Optimierung 1 Übung 5

- 1. Eine Menge K heißt Kegel (engl. cone), wenn mit $x \in K$ auch $\lambda x \in K$ für $\lambda > 0$. Zeige: Eine Menge C ist ein konvexer Kegel (Kegel und konvex), falls mit $x,y \in C$ auch konvex0 für beliebige konvex1 eine konvexe konische Hülle konvex2 einer Menge konvex3 definiert und im Stile von Konvexkombinationen charakterisiert werden? Was ist konvex4 bir einen konvexen Kegel konvex5 geometrisch?
- 2. Zeige: Ist $C \subset \mathbb{R}^n$ konvex, dann ist auch das Innere (interior) int C und der Abschluss (closure)clC konvex.
- 3. Ein Graph heißt Baum, falls er zusammenhängend ist und keinen Kreis enthält. Zeige: Für G=(V,E) ist äquivalent: (a) G ist ein Baum, (b) Je zwei Knoten von G sind durch genau einen Weg verbunden, (c) G ist zusammenhängend und |E|=|V|-1.
- 4. Beschreibe, wie man das Rucksackproblem für Gewichte $b_i \in \mathbb{N}$ und Werte $c_i \in \mathbb{N}$, $i=1,\ldots,n$ und Gesamtgewicht $\bar{b} \in \mathbb{N}$ mit nur zwei Speicherarrays der Länge \bar{b} so implementieren kann, dass nachher für jeden Gewichtswert die optimale Zusammenstellung leicht ermittelbar ist. Führe diesen für die Daten $b=(3,5,7,8),\ c=(2,4,7,8)$ und $\bar{b}=16$ aus. Warum kann man o.B.d.A annehmen, dass $c_i \in N$? Wie muss der Algorithmus abgändert werden, wenn nur jeweils höchstens ein Gegenstand der Art i eingepackt werden darf?
- 5. In AMPL werden die Dualvariablen y durch display Name_der_Nebenbedingung; ausgegeben. Formuliere und löse folgendes Problem in AMPL (oder mit dem eigenen Code): Aus Standardrollen der Breite 110 cm sind 48 Rollen der Breite 20, 35 Rollen der Breite 45, 24 Rollen zu 50, 10 Rollen zu 55 und 8 der Breite 75 zu schneiden. Vorerst seien nur die folgenden 6 Schnittmuster erlaubt:

Breite	1	2	3	4	5	6
20	3	1	0	2	1	3
45	0	2	0	0	0	1
50	1	0	1	0	0	0
55	0	0	1	1	0	0
75	0	0	0	0	1	0

- (a) Wieviele Standardrollen müssen mindestens geschnitten werden, damit der Bedarf für jede Breite abgedeckt ist?
- (b) Finde ein weiteres Muster, das diese Anzahl reduziert.
- (c) Versuche eine gute ganzzahlige Lösung mit diesen Schnittmustern anzugeben.