UD-DASK

Data Acquisition Software Development Kit
For USBDAQ USB modules

Function Reference Manual

@Copyright 2011-2021 ADLink Technology Inc.
All Rights Reserved.

Manual Rev 1.6.2: August 28, 2015

The information in this document is subject to change without prior notice in order to improve reliability,
design and function and does not represent a commitment on the part of the manufacturer.

In no event will the manufacturer be liable for direct, indirect, special, incidental, or consequential damages
arising out of the use or inability to use the product or documentation, even if advised of the possibility of
such damages.

This document contains proprietary information protected by copyright. All rights are reserved. No part of
this manual may be reproduced by any mechanical, electronic, or other means in any form without prior
written permission of the manufacturer.

Trademarks

IBM PC is a registered trademark of International Business Machines Corporation. Intel is a registered
trademark of Intel Corporation. Other product names mentioned herein are used for identification purposes
only and may be trademarks and/or registered trademarks of their respective companies.

CONTENTS

How to Use ThisS ManUaloooe e iv

Using UD-DASK FUNCHIONS ..ot e 5

1.1 The Fundamentals of Building Windows XP/7 Application with UD-

1.1.2 Creating a Windows XP/7 UD-DASK Application Using Microsoft Visual
BASIC ...t 5
1.2 UD-DASK FUNCLIONS OVEIVIEW ...ccooiiiiiiiiiiiiieee et 7
FUNCLION DEeSCIIPLION ..o 9
2.1 DALA TY PO ittt ettt e e e et ta e e aaeeaeaa 9
2.2 FUNCLION REFEIENCEoiiiiiiiii e 10
221 UD_AI_1902_CONFig.uitrtiriiiriririsisisieiesieieieieesesesesesessssessss e e sesssssssseses 10
222 UD_AI_2401_CONFig.titiriiririiririririnieieeiseeeesese sttt ssseses 12
2.2.3 UD_AI_2401_POlCONTIG ..ottt 14
224 UD_AI_2405_Chan_Config.....c.cccecerermimrmririririsissieissieeesesesesesesesessseesesesesens 16
225 UD_AI_2405_Trig_CoNnfig.....cccccsmrmriririririririsisieiniseeeeese s issesesesesens 17
2.2.6 UD_AI_Channel_Configc.coouireiiierieiie ettt 20
227 UD_ALTrIgger_Config.... ..ottt 22
2.2.8 UD_AI_ASYNCCNECKc.eiviitiiitiiieieti ettt 25
2.2.9 UD_AIL_ASYNCCIEATceiuiiiiieiiiie ettt 26
2.2.10 UD_AI_AsyncDbIBufferHalfReadycccooereiierininiiii e 27
2.2.11 UD_AI_ASyncDDBIBUTErMOGEcoiueiiiirieiciericisie e 28
2.2.12 UD_AI_AsyncDDBIBUFTEITIaNnSTercccoiiiiiiriiiiiesc e 29
2.2.13 UD_AI_AsyncDbIBUFferTransfera2 ... 30
2.2.14 UD_AI_ASyncDDBIBUTErOVEITUN.coiviiiirieiiiie et 31
2.2.15 UD_AI_AsyncDbIBuUfferHandledccocooeiiiiiiiiencineceseee e 32
2.2.16 UD_AI_ASyncDDBIBUFFEITORIIEccooveiiiiiiicicrieee e 33
2.2.17 UD_AI_ASYNCRETIIGNEXIREAY.......ccerveiiiiirieiiiierieiesie st 34
2.2.18 UD_AI_ContReadChannelcccveiiiiiiiiieie s 35
2.2.19 UD_AI_ContReadChannelTOFile.........cccoiriiiiiiiienene e 37
2.2.20 UD_AI_ContReadMultiChannels..........c.ccoeiiiriiiieiniieneese e 39
2.2.21 UD_AI_ContReadMultiChannelSTOFIIeccccooviiriiiiiiiiiciec e 42

Contents e i

2.2.22
2.2.23
2.2.24
2.2.25
2.2.26
2.2.27
2.2.28
2.2.29
2.2.30
2231
2.2.32
2.2.33
2.2.34
2.2.35
2.2.36
2.2.37
2.2.38
2.2.39
2.2.40
2241
2.2.42
2.2.43
2.2.44
2.2.45
2.2.46
2.2.47
2.2.48
2.2.49
2.2.50
2.251
2.2.52
2.2.53
2.2.54
2.2.55
2.2.56
2.2.57
2.2.58
2.2.59
2.2.60

