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The fast reconstruction of a bandlimited function from its sample data is an
essential problem in signal processing. In this paper, we consider the widely
used Gaussian regularized Shannon sampling formula in comparison to regularized
Shannon sampling formulas employing alternative window functions, including the
modified Gaussian function, the sinh-type window function, and the continuous
Kaiser–Bessel window function. It is shown that the approximation errors of
these regularized Shannon sampling formulas possess an exponential decay with
respect to the truncation parameter. The main focus of this paper is to identify
the optimal variance of the (modified) Gaussian function as well as the optimal
shape parameters of the sinh-type window function and the continuous Kaiser–
Bessel window function, with the aim of achieving the fastest exponential decay of
the approximation error. In doing so, we demonstrate that the decay rate of the
sinh-type regularized Shannon sampling formula is considerably superior to that
of the Gaussian regularized Shannon sampling formula. Additionally, numerical
experiments illustrate the theoretical results.
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1 Introduction

In signal processing, the fast reconstruction of a bandlimited function from its sample data
is of fundamental importance. A function f ∈ L2(R) ∩ C(R) is called bandlimited with band-
width δ > 0, if its Fourier transform

(Ff)(ω) = f̂(ω) :=
1√
2π

∫
R
f(t) e−itω dt , ω ∈ R , (1.1)
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vanishes for all |ω| ≥ δ. For such a bandlimited function with δ ∈ (0, π] the famous Shannon
sampling theorem, see [31, 14, 28], states that

f(t) =
∑
k∈Z

f(k) sinc(t− k) , t ∈ R , (1.2)

where

sinc(t) :=

{
sin(πt)

πt : t ∈ R \ {0} ,
1 : t = 0 ,

(1.3)

denotes the cardinal sine function. It is known that the Shannon sampling series (1.2) con-
verges absolutely and uniformly on whole R. However, the practical use of (1.2) is limited,
since its evaluation requires infinitely many samples and its truncated version is not a good
approximation due to the slow decay of the cardinal sine function, see [11]. In addition to
this rather poor convergence, it is known, see [8, 9, 7], that in the presence of noise in the
samples f(k), k ∈ Z, of a bandlimited function f ∈ L2(R) ∩ C(R) the convergence of Shan-
non sampling series (1.2) may even break down completely. Therefore, it was proposed to
consider the regularization of the Shannon sampling series with a suitable window function.
Note that many authors such as [6, 17, 26, 19, 29] used window functions in the frequency
domain, but the recent study [13] has shown that it is much more beneficial to employ a win-
dow function in the spatial domain, cf. [22, 23, 29, 16, 15, 5, 12]. In the following, a window
function φ : R → [0, 1] is an even function in L2(R) ∩ C(R) which decreases on [0, ∞) and
fulfills φ(0) = 1. By 1[−m,m] we denote the characteristic function of the interval [−m, m]
with m ∈ N \ {1}, i. e., the function

1[−m,m](t) :=

{
1 : t ∈ [−m, m] ,

0 : t ∈ R \ [−m, m] .

In this paper, we assume that the bandwidth δ of f fulfills the so-called oversampling condi-
tion 0 < δ < π. Then we recover f by the φ-regularized Shannon sampling formula(

Rφ,mf
)
(t) :=

∑
k∈Z

f(k) sinc(t− k)φ(t− k)1[−m,m](t− k) , t ∈ R , (1.4)

wherem ∈ N \ {1} is the so-called truncation parameter. In doing so, we consider the following
window functions φ : R → [0, 1].

Example 1.1. The most popular window function, see e. g. [22, 25, 27, 30, 15, 5], is the
Gaussian function

φGauss(t) := e−t2/(2σ2) , t ∈ R , (1.5)

with variance σ2 > 0. In addition, [25, 24] considered the modified Gaussian function

φmodGauss(t) := e−t2/(2σ2) cos(λt) , t ∈ R , (1.6)

with the parameters σ2 > 0 and λ ≥ 0. Then the corresponding expression (1.4) is named
the (modified) Gaussian regularized Shannon sampling formula. Note that these two window
functions (1.5) and (1.6) are supported on whole R.
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Here we prefer window functions which are compactly supported on the interval [−m, m],
as studied in [12, 13]. The sinh-type window function is defined as

φsinh(t) :=

 1
sinhβ sinh

(
β
√
1− t2

m2

)
: t ∈ [−m, m] ,

0 : t ∈ R \ [−m, m] ,
(1.7)

with shape parameter β > 0, see [21]. Then the corresponding expression (1.4) is termed
the sinh-type regularized Shannon sampling formula. The continuous Kaiser–Bessel window
function is defined as

φcKB(t) :=

{
1

I0(β)−1

(
I0(β

√
1− t2/m2)− 1

)
: t ∈ [−m, m] ,

0 : t ∈ R \ [−m, m] ,
(1.8)

with convenient shape parameter β > 0, see [21]. Then the corresponding expression (1.4) is
called the continuous Kaiser–Bessel regularized Shannon sampling formula. We remark that
these two window functions (1.7) and (1.8) are well-studied in the context of the nonuniform
fast Fourier transform (NFFT), see e. g. [20, Section 6] and [4, 3].

Due to the definition of the cardinal sine function (1.3) we have sinc(n− k) = δn,k and
therefore the regularized Shannon sampling formula Rφ,mf in (1.4) has the interpolation
property (

Rφ,mf
)
(n) = f(n) , n ∈ Z . (1.9)

Moreover, the use of the characteristic function 1[−m,m] in (1.4) leads to localized sampling
of f , i. e., the computation of

(
Rφ,mf

)
(t) for any t ∈ R \ Z requires only 2m samples f(k),

where k ∈ Z fulfills the condition |k − t| ≤ m. Especially, for t ∈ (0, 1) we obtain the finite
sum (

Rφ,mf
)
(t) =

m∑
k=1−m

f(k) sinc(t− k)φ(t− k) .

As in many applications, we use oversampling of the given bandlimited function f with
bandwidth δ < π, i. e., the function f is sampled on the integer grid Z.
In this paper, we focus on the φ-regularized Shannon sampling formulas (1.4) for the

window functions φ given in Example 1.1. To compare the corresponding approaches, we
present estimates on the uniform approximation error

∥f −Rφ,mf∥C0(R) := max
t∈R

∣∣f(t)− (Rφ,mf
)
(t)
∣∣ , (1.10)

where C0(R) denotes the Banach space of continuous functions g :R → C vanishing as |t| → ∞.
The main focus of this paper is to find the optimal variance σ2 of the (modified) Gaussian
window function (1.5) and (1.6), respectively, as well as the optimal shape parameter β of
the sinh-type window function (1.7) and the continuous Kaiser–Bessel window function (1.8),
such that the exponential decay of the approximation error (1.10) is the fastest.
For this purpose, we initially study the uniform approximation error of general φ-regularized

Shannon sampling formulas (1.4) in Section 2. Afterwards, we specify our findings for the
window functions φ introduced in Example 1.1. In particular, Section 3 deals with the
(modified) Gaussian window function (1.5) and (1.6), respectively, while Section 4 is concerned
with the sinh-type window function (1.7) and Section 5 with the continuous Kaiser–Bessel
window function (1.8).
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2 Approximation error of regularized Shannon sampling formulas

First we estimate the uniform approximation error of the φ-regularized Shannon sampling
formula (1.4), analogous to [12, Theorem 3.2] and [13, Theorem 4.1].

Theorem 2.1. Assume that f ∈ L2(R) ∩ C(R) is bandlimited with bandwidth δ ∈ (0, π). Fur-
ther let φ : R → [0, 1] be an even function in L2(R) ∩ C(R) which is decreasing on [0, ∞)
with φ(0) = 1, and let m ∈ N \ {1} be given.
Then the φ-regularized Shannon sampling formula (1.4) satisfies the error estimate

∥f −Rφ,mf∥C0(R) ≤
(
E1(m) + E2(m)

)
∥f∥L2(R) , m ∈ N \ {1} ,

with the error constants

E1(m) := max
ω∈[−δ, δ]

∣∣∣∣1− 1√
2π

∫ ω+π

ω−π
φ̂(τ) dτ

∣∣∣∣ , (2.1)

E2(m) :=

√
2

πm

√
φ2(m) +

∫ ∞

m
φ2(t) dt . (2.2)

Proof. (i) Initially, we consider only the case t ∈ (0, 1), where we split the approximation
error

f(t)−
(
Rφ,mf

)
(t) = e1(t) + e2,0(t) , t ∈ (0, 1) ,

into the regularization error

e1(t) := f(t)−
∑
k∈Z

f(k) sinc(t− k)φ(t− k) , t ∈ R , (2.3)

and the truncation error

e2,0(t) :=
∑
k∈Z

f(k) sinc(t− k)φ(t− k)−
(
Rφ,mf

)
(t)

=
∑

k∈Z\{1−m,...,m}
f(k) sinc(t− k)φ(t− k) , t ∈ (0, 1) . (2.4)

(ii) To estimate the regularization error (2.3), we start our study by considering the Fourier
transform (1.1) of the function φ sinc, i. e., the term

F(φ sinc)(ω) =
1√
2π

∫
R
φ(t) sinc(t) e−iωt dt .

Using the convolution property of F in L2(R) (see [20, Theorem 2.26]), we have

F(φ sinc)(ω) =
(
φ̂ ⋆ (Fsinc)

)
(ω) =

1√
2π

∫
R
φ̂(ω − τ) (Fsinc)(τ) dτ ,

and hence by

(Fsinc)(τ) =
1√
2π

1[−π,π](τ)
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we obtain

F(φ sinc)(ω) =
1

2π

∫ ω+π

ω−π
φ̂(τ) dτ .

Consequently, using the shifting property of F , the Fourier transform (1.1) of the shifted
function φ(t− k) sinc(t− k) with k ∈ Z reads as

1√
2π

∫
R
φ(t− k) sinc(t− k) e−iωt dt = e−iωk F(φ sinc)(ω) =

1

2π
e−iωk

∫ ω+π

ω−π
φ̂(τ) dτ .

