
UD-DASK
Data Acquisition Software Development Kit

For USBDAQ USB modules

Function Reference Manual

@Copyright 2011-2021 ADLink Technology Inc.
All Rights Reserved.

Manual Rev 1.6.2: August 28, 2015

The information in this document is subject to change without prior notice in order to improve reliability,
design and function and does not represent a commitment on the part of the manufacturer.

In no event will the manufacturer be liable for direct, indirect, special, incidental, or consequential damages
arising out of the use or inability to use the product or documentation, even if advised of the possibility of
such damages.

This document contains proprietary information protected by copyright. All rights are reserved. No part of
this manual may be reproduced by any mechanical, electronic, or other means in any form without prior
written permission of the manufacturer.

Trademarks
IBM PC is a registered trademark of International Business Machines Corporation. Intel is a registered
trademark of Intel Corporation. Other product names mentioned herein are used for identification purposes
only and may be trademarks and/or registered trademarks of their respective companies.

CONTENTS

How to Use This Manual.. iv

Using UD-DASK Functions..5

1.1 The Fundamentals of Building Windows XP/7 Application with UD-
DASK... 5
1.1.1 Creating a Windows XP/7 USB-DASK Application Using Microsoft Visual

C/C++ ..5
1.1.2 Creating a Windows XP/7 UD-DASK Application Using Microsoft Visual

Basic ...5
1.2 UD-DASK Functions Overview... 7

Function Description ..9

2.1 Data Types.. 9
2.2 Function Reference ... 10

2.2.1 UD_AI_1902_Config..10
2.2.2 UD_AI_2401_Config..12
2.2.3 UD_AI_2401_PollConfig ...14
2.2.4 UD_AI_2405_Chan_Config ...16
2.2.5 UD_AI_2405_Trig_Config...17
2.2.6 UD_AI_Channel_Config ..20
2.2.7 UD_AI_Trigger_Config..22
2.2.8 UD_AI_AsyncCheck ...25
2.2.9 UD_AI_AsyncClear..26
2.2.10 UD_AI_AsyncDblBufferHalfReady ..27
2.2.11 UD_AI_AsyncDblBufferMode ..28
2.2.12 UD_AI_AsyncDblBufferTransfer ...29
2.2.13 UD_AI_AsyncDblBufferTransfer32 ...30
2.2.14 UD_AI_AsyncDblBufferOverrun..31
2.2.15 UD_AI_AsyncDblBufferHandled ...32
2.2.16 UD_AI_AsyncDblBufferToFile ..33
2.2.17 UD_AI_AsyncReTrigNextReady...34
2.2.18 UD_AI_ContReadChannel ...35
2.2.19 UD_AI_ContReadChannelToFile...37
2.2.20 UD_AI_ContReadMultiChannels ...39
2.2.21 UD_AI_ContReadMultiChannelsToFile ..42

Contents • i

2.2.22 UD_AI_VoltScale ...45
2.2.23 UD_AI_VoltScale32 ...46
2.2.24 UD_AI_2401_Scale32..47
2.2.25 UD_AI_ContVScale..48
2.2.26 UD_AI_ContVScale32..49
2.2.27 UD_AI_2401_ContVScale32..50
2.2.28 UD_AI_InitialMemoryAllocated ..51
2.2.29 UD_AI_ReadChannel...52
2.2.30 UD_AI_1902_CounterInterval ...53
2.2.31 UD_AI_DDS_ActualRate_Get ...54
2.2.32 UD_AI_SetTimeOut..55
2.2.33 UD_AI_ReadMultiChannels...56
2.2.34 UD_AI_VReadChannel ..58
2.2.35 UD_AI_Moving_Average32 ...59
2.2.36 UD_AI_EventCallBack (Win32 Only) ..60
2.2.37 UD_AO_1902_Config ..61
2.2.38 UD_AO_VWriteChannel ..63
2.2.39 UD_AO_WriteChannel...64
2.2.40 UD_AO_AsyncCheck..65
2.2.41 UD_AO_AsyncClear ..66
2.2.42 UD_AO_AsyncDblBufferHalfReady...67
2.2.43 UD_AO_AsyncDblBufferMode...68
2.2.44 UD_AO_ContBufferCompose ..69
2.2.45 UD_AO_AsyncDblBufferTransfer..70
2.2.46 UD_AO_SetTimeOut ..71
2.2.47 UD_AO_ContWriteChannel...72
2.2.48 UD_AO_ContWriteMultiChannels...74
2.2.49 UD_AO_InitialMemoryAllocated...76
2.2.50 UD_GPTC_Clear ...77
2.2.51 UD_GPTC_Setup ...78
2.2.52 UD_GPTC_Setup_N...81
2.2.53 UD_GPTC_Control..84
2.2.54 UD_GPTC_Read..85
2.2.55 UD_GPTC_Status ..86
2.2.56 UD_DIO_1902_Config ..87
2.2.57 UD_DIO_2401_Config ..88
2.2.58 UD_DIO_2405_Config ..89
2.2.59 UD_DIO_Config ..90
2.2.60 UD_DI_ReadLine...91

ii • Contents

2.2.61 UD_DI_ReadPort...92
2.2.62 UD_DO_ReadLine ...93
2.2.63 UD_DO_ReadPort ...94
2.2.64 UD_DO_WriteLine...95
2.2.65 UD_DO_WritePort...96
2.2.66 UD_DO_SetInitPattern ..97
2.2.67 UD_DO_GetInitPattern ...98
2.2.68 UD_DI_SetCOSInterrupt32 ...99
2.2.69 UD_DI_GetCOSLatchData32..100
2.2.70 UD_DI_Control..101
2.2.71 UD_DI_SetupMinPulseWidth ..102
2.2.72 UD_CTR_ReadEdgeCounter..103
2.2.73 UD_CTR_ReadFrequency..104
2.2.74 UD_CTR_Control...105
2.2.75 UD_CTR_SetupMinPulseWidth ...106
2.2.76 UD_Read_ColdJunc_Thermo ..107
2.2.77 UD_2405_Calibration..108
2.2.78 UD_AI_Calibration..109
2.2.79 UD_Register_Card...110
2.2.80 UD_Release_Card..111
2.2.81 UD_Device_Scan ...112

Associated Functions ...113

ADC_to_Thermo...113

Appendix A Status Codes ..114

Appendix B AI Range Codes..119

Appendix C AI DATA FORMAT ...120

Appendix D DATA File FORMAT...121

Appendix E Function Support ..123

Contents • iii

How to Use This Manual

This manual is designed to help you use the UD-DASK software driver for USBDAQ
USB data acquisition modules. The manual describes how to install and use the
software library to meet your requirements and help you program your own software
applications. It is organized as follows:

 Chapter 1, "Using UD-DASK Functions" gives the important information about how
to apply the function descriptions in this manual to your programming language
and environment.

 Chapter 2, "Function Description" gives the detailed description of each function
call USB-DASK provided.

 Appendix A, "Status Codes" lists the status codes returned by UD-DASK functions,
as well as their meanings.

 Appendix B, "AI Range Codes " lists all the valid AI range codes for each card.

 Appendix C, "AI Data Format" lists the AI data format for the cards performing
analog input operation, as well as the calculation methods to retrieve the A/D
converted data and the channel where the data read from.

 Appendix D, "Function Support" shows which data acquisition hardware each UD-
DASK function supports.

iv • Contents

1

Using UD-DASK Functions

UD-DASK is a software driver for USBAQ USB data acquisition modules. It is a high
performance data acquisition driver for developing custom applications under Windows
environment.

Using UD-DASK also lets you take advantage of the power and features of Microsoft
Windows for your data acquisition applications. These include running multiple
applications and using extended memory. Also, using UD-DASK under Visual Basic
environment makes it easy to create custom user interfaces and graphics.

1.1 The Fundamentals of Building Windows XP/7 Application

with UD-DASK

1.1.1 Creating a Windows XP/7 USB-DASK Application Using Microsoft Visual C/C++

To create a data acquisition application using UD-DASK and Microsoft Visual C/C++,
follow these steps after entering Visual C/C++:

step 1. Open the project in which you want to use UD-DASK. This can be a new or

existing project

step 2. Include header file UsbDask.H in the C/C++ source files that call UD-DASK

functions. UsbDask.H contains all the function declarations and constants that
you can use to develop your data acquisition application. Incorporate the
following statement in your code to include the header file.

 #include “UsbDask.h”

step 3. Build your application.

Setting the appropriate compile and link options, then build your application by
selecting the Build command from Build menu (Visual C/C++ 6.0). Remember
to link USB-DASK’s import library USB-DASK.LIB / USB-DASK64.LIB.

1.1.2 Creating a Windows XP/7 UD-DASK Application Using Microsoft Visual Basic

To create a data acquisition application using UD-DASK and Visual Basic, follow these
steps after entering Visual Basic:

 • 5

step 1. Open the project in which you want to use UD-DASK. This can be a new or
existing project

Open a new project by selecting the New Project command from the File menu.
If it is an existing project, open it by selecting the Open Project command from
the File menu. Then the Open Project dialog box appears.

Changed directory to the place the project file located. Double-click the project
file name in the File Name list to load the project.

step 2. Add file UsbDask.BAS into the project if this file is not included in the project.
This file contains all the procedure declarations and constants that you can use
to develop your data acquisition application.

From the File menu, select the Add File command. The Add File window appears,
displaying a list of files in the current directory.

Select UsbDask.BAS from the Files list by double-clicking on it. If you can't find this
file in the list, make sure the list is displaying files from the correct directory. By
default, UsbDask.BAS is installed in $InstDir\UD-DASK\INCLUDE.

step 3. Design the interface for the application.

6 •

To design the interface, you place the desired elements, such as command button,
list box, text box, etc., on the Visual Basic form. These are standard controls from
the Visual Basic Toolbox. To place a control on a form, you just move pointer to
Toolbox, select the desired control and draw it on the form. Or you can double-click
the control icon in the Toolbox to place it on the form.

step 4. Set properties for the controls.

To view the property list, click the desired control and then choose the Properties
command from the View menu or press F4, or you can also click the Properties

button on the toolbar.

step 5. Write the event code.

The event code defines the action you want to perform when an event occurs. To
write the event code, double-click the desired control or form to view the code
module and then add code you want. You can call the functions that declared in the
file USBDASK.BAS to perform data acquisition operations.

step 6. Run your application.

To run the application, choose Start from the Run menu, or click the Start icon

on the toolbar (you can also press F5).

step 7. Distribute your application.

Once you have finished a project, you can save the application as an executable
(.EXE) file by using the Make EXE File command on the File menu. And once you
have saved your application as an executable file, you've ready to distribute it.
When you distribute your application, remember also to include the UD-DASK’s DLL
and driver files. These files should be copied to their appropriate directory as
section 1.4.1 described.

1.2 UD-DASK Functions Overview

UD-DASK functions are grouped to the following classes:

• General Configuration Function Group

• Analog Input Function Group
 - Analog Input Configuration functions
 - One-Shot Analog Input functions
 - Continuous Analog Input functions
 - Asynchronous Analog Input Monitoring functions

• Analog Output Function Group

• Timer/Counter Function Group

• DIO Function Group

 • 7

 - Digital Input/Output Configuration function

8 •

2

Function Description

This chapter contains the detailed description of UD-DASK functions, including the UD-
DASK data types and function reference. The functions are arraned alphabetically in
3.2 Function Reference

2.1 Data Types

We defined some data types in USBDASK.H. These data types are used by UD-DASK
library. We suggest you to use these data types in your application programs. The
following table shows the data type names, their ranges and the corresponding data
types in C/C++, Visual Basic and Delphi (We didn’t define these data types in
USBDASK.BAS and USBDASK.PAS. Here they are just listed for reference)

Type Type Name Description Range

C/C++

(for 32-
bit

compiler)

Visual Basic Pascal (Delphi)

U8 8-bit ASCII
character

0 to 255 unsigned
char

Byte Byte

I16 16-bit signed
integer

-32768 to 32767 short Integer SmallInt

U16 16-bit unsigned
integer

0 to 65535 unsigned
short

Not supported
by BASIC, use
the signed
integer (I16)
instead

Word

I32 32-bit signed
integer

-2147483648 to

2147483647

long Long LongInt

U32 32-bit unsigned
integer

0 to 4294967295 unsigned
long

Not supported
by BASIC, use
the signed long
integer (I32)
instead

Cardinal

F32 32-bit single-
precision

floating-point

-3.402823E38 to

3.402823E38

float Single Single

F64 64-bit double-
precision

floating-point

-1.797683134862315E308
to

1.797683134862315E309

double Double Double

 • 9

2.2 Function Reference

2.2.1 UD_AI_1902_Config

@ Description

Informs UD-DASK library of the conversion source and trigger mode selected for the
USB-1901/1902/1903 module with module ID ModuleNum. You must call this function
before calling function to perform continuous analog input operation.

@ Modules Support

USB-1901/USB-1902/USB-1903

@ Syntax

Microsoft C/C++ and Borland C++
I16 UD_AI_1902_Config (U16 ModuleNum, U16 wConfigCtrl, U16 wTrigCtrl, U32

dwTrgLevel, U32 dwReTriggerCnt)

Visual Basic
UD_AI_1902_Config (ByVal ModuleNum As Integer, ByVal wConfigCtrl As Integer,

ByVal wTrigCtrl As Integer, ByVal dwTrgLevel As Long, ByVal
dwReTriggerCnt As Long) As Integer

@ Parameter

ModuleNum : The id of the module that wants to perform this operation.
wConfigCtrl : The settings for input-type and conversion-source. The valid settings

can be combined with OR (|) operator.
 Input-type:

P1902_AI_NonRef_SingEnded: None-Reference Single Ended.
P1902_AI_SingEnded: Single Ended.
P1902_AI_PseudoDifferential: Pseudo Differential.

 Conversion-source:
P1902_AI_CONVSRC_INT: on-board Programmable pacer
P1902_AI_CONVSRC_EXT: external signal trigger

wTrigCtrl: The settings for trigger-source, trigger-polarity, trigger-mode and re-
trigger. The valid settings can be combined with OR (|) operator.

 Trigger-Source:
P1902_AI_TRGSRC_AI0 ~ P1902_AI_TRGSRC_AI15: Analog

trigger from AI0 ~ AI15.
P1902_AI_TRGSRC_DTRIG: Digital trigger from AIDTRIG.

 Trigger-Polarity:
P1902_AI_TrgPositive: Rising edge.
P1902_AI_TrgNegative: Falling edge.
P1902_AI_Gate_PauseLow: Pause low when trigger-mode is set as

P1902_AI_TRGMOD_GATED.
P1902_AI_Gate_PauseHigh: Pause high when trigger-mode is set

as P1902_AI_TRGMOD_GATED.
 Trigger-Mode:

P1902_AI_TRGMOD_POST: Post-trigger.
P1902_AI_TRGMOD_GATED: Gated-trigger.
P1902_AI_TRGMOD_DELAY: Delay-trigger.

 Re-Trigger:

10 •

P1902_AI_EnReTigger: Enable Re-Trigger.
dwTrgLevel: The trigger level when trigger-source is set as

P1902_AI_TRGSRC_AI0 ~ P1902_AI_TRGSRC_AI15.The onboard
circuit will use this setting to compare the ADC data.
Please refer the AdRange parameter in UD_AI_ContReadChannel()
to translate the expected trigger voltage to trigger-level.
The translation formula is:
ADC maximum number * (expected trigger-voltage / maximum
voltage of selected AdRange).
For instance, if AD_B_10_V is selected and the expected trigger-
voltage is 5V, the trigger-level is 32767 * (5 / 10) = 16383 = 0x3FFF.

dwReTrigCnt: The count of re-trigger is required when the P1902_AI_EnReTigger is
set in wTrigCtrl parameter.

dwDelayCount:The count for delay. This setting is applied to one 80MHz-based
timer-counter.For instance, the value, 4,000,000, means 50
millisecond delay.

@ Return Code

NoError: The function returns successfully.
ErrorInvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorInvalidCardType: Indicates the module-type is not USB_1901/1902/1903.
ErrorCardNotRegistered: The specific module had not been registered. Please check the

ModuleNum parameter.
ErrorInvalidInputSignal: Indicates the invalid input-signal is assigned.
ErrorFuncNotSupport: The AI function is not supported.
ErrorInvalidDelayCount: The delay-count is less than 1, or less than 320 if the trigger-source is

configured as P1902_AI_TRGSRC_AI0 ~ P1902_AI_TRGSRC_AI15.
ErrorInvalidTriggerMode: This error is caused by the incorrect combination of trigger-settings.

i. P1902_AI_TRGMOD_GATED is configure, but the trigger source is not
P1902_AI_TRGSRC_DTRIG.
ii. enable P1902_AI_EnReTigger with P1902_AI_TRGSRC_SOFT trigger-source.
iii. enable P1902_AI_EnReTigger with P1902_AI_TRGMOD_GATED trigger-mode.

ErrorConfigIoctl: Failed to forward the command to driver, please call GetLastError() for detailed
system-error.

ErrorCardDisconnected: Indicates the USB device was disconnected.
ErrorContIoActive: The continuous AI operation is still running.

• 11

2.2.2 UD_AI_2401_Config

@ Description

Informs UD-DASK library of the analog input-type and trigger mode selected for the
USB-2401 module with module ID ModuleNum. You must call this function before
calling function to perform continuous analog input operation.

@ Modules Support

USB-2401

@ Syntax

Microsoft C/C++ and Borland C++
I16 UD_AI_2401_Config (U16 ModuleNum, U16 wChanCfg1, U16 wChanCfg2, U16

wChanCfg3, U16 wChanCfg4, U16 wTrigCtrl)

Visual Basic
UD_AI_2401_Config (ByVal ModuleNum As Integer, ByVal wChanCfg1 As Integer,

ByVal wChanCfg2 As Integer, ByVal wChanCfg3 As Integer, ByVal
wChanCfg4 As Integer, ByVal wTrigCtrl As Integer) As Integer

@ Parameter

ModuleNum: The id of the module that wants to perform this operation.
wChanCfg1:
wChanCfg2:
wChanCfg3:
wChanCfg4: The settings for input-type. The valid settings are:

P2401_Voltage_2D5V_Above: Voltage input (> 2.5V).
P2401_Voltage_2D5V_Below: Voltage input (<= 2.5V)
P2401_Current: Current input
P2401_RTD_4_Wire: 4-wire RTD type input.
P2401_RTD_3_Wire: 3-wire RTD type input.
P2401_RTD_2_Wire: 2-wire RTD type input.
P2401_Resistor: Resistance type input.
P2401_ThermoCouple: Thermo couple input.
P2401_Full_Bridge: Full-bridge input.
P2401_Half_Bridge: Half-bridge input.
P2401_ThermoCouple_Differential: Thermo-couple differential input.

(for USB-2401 A3 and newer devices)
P2401_350Ohm_Full_Bridge: Full-bridge input with 350Ω resistor.
P2401_350Ohm_Half_Bridge: Half-bridge input with 350Ω resistor.
P2401_120Ohm_Full_Bridge: Full-bridge input with 120Ω resistor.
P2401_120Ohm_Half_Bridge: Half-bridge input with 120Ω resistor.

wTrigCtrl: The settings for trigger-source, trigger-polarity, trigger-mode and re-
trigger. The valid settings can be combined with OR (|) operator.

 Trigger-Source:
P2401_AI_TRGSRC_SOFT: After calling UD_AI_ContReadChannel

/UD_AI_ContReadMultiChannels, the ADC is
triggered by software immediately.

P2401_AI_TRGSRC_DTRIG: Digital trigger from GPI0.
 Trigger-Mode:

P2401_AI_TRGMOD_POST: Post-trigger.

12 •

@ Return Code

NoError: The function returns successfully.
ErrorInvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorInvalidCardType: Indicates the module-type is not USB_2401.
ErrorCardNotRegistered: The specific module had not been registered. Please check the

ModuleNum parameter.
ErrorCardDisconnected: The surprised-removal had been reported to the specific module.
ErrorFuncNotSupport: The AI function is not supported.
ErrorInvalidInputSignal: Indicates the invalid input-type is assigned in wChanCfg1 ~ wChanCfg4.
ErrorInvalidTriggerType: Indicates the trigger-source is not configured as

P2401_AI_TRGSRC_SOFT or P2401_AI_TRGSRC_DTRIG.
ErrorInvalidTriggerMode: Indicates the trigger-mode is not configured as

P2401_AI_TRGMOD_POST.
ErrorConfigIoctl: Failed to forward the command to driver, please call GetLastError() for detailed

system-error.
ErrorCardDisconnected: Indicates the USB device was disconnected.
ErrorContIoActive: The continuous AI operation is still running.

• 13

2.2.3 UD_AI_2401_PollConfig

@ Description

Configures the speed and moving-average of polling operation. After calling this
function, the FPGA moving-average will be terminated immediately, and will be
restarted when calling UD_AI_ReadMultiChannels().

@ Modules Support

USB-2401

@ Syntax

Microsoft C/C++ and Borland C++
I16 UD_AI_2401_PollConfig (U16 ModuleNum, U16 wPollSpeed, U16

wMAvgStageCh1, U16 wMAvgStageCh2, U16 wMAvgStageCh3, U16
wMAvgStageCh4)

Visual Basic
UD_AI_2401_PollConfig (ByVal ModuleNum As Integer, ByVal wPollSpeed As

Integer, ByVal wMAvgStageCh1 As Integer, ByVal wMAvgStageCh2 As
Integer, ByVal wMAvgStageCh3 As Integer, ByVal wMAvgStageCh4 As
Integer) As Integer

@ Parameter

ModuleNum: The id of the module that wants to perform this operation.
wPollSpeed: The sampling rate in ADC. The valid settings are:

P2401_ADC_2000_SPS: 2000 samples/s
P2401_ADC_1000_SPS: 1000 samples/s.
P2401_ADC_640_SPS: 640 samples/s.
P2401_ADC_320_SPS: 320 samples/s.
P2401_ADC_160_SPS: 160 samples/s.
P2401_ADC_80_SPS: 80 samples/s.
P2401_ADC_40_SPS: 40 samples/s.
P2401_ADC_20_SPS: 20 samples/s.

wMAvgStageCh1:
wMAvgStageCh2:
wMAvgStageCh3:
wMAvgStageCh4 : Configures the moving-average stage in FPGA. The valid settings

are:
P2401_Polling_MAvg_Disable: Disable the moving-average.
P2401_Polling_MAvg_2_Samples: 2-samples moving-average.
P2401_Polling_MAvg_4_Samples: 4-samples moving-average.
P2401_Polling_MAvg_8_Samples: 8-samples moving-average.
P2401_Polling_MAvg_16_Samples: 16-samples moving-average.

@ Return Code

NoError: The function returns successfully.
ErrorInvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorInvalidCardType: Indicates the module-type is not USB_2401.
ErrorCardNotRegistered: The specific module had not been registered. Please check the

ModuleNum parameter.
ErrorCardDisconnected: The surprised-removal had been reported to the specific module.
ErrorFuncNotSupport: The AI function is not supported.

14 •

ErrorInvalidSampleRate: Indicates the invalid sampling-rate is assigned to wPollSpeed.
ErrorInvalidParamSetting: Indicates the invalid moving-average is not configured in wMAvgStageCh1

~ wMAvgStageCh4.
ErrorConfigIoctl: Failed to forward the command to driver, please call GetLastError() for detailed

system-error.
ErrorCardDisconnected: Indicates the USB device was disconnected.
ErrorContIoActive: The continuous AI operation is still running.

• 15

2.2.4 UD_AI_2405_Chan_Config

@ Description

Informs UD-DASK library of the analog input-type selected for the USB-2405 module
with module ID ModuleNum. You must call this function before calling function to
perform continuous analog input operation.

@ Modules Support

USB-2405

@ Syntax

Microsoft C/C++ and Borland C++
I16 UD_AI_2405_Chan_Config (U16 ModuleNum, U16 wChanCfg1, U16

wChanCfg2, U16 wChanCfg3, U16 wChanCfg4)

Visual Basic
UD_AI_2405_Chan_Config (ByVal ModuleNum As Integer, ByVal wChanCfg1 As

Integer, ByVal wChanCfg2 As Integer, ByVal wChanCfg3 As Integer, ByVal
wChanCfg4 As Integer) As Integer

@ Parameter

ModuleNum: The id of the module that wants to perform this operation.
wChanCfg1:
wChanCfg2:
wChanCfg3:
wChanCfg4: The configuration contains three parts – input-type, couple-type and

IEPE setting. Please bitwise-OR the revelant settings. The valid
settings are listed as follows:

The valid settings for input-type are:

P2405_AI_Differential or P2405_AI_PseudoDifferential
The valid couple-type settings are:

P2405_AI_Coupling_AC or P2405_AI_Coupling_None.
The valid IEPE settings are:

P2405_AI_EnableIEPE or P2405_AI_DisableIEPE

@ Return Code

NoError: The function returns successfully.
ErrorInvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorInvalidCardType: Indicates the module-type is not USB_2405.
ErrorCardNotRegistered: The specific module had not been registered. Please check the

ModuleNum parameter.
ErrorCardDisconnected: The surprised-removal had been reported to the specific module.
ErrorFuncNotSupport: The AI function is not supported.
ErrorInvalidInputSignal: Indicates the invalid input-type is assigned in wChanCfg1 ~ wChanCfg4.
ErrorConfigIoctl: Failed to forward the command to driver, please call GetLastError() for detailed

system-error.
ErrorCardDisconnected: Indicates the USB device was disconnected.
ErrorContIoActive: The continuous AI operation is still running.