UD_Al_VOISCAIE ...ttt 45

UD_AIl_VOISCAIE32 ..ottt 46
UD_AL_ 2401 _SCAIE32.......veeveeeeeeeeeeeeeeeeeeeeee e eseeeeeeses e ee e 47
UD_Al_CONtVSCAIE.......ecieieiiic ettt 48
UD_Al_CONtVSCAIE32......cceieiiieie ettt 49
UD_AIl_2401 CoNtVSCAIE32.......cocveeeeieeriese ettt 50
UD_AI_InitialMemoryAHOCAtedcceverireieeeeeee e 51
UD_Al_ReadChannel........cccviviiieeiescse s 52
UD_AI_1902_CounterInterval.........ccccoceierivrieiieieieee e 53
UD_AIl_DDS_ActualRate_Getccccvveiicieeeieie e 54
UD_Al_SEtTIMEOUL.....ceeieiesiisiesie ettt 55
UD_Al_ReadMUltiChannelS.........c.coevereiieiiseieeiesc s 56
UD_AIl_VReadChannelccccueveiiiiieie e 58
UD_Al_MOoVING_AVEFAQE32ocuveeeereeieiesiestesie s ereeseee ettt sne e aessenee s 59
UD_AI_EventCallBack (WIn32 ONnly)cccoveveievinnse e 60
UD_AO_1902_CONFig .eviiririririeieieiesiese st sreeseee et sre e 61
UD_AO_VWIIteChannelcovoveieiie s 63
UD_AO_WrIteChaNNEL.......cvcviiceeeescc st 64
UD_AO_ASYNCCNECK......cveiiriisieieeteeeciese et se et 65
UD_AO_ASYNCCIEANecvvevesiiciice ettt e 66
UD_AO_AsyncDbIBufferHalfReady..........ccccoeviveieieieienise s 67
UD_AO_AsyncDDIBUfErMOGE.coeieierirricceec e 68
UD_AO_ContBUffErCOMPOSEccvvevvereeieiesiesiesiesteseeie et e e 69
UD_AO_AsyncDDIBUferTransfer........c.ccoovivvieiicieice e 70
UD_AO_SEetTIMEOULecverieiiie st se ettt 71
UD_AO_ContWriteChannel...........cccevviviiesiseeere e 72
UD_AO_ContWriteMultiChannels...........ccccceveveiviie i 74
UD_AO_InitialMemoryAHoCated...........ccccevvieieeieeee e 76
(0] 1 O O [T USSR 77
(O] €1 W O - (1 o LS 78
UD_GPTC_SEIUP_ N eiiiiieiieiiecie ettt sneenne e 81
UD_GPTC _CONIOL...uiiiieeieiecece ettt 84
UD_GPTC _REAGo eeeeeee e ee e 85
UD_GPTC_STALUS ...evveeeeeieeieeie e sie e sseesta et e snaesneesreesneeneeanenanes 86
UD_DIO_1902_CONFIQ cvvrtererrrirreeieieriesiesiesiesiesiesreeseeiesaessessessessesseesseseessessenes 87
UD_DIO_2401 _CONFIQ cvvrtvierrrieeeieiesiese e siesesesreeseeie e st e s e eaessese s 88
UD_DIO_2405 _CONFIQ cvvrvvieririireieieriesie e siesese e seeie e se e e sresseesseeessensenes 89
(0] I 1@ T O] 1o S 90
(0] I (=T Vo N T SR 91