Therefore, the Fourier transform of the regularization error e1 in (2.3) has the form

ê1(ω) = f̂(ω)−
(

1

2π

∑
k∈Z

f(k) e−iωk

) ∫ ω+π

ω−π
φ̂(τ) dτ . (2.5)

Note that since the set of shifted cardinal sine functions sinc(· − k) with k ∈ Z forms an
orthonormal system in L2(R), i. e.∫

R
sinc(t− k) sinc(t− ℓ) dt = δk,ℓ , k, ℓ ∈ Z ,

and the given function f can be represented by the Shannon sampling series (1.2), we obtain
that ∑

k∈Z
|f(k)|2 =

∑
k∈Z

∑
ℓ∈Z

f(k) f(ℓ)

∫
R
sinc(t− k) sinc(t− ℓ) dt

=

∫
R
f(t) f(t) dt = ∥f∥2L2(R) < ∞ , (2.6)

and thus the series ∑
k∈Z

f(k) e−iωk

converges in L2([−π, π]). Moreover, since f is bandlimited with bandwidth δ ∈ (0, π), we
have f̂(ω) = 0 for all ω ∈ R \ [−δ, δ], and thereby the restricted function f̂

∣∣
[−π, π]

belongs

to L2([−π, π]). Hence, this restricted function possesses the 2π-periodic Fourier expansion

f̂(ω) =
∑
k∈Z

ck(f̂) e
−iωk , ω ∈ [−π, π] ,

with the Fourier coefficients

ck(f̂) =
1

2π

∫ π

−π
f̂(τ) eikτ dτ =

1

2π

∫
R
f̂(τ) eikτ dτ =

1√
2π

f(k) , k ∈ Z ,

by inverse Fourier transform. In other words, the function f̂ can be represented in the form

f̂(ω) = f̂(ω)1[−δ,δ](ω) =
1√
2π

(∑
k∈Z

f(k) e−ikω

)
1[−δ,δ](ω) , ω ∈ R . (2.7)
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Introducing the auxiliary function

∆φ(ω) := 1[−δ,δ](ω)−
1√
2π

∫ ω+π

ω−π
φ̂(τ) dτ , ω ∈ R ,

we see by inserting (2.7) into (2.5) that

ê1(ω) = f̂(ω)∆φ(ω) , ω ∈ R ,

and thereby ∣∣ê1(ω)∣∣ = ∣∣f̂(ω)∣∣ ∣∣∆φ(ω)
∣∣ , ω ∈ R .

Thus, inverse Fourier transform and the definition (2.1) yields

|e1(t)| ≤
1√
2π

∫
R

∣∣ê1(ω)∣∣dω =
1√
2π

∫ δ

δ

∣∣f̂(ω)∣∣ ∣∣∆φ(ω)
∣∣ dω

≤ 1√
2π

max
ω∈[−δ,δ]

∣∣∆φ(ω)
∣∣ ∫ δ

−δ

∣∣f̂(ω)∣∣ dω =
1√
2π

E1(m)

∫ δ

−δ

∣∣f̂(ω)∣∣dω .

By the Cauchy–Schwarz inequality and the Parseval equality ∥f̂∥L2(R = ∥f∥L2(R) we obtain∫ δ

−δ

∣∣1 · f̂(ω)∣∣ dω ≤
(∫ δ

−δ
12 dω

)1/2(∫ δ

−δ

∣∣f̂(ω)∣∣2 dω)1/2

=
√
2δ ∥f̂∥L2(R ≤

√
2π ∥f∥L2(R) .

Consequently, we receive the estimate

|e1(t)| ≤ E1(m) ∥f∥L2(R) , t ∈ R ,

and hence

max
t∈R

|e1(t)| ≤ E1(m) ∥f∥L2(R) .

(iii) Now we estimate the truncation error e2,0(t) for t ∈ (0, 1). By (2.4) and φ(t) ≥ 0, we
obtain

|e2,0(t)| ≤
∑

k∈Z\{1−m,...,m}
|f(k)| |sinc(t− k)|φ(t− k) , t ∈ (0, 1) .

For t ∈ (0, 1) and k ∈ Z \ {1−m, . . . ,m}, we estimate

|sinc(t− k)| ≤ 1

π |t− k| ≤
1

πm
,

such that

|e2,0(t)| ≤
1

πm

∑
k∈Z\{1−m,...,m}

|f(k)|φ(t− k) , t ∈ (0, 1) .

Then the Cauchy–Schwarz inequality implies

|e2,0(t)| ≤
1

πm

( ∑
k∈Z\{1−m,...,m}

|f(k)|2
)1/2( ∑

k∈Z\{1−m,...,m}
φ2(t− k)

)1/2

, t ∈ (0, 1) .
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From (2.6) it follows that

|e2,0(t)| ≤
1

πm
∥f∥L2(R)

( ∑
k∈Z\{1−m,...,m}

φ2(t− k)

)1/2

, t ∈ (0, 1) .

Since by assumption the window function φ is even and φ
∣∣
[0,∞)

decreases, we can estimate

the series∑
k∈Z\{1−m,...,m}

φ2(t− k) =
−m∑

k=−∞
φ2(t− k) +

∞∑
k=m+1

φ2(t− k)

=
∞∑

k=m

φ2(t+ k) +
∞∑

k=m+1

φ2(k − t)

≤
∞∑

k=m

φ2(k) +
∞∑

k=m+1

φ2(k − 1) = 2
∞∑

k=m

φ2(k) , t ∈ (0, 1) .

Applying the integral test for convergence of series, we obtain that

2
∞∑

k=m

φ2(k) = 2φ2(m) + 2
∞∑

k=m+1

φ2(k) < 2φ2(m) + 2

∫ ∞

m
φ2(t) dt .

Thus, for each t ∈ (0, 1) we have by definition (2.2) that

|e2,0(t)| ≤
√
2

πm

(
φ2(m) +

∫ ∞

m
φ2(t) dt

)1/2

∥f∥L2(R) = E2(m) ∥f∥L2(R) < ∞ .

Furthermore, by the interpolation property (1.9) of Rφ,mf we have e2,0(0) = e2,0(1) = 0, such
that

max
t∈[0,1]

|e2,0(t)| ≤ E2(m) ∥f∥L2(R) .

(iv) By the same technique, the error estimate

max
t∈[n,n+1]

∣∣f(t)− (Rφ,mf
)
(t)
∣∣ ≤ (E1(m) + E2(m)

)
∥f∥L2(R)

can be shown for the interval [n, n+ 1] with arbitrary n ∈ Z. On the open interval (n, n+ 1),
we decompose the approximation error as

f(t+ n)−
(
Rφ,mf

)
(t)(t+ n) = e1(t+ n) + e2,n(t) , t ∈ (0, 1) ,

with

e1(t+ n) = f(t+ n)−
∑
k∈Z

f(k) sinc
(
t− (k − n)

)
φ
(
t− (k − n)

)
= f(t+ n)−

∑
ℓ∈Z

f(ℓ+ n) sinc(t− ℓ)φ(t− ℓ) ,

e2,n(t) :=
∑

ℓ∈Z\{1−m,...,m}
f(ℓ+ n) sinc(t− ℓ)φ(t− ℓ) .
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As shown in steps (ii) and (iii), we have

∥e1(·+ n)∥C0(R) = ∥e1∥C0(R) ,

|e2,n(t)| ≤ E2(m) ∥f∥L2(R) , t ∈ (0, 1) .

Furthermore, by the interpolation property (1.9) of Rφ,mf , we have e2,n(0) = e2,n(1) = 0 for
each n ∈ Z and thus

max
t∈[n,n+1]

∣∣e2,n(t)∣∣ ≤ E2(m) ∥f∥L2(R) .

Hence, it follows that

max
t∈[n,n+1]

∣∣f(t)− (Rφ,mf
)
(t)
∣∣ ≤ ∥e1∥C0(R) + max

t∈[n,n+1]

∣∣e2,n(t)∣∣
≤
(
E1(m) + E2(m)

)
∥f∥L2(R) ,

which completes the proof.

3 Optimal regularization with the (modified) Gaussian function

In this section we consider the Gaussian function (1.5) with variance σ2 > 0, analogous to [12,
Theorem 4.1]. In order to achieve fast convergence of the Gaussian regularized Shannon sam-
pling formula, we put special emphasis on the optimal choice of this variance σ2, comparable
to [5].

Theorem 3.1. Assume that f ∈ L2(R) ∩ C(R) is bandlimited with bandwidth δ ∈ (0, π). Fur-
ther let φGauss be the Gaussian function (1.5) with variance σ2 = m

π−δ and let m ∈ N \ {1} be
given.
Then the Gaussian regularized Shannon sampling formula satisfies the error estimate

∥∥f −RGauss,mf
∥∥
C0(R)

≤ 2
√
2√

πm (π − δ)
e−m (π−δ)/2 ∥f∥L2(R) . (3.1)

Proof. (i) At first, we estimate the regularization error constant (2.1) for the Gaussian
function (1.5). Since the Fourier transform of φGauss reads as

φ̂Gauss(ω) =
1√
2π

∫
R
φGauss(t) e

−i tω dt = σ e−ω2σ2/2 , ω ∈ R ,

cf. [20, Example 2.6], we have

E1(m) = max
ω∈[−δ,δ]

∣∣∣∣1− σ√
2π

∫ ω+π

ω−π
e−τ2σ2/2 dτ

∣∣∣∣ .
Substituting s = τσ/

√
2 and using the integral∫

R
e−s2 ds =

√
π , (3.2)
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we obtain for ω ∈ [−δ, δ] with δ ∈ (0, π) that

∆Gauss(ω) := 1− 1√
π

∫ (ω+π)σ/
√
2

(ω−π)σ/
√
2

e−s2 ds

=
1√
π

(∫
R
e−s2 ds−

∫ (ω+π)σ/
√
2

(ω−π)σ/
√
2

e−s2 ds

)
=

1√
π

(∫ (ω−π)σ/
√
2

−∞
e−s2 ds+

∫ ∞

(ω+π)σ/
√
2
e−s2 ds

)
=

1√
π

(∫ ∞

(π−ω)σ/
√
2
e−s2 ds+

∫ ∞

(ω+π)σ/
√
2
e−s2 ds

)
.

Since ∆Gauss is even, we consider only the case ω ∈ [0, δ]. Applying the inequality∫ ∞

a
e−s2 ds =

∫ ∞

0
e−(t+a)2 dt ≤ e−a2

∫ ∞

0
e−2at dt =

1

2a
e−a2 , a > 0 , (3.3)

we obtain

0 ≤ ∆Gauss(ω) ≤
1√
2π

(
e−(π−ω)2σ2/2

(π − ω)σ
+

e−(π+ω)2σ2/2

(π + ω)σ

)
≤
√

2

π

e−(π−ω)2σ2/2

(π − ω)σ
, ω ∈ [0, δ] .