16 •

2.2.5 UD_AI_2405_Trig_Config

@ Description

Informs UD-DASK library of the trigger settings for the USB-2405 module with module
ID ModuleNum. You must call this function before calling function to perform
continuous analog input operation.

@ Modules Support

USB-2405

@ Syntax

Microsoft C/C++ and Borland C++
I16 UD_AI_2405_Trig_Config (U16 ModuleNum, U16 wConvSrc, U16 wTrigMode,

U16 wTrigCtrl, U32 dwReTrigCnt, U32 dwDLY1Cnt, U32 dwDLY2Cnt, U32
dwTrgLevel)

Visual Basic
UD_AI_2405_Trig_Config (ByVal ModuleNum As Integer, ByVal wConvSrc As

Integer, ByVal wTrigMode As Integer, ByVal wTrigCtrl As Integer, ByVal
dwReTrigCnt As Long, ByVal dwDLY1Cnt As Long, ByVal dwDLY2Cnt As
Long, ByVal dwTrgLevel As Long) As Integer

@ Parameter

ModuleNum: The id of the module that wants to perform this operation.
wConvSrc: The conversion source of AI acquisition. The valid settings are:

P2405_AI_CONVSRC_INT: on-board programmable pacer
P2405_AI_CONVSRC_EXT: external strobe from GPI1.

Note: To activate external-strobe, the GPI1 must be configured as
P2405_DIGITAL_INPUT with the UD_DIO_2405_Config().

Trigger-Mode:: P2405_AI_TRGMOD_POST: Post-trigger.
P2405_AI_TRGMOD_DELAY: Delay-trigger.
P2405_AI_TRGMOD_PRE: Pre-trigger.
P2405_AI_TRGMOD_MIDDLE: Middle-trigger.
P2405_AI_TRGMOD_GATED: Gated-trigger.

wTrigCtrl: The settings for trigger-source, trigger-polarity, trigger-mode and re-
trigger. The valid settings can be combined with OR (|) operator.

 Trigger-Source:
P2405_AI_TRGSRC_AI0 ~ P2405_AI_TRGSRC_AI3: Analog trigger

from AI0 ~ AI3.
P2405_AI_TRGSRC_SOFT: After calling UD_AI_ContReadChannel

/UD_AI_ContReadMultiChannels, the ADC is
triggered by software immediately.

P2405_AI_TRGSRC_DTRIG: Digital trigger from GPI0.

Note: To activate external-clock, the GPI0 must be configured as
P2405_DIGITAL_INPUT with the UD_DIO_2405_Config().

 Trigger-Polarity:

• 17

P2405_AI_TrgPositive:
Rising edge for P2405_AI_TRGSRC_AI0 ~
P2405_AI_TRGSRC_AI3.

P2405_AI_TrgNegative:
Falling edge for P2405_AI_TRGSRC_AI0 ~
P2405_AI_TRGSRC_AI3.

P2405_AI_Gate_PauseLow:
Pause low when trigger-mode is set as
P2405_AI_TRGMOD_GATED.

P2405_AI_Gate_PauseHigh:
Pause high when trigger-mode is set as
P2405_AI_TRGMOD_GATED.

 Re-Trigger:

P2405_AI_EnReTigger: Enable Re-Trigger.

dwReTrigCnt: The count of re-trigger is required when the P2405_AI_EnReTigger is
set in wTrigCtrl parameter.

dwDLY1Cnt: The number of samples before triggering.
dwDLY2Cnt: The number of samples after triggering.

Note: The dwDLY1Cnt and dwDLY2Cnt are the total delay-count for all
selected channels, the NumChans parameter in
UD_AI_ContReadMultiChannels().
For instanace, the pre-trigger mode is set with the 4096 is set to
dwDLY1Cnt. If 4-channels are involed with the
UD_AI_ContReadMultiChannels(), only 1024 AI data will be kept
before the occurrence of trigger.

dwTrgLevel: The trigger level when trigger-source is set as

P2405_AI_TRGSRC_AI0 ~ P2405_AI_TRGSRC_AI3.The onboard
circuit will use this setting to compare the ADC data.
Please refer the AdRange parameter in UD_AI_ContReadChannel()
to translate the expected trigger voltage to trigger-level.
The translation formula is:
ADC maximum number * (expected trigger-voltage / maximum
voltage of selected AdRange).
For instance, if AD_B_10_V is selected and the expected trigger-
voltage is 5V, the trigger-level is 8388607 * (5 / 10) = 4194303 =
0x3FFFFF.

@ Return Code

NoError: The function returns successfully.
ErrorInvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorInvalidCardType: Indicates the module-type is not USB_2405.
ErrorCardNotRegistered: The specific module had not been registered. Please check the

ModuleNum parameter.
ErrorCardDisconnected: The surprised-removal had been reported to the specific module.
ErrorFuncNotSupport: The AI function is not supported.

18 •

ErrorInvalidTriggerType: Indicates the invalid trigger-source is assigned.
ErrorInvalidTriggerMode: Indicates the invalid trigger-mode is assigned.
ErrorConfigIoctl: Failed to forward the command to driver, please call GetLastError() for detailed

system-error.
ErrorInvalidDelayCount: Invalid value is assigned to dwDLY1Cnt or dwDLY2Cnt parameter.
ErrorCardDisconnected: Indicates the USB device was disconnected.
ErrorContIoActive: The continuous AI operation is still running.

• 19

2.2.6 UD_AI_Channel_Config

@ Description

Informs UD-DASK library of the analog input-type selected with module ID
ModuleNum. The AI channels must be configured before calling function to perform
continuous analog input operation.

@ Modules Support

USB-1210

@ Syntax

Microsoft C/C++ and Borland C++
I16 UD_AI_Channel_Config (U16 ModuleNum, U16 wChanCfg1, U16 wChanCfg2,

U16 wChanCfg3, U16 wChanCfg4)

Visual Basic
UD_AI_Channel_Config (ByVal ModuleNum As Integer, ByVal wChanCfg1 As

Integer, ByVal wChanCfg2 As Integer, ByVal wChanCfg3 As Integer, ByVal
wChanCfg4 As Integer) As Integer

@ Parameter

ModuleNum: The id of the module that wants to perform this operation.
wChanCfg1:
wChanCfg2:
wChanCfg3:
wChanCfg4: The configuration contains three parts – input-type, couple-type and

IEPE setting. Please bitwise-OR the revelant settings.

The valid settings for input-type are:
UD_AI_NonRef_SingEnded
UD_AI_SingEnded
UD_AI_Differential
UD_AI_PseudoDifferential

The valid couple-type settings are:
UD_AI_Coupling_AC
UD_AI_Coupling_None

The valid IEPE settings are:
UD_AI_EnableIEPE
UD_AI_DisableIEPE

@ Return Code

NoError: The function returns successfully.
ErrorInvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorInvalidCardType: Indicates the module-type is not supported.
ErrorCardNotRegistered: The specific module had not been registered. Please check the

ModuleNum parameter.
ErrorCardDisconnected: The surprised-removal had been reported to the specific module.
ErrorFuncNotSupport: The AI function is not supported.
ErrorInvalidInputSignal: Indicates the invalid input-type is assigned in wChanCfg1 ~ wChanCfg4.
ErrorConfigIoctl: Failed to forward the command to driver, please call GetLastError() for detailed

system-error.
ErrorCardDisconnected: Indicates the USB device was disconnected.

20 •

ErrorContIoActive: The continuous AI operation is still running.

• 21

2.2.7 UD_AI_Trigger_Config

@ Description

Informs UD-DASK library of the trigger settings with module ID ModuleNum. The
conversion-source and trigger-configuration must be set before calling function to
perform continuous analog input operation.

@ Modules Support

USB-1210

@ Syntax

Microsoft C/C++ and Borland C++
I16 UD_AI_Trigger_Config (U16 ModuleNum, U16 wConvSrc, U16 wTrigMode, U16

wTrigCtrl, U32 dwReTrigCnt, U32 dwDLY1Cnt, U32 dwDLY2Cnt, U32
dwTrgLevel)

Visual Basic
UD_AI_Trigger_Config (ByVal ModuleNum As Integer, ByVal wConvSrc As Integer,

ByVal wTrigMode As Integer, ByVal wTrigCtrl As Integer, ByVal
dwReTrigCnt As Long, ByVal dwDLY1Cnt As Long, ByVal dwDLY2Cnt As
Long, ByVal dwTrgLevel As Long) As Integer

@ Parameter

ModuleNum: The id of the module that wants to perform this operation.
wConvSrc: The conversion source of AI acquisition. The valid settings are:

UD_AI_CONVSRC_INT: on-board programmable pacer
UD_AI_CONVSRC_EXT: external strobe / external clock.

Trigger-Mode:: UD_AI_TRGMOD_POST: Post-trigger.

UD_AI_TRGMOD_DELAY: Delay-trigger.
UD_AI_TRGMOD_PRE: Pre-trigger.
UD_AI_TRGMOD_MIDDLE: Middle-trigger.
UD_AI_TRGMOD_GATED: Gated-trigger.

wTrigCtrl: The settings for trigger-source, trigger-polarity, trigger-mode and re-
trigger. The valid settings can be combined with OR (|) operator.

 Trigger-Source:
UD_AI_TRGSRC_AI0 ~ UD_AI_TRGSRC_AI15: Analog trigger from

AI0 ~ AI15.
UD_AI_TRGSRC_SOFT: After calling UD_AI_ContReadChannel

/UD_AI_ContReadMultiChannels, the ADC is
triggered by software immediately.

UD_AI_TRGSRC_DTRIG: Digital trigger.
 Trigger-Polarity:

UD_AI_TrigPositive:
Rising edge for UD_AI_TRGSRC_AI0 ~
UD_AI_TRGSRC_AI15.

UD_AI_TrigNegative:
Falling edge for UD_AI_TRGSRC_AI0 ~
UD_AI_TRGSRC_AI15.

22 •

UD_AI_Gate_PauseLow:
Pause low when trigger-mode is set as
UD_AI_TRGMOD_GATED.

UD_AI_Gate_PauseHigh:
Pause high when trigger-mode is set as
UD_AI_TRGMOD_GATED.

 Re-Trigger:

UD_AI_EnReTrigger: Enable Re-Trigger.
UD_AI_DisReTrigger: Disable Re-Trigger.

dwReTrigCnt: The count of re-trigger is required when the UD_AI_EnReTigger is set
in wTrigCtrl parameter.

dwDLY1Cnt: The number of samples before triggering.
dwDLY2Cnt: The number of samples after triggering.

Note: The dwDLY1Cnt and dwDLY2Cnt are the total delay-count for all
selected channels, the NumChans parameter in
UD_AI_ContReadMultiChannels().
For instanace, the pre-trigger mode is set with the 4096 is set to
dwDLY1Cnt. If 4-channels are involed with the
UD_AI_ContReadMultiChannels(), only 1024 AI data will be kept
before the occurrence of trigger.
If the Trigger-Mode is set to UD_AI_TRGMOD_PRE, the
dwDLY1Cnt must be equal to the ReadCount parameter of
UD_AI_ContReadChannel(), UD_AI_ContReadMultiChannels(),
UD_AI_ContReadChannelToFile() and
UD_AI_ContReadMultiChannelsToFile()
If the Trigger-Mode is set to UD_AI_TRGMOD_MIDDLE, the
(dwDLY1Cnt + dwDLY2Cnt) must be equal to the
ReadCount parameter of UD_AI_ContReadChannel(),
UD_AI_ContReadMultiChannels(),
UD_AI_ContReadChannelToFile() and
UD_AI_ContReadMultiChannelsToFile()

dwTrgLevel: The trigger level when trigger-source is set as UD_AI_TRGSRC_AI0

~ UD_AI_TRGSRC_AI15.The onboard circuit will use this setting to
compare the ADC data.
Please refer the AdRange parameter in UD_AI_ContReadChannel()
to translate the expected trigger voltage to trigger-level.
The translation formula is:
ADC maximum number * (expected trigger-voltage / maximum
voltage of selected AdRange).
For instance, if the Range of trigger-channel is AD_B_10_V, and the
expected trigger-voltage is 5V, the trigger-level for USB-1210 is
(2^15 -1) * (5 / 10) = 32767 * (5 / 10) = 16383 = 0x3FFF.

@ Return Code

NoError: The function returns successfully.

• 23

ErrorInvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorInvalidCardType: Indicates the module-type is not supported.
ErrorCardNotRegistered: The specific module had not been registered. Please check the

ModuleNum parameter.
ErrorCardDisconnected: The surprised-removal had been reported to the specific module.
ErrorFuncNotSupport: The AI function is not supported.
ErrorInvalidTriggerType: Indicates the invalid trigger-source is assigned.
ErrorInvalidTriggerMode: Indicates the invalid trigger-mode is assigned.
ErrorConfigIoctl: Failed to forward the command to driver, please call GetLastError() for detailed

system-error.
ErrorInvalidDelayCount: Invalid value is assigned to dwDLY1Cnt or dwDLY2Cnt parameter.
ErrorCardDisconnected: Indicates the USB device was disconnected.
ErrorContIoActive: The continuous AI operation is still running.

24 •

2.2.8 UD_AI_AsyncCheck

@ Description

Check the current status of the asynchronous analog input operation.

@ Modules Support

USB-1901/USB-1902/USB-1903/USB-2401/USB-2405/USB-1210

@ Syntax

Microsoft C/C++ and Borland C++
I16 UD_AI_AsyncCheck (U16 ModuleNum, BOOLEAN *Stopped, U32 *AccessCnt)

Visual Basic
UD_AI_AsyncCheck (ByVal ModuleNum As Integer, Stopped As Byte, AccessCnt

As Long) As Integer

@ Parameter

ModuleNum : The id of the module that wants to perform this operation.
Stopped : Whether the asynchronous analog input operation has completed. If

Stopped = TRUE, the analog input operation has stopped. Either the
number of A/D conversions indicated in the call that initiated the
asynchronous analog input operation has completed or an error has
occurred. If Stopped = FALSE, the operation is not yet complete.
(constants TRUE and FALSE are defined in UsbDask.h)

AccessCnt : In the condition that the trigger acquisition mode is not used,

AccessCnt returns the number of A/D data that has been transferred
at the time calling UD_AI_AsyncCheck().

@ Return Code

NoError: The function returns successfully.
ErrorInvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check the

ModuleNum parameter.
ErrorFuncNotSupport: The AI function is not supported.
ErrorConflictWithSyncMode: The synchronous AI operation is conflict with this function.
ErrorCardDisconnected: Indicates the USB device was disconnected.
ErrorAdFifoFull: Indicates the occurrence of FIFO overrun.

• 25

2.2.9 UD_AI_AsyncClear

@ Description

Stop the asynchronous analog input operation. The A/D data will be copied to user’s
buffer when this function is called. The configurations of channel/triggering will be
cleared as well.

@ Modules Support

USB-1901/USB-1902/USB-1903/USB-2401/USB-2405/USB-1210

@ Syntax

Microsoft C/C++ and Borland C++
I16 UD_AI_AsyncClear (U16 ModuleNum, U32 *AccessCnt)

Visual Basic
UD_AI_AsyncClear (ByVal ModuleNum As Integer, AccessCnt As Long) As Integer

@ Parameter

ModuleNum : The id of the module that wants to perform this operation.
AccessCnt : In the condition that the trigger acquisition mode is not used,

AccessCnt returns the number of A/D data that has been transferred
at the time calling UD_AI_AsyncClear().

@ Return Code

NoError: The function returns successfully.
ErrorInvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check the

ModuleNum parameter.
ErrorCardDisconnected: Indicates the USB device was disconnected.
ErrorFuncNotSupport: The AI function is not supported.

26 •

2.2.10 UD_AI_AsyncDblBufferHalfReady

@ Description

In asynchronous double-buffered AI, indicates the half buffer of data in circular buffer
is ready.

@ Modules Support

USB-1901/USB-1902/USB-1903/USB-2401/USB-2405/USB-1210

@ Syntax

Microsoft C/C++ and Borland C++
I16 UD_AI_AsyncDblBufferHalfReady (U16 ModuleNum, BOOLEAN *HalfReady,

BOOLEAN *StopFlag)

Visual Basic
UD_AI_AsyncDblBufferHalfReady(ByVal ModuleNum As Integer, HalfReady As Byte,

StopFlag As Byte) As Integer

@ Parameter

ModuleNum : The id of the module that wants to perform this operation.
HalfReady : Whether the half buffer of data is available. If HalfReady = TRUE, you

can call UD_AI_AsyncDblBufferTransfer() to copy the data to
your user buffer. (constants TRUE and FALSE are defined in
UsbDask.h)

StopFlag : Whether the asynchronous analog input operation has completed. If
StopFlag = TRUE, the analog input operation has stopped. If StopFlag
= FALSE, the operation is not yet complete. (constants TRUE and
FALSE are defined in UsbDask.h)

@ Return Code

NoError: The function returns successfully.
ErrorInvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check the

ModuleNum parameter.
ErrorFuncNotSupport: The AI function is not supported.
ErrorConflictWithSyncMode: The synchronous AI operation is conflict with this function.
ErrorAdFifoFull: Indicates the occurrence of FIFO overrun.
ErrorCardDisconnected: Indicates the USB device was disconnected.
NoError, ErrorInvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport

• 27

2.2.11 UD_AI_AsyncDblBufferMode

@ Description

Enable / disable the double-buffered data acquisition mode.

@ Modules Support

USB-1901/USB-1902/USB-1903/USB-2401/USB-2405/USB-1210

@ Syntax

Microsoft C/C++ and Borland C++
I16 UD_AI_AsyncDblBufferMode (U16 ModuleNum, BOOLEAN Enable)

Visual Basic
UD_AI_AsyncDblBufferMode (ByVal ModuleNum As Integer, ByVal Enable As Byte)

As Integer

@ Parameter

ModuleNum : The id of the module that wants to perform this operation.
Enable : Whether the double-buffered mode is enabled or not.
 TRUE: double-buffered mode is enabled.
 FALSE: double-buffered mode is disabled.
 (constants TRUE and FALSE are defined in UsbDask.h)

@ Return Code

NoError: The function returns successfully.
ErrorInvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check the

ModuleNum parameter.
ErrorFuncNotSupport: The AI function is not supported.
ErrorCardDisconnected: Indicates the USB device was disconnected.
ErrorContIoActive: The AI function had not been completed. Call UD_AI_AsyncClear()
to Stop AI function.

28 •

2.2.12 UD_AI_AsyncDblBufferTransfer

@ Description

Depending on the continuous AI function selected, half of the data of the circular
buffer will be saved into the user buffer (if continuous AI function is:
UD_AI_ContReadChannel and UD_AI_ContReadMultiChannels) or logged into a disk
file (if continuous AI function is: UD_AI_ContReadChannelToFile and
UD_AI_ContReadMultiChannelsToFile).
You can execute this function repeatedly to return sequential half buffers of the data.

@ Modules Support

USB-1901/USB-1902/USB-1903/USB-1210

@ Syntax

Microsoft C/C++ and Borland C++
I16 UD_AI_AsyncDblBufferTransfer (U16 ModuleNum, U16 *Buffer)

Visual Basic
UD_AI_AsyncDblBufferTransfer (ByVal ModuleNum As Integer, Buffer As Integer)

As Integer

@ Parameter

ModuleNum : The id of the module that performs the asynchronous double-buffered
operation.

Buffer : The user buffer. An array that the A/D data will be copied to. If the
data will be saved into a disk file, this argument will be ignored.
Please refer to Appendix C, AI Data Format for the data format in
Buffer or the data file.

@ Return Code

NoError: The function returns successfully.
ErrorInvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check the

ModuleNum parameter.
ErrorBadCardType: Indicates the module-type is not supported.
ErrorFuncNotSupport: The AI function is not supported.
ErrorCardDisconnected: Indicates the USB device was disconnected.
ErrorNotDoubleBufferMode: The AI operation is not started with double-buffered mode.

• 29

2.2.13 UD_AI_AsyncDblBufferTransfer32

@ Description

Depending on the continuous AI function selected, half of the data of the circular
buffer will be saved into the user buffer (if continuous AI function is:
UD_AI_ContReadChannel and UD_AI_ContReadMultiChannels) or logged into a disk
file (if continuous AI function is: UD_AI_ContReadChannelToFile and
UD_AI_ContReadMultiChannelsToFile).
You can execute this function repeatedly to return sequential half buffers of the data.

@ Modules Support

USB-2401/USB-2405

@ Syntax

Microsoft C/C++ and Borland C++
I16 UD_AI_AsyncDblBufferTransfer32 (U16 ModuleNum, U32 *Buffer)

Visual Basic
UD_AI_AsyncDblBufferTransfer32 (ByVal ModuleNum As Integer, Buffer As Long)

As Integer

@ Parameter

ModuleNum : The id of the module that performs the asynchronous double-buffered
operation.

Buffer : The user buffer. An array that the A/D data will be copied to. If the
data will be saved into a disk file, this argument will be ignored.
Please refer to Appendix C, AI Data Format for the data format in
Buffer or the data file.

@ Return Code

NoError: The function returns successfully.
ErrorInvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check the

ModuleNum parameter.
ErrorBadCardType: Indicates the module-type is not supported.
ErrorFuncNotSupport: The AI function is not supported.
ErrorCardDisconnected: Indicates the USB device was disconnected.
ErrorNotDoubleBufferMode: The AI operation is not started with double-buffered mode.

30 •

2.2.14 UD_AI_AsyncDblBufferOverrun

@ Description

Check or clears the overrun status of double-buffered analog input operation.

@ Modules Support

USB-1901/USB-1902/USB-1903/USB-2401/USB-2405/USB-1210

@ Syntax

Microsoft C/C++ and Borland C++
I16 UD_AI_AsyncDblBufferOverrun (U16 ModuleNum, U16 op, U16 *overrunFlag)

Visual Basic
UD_AI_AsyncDblBufferOverrun (ByVal ModuleNum As Integer, ByVal op As Integer,

overrunFlag As Integer) As Integer

@ Parameter

ModuleNum : The id of the module that performs the asynchronous double-buffered
operation.

op : Check/Clear the overrun status/flag.
 0 – Check the overrun status.
 1 – Clear the overrun flag.
overrunFlag : Returned overrun status.
 0 – No overrun occurred.
 1 – Overrun occurred.

@ Return Code

NoError: The function returns successfully.
ErrorInvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check the

ModuleNum parameter.
ErrorCardDisconnected: Indicates the USB device was disconnected.
ErrorFuncNotSupport: The AI function is not supported.

• 31

2.2.15 UD_AI_AsyncDblBufferHandled

@ Description

Notifies UD-DASK the ready buffer has been handled in user application. One related
flag will be changed to indicate the overrun status of double-buffered operation.

@ Modules Support

USB-1901/USB-1902/USB-1903/USB-2401/USB-2405/USB-1210

@ Syntax

Microsoft C/C++ and Borland C++
I16 UD_AI_AsyncDblBufferHandled (U16 ModuleNum)

Visual Basic
UD_AI_AsyncDblBufferHandled (ByVal ModuleNum As Integer) As Integer

@ Parameter

ModuleNum : The id of the module that performs the asynchronous double-buffered
operation.

@ Return Code

NoError: The function returns successfully.
ErrorInvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check the

ModuleNum parameter.
ErrorFuncNotSupport: The AI function is not supported.
ErrorCardDisconnected: Indicates the USB device was disconnected.
ErrorNotDoubleBufferMode: The AI operation is not started with double-buffered mode.

32 •

2.2.16 UD_AI_AsyncDblBufferToFile

@ Description

For double buffer mode of continuous AI, if the continuous AI function is:
Check or clears the overrun status of double-buffered analog input operation.
AI_ContReadChannelToFile,

AI_ContReadMultiChannelsToFile or

AI_ContScanChannelsToFile

call this function to log the data of the circular buffer into a disk file.

@ Modules Support

USB-1901/USB-1902/USB-1903/USB-2401/USB-2405/USB-1210

@ Syntax

Microsoft C/C++ and Borland C++
I16 UD_AI_AsyncDblBufferToFile (U16 ModuleNum)

Visual Basic
UD_AI_AsyncDblBufferToFile (ByVal ModuleNum As Integer) As Integer

@ Parameter

ModuleNum : The id of the module that performs the asynchronous double-buffered
operation.

@ Return Code

NoError: The function returns successfully.

ErrorInvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check the

ModuleNum parameter.
ErrorCardDisconnected: Indicates the USB device was disconnected.
ErrorFuncNotSupport: The AI function is not supported.

• 33

2.2.17 UD_AI_AsyncReTrigNextReady

@ Description

Checks whether the data associated to the next trigger signal is ready during an
asynchronous retriggered analog input operation.