ii # Contents

2.2.61 UD_DI_REAUPOIL........cieiiie sttt st 92

2.2.62 UD_DO _REAALINE ...c.veivisiisirsiisieiierieseeste st ste et ee e et stesresneenaeseesseneenes 93
T U 1 R B 1@ (- To | = o S 94
2.2.64 UD_DO WIIELINE...cuiiesesesteseeeeie ettt e e ettt ne e see e e s 95
2.2.65 UD_DO WIItEBPOIt......coiie ettt 96
2.2.66 UD_DO_SetINItPAernccecveeeieieieese ettt 97
2.2.67 UD_DO_GetINItPAtterN ..cvecvvceecieeieieciese et 98
2.2.68 UD_DI_SetCOSINIEITUPL3Zcveieeiei et eee st ste e sreesan e 99
2.2.69 UD_DI_GetCOSLAtChDAta32.........ccccveveieriirieriesinseseeieseeseseesressesneesaeseenes 100
2.2.70 UD_DI_CONIOl.....cicieiiii et 101
2.2.71 UD_DI_SetupMinPulseWidthcccoueieiiiiiieiesese e 102
2.2.72 UD_CTR_ReadEAQECOUNLEL.......cvevereeieiesiesiesiesteeeeeeseeseesieseesresreeneesaeseees 103
2.2.73 UD_CTR_REAAFTEOUENCYeververieitrereeierieseestestestesreaseeseessessessessessesseeseessenses 104
2.2.74 UD_CTR_CONIOL....iciiiiiciecccc ettt s enes 105
2.2.75 UD_CTR_SetupMinPUulSEWIdthcccoveieiiiiere e 106
2.2.76 UD_Read ColdJunc_THhEIMOccccvvviieieieie e e eneas 107
2.2.77 UD_2405 Calibration......ccccccveiveiiereiisieie s eeeseese et se e eaeseenees 108
2.2.78 UD_AIl_Calibration..........ccccovovriiieiieieeieie e ee s se e s seenaeseenes 109
2.2.79 UD_RegiSter_Card........ccccvviviieieiieieiise s stesese e eesee e sne s enaesnenees 110
2.2.80 UD_ReleaSe Card.......cceoieriiireiiereeieesiesiesiesestestesiesseeseeseesaesaessessessessessesses 111
2.2.81 UD _DEVICE SCAN ..cvviveieisiiitietieieiesieste e e e eese e e ste st sresae e snaeneeneesaeseenees 112
Associated FUNCHIONS ..o 113
ADC 10 TREIMO....uiiiii ettt s sbe et e et e esbesaeesreesreesteenee s 113
AppendiX A Status CodeS.....covviiiiiiiiiiii e 114
Appendix B Al Range CodesS......coiiiiiiiiiiiiiiieieeeeeeeen 119
Appendix C Al DATA FORMAT ..o 120
Appendix D DATA File FORMAT ... 121
Appendix E Function SUpPpOrt........cooiiiiiiiiiiiiicceieeeas 123

Contents e iii

How to Use This Manual

This manual is designed to help you use the UD-DASK software driver for USBDAQ
USB data acquisition modules. The manual describes how to install and use the
software library to meet your requirements and help you program your own software
applications. It is organized as follows:

Chapter 1, "Using UD-DASK Functions" gives the important information about how
to apply the function descriptions in this manual to your programming language
and environment.

Chapter 2, "Function Description" gives the detailed description of each function
call USB-DASK provided.

Appendix A, "Status Codes" lists the status codes returned by UD-DASK functions,
as well as their meanings.

Appendix B, "Al Range Codes " lists all the valid Al range codes for each card.

Appendix C, "Al Data Format" lists the Al data format for the cards performing
analog input operation, as well as the calculation methods to retrieve the A/D
converted data and the channel where the data read from.

Appendix D, "Function Support" shows which data acquisition hardware each UD-
DASK function supports.

iv e Contents

Using UD-DASK Functions

UD-DASK is a software driver for USBAQ USB data acquisition modules. It is a high
performance data acquisition driver for developing custom applications under Windows
environment.

Using UD-DASK also lets you take advantage of the power and features of Microsoft
Windows for your data acquisition applications. These include running multiple
applications and using extended memory. Also, using UD-DASK under Visual Basic
environment makes it easy to create custom user interfaces and graphics.

1.1

The Fundamentals of Building Windows XP/7 Application

with UD-DASK

1.1.1 Creating a Windows XP/7 USB-DASK Application Using Microsoft Visual C/C++

To create a data acquisition application using UD-DASK and Microsoft Visual C/C++,
follow these steps after entering Visual C/C++:;

step 1. Open the project in which you want to use UD-DASK. This can be a new or
existing project

step 2. Include header file UsbDask.H in the C/C++ source files that call UD-DASK
functions. UsbDask.H contains all the function declarations and constants that
you can use to develop your data acquisition application. Incorporate the
following statement in your code to include the header file.

