in the sense of tempered distributions. However,
this does not imply equality of point evaluations of the functions f̂ and h.
Moreover, in practice the condition (6.23) is hard to fulfill. Thus, although
a generalization of the ideas of Section 3.2.1 to bandlimited functions is
possible, the results are not directly helpful for the numerical computa-
tion of suitable weights wj ∈ C, j = 1, . . . , N . That is why, in numerical
computations, we rather take the detour via trigonometric polynomials
as described in Section 6.1.1, and look for an exact solution of the linear
system (3.12).

6.2 Optimization of the sparse matrix B

As already seen in (6.4), we might use the density compensation approach
from Algorithm 3.2 for bandlimited functions f ∈ BM/2(Rd) as well, i. e.,
we may try to find a solution to the continuous inversion problem by means
of f̂ ≈ D∗F ∗B∗Wf with the matrices D ∈ C|IM |×|IM |, F ∈ C|IMσ |×|IM |

and B ∈ RN×|IMσ | defined in (2.14), (2.15) and (2.16).
However, similar to Section 3.2, this approach will be most useful in

the highly overdetermined setting |I2M | ≤ N , since only in this case we
are given a theoretical guarantee for (6.3) by Theorem 3.6. To relax
this condition on overdetermination, we aim to generalize the method in
Section 6.1 in the style of Remark 3.3. That is to say, as in Section 3.3
we consider the optimization of the sparse matrix B ∈ RN×|IMσ | in (2.16)
from the NFFT decomposition, see Section 2.2, such that an approximate
solution to the continuous inversion problem can be computed by means of
Algorithm 3.21 using the optimized matrix resulting from Algorithm 3.25.
Note that this is reasonable due to the fact that the continuous inversion
problem can be seen as a generalization of the discrete problem (3.3).
Moreover, we remark that it was already mentioned in Section 3.3.4 that
the frame theoretical approach, cf. [GS14], is originally designed for the
continuous inversion problem anyway.

6.3 Numerical examples & summary

This chapter is concluded with a numerical example comparing the density
compensation approach from Section 6.1 with the matrix optimization
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approach from Section 6.2 for bandlimited functions, cf. [KP23a, KP23b].

Example 6.7. Similar to [KP23a, Example 5.5] and [KP23b, Example 4.2],
we examine the reconstruction properties of the direct inversion methods
for bandlimited functions f ∈ BM/2(Rd) with maximum bandwidth M . To
determine the errors properly, we firstly specify a compactly supported
function f̂ in the Fourier domain and consequently compute its inverse

Fourier transform (4.4), such that its samples f(xj) for given xj ∈
[
− 1

2 ,
1
2

)2
,

j = 1, . . . , N , can be used for the reconstruction of the samples f̂(k),

k ∈ IM . Here we consider the tensorized function f̂(v) = g(v1) · g(v2),
where g(v) is the one-dimensional triangular pulse function (3.93). Then
for all b ∈ N with b ≤ M

2 the associated inverse Fourier transform

f(x) =

∫

R2

f̂(v) e2πivx dv = b2 sinc2(bπx), x ∈ R2, (6.25)

is bandlimited with bandwidthM . For this function, we compare the density
compensation methods from Section 6.1 and the matrix optimization ap-
proach from Section 6.2. On the one hand, we study Algorithm 3.2 with the
weights computed via Algorithm 3.10 and the computation scheme (6.12).
Since we have already seen in Example 3.33 that from the density com-
pensation methods in Section 3.2.4 only the weights computed via (3.44)
yield a reconstruction comparable to the one computed via Algorithm 3.10,
the computation scheme (3.44) is considered as well. On the other hand, it
is known by Example 3.35 that the best matrix optimization approach is
given by Algorithm 3.21 with the optimized sparse matrix computed by
Algorithm 3.25, such that we consider only this approach.

(a) As a first experiment we fix M = 32 and b = 12 and consider the
case |I2M | ≤ N , which yields optimality for trigonometric polynomials,
cf. Section 3.2.1. In addition to the real-world sampling of (6.25) we also
examine the artificial sampling data

f̃(xj) =
∑

k∈IM

f̂(k) e2πikxj , j = 1, . . . , N, (6.26)

of the periodization (6.1). A visualization of the chosen function f and the
difference f − f̃ can be found in Figure 6.1.
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(a) The function f (b) The difference f − f̃

Figure 6.1: The function (6.25) with b = 12, and its periodization (6.26).