ReTrigNextReady(U16 CardNumber, BOOLEAN *Ready, BOOLEAN *StopFlag, U32
*RdyTrigCnt);

@ Modules Support

USB-1901/USB-1902/USB-1903/USB-2405/USB-1210

@ Syntax

Microsoft C/C++ and Borland C++
I16 UD_AI_AsyncReTrigNextReady (U16 ModuleNum, BOOLEAN *Ready,

BOOLEAN *StopFlag, U16 *RdyTrigCnt)

Visual Basic
UD_AI_AsyncReTrigNextReady (ByVal ModuleNum As Integer, Ready As Byte,

StopFlag As Byte, RdyTrigCnt As Integer) As Integer

@ Parameter

ModuleNum : The id of the module that performs the asynchronous double-buffered
operation.

Ready : Tells wheather the data associated with the next trigger signal is
available.
Constants TRUE and FALSE are defined in USBDASK.H.

StopFlag : Tells whether the asynchronous analog input operation is completed.
If StopFlag is TRUE, the analog input operation has stopped. If
StopFlag is FALSE, the operation is not yet completed.
Constants TRUE and FALSE are defined in USBDASK.H.

RdyTrigCnt : This argument returns the count of trigger signal that occurred if re-
trigger count is defined. If the re-trigger count is infinite, this argument
returns the index of the buffer that stored the data after the most
recent trigger signal trigger generated.

@ Return Code

NoError: The function returns successfully.
ErrorInvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check the

ModuleNum parameter.
ErrorFuncNotSupport: The AI function is not supported.
ErrorBadCardType: Indicates the module-type is not supported.
ErrorInvalidTriggerMode: Indicates the Re-trigger mode is not enabled.
ErrorCardDisconnected: Indicates the USB device was disconnected.
ErrorDBHalfReadyIoctl: Failed to forward the command to driver, please call
GetLastError() for detailed system-error.

34 •

2.2.18 UD_AI_ContReadChannel

@ Description

This function performs continuous A/D conversions on the specified analog input
channel at a rate as close to the rate you specified.

@ Modules Support

USB-1901/USB-1902/USB-1903/USB-2401/USB-2405/USB-1210

@ Syntax

Microsoft C/C++ and Borland C++
I16 UD_AI_ContReadChannel (U16 ModuleNum, U16 Channel, U16 AdRange, U16

*Buffer, U32 ReadCount, F64 SampleRate, U16 SyncMode)

Visual Basic
UD_AI_ContReadChannel (ByVal ModuleNum As Integer, ByVal Channel As Integer,

ByVal AdRange As Integer, Buffer As Integer, ByVal ReadCount As Long,
ByVal SampleRate As Double, ByVal SyncMode As Integer) As Integer

@ Parameter

ModuleNum : The id of the module that want to perform this operation.
Channel : Analog input channel number

USB-1901/USB-1902: 0 through 15
USB-1903: 0 through 7 (differential input signal only)
USB-2401: 0 through 3
USB-2405: 0 through 3
USB-1210: 0 through 3

AdRange : The analog input range the specified channel is setting. We define
some constants to represent various A/D input ranges in UsbDask.h.
Please refer to the Appendix B, AI Range Codes, for the valid range
values.

Buffer : An array to contain the acquired data. Buffer must has a length equal
to or greater than the value of parameter ReadCount. If double-
buffered mode is enabled, this parameter will be ignored. Please refer
to Appendix C, AI Data Format for the data format in Buffer.

ReadCount : If double-buffered mode is disabled, ReadCount is the number of A/D
conversions to be performed. For double-buffered acquisition,
ReadCount is the size (in samples) of the circular buffer.

Note: For USB-1901/1902/1903/1210, the value of ReadCount must be the
multiple of 256 for non-double-buffer mode, or multiple of 512 for
double-buffer mode.
For USB-2401/2405, the value of ReadCount must be the multiple of
128 for non-double-buffer mode, or multiple of 256 for double-buffer
mode.

SampleRate : For USB-1901/1902/1903, this parameter will be ignored. Please call
UD_AI_1902_ConterInterval() to set the Scan-Interval and
Sample-Interval.
The valid settings are:
USB-2401: 20, 40, 80, 160, 320, 500, 1000 and 2000 samples/s.

• 35

SyncMode : Whether this operation is performed synchronously or asynchronously.
If any trigger mode is enabled by calling
UD_AI_1902_Config()/UD_AI_2401_Config()/UD_AI_2405_
Trig_Config()/UD_AI_Trigger_Config(), this operation
should be performed asynchronously.
Valid values:

SYNCH_OP: synchronous A/D conversion, that is, the function
does not return until the A/D operation complete.

ASYNCH_OP:asynchronous A/D conversion.

Note: When SYNCH_OP is selected, the UD_AI_SetTimeOut() can set the
Timeout for synchronous operation.

@ Return Code

NoError: The function returns successfully.
ErrorInvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check the
ModuleNum parameter.
ErrorFuncNotSupport: The AI function is not supported.
ErrorInvalidAdRange: The invalid setting is set to AdRange.
ErrorInvalidInputSignal: Indicates the invalid input-signal is assigned.
ErrorTransferCountTooLarge: The ReadCount is too large.
ErrorInvalidIoChannel: The invalid setting is set to Channel.
ErrorContIoNotAllowed: The continuous operation is not supported.
ErrorConflictWithSyncMode: The double-buffered AI operation is conflict with SYNCH_OP.
ErrorInvalidTransferCount: The ReadCount is not multiple of 256/512 (for USB-
190x/1210), 128/256 (for USB-2401/2405).
ErrorInvalidTriggerMode: Neither double-buffered AI nor SYNCH_OP operation supports re-
trigger feature.
ErrorInvalidSampleRate: Indicates the sampling-rate is out of range.
ErrorInvalidCounterState: Either scan-Interval or sample-Interval is zero; Sample-
interval is larger than scan-interval.
ErrorSystemCallFailed: Failed to forward the command to driver, please call
GetLastError() for detailed system-error.
ErrorContIoActive: The AI function had not been completed. Call UD_AI_AsyncClear()
to Stop AI function.
ErrorConflictWithInfiniteOp: The infinite AI operation is only supported by double-
buffered acquisition.
ErrorInvalidTriggerChannel: The analog-trigger is not the first channel in Channel-
Gain-Queue. Please make sure the trigger channel is identical to the Channel
parameter.
ErrorWaitingUSBHostResponse: This is usually caused by trigger-enabled AI
operation. Call UD_AI_AsyncClear() to disable the waiting state.
ErrorTimeoutFromSyncMode: The synchronous AI operation is time-out.
ErrorCardDisconnected: Indicates the USB device was disconnected.
ErrorConflictWithAIConfig: The AdRange is conflict with the some specific input-type.

36 •

2.2.19 UD_AI_ContReadChannelToFile

@ Description

This function performs continuous A/D conversions on the specified analog input
channel and saves the acquired data in a disk file. The data is written to disk in binary
format, with the lower byte first (little endian). Please refer to Appendix D, Data File
Format for the data file structure and Appendix C, AI Data Format for the format of the
data in the data file.

@ Modules Support

USB-1901/USB-1902/USB-1903/USB-2401/USB-2405/USB-1210

@ Syntax

Microsoft C/C++ and Borland C++
I16 UD_AI_ContReadChannelToFile (U16 ModuleNum, U16 Channel, U16 AdRange,

U8 *FileName, U32 ReadCount, F64 SampleRate, U16 SyncMode);

Visual Basic
UD_AI_ContReadChannelToFile (ByVal ModuleNum As Integer, ByVal Channel As

Integer, ByVal AdRange As Integer, ByVal FileName As String, ByVal
ReadCount As Long, ByVal SampleRate As Double, ByVal SyncMode As
Integer) As Integer

@ Parameter

ModuleNum : The id of the module that want to perform this operation.
Channel : Analog input channel number

USB-1901/USB-1902: 0 through 15
USB-1903: 0 through 7 (differential input signal only)
USB-2401: 0 through 3
USB-2405: 0 through 3
USB-1210: 0 through 3

AdRange : The analog input range the specified channel is setting. We define
some constants to represent various A/D input ranges in UsbDask.h.
Please refer to the Appendix B, AI Range Codes, for the valid range
values.

FileName : Name of data file which stores the acquired data
ReadCount : If double-buffered mode is disabled, ReadCount is the number of A/D

conversions to be performed. For double-buffered acquisition,
ReadCount is the size (in samples) of the circular buffer.

Note: For USB-1901/1902/1903/1210, the value of ReadCount must be the
multiple of 256 for non-double-buffer mode, or multiple of 512 for
double-buffer mode.
For USB-2401/2405, the value of ReadCount must be the multiple of
128 for non-double-buffer mode, or multiple of 256 for double-buffer
mode.

SampleRate : For USB-1901/1902/1903, this parameter will be ignored. Please call
UD_AI_1902_ConterInterval() to set the Scan-Interval and
Sample-Interval.
The valid settings are:
USB-2401: 20, 40, 80, 160, 320, 500, 1000 and 2000 samples/s.

• 37

SyncMode : Whether this operation is performed synchronously or asynchronously.
If any trigger mode is enabled by calling
UD_AI_1902_Config()/UD_AI_2401_Config()/UD_AI_2405_
Trig_Config()/UD_AI_Trigger_Config(), this operation
should be performed asynchronously.
Valid values:

SYNCH_OP: synchronous A/D conversion, that is, the function
does not return until the A/D operation complete.

ASYNCH_OP:asynchronous A/D conversion.

Note: When SYNCH_OP is selected, the UD_AI_SetTimeOut() can set the
Timeout for synchronous operation.

@ Return Code

NoError: The function returns successfully.
ErrorInvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check the
ModuleNum parameter.
ErrorFuncNotSupport: The AI function is not supported.
ErrorOpenFile: Failed to create the file to save the A/D data.
ErrorInvalidAdRange: The invalid setting is set to AdRange.
ErrorInvalidInputSignal: Indicates the invalid input-signal is assigned.
ErrorTransferCountTooLarge: The ReadCount is too large.
ErrorInvalidIoChannel: The invalid setting is set to Channel.
ErrorContIoNotAllowed: The continuous operation is not supported.
ErrorConflictWithSyncMode: The double-buffered AI operation is conflict with SYNCH_OP.
ErrorInvalidTransferCount: The ReadCount is not multiple of 256/512 (for USB-190x),
128/256 (for USB-2401).
ErrorInvalidTriggerMode: Neither double-buffered AI nor SYNCH_OP operation supports re-
trigger feature.
ErrorInvalidSampleRate: Indicates the sampling-rate is out of range.
ErrorInvalidCounterState: Either scan-Interval or sample-Interval is zero; Sample-
interval is larger than scan-interval.
ErrorSystemCallFailed: Failed to forward the command to driver, please call
GetLastError() for detailed system-error.
ErrorContIoActive: The AI function had not been completed. Call UD_AI_AsyncClear()
to Stop AI function.
ErrorConflictWithInfiniteOp: The infinite AI operation is only supported with the double-
buffered mode.
ErrorInvalidTriggerChannel: The analog-trigger is not the first channel in Channel-
Gain-Queue. Please make sure the trigger channel is identical to the Channel
parameter.
ErrorWaitingUSBHostResponse: This is usually caused by trigger-enabled AI
operation. Call UD_AI_AsyncClear() to disable the waiting state.
ErrorTimeoutFromSyncMode: The synchronous AI operation is time-out.
ErrorCardDisconnected: Indicates the USB device was disconnected.
ErrorConflictWithAIConfig: The AdRange is conflict with the some specific input-type.

38 •

2.2.20 UD_AI_ContReadMultiChannels

@ Description

This function performs continuous A/D conversions on the specified analog input
channels at a rate as close to the rate you specified. This function takes advantage of
the channel-gain queue functionality to perform multi-channel analog input.

@ Modules Support

USB-1901/USB-1902/USB-1903/USB-2401/USB-2405/USB-1210

@ Syntax

Microsoft C/C++ and Borland C++
I16 UD_AI_ContReadMultiChannels (U16 ModuleNum, U16 numChans, U16

*Chans, U16 *AdRanges, U16 *Buffer, U32 ReadCount, F32 SampleRate,
U16 SyncMode)

Visual Basic
UD_AI_ContReadMultiChannels (ByVal ModuleNum As Integer, ByVal numChans

As Integer, Chans As Integer, AdRanges As Integer, Buffer As Integer,
ByVal ReadCount As Long, ByVal SampleRate As Single, ByVal
SyncMode As Integer) As Integer

@ Parameter

ModuleNum : The id of the module that want to perform this operation.
numChans : The number of analog input channels in the array Chans. The

maximum value:
USB-1901/USB-1902/USB-1903: 256
USB-2401: 4
USB-2405: 4
USB-1210: 4

Chans : Array of analog input channel numbers. The channel order for
acquiring data is the same as the order you set in Chans.
USB-1901/USB-1902: 0 through 15
USB-1903: 0 through 7 (differential input signal only)

Since there is no restriction of channel order setting, you
can set the channel order as you wish.

USB-2401: 0 through 3
USB-2405: 0 through 3
USB-1210: 0 through 4

AdRanges : An integer array of length numChans that contains the analog input
range for every channel in array Chans.
Please refer to the Appendix B for the valid range values.

Buffer : An integer array to contain the acquired data. The length of Buffer
must be equal to or greater than the value of parameter ReadCount.
The A/D data is stored in interleaved sequence. For example, if the
value of numChans is 3, and the numbers in Chans are 3, 8, and 0.
Then this function input data from channel 3, then channel 8, then
channel 0, then channel 3, then channel 8, ... The data acquired is put
to Buffer by order. So the data read from channel 3 is stored in
Buffer[0], Buffer[3], Buffer[6], ... The data from channel 8 is stored in
Buffer[1], Buffer[4], Buffer[7], ... The data from channel 0 is stored in
Buffer[2], Buffer[5], Buffer[8], ... If double-buffered mode is enabled,

• 39

this buffer is of no use, you can ignore this argument. Please refer to
Appendix C, AI Data Format for the data format in Buffer.

ReadCount : If double-buffered mode is disabled, ReadCount is the number of A/D
conversions to be performed. For double-buffered acquisition,
ReadCount is the size (in samples) of the circular buffer.

Note: For USB-1901/1902/1903/1210, the value of ReadCount must be the
multiple of 256 for non-double-buffer mode, or multiple of 512 for
double-buffer mode.
For USB-2401/2405, the value of ReadCount must be the multiple of
128 for non-double-buffer mode, or multiple of 256 for double-buffer
mode.

SampleRate : For USB-1901/1902/1903, this parameter will be ignored. Please call
UD_AI_1902_ConterInterval() to set the Scan-Interval and
Sample-Interval.
For USU-2401, only 20, 40, 80, 160, 320, 500, 1000 and 2000
(samples/s) are valid.

SyncMode : Whether this operation is performed synchronously or asynchronously.

If any trigger mode is enabled by calling
UD_AI_1902_Config()/UD_AI_2401_Config()/UD_AI_2405_
Trig_Config()/UD_AI_Trigger_Config(), this operation
should be performed asynchronously.
Valid values:

SYNCH_OP: synchronous A/D conversion, that is, the function
does not return until the A/D operation complete.

ASYNCH_OP:asynchronous A/D conversion.

Note: When SYNCH_OP is selected, the UD_AI_SetTimeOut() can set the
Timeout for synchronous operation.

@ Return Code

NoError: The function returns successfully.
ErrorInvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check the
ModuleNum parameter.
ErrorFuncNotSupport: The AI function is not supported.
ErrorInvalidAdRange: The invalid setting is set to AdRange.
ErrorInvalidInputSignal: Indicates the invalid input-signal is assigned.
ErrorTransferCountTooLarge: The ReadCount is too large.
ErrorChanGainQueueTooLarge: The numChans is too large.
ErrorInvalidIoChannel: The invalid setting is set to Channel.
ErrorContIoNotAllowed: The continuous operation is not supported.
ErrorConflictWithSyncMode: The double-buffered AI operation is conflict with SYNCH_OP.
ErrorInvalidTransferCount: The ReadCount is not multiple of 256/512 (for USB-
190x/1210), 128/256 (for USB-2401/2405).
ErrorInvalidTriggerMode: Neither double-buffered AI nor SYNCH_OP operation supports re-
trigger feature.
ErrorInvalidSampleRate: Indicates the sampling-rate is out of range.

40 •

ErrorInvalidCounterState: Either scan-Interval or sample-Interval is zero; Scan-Interval
is less than (sample-interval x NumChans)
ErrorSystemCallFailed: Failed to forward the command to driver, please call
GetLastError() for detailed system-error.
ErrorContIoActive: The AI function had not been completed. Call UD_AI_AsyncClear()
to Stop AI function.
ErrorConflictWithInfiniteOp: The infinite AI operation is only supported by double-
buffered acquisition.
ErrorInvalidTriggerChannel: The analog-trigger is not the first channel in Channel-
Gain-Queue. Please make sure the trigger channel is identical to the first channel in
Channel parameter.
ErrorWaitingUSBHostResponse: This is usually caused by trigger-enabled AI
operation. Call UD_AI_AsyncClear() to disable the waiting state.
ErrorChanGainQueueTooLarge: The numChans excesses the supported channel-
gain-queue.
ErrorTimeoutFromSyncMode: The synchronous AI operation is time-out.
ErrorCardDisconnected: Indicates the USB device was disconnected.
ErrorConflictWithAIConfig: The AdRange is conflict with the some specific input-type.

• 41

2.2.21 UD_AI_ContReadMultiChannelsToFile

@ Description

This function performs continuous A/D conversions on the specified analog input
channels and saves the acquired data in a disk file. The data is written to disk in
binary format, with the lower byte first (little endian). Please refer to Appendix D, Data
File Format for the data file structure and Appendix C, AI Data Format for the format of
the data in the data file. This function takes advantage of the USB-1902 channel-gain
queue functionality to perform multi-channel analog input.

@ Modules Support

USB-1901/USB-1902/USB-1903/USB-2401/USB-2405/USB-1210

@ Syntax

Microsoft C/C++ and Borland C++
I16 UD_AI_ContReadMultiChannelsToFile (U16 ModuleNum, U16 NumChans, U16

*Chans, U16 *AdRanges, U8 *FileName, U32 ReadCount, F64
SampleRate, U16 SyncMode)

Visual Basic
UD_AI_ContReadMultiChannelsToFile (ByVal ModuleNum As Integer, ByVal

numChans As Integer, Chans As Integer, AdRanges As Integer, ByVal
FileName As String, ByVal ReadCount As Long, ByVal SampleRate As
Double, ByVal SyncMode As Integer) As Integer

@ Parameter

ModuleNum : The id of the module that want to perform this operation.
numChans : The number of analog input channels in the array Chans. The

maximum value:
USB-1901/USB-1902/USB-1903: 256
USB-2401: 4
USB-2405: 4
USB-1210: 4

Chans : Array of analog input channel numbers. The channel order for
acquiring data is the same as the order you set in Chans.
USB-1901/USB-1902: 0 through 15
USB-1903: 0 through 7 (differential input signal only)

Since there is no restriction of channel order setting, you
can set the channel order as you wish.

USB-2401: 0 through 3
USB-2405: 0 through 3
USB-1210: 0 through 3

AdRanges : An integer array of length numChans that contains the analog input
range for every channel in array Chans.
Please refer to the Appendix B for the valid range values.

FileName : Name of data file which stores the acquired data
ReadCount : If double-buffered mode is disabled, ReadCount is the number of A/D

conversions to be performed. For double-buffered acquisition,
ReadCount is the size (in samples) of the circular buffer.

42 •

Note: For USB-1901/1902/1903, the value of ReadCount must be the
multiple of 256 for non-double-buffer mode, or multiple of 512 for
double-buffer mode.
For USB-2401/2405, the value of ReadCount must be the multiple of
128 for non-double-buffer mode, or multiple of 256 for double-buffer
mode.

SampleRate : For USB-1901/1902/1903, this parameter will be ignored. Please call
UD_AI_1902_ConterInterval() to set the Scan-Interval and
Sample-Interval.
For USU-2401, only 20, 40, 80, 160, 320, 500, 1000 and 2000
(samples/s) are valid.

SyncMode : Whether this operation is performed synchronously or asynchronously.

If any trigger mode is enabled by calling
UD_AI_1902_Config()/UD_AI_2401_Config()/UD_AI_2405_
Trig_Config()/UD_AI_Trigger_Config(), this operation
should be performed asynchronously.
Valid values:

SYNCH_OP: synchronous A/D conversion, that is, the function
does not return until the A/D operation complete.

ASYNCH_OP:asynchronous A/D conversion.

Note: When SYNCH_OP is selected, the UD_AI_SetTimeOut() can set the
Timeout for synchronous operation.

@ Return Code

NoError: The function returns successfully.
ErrorInvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check the
ModuleNum parameter.
ErrorFuncNotSupport: The AI function is not supported.
ErrorOpenFile: Failed to create the file to save the A/D data.
ErrorInvalidAdRange: The invalid setting is set to AdRange.
ErrorInvalidInputSignal: Indicates the invalid input-signal is assigned.
ErrorTransferCountTooLarge: The ReadCount is too large.
ErrorChanGainQueueTooLarge: The numChans is too large.
ErrorInvalidIoChannel: The invalid setting is set to Channel.
ErrorContIoNotAllowed: The continuous operation is not supported.
ErrorConflictWithSyncMode: The double-buffered AI operation is conflict with SYNCH_OP.
ErrorInvalidTransferCount: The ReadCount is not multiple of 256/512 (for USB-
190x/1210), 128/256 (for USB-2401/2405).
ErrorInvalidTriggerMode: Neither double-buffered AI nor SYNCH_OP operation supports re-
trigger feature.
ErrorInvalidSampleRate: Indicates the sampling-rate is out of range.
ErrorInvalidCounterState: Either scan-Interval or sample-Interval is zero; Scan-Interval
is less than (sample-interval x NumChans)
ErrorSystemCallFailed: Failed to forward the command to driver, please call
GetLastError() for detailed system-error.
ErrorContIoActive: The AI function had not been completed. Call UD_AI_AsyncClear()
to Stop AI function.

• 43

ErrorConflictWithInfiniteOp: The infinite AI operation is only supported by double-
buffered acquisition.
ErrorInvalidTriggerChannel: The analog-trigger is not the first channel in Channel-
Gain-Queue. Please make sure the trigger channel is identical to the first channel in
Channel parameter.
ErrorWaitingUSBHostResponse: This is usually caused by trigger-enabled AI
operation. Call UD_AI_AsyncClear() to disable the waiting state.
ErrorChanGainQueueTooLarge: The numChans excesses the supported channel-
gain-queue.
ErrorTimeoutFromSyncMode: The synchronous AI operation is time-out.
ErrorCardDisconnected: Indicates the USB device was disconnected.
ErrorConflictWithAIConfig: The AdRange is conflict with the some specific input-type.

44 •

2.2.22 UD_AI_VoltScale

@ Description

Converts the result from an UD_AI_ReadChannel() call to actual input voltage.

@ Modules Support

USB-1901/USB-1902/USB-1903/Usb-1210

@ Syntax

Microsoft C/C++ and Borland C++
I16 UD_AI_VoltScale (U16 ModuleNum, U16 AdRange, U16 reading, F64 *voltage)

Visual Basic
UD_AI_VoltScale (ByVal ModuleNum As Integer, ByVal AdRange As Integer, ByVal

reading As Integer, voltage As Double) As Integer

@ Parameter

ModuleNum : The id of the module that want to perform this operation.
AdRange : The analog input range the specified channel is setting. Please refer

to the Appendix B for the valid range values.
reading : Result of AD Conversion.
voltage : Computed voltage value

@ Return Code

NoError: The function returns successfully.
ErrorInvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check the
ModuleNum parameter.
ErrorFuncNotSupport: The AI function is not supported.
ErrorBadCardType: Indicates the module-type is not supported.
ErrorCardDisconnected: Indicates the USB device was disconnected.
ErrorInvalidAdRange: The invalid setting is set to AdRange.

• 45

2.2.23 UD_AI_VoltScale32

@ Description

Converts the result from an UD_AI_ReadChannel() call to actual input voltage.

@ Modules Support

USB-2405

@ Syntax

Microsoft C/C++ and Borland C++
I16 UD_AI_VoltScale32 (U16 ModuleNum, U16 AdRange, U16 inType, U32 reading,

F64 *voltage)

Visual Basic
UD_AI_VoltScale (ByVal ModuleNum As Integer, ByVal AdRange As Integer, ByVal

inType As Integer, ByVal reading As Long, voltage As Double) As Integer

@ Parameter

ModuleNum : The id of the module that want to perform this operation.
AdRange : The analog input range the specified channel is setting. Please refer

to the Appendix B for the valid range values.
inType : Reserved for future use.
reading : Result of AD Conversion.
voltage : Computed voltage value

@ Return Code

NoError: The function returns successfully.
ErrorInvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check the
ModuleNum parameter.
ErrorFuncNotSupport: The AI function is not supported.
ErrorBadCardType: Indicates the module-type is not supported.
ErrorCardDisconnected: Indicates the USB device was disconnected.
ErrorInvalidAdRange: The invalid setting is set to AdRange.