Consequently, we have for all ω ∈ [−δ, δ] that

0 ≤ ∆Gauss(ω) ≤
√

2

π

e−(π−|ω|)2σ2/2

(π − |ω|)σ

and hence

E1(m) ≤
√

2

π

e−(π−δ)2σ2/2

(π − δ)σ
. (3.4)

(ii) Now we examine the truncation error constant (2.2) for the Gaussian function (1.5).
By φ2

Gauss(m) = e−m2/σ2
and the inequality∫ ∞

m
φ2
Gauss(t) dt = σ

∫ ∞

m/σ
e−s2 ds ≤ σ2

2m
e−m2/σ2

we obtain

E2(m) ≤
√
2

πm

√
e−m2/σ2 +

σ2

2m
e−m2/σ2 =

√
2

πm

√
1 +

σ2

2m
e−m2/(2σ2) . (3.5)

(iii) Finally, we say that the variance σ2 of the Gaussian function (1.5) is optimal, if E1(m)
and E2(m) possess the same exponential decay with respect to m. From (3.4) and (3.5) it
follows that

σ2
opt :=

m

π − δ
(3.6)
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is the optimal variance with

E1(m) ≤
√

2

π

1√
m (π − δ)

e−m (π−δ)/2 ,

E2(m) ≤
√
2

πm

√
1 +

1

2 (π − δ)
e−m (π−δ)/2 .

Note that since m ∈ N \ {1} and δ ∈ (0, π), we have( √
2√

πm (π − δ)

)−1

·
√
2

πm

√
1 +

1

2 (π − δ)
=

√
2(π − δ) + 1

2πm
≤
√

2π + 1

4π
< 1

and therefore

E2(m) ≤
√
2√

πm (π − δ)
e−m (π−δ)/2 .

Thus, the Gaussian regularized Shannon sampling formula with the optimal variance (3.6)
fulfills the error estimate (3.1). This completes the proof.

Note that already in [12, Theorem 4.1] bounds on the approximation error of the Shannon
sampling formula (1.4) were shown for the Gaussian function (1.5) with suitably chosen
variance σ2, which is basically the same as the one in Theorem 3.1, only looking slightly
different due to the different setting considered in [12].

Remark 3.2. We remark that in [5] a different optimal variance σ2 = m−1
π−δ is presented for

the Gaussian regularizer (1.5). However, by Theorem 3.1 we see that the choice (3.6) is
optimal for the Shannon sampling formula (1.4) with the Gaussian function (1.5), while a
slightly different truncation than in (1.4) was considered in [5]. Nevertheless, both results,
Theorem 3.1 and [5, Theorem 1.1], possess the same asymptotic behavior.
Additionally, it should be noted that in [5] the approximation error is estimated only

up to an unknown constant, while our error estimate of the Gaussian regularized Shannon
sampling formula contains relatively small explicit constants, which is more favorable for
practical applications. Moreover, we estimate the approximation error differently by splitting
it into the regularization error (2.3) and the truncation error (2.4), which seems more intuitive
than the rather artificial analysis presented in [5, Theorem 1.1].

Example 3.3. Now we visualize the optimality of the variance (3.6) for the Gaussian reg-
ularized Shannon sampling formula shown in Theorem 3.1. For this purpose, for a given
bandlimited function f ∈ L2(R) ∩ C(R) with bandwidth δ ∈ (0, π] we consider the regular-
ized Shannon sampling formula (1.4) with the Gaussian function φGauss in (1.5) and compute
the corresponding approximation error

max
t∈[−1, 1]

∣∣f(t)− (Rφ,mf
)
(t)
∣∣ , (3.7)

cf. (1.10). The error (3.7) shall here be approximated by evaluating a given function f and
its approximation Rφ,mf at equidistant points ts ∈ [−1, 1], s = 1, . . . , S, with S = 105. Note
that by the definition of the regularized Shannon sampling formula (1.4) we have

(
Rφ,mf

)
(t) =

m+1∑
k=−m−1

f(k) sinc(t− k)φ(t− k) , t ∈ [−1, 1] .

10



Analogous to [18, Section IV, C] we study the bandlimited function

f(t) =
2δ√

5πδ + 4π sin δ

[
sinc

(
δt

π

)
+

1

2
sinc

(
δ(t− 1)

π

)]
, t ∈ R , (3.8)

with ∥f∥L2(R) = 1, for several bandwidth parameters δ ∈
{
π
4 ,

π
2 ,

3π
4

}
, i. e., several oversam-

pling rates π
δ > 1. To compare with the optimal variance σopt in (3.6), we choose the parameter

of the Gaussian function (1.5) as σ ∈
{
1
2σopt, σopt, 2σopt

}
.

The corresponding results for different truncation parameters m ∈ {2, 3, . . . , 10} are dis-
played in Figure 3.1. It can clearly be seen that both an increase and a decrease of the
variance in (3.6) cause worsened error decay rates with respect to m. Thus, the numerical re-
sults confirm that the variance (3.6) of Theorem 3.1 is optimal, and that this fact can already
be observed for very small truncation parameters m ∈ N \ {1}.

2 4 6 8 10

10−1

10−3

10−5

10−7

m

σ2 = m
4(π−δ)

σ2 = m
π−δ

σ2 = 4m
π−δ

(a) δ = π
4

2 4 6 8 10

10−1

10−3

10−5

m

σ2 = m
4(π−δ)

σ2 = m
π−δ

σ2 = 4m
π−δ

(b) δ = π
2

2 4 6 8 10

10−4

10−3

10−2

10−1

m

σ2 = m
4(π−δ)

σ2 = m
π−δ

σ2 = 4m
π−δ

(c) δ = 3π
4

Figure 3.1: Maximum approximation error (3.7) using the Gaussian function φGauss in (1.5)
with different variances σ2 ∈

{
m

4(π−δ) ,
m

π−δ ,
4m
π−δ

}
, for the bandlimited function (3.8)

with bandwidths δ ∈
{
π
4 ,

π
2 ,

3π
4

}
and truncation parameters m ∈ {2, 3, . . . , 10}.

Note that in [25, 24] the modified Gaussian function (1.6) was used for the regularization
of Shannon sampling formulas, using a slightly different notation. By the same techniques as
in Theorem 3.1 one can determine the optimal parameter σ2 of (1.6) subject to λ.

Theorem 3.4. Assume that f ∈ L2(R) ∩ C(R) is bandlimited with bandwidth δ ∈ (0, π).
Further let φmodGauss be the modified Gaussian function (1.6) with parameter σ2 = m

π−λ−δ ,
0 ≤ λ < π − δ, and let m ∈ N \ {1} be given.
Then the modified Gaussian regularized Shannon sampling formula satisfies the error estimate

∥∥f −RmodGauss,mf
∥∥
C0(R)

≤ 2
√
2√

πm (π − λ− δ)
e−m (π−λ−δ)/2 ∥f∥L2(R) . (3.9)

Proof. (i) At first, we estimate the regularization error constant (2.1) for the modified
Gaussian function (1.6). By [18, p. 21, 5.24] the Fourier transform of φmodGauss reads as

φ̂modGauss(ω) = σ e−σ2 (λ2+ω2)/2 cosh(λσ2ω) =
σ

2

(
e−σ2 (ω+λ)2/2 + e−σ2 (ω−λ)2/2

)
, ω ∈ R .

11



Therefore, we obtain for ω ∈ [−δ, δ] with δ ∈ (0, π) that

∆modGauss(ω) := 1− 1√
2π

∫ ω+π

ω−π
φ̂modGauss(τ) dτ

=
1

2

(
1− σ√

2π

∫ ω+π

ω−π
e−σ2(τ+λ)2/2 dτ

)
+

1

2

(
1− σ√

2π

∫ ω+π

ω−π
e−σ2(τ−λ)2/2 dτ

)
.

Substituting s = σ(τ + λ)/
√
2 in the first term and s = σ(τ − λ)/

√
2 in the second term, as

well as using the integral (3.2), it follows that

∆modGauss(ω) =
1

2
√
π

(∫
R
e−s2 ds−

∫ (ω+π+λ)σ/
√
2

(ω−π+λ)σ/
√
2

e−s2 ds

)
+

1

2
√
π

(∫
R
e−s2 ds−

∫ (ω+π−λ)σ/
√
2

(ω−π−λ)σ/
√
2

e−s2 ds

)
=

1

2
√
π

(∫ (ω−π+λ)σ/
√
2

−∞
+

∫ ∞

(ω+π+λ)σ/
√
2

+

∫ (ω−π−λ)σ/
√
2

−∞
+

∫ ∞

(ω+π−λ)σ/
√
2

)
e−s2 ds

=
1

2
√
π

(∫ ∞

(π−λ−ω)σ/
√
2
+

∫ ∞

(π+λ+ω)σ/
√
2

+

∫ ∞

(π+λ−ω)σ/
√
2
+

∫ ∞

(π−λ+ω)σ/
√
2

)
e−s2 ds .

Since ∆modGauss is even, we consider only the case ω ∈ [0, δ]. By (3.3) we obtain

0 ≤ ∆modGauss(ω) ≤
1

4
√
π

( √
2

(π − λ− ω)σ
e(π−λ−ω)2σ2/2 +

√
2

(π + λ+ ω)σ
e(π+λ+ω)2σ2/2

+

√
2

(π + λ− ω)σ
e(π+λ−ω)2σ2/2 +

√
2

(π − λ+ ω)σ
e(π−λ+ω)2σ2/2

)
≤ 1√

π

√
2

(π − λ− ω)σ
e−(π−λ−ω)2σ2/2 , ω ∈ [0, δ] .

Consequently, we have for all ω ∈ [−δ, δ] that

0 ≤ ∆modGauss(ω) ≤
√

2

π

e−(π−λ−|ω|)2σ2/2

(π − λ− |ω|)σ
and hence

E1(m) ≤
√

2

π

e−(π−λ−δ)2σ2/2

(π − λ− δ)σ
. (3.10)

(ii) For the truncation error constant (2.2) for the modified Gaussian function (1.6), we observe
that by the inequalities φ2

modGauss(m) ≤ e−m2/σ2
and∫ ∞

m
φ2
modGauss(t) dt ≤ σ

∫ ∞

m/σ
e−s2 ds ≤ σ2

2m
e−m2/σ2

we also have (3.5).

12



(iii) Finally, we say that the parameter σ2 of the modified Gaussian function (1.6) is optimal,
if E1(m) and E2(m) possess the same exponential decay with respect to m. From (3.10)
and (3.5) it follows that

σ2 =
m

π − λ− δ
(3.11)

is the optimal parameter with

E1(m) ≤
√

2

π

1√
m (π − λ− δ)

e−m (π−λ−δ)/2 ,

E2(m) ≤
√
2

πm

√
1 +

1

2 (π − λ− δ)
e−m (π−λ−δ)/2 .

where we have π − λ− δ > 0 by the assumption λ ∈ [0, π − δ).
Note that since m ∈ N \ {1}, δ ∈ (0, π), and λ ∈ [0, π − δ), we have( √

2√
πm (π − λ− δ)

)−1

·
√
2

πm

√
1 +

1

2 (π − λ− δ)
=

√
2(π − λ− δ) + 1

2πm
≤
√

2π + 1

4π
< 1

and therefore

E2(m) ≤
√
2√

πm (π − λ− δ)
e−m (π−λ−δ)/2 .