For the modified polar grid, cf. Figure 3.4b, of size R = 2M , T = 2R,
we use these two kinds of sampling data to compute the reconstruc-
tions h̃ ∈ {h̃w

,hopt}, cf. (3.6) and (3.60), and the respective pointwise

errors
∣∣h̃− f̂

∣∣. The corresponding results are displayed in Figure 6.2. It
can easily be seen that for the artificial sampling data (6.26) our newly
proposed weights computed by (3.15) indeed yield a nearly exact reconstruc-
tion, see Figure 6.2b (bottom), and thus are optimal. However, in the more
realistic setting using the real-world sampling of (6.25) the results are not
as good, see Figure 6.2b (top). Nevertheless, comparing to the equispaced
setting in Figure 6.2a (top), it becomes apparent that Algorithm 3.2 using
the weights computed by (3.15) and (3.44), as well as Algorithm 3.21 using
the optimized sparse matrix Bopt ∈ RN×|IMσ | produce nearly the same
error as a reconstruction on an equispaced grid. This nicely illustrates that
for bandlimited functions the restricted knowledge of f(xj), j = 1, . . . , N ,

instead of f̃(xj) is the dominating error term and therefore reconstruction
errors smaller than the ones shown in Figure 6.2 cannot be expected. In
addition, we remark that the reconstruction using the weights (6.12) is not
competetive, for none of the sampling data, see Figure 6.2d. Finally, note
that we chose comparatively small M = 32 in order that the computation
schemes (3.44) and (6.12) are affordable.

(b) In a second experiment we sample the function (6.25) with param-
eters M = 64 and b = 24 at linogram grids, cf. Figure 3.4c, of differ-
ent sizes R ∈ {40, 48, . . . , 104}, T = 2R. The corresponding relative er-
rors (3.99) can be found in Table 6.1. It should be noted that for M = 64
we have |IM | = 4096 and |I2M | = 16384, i. e., the underdetermined set-
ting |IM | > N is considered once, while the setting |I2M | ≤ N needed
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for exactness of the weights in Section 3.2.1 is considered twice. In gen-
eral, we observe that the use of the weights (3.15) and (3.44), as well
as Algorithm 3.21, produces almost identical outcomes. Nevertheless,
for 1

2 |I2M | ≥ N it can be seen that Algorithm 3.21 exhibits a marginal
advantage, while for |I2M | ≈ N the scheme (3.15) is infinitesimally bet-
ter. ⋄
Remark 6.8. Note that the code files for all the experiments in this
section are available at [Kir] under https://github.com/melaniekircheis/

dissertation/tree/main/6-Reconstruction_of_the_FT_of_bandlimited_

functions. ⋄

Summary

In this chapter, we have examined direct inversion methods for the
continuous analogon to problem (3.3), considering bandlimited func-
tions f ∈ BM/2(Rd), cf. (4.3), instead of trigonometric polynomials (2.8).
That is to say, in this setting the aim is the reconstruction of point
evaluations f̂(k) ∈ C, k ∈ IM , of an object f̂ in (4.1) from given mea-
surements f(xj), j = 1, . . . , N , of the bandlimited function f . To solve
this problem, we have extended the density compensation technique from
Section 3.2.1 and the matrix optimization approach from Section 3.3 to
bandlimited functions f ∈ BM/2(Rd). In doing so, we have demonstrated
both theoretically, in Section 6.1.1, and numerically, in Example 6.7, that
the reconstruction error is dominated by the fact that the bandlimited
function f is not known on whole Rd, but only on a bounded domain.
Nevertheless, we have confirmed that our density compensation approach
in Algorithm 3.2 with the weights computed by Algorithm 3.10 as well as
our matrix optimization approach in Algorithm 3.21 with the optimized
sparse matrix computed by Algorithm 3.25 yield the best results possible.

https://github.com/melaniekircheis/dissertation/tree/main/6-Reconstruction_of_the_FT_of_bandlimited_functions
https://github.com/melaniekircheis/dissertation/tree/main/6-Reconstruction_of_the_FT_of_bandlimited_functions
https://github.com/melaniekircheis/dissertation/tree/main/6-Reconstruction_of_the_FT_of_bandlimited_functions
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(a) Equis-
paced case

(b) Use
of (3.15)

(c) Use
of (3.44)

(d) Use
of (6.12)

(e) Algo-
rithm 3.21

Figure 6.2: Pointwise absolute error
∣∣h̃− f̂

∣∣ of the reconstruction of the

samples f̂(k), k ∈ IM , of the tensorized triangular pulse func-
tion (3.93) with M = 32 and b = 12, using the density compen-
sation factors computed by (3.15), (3.44) and (6.12) as well as
the optimization approach from Algorithm 3.21 for the modi-
fied polar grid, cf. Figure 3.4b, of size R = 2M , T = 2R, using
samples f(xj), j = 1, . . . , N , (top) and artificial samples f̃(xj)
in (6.26) (bottom).

R N Use of (3.15) Use of (3.44) Use of (6.12) Alg. 3.21

40 3120 8.4481–01 6.6334–01 7.8579–01 5.1464–01

48 4512 7.8774–01 4.7713–01 7.1759–01 2.1346–01
56 6160 7.4191–01 2.7790–01 5.5826–01 6.3496–02
64 8064 5.6105–01 3.8184–03 8.2305–02 3.7609–03
72 10224 3.7650–03 3.7651–03 3.3180–01 1.8321–02
80 12640 3.7724–03 3.8150–03 2.8526–01 4.8235–03
88 15312 3.7692–03 3.7689–03 2.1575–01 3.8691–03

96 18240 3.7599–03 3.7677–03 1.6278–01 3.7741–03
104 21424 3.7599–03 3.7517–03 1.3832–01 3.7620–03

Table 6.1: Relative errors (3.99) of the reconstruction of the samples f̂(k),
k ∈ IM , of the tensorized triangular pulse function (3.93)
withM = 64 and b = 24, using the density compensation factors
computed by (3.15), (3.44) and (6.12) as well as the optimization
approach from Algorithm 3.21 for linogram grids, cf. Figure 3.4c,
of different sizes.
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[GKP09] M. Gräf, S. Kunis, and D. Potts. On the computation of
nonnegative quadrature weights on the sphere. Appl. Comput.
Harmon. Anal., 27:124–132, 2009. (Cited on page 45.)