46 •

2.2.24 UD_AI_2401_Scale32

@ Description

Converts the result from an UD_AI_ReadChannel() call to actual input
voltage/current/resistance.

@ Modules Support

USB-2401

@ Syntax

Microsoft C/C++ and Borland C++
I16 UD_AI_2401_Scale32 (U16 ModuleNum, U16 AdRange, U16 inType, U32

reading, F64 *scaledValue)

Visual Basic
UD_AI_2401_Scale32 (ByVal ModuleNum As Integer, ByVal AdRange As Integer,

ByVal inType As Integer ByVal reading As Long, scaledValue As Double)
As Integer

@ Parameter

ModuleNum : The id of the module that want to perform this operation.
AdRange : The analog input range the specified channel. The valid ranges of

P2401_Voltage_2D5V_Above/ P2401_Voltage_2D5V_Below are :
AD_B_25_V, AD_B_12_5_V, AD_B_2_5_V and AD_B_0_3125_V.
For other input-type, any valid range is required and the specific
range will be assigned automatically.

inType: The settings for input-type. The valid settings are:
P2401_Voltage_2D5V_Above: Voltage input (> 2.5V).
P2401_Voltage_2D5V_Below: Voltage input (<= 2.5V)
P2401_Current: Current input
P2401_RTD_4_Wire: 4-wire RTD type input.
P2401_RTD_3_Wire: 3-wire RTD type input.
P2401_RTD_2_Wire: 2-wire RTD type input.
P2401_Resistor: Resistance type input.
P2401_ThermoCouple: Thermo couple input.
P2401_Full_Bridge: Full-bridge input.
P2401_Half_Bridge: Half-bridge input.

reading : Result of AD Conversion.
scaledValue : Computed value.

@ Return Code

NoError: The function returns successfully.
ErrorInvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check the
ModuleNum parameter.
ErrorFuncNotSupport: The AI function is not supported.
ErrorBadCardType: Indicates the module-type is not supported.
ErrorCardDisconnected: Indicates the USB device was disconnected.
ErrorInvalidAdRange: The invalid setting is set to AdRange.

• 47

2.2.25 UD_AI_ContVScale

@ Description

This function converts the continuous acquisition data of single channel to the actual
input voltages. The raw data is returned from the continuous A/D conversion call, say
UD_AI_ContReadChannel. (The multiple-channels raw data, returned from
UD_AI_ContReadMultiChannels, must be splitted by channels).

@ Modules Support

USB-1901/USB-1902/USB-1903/USB-1210

@ Syntax

Microsoft C/C++ and Borland C++
I16 UD_AI_ContVScale (U16 ModuleNum, U16 AdRange, U16 *readingArray, F64

*voltageArray, I32 count)

Visual Basic
UD_AI_ContVScale (ByVal ModuleNum As Integer, ByVal AdRange As Integer,

readingArray As Integer, voltageArray As Double, ByVal count As Long) As
Integer

@ Parameter

ModuleNum : The id of the module that want to perform this operation.
AdRange : The analog input range the continuous specified channel is setting.

Please refer to the Appendix B for the valid range values.
readingArray : Acquired continuous analog input data array
voltageArray : computed voltages array returned
count : The length of readingArray array.

@ Return Code

NoError: The function returns successfully.
ErrorInvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check the
ModuleNum parameter.
ErrorFuncNotSupport: The AI function is not supported.
ErrorBadCardType: Indicates the module-type is not supported.
ErrorCardDisconnected: Indicates the USB device was disconnected.
ErrorInvalidAdRange: The invalid setting is set to AdRange.

48 •

2.2.26 UD_AI_ContVScale32

@ Description

This function converts the continuous acquisition data of single channel to the actual
input voltages. The raw data is returned from the continuous A/D conversion call, say
UD_AI_ContReadChannel. (The multiple-channels raw data, returned from
UD_AI_ContReadMultiChannels, must be splitted by channels).

@ Modules Support

USB-2405

@ Syntax

Microsoft C/C++ and Borland C++
I16 UD_AI_ContVScale32 (U16 ModuleNum, U16 AdRange, U16 inType, U32

*readingArray, F64 *voltageArray, I32 count)

Visual Basic
UD_AI_ContVScale (ByVal ModuleNum As Integer, ByVal AdRange As Integer,

ByVal inType As Integer readingArray As Long, voltageArray As Double,
ByVal count As Long) As Integer

@ Parameter

ModuleNum : The id of the module that want to perform this operation.
AdRange : The analog input range the continuous specified channel is setting.

Please refer to the Appendix B for the valid range values.
inType: Reserved for future use.
readingArray : Acquired continuous analog input data array
voltageArray : Computed voltages array returned.
count : The length of readingArray array.

@ Return Code

NoError: The function returns successfully.
ErrorInvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check the
ModuleNum parameter.
ErrorFuncNotSupport: The AI function is not supported.
ErrorBadCardType: Indicates the module-type is not supported.
ErrorCardDisconnected: Indicates the USB device was disconnected.
ErrorInvalidAdRange: The invalid setting is set to AdRange.

• 49

2.2.27 UD_AI_2401_ContVScale32

@ Description

This function converts the continuous acquisition data of single channel to the actual
input voltages. The raw data is returned from the continuous A/D conversion call, say
UD_AI_ContReadChannel. (The multiple-channels raw data, returned from
UD_AI_ContReadMultiChannels, must be splitted by channels).

@ Modules Support

USB-2401

@ Syntax

Microsoft C/C++ and Borland C++
I16 UD_AI_2401_ContVScale32 (U16 ModuleNum, U16 AdRange, U16 inType, U32

*readingArray, F64 *ScaledArray, I32 count)

Visual Basic
UD_AI_2401_ContVScale32 (ByVal ModuleNum As Integer, ByVal AdRange As

Integer, ByVal inType As Integer, readingArray As Long, ScaledArray As
Double, ByVal count As Long) As Integer

@ Parameter

ModuleNum : The id of the module that want to perform this operation.
AdRange : The analog input range the specified channel. The invalid ranges of

P2401_Voltage_2D5V_Above/ P2401_Voltage_2D5V_Below are :
AD_B_25_V, AD_B_12_5_V, AD_B_2_5_V and AD_B_0_3125_V.
For other input-type, any valid range is required and the specific
range will be assigned automatically.

inType: The settings for input-type. The valid settings are:
P2401_Voltage_2D5V_Above: Voltage input (> 2.5V).
P2401_Voltage_2D5V_Below: Voltage input (<= 2.5V)
P2401_Current: Current input
P2401_RTD_4_Wire: 4-wire RTD type input.
P2401_RTD_3_Wire: 3-wire RTD type input.
P2401_RTD_2_Wire: 2-wire RTD type input.
P2401_Resistor: Resistance type input.
P2401_ThermoCouple: Thermo couple input.
P2401_Full_Bridge: Full-bridge input.
P2401_Half_Bridge: Half-bridge input.

readingArray : Acquired continuous analog input data array
scaledArray : computed voltages/currents/resistances array returned
count : The length of readingArray array.

@ Return Code

NoError: The function returns successfully.
ErrorInvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check the
ModuleNum parameter.
ErrorFuncNotSupport: The AI function is not supported.
ErrorBadCardType: Indicates the module-type is not supported.
ErrorCardDisconnected: Indicates the USB device was disconnected.
ErrorInvalidAdRange: The invalid setting is set to AdRange.

50 •

2.2.28 UD_AI_InitialMemoryAllocated

@ Description

This function returns the available memory size for analog input in the device driver in
argument MemSize. The continuous analog input transfer size can not exceed this
size.

@ Modules Support

USB-1901/USB-1902/USB-1903/USB-2401/USB-2405/USB-1210

@ Syntax

Microsoft C/C++ and Borland C++
I16 UD_AI_InitialMemoryAllocated (U16 ModuleNum, U32 MemSize)

Visual Basic
UD_AI_InitialMemoryAllocated (ByVal ModuleNum As Integer, MemSize As Long)

As Integer

@ Parameter

ModuleNum : The id of the module that want to perform this operation.
MemSize : The available memory size for continuous AI in device driver of this

card. The unit is KB (1024 bytes).

@ Return Code

NoError: The function returns successfully.
ErrorInvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check the
ModuleNum parameter.
ErrorCardDisconnected: Indicates the USB device was disconnected.
ErrorFuncNotSupport: The AI function is not supported.

• 51

2.2.29 UD_AI_ReadChannel

@ Description

This function performs a software triggered A/D conversion (analog input) on an
analog input channel and returns the value converted.

@ Modules Support

USB-1901/USB-1902/USB-1903/USB-2405/USB-1210

@ Syntax

Microsoft C/C++ and Borland C++
I16 UD_AI_ReadChannel (U16 ModuleNum, U16 Channel, U16 AdRange, U16

*Value)

Visual Basic
UD_AI_ReadChannel (ByVal ModuleNum As Integer, ByVal Channel As Integer,

ByVal AdRange As Integer, Value As Integer) As Integer

@ Parameter

ModuleNum : The id of the module that want to perform this operation.
Channel : Analog input channel number

USB-1901/USB-1902: 0 through 15
USB-1903: 0 through 7 (differential input signal only)
USB-2405: 0 through 3
USB-1210: 0 through 3

AdRange : The analog input range the specified channel is setting. We define
some constants to represent various A/D input ranges in UsbDask.h.
Please refer to the Appendix B, AI Range Codes, for the valid range
values.

Value : The memory to store the A/D converted data. Please refer to
Appendix C, AI Data Format for the data format.

@ Return Code

NoError: The function returns successfully.
ErrorInvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check the
ModuleNum parameter.
ErrorBadCardType: Indicates the module-type is not supported.
ErrorFuncNotSupport: The AI function is not supported.
ErrorInvalidIoChannel: The invalid setting is set to Channel.
ErrorInvalidAdRange: The invalid setting is set to AdRange.
ErrorCardDisconnected: Indicates the USB device was disconnected.
ErrorInvalidInputSignal: Indicates the invalid input-signal is assigned.

52 •

2.2.30 UD_AI_1902_CounterInterval

@ Description

This function configures the scan-interval / sample-interval for USB-1902 series
modules. Based on the conversion clock, the these two settings determine the interval
between samples and scans. For instance, when internal conversion-clock, 80MHz, is
selected, UD-AI_1902_CounterInterval(ModuleNum, 8000, 320) determined
Scan-Interval = 8,000 / 80,000,000 = 1 / 10,000 = 10KHz
Sample-Interval = 320 / 80,000,000 = 1 / 250,000 = 250KHz

Note: The sample-interval determines the interval in each scan. And in every scan, the A/D
conversion will applied to all AI channels that are configured in Channel-Gain queue.
Therefore, the Scan-Interval <= (number of Chan-Gain-Queue * Sample-Interval).

@ Modules Support

USB-1901/USB-1902/USB-1903

@ Syntax

Microsoft C/C++ and Borland C++
I16 UD_AI_1902_CounterInterval(U16 ModuleNum, U32 ScanIntrv, U32 SampIntrv)

Visual Basic
UD_AI_1902_CounterInterval(ByVal ModuleNum As Integer, ByVal ScanIntrv As

Long, ByVal SampIntrv As Long) As Integer

@ Parameter

ModuleNum : The id of the module that want to perform this operation.
ScanIntrv : The interval between scans. The ScanIntrv must be larger than

SampIntrv.
SampIntrv : The interval between sample in each scan. The valid value is:

USB-1901/USB-1902//USB-1903 : 320

@ Return Code

NoError: The function returns successfully.
ErrorInvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check the
ModuleNum parameter.
ErrorFuncNotSupport: The AI function is not supported.
ErrorBadCardType: Indicates the module-type is not supported.
ErrorCardDisconnected: Indicates the USB device was disconnected.
ErrorInvalidCounterValue: Invalid value is assigned to either ScanIntrv or SampIntrv;
SampIntrv is larger than ScanIntrv.

• 53

2.2.31 UD_AI_DDS_ActualRate_Get

@ Description

This function read the actual sampling-rate for the moduels that use the DDS (Direct
Digital Synthesizer) clock system.

@ Modules Support

USB-2405

@ Syntax

Microsoft C/C++ and Borland C++
I16 UD_AI_DDS_ActualRate_Get(U16 ModuleNum, F64 fSampleRate, F64

*pActualRate)

Visual Basic
UD_ DDS_ActualRate_Get (ByVal ModuleNum As Integer, ByVal fSampleRate As

Double, pActualRate As Double) As Integer

@ Parameter

ModuleNum : The id of the module that want to perform this operation.
fSampleRate : The expected sampling-rate.
pActualRate : The memory that is stored the actual sampling-rate

@ Return Code

NoError: The function returns successfully.
ErrorInvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check the
ModuleNum parameter.
ErrorInvalidSampleRate: Indicates the expected sampling-rate is invalid.
ErrorFuncNotSupport: The AI function is not supported.

54 •

2.2.32 UD_AI_SetTimeOut

@ Description

This function sets the timeout for synchronous AI operation (SYNCH_OP).

@ Modules Support

USB-1901/USB-1902/USB-1903/USB-2401/USB-2405/USB-1210

@ Syntax

Microsoft C/C++ and Borland C++
I16 UD_AI_SetTimeOut (U16 ModuleNum, U32 dwTimeOut)

Visual Basic
UD_AI_SetTimeOut (ByVal ModuleNum As Integer, ByVal dwTimeOut As Long) As

Integer

@ Parameter

ModuleNum : The id of the module that want to perform this operation.
dwTimeOut : The Timeout for synchronous operation, in millisecond.

This setting is applied to WaitForSingleObject(). However, if this
parameter is set to zero, the INFINITE is applied to
WaitForSingleObject().

@ Return Code

NoError: The function returns successfully.
ErrorInvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check the
ModuleNum parameter.
ErrorCardDisconnected: Indicates the USB device was disconnected.
ErrorFuncNotSupport: The AI function is not supported.

• 55

2.2.33 UD_AI_ReadMultiChannels

@ Description

This function performs a software triggered A/D conversion (analog input) on an
analog input channel and returns the value converted.

@ Modules Support

USB-1901/USB-1902/USB-1903/USB-2401/USB-2405/USB-1210

@ Syntax

Microsoft C/C++ and Borland C++
I16 UD_AI_ReadMultiChannels (U16 ModuleNum, U16 NumChans, U16* Chans,

U16* AdRangse, U16 *Buffer)

Visual Basic
UD_AI_ReadMultiChannels (ByVal ModuleNum As Integer, ByVal NumChans As

Integer, Chans As Integer, AdRanges As Integer, Buffer As Integer) As
Integer

@ Parameter

ModuleNum : The id of the module that want to perform this operation.
NumChans : The number of analog input channels in the array Chans. Valid values:

USB-1901/USB-1902: 1 through 16
USB-1903: 1 through 8 (differential input signal only)
USB-2401: 1 through 4
USB-2405: 1 through 4
USB-1210: 1 through 4

Chans : Array of analog input channel numbers. The channel order for
acquiring data is the same as the order you set in Chans.
USB-1901/USB-1902: Numbers in Chans must be within 0 and 15.

Since there is no restriction for channel order setting, you may
set the channel order as you want.

USB-1903: Numbers in Chans must be within 0 and 7. Since there is
no restriction for channel order setting, you may set the
channel order as you want.

USB-2401: Numbers in Chans must be within 0 and 3.
USB-2405: Numbers in Chans must be within 0 and 3.
USB-1210: Numbers in Chans must be withen 0 and 3;

AdRanges : An integer array of length numChans that contains the analog input
range for every channel in array Chans. Please refer to the Appendix
B, AI Range Codes, for the valid range values.

Buffer : An Integer array to contain the acquired data. The length of Buffer
must be equal to or greater than the value of parameter NumChans.
The acquired data is stored in interleaved sequence. For example, if
the value of numChans is 3, and the numbers in Chans are 3, 8 and
0, then this function input data from channel 3, then channel 8, then
channel 0. The data acquired is put to Buffer by order, so the data
read from channel 3 is stored in Buffer[0], the data read from channel
8 is stored in Buffer[1], and the data read from channel 0 is stored in
Buffer[2].

@ Return Code

56 •

NoError: The function returns successfully.
ErrorInvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check the
ModuleNum parameter.
ErrorFuncNotSupport: The AI function is not supported.
ErrorInvalidIoChannel: The invalid setting is set to Chans.
ErrorInvalidAdRange: The invalid setting is set to AdRanges.
ErrorInvalidInputSignal: Indicates the invalid input-signal is assigned.
ErrorContIoActive: The AI function had not been completed. Call UD_AI_AsyncClear()
to Stop AI function.
ErrorCardDisconnected: Indicates the USB device was disconnected.
ErrorConflictWithAIConfig: The AdRange is conflict with the some specific input-type.

• 57

2.2.34 UD_AI_VReadChannel

@ Description

This function performs a software triggered A/D conversion (analog input) on an
analog input channel and returns the value scaled to a voltage in units of volts.

@ Modules Support

USB-1901/USB-1902/USB-1903/USB-2405/USB-1210

@ Syntax

Microsoft C/C++ and Borland C++
I16 UD_AI_VReadChannel (U16 ModuleNum, U16 Channel, U16 AdRange, F64

*voltage)

Visual Basic
UD_AI_ReadChannel (ByVal ModuleNum As Integer, ByVal Channel As Integer,

ByVal AdRange As Integer, voltage As Double) As Integer

@ Parameter

ModuleNum : The id of the module that want to perform this operation.
Channel : Analog input channel number

USB-1901/USB-1902: 0 through 15
USB-1903: 0 through 7 (differential input signal only)
USB-2405: 0 through 3
USB-1210: 0 through 3

AdRange : The analog input range the specified channel is setting. We define
some constants to represent various A/D input ranges in UsbDask.h.
Please refer to the Appendix B, AI Range Codes, for the valid range
values.

voltage : The measured voltage value returned and scaled to units of voltage.

@ Return Code

NoError: The function returns successfully.
ErrorInvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check the
ModuleNum parameter.
ErrorBadCardType: Indicates the module-type is not supported.
ErrorFuncNotSupport: The AI function is not supported.
ErrorInvalidIoChannel: The invalid setting is set to Channel.
ErrorCardDisconnected: Indicates the USB device was disconnected.
ErrorInvalidAdRange: The invalid setting is set to AdRange.

58 •

2.2.35 UD_AI_Moving_Average32

@ Description

This function performs the software moving-average for 32-bit data.. The SrcBuf
contains multiple-channels ADC data. Only single-channel ADC data will be extracted
and calculated; that specific channel is indicated with dwTgChIdx parameter.

@ Modules Support

USB-2401

@ Syntax

Microsoft C/C++ and Borland C++
I16 UD_AI_Moving_Average32 (U16 ModuleNum, U32 *SrcBuf, U32 *DesBuf, U32

dwTgChIdx, U32 dwTotalCh, U32 dwMovAvgWindow, U32 dwSamplCnt)

Visual Basic
UD_AI_Moving_Average32 (ByVal ModuleNum As Integer, SrcBuf As Long, DesBuf

As Long, ByVal dwTgChIdx As Long, ByVal dwTotalCh As Long, ByVal
dwMovAvgWindow As Long, ByVal dwSamplCnt As Long) As Integer

@ Parameter

ModuleNum : This parameter is reserved for future.
SrcBuf : The buffer that contains the data to be calculated.
DesBuf : The user-provided buffer to save the data with moving-average

calculation.
dwTgChIdx : The index of target-channel
dwTotalCh : The total channels that are related to the ADC data in the SrcBuf.
dwMovAvgWindow :The number of samples will be applied to moving-average

operation.
dwSamplCnt : The all number of samples will be involved in this operation.

@ Return Code

NoError: The function returns successfully.
ErrorNullPoint: Either SrcBuf or DesBuf is NULL.
ErrorInvalidChannel: Indicates either the dwTgChIdx is larger than dwTotalCh, or dwTotalCh is

zero.
ErrorCardDisconnected: Indicates the USB device was disconnected.
ErrorInvalidParamSetting: The dwMovAvgWindow is larger than dwSamplCnt.

• 59

2.2.36 UD_AI_EventCallBack (Win32 Only)

@ Description

Controls and notifies the user's application when a specified DAQ event occurs. The
notification is performed through a user-specified callback function. The event
message will be removed auto-matically after calling UD_AI_AsyncClear. The event
message may be manually removed by setting the Mode parameter to 0.

@ Modules Support

USB-2405

@ Syntax

Microsoft C/C++ and Borland C++
I16 UD_AI_EventCallBack (U16 ModuleNum, I16 mode, I16 EventType, U32

callbackAddr)

Visual Basic
UD_AI_EventCallBack (ByVal ModuleNum As Integer, ByVal mode As Integer,

ByVal EventType As Integer, ByVal callbackAddr As Long) As Integer

@ Parameter

ModuleNum : The id of the module that want to perform this operation.
Mode : Add or remove the event message. The valid settings are :

0: remove
1: add

EventType : Event criteria. The valide settings are:
AIEnd: Notification that the asychronus analog input
DBEvent: Notification that the next half buffer of data in circular buffer

is ready for transfer.
callbackAddr : Address of the user callback function. The UD-DASKT calls this

function when the specific event occurs. If you want remove the event
message, set callbackAddr to 0.

@ Return Code

NoError: The function returns successfully.
ErrorInvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check the
ModuleNum parameter.
ErrorBadCardType: Indicates the module-type is not supported.
ErrorInvalidEventHandle: The invalid setting is set to EventType.
ErrorFuncNotSupport: The AI function is not supported.
ErrorInvalidIoChannel: The invalid setting is set to Channel.
ErrorCardDisconnected: Indicates the USB device was disconnected.

60 •

2.2.37 UD_AO_1902_Config

@ Description

Configures the AO operation of USB-1902/USB-1903, including conversion control
and trigger settings

@ Modules Support

USB-1902/USB-1903

@ Syntax

Microsoft C/C++ and Borland C++
I16 UD_AO_1902_Config (U16 ModuleNum, U16 wConfigCtrl, U16 wTrigCtrl, U32

dwReTriggerCnt, U32 dwDLY1Cnt, U32 dwDLY2Cnt)

Visual Basic
UD_AO_1902_Config (ByVal ModuleNum As Integer, ByVal wConfigCtrl As Integer,

ByVal wTrigCtrl As Integer, ByVal dwReTriggerCnt As Long, ByVal
dwDLY1Cnt As Long, ByVal dwDLY2Cnt As Long) As Integer

@ Parameter

ModuleNum : The id of the module that want to perform this operation.
wConfigCtrl : Now only P1902_AO_CONVSRC_INT is supported.
wTrigCtrl : The settings for trigger-source, trigger-polarity, trigger-mode, re-

trigger and waveform separation. The valid settings can be combined
with OR (|) operator.

 Trigger-Source:
P1902_AO_TRGSRC_DTRIG: Digital trigger from AODTRIG.

 Trigger-Polarity:
P1902_AO_TrgPositive: Rising edge.
P1902_AO_TrgNegative: Falling edge.

 Trigger-Mode:
P1902_AO_TRGMOD_POST: Post-trigger.
P1902_AO_TRGMOD_DELAY: Delay-trigger.

 Re-Trigger:
P1902_AO_EnReTigger: Enable Re-Trigger.

 Waveform-Separation:
P1902_AO_EnDelay2: Enable Separation-Delay between

waveforms.
dwReTriggerCnt : The re-trigger count is required when the P1902_AO_EnReTigger

is set in wTrigCtrl parameter.
dwDLY1Cnt : This delay-count is required for P1902_AO_TRGMOD_DELAY

trigger-mode. Based on internal conversion clock (80MHz), this count
determines the delay-interval. For instance, assigning 800,000 to
dwDLY1Cnt means 10 millisecond delay. (800,000 / 80,000,000)

dwDLY2Cnt : This delay-count is required when the P1902_AO_EnWaveformSep is
set. Based on internal conversion clock (80MHz), this count
determines the delay-interval. For instance, assigning 800,000 to
dwDLY2Cnt means 10 millisecond separation-delay. (800,000 /
80,000,000)

@ Return Code

• 61

NoError: The function returns successfully.
ErrorInvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check the
ModuleNum parameter.
ErrorFuncNotSupport: The AO function is not supported.
ErrorInvalidAOCfgCtrl: The invalid settings is set to wConfigCtrl.
ErrorInvalidAOTrigCtrl: The invalid settings is set to wTrigCtrl.
ErrorCardDisconnected: Indicates the USB device was disconnected.

62 •

2.2.38 UD_AO_VWriteChannel

@ Description

Accepts a voltage value (or a current value), scales it to the proper binary value and
writes that binary value to the specified analog output channel.

@ Modules Support

USB-1902/USB-19023

@ Syntax

Microsoft C/C++ and Borland C++
I16 UD_AO_VWriteChannel (U16 ModuleNum, U16 Channel, F64 Voltage)

Visual Basic
UD_AO_VWriteChannel (ByVal ModuleNum As Integer, ByVal Channel As Integer,

ByVal Voltage As Double) As Integer

@ Parameter

ModuleNum : The id of the module that want to perform this operation.
Channel : The analog output channel number.