Thus, the modified Gaussian regularized Shannon sampling formula with the optimal param-
eter (3.11) fulfills the error estimate (3.9). This completes the proof.

Thereby, Theorem 3.4 shows that the approximation error of the regularized Shannon
sampling formula with the modified Gaussian function (1.6) has the best exponential decay
in the case λ = 0. In other words, the Gaussian function φGauss in (1.5) is much more favorable
than the modified Gaussian function φmodGauss in (1.6).

4 Optimal regularization with the sinh-type window function

In this section, we consider the sinh-type window function (1.7) with shape parameter β > 0,
analogous to [12, Theorem 6.1] and [13, Theorem 4.2]. In order to achieve fast convergence
of the sinh-type regularized Shannon sampling formula, we put special emphasis on the opti-
mal choice of this shape parameter β. Moreover, we demonstrate that the exponential decay
with respect to the truncation parameter m ∈ N \ {1} is much better for the uniform approx-
imation error

∥∥f −Rsinh,mf
∥∥
C0(R)

than for the approximation error
∥∥f −RGauss,mf

∥∥
C0(R)

in

Theorem 3.1.

Theorem 4.1. Assume that f ∈ L2(R) ∩ C(R) is bandlimited with bandwidth δ ∈ (0, π). Fur-
ther let φsinh be the sinh-type window function (1.7) with shape parameter β = m (π − δ) and
let m ∈ N \ {1} be given.
Then the sinh-type regularized Shannon sampling formula satisfies the error estimate∥∥f −Rsinh,mf

∥∥
C0(R)

≤ e−m (π−δ) ∥f∥L2(R) . (4.1)
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Proof. (i) Since φsinh in (1.7) is compactly supported on [−m, m] and φsinh(m) = 0, we
have E2(m) = 0. Thus, according to Theorem 2.1, the approximation error can be estimated
by ∥∥f −Rsinh,mf

∥∥
C0(R)

≤ ∥f∥L2(R) max
ω∈[−δ,δ]

∣∣∆sinh(ω)
∣∣ ,

where

∆sinh(ω) := 1− 1√
2π

∫ ω+π

ω−π
φ̂sinh(τ) dτ , ω ∈ [−δ, δ] . (4.2)

Following [18, p. 38, 7.58], the Fourier transform of (1.7) has the form

φ̂sinh(τ) =
m

√
π√

2 sinhβ
·

(1− ν2)−1/2 I1
(
β
√
1− ν2

)
: |ν| < 1 ,

(ν2 − 1)−1/2 J1
(
β
√
ν2 − 1

)
: |ν| > 1 ,

(4.3)

with the scaled frequency ν = m
β τ , where J1 denotes the Bessel function and I1 the modified

Bessel function of first order. Substituting τ = β
m ν in the integral in (4.2), the function ∆sinh

reads as

∆sinh(ω) := 1− β√
2πm

∫ ν1(ω)

−ν1(−ω)
φ̂sinh

( β
m ν
)
dν , ω ∈ [−δ, δ] , (4.4)

with the increasing linear function

ν1(ω) :=
m

β
(ω + π) , ω ∈ [−δ, δ] . (4.5)

(ii) Now we choose the shape parameter of (1.7) in the special form β = m (π − δ). Thus,
we have

1 = ν1(−δ) ≤ ν1(ω) =
ω + π

π − δ
≤ ν1(δ) =

π + δ

π − δ
, ω ∈ [−δ, δ] .

In view of (4.3) we split (4.4) in the form ∆sinh(ω) = ∆sinh,1 −∆sinh,2(ω) with

∆sinh,1 := 1− β

sinhβ

∫ 1

0

I1
(
β
√
1− ν2

)
√
1− ν2

dν ,

∆sinh,2(ω) :=
β

2 sinhβ

(∫ ν1(−ω)

1
+

∫ ν1(ω)

1

)
J1
(
β
√
ν2 − 1

)
√
ν2 − 1

dν .

Using [10, 6.681–11] and [1, 10.2.13], we get∫ 1

0

I1
(
β
√
1− ν2

)
√
1− ν2

dν =

∫ π/2

0
I1(β cosσ) dσ =

π

2

(
I1/2

(
β

2

))2

=
2

β

(
sinh

β

2

)2

(4.6)

and hence

∆sinh,1 = 1− 2
(
sinh β

2

)2
sinhβ

=
2 e−β

1 + e−β
. (4.7)

14



By [10, 6.645–1] we have∫ ∞

1

J1
(
β
√
ν2 − 1

)
√
ν2 − 1

dν = I1/2

(
β

2

)
K1/2

(
β

2

)
=

1− e−β

eβ
,

where I1/2 and K1/2 are modified Bessel functions of half order (see [1, 10.2.13, 10.2.14, and
10.2.17]. Numerical experiments, cf. [12], have shown that for all W > 1 we have

0 <

∫ W

1

J1
(
β
√
ν2 − 1

)
√
ν2 − 1

dν ≤ 3 (1− e−β)

2β
, (4.8)

such that

0 ≤ ∆sinh,2(ω) ≤
β

2 sinhβ

3 (1− e−β)

β
=

3 e−β

1 + e−β
, ω ∈ [−δ, δ] . (4.9)

Thereby, it follows from (4.7) and (4.9) that the expressions in (4.12) have the same expo-
nential decay m (π − δ) and that

∣∣∆sinh(ω)
∣∣ = ∣∣∆sinh,1 −∆sinh,2(ω)

∣∣ ≤ e−β

1 + e−β
< e−β , ω ∈ [−δ, δ] .

Thus, the sinh-type regularized Shannon sampling formula with the chosen shape parame-
ter β = m (π − δ) fulfills the error estimate (4.1). This completes the proof.

Now we show that the choice of the shape parameter β = m (π − δ) of (1.7) is optimal
in a certain sense. To this end, let the parameters α > 0, m ∈ N \ {1}, and δ ∈ (0, π) be
given, and consider shape parameters of the form β = αm (π − δ). Then the increasing linear
function (4.5) fulfills

1

α
= ν1(−δ) ≤ ν1(ω) =

ω + π

α (π − δ)
≤ ν1(δ) =

π + δ

α (π − δ)
, ω ∈ [−δ, δ] .

Therefore, we split (4.4) as ∆sinh(ω) = ∆sinh,1 −∆sinh,2(ω), ω ∈ [−δ, δ], with

∆sinh,1 := 1− β

m
√
2π

∫ 1/α

−1/α
φ̂sinh

( β
m ν
)
dν

= 1− β
√
2

m
√
π

∫ 1/α

0
φ̂sinh

( β
m ν
)
dν , (4.10)

and

∆sinh,2(ω) :=
β

m
√
2π

(∫ −1/α

−ν1(−ω)
+

∫ ν1(ω)

1/α

)
φ̂sinh

( β
m ν
)
dν

=
β

m
√
2π

(∫ ν1(−ω)

1/α
+

∫ ν1(ω)

1/α

)
φ̂sinh

( β
m ν
)
dν . (4.11)

Introducing the terms

D1(m) :=
∣∣∆sinh,1

∣∣ , D2(m) := max
ω∈[−δ,δ]

∣∣∆sinh,2(ω)
∣∣ , (4.12)
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it is known by Theorem 4.1 that for α = 1 both expressions in (4.12) possess the same ex-
ponential decay m (π − δ). In the following, we discuss the other cases 0 < α < 1 and α > 1.
More precisely, we show in Theorem 4.2 that for α ̸= 1 both expressions in (4.12) have the
same exponential decay smaller than m (π − δ). In this sense, it follows immediately that the
shape parameter β = m (π − δ) of the sinh-type window function (1.7) is optimal, since both
expressions in (4.12) tend to zero as m → ∞ with the same maximum exponential decay.

Theorem 4.2. For δ ∈ (0, π), let φsinh be the sinh-type window function (1.7) with the shape
parameter β = αm (π − δ) with α > 0, α ̸= 1, and m ∈ N \ {1}.

a) In the case α ∈ (0, 1), both expressions in (4.12) tend to zero as m → ∞ with the same
exponential decay αm (π − δ).

b) In the case α > 1, both expressions in (4.12) tend to zero as m → ∞ with exponential
decay smaller than m (π − δ).

Proof. a) First we consider the shape parameter β = αm (π − δ) with α ∈ (0, 1). Then we
have by (4.10), (4.3) and (4.6) that

∆sinh,1 = 1− β
√
2

m
√
π

∫ 1/α

0
φ̂sinh

( β
m ν
)
dν

= 1− β
√
2

m
√
π

(∫ 1

0
+

∫ 1/α

1

)
φ̂sinh

( β
m ν
)
dν

=

(
1− β

sinhβ

∫ 1

0

I1
(
β
√
1− ν2

)
√
1− ν2

dν

)
− β

sinhβ

∫ 1/α

1

J1
(
β
√
ν2 − 1

)
√
ν2 − 1

dν

=

(
1− 2

(
sinh β

2

)2
sinhβ

)
− β

sinhβ

∫ 1/α

1

J1
(
β
√
ν2 − 1

)
√
ν2 − 1

dν

=
2 e−β

1 + e−β
− β

sinhβ

∫ 1/α

1

J1
(
β
√
ν2 − 1

)
√
ν2 − 1

dν .

Hence, by (4.8) this yields

∣∣∆sinh,1

∣∣ ≤ 2 e−β

1 + e−β
+

β

sinhβ

3 (1− e−β)

2β
=

5 e−β

1 + e−β
. (4.13)

For the second term (4.11) we have by (4.3) that

∆sinh,2(ω) =
β

m
√
2π

(∫ ν1(−ω)

1/α
+

∫ ν1(ω)

1/α

)
φ̂sinh

( β
m ν
)
dν

=
β

2 sinhβ

(∫ ν1(−ω)

1/α
+

∫ ν1(ω)

1/α

)
J1
(
β
√
ν2 − 1

)
√
ν2 − 1

dν

=
β

2 sinhβ

(∫ ν1(−ω)

1
+

∫ ν1(ω)

1
−2

∫ 1/α

1

)
J1
(
β
√
ν2 − 1

)
√
ν2 − 1

dν , ω ∈ [−δ, δ] ,

such that (4.8) implies

∣∣∆sinh,2(ω)
∣∣ ≤ 3

(
1− e−β

)
sinhβ

=
6 e−β

1 + e−β
, ω ∈ [−δ, δ] . (4.14)
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Figure 4.1: Semilogarithmic plots of the term 1− β
sinhβ

∫ 1/α
0

I1(β
√
1−ν2)√

1−ν2
dν for m = 1, . . . , 20,

α ∈ {1, 1.2, 1.5, 2, 3}, and δ ∈
{
π
4 ,

π
2 ,

3π
4

}
.