282 Bibliography

[GL04] L. Greengard and J.-Y. Lee. Accelerating the nonuniform fast
Fourier transform. SIAM Rev., 46:443–454, 2004. (Cited on

pages 9, 25, and 29.)

[GLI06] L. Greengard, J.-Y. Lee, and S. Inati. The fast sinc transform
and image reconstruction from nonuniform samples in k-space.
Commun. Appl. Math. Comput. Sci., 1:121–131, 2006. (Cited on

pages 9, 16, 18, 37, 65, 218, 223, 227, 228, 249, 250, 265, and 267.)

[GR07] I. S. Gradshteyn and I. M. Ryzhik. Table of Integrals, Series,
and Products. Academic Press New York, seventh edition, 2007.
(Cited on pages 171, 173, and 178.)

[GR23] A. Gopal and V. Rokhlin. A fast procedure for the construc-
tion of quadrature formulas for bandlimited functions. ACHA,
66:193–210, 2023. (Cited on page 265.)
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Birkhäuser/Springer, Second edition, 2023. (Cited on pages 24, 25,

26, 29, 30, 31, 40, 41, 48, 52, 74, 106, 107, 109, 123, 126, 154, 160, 221,

222, 223, 225, 262, and 270.)

[Pre16] E. Prestini. The Evolution of Applied Harmonic Analysis. Ap-
plied and Numerical Harmonic Analysis. Birkhäuser/Springer,
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List of Symbols

⌊x⌋ Largest integer ≤ x for given x ∈ R.
⌈x⌉ Smallest integer ≥ x for given x ∈ R.

Bm Centered cardinal B-spline of order m.
BM/2(Rd) Paley–Wiener space of bandlimited functions.

C Set of complex numbers.
C(Rd) Banach space of continuous functions f : Rd → C.
C0(Rd) Banach space of continuous functions f : Rd → C with

lim∥x∥2→∞ f(x) = 0.
Cr(Rd) Banach space of r-times continuously differentiable functions

f : Rd → C.

δk,ℓ Kronecker symbol with δk,ℓ = 1, k = ℓ, and δk,ℓ = 0, k ̸= ℓ.
δ Dirac distribution.
diag(a) Diagonal matrix with the diagonal entries a = (aj)

N
j=1.

e Euler’s number.

f : Td → C Complex-valued 1-periodic function.
f : Rd → C Complex-valued function.
f ∗ g Convolution of f, g ∈ L1(Td) or f, g ∈ L1(Rd).

i Imaginary unit.
IN Identity matrix of size N ×N .

IM Multi-index set Zd ∩∏d
t=1

[
−Mt

2 ,
Mt

2

)
.

Iν Modified Bessel function of first kind of order ν.

Jm Index set {−m+ 1, −m+ 2, . . . , m} for m ∈ N.
Jν Bessel function of first kind of order ν.

Kν Modified Bessel function of second kind of order ν.
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Lp(X) Banach space of measurable functions f : X → C with inte-
grable |f |p, p ≥ 1.

L2(X) Hilbert space of square integrable functions f : X → C.

N Set of positive integers.
N0 Set of nonnegative integers.

O Landau symbol.

Φ Set of window functions in spatial domain.

R Set of real numbers.

S (Rd) Schwartz space of rapidly decreasing functions.
S ′(Rd) Space of tempered distributions on S (Rd).
sign(x) Sign of x ∈ R.
sinc Cardinal sine function.
Si Sine integral function.
supp(f) Support of f : Rd → C.

Td d-dimensional torus Rd \ Zd ∼=
[
− 1

2 ,
1
2

)d
.

v Vector v = (vj)
N
j=1 ∈ CN with components v1, . . . , vN .

1d Vector of ones, 1d = (1, . . . , 1)T ∈ Zd.
xy Inner product xy := x1y1 + · · ·+ xdyd of two vectors

x,y ∈ Rd.
x⊙ y Componentwise product x⊙ y := (x1y1, . . . , xdyd)

T
of two

vectors x,y ∈ Rd.
M−1 Reciprocal M−1 :=

(
M−1

1 , . . . ,M−1
d

)T
of a vector M ∈ Zd

with nonzero components.

χ[a,b] Characteristic function of the interval [a, b].

Z Set of integers.

The table above lists the most frequently used notations, but it is not com-
prehensive. Additional necessary notations may appear locally throughout
the work.
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