Range: 0 or 1 for USB-1902/USB-1903
Voltage : The value to be scaled and written to the analog output channel. The

range of voltages depends on the type of device, on the output
polarity, and on the voltage reference (external or internal).

@ Return Code

NoError: The function returns successfully.
ErrorInvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check the
ModuleNum parameter.
ErrorFuncNotSupport: The AO function is not supported.
ErrorInvalidIoChannel: The invalid setting is set to Channel.
ErrorDaVoltageOutOfRange: The value assigned to Voltage parameter is out of range.
ErrorCardDisconnected: Indicates the USB device was disconnected.

• 63

2.2.39 UD_AO_WriteChannel

@ Description

Writes a binary value to the specified analog output channel.

@ Modules Support

USB-1902/USB-1903

@ Syntax

Microsoft C/C++ and Borland C++
I16 UD_AO_WriteChannel (U16 ModuleNum, U16 Channel, U16 Value)

Visual Basic
UD_AO_WriteChannel (ByVal ModuleNum As Integer, ByVal Channel As Integer,

ByVal Value As Integer) As Integer

@ Parameter

ModuleNum : The id of the module that want to perform this operation.
Channel : The analog output channel number.

Range: 0 or 1 for USB-1902/USB-1903
Value : The value to be written to the analog output channel.

Range: -32768 through 32767 for USB-1902/USB-1903

@ Return Code

NoError: The function returns successfully.
ErrorInvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check the
ModuleNum parameter.
ErrorFuncNotSupport: The AO function is not supported.
ErrorInvalidIoChannel: The invalid setting is set to Channel.
ErrorCardDisconnected: Indicates the USB device was disconnected.

64 •

2.2.40 UD_AO_AsyncCheck

@ Description

Check the current status of the asynchronous analog output operation.

@ Modules Support

USB-1902/USB-1903

@ Syntax

Microsoft C/C++ and Borland C++
I16 UD_AO_AsyncCheck (U16 ModuleNum, BOOLEAN *Stopped, U32 *AccessCnt)

Visual Basic
UD_AO_AsyncCheck (ByVal ModuleNum As Integer, Stopped As Byte, AccessCnt

As Long) As Integer

@ Parameter

ModuleNum : The id of the module that wants to perform this operation.
Stopped : Whether the asynchronous analog input operation has completed. If

Stopped = TRUE, the analog output operation has stopped. Either
the number of D/A conversions indicated in the call that initiated the
asynchronous analog output operation has completed or an error has
occurred. If Stopped = FALSE, the operation is not yet complete.
(constants TRUE and FALSE are defined in UsbDask.h)

AccessCnt : In the condition that the trigger acquisition mode is not used,

AccessCnt returns the number of D/A data that has been transferred
at the time calling UD_AO_AsyncCheck().

@ Return Code

NoError: The function returns successfully.
ErrorInvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check the
ModuleNum parameter.
ErrorFuncNotSupport: The AO function is not supported.
ErrorConflictWithInfiniteOp: The infinite-trigger and infinite-repeat are conflict with this function.
ErrorConflictWithSyncMode: The synchronous AO operation is conflict with this function.
ErrorCardDisconnected: Indicates the USB device was disconnected.

• 65

2.2.41 UD_AO_AsyncClear

@ Description

Stop the asynchronous analog output operation.The configurations set with
UD_AO_1902_Config()will be cleared as well.

@ Modules Support

USB-1902/USB-1903

@ Syntax

Microsoft C/C++ and Borland C++
I16 UD_AO_AsyncClear (U16 ModuleNum, U32 *AccessCnt)

Visual Basic
UD_AO_AsyncClear (ByVal ModuleNum As Integer, AccessCnt As Long) As Integer

@ Parameter

ModuleNum : The id of the module that wants to perform this operation.
AccessCnt : In the condition that the trigger acquisition mode is not used,

AccessCnt returns the number of D/A data had been transferred out.

@ Return Code

NoError: The function returns successfully.
ErrorInvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check
the ModuleNum parameter.
ErrorFuncNotSupport: The AO function is not supported.
ErrorCardDisconnected: Indicates the USB device was disconnected.

66 •

2.2.42 UD_AO_AsyncDblBufferHalfReady

@ Description

In asynchronous double-buffered AO, indicates the half buffer is ready for data-
updatig.

@ Modules Support

USB-1902/USB-1903

@ Syntax

Microsoft C/C++ and Borland C++
I16 UD_AO_AsyncDblBufferHalfReady (U16 ModuleNum, BOOLEAN *HalfReady,

BOOLEAN *StopFlag)

Visual Basic
UD_AO_AsyncDblBufferHalfReady(ByVal ModuleNum As Integer, HalfReady As

Byte, StopFlag As Byte) As Integer

@ Parameter

ModuleNum : The id of the module that wants to perform this operation.
HalfReady : Whether the half buffer of driver buffer is available. If HalfReady =

TRUE, you can call UD_AO_AsyncDblBufferTransfer() to copy
the output data to driver buffer. (constants TRUE and FALSE are
defined in UsbDask.h)

StopFlag : Whether the asynchronous analog output operation has completed. If
StopFlag = TRUE, the analog input operation has stopped. If StopFlag
= FALSE, the operation is not yet complete. (constants TRUE and
FALSE are defined in UsbDask.h)

@ Return Code

NoError: The function returns successfully.
ErrorInvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check
the ModuleNum parameter.
ErrorFuncNotSupport: The AO function is not supported.
ErrorConflictWithSyncMode: The synchronous AI operation is conflict with this function.
ErrorCardDisconnected: Indicates the USB device was disconnected.

• 67

2.2.43 UD_AO_AsyncDblBufferMode

@ Description

Enable/disable the double-buffered mode or FIFO mode for D/A data output.

@ Modules Support

USB-1902/USB-1903

@ Syntax

Microsoft C/C++ and Borland C++
I16 UD_AO_AsyncDblBufferMode (U16 ModuleNum, BOOLEAN Enable, BOOLEAN

bEnFifoMode)

Visual Basic
UD_AO_AsyncDblBufferMode (ByVal ModuleNum As Integer, ByVal Enable As Byte,

ByVal bEnFifoMode As Byte) As Integer

@ Parameter

ModuleNum : The id of the module that wants to perform this operation.
Enable : Whether the double-buffered mode is enabled or not.
 TRUE: double-buffered mode is enabled.
 FALSE: double-buffered mode is disabled.
 (constants TRUE and FALSE are defined in UsbDask.h)
bEnFifoMode : Whether the FIFO mode is enabled or not.
 TRUE: FIFO mode is enabled.
 FALSE: FIFO mode is disabled.
 (constants TRUE and FALSE are defined in UsbDask.h)

Note: The Double-Buffered mode and FIFO mode are manual exclusive. The FIFO mode only
can be enabled while disabling double-buffered mode.

@ Return Code

NoError: The function returns successfully.
ErrorInvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check
the ModuleNum parameter.
ErrorFuncNotSupport: The AO function is not supported.
ErrorInvalidOperationMode: The double-buffered mode and FIFO mode cannot be
enabled at the same time.
ErrorDblBufModeNotAllowed: Re-trigger is not supported in double-buffered mode.
ErrorContIoActive: The AO function had not been completed. Call
UD_AO_AsyncClear() to Stop AO function.
ErrorCardDisconnected: Indicates the USB device was disconnected.

68 •

2.2.44 UD_AO_ContBufferCompose

@ Description

Fills the data for a specified channel in the buffer for multi-channels of continuous
analog output operation.

@ Modules Support

USB-1902/USB-1903

@ Syntax

Microsoft C/C++ and Borland C++
I16 UD_AO_AsyncDblBufferMode (U16 ModuleNum, U16 TotalChnCount, U16

ChnNum, U32 UpdateCount, void *ConBuffer, void *Buffer)

Visual Basic
UD_AO_AsyncDblBufferMode (ByVal ModuleNum As Integer, ByVal TotalChnCount

As Integer, ByVal ChnNum As Integer, ByVal UpdateCount As Long,
ConBuffer As Any, Buffer As Any) As Integer

Buffer containing the output data for the specified channel.

@ Parameter

ModuleNum : The id of the module that wants to perform this operation.
TotalChnCount : Number of AO channels to be performed. Valid value: 1 or 2.
ChnNum : Specified AO channel number. Valid value: 0 or 1.
UpdateCount : Size (in samples) of the specified channel buffer. This is not the size

of the buffer for continuous output operation.
ConBuffer : Buffer for multi-channels of continuous output operation.
Buffer : Buffer containing the output data for the specified channel.

@ Return Code

NoError: The function returns successfully.
ErrorInvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check
the ModuleNum parameter.
ErrorFuncNotSupport: The AO function is not supported.
ErrorUndefinedParameter: The invalid settings are assigned to TotalChnCount or
ChnNum parameters.

• 69

2.2.45 UD_AO_AsyncDblBufferTransfer

@ Description

This function helps to update the output D/A data. The target half-buffer is specified
with the wBufferID parameter.

@ Modules Support

USB-1902/USB-1903

@ Syntax

Microsoft C/C++ and Borland C++
I16 UD_AO_AsyncDblBufferTransfer (U16 ModuleNum, U16 wBufferID, U16 *Buffer)

Visual Basic
UD_AO_AsyncDblBufferTransfer (ByVal ModuleNum As Integer, ByVal wBufferID

As Integer, Buffer As Integer) As Integer

@ Parameter

ModuleNum : The id of the module that performs the asynchronous double-buffered
operation.

wBufferID : The id of the half-buffer that the D/A data will be copied into.
Buffer : The user buffer. An array that the D/A data will be updated.

Please refer to Appendix C, AI Data Format for the data format in
Buffer or the data file.

@ Return Code

NoError: The function returns successfully.
ErrorInvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check
the ModuleNum parameter.
ErrorFuncNotSupport: The AI function is not supported.
ErrorNotDoubleBufrerMode: The AO operation is not started with double-buffered
mode.
ErrorInvalidBufferID: The half-buffer that is specified with wBufferID is not ready yet.
ErrorCardDisconnected: Indicates the USB device was disconnected.

70 •

2.2.46 UD_AO_SetTimeOut

@ Description

This function sets the timeout for synchronous AO operation (SYNCH_OP).

@ Modules Support

USB-1902/USB-1903

@ Syntax

Microsoft C/C++ and Borland C++
I16 UD_AO_SetTimeOut (U16 ModuleNum, U32 dwTimeOut)

Visual Basic
UD_AO_ReadChannel (ByVal ModuleNum As Integer, ByVal dwTimeOut As Long)

As Integer

@ Parameter

ModuleNum : The id of the module that want to perform this operation.
dwTimeOut : The Timeout for synchronous operation, in millisecond.

This setting is applied to WaitForSingleObject(). However, if this
parameter is set to zero, the INFINITE is applied to
WaitForSingleObject().

@ Return Code

NoError: The function returns successfully.
ErrorInvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check
the ModuleNum parameter.
ErrorFuncNotSupport: The AO function is not supported.
ErrorCardDisconnected: Indicates the USB device was disconnected.

• 71

2.2.47 UD_AO_ContWriteChannel

@ Description

This function performs continuous D/A conversions on the specified analog output
channels.

@ Modules Support

USB-1902/USB-1903

@ Syntax

Microsoft C/C++ and Borland C++
I16 UD_AO_ContWriteChannel (U16 ModuleNum, U16 wChannel, VOID* pAOBuffer,

U32 dwWriteCount, U32 wIterations, U32 dwCHUI, U16 finite, U16
SyncMode)

Visual Basic
UD_AO_ContWriteChannel (ByVal ModuleNum As Integer, ByVal wChannel As

Integer, pAOBuffer As Any, ByVal dwWriteCount As Long, ByVal
wIterations As Long, ByVal dwCHUI As Long, ByVal finite As Integer, ByVal
SyncMode As Integer) As Integer

@ Parameter

ModuleNum : The id of the module that want to perform this operation.
wChannel : The channel to be performed the D/A updating:

USB-1901/USB-1902/USB-1903: 0 or 1
pAOBuffer : The memory that stores the update A/D data.
dwWriteCount : If double-buffered mode is disabled, the total update count for each channel to be

performed. For double-buffered output, dwWriteCount is the size (in samples) of the
circular buffer.

Note: The value of dwWriteCount must be the multiple of 256 for non-
double-buffer mode, or multiple of 512 for double-buffer mode.

wIterations : The iterations to repeat the D/A data. If the D/A operation is performed
synchronously, this parameter must be 1.

dwCHUI : The update-interval counter for D/A data output. Based on the
conversion-clock, this counter determines the interval between D/A
data.
USB-1902/USB-1903 : 80 to 4294967295.=

finite: D/A output is infinitely or finitely.
0 : infinitely.
1 : finitely.

SyncMode : Whether this operation is performed synchronously or asynchronously.
If any trigger mode is enabled by calling UD_AO_1902_Config(),
this operation should be performed asynchronously.
Valid values:

SYNCH_OP: synchronous A/D conversion, that is, the function
does not return until the A/D operation complete.

ASYNCH_OP:asynchronous A/D conversion.

Note: When SYNCH_OP is selected, the UD_AO_SetTimeOut() can set the
Timeout for synchronous operation.

72 •

@ Return Code

NoError: The function returns successfully.
ErrorInvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check
the ModuleNum parameter.
ErrorFuncNotSupport: The AI function is not supported.
ErrorInvalidAOIteration: The Iteration is zero with finite is 1.
ErrorTransferCountTooLarge: The wWriteCount is too large.
ErrorZeroChannelNumber;: The numChans is zero.
ErrorContIoNotAllowed: The continuous operation is not supported.
ErrorConflictWithSyncMode: Only one-shot D/A operation supports SYNCH_OP.
ErrorInvalidTransferCount: The dwWriteCount is not multiple of 256/512.
ErrorInvalidOperationMode: Either FIFO mode or double-buffered mode can support
AO re-trigger / repeat.
ErrorAOFifoCountTooLarge: The dwWriteCount is larger than onboard FIFO size.
ErrorConflictWithDelay2: The P1902_AO_EnDelay2 in UD_AO_1902_Config() needs
at least 2 iterations.
ErrorConflictWithReTrig: The re-trigger is manual-exclusive to repeating D/A operation.
ErrorInvalidSampleRate: The dwCHUI is less than 80.
ErrorInvalidTriggerMode: Neither double-buffered AO nor SYNCH_OP operation
supports re-trigger feature.
ErrorSystemCallFailed: Failed to forward the command to driver, please call
GetLastError() for detailed system-error.
ErrorContIoActive: The AO function had not been completed. Call
UD_AO_AsyncClear() to Stop AO function.
ErrorWaitingUSBHostResponse: This is usually caused by trigger-enabled AO
operation. Call UD_AO_AsyncClear() to disable the waiting state.
ErrorAOFifoModeTimeout: The D/A data transmission timeout with FIFO mode.
ErrorTimeoutFromSyncMode: The synchronous AO operation is time-out.
ErrorCardDisconnected: Indicates the USB device was disconnected.

• 73

2.2.48 UD_AO_ContWriteMultiChannels

@ Description

This function performs continuous D/A conversions on the specified analog output
channels.

@ Modules Support

USB-1902/USB-1903

@ Syntax

Microsoft C/C++ and Borland C++
I16 UD_AO_ContWriteMultiChannels (U16 ModuleNum, U16 numChans, U16

Chans, VOID pAOBuffer, U32 dwWriteCount, U32 wIterations, U32
dwCHUI, U16 finite, U16 SyncMode)

Visual Basic
UD_AO_ContWriteMultiChannels (ByVal ModuleNum As Integer, ByVal numChans

As Integer, Chans As Integer, pAOBuffer As Any, ByVal dwWriteCount As
Long, ByVal wIterations As Long, ByVal dwCHUI As Long, ByVal finite As
Integer, ByVal SyncMode As Integer) As Integer

@ Parameter

ModuleNum : The id of the module that want to perform this operation.
numChans : The number of analog input channels in the array Chans. The valid

value:
USB-1902/USB-1903: 1 to 2

Chans : Array of analog output channel numbers.
USB-1902/USB-1903: 0 or 1

pAOBuffer : The memory that stores the update A/D data.
dwWriteCount : If double-buffered mode is disabled, the total update count for each channel to be

performed. For double-buffered output, dwWriteCount is the size (in samples) of the
circular buffer.

Note: The value of dwWriteCount must be the multiple of 256 for non-
double-buffer mode, or multiple of 512 for double-buffer mode.

wIterations : The iterations to repeat the D/A data. If the D/A operation is performed
synchronously, this parameter must be 1.

dwCHUI : The update-interval for D/A data output. Based on the conversion-
clock, this counter determines the interval between D/A data.
USB-1902/USB-1903 : 80 to 4294967295.

finite: D/A output is infinitely or finitely.
0 : infinitely.
1 : finitely.

SyncMode : Whether this operation is performed synchronously or asynchronously.
If any trigger mode is enabled by calling UD_AO_1902_Config(),
this operation should be performed asynchronously.
Valid values:

SYNCH_OP: synchronous A/D conversion, that is, the function
does not return until the A/D operation complete.

ASYNCH_OP:asynchronous A/D conversion.

74 •

Note: When SYNCH_OP is selected, the UD_AO_SetTimeOut() can set the
Timeout for synchronous operation.

@ Return Code

NoError: The function returns successfully.
ErrorInvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check
the ModuleNum parameter.
ErrorFuncNotSupport: The AI function is not supported.
ErrorInvalidAOIteration: The Iteration is zero with finite is 1.
ErrorTransferCountTooLarge: The wWriteCount is too large.
ErrorZeroChannelNumber;: The numChans is zero.
ErrorContIoNotAllowed: The continuous operation is not supported.
ErrorConflictWithSyncMode: Only one-shot D/A operation supports SYNCH_OP.
ErrorInvalidTransferCount: The dwWriteCount is not multiple of 256/512.
ErrorInvalidOperationMode: Either FIFO mode or double-buffered mode can support
AO re-trigger / repeat.
ErrorAOFifoCountTooLarge: The dwWriteCount is larger than onboard FIFO size.
ErrorConflictWithDelay2: The P1902_AO_EnDelay2 in UD_AO_1902_Config() needs
at least 2 iterations.
ErrorConflictWithReTrig: The re-trigger is manual-exclusive to repeating D/A operation.
ErrorInvalidSampleRate: The dwCHUI is less than 80.
ErrorInvalidTriggerMode: Neither double-buffered AO nor SYNCH_OP operation
supports re-trigger feature.
ErrorSystemCallFailed: Failed to forward the command to driver, please call
GetLastError() for detailed system-error.
ErrorContIoActive: The AO function had not been completed. Call
UD_AO_AsyncClear() to Stop AO function.
ErrorWaitingUSBHostResponse: This is usually caused by trigger-enabled AO
operation. Call UD_AO_AsyncClear() to disable the waiting state.
ErrorAOFifoModeTimeout: The D/A data transmission timeout with FIFO mode.
ErrorTimeoutFromSyncMode: The synchronous AO operation is time-out.
ErrorCardDisconnected: Indicates the USB device was disconnected.

• 75

2.2.49 UD_AO_InitialMemoryAllocated

@ Description

This function returns the available memory size for analog input in the device driver in
argument MemSize. The continuous analog input transfer size can not exceed this
size.

@ Modules Support

USB-1902/USB-1903

@ Syntax

Microsoft C/C++ and Borland C++
I16 UD_AO_InitialMemoryAllocated (U16 ModuleNum, U32 MemSize)

Visual Basic
UD_AO_InitialMemoryAllocated (ByVal ModuleNum As Integer, MemSize As Long)

As Integer

@ Parameter

ModuleNum : The id of the module that want to perform this operation.
MemSize : The available memory size for continuous AO in device driver of this

card. The unit is KB (1024 bytes).

@ Return Code

NoError: The function returns successfully.
ErrorInvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check the
ModuleNum parameter.
ErrorCardDisconnected: Indicates the USB device was disconnected.
ErrorFuncNotSupport: The AI function is not supported.

76 •

2.2.50 UD_GPTC_Clear

@ Description

Halts the specified general-purpose timer/counter operation and reloads the initial
value of the timer/counter.

@ Cards Support

USB-1901/USB-1902/USB-1903/USB-2401/USB-2405/USB-1210

@ Syntax

Microsoft C/C++ and Borland C++
I16 UD_GPTC_Clear (U16 CardNumber, U16 GCtr)

Visual Basic
UD_GPTC_Clear (ByVal CardNumber As Integer, ByVal GCtr As Integer) As Integer

@ Parameter

CardNumber : The card id of the card that want to perform this operation.
GCtr : The counter number.

USB-1901/USB-1902/USB-1903: 0 to 3
USB-2401: 0 to 1
USB-2405: 0 to 1
USB-1210: 0 to 3

@ Return Code

NoError: The function returns successfully.
ErrorInvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check
the ModuleNum parameter.
ErrorCardDisconnected: The module is disconnected. Please close the related
application and re-register the module again.
ErrorInvalidCounter: The invalid setting is assigned to GCtr parameter.
ErrorFuncNotSupport: The AI function is not supported.
ErrorConflictWithGPIOConfig: Incorrect GPIO configuration, please check the settings
in UD_DIO_1902_Config() / UD_DIO_2401_Config() / UD_DIO_2405_Config() /
UD_DIO_Config().
ErrorCardDisconnected: Indicates the USB device was disconnected.

• 77

2.2.51 UD_GPTC_Setup

@ Description

Sets the configuration of selected counter/timer.

@ Modules Support

USB-1901/USB-1902/USB-1903/USB-2401/USB-2405/USB-1210

@ Syntax

Microsoft C/C++ and Borland C++
I16 UD_GPTC_Setup (U16 ModuleNum, U16 GCtr, U16 Mode, U16 SrcCtrl, U16

PolCtrl, U32 LReg_Val1, U32 LReg2_Val2, U32 PulseCount)

Visual Basic
UD_GPTC_Setup (ByVal ModuleNum As Integer, ByVal GCtr As Integer, ByVal

Mode As Integer, ByVal SrcCtrl As Integer, ByVal PolCtrl As Integer, ByVal
LReg_Val1 As Long, ByVal LReg_Val2 As Long, ByVal PulseCount As
Long) As Integer

@ Parameter

ModuleNum : The card id of the card that want to perform this operation.
GCtr : The counter number.

USB-1901/USB-1902/USB-1903: 0 to 3
USB-2401/USB-2405: 0 to 1
USB-1210: 0 to 3

Mode : The timer/counter mode. Refer to the hardware manual for the mode
description. Valid modes:
USB-1901/USB-1902/USB-1903/USB-2401/USB-1210:

SimpleGatedEventCNT
SinglePeriodMSR
SinglePulseWidthMSR
SingleGatedPulseGen
SingleTrigPulseGen
RetrigSinglePulseGen
SingleTrigContPulseGen
ContGatedPulseGen
EdgeSeparationMSR
SingleTrigContPulseGenPWM
ContGatedPulseGenPWM
MultipleGatedPulseGen

 USB -2405:
ContGatedPulseGen
MultipleGatedPulseGen
(The Internal Gate will be applied, and always be active)

SrcCtrl : The setting for general-purpose timer/counter source control. This
argument is an integer expression formed from one or more of the
manifest constants defined in UsbDask.h. There are three groups of
constants:
USB-1901/USB-1902/USB-1903/USB-2401/USB-1210:

Timer/Counter Source
GPTC_CLK_SRC_Int Internal time base

78 •

GPTC_CLK_SRC_Ext External time base from the GPTC_CLK pin
Timer/Counter Gate Source
GPTC_GATE_SRC_Int Gate is controlled by software.
GPTC_GATE_SRC_Ext Gate is controlled by the GPTC_GATE pin.
Timer/Counter UpDown Source
GPTC_UPDOWN_Int Up/Down is controlled by software.
GPTC_UPDOWN_Ext Up/Down is controlled by the GPTC_UD pin.

 USB-2405:
This parameter will be ignored.

PolCtrl : The polarity settings for general-purpose timer/counter. This argument
is an integer expression formed from one or more of the manifest
constants defined in UsbDask.h. There are three groups of constants:
USB-1901/USB-1902/USB-1903/USB-2401/USB-1210:

Timer/Counter Gate Polarity
GPTC_GATE_LACTIVE Low active
GPTC_GATE_HACTIVE High active
Timer/Counter UpDown Polarity
GPTC_UPDOWN_LACTIVE Low active
GPTC_UPDOWN_HACTIVE High active
Timer/Counter Clock Source Polarity
GPTC_CLKSRC_LACTIVE Low active
GPTC_CLKSRC_HACTIVE High active
Timer/Counter Output Polarity
GPTC_OUTPUT_LACTIVE Low active
GPTC_OUTPUT_HACTIVE High active

 USB-2405:
Timer/Counter Output Polarity
GPTC_OUTPUT_LACTIVE Low active
GPTC_OUTPUT_HACTIVE High active

dwLReg_Val1 : The meaning for the value depends on the mode the timer /counter

performs.
USB-1901/USB-1902/USB-1903/USB-2401/USB-2405/USB-1210:

SimpleGatedEventCNT Configures as nitial count of GPTC
SinglePeriodMSR Configures as initial count of GPTC
SinglePulseWidthMSR Configures as initial count of GPTC
SingleGatedPulseGen Configures as the pulse width
SingleTrigPulseGen Configures as the pulse width
RetrigSinglePulseGen Configures as the pulse width
SingleTrigContPulseGen Configures as the pulse width
ContGatedPulseGen Configures as the pulse width
EdgeSeparationMSR Configures as initial count of GPTC
SingleTrigContPulseGenPWM Configures as the pulse initial count
ContGatedPulseGenPWM Configures as the pulse initial count
MultipleGatedPulseGen Configures as the pulse initial count

Note: for USB-2405, if the MultipleGatedPulseGen mode is set, this
parameter, dwLReg_Val1, will be ignored.