Thus, by (4.13) and (4.14) the quantities (4.12) tend to zero as m → ∞ with the same
exponential decay αm (π − δ), which is smaller than m (π − δ) as α ∈ (0, 1).

b) Now we investigate the shape parameter β = αm (π − δ) with α > 1.
(i) By (4.10) and (4.3) we obtain

∆sinh,1 = 1− β
√
2

m
√
π

∫ 1/α

0
φ̂sinh

( β
m ν
)
dν = 1− β

sinhβ

∫ 1/α

0

I1
(
β
√
1− ν2

)
√
1− ν2

dν .

Numerical experiments, cf. Figure 4.1, have shown that

∆sinh,1 > 1− m (π − δ)

sinh
(
m (π − δ)

) ∫ 1

0

I1
(
m (π − δ)

√
1− ν2

)
√
1− ν2

dν .

Hence, by (4.6) we have

∆sinh,1 > 1− 2
(
sinh

(m (π−δ)
2

))2
sinh

(
m (π − δ)

) =
2 e−m (π−δ)

1 + e−m (π−δ)
> 0 ,

i. e., D1(m) = ∆sinh,1 tends to zero as m → ∞ with exponential decay smaller than m (π − δ).

(ii) On the one hand, we consider the expression (4.11) in the case

1 <
π + δ

π − δ
≤ α ,

i. e., for (4.5) we have ν1(δ) =
π+δ

α (π−δ) ≤ 1, such that

1

α
≤ ν1(±ω) ≤ 1 , ω ∈ [−δ, δ] . (4.15)

Then by (4.11) and (4.3) we obtain

0 < ∆sinh,2(ω) =
β

2 sinhβ

(∫ ν1(−ω)

1/α
+

∫ ν1(ω)

1/α

)
I1
(
β
√
1− ν2

)
√
1− ν2

dν , ω ∈ [−δ, δ] .

17



5 10 15 20
10−24

10−18

10−12

10−6

100

m

e−m(π−δ)

α = 1
α = 1.2
α = 1.5
α = 2
α = 3

(a) δ = π
4

5 10 15 20
10−16

10−12

10−8

10−4

100

m

e−m(π−δ)

α = 1
α = 1.2
α = 1.5
α = 2
α = 3

(b) δ = π
2

5 10 15 20

10−1

10−3

10−5

10−7

m

e−m(π−δ)

α = 1
α = 1.2
α = 1.5
α = 2
α = 3

(c) δ = 3π
4

Figure 4.2: Semilogarithmic plots of the term β
sinhβ

∫ v1(0)
1/α

I1(β
√
1−ν2)√

1−ν2
dν for m = 1, . . . , 20,

α ∈ {1.1, 1.2, 1.5, 2, 3}, and δ ∈
{
π
4 ,

π
2 ,

3π
4

}
.

Note that by (4.5) and (4.15) we have 1
α < ν1(0) =

π
α (π−δ) < 1, and

ν1(ω) = ν1(0) +
ω

α (π − δ)
, ν1(−ω) = ν1(0)−

ω

α (π − δ)
. (4.16)

Hence, for ω ∈ [0 , δ] it follows that

∆sinh,2(ω) =
β

sinhβ

∫ ν1(0)

1/α

I1
(
β
√
1− ν2

)
√
1− ν2

dν

+
β

2 sinhβ

(∫ ν1(0)+
ω

α(π−δ)

ν1(0)
−
∫ ν1(0)

ν1(0)− ω
α(π−δ)

)
I1
(
β
√
1− ν2

)
√
1− ν2

dν . (4.17)

An analogous decomposition of ∆sinh,2(ω) also applies for ω ∈ [−δ , 0]. By the power series
expansion of the modified Bessel function I1, the integrand

I1(β
√
1− ν2)√

1− ν2
=

β

2

∞∑
k=0

(1− ν2)k

22kk!(k + 1)!
, ν ∈ (−1, 1) , (4.18)

is positive for ν ∈ (−1, 1). Since the integrand I1(β
√
1−ν2)√

1−ν2
is also monotonously decreasing

on [0, 1), the second term in (4.17) is negative for ω ∈ (0 , δ] as we have two integration
intervals of the same length by (4.16), and therefore

D2(m) = max
ω∈[−δ,δ]

∆sinh,2(ω) =
β

sinhβ

∫ ν1(0)

1/α

I1(β
√
1− ν2)√

1− ν2
dν . (4.19)

Numerical experiments, cf. Figure 4.2, have shown that (4.19), tends to zero as m → ∞ with
exponential decay smaller than m (π − δ).
(iii) On the other hand, we consider the expression (4.11) in the case

1 < α <
π + δ

π − δ
.

Then by (4.5) we have ν1(ω1) = 1 for ω1 := α (π − δ)− π. Without loss of generality, we can
assume that ω1 ≥ 0. In the case ω1 > 0, we split the interval [−δ, δ] into the three subinter-
vals [−δ,−ω1], [−ω1, ω1], and [ω1, δ]. In the case ω1 = 0, the interval [−δ, δ] is decomposed
into [−δ, 0] and [0, δ]. In the following, we discuss only the case ω1 > 0.
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(A) Since ν1(ω) in (4.5) is an increasing linear function, we have for ω ∈ [−δ,−ω1] that

1

α
≤ ν1(ω) ≤ ν1(−ω1) < 1 , 1 ≤ ν1(−ω) ≤ ν1(δ) =

π + δ

α (π − δ)
. (4.20)

Then from (4.11) and (4.3) it follows that

∆sinh,2(ω) =
β

m
√
2π

(∫ 1

1/α
+

∫ ν1(−ω)

1
+

∫ ν1(ω)

1/α

)
φ̂sinh

( β
m ν
)
dν

=
β

2 sinhβ

(∫ 1

1/α
+

∫ ν1(ω)

1/α

)
I1
(
β
√
1− ν2

)
√
1− ν2

dν

+
β

2 sinhβ

∫ ν1(−ω)

1

J1
(
β
√
ν2 − 1

)
√
ν2 − 1

dν , ω ∈ [−δ,−ω1] .

Since the integrand I1(β
√
1−ν2)√

1−ν2
is nonnegative by (4.18), using (4.20) and (4.8) implies

β

2 sinhβ

∫ 1

1/α

I1
(
β
√
1− ν2

)
√
1− ν2

dν < ∆sinh,2(ω)

<
β

sinhβ

∫ 1

1/α

I1
(
β
√
1− ν2

)
√
1− ν2

dν +
β

2 sinhβ

3
(
1− e−β

)
2β

=
β

sinhβ

∫ 1

1/α

I1
(
β
√
1− ν2

)
√
1− ν2

dν +
3 e−β

2 (1 + e−β)
.

Numerical experiments, cf. Figure 4.3, have shown that

β

sinhβ

∫ 1

1/α

I1
(
β
√
1− ν2

)
√
1− ν2

dν , α > 1 ,

tends to zero as m → ∞ with exponential decay smaller than m (π − δ). Therefore, we obtain
that

max
ω∈[−δ,−ω1]

∆sinh,2(ω)

tends to zero as m → ∞ with exponential decay smaller than m (π − δ).

(B) For ω ∈ [−ω1, ω1] we have

1

α
< ν1(−ω1) ≤ ν1(±ω) ≤ 1 . (4.21)

Then from (4.11) and (4.3) it follows that

∆sinh,2(ω) =
β

m
√
2π

(∫ ν1(−ω)

1/α
+

∫ ν1(ω)

1/α

)
φ̂sinh

( β
m ν
)
dν

=
β

2 sinhβ

(∫ ν1(−ω)

1/α
+

∫ ν1(ω)

1/α

)
I1
(
β
√
1− ν2

)
√
1− ν2

dν , ω ∈ [−ω1, ω1] .
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Figure 4.3: Semilogarithmic plots of the term β
sinhβ

∫ 1
1/α

I1(β
√
1−ν2)√

1−ν2
dν for m = 1, . . . , 20,

α ∈ {1.1, 1.2, 1.5, 2, 3}, and δ ∈
{
π
4 ,

π
2 ,

3π
4

}
.

Note that by (4.5) and (4.21) we have again (4.16) and therefore (4.17) holds for ω ∈ [0 , ω1].
Analogous to (4.19) this implies

max
ω∈[−ω1,ω1]

∆sinh,2(ω) =
β

sinhβ

∫ ν1(0)

1/α

I1(β
√
1− ν2)√

1− ν2
dν .

Hence, by the numerical experiments in Figure 4.2 we see that

max
ω∈[−ω1,ω1]

∆sinh,2(ω)

tends to zero as m → ∞ with exponential decay smaller than m (π − δ).
(C) For ω ∈ [ω1, δ] we have

1 ≤ ν1(ω) ≤ ν1(δ) =
π + δ

α (π − δ)
,

1

α
≤ ν1(−ω) ≤ ν1(−ω1) < 1 . (4.22)

Then from (4.11) and (4.3) it follows that

∆sinh,2(ω) =
β

m
√
2π

(∫ ν1(−ω)

1/α
+

∫ 1

1/α
+

∫ ν1(ω)

1

)
φ̂sinh

( β
m ν
)
dν

=
β

2 sinhβ

(∫ ν1(−ω)

1/α
+

∫ 1

1/α

)
I1
(
β
√
1− ν2

)
√
1− ν2

dν

+
β

2 sinhβ

∫ ν1(ω)

1

J1
(
β
√
ν2 − 1

)
√
ν2 − 1

dν .

Since the integrand I1(β
√
1−ν2)√

1−ν2
is nonnegative by (4.18), using (4.22) and (4.8) implies

β

2 sinhβ

∫ 1

1/α

I1
(
β
√
1− ν2

)
√
1− ν2

dν < ∆sinh,2(ω)

<
β

sinhβ

∫ 1

1/α

I1
(
β
√
1− ν2

)
√
1− ν2

dν +
β

2 sinhβ

3
(
1− e−β

)
2β

=
β

sinhβ

∫ 1

1/α

I1
(
β
√
1− ν2

)
√
1− ν2

dν +
3 e−β

2 (1 + e−β)
.
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Hence, by the numerical experiments in Figure 4.3 we obtain that

max
ω∈[ω1,δ]

∆sinh,2(ω)

tends to zero as m → ∞ with exponential decay smaller than m (π − δ).
In summary,

D2(m) = max
ω∈[−δ,δ]

∆sinh,2(ω)

tends to zero for m → ∞ with exponential decay smaller than m (π − δ).