• 79

dwLReg_Val2 : The meaning for the value depends on the mode the timer /counter
performs.
USB-1901/USB-1902/USB-1903/USB-2401/USB-2405/USB-1210:

SimpleGatedEventCNT Not used
SinglePeriodMSR Not used
SinglePulseWidthMSR Not used
SingleGatedPulseGen Not used
SingleTrigPulseGen Not used
RetrigSinglePulseGen Not used
SingleTrigContPulseGen Not used
ContGatedPulseGen Not used
EdgeSeparationMSR Not used
SingleTrigContPulseGenPWM Configures as the pulse length count
ContGatedPulseGenPWM Configures as the pulse length count
MultipleGatedPulseGen Configures as the pulse length count

PulseCount : The count of output-pulse. This parameter is required when
MultipleGatedPulseGen mode is selected.

@ Return Code

NoError: The function returns successfully.
ErrorInvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check
the ModuleNum parameter.
ErrorCardDisconnected: The module is disconnected. Please close the related
application and re-register the module again.
ErrorInvalidCounter: The invalid setting is assigned to GCtr parameter.
ErrorFuncNotSupport: The AI function is not supported.
ErrorInvalidPulseCount: The PulseCount is zero when MultipleGatedPulseGen mode
is selected.
ErrorInvalidCounterMode: GCtr1 and GCtr3 only support MultipleGatedPulseGen
mode; Invalid setting is assigned to Mode parameter.
ErrorConflictWithGPIOConfig: Incorrect GPIO configuration, please check the settings
in UD_DIO_1902_Config() / UD_DIO_2401_Config() / UD_DIO_2405_Config() /
UD_DIO_Config().
ErrorCardDisconnected: Indicates the USB device was disconnected.

80 •

2.2.52 UD_GPTC_Setup_N

@ Description

This function provides the simlar features of UD_GPTC_Setup().
In the UD_GPTC_Setup(),the duty-cycle of pulse-generating modes, XXXPulseGen,
is always 50%; this setting can be configured in this function.

@ Modules Support

USB-1901/USB-1902/USB-1903/USB-2401/USB-1210

@ Syntax

Microsoft C/C++ and Borland C++
I16 UD_GPTC_Setup (U16 ModuleNum, U16 GCtr, U16 Mode, U16 SrcCtrl, U16

PolCtrl, U32 LReg_Val1, U32 LReg2_Val2, U32 PulseCount)

Visual Basic
UD_GPTC_Setup (ByVal ModuleNum As Integer, ByVal GCtr As Integer, ByVal

Mode As Integer, ByVal SrcCtrl As Integer, ByVal PolCtrl As Integer, ByVal
LReg_Val1 As Long, ByVal LReg_Val2 As Long, ByVal PulseCount As
Long) As Integer

@ Parameter

ModuleNum : The card id of the card that want to perform this operation.
GCtr : The counter number.

USB-1901/USB-1902/USB-1903: 0 to 3
USB-2401: 0 to 1
USB-1210: 0 to 3

Mode : The timer/counter mode. Refer to the hardware manual for the mode
description. Valid modes:
USB-1901/USB-1902/USB-1903/USB-2401/USB-1210:

SimpleGatedEventCNT
SinglePeriodMSR
SinglePulseWidthMSR
SingleGatedPulseGen
SingleTrigPulseGen
RetrigSinglePulseGen
SingleTrigContPulseGen
ContGatedPulseGen
EdgeSeparationMSR
SingleTrigContPulseGenPWM
ContGatedPulseGenPWM
MultipleGatedPulseGen

SrcCtrl : The setting for general-purpose timer/counter source control. This
argument is an integer expression formed from one or more of the
manifest constants defined in UsbDask.h. There are three groups of
constants:
USB-1901/USB-1902/USB-1903/USB-2401/USB-1210:

Timer/Counter Source
GPTC_CLK_SRC_Int Internal time base
GPTC_CLK_SRC_Ext External time base from the GPTC_CLK pin
Timer/Counter Gate Source

• 81

GPTC_GATE_SRC_Int Gate is controlled by software.
GPTC_GATE_SRC_Ext Gate is controlled by the GPTC_GATE pin.
Timer/Counter UpDown Source
GPTC_UPDOWN_Int Up/Down is controlled by software.
GPTC_UPDOWN_Ext Up/Down is controlled by the GPTC_UD pin.

PolCtrl : The polarity settings for general-purpose timer/counter. This argument
is an integer expression formed from one or more of the manifest
constants defined in UsbDask.h. There are three groups of constants:
USB-1901/USB-1902/USB-1903/USB-2401/USB-1210:

Timer/Counter Gate Polarity
GPTC_GATE_LACTIVE Low active
GPTC_GATE_HACTIVE High active
Timer/Counter UpDown Polarity
GPTC_UPDOWN_LACTIVE Low active
GPTC_UPDOWN_HACTIVE High active
Timer/Counter Clock Source Polarity
GPTC_CLKSRC_LACTIVE Low active
GPTC_CLKSRC_HACTIVE High active
Timer/Counter Output Polarity
GPTC_OUTPUT_LACTIVE Low active
GPTC_OUTPUT_HACTIVE High active

dwLReg_Val1 : The meaning for the value depends on the mode the timer /counter

performs.
USB-1901/USB-1902/USB-1903/USB-2401/USB-1210:

SimpleGatedEventCNT Configures as nitial count of GPTC
SinglePeriodMSR Configures as initial count of GPTC
SinglePulseWidthMSR Configures as initial count of GPTC
SingleGatedPulseGen Configures as the pulse initial count
SingleTrigPulseGen Configures as the pulse initial count
RetrigSinglePulseGen Configures as the pulse initial count
SingleTrigContPulseGen Configures as the pulse initial count
ContGatedPulseGen Configures as the pulse initial count
EdgeSeparationMSR Configures as initial count of GPTC
SingleTrigContPulseGenPWM Configures as the pulse initial count
ContGatedPulseGenPWM Configures as the pulse initial count
MultipleGatedPulseGen Configures as the pulse initial count

dwLReg_Val2 : The meaning for the value depends on the mode the timer /counter

performs.
USB-1901/USB-1902/USB-1903/USB-2401/USB-1210:

SimpleGatedEventCNT Not used
SinglePeriodMSR Not used
SinglePulseWidthMSR Not used
SingleGatedPulseGen Configures as the pulse length count
SingleTrigPulseGen Configures as the pulse length count
RetrigSinglePulseGen Configures as the pulse length count
SingleTrigContPulseGen Configures as the pulse length count
ContGatedPulseGen Configures as the pulse length count
EdgeSeparationMSR Not used
SingleTrigContPulseGenPWM Configures as the pulse length count
ContGatedPulseGenPWM Configures as the pulse length count
MultipleGatedPulseGen Configures as the pulse length count

82 •

PulseCount : The count of output-pulse. This parameter is required when
MultipleGatedPulseGen mode is selected.

@ Return Code

NoError: The function returns successfully.
ErrorInvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check
the ModuleNum parameter.
ErrorCardDisconnected: The module is disconnected. Please close the related
application and re-register the module again.
ErrorInvalidCounter: The invalid setting is assigned to GCtr parameter.
ErrorFuncNotSupport: The AI function is not supported.
ErrorInvalidPulseCount: The PulseCount is zero when MultipleGatedPulseGen mode
is selected.
ErrorInvalidCounterMode: GCtr1 and GCtr3 only support MultipleGatedPulseGen
mode; Invalid setting is assigned to Mode parameter.
ErrorConflictWithGPIOConfig: Incorrect GPIO configuration, please check the settings
in UD_DIO_Config().
ErrorCardDisconnected: Indicates the USB device was disconnected.

• 83

2.2.53 UD_GPTC_Control

@ Description

Controls for the selected counter/timer by software.

@ Modules Support

USB-1901/USB-1902/USB-1903/USB-2401/USB-2405/USB-1210

@ Syntax

Microsoft C/C++ and Borland C++
I16 UD_GPTC_Control (U16 ModuleNum, U16 GCtr, U16 ParamID, U16 Value)

Visual Basic
UD_GPTC_Control (ByVal ModuleNum As Integer, ByVal GCtr As Integer, ByVal

ParamID As Integer, ByVal Value As Integer) As Integer

@ Parameter

ModuleNum : The card id of the card that want to perform this operation.
GCtr : The counter number.

USB-1901/USB-1902/USB-1903: 0 to 3
USB-2401/USB-2405: 0 to 1
USB-1210: 0 to 3

ParamID : The ID of the internal parameter of the general purpose timer/counter
you want to control. Valid control parameters:
USB-1901/USB-1902/USB-1903/USB-2401/USB-1210:
 IntGATE Internal gate
 IntUpDnCTR Internal updown counter
 IntENABLE Starts or stops counter operation
 USB-2405:
 IntENABLE Starts or stops counter operation

Value : The value for the control item specified by the ParamID parameter.
The valid value is 0 or 1.

@ Return Code

NoError: The function returns successfully.
ErrorInvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check
the ModuleNum parameter.
ErrorCardDisconnected: The module is disconnected. Please close the related
application and re-register the module again.
ErrorInvalidCounter: The invalid setting is assigned to GCtr parameter.
ErrorFuncNotSupport: The AI function is not supported.
ErrorConflictWithGPIOConfig: Incorrect GPIO configuration, please check the settings
in UD_DIO_1902_Config() / UD_DIO_2401_Config() / UD_DIO_2405_Config() /
UD_DIO_Config().
ErrorCardDisconnected: Indicates the USB device was disconnected.

84 •

2.2.54 UD_GPTC_Read

@ Description

Reads the counting-value of specified general-purpose timer/counter.

@ Cards Support

USB-1901/USB-1902/USB-1903/USB-2401/USB-1210

@ Syntax

Microsoft C/C++ and Borland C++
I16 UD_GPTC_Read (U16 CardNumber, U16 GCtr, U32 *pValue)

Visual Basic
UD_GPTC_Read (ByVal CardNumber As Integer, ByVal GCtr As Integer, pValue As

Long) As Integer

@ Parameter

CardNumber : The card id of the card that want to perform this operation.
GCtr : The counter number.

USB-1901/USB-1902/USB-1903: 0 to 3
USB-2401: 0 to 1
USB-1210: 0 to 3

pValue : Returns the counter value of the specified general purpose
timer/counter.

@ Return Code

NoError: The function returns successfully.
ErrorInvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check
the ModuleNum parameter.
ErrorCardDisconnected: The module is disconnected. Please close the related
application and re-register the module again.
ErrorInvalidCounter: The invalid setting is assigned to GCtr parameter.
ErrorFuncNotSupport: The AI function is not supported.
ErrorConflictWithGPIOConfig: Incorrect GPIO configuration, please check the settings
in UD_DIO_1902_Config() / UD_DIO_2401_Config() / UD_DIO_Config().
ErrorCardDisconnected: Indicates the USB device was disconnected.

• 85

2.2.55 UD_GPTC_Status

@ Description

Gets the status of specified general-purpose timer/counter.

@ Cards Support

USB-1901/USB-1902/USB-1903/USB-2401/USB-1210

@ Syntax

Microsoft C/C++ and Borland C++
I16 UD_GPTC_Status (U16 CardNumber, U16 GCtr, U16 *pValue)

Visual Basic
UD_GPTC_Status (ByVal CardNumber As Integer, ByVal GCtr As Integer, pValue

As Integer) As Integer

@ Parameter

CardNumber : The card id of the card that want to perform this operation.
GCtr : The counter number.

USB-1901/USB-1902/USB-1903: 0 to 3
USB-2401: 0 to 1
USB-1210: 0 to 3

pValue : Returns the latched GPTC status of the specified general-purpose
timer/counter from the GPTC status register. Value formats:
bit 0 1 indicates that the GPTC is counting.
 0 indicates that the GPTC is not counting.
bit 1 1 indicates that the GPTC operation is done.
 0 indicates that the GPTC operation is not yet done.

@ Return Code

NoError: The function returns successfully.
ErrorInvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check
the ModuleNum parameter.
ErrorCardDisconnected: The module is disconnected. Please close the related
application and re-register the module again.
ErrorInvalidCounter: The invalid setting is assigned to GCtr parameter.
ErrorFuncNotSupport: The AI function is not supported.
ErrorConflictWithGPIOConfig: Incorrect GPIO configuration, please check the settings
in UD_DIO_1902_Config() / UD_DIO_2401_Config() / UD_DIO_Config().
ErrorCardDisconnected: Indicates the USB device was disconnected.

86 •

2.2.56 UD_DIO_1902_Config

@ Description

The USBDAQ module provides the multiple function DIO to support GPIO (General
Purpose Input/Output), GPTC (General Purpose Timer Counter) and TC (Timer
Couner). These multi-function pins are divided into 2 groups, and configured with
wPart1Cfg and wPart2Cfg parameters.

@ Modules Support

USB-1901/USB-1902/USB-1903

@ Syntax

Microsoft C/C++ and Borland C++
I16 UD_DIO_1902_Config (U16 ModuleNum, U16 wPart1Cfg, U16 wPart2Cfg)

Visual Basic
UD_DIO_1902_Config (ByVal CardNumber As Integer, ByVal wPart1Cfg As Integer,

ByVal wPart2Cfg As Integer) As Integer

@ Parameter

ModuleNum: The card id of the card that want to perform this operation.
wPart1Cfg : The configuration for multiple-function group1 are:

USB-1901/USB-1902/USB-1903:
GPTC0_GPO1 : configure to GPTC0 and GPO1
GPI0_3_GPO0_1: configure to GPI0 ~ GPI3 and GPO0 ~ GPO1
GPTC0_TC1: GPTC0 and TC1 (TimerCouner1)

wPart2Cfg : The configuration for multiple-function group2 are:
USB-1901/USB-1902/USB-1903:

GPTC2_GPO3 : configure to GPTC2 and GPO3
GPI4_7_GPO2_3: configure to GPI4 ~ GPI7 and GPO2 ~ GPO3
GPTC2_TC3: GPTC2 and TC3 (TimerCouner3)

@ Return Code
NoError: The function returns successfully.
ErrorInvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check
the ModuleNum parameter.
ErrorFuncNotSupport: The DIO function is not supported.
ErrorBadCardType: Indicates the module-type is not supported.
ErrorInvalidDioConfig: Invalid setting in either wPart1Cfg or wPart2Cfg.
ErrorCardDisconnected: Indicates the USB device was disconnected.

• 87

2.2.57 UD_DIO_2401_Config

@ Description

The USBDAQ module provides the multiple function DIO to support GPIO (General
Purpose Input/Output), GPTC (General Purpose Timer Counter) and TC (Timer
Couner).

@ Modules Support

USB-2401

@ Syntax

Microsoft C/C++ and Borland C++
I16 UD_DIO_2401_Config (U16 ModuleNum, U16 wPart1Cfg)

Visual Basic
UD_DIO_2401_Config (ByVal CardNumber As Integer, ByVal wPart1Cfg As Integer)

As Integer

@ Parameter

ModuleNum: The card id of the card that want to perform this operation.
wPart1Cfg : The configuration for multiple-function group1 are:

GPTC0_GPO1 : configure to GPTC0 and GPO1
GPI0_3_GPO0_1: configure to GPI0 ~ GPI3 and GPO0 ~ GPO1
GPTC0_TC1: GPTC0 and TC1 (TimerCouner1)

@ Return Code
NoError: The function returns successfully.
ErrorInvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check
the ModuleNum parameter.
ErrorFuncNotSupport: The DIO function is not supported.
ErrorBadCardType: Indicates the module-type is not supported.
ErrorInvalidDioConfig: Invalid setting in wPart1Cfg.
ErrorCardDisconnected: Indicates the USB device was disconnected.

88 •

2.2.58 UD_DIO_2405_Config

@ Description

The USB-2405 provides the multiple-function DIO to support GPIO (General Purpose
Input/Output), and GPTC (General Purpose Timer Counter). The DIO must be
configured before calling other GPIO/GPTC related functions.

@ Modules Support

USB-2405

@ Syntax

Microsoft C/C++ and Borland C++
I16 UD_DIO_2405_Config (U16 ModuleNum, U16 wPart1Cfg, U16 wPart2Cfg)

Visual Basic
UD_DIO_2405_Config (ByVal CardNumber As Integer, ByVal wPart1Cfg As Integer,

ByVal wPart2Cfg As Integer) As Integer

@ Parameter

ModuleNum: The card id of the card that want to perform this operation.
wPart1Cfg : The configuration for multiple-function port1 are:

P2405_DIGITAL_INPUT : configure to Digital-Input
P2405_COUNTER_INPUT: configure to Pulse-Input
P2405_DIGITAL_OUTPUT: configure to Digital-Output
P2405_PULSE_OUTPUT: configure to Pulse-Output

wPart2Cfg : The configuration for multiple-function port2 are:
P2405_DIGITAL_INPUT : configure to Digital-Input
P2405_COUNTER_INPUT: configure to Pulse-Input
P2405_DIGITAL_OUTPUT: configure to Digital-Output
P2405_PULSE_OUTPUT: configure to Pulse-Output

@ Return Code
NoError: The function returns successfully.
ErrorInvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check
the ModuleNum parameter.
ErrorFuncNotSupport: The DIO function is not supported.
ErrorBadCardType: Indicates the module-type is not supported.
ErrorInvalidDioConfig: Invalid setting in either wPart1Cfg or wPart2Cfg.
ErrorCardDisconnected: Indicates the USB device was disconnected.

• 89

2.2.59 UD_DIO_Config

@ Description

The UD-DASK devices provide the multiple-function DIO to support GPIO (General
Purpose Input/Output), and GPTC (General Purpose Timer Counter). The DIO ports
must be configured before calling other GPIO/GPTC related functions.

@ Modules Support

USB-1210

@ Syntax

Microsoft C/C++ and Borland C++
I16 UD_DIO_Config (U16 ModuleNum, U16 wPort0Cfg, U16 wPort1Cfg)

Visual Basic
UD_DIO_Config (ByVal CardNumber As Integer, ByVal wPort0Cfg As Integer, ByVal

wPort1Cfg As Integer) As Integer

@ Parameter

ModuleNum: The card id of the card that want to perform this operation.
wPort0Cfg : The configuration for multiple-function port0. The valid settings are:

GPTC0_GPO1 : configure to GPTC0 and GPO1
GPI0_3_GPO0_1: configure to GPI0 ~ GPI3 and GPO0 ~ GPO1
GPTC0_TC1: GPTC0 and TC1 (TimerCouner1)

wPort1Cfg : The configuration for multiple-function port1 The valid settings are:
GPTC2_GPO3 : configure to GPTC2 and GPO3
GPI4_7_GPO2_3: configure to GPI4 ~ GPI7 and GPO2 ~ GPO3
GPTC2_TC3: GPTC2 and TC3 (TimerCouner3)

@ Return Code
NoError: The function returns successfully.
ErrorInvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check
the ModuleNum parameter.
ErrorFuncNotSupport: The DIO function is not supported.
ErrorBadCardType: Indicates the module-type is not supported.
ErrorInvalidDioConfig: Invalid setting in either wPart1Cfg or wPart2Cfg.
ErrorCardDisconnected: Indicates the USB device was disconnected.

90 •

2.2.60 UD_DI_ReadLine

@ Description

Read the digital logic state of the specified DI port/line.

@ Modules Support

USB-1901/USB-1902/USB-1903/USB-7250/USB-7230/USB-2405/USB-1210

@ Syntax

Microsoft C/C++ and Borland C++
I16 UD_DI_ReadLine (U16 ModuleNum, U16 Port, U16 Line, U16 *State)

Visual Basic
UD_DI_ReadLine (ByVal ModuleNum As Integer, ByVal Port As Integer, ByVal Line

As Integer, State As Integer) As Integer

@ Parameter

ModuleNum : The id of the module that want to perform this operation.
Port : Digital input port number. The valid value:
 USB-1901/USB-1902/USB-1903/USB-2405/USB-1210: 0, 1
 USB-7250/USB-7230: 0
Line : The digital line to be read. The valid value:
 USB-1901/USB-1902/USB-1903/USB-1210: 0 through 3
 USB-7250: 0 through 7
 USB-7230: 0 through 15
 USB-2405: 0
State : Returns the digital logic state, 0 or 1, of the specified line.

@ Return Code

NoError: The function returns successfully.
ErrorInvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check
the ModuleNum parameter.
ErrorFuncNotSupport: The DIO function is not supported.
ErrorInvalidDioLine: Invalid value is assigned to Line parameter.
ErrorConflictWithGPIOConfig: Incorrect GPIO configuration, please check the settings
in UD_DIO_1902_Config() / UD_DIO_2405_Config() / UD_DIO_Config().
ErrorCardDisconnected: Indicates the USB device was disconnected.

• 91

2.2.61 UD_DI_ReadPort

@ Description

Read digital data from the specified digital input port.

@ Modules Support

USB-1901/USB-1902/USB-1903/USB-2401/USB-7250/USB-7230/USB-2405/USB-
1210

@ Syntax

Microsoft C/C++ and Borland C++
I16 UD_DI_ReadPort (I16 ModuleNum, U16 Port, U32 *Value)

Visual Basic
UD_DI_ReadPort (ByVal ModuleNum As Integer, ByVal Port As Integer, Value As

Long) As Integer

@ Parameter

ModuleNum : The id of the module that want to perform this operation.
Port : Digital input port number. The valid value:
 USB-1901/USB-1902/USB-1903/USB-2405/USB-1210: 0, 1
 USB-2401/USB-7250/USB-7230: 0
Value : Returns the digital data read from the specified port.
 USB-1901/USB-1902/USB-1903/USB-2401/USB-1210: 4-bit data
 USB-7250: 8-bit data
 USB-7230: 16-bit data
 USB-2405: 1-bit data

@ Return Code

NoError: The function returns successfully.
ErrorInvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check
the ModuleNum parameter.
ErrorFuncNotSupport: The DIO function is not supported.
ErrorConflictWithGPIOConfig: Incorrect GPIO configuration, please check the settings
in UD_DIO_1902_Config() / UD_DIO_2401_Config() / UD_DIO_2405_Config() /
UD_DIO_Config().
ErrorCardDisconnected: Indicates the USB device was disconnected.

92 •

2.2.62 UD_DO_ReadLine

@ Description

Read back the digital-input state from the specified DO port/line.

@ Modules Support

USB-1901/USB-1902/USB-1903/USB-2401/USB-7250/USB-7230/USB-2405/USB-
1210

@ Syntax

Microsoft C/C++ and Borland C++
I16 UD_DO_ReadLine (U16 CardNumber, U16 Port, U16 Line, U16 *State)

Visual Basic
UD_DO_ReadLine (ByVal CardNumber As Integer, ByVal Port As Integer, ByVal

Line As Integer, State As Integer) As Integer

@ Parameter

ModuleNum : The id of the module that want to perform this operation.
Port : Digital output port number. The valid value:
 USB-1901/USB-1902/USB-1903/USB-2405/USB-1210: 0, 1
 USB-2401/USB-7250/USB-7230: 0
Line : The digital line to be accessed. The valid value:
 USB-1901/USB-1902/USB-1903/USB-2401/USB-1210: 0 through 1
 USB-7250: 0 through 7
 USB-7230: 0 through 15
 USB-2405: 0
State : Returns the digital logic state, 0 or 1, of the specified line.

@ Return Code

NoError: The function returns successfully.
ErrorInvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check
the ModuleNum parameter.
ErrorFuncNotSupport: The DIO function is not supported.
ErrorInvalidDioLine: Invalid value is assigned to Line parameter.
ErrorConflictWithGPIOConfig: Incorrect GPIO configuration, please check the settings
in UD_DIO_1902_Config() / UD_DIO_2401_Config() / UD_DIO_2405_Config() /
UD_DIO_Config().
ErrorCardDisconnected: Indicates the USB device was disconnected.

• 93

2.2.63 UD_DO_ReadPort

@ Description

Read back the output digital data from the specified digital output port.