Remark 4.3. Note that the similarity between Figures 4.1 and 4.2 can be easily explained,
since using (4.6) and (4.7) we have(

1− β

sinhβ

∫ 1/α

0

I1
(
β
√
1− ν2

)
√
1− ν2

dν

)
− β

sinhβ

∫ 1

1/α

I1
(
β
√
1− ν2

)
√
1− ν2

dν

= 1− β

sinhβ

∫ 1

0

I1
(
β
√
1− ν2

)
√
1− ν2

dν = 1− 2
(
sinh β

2

)2
sinhβ

=
2 e−β

1 + e−β

and hence

1− β

sinhβ

∫ 1/α

0

I1
(
β
√
1− ν2

)
√
1− ν2

dν =
β

sinhβ

∫ 1

1/α

I1
(
β
√
1− ν2

)
√
1− ν2

dν +
2 e−β

1 + e−β
,

where the term 2 e−β

1+e−β is very small.

Example 4.4. Analogous to Example 3.3 we now visualize the optimality of the shape
parameter β = m (π − δ) for the sinh-type regularized Shannon sampling formula shown in
Theorems 4.1 and 4.2. More precisely, for the bandlimited function (3.8) with several band-
width parameters δ ∈

{
π
4 ,

π
2 ,

3π
4

}
, i. e., several oversampling rates π

δ > 1, we consider the reg-
ularized Shannon sampling formula (1.4) with the sinh-type window function φsinh in (1.7).
The corresponding approximation error (3.7) shall again be approximated by evaluating the
given function f and its approximation Rφ,mf at equidistant points ts ∈ [−1, 1], s = 1, . . . , S,
with S = 105. To compare with the optimal parameter, we choose the shape parameter of
the sinh-type window function (1.7) as β = αm (π − δ) with α ∈

{
1
2 , 1, 2

}
.

The results for different truncation parametersm ∈ {2, 3, . . . , 10} are depicted in Figure 4.4.
As stated in Theorem 4.2, it can clearly be seen that the choice of α ̸= 1 causes worsened
error decay rates with respect to m. Thus, the numerical results confirm that the shape
parameter β = m (π − δ) of Theorem 4.1 is optimal, and that this fact can already be observed
for very small truncation parameters m ∈ N \ {1}.

We further remark that already in [12, Theorem 6.1] and [13, Theorem 4.2] bounds on
the approximation error of the Shannon sampling formula (1.4) were shown for the sinh-type
window function (1.7) with suitably chosen shape parameter β. However, in these previous
works the optimal parameter was only conjectured by numerical testing, whereas the proof
of the optimality was still an open problem. Note that although the respective parameters
look different than the one in Theorem 4.1, they are basically the same, only adapted to the
slightly different settings considered in [12, 13]. Therefore, the newly proposed Theorem 4.2
provides not only a proof for the optimality of the parameter choice in Theorem 4.1 but also
for the parameter choice of [12, 13].
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Figure 4.4: Maximum approximation error (3.7) using the sinh-type window function φsinh

in (1.7) with different shape parameters β = αm(π − δ), α ∈
{
1
2 , 1, 2

}
, for the

bandlimited function (3.8) with bandwidths δ ∈
{
π
4 ,

π
2 ,

3π
4

}
and truncation pa-

rameters m ∈ {2, 3, . . . , 10}.

5 Optimal regularization with the continuous Kaiser–Bessel
window function

In this section, we consider the continuous Kaiser–Bessel window function (1.8) with shape
parameter β > 0, analogous to [13, Theorem 4.3]. In order to achieve fast convergence of the
continuous Kaiser–Bessel regularized Shannon sampling formula, we again put special em-
phasis on the optimal choice of this shape parameter β. Furthermore, we show that the expo-
nential decay with respect to the truncation parameter m ∈ N \ {1} for the uniform approx-
imation error

∥∥f −RcKB,mf
∥∥
C0(R)

is similar to the approximation error
∥∥f −Rsinh,mf

∥∥
C0(R)

in Theorem 4.1.

Theorem 5.1. Assume that f ∈ L2(R) ∩ C(R) is bandlimited with bandwidth δ ∈
(
0, m−1

m π
]
.

Further let φcKB be the continuous Kaiser–Bessel window function (1.8) with shape parame-
ter β = m (π − δ) and let m ∈ N \ {1} be given.
Then the continuous Kaiser–Bessel regularized Shannon sampling formula satisfies the error
estimate

∥∥f −RcKB,mf
∥∥
C0(R)

≤
(
7

8
m (π − δ) +

7

π
m2(π − δ)2

)
e−m (π−δ) ∥f∥L2(R) . (5.1)

Proof. (i) Since φcKB in (1.8) is compactly supported on [−m, m] and φcKB(m) = 0, we
have E2(m) = 0. Thus, according to Theorem 2.1, the approximation error can be estimated
by ∥∥f −RcKB,mf

∥∥
C0(R)

≤ ∥f∥L2(R) max
ω∈[−δ,δ]

∣∣∆cKB(ω)
∣∣

where

∆cKB(ω) := 1− 1√
2π

∫ ω+π

ω−π
φ̂cKB(τ) dτ , ω ∈ [−δ, δ] . (5.2)

22



Following [18, p. 3, 1.1, and p. 95, 18.31], the Fourier transform of (1.8) has the form

φ̂cKB(τ) =
m

√
2

(I0(β)− 1)
√
π
·


(

sinh
(
β
√
1−ν2

)
β
√
1−ν2

− sin(βν)
βν

)
: |ν| < 1 ,(

sin
(
β
√
ν2−1

)
β
√
ν2−1

− sin(βν)
βν

)
: |ν| > 1 ,

(5.3)

with the scaled frequency ν = m
β τ . Substituting τ = β

m ν in the integral in (5.2), the func-
tion ∆cKB reads as

∆cKB(ω) = 1− β

m
√
2π

∫ ν1(ω)

−ν1(−ω)
φ̂cKB

( β
m ν
)
dν , ω ∈ [−δ, δ] , (5.4)

with the increasing linear function (4.5).

(ii) Now we choose the shape parameter of (1.8) in the special form β = m (π − δ). Thus,
we have

1 = ν1(−δ) ≤ ν1(ω) =
ω + π

π − δ
≤ ν1(δ) =

π + δ

π − δ
, ω ∈ [−δ, δ] .

In view of (5.3) we split (5.4) in the form ∆cKB(ω) = ∆cKB,1 −∆cKB,2(ω) with

∆cKB,1 = 1− 2β

π (I0(β)− 1)

∫ 1

0

(
sinh

(
β
√
1− ν2

)
β
√
1− ν2

− sin(βν)

βν

)
dν ,

∆cKB,2(ω) =
β

π (I0(β)− 1)

(∫ ν1(−ω)

1
+

∫ ν1(ω)

1

)(
sin
(
β
√
ν2 − 1

)
β
√
ν2 − 1

− sin(βν)

βν

)
dν . (5.5)

Using [10, 3.997–1] we have∫ 1

0

sinh
(
β
√
1− ν2

)
β
√
1− ν2

dν =
1

β

∫ π/2

0
sinh(β cos s) ds =

π

2β
L0(β) ,

where L0 denotes the modified Struve function (see [1, 12.2.1])

L0(x) :=
∞∑
k=0

(x/2)2k+1(
Γ
(
k + 3

2

))2 =
2x

π

∞∑
k=0

x2k(
(2k + 1)!!

)2 , x ∈ R .

Additionally, by the definition of the sine integral function

Si(x) :=

∫ x

0

sin v

v
dv , x ∈ R ,

we have ∫ 1

0

sin(βv)

βv
dv =

1

β
Si(β) ,

such that we obtain
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∆cKB,1 = 1− 2β

π
(
I0(β)− 1

) ( π

2β
L0(β)−

1

β
Si(β)

)
=

1

I0(β)− 1

(
I0(β)− L0(β)− 1 +

2

π
Si(β)

)
. (5.6)

Note that by [2, Theorem 1] the function I0(x)− L0(x) is completely monotonic on [0, ∞)
and tends to zero as x → ∞. Moreover, by a numerical test (see [13, Figure 4.2]) we see that
for β = m (π − δ) > 0 we have

0 ≤ I0(β)− L0(β)− 1 +
2

π
Si(β) ≤ 1

2
. (5.7)

Since additionally I0(β) > 1 holds for β = m (π − δ) > 0, this yields

0 ≤ ∆cKB,1 ≤
1

2
(
I0(β)− 1

) .
Now we estimate∆cKB,2(ω) in (5.5) for ω ∈ [−δ, δ] by the triangle inequality as

∣∣∆cKB,2(ω)
∣∣ ≤ β(

I0(β)− 1
) (∫ ν1(−ω)

1
+

∫ ν1(ω)

1

)∣∣∣∣sin
(
β
√
ν2 − 1

)
β
√
ν2 − 1

− sin(βν)

βν

∣∣∣∣ dν .
By [21, Lemma 4] we have∣∣∣∣sin

(
β
√
ν2 − 1

)
β
√
ν2 − 1

− sin(βν)

βν

∣∣∣∣ ≤ 2

ν2
, ν ≥ 1 , (5.8)

and therefore

|∆cKB,2(ω)| ≤
4β

π
(
I0(β)− 1

) ∫ ∞

1

1

ν2
dν =

4β

π
(
I0(β)− 1

) .
Thus, we conclude that

|∆cKB(ω)| ≤ ∆cKB,1 + |∆cKB2(ω)| ≤
1

I0(β)− 1

(
1

2
+

4β

π

)
, ω ∈ [−δ, δ] .

Since numerical experiments have shown that ex

x (I0(x)−1) is strictly decreasing on [1,∞) and

by the assumption 0 < δ ≤ m−1
m π we have β = m (π − δ) ≥ π for m ∈ N \ {1}, it follows that

eβ

β (I0(β)− 1)
≤ eπ

π (I0(π)− 1)
= 1.644967 . . . <

7

4
. (5.9)

Hence, this yields

1

I0(β)− 1

(
1

2
+

4β

π

)
<

7β

4

(
1

2
+

4β

π

)
e−β =

(
7

8
β +

7

π
β2

)
e−β . (5.10)

Thus, the continuous Kaiser–Bessel regularized Shannon sampling formula with the chosen
shape parameter β = m (π − δ) fulfills the error estimate (5.1). This completes the proof.

Now we show that the choice of the shape parameter β = m (π − δ) of (1.8) is optimal in
a certain sense. To this end, let the parameters α ≥ 1

π , m ∈ N \ {1}, and δ ∈
(
0, m−1

m π
)
be
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given, and consider shape parameters of the form β = αm (π − δ). Then the increasing linear
function (4.5) fulfills

1

α
= ν1(−δ) ≤ ν1(ω) =

ω + π

α (π − δ)
≤ ν1(δ) =

π + δ

α (π − δ)
, ω ∈ [−δ, δ] .