@ Modules Support

USB-1901/USB-1902/USB-1903/USB-2401/USB-7250/USB-7230/USB-2405/USB-
1210

@ Syntax

Microsoft C/C++ and Borland C++
I16 UD_DO_ReadPort (U16 ModuleNum, U16 Port, U32 *Value)

Visual Basic
UD_DO_ReadPort (ByVal ModuleNum As Integer, ByVal Port As Integer, Value As

Long) As Integer

@ Parameter

ModuleNum : The id of the module that want to perform this operation.
Port : Digital output port number. The valid value:
 USB-1901/USB-1902/USB-1903/USB-2405/USB-1210: 0, 1
 USB-2401/USB-7250/USB-7230: 0
Value : Returns the digital data read from the specified output port.
 USB-1901/USB-1902/USB-1903/USB-2401/USB-1210: 2-bit data
 USB-7250: 8-bit data
 USB-7230: 16-bit data
 USB-2405: 1-bit data

@ Return Code

NoError: The function returns successfully.
ErrorInvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check
the ModuleNum parameter.
ErrorFuncNotSupport: The DIO function is not supported.
ErrorConflictWithGPIOConfig: Incorrect GPIO configuration, please check the settings
in UD_DIO_1902_Config() / UD_DIO_2401_Config() / UD_DIO_2405_Config() /
UD_DIO_Config.
ErrorCardDisconnected: Indicates the USB device was disconnected.

94 •

2.2.64 UD_DO_WriteLine

@ Description

Sets the digital-output state to specified DO port/line. This function is only available for
these cards that support digital output read-back functionality.

@ Modules Support

USB-1901/USB-1902/USB-1903/USB-2401/USB-7250/USB-7230/USB-2405/USB-
1210

@ Syntax

Microsoft C/C++ and Borland C++
I16 UD_DO_WriteLine (U16 ModuleNum, U16 Port, U16 Line, U16 State)

Visual Basic
UD_DO_WriteLine (ByVal ModuleNum As Integer, ByVal Port As Integer, ByVal

DoLine As Integer, ByVal State As Integer) As Integer

@ Parameter

ModuleNum : The id of the module that want to perform this operation.
Port : Digital output port number. The valid value:
 USB-1901/USB-1902/USB-1903/USB-2405/USB-1210: 0, 1
 USB-2401/USN-7250/USB-7230: 0
Line : The digital line to write to. The valid value:
 USB-1901/USB-1902/USB-1903/USB-2401/USB-1210: 0 through 1
 USB-7250: 0 through 7
 USB-7230: 0 through 15
 USB-2405: 0
State : The new digital logic state, 0 or 1.

@ Return Code

NoError: The function returns successfully.
ErrorInvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check
the ModuleNum parameter.
ErrorFuncNotSupport: The DIO function is not supported.
ErrorInvalidDioLine: Invalid value is assigned to Line parameter.
ErrorConflictWithGPIOConfig: Incorrect GPIO configuration, please check the settings
in UD_DIO_1902_Config() / UD_DIO_2401_Config() / UD_DIO_2405_Config() /
UD_DIO_Config().
ErrorCardDisconnected: Indicates the USB device was disconnected.

• 95

2.2.65 UD_DO_WritePort

@ Description

Writes digital data to the specified digital output port.

@ Modules Support

USB-1901/USB-1902/USB-1903/USB-2401/USB-7250/USB-7230/USB-2405/USB-
1210

@ Syntax

Microsoft C/C++ and Borland C++
I16 UD_DO_WritePort (U16 ModuleNum, U16 Port, U32 Value)

Visual Basic
UD_DO_WritePort (ByVal ModuleNum As Integer, ByVal Port As Integer, ByVal

Value As Long) As Integer

@ Parameter

ModuleNum : The id of the module that want to perform this operation.
Port : Digital output port number. The cards that support this function and

their corresponding valid value are as follows:
 USB-1901/USB-1902/USB-1903/USB-2405/USB-1210: 0, 1
 USB-2401/USB-7250/USB-7230: 0
Value : Digital data that is written to the specified port.
 USB-1901/USB-1902/USB-1903/USB-2401/USB-1210: 2-bit data
 USB-7250: 8-bit data
 USB-7230: 16-bit data
 USB-2405: 1-bit data

@ Return Code

NoError: The function returns successfully.
ErrorInvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check
the ModuleNum parameter.
ErrorFuncNotSupport: The DIO function is not supported.
ErrorConflictWithGPIOConfig: Incorrect GPIO configuration, please check the settings
in UD_DIO_1902_Config() / UD_DIO_2401_Config() / UD_DIO_2405_Config() /
UD_DIO_Config().
ErrorCardDisconnected: Indicates the USB device was disconnected.

96 •

2.2.66 UD_DO_SetInitPattern

@ Description

Set the state of the initial. The initial pattern is sent to DO channel while power-on
initializes.

@ Modules Support

USB-7250/USB-7230

@ Syntax

Microsoft C/C++ and Borland C++
I16 UD_DO_SetInitPattern (U16 ModuleNum, U16 Port, U32 *Pattern)

Visual Basic
UD_DO_SetInitPattern (ByVal ModuleNum As UShort, ByVal Port As UShort, ByRef

Pattern As UInteger) As Short

@ Parameter

ModuleNum : The id of the module that want to perform this operation.
Port : Digital output port number. The cards that support this function and

their corresponding valid value are as follows:
 USB-2401/USB-7250/USB-7230: 0
Pattern : State of the set pattern..
 USB-7250: 8-bit data
 USB-7230: 16-bit data

@ Return Code

NoError: The function returns successfully.
ErrorInvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check
the ModuleNum parameter.
ErrorFuncNotSupport: The DIO function is not supported.
ErrorCardDisconnected: Indicates the USB device was disconnected.

• 97

2.2.67 UD_DO_GetInitPattern

@ Description

Obtains the state of the state set by SetInitPattern.

@ Modules Support

USB-7250/USB-7230

@ Syntax

Microsoft C/C++ and Borland C++
I16 UD_DO_GetInitPattern (U16 ModuleNum, U16 Port, U32 *Pattern)

Visual Basic
UD_DO_GetInitPattern (ByVal ModuleNum As UShort, ByVal Port As UShort, ByRef

Pattern As UInteger) As Short

@ Parameter

ModuleNum : The id of the module that want to perform this operation.
Port : Digital output port number. The cards that support this function and

their corresponding valid value are as follows:
 USB-2401/USB-7250/USB-7230: 0
Pattern : Returns the state set by SetInitPattern function.
 USB-7250: 8-bit data
 USB-7230: 16-bit data

@ Return Code

NoError: The function returns successfully.
ErrorInvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check
the ModuleNum parameter.
ErrorFuncNotSupport: The DIO function is not supported.
ErrorCardDisconnected: Indicates the USB device was disconnected.

98 •

2.2.68 UD_DI_SetCOSInterrupt32

@ Description

Enables or disables the COS (Change Of State) interrupt detection capability of the
specified port.

@ Modules Support

USB-7250/USB-7230

@ Syntax

Microsoft C/C++ and Borland C++
I16 UD_DI_SetCOSInterrupt32 (U16 ModuleNum, U16 Port, U32 Ctrl, HANDLE

*hEvent, BOOLEAN ManualReset)

Visual Basic
UD_DI_SetCOSInterrupt32 (ByVal ModuleNum As UShort, ByVal Port As UShort,

ByVal Ctrl As UInteger, ByRef hEvent As IntPtr, ByVal ManualReset As
Boolean) As Short

@ Parameter

ModuleNum : The id of the module that want to perform this operation.
Port : Digital output port number. The cards that support this function and

their corresponding valid value are as follows:
 USB-7250/USB-7230: 0
Ctrl : Each bit of the value of ctrl controls one DI channel. The '0' value of

the bit value disable the COS function of the corresponding line, and
the '1' value of the bit value enable the COS function of the
corresponding line. The valid values for ctrl are as follows:

 USB-7250: 0 to 0xFF
 USB-7230: 0 to 0xFFFF
hEvent : Returned COS interrupt event handle.
ManualReset : Specifies whether the event is (1) manual-reset by function

ResetEvent in user's application or (0) auto-reset by driver.

@ Return Code

NoError: The function returns successfully.
ErrorInvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check
the ModuleNum parameter.
ErrorFuncNotSupport: The DIO function is not supported.
ErrorCardDisconnected: Indicates the USB device was disconnected.

• 99

2.2.69 UD_DI_GetCOSLatchData32

@ Description

Gets the 32-bit width DI data latched in the COS Latch register while the Change-of-
State (COS) interrupt occurs.

@ Modules Support

USB-7250/USB-7230

@ Syntax

Microsoft C/C++ and Borland C++
I16 DIO_GetCOSLatchData32 (U16 ModuleNum, U16 Port, U32 *CosLData)

Visual Basic
UD_DI_GetCOSLatchData32 (ByVal ModuleNum As UShort, ByVal Port As UShort,

ByRef CosLData As UInteger) As Short

@ Parameter

ModuleNum : The id of the module that want to perform this operation.
Port : Digital output port number. The cards that support this function and

their corresponding valid value are as follows:
 USB-7250/USB-7230: 0
CosLData: Returns the DI data latched in the COS Latch register while the

Change-of-State(COS) interrupt occurs.
 USB-7250: 8-bit data
 USB-7230: 16-bit data

@ Return Code

NoError: The function returns successfully.
ErrorInvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check
the ModuleNum parameter.
ErrorFuncNotSupport: The DIO function is not supported.
ErrorCardDisconnected: Indicates the USB device was disconnected.

100 •

2.2.70 UD_DI_Control

@ Description

Set the filter enable state of the DI channel.

@ Modules Support

USB-7250/USB-7230

@ Syntax

Microsoft C/C++ and Borland C++
I16 UD_DI_Control (U16 ModuleNum, U16 Port, U32 Ctrl)

Visual Basic
UD_DI_Control (ByVal ModuleNum As UShort, ByVal Port As UShort, ByVal Ctrl As

UInteger) As Short

@ Parameter

ModuleNum : The id of the module that want to perform this operation.
Port : Digital output port number. The cards that support this function and

their corresponding valid value are as follows:
 USB-7250/USB-7230: 0
Ctrl : Each bit of the value of ctrl controls one DI channel. The '0' value of

the bit value disable the filter function of the corresponding line, and
the '1' value of the bit value enable the filter function of the
corresponding line. The valid values for ctrl are as follows:

 USB-7250: 0 to 0xFF
 USB-7230: 0 to 0xFFFF

@ Return Code

NoError: The function returns successfully.
ErrorInvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check
the ModuleNum parameter.
ErrorFuncNotSupport: The DIO function is not supported.
ErrorCardDisconnected: Indicates the USB device was disconnected.

• 101

2.2.71 UD_DI_SetupMinPulseWidth

@ Description

Set the filter width of the DI channel.

@ Modules Support

USB-7250/USB-7230

@ Syntax

Microsoft C/C++ and Borland C++
I16 UD_DI_SetupMinPulseWidth (U16 ModuleNum, U16 Value)

Visual Basic
UD_DI_SetupMinPulseWidth (ByVal ModuleNum As UShort, ByVal Value As UShort)

As Short

@ Parameter

ModuleNum : The id of the module that want to perform this operation.
Value : Multiples of the period of 48MHz as the DI filter width. The valid

values for value are as follows:
 USB-7250/USB-7230: 1 to 65535

@ Return Code

NoError: The function returns successfully.
ErrorInvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check
the ModuleNum parameter.
ErrorFuncNotSupport: The DIO function is not supported.
ErrorCardDisconnected: Indicates the USB device was disconnected.

102 •

2.2.72 UD_CTR_ReadEdgeCounter

@ Description

Get the rising edge counter value of the Counter channel.

@ Modules Support

USB-7250/USB-7230/USB-2405

@ Syntax

Microsoft C/C++ and Borland C++
I16 UD_CTR_ReadEdgeCounter (U16 ModuleNum, U16 Ctr, U32* Value)

Visual Basic
UD_CTR_ ReadEdgeCounter (ByVal ModuleNum As UShort, ByVal Ctr as UShort,

ByRef Value As UInteger) As Short

@ Parameter

ModuleNum : The id of the module that want to perform this operation.
Ctr : Counter number. The cards that support this function and their

corresponding valid value are as follows:
 USB-7250/USB-7230/USB-2405: 0, 1
Value : Value of the internal rising edge counter. The valid values for value

are as follows:
 USB-7250/USB-7230/USB-2405: 32-bit data

@ Return Code

NoError: The function returns successfully.
ErrorInvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check
the ModuleNum parameter.
ErrorFuncNotSupport: The DIO function is not supported.
ErrorCardDisconnected: Indicates the USB device was disconnected.

• 103

2.2.73 UD_CTR_ReadFrequency

@ Description

Get the frequency counter value of the Counter channel.

@ Modules Support

USB-7250/USB-7230

@ Syntax

Microsoft C/C++ and Borland C++
I16 UD_CTR_ReadFrequency (U16 ModuleNum, U16 Ctr, F64* Value)

Visual Basic
UD_CTR_SetupMinPulseWidth (ByVal ModuleNum As UShort, ByVal Ctr as UShort,

ByRef Value As Double) As Short

@ Parameter

ModuleNum : The id of the module that want to perform this operation.
Ctr : Counter number. The cards that support this function and their

corresponding valid value are as follows:
 USB-7250/USB-7230: 0, 1
Value : Value of the internal frequency counter.

@ Return Code

NoError: The function returns successfully.
ErrorInvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check
the ModuleNum parameter.
ErrorFuncNotSupport: The DIO function is not supported.
ErrorCardDisconnected: Indicates the USB device was disconnected.

104 •

2.2.74 UD_CTR_Control

@ Description

Configures the selected counter to operate in the specified mode.

@ Modules Support

USB-7250/USB-7230/USB-2405

@ Syntax

Microsoft C/C++ and Borland C++
I16 UD_CTR_Control (U16 ModuleNum, U16 Ctr, U32 Ctrl)

Visual Basic
UD_CTR_Control (ByVal ModuleNum As UShort, ByVal Ctr as UShort, ByVal Ctrl As

Uinteger) As Short

@ Parameter

ModuleNum : The id of the module that want to perform this operation.
Ctr : Counter number. The cards that support this function and their

corresponding valid value are as follows:
 USB-7250/USB-7230/USB-2405: 0, 1
Ctrl : Bitwise or of the following enumerative values:
 USB-7250/USB-7230:
 UD_CTR_Filter_Disable/UD_CTR_Filter_Enable
 UD_CTR_Reset_Rising_Edge_Counter
 UD_CTR_Reset_Frequency_Counter
 UD_CTR_Polarity_Positive/UD_CTR_Polarity_Negative
 USB-2405:
 UD_CTR_Reset_Rising_Edge_Counter
 UD_CTR_Polarity_Positive/UD_CTR_Polarity_Negative

@ Return Code

NoError: The function returns successfully.
ErrorInvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check
the ModuleNum parameter.
ErrorFuncNotSupport: The DIO function is not supported.
ErrorCardDisconnected: Indicates the USB device was disconnected.

• 105

2.2.75 UD_CTR_SetupMinPulseWidth

@ Description

Set the filter width of the Counter channel.

@ Modules Support

USB-7250/USB-7230

@ Syntax

Microsoft C/C++ and Borland C++
I16 UD_CTR_SetupMinPulseWidth (U16 ModuleNum, U16 Ctr, U16 Value)

Visual Basic
UD_CTR_SetupMinPulseWidth (ByVal ModuleNum As UShort, ByVal Ctr as UShort,

ByVal Value As UShort) As Short

@ Parameter

ModuleNum : The id of the module that want to perform this operation.
Ctr : Counter number. The cards that support this function and their

corresponding valid value are as follows:
 USB-7250/USB-7230: 0, 1
Value : Multiples of the period of 48MHz as the CTR filter width. The valid

values for value are as follows:
 USB-7250/USB-7230: 1 to 65535

@ Return Code

NoError: The function returns successfully.
ErrorInvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check
the ModuleNum parameter.
ErrorFuncNotSupport: The DIO function is not supported.
ErrorCardDisconnected: Indicates the USB device was disconnected.

106 •

2.2.76 UD_Read_ColdJunc_Thermo

@ Description

Read the temperature for the thermocouple cold-junction compensation.

@ Modules Support

USB-2401

@ Syntax

Microsoft C/C++ and Borland C++
I16 UD_Read_ColdJunc_Thermo (U16 ModuleNum, F64 *fValue)

Visual Basic
UD_Read_ColdJunc_Thermo (ByVal ModuleNum As UShort, ByRef fValue As

Double) As Short

@ Parameter

ModuleNum : The id of the module that want to perform this operation.
fValue : The memory that is stored the cold-junction temperature.

@ Return Code

NoError: The function returns successfully.
ErrorInvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check
the ModuleNum parameter.
ErrorFuncNotSupport: The Cold-Junction sensor is not supported.
ErrorTimeoutFromSyncMode: The synchronous calibration-operation is time-out.
ErrorCardDisconnected: Indicates the USB device was disconnected.

• 107

2.2.77 UD_2405_Calibration

@ Description

Start the auto-calibration and update the settings into EEPROM. Please re-start the
USB module to activate the calibration settings.

@ Modules Support

USB-2405

@ Syntax

Microsoft C/C++ and Borland C++
I16 UD_2405_Calibration (U16 ModuleNum)

Visual Basic
UD_2405_Calibration (ByVal ModuleNum As UShort) As Short

@ Parameter

ModuleNum : The id of the module that want to perform this operation.

@ Return Code

NoError: The function returns successfully.
ErrorInvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check
the ModuleNum parameter.
ErrorOpenEventFailed: Open event failed in device driver.
ErrorInvalidRefVoltage: Indicates the reference-voltage is invalid.
ErrorTimeoutFromSyncMode: The synchronous calibration-operation is time-out.
ErrorCardDisconnected: Indicates the USB device was disconnected.

108 •

2.2.78 UD_AI_Calibration

@ Description

Start the AI auto-calibration and program the calibration-settings into EEPROM.
Please re-start the USB module to activate the calibration settings.

@ Modules Support

USB-1210

@ Syntax

Microsoft C/C++ and Borland C++
I16 UD_AI_Calibration (U16 ModuleNum, U32 dwReserved)

Visual Basic
UD_AI_Calibration (ByVal ModuleNum As Integer, By dwReserved As Long) As

Integer

@ Parameter

ModuleNum : The id of the module that want to perform this operation.
dwReserved: This parameter is reserved for future.

@ Return Code

NoError: The function returns successfully.
ErrorInvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check
the ModuleNum parameter.
ErrorOpenEventFailed: Open event failed in device driver.
ErrorInvalidRefVoltage: Indicates the reference-voltage is invalid.
ErrorTimeoutFromSyncMode: The synchronous calibration-operation is time-out.
ErrorCardDisconnected: Indicates the USB device was disconnected.

• 109

2.2.79 UD_Register_Card

@ Description

Initializes the hardware and software states of a USBDAQ module, and then returns a
numeric card ID that corresponds to the card initialized. UD_Register_Card must be
called before any other USB-DASK library functions can be called for that card. The
function initializes the card and variables internal to USB-DASK library.

@ Modules Support

USB-1901/USB-1902/USB-1903/USB-2401/USB-7250/USB-7230/USB-2405/USB-
1210

@ Syntax

Microsoft C/C++ and Borland C++
I16 UD_Register_Card (U16 ModuleType, U16 module_num)

Visual Basic
UD_Register_Card (ByVal ModuleType As Integer, ByVal module_num As Integer)

As Integer

@ Parameter

ModuleType : The type of USB module to be initialized. ADLink will periodically
upgrades USB-DASK to support new USB-DASK modules. Please
refer to Release Notes for the module types that are supported in the
latest USB-DASK. Following are the constants defined in UsbDask.h
that USBDASK supports currently or in the near future:

USB_1901
USB_1902
USB_1903
USB_2401
USB_7250
USB_7230
USB_2405
USB-1210

module_num : The sequence number of the card with the same
module type (as defined in argument ModuleType). The sequence
number setting is according to the onboard DIP-switch.

@ Return Code

This function returns a numeric id for the module initialized. The range of module id is
between 0 and (MAX_USB_DEVICE-1). If there is any error occurs, it will return
negative error code, the possible error codes are listed below:
ErrorTooManyRegisteredCards : more than MAX_USB_DEVICE tasks register
USBDASK devices.
ErrorUnknownCardType : Invalid Module-Type is assigned to ModuleType parameter.
ErrorOpenDriverFailed : Failed to open the device-node, please call GetLastError() for
detailed system error.
ErrorConfigIoctl : Failed to get module description from device driver, please call
GetLastError() for detailed system error.
ErrorOpenEvtIoctl : Failed to bind the event objects, please call GetLastError() for
detailed system error.

110 •

2.2.80 UD_Release_Card

@ Description

There are at most MAX_USB_DEVICE modules that can be registered simultaneously.
This function is called to release the registered module. Also by the end of a program,
you need to use this function to release all cards that were registered.

@ Modules Support

USB-1901/USB-1902/USB-1903/USB-2401/USB-7250/USB-7230/USB-2405/USB-
1210

@ Syntax

Microsoft C/C++ and Borland C++
I16 Release_Card (U16 CardNumber)

Visual Basic
Release_Card (ByVal CardNumber As Integer) As Integer

@ Parameter

CardNumber : The module id that want to be released.

@ Return Code

NoError: The function returns successfully.
ErrorInvalidCardNumber : The CardNumber is larger than MAX_USB_DEVICE.
ErrorMemUMapSetIoctl : Failed to Unmap the memory, please call GetLastError() for
detailed system error.

• 111

2.2.81 UD_Device_Scan

@ Description

This function checks all active USB-DAQ devices in your system. The pModuleNum
saves the numbers of active USB-DAQ devices.

@ Modules Support

USB-1901/USB-1902/USB-1903/USB-2401/USB-7250/USB-7230/USB-2405/USB-
1210

@ Syntax

Microsoft C/C++ and Borland C++
I16 UD_Device_Scan(U16* pModuleNum, USBDAQ_DEVICE AvailModules[])

@ Parameter

pModuleNum: The pointer to the memory that stores the numbers of active USB-
DAQ devices.

AvailableModule: The user-provided USBDAQ_DEVICE array that is save the
available USBDAQ modules. The USBDAQ_DEVICE data structure is
defined in UsbDask.h.
typedef struct
{
USHORTwModuleType;
USHORTwCardID;
} USBDAQ_DEVICE, *PUSBDAQ_DEVICE

@ Return Code

NoError: The function returns successfully.
ErrorNoModuleFound: There is no active device available in your system.

112 •

Associated Functions

The associated library, UsbThermo.dll, provides the functions to convert the
thermoelectric-voltage to temperature. Plesae refer to the header file, UsbThermo.h,
and the related library.

ADC_to_Thermo

@ Description

This function converts the voltage to temperature

@ Syntax

Microsoft C/C++ and Borland C++
I16 ADC_to_Thermo(unsigned short wThermoType, double fScaleADC, double
fColdJuncTemp, double* fTemp)

@ Parameter

wThermoType: The thermo-type, the valid types are:
THERMO_B_TYPE,
THERMO_C_TYPE,
THERMO_E_TYPE,
THERMO_K_TYPE,
THERMO_R_TYPE,
THERMO_S_TYPE,
THERMO_T_TYPE,
THERMO_J_TYPE,
THERMO_N_TYPE
RTD_RT100.

fScaleADC: The thermoelectric voltage.
fColdJuncTemp: The temperature for the thermocouple cold-junction compensation.
fTemp: The memory to store the converted temperature.

pfTemp

@ Return Code

NoThermoError: The function returns successfully.
ErrorInvalidThermoType: The thermo-type is not supported.
ErrorOutThermoTange: The thermoelectric-voltage is out of range of the reference-
table.
ErrorThernoTable: No suitable entry can be found in the reference table,

• 113

Appendix A Status Codes

This appendix lists the status codes returned by UD-DASK, including the name and
description.

Each UD-DASK function returns a status code that indicates whether the function was
performed successfully. When a UD-DASK function returns a negative number, it
means that an error occurred while executing the function.

Status
Code

Status Name Description

0 NoError No error occurred
-1 ErrorUnknownCardType The CardType argument is not valid
-2 ErrorInvalidCardNumber The CardNumber argument is out of

range (larger than 31).
-3 ErrorTooManyCardRegistered There have been 32 cards that were

registered.
-4 ErrorCardNotRegistered No card registered as id

CardNumber.
-5 ErrorFuncNotSupport The function called is not supported

by this type of card..
-6 ErrorInvalidIoChannel The specified Channel or Port

argument is out of range..
-7 ErrorInvalidAdRange The specified analog input range is

invalid.
-8 ErrorContIoNotAllowed The specified continuous IO

operation is not supported by this
type of card.

-9 ErrorDiffRangeNotSupport All the analog input ranges must be
the same for multi-channel analog
input.

-10 ErrorLastChannelNotZero The channels for multi-channel
analog input must be ended with or
started from zero.

-11 ErrorChannelNotDescending The channels for multi-channel
analog input must be contiguous and
in descending order.

-12 ErrorChannelNotAscending The channels for multi-channel
analog input must be contiguous and
in ascending order.

-13 ErrorOpenDriverFailed Failed to open the device driver.
-14 ErrorOpenEventFailed Open event failed in device driver.
-15 ErrorTransferCountTooLarge The size of transfer is larger than the

size of Initially allocated memory in
driver.