Therefore, we split (5.4) as ∆cKB(ω) = ∆cKB,1 −∆cKB,2(ω), ω ∈ [−δ, δ], with

∆cKB,1 := 1− β

m
√
2π

∫ 1/α

−1/α
φ̂cKB

( β
m ν
)
dν ,

= 1− β
√
2

m
√
π

∫ 1/α

0
φ̂cKB

( β
m ν
)
dν , (5.11)

∆cKB,2(ω) :=
β

m
√
2π

(∫ −1/α

−ν1(−ω)
+

∫ ν1(ω)

1/α

)
φ̂cKB

( β
m ν
)
dν

=
β

m
√
2π

(∫ ν1(−ω)

1/α
+

∫ ν1(ω)

1/α

)
φ̂cKB

( β
m ν
)
dν . (5.12)

Introducing the terms

D1(m) :=
∣∣∆cKB,1

∣∣ , D2(m) := max
ω∈[−δ,δ]

∣∣∆cKB,2(ω)
∣∣ , (5.13)

it is known by Theorem 5.1 that for α = 1 both expressions in (5.13) possess the same ex-
ponential decay m (π − δ). In the following, we discuss the other cases 0 < α < 1 and α > 1.
More precisely, we show in Theorem 5.2 that for α ̸= 1 both expressions in (5.13) have the
same exponential decay smaller than m (π − δ). In this sense, it follows immediately that
the shape parameter β = m (π − δ) of the continuous Kaiser–Bessel window function (1.8) is
optimal, since both expressions in (5.13) tend to zero as m → ∞ with the same maximum
exponential decay.

Theorem 5.2. For δ ∈
(
0, m−1

m π
]
, let φcKB be the continuous Kaiser–Bessel window func-

tion (1.8) with the shape parameter β = αm (π − δ) with α ≥ 1
π , α ̸= 1, and m ∈ N \ {1}.

a) In the case α ∈
[
1
π , 1

)
, both expressions in (5.13) tend to zero as m → ∞ with the same

exponential decay αm (π − δ).

b) In the case α > 1, both expressions in (5.13) tend to zero as m → ∞ with exponential
decay smaller than m (π − δ).

Proof. a) First we consider the shape parameter β = αm (π − δ) with α ∈
[
1
π , 1

)
. Then

we have by (5.11), (5.3) and (5.6) that

∆cKB,1 = 1− β
√
2

m
√
π

∫ 1/α

0
φ̂cKB

( β
m ν
)
dν

= 1− β
√
2

m
√
π

(∫ 1

0
+

∫ 1/α

1

)
φ̂cKB

( β
m ν
)
dν

=

(
1− 2β

π
(
I0(β)− 1

) ∫ 1

0

(
sinh

(
β
√
1− ν2

)
β
√
1− ν2

− sin(βν)

βν

)
dν

)
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− 2β

π
(
I0(β)− 1

) ∫ 1/α

1

(
sin
(
β
√
ν2 − 1

)
β
√
ν2 − 1

− sin(βν)

βν

)
dν

=
1

I0(β)− 1

(
I0(β)− L0(β)− 1 +

2

π
Si(β)

)
− 2β

π
(
I0(β)− 1

) ∫ 1/α

1

(
sin
(
β
√
ν2 − 1

)
β
√
ν2 − 1

− sin(βν)

βν

)
dν .

Using (5.7), (5.8), and (5.10), it follows that∣∣∆cKB,1

∣∣ ≤ 1

2
(
I0(β)− 1

) + 4β

π
(
I0(β)− 1

) <

(
7

8
β +

7

π
β2

)
e−β . (5.14)

For the second term (5.12) have by (5.3) that

∆cKB,2(ω) =
β

m
√
2π

(∫ ν1(−ω)

1/α
+

∫ ν1(ω)

1/α

)
φ̂cKB

( β
m ν
)
dν

=
β

π
(
I0(β)− 1

) (∫ ν1(−ω)

1/α
+

∫ ν1(ω)

1/α

)(
sin
(
β
√
ν2 − 1

)
β
√
ν2 − 1

− sin(βν)

βν

)
dν ,

such that (5.8) in connection with 1
α > 1 and the monotonicity of 1

ν2
implies∣∣∆cKB,2(ω)

∣∣ ≤ 4β

π
(
I0(β)− 1

) ∫ ∞

1

1

ν2
dν =

4β

π
(
I0(β)− 1

) .
Since numerical experiments have shown that ex

x (I0(x)−1) is strictly decreasing on [1,∞) and by

the assumption 0 ≤ δ ≤ m−1
m π and 1

π ≤ α < 1 we have β = αm (π − δ) ≥ απ ≥ 1, it follows
that

eβ

β
(
I0(β)− 1

) ≤ e

I0(1)− 1
= 10.216574 . . . < 11

and therefore ∣∣∆cKB,2(ω)
∣∣ ≤ 44β2

π
e−β , ω ∈ [−δ, δ] . (5.15)

Thus, by (5.14) and (5.15) the quantities (5.13) tend to zero as m → ∞ with the same
exponential decay αm (π − δ), which is smaller than m (π − δ) as α ∈

[
1
π , 1

)
.

b) Now we investigate the shape parameter β = αm (π − δ) with α > 1.
(i) By (5.11) and (5.3) we obtain

∆cKB,1 = 1− β
√
2

m
√
π

∫ 1/α

0
φ̂cKB

( β
m ν
)
dν

= 1− 2β

π
(
I0(β)− 1

) ∫ 1/α

0

(
sinh

(
β
√
1− ν2

)
β
√
1− ν2

− sin(βν)

βν

)
dν .

Numerical experiments, cf. Figure 5.1, have shown that

∆cKB,1 > 1− 2m (π − δ)

π
(
I0(m (π − δ))− 1

) ∫ 1

0

(
sinh

(
m (π − δ)

√
1− ν2

)
m (π − δ)

√
1− ν2

− sin
(
m (π − δ) ν

)
m (π − δ) ν

)
dν .
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Figure 5.1: Semilogarithmic plots of the term 1− 2β

π
(
I0(β)−1

) ∫ 1/α
0

(
sinh
(
β
√
1−ν2

)
β
√
1−ν2

− sin(βν)
βν

)
dν

for m = 1, . . . , 20, α ∈ {1, 1.2, 1.5, 2, 3}, and δ ∈
{
π
4 ,

π
2 ,

3π
4

}
.

Hence, by (5.6) we have

∆cKB,1 >
1

I0(m (π − δ))− 1

(
I0(m (π − δ))− L0(m (π − δ))− 1 +

2

π
Si(m (π − δ))

)
> 0 ,

i. e., D1(m) = ∆cKB,1 tends to zero as m → ∞ with exponential decay smaller than m (π − δ).

(ii) On the one hand, we consider the expression (5.12) in the case

1 <
π + δ

π − δ
≤ α ,

where we have (4.15). Then by (5.12) and (5.3) we obtain for ω ∈ [−δ, δ] that

∆cKB,2(ω) =
β

π
(
I0(β)− 1

) (∫ ν1(−ω)

1/α
+

∫ ν1(ω)

1/α

)(
sinh

(
β
√
1− ν2

)
β
√
1− ν2

− sin(β ν)

β ν

)
dν .

Note that we have again (4.16). Hence, for ω ∈ [0, δ] it follows that

∆cKB,2(ω) =
2β

π
(
I0(β)− 1

) ∫ ν1(0)

1/α

(
sinh

(
β
√
1− ν2

)
β
√
1− ν2

− sin(β ν)

β ν

)
dν (5.16)

+
β

π
(
I0(β)− 1

) (∫ ν1(0)+
ω

α (π−δ)

ν1(0)
−
∫ ν1(0)

ν1(0)− ω
α (π−δ)

)(
sinh

(
β
√
1− ν2

)
β
√
1− ν2

− sin(β ν)

β ν

)
dν .

An analogous decomposition of ∆cKB,2(ω) also applies for ω ∈ [−δ, 0]. By Figure 5.2 the even
integrand

sinh
(
β
√
1− ν2

)
β
√
1− ν2

− sin(β ν)

β ν
, ν ∈ (−1, 1) , (5.17)

is positive and monotonously decreasing on [0, 1). Thus, the second term in (5.16) is negative
for ω ∈ (0 , δ] as we have two integration intervals of the same length by (5.16), and therefore

D2(m) = max
ω∈[−δ, δ]

∆cKB,2(ω) =
2β

π
(
I0(β)− 1

) ∫ ν1(0)

1/α

(
sinh

(
β
√
1− ν2

)
β
√
1− ν2

− sin(β ν)

β ν

)
dν .

Numerical experiments, cf. Figure 5.3, demonstrate that D2(m) tends to zero as m → ∞
with exponential decay smaller than m (π − δ).
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Figure 5.3: Semilogarithmic plots of the term 2β

π
(
I0(β)−1

) ∫ ν1(0)
1/α

(
sinh
(
β
√
1−ν2

)
β
√
1−ν2

− sin(β ν)
β ν

)
dν

for m = 1, . . . , 20, α ∈ {1.1, 1.2, 1.5, 2, 3}, and δ ∈
{
π
4 ,

π
2 ,

3π
4

}
.

(iii) On the other hand, we consider the expression (5.12) in the case

1 < α <
π + δ

π − δ
.

Then by (4.5) we have ν1(ω1) = 1 for ω1 := α (π − δ)− π. Without loss of generality, we can
assume that ω1 ≥ 0. In the case ω1 > 0, we split the interval [−δ, δ] into three subinter-
vals [−δ, −ω1], [−ω1, ω1], and [ω1, δ]. In the case ω1 = 0, the interval [−δ, δ] is decomposed
into [−δ, 0] and [0, δ]. In the following, we discuss only the case ω1 > 0.

(A) For ω ∈ [−δ, −ω1] we have again (4.20). Then from (5.12) and (5.3) it follows that

∆cKB,2(ω) =
β

m
√
2π

(∫ 1

1/α
+

∫ ν1(−ω)

1
+

∫ ν1(ω)

1/α

)
φ̂cKB

( β
m ν
)
dν

=
β

π
(
I0(β)− 1

) (∫ 1

1/α
+

∫ ν1(ω)

1/α

)(
sinh

(
β
√
1− ν2

)
β
√
1− ν2

− sin(β ν)

β ν

)
dν

+
β

π
(
I0(β)− 1

) ∫ ν1(−ω)

1

(
sin
(
β
√
ν2 − 1

)
β
√
ν2 − 1

− sin(β ν)

βν

)
dν , ω ∈ [−δ,−ω1] .
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Since the integrand (5.17) is nonnegative by Figure 5.2, using (4.20) and (5.8) implies that

β

π
(
I0(β)− 1

) ∫ 1

1/α

(
sinh

(
β
√
1− ν2

)
β
√
1− ν2

− sin(βν)

βν

)
dν <

∣∣∆cKB,2(ω)
∣∣

<
2β

π
(
I0(β)− 1

) ∫ 1

1/α

(
sinh

(
β
√
1− ν2

)
β
√
1− ν2

− sin(βν)

βν

)
dν

+
β

π
(
I0(β)− 1

) ∫ ν1(−ω)

1

∣∣∣∣sin
(
β
√
1− ν2

)
β
√
1− ν2

− sin(βν)

βν

∣∣∣∣dν
≤ 2β

π
(
I0(β)− 1

) ∫ 1

1/α

(
sinh

(
β
√
1− ν2

)
β
√
1− ν2

− sin(βν)

βν

)
dν +

2β

π
(
I0(β)− 1

) .
We remark that by β = αm (π − δ) with α > 1 and 0 < δ ≤ m−1

m δ we have β > π, and hence
by (5.9) this yields

1

I0(β)− 1
<

7

4
β e−β .

Numerical experiments, cf. Figure 5.4, have shown that

2β

π
(
I0(β)− 1

) ∫ 1

1/α

(
sinh

(
β
√
1− ν2

)
β
√
1− ν2

− sin(βν)

βν

)
dν , α > 1 ,

tends to zero as m → ∞ with exponential decay smaller than m (π − δ). Therefore, we obtain
that

max
ω∈[−δ,−ω1]

∣∣∆cKB,2(ω)
∣∣

tends to zero as m → ∞ with exponential decay smaller than m (π − δ).
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Figure 5.4: Semilogarithmic plots of the term 2β

π
(
I0(β)−1

) ∫ 1
1/α

(
sinh
(
β
√
1−ν2

)
β
√
1−ν2

− sin(βν)
βν

)
dν

for m = 1, . . . , 20, α ∈ {1.1, 1.2, 1.5, 2, 3}, and δ ∈
{
π
4 ,

π
2 ,

3π
4

}
.

(B) For ω ∈ [−ω1, ω1] we have again (4.21). Then from (5.12) and (5.3) it follows that
for ω ∈ [−ω1, ω1] we have

∆cKB,2(ω) =
β

m
√
2π

(∫ ν1(−ω)

1/α
+

∫ ν1(ω)

1/α

)
φ̂cKB

( β
m ν
)
dν
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=
β

π
(
I0(β)− 1

) (∫ ν1(−ω)

1/α
+

∫ ν1(ω)

1/α

)(
sinh

(
β
√
1− ν2

)
β
√
1− ν2

− sin(βν)

βν

)
dν .

Note that by (4.5) and (4.21) we have again (4.16) and therefore (5.16) holds for ω ∈ [0 , ω1].
Analogous to step (ii) this implies

max
ω∈[−ω1,ω1]

∆cKB,2(ω) =
β

π
(
I0(β)− 1

) ∫ ν1(0)

1/α

(
sinh(β

√
1− ν2)

β
√
1− ν2

− sin(βν)

βν

)
dν .

Hence, by the numerical experiments in Figure 5.3 we see that

max
ω∈[−ω1,ω1]

∆cKB,2(ω)

tends to zero as m → ∞ with exponential decay smaller than m (π − δ).

(C) For ω ∈ [ω1, δ] we have again (4.22). Then from (5.12) and (5.3) it follows that

∆cKB,2(ω) =
β

m
√
2π

(∫ ν1(−ω)

1/α
+

∫ 1

1/α
+

∫ ν1(ω)

1

)
φ̂cKB

( β
m ν
)
dν

=
β

π
(
I0(β)− 1

) (∫ ν1(−ω)

1/α
+

∫ 1

1/α

)(
sinh

(
β
√
1− ν2

)
β
√
1− ν2

− sin(βν)

βν

)
dν

+
β

π
(
I0(β)− 1

) ∫ ν1(ω)

1

(
sin
(
β
√
ν2 − 1

)
β
√
ν2 − 1

− sin(βν)

βν

)
dν .

Since the integrand (5.17) is nonnegative by Figure 5.2, using (4.22), (5.8) and (5.9) for the
shape parameter β = αm (π − δ) > απ > π implies

β

π
(
I0(β)− 1

) ∫ 1

1/α

(
sinh

(
β
√
1− ν2

)
β
√
1− ν2

− sin(βν)

βν

)
dν <

∣∣∆cKB,2(ω)
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<
2β

π
(
I0(β)− 1

) ∫ 1

1/α

(
sinh

(
β
√
1− ν2

)
β
√
1− ν2

− sin(βν)

βν

)
dν

+
β

π
(
I0(β)− 1

) ∫ ν1(ω)

1

∣∣∣∣sin
(
β
√
ν2 − 1

)
β
√
ν2 − 1

− sin(βν)

βν

∣∣∣∣dν
<

2β

π
(
I0(β)− 1

) ∫ 1

1/α

(
sinh

(
β
√
1− ν2

)
β
√
1− ν2

− sin(βν)

βν

)
dν +

7

2π
β2 e−β .

Hence, by the numerical experiments in Figure 5.4 we obtain that

max
ω∈[ω1,δ]

∣∣∆cKB,2(ω)
∣∣

tends to zero as m → ∞ with exponential decay smaller than m (π − δ).
In summary,

D2(m) = max
ω∈[−δ,δ]

∣∣∆cKB,2(ω)
∣∣

tends to zero for m → ∞ with exponential decay smaller than m (π − δ).
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Example 5.3. Analogous to Example 4.4 we now visualize the optimality of the shape
parameter β = m (π − δ) for the continuous Kaiser–Bessel regularized Shannon sampling for-
mula shown in Theorems 5.1 and 5.2. More precisely, for the bandlimited function (3.8)
with several bandwidth parameters δ ∈

{
π
4 ,

π
2 ,

3π
4

}
, i. e., several oversampling rates π

δ > 1,
we consider the regularized Shannon sampling formula (1.4) with the continuous Kaiser–
Bessel window function φcKB in (1.8). The corresponding approximation error (3.7) shall
again be approximated by evaluating the given function f and its approximation Rφ,mf at
equidistant points ts ∈ [−1, 1], s = 1, . . . , S, with S = 105. To compare with the optimal
parameter, we choose the shape parameter of the continuous Kaiser–Bessel window func-
tion (1.8) as β = αm (π − δ) with α ∈

{
1
2 , 1, 2

}
.

The results for different truncation parametersm ∈ {2, 3, . . . , 10} are depicted in Figure 5.5.
As stated in Theorem 5.2, it can clearly be seen that the choice of α ̸= 1 causes worsened
error decay rates with respect to m. Thus, the numerical results confirm that the shape
parameter β = m (π − δ) of Theorem 5.1 is optimal, and that this fact can already be observed
for very small truncation parameters m ∈ N \ {1}.

2 4 6 8 10

10−12

10−9

10−6

10−3

m

α = 1
2

α = 1
α = 2

(a) δ = π
4

2 4 6 8 10
10−10

10−8

10−6

10−4

10−2

m

α = 1
2

α = 1
α = 2

(b) δ = π
2

2 4 6 8 10

10−2

10−4

10−6

m

α = 1
2

α = 1
α = 2

(c) δ = 3π
4

Figure 5.5: Maximum approximation error (3.7) using the continuous Kaiser–Bessel win-
dow function φcKB in (1.8) with different shape parameters β = αm(π − δ),
α ∈

{
1
2 , 1, 2

}
, for the bandlimited function (3.8) with bandwidths δ ∈

{
π
4 ,

π
2 ,

3π
4

}
and truncation parameters m ∈ {2, 3, . . . , 10}.

We further remark that already in [13, Theorem 4.3] bounds on the approximation error of
the Shannon sampling formula (1.4) were shown for the continuous Kaiser–Bessel window
function (1.8) with suitably chosen shape parameter β. However, in this previous work
the optimal parameter was only conjectured by numerical testing, whereas the proof of the
optimality was still an open problem. Note that although the respective parameter looks
different than the one in Theorem 5.1, it is basically the same, only adapted to the slightly
different setting considered in [13]. Therefore, the newly proposed Theorem 5.2 provides
not only a proof for the optimality of the parameter choice in Theorem 5.1 but also for the
parameter choice of [13].

Remark 5.4. Note that the code files for this and all the other experiments are available on
https://github.com/melaniekircheis/Optimal-parameter-choice-for-regularized-

Shannon-sampling-formulas.
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6 Conclusion

In this paper, we have studied the regularized Shannon sampling formula (1.4) for the widely
used Gaussian function (1.5), the modified Gaussian function (1.6), the sinh-type window
function (1.7), and the continuous Kaiser–Bessel window function (1.8). More precisely,
for an arbitrary bandlimited function f ∈ L2(R) ∩ C(R) with bandwidth δ ∈ (0, π) we have
shown that the uniform approximation error (1.10) of the regularized Shannon sampling
formulas of f possess an exponential decay with respect to the truncation parameter m. In
doing so, we have demonstrated that the decay rate m (π − δ) of the sinh-type regularized
Shannon sampling formula, see Theorem 4.1, and the continuous Kaiser–Bessel regularized
Shannon sampling formula, see Theorem 5.1, is much better than the decay rate m (π − δ)/2
of the Gaussian regularized Shannon sampling formula, see Theorem 3.1. Note that the
sinh-type regularized Shannon sampling formula is even better than the continuous Kaiser–
Bessel regularized Shannon sampling formula due to the constant factors in (4.1) and (5.1),
see also Figure 6.1.

Moreover, we found that the exponential decay of the approximation error of the regularized
Shannon sampling formula (1.4) strongly depends on the shape parameter of the correspond-
ing window function. Namely, the optimal choice of the variance σ2 of the (modified) Gaussian
function and of the shape parameter β of the sinh-type window function and the continuous
Kaiser–Bessel function is a crucial ingredient for a fast and accurate reconstruction of f .
Therefore, the main focus of this paper was to determine the optimal variances σ2 in Theo-
rems 3.1 and 3.4 as well as the optimal shape parameters β in Theorems 4.2 and 5.2, such that
the exponential decay of the approximation error (1.10) is as large as possible. These results
further emphasize the superiority of the sinh-type regularized Shannon sampling formula of f ,
since the approximation errors of the regularized Shannon sampling formulas were compared
for the optimal shape parameters each.
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Figure 6.1: Maximum approximation error (3.7) (solid) and error constants (dashed) using
φ ∈ {φGauss, φmGauss, φsinh, φcKB}, see (1.5), (1.6), (1.7), and (1.8), for the band-
limited function (3.8) with δ ∈

{
π
4 ,

π
2 ,

3π
4

}
and m ∈ {2, 3, . . . , 10}.
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