-16 ErrorNotDoubleBufferMode Double buffer mode is disabled.
-17 ErrorInvalidSampleRate The specified sampling rate is out of

range.
-18 ErrorInvalidCounterMode The value of the Mode argument is

invalid.
-19 ErrorInvalidCounter The value of the Ctr argument is out

of range.
-20 ErrorInvalidCounterState The value of the State argument is

114 •

out of range.
-21 ErrorInvalidBinBcdParam The value of the BinBcd argument is

invalid.
-22 ErrorBadCardType The value of Card Type argument is

invalid
-23 ErrorInvalidDaRefVoltage The value of DA reference voltage

argument is invalid
-24 ErrorAdTimeOut Time out for AD operation
-25 ErrorNoAsyncAI Continuous Analog Input is not set

as Asynchronous mode
-26 ErrorNoAsyncAO Continuous Analog Output is not set

as Asynchronous mode
-27 ErrorNoAsyncDI Continuous Digital Input is not set as

Asynchronous mode
-28 ErrorNoAsyncDO Continuous Digital Output is not set

as Asynchronous mode
-29 ErrorNotInputPort The value of AI/DI port argument is

invalid
-30 ErrorNotOutputPort The value of AO/DO argument is

invalid
-31 ErrorInvalidDioPort The value of DI/O port argument is

invalid
-32 ErrorInvalidDioLine The value of DI/O line argument is

invalid
-33 ErrorContIoActive Continuous IO operation is not

active
-34 ErrorDblBufModeNotAllowed Double Buffer mode is not allowed
-35 ErrorConfigFailed The specified function configuration

is failed
-36 ErrorInvalidPortDirection The value of DIO port direction

argument is invalid
-37 ErrorBeginThreadError Failed to create thread
-38 ErrorInvalidPortWidth The port width setting is not allowed
-39 ErrorInvalidCtrSource The clock source setting is invalid
-40 ErrorOpenFile Failed to Open file
-41 ErrorAllocateMemory The memory allocation is failed
-42 ErrorDaVoltageOutOfRange The value of DA voltage argument is

out of range
-50 ErrorInvalidCounterValue The value of count for a counter is

invalid.
-60 ErrorInvalidEventHandle The event handle is invalid.
-61 ErrorNoMessageAvailable No event message can be added.
-62 ErrorEventMessgaeNotAdded The specified event message does

not exist.
-63 ErrorCalibrationTimeOut Auto-calibration has timed-out.
-64 ErrorUndefinedParameter Parameter(s) is not defined.
-65 ErrorInvalidBufferID Buffer ID is invalid.
-66 ErrorInvalidSampledClock The set sampled clock is invalid.
-67 ErrorInvalisOperationMode The set operation mode is invalid.

-201 ErrorConfigIoctl The configuration API failed.
-202 ErrorAsyncSetIoctl The async. mode API failed.
-203 ErrorDBSetIoctl The double-buffer setting API failed.
-204 ErrorDBHalfReadyIoctl The half-ready API failed.
-205 ErrorContOPIoctl The continuous data acquisition API

failed.
-206 ErrorContStatusIoctl continuous data acquisition status

API setting failed.

• 115

-207 ErrorPIOIoctl The polling data API failed.
-208 ErrorDIntSetIoctl The dual-interrupt setting API failed.
-209 ErrorWaitEvtIoctl The wait event API failed.
-210 ErrorOpenEvtIoctl The open event API failed.
-211 ErrorCOSIntSetIoctl The COS interrupt setting API failed.
-212 ErrorMemMapIoctl The memory mapping API failed.
-213 ErrorMemUMapSetIoctl The memory unmapping API failed.
-214 ErrorCTRIoctl The counter API failed.
-215 ErrorGetResloctl The resource getting API failed.
-216 ErrorCalloctl The calibration API failed.
-301 ErrorAccessViolationDataCopy Indicates the system exception is

occurred while memory-copying.
-302 ErrorNoModuleFound There is no active device

available in your system.
-303 ErrorCardIDDuplicated Indicates the same ID is

configured in multiple modules.
-304 ErrorCardDisconnected Indicates the USB device was

disconnected.
-305 ErrorInvalidScannedIndex <The relative function had been

removed. reserved for future
use.>

-306 ErrorUndefinedException Indicates the undefined
exception is caught, usually
returned in beta version.

-307 ErrorInvalidDioConfig Invalid setting in DIO
configuration.

-308 ErrorInvalidAOCfgCtrl The invalid settings in AO
Control Configuration.

-309 ErrorInvalidAOTrigCtrl The invalid settings in AO
Trigger Configuration.

-310 ErrorConflictWithSyncMode The synchronous AI/AO
operation is conflict with this
function.

-311 ErrorConflictWithFifoMode <The relative function had been
removed, reserved for future
use.>

-312 ErrorInvalidAOIteration The Iteration is zero with finite
operation.

-313 ErrorZeroChannelNumber The number of channel is zero.
-314 ErrorSystemCallFailed Failed to forward the command

to driver, please call
GetLastError() for detailed
system-error.

-315 ErrorTimeoutFromSyncMode The synchronous AI / AO
operation is time-out.

-316 ErrorInvalidPulseCount The Pulse-Connt is zero when
MultipleGatedPulseGen mode is
selected

-317 ErrorInvalidDelayCount The delay-count is less than 1,
or less than 320 if the trigger-
source is configured as
P1902_AI_TRGSRC_AI0 ~
P1902_AI_TRGSRC_AI15.

-318 ErrorConflictWithDelay2 The P1902_AO_EnDelay2 in
UD_AO_1902_Config() needs at
least 2 iterations.

-319 ErrorAOFifoCountTooLarge The Write-Count is larger than
onboard FIFO size.

-320 ErrorConflictWithWaveRepeat <The relative function had been

116 •

removed, reserved for future
use.>

-321 ErrorConflictWithReTrig The re-trigger is manual-
exclusive to repeating D/A
operation.

-322 ErrorInvalidTriggerChannel The analog-trigger is not the first
channel in Channel-Gain-Queue.
Please make sure the trigger
channel is identical to the
Channel parameter.

-323 ErrorInvalidInputSignal Indicates the invalid input-signal
is assigned.

-324 ErrorInvalidConversionSrc <The relative function had been
removed, reserved for future
use.>

-325 ErrorInvalidRefVoltage The measured voltage is invalid
for the specification calibration
operation. (this error only for the
calibration related functions, now
no auto-calibration function is
added.)

-326 ErrorCalibrateFailed Calibration failed. (this error only
for the calibration related
functions, now no auto-
calibration function is added.)

-327 ErrorInvalidCalData The input calibration data is
invalid. (this error only for the
calibration related functions, now
no auto-calibration function is
added.)

-328 ErrorChanGainQueueTooLarge The numChans is too large.
-329 ErrorInvalidCardType Indicates the module-type is

invalid.
-397 ErrorInvalidChannel <Now is used by the beta

function,
UD_AI_Moving_Average32().>
In UD_AI_Moving_Average32(),
indicates the target-channel is
larger than total-channels.

-398 ErrorNullPoint <Now is used by the beta
function,
UD_AI_Moving_Average32().>
In UD_AI_Moving_Average32(),
indicates either SrcBuf or
DesBuf is NULL.

-399 ErrorInvalidParamSetting Indicates some parameters are
invalid. This error has different
definition in functions.

-401 ErrorAIStartFailed Indicates the AI acquisition had
been started, but the relevant
status cannot be read from
FPGA. (this error ought not to be
returned)

-402 ErrorAOStartFailed Indicates the AO acquisition had
been started, but the relevant
status cannot be read from
FPGA. (this error ought not to be
returned)

-403 ErrorConflictWithGPIOConfig Incorrect GPIO configuration,
please check the settings in

• 117

UD_DIO_1902_Config() /
UD_DIO_2401_Config().

-404 ErrorEepromReadback Indicates the failure in
Calibration data/information
writing (this error only for the
calibration related functions, now
no auto-calibration function is
added.)

-405 ErrorConflictWithInfiniteOp The infinite AI operation is only
supported by double-buffered
acquisition.

-406 ErrorWaitingUSBHostResponse This error is usually caused by
trigger-enabled AI/AO operation.
Call
UD_AI_AsyncClear()/UD_AO_A
syncClear() to disable the
waiting state.

-407 ErrorAOFifoModeTimeout The D/A data transmission
timeout with FIFO mode.

-408 ErrorInvalidModuleFunction Indicate the specific function is
not supported by this module.

-409 ErrorAdFifoFull Indicates the occurrence of FIFO
overrun.

-410 ErrorInvalidTransferCount The ReadCount is not multiple of
256/512 (for USB-190x),
128/256 (for USB-2401).

-411 ErrorConflictWithAIConfig The AdRange is conflict with the
some specific input-type.

-412 ErrorDDSConfigFailed The DDS configuration failed (for
US

-413 ErrorFpgaAccessFailed Failed to access FPGA
-414 ErrorPLDBusy PLD is busy
-415 ErrorPLDTimeout PLD access timeout
-420 ErrorUndefinedKernelError The error returned from kernel is

undefined (this error ought not to
be returned, usually caused by
incompatible error-definitions
between driver and library)

-501 ErrorSyncModeNotSupport Synchronization operation is not
supported yet. (usually returned
in beta verion)

-601 ErrorInvalidThermoType Thermo type is not supported.
-602 ErrorOutThermoRange Voltage out of thermo table

range
-603 ErrorThermoTable Error inside the thermo table

118 •

Appendix B AI Range Codes

The Analog Input Range of NuDAQ PCI-bus Cards

AD_B_10_V Bipolar -10V to +10V
AD_B_5_V Bipolar -5V to +5V
AD_B_2_5_V Bipolar -2.5V to +2.5V
AD_B_1_25_V Bipolar -1.25V to +1.25V
AD_B_0_625_V Bipolar -0.625V to +0.625V
AD_B_0_3125_V Bipolar -0.3125V to +0.3125V
AD_B_0_5_V Bipolar -0.5V to +0.5V
AD_B_0_05_V Bipolar -0.05V to +0.05V
AD_B_0_005_V Bipolar -0.005V to +0.005V
AD_B_1_V Bipolar -1V to +1V
AD_B_0_1_V Bipolar -0.1V to +0.1V
AD_B_0_01_V Bipolar -0.01V to +0.01V
AD_B_0_001_V Bipolar -0.01V to +0.001V
AD_U_20_V Unipolar 0 to +20V
AD_U_10_V Unipolar 0 to +10V
AD_U_5_V Unipolar 0 to +5V
AD_U_2_5_V Unipolar 0 to +2.5V
AD_U_1_25_V Unipolar 0 to +1.25V
AD_U_1_V Unipolar 0 to +1V
AD_U_0_1_V Unipolar 0 to +0.1V
AD_U_0_01_V Unipolar 0 to +0.01V
AD_U_0_001_V Unipolar 0 to +0.001V
AD_B_2_V Bipolar -2V to +2V
AD_B_0_25_V Bipolar -0.25V to +0.25V
AD_B_0_2_V Bipolar -0.2V to +0.2V
AD_U_4_V Unipolar 0 to +4V
AD_U_2_V Unipolar 0 to +2V
AD_U_0_5_V Unipolar 0 to +0.5V
AD_U_0_4_V Unipolar 0 to +0.4V
AD_B_1_5_V Bipolar -1.5V to +1.5V
AD_B_0_2125_V Bipolar -0.2125V to +0.2125V
AD_B_40_V Bipolar -40V to +40V
AD_B_3_16_V Bipolar -3.16V to +3.16V
AD_B_0_316_V Bipolar -0.316V to +0.316V
AD_B_25_V Bipolar -25V to +25V
AD_B_12_5_V Bipolar -12.5V to +12.5V

Valid values for each card:

USB-1901 AD_B_10_V, AD_B_2_V, AD_B_1_V,
AD_B_0_2_V,

USB-1902 AD_B_10_V, AD_B_2_V, AD_B_1_V,

AD_B_0_2_V,

USB-1903 :AD_B_10_V

USB-2401 AD_B_25_V, AD_B_12_5_V,
AD_B_2_5_V, AD_B_1_25_V

USB-2405 AD_B_10_V
USB-1210 AD_B_10_V, AD_B_2_V

• 119

 Appendix C AI DATA FORMAT

This appendix lists the AI data format for the cards performing analog input operation,
as well as the calculation methods to retrieve the A/D converted data and the channel
where the data read from.

Card Type Data Format AI type Value calculation
* channel no. (CH#)
* A/D converted data (ND)
* Value returned from AI
function (OD)

UBS-1901 Every 16-bit signed integer data:

D15 D14 ... D1 D0

where D15, D14, ... , D0 : A/D converted data

One-Shot AI

Continuous AI I

ND = OD

UBS-1902 Every 16-bit signed integer data:

D15 D14 ... D1 D0

where D15, D14, ... , D0 : A/D converted data

One-Shot AI

Continuous AI I

ND = OD

UBS-1903 Every 16-bit signed integer data:

D15 D14 ... D1 D0

where D15, D14, ... , D0 : A/D converted data

One-Shot AI

Continuous AI I

ND = OD

UBS-2401 Every 24-bit signed long data:

D23 D22 ... D1 D0

where D23, D22, ... , D0 : A/D converted data

One-Shot AI

Continuous AI I

ND = OD

USB-2405 Every 24-bit signed long data:

D23 D22 ... D1 D0

where D23, D22, ... , D0 : A/D converted data

One-Shot AI

Continuous AI I

ND = OD

USB-1210 Every 16-bit signed integer data:

D15 D14 ... D1 D0

where D15, D14, ... , D0 : A/D converted data

One-Shot AI

Continuous AI I

ND = OD

120 •

Appendix D DATA File FORMAT

This appendix describes the file format of the data files generated by the functions
performing continuous data acquisition followed by storing the data to disk.

The data file includes three parts, Header, ChannelRange (optional) and Data block.
The file structure is as the figure below:

Header

ChannelRange (Optional)

DAQ data

Header

The header part records the information related to the stored data and its total length is
60 bytes. The data structure of the file header is as follows:

 Header Total Length: 60 bytes

Elements Type Size
(bytes)

Comments

ID char 10 file ID
ex. ADLinkDAQ1

card_type short 2 card Type
ex. USB_1901, USB_1902

num_of_channel short 2 number of scanned channels
ex. 1, 2

channel_no unsigned
char

1 channel number where the data read
from (only available as the
num_of_channel is 1)
ex. 0, 1

num_of_scan long 4 the number of scan for each channel
(total count / num_of_channel)

data_width short 2 the data width
0: 8 bits, 1: 16 bits, 2: 32 bits

channel_order short 2 the channel scanned sequence
0: normal (ex. 0-1-2-3)
1: reverse (ex. 3-2-1-0)
2: custom* (ex. 0, 1, 3)

ad_range short 2 the AI range code
Please refer to Appexdix B

• 121

ex. 0 (AD_B_5V)

scan_rate double 8 The scanning rate of each channel

(total sampling rate / num_of_channel)

num_of_channel_range short 2 The number of ChannelRange* structure

start_date char 8 The starting date of data acquisition
ex. 12/31/99

start_time char 8 The starting time of data acquisition
ex. 18:30:25

start_millisec char 3 The starting millisecond of data
acquisition
ex. 360

reserved char 6 not used

* If the num_of_channel_range is 0, the ChannelRange block won’t be included in the
data file.

* The channel_order is set to “custom” only when the card supports variant channel
scanning order.

ChannelRange

The ChannelRange part records the channel number and data range information
related to the stored data. This part consists of several channel & range units. The
length of each unit is 2 bytes. The total length depends on the value of
num_of_channel_range (one element of the file header) and is calculated as the
following formula:

Total Length = 2 * num_of_channel_range bytes

 The data structure of each ChannelRange unit is as follows:

 ChannelRange Unit
 Length: 2 bytes

Elements Type Size
(bytes)

Comments

channel char 1 scanned channel number
ex. 0, 1

range char 1 the AI range code of channel
Please refer to Appexdix B
ex. 0 (AD_B_5V)

Data Block

The last part is the data block. The data is written to file in 16-bit binary format, with the
lower byte first (little endian). For example, the value 0x1234 is written to disk with 34
first followed by 12. The total length of the data block depends on the data width and
the total data count.

The file is written in Binary format and can’t be read in normal text editor. You can use
any binary file editor to view it or the functions used for reading files, e.g. fread, to get

122 •

the file information and data value.

Appendix E Function Support

This appendix shows which data acquisition hardware each UD-DASK function supports.

 ｄ
 ｒ
 ａ
 ｏ
 Ｂ

 F u n c t i o n

U
S
B
|
1
9
0
1

U
S
B
|
1
9
0
2

U
S
B
|
1
9
0
3

U
S
B
|
2
4
0
1

U
S
B
|
7
2
5
0

U
S
B
|
7
2
3
0

U
S
B
|
2
4
0
5

U
S
B
|
1
2
1
0

UD_AI_1902_Config
UD_AI_2401_Config
UD_AI_2401_PollConfig
UD_AI_2405_Chan_Config
UD_AI_2405_Trig_Cofnig
UD_AI_Channel_Config
UD_AI_Trigger_Cofnig
UD_AI_1902_CounterInterval
UD_AI_DDS_ActualRate_Get
UD_AI_AsyncCheck
UD_AI_AsyncClear
UD_AI_AsyncDblBufferHalfReady
UD_AI_AsyncDblBufferMode
UD_AI_AsyncDblBufferTransfer
UD_AI_AsyncDblBufferTransfer32
UD_AI_AsyncDblBufferOverrun
UD_AI_AsyncDblBufferHandled
UD_AI_AsyncDblBufferToFile
UD_AI_AsyncReTrigNextReady
UD_AI_ContReadChannel
UD_AI_ContReadMultiChannels
UD_AI_ContReadChannelToFile
UD_AI_ContReadMultiChannelsToFile
UD_AI_VoltScale
UD_AI_VoltScale32
UD_AI_ContVScale
UD_AI_ContVScale32
UD_AI_2401_Scale32
UD_AI_2401_ContVScale32
UD_AI_InitialMemoryAllocated
UD_AI_ReadChannel
UD_AI_VReadChannel
UD_AI_ReadMultiChannels
UD_AI_SetTimeOut
UD_AI_EventCallBack
UD_AI_Moving_Average32
UD_AO_1902_Config

• 123

 ｄ
 ｒ
 ａ
 ｏ
 Ｂ

 F u n c t i o n

U
S
B
|
1
9
0
1

U
S
B
|
1
9
0
2

U
S
B
|
1
9
0
3

U
S
B
|
2
4
0
1

U
S
B
|
7
2
5
0

U
S
B
|
7
2
3
0

U
S
B
|
2
4
0
5

U
S
B
|
1
2
1
0

UD_AO_VWriteChannel
UD_AO_WriteChannel
UD_AO_AsyncCheck
UD_AO_AsyncClear
UD_AO_AsyncDblBufferHalfReady
UD_AO_AsyncDblBufferMode
UD_AO_ContBufferCompose
UD_AO_AsyncDblBufferTransfer
UD_AO_SetTimeOut
UD_AO_ContWriteChannel
UD_AO_ContWriteMultiChannels
UD_AO_InitialMemoryAllocated
UD_GPTC_Clear
UD_GPTC_Control
UD_GPTC_Setup
UD_GPTC_Setup_N
UD_GPTC_Read
UD_GPTC_Status
UD_CTR_ReadEdgeCounter
UD_CTR_ReadRequency
UD_CTR_Control
UD_CTR_SetMinPulseWidth
UD_DIO_1902_Config
UD_DIO_2401_Config
UD_DIO_2405_Config
UD_DIO_Config
UD_DI_ReadLine
UD_DI_ReadPort
UD_DI_SetCOSInterrupt32
UD_DI_GetCOSLatchData32
UD_DI_Control
UD_DI_SetMinPulseWidth
UD_DO_ReadLine
UD_DO_ReadPort
UD_DO_WriteLine
UD_DO_WritePort
UD_DO_SetInitPattern
UD_DO_GetInitPattern
UD_2405_Calibration
UD_AI_Calibration
UD_Read_ColdJunc_Thermo
UD_Device_Scan
UD_Register_Card
UD_Release_Card

124 •

	Manual Rev 1.6.2: August 28, 2015
	How to Use This Manual
	Using UD-DASK Functions
	1.1 The Fundamentals of Building Windows XP/7 Application wi
	1.1.1 Creating a Windows XP/7 USB-DASK Application Using Mic
	1.1.2 Creating a Windows XP/7 UD-DASK Application Using Micr

	UD-DASK Functions Overview

	Function Description
	2.1 Data Types
	2.2 Function Reference
	2.2.1 UD_AI_1902_Config
	2.2.2 UD_AI_2401_Config
	2.2.3 UD_AI_2401_PollConfig
	2.2.4 UD_AI_2405_Chan_Config
	2.2.5 UD_AI_2405_Trig_Config
	2.2.6 UD_AI_Channel_Config
	2.2.7 UD_AI_Trigger_Config
	2.2.8 UD_AI_AsyncCheck
	2.2.9 UD_AI_AsyncClear
	2.2.10 UD_AI_AsyncDblBufferHalfReady
	2.2.11 UD_AI_AsyncDblBufferMode
	2.2.12 UD_AI_AsyncDblBufferTransfer
	2.2.13 UD_AI_AsyncDblBufferTransfer32
	2.2.14 UD_AI_AsyncDblBufferOverrun
	2.2.15 UD_AI_AsyncDblBufferHandled
	2.2.16 UD_AI_AsyncDblBufferToFile
	2.2.17 UD_AI_AsyncReTrigNextReady
	2.2.18 UD_AI_ContReadChannel
	2.2.19 UD_AI_ContReadChannelToFile
	2.2.20 UD_AI_ContReadMultiChannels
	2.2.21 UD_AI_ContReadMultiChannelsToFile
	2.2.22 UD_AI_VoltScale
	2.2.23 UD_AI_VoltScale32
	2.2.24 UD_AI_2401_Scale32
	2.2.25 UD_AI_ContVScale
	2.2.26 UD_AI_ContVScale32
	2.2.27 UD_AI_2401_ContVScale32
	2.2.28 UD_AI_InitialMemoryAllocated
	2.2.29 UD_AI_ReadChannel
	2.2.30 UD_AI_1902_CounterInterval
	2.2.31 UD_AI_DDS_ActualRate_Get
	2.2.32 UD_AI_SetTimeOut
	2.2.33 UD_AI_ReadMultiChannels
	2.2.34 UD_AI_VReadChannel
	2.2.35 UD_AI_Moving_Average32
	2.2.36 UD_AI_EventCallBack (Win32 Only)
	2.2.37 UD_AO_1902_Config
	2.2.38 UD_AO_VWriteChannel
	2.2.39 UD_AO_WriteChannel
	2.2.40 UD_AO_AsyncCheck
	2.2.41 UD_AO_AsyncClear
	2.2.42 UD_AO_AsyncDblBufferHalfReady
	2.2.43 UD_AO_AsyncDblBufferMode
	2.2.44 UD_AO_ContBufferCompose
	2.2.45 UD_AO_AsyncDblBufferTransfer
	2.2.46 UD_AO_SetTimeOut
	2.2.47 UD_AO_ContWriteChannel
	2.2.48 UD_AO_ContWriteMultiChannels
	2.2.49 UD_AO_InitialMemoryAllocated
	2.2.50 UD_GPTC_Clear
	2.2.51 UD_GPTC_Setup
	2.2.52 UD_GPTC_Setup_N
	2.2.53 UD_GPTC_Control
	2.2.54 UD_GPTC_Read
	2.2.55 UD_GPTC_Status
	2.2.56 UD_DIO_1902_Config
	2.2.57 UD_DIO_2401_Config
	2.2.58 UD_DIO_2405_Config
	2.2.59 UD_DIO_Config
	2.2.60 UD_DI_ReadLine
	2.2.61 UD_DI_ReadPort
	2.2.62 UD_DO_ReadLine
	2.2.63 UD_DO_ReadPort
	2.2.64 UD_DO_WriteLine
	2.2.65 UD_DO_WritePort
	2.2.66 UD_DO_SetInitPattern
	2.2.67 UD_DO_GetInitPattern
	2.2.68 UD_DI_SetCOSInterrupt32
	2.2.69 UD_DI_GetCOSLatchData32
	2.2.70 UD_DI_Control
	2.2.71 UD_DI_SetupMinPulseWidth
	2.2.72 UD_CTR_ReadEdgeCounter
	2.2.73 UD_CTR_ReadFrequency
	2.2.74 UD_CTR_Control
	2.2.75 UD_CTR_SetupMinPulseWidth
	2.2.76 UD_Read_ColdJunc_Thermo
	2.2.77 UD_2405_Calibration
	2.2.78 UD_AI_Calibration
	2.2.79 UD_Register_Card
	2.2.80 UD_Release_Card
	2.2.81 UD_Device_Scan

	Associated Functions
	ADC_to_Thermo

	Appendix A Status Codes
	Appendix B AI Range Codes
	Appendix C AI DATA FORMAT
	Appendix D DATA File FORMAT
	Appendix E Function Support