#include “UsbDask.h”

step 3. Build your application.

Setting the appropriate compile and link options, then build your application by
selecting the Build command from Build menu (Visual C/C++ 6.0). Remember
to link USB-DASK’s import library USB-DASK.LIB / USB-DASK64.LIB.

1.1.2 Creating a Windows XP/7 UD-DASK Application Using Microsoft Visual Basic

To create a data acquisition application using UD-DASK and Visual Basic, follow these
steps after entering Visual Basic:

o5

step 1.

step 2.

Open the project in which you want to use UD-DASK. This can be a new or
existing project

Open a new project by selecting the New Project command from the File menu.
If it is an existing project, open it by selecting the Open Project command from
the File menu. Then the Open Project dialog box appears.

Open Project H
Look ir: | 3 Microsoft Visual Basic :J .@il E? =
| bitrnaps ([report E| Auto3d.vbp
121 clisur @ samples
|_Ihc [setup
|_Jicons [setupkit
2 inchude [vanine
|1 metafile [winapi

File name: ;| Open I
File:s of type: ;Proiect Files("¥bp;" Mak)] ___'_j Casl i

Changed directory to the place the project file located. Double-click the project
file name in the File Name list to load the project.

Add file UsbDask.BAS into the project if this file is not included in the project.
This file contains all the procedure declarations and constants that you can use
to develop your data acquisition application.

From the File menu, select the Add File command. The Add File window appears,
displaying a list of files in the current directory.

Add File

Look in: I 2 include

File narne: |Dask.ha.s DOpen

Files of type: IVB Files(* Frm;* B as;" Cls* Res) j Cancel |

Select UsbDask.BAS from the Files list by double-clicking on it. If you can't find this
file in the list, make sure the list is displaying files from the correct directory. By
default, UsbDask.BAS is installed in $InstDinUD-DASK\INCLUDE.

step 3.

Design the interface for the application.

To design the interface, you place the desired elements, such as command button,
list box, text box, etc., on the Visual Basic form. These are standard controls from
the Visual Basic Toolbox. To place a control on a form, you just move pointer to
Toolbox, select the desired control and draw it on the form. Or you can double-click
the control icon in the Toolbox to place it on the form.

step 4. Set properties for the controls.

To view the property list, click the desired control and then choose the Properties
command from the View menu or press F4, or you can also click the Properties

button on the toolbar.

step 5. Write the event code.

The event code defines the action you want to perform when an event occurs. To
write the event code, double-click the desired control or form to view the code
module and then add code you want. You can call the functions that declared in the
file USBDASK.BAS to perform data acquisition operations.

step 6. Run your application.

To run the application, choose Start from the Run menu, or click the Start icon E

on the toolbar (you can also press F5).

step 7. Distribute your application.

Once you have finished a project, you can save the application as an executable
(.EXE) file by using the Make EXE File command on the File menu. And once you
have saved your application as an executable file, you've ready to distribute it.
When you distribute your application, remember also to include the UD-DASK’s DLL
and driver files. These files should be copied to their appropriate directory as
section 1.4.1 described.

1.2

UD-DASK Functions Overview

UD-DASK functions are grouped to the following classes:

General Configuration Function Group

Analog Input Function Group

- Analog Input Configuration functions

- One-Shot Analog Input functions

- Continuous Analog Input functions

- Asynchronous Analog Input Monitoring functions

Analog Output Function Group

Timer/Counter Function Group

DIO Function Group

o7

- Digital Input/Output Configuration function

Function Description

This chapter contains the detailed description of UD-DASK functions, including the UD-
DASK data types and function reference. The functions are arraned alphabetically in
3.2 Function Reference

2.1

Data Types

We defined some data types in USBDASK.H. These data types are used by UD-DASK
library. We suggest you to use these data types in your application programs. The
following table shows the data type names, their ranges and the corresponding data
types in C/C++, Visual Basic and Delphi (We didn’t define these data types in

USBDASK.BAS and USBDASK.PAS. Here they are just listed for reference)

floating-point

1.797683134862315E309

Type Name Description Range Type
C/C++ Visual Basic | Pascal (Delphi)
(for 32-
bit
compiler)
us 8-bit ASCII 0 to 255 unsigned Byte Byte
character char
116 16-bit signed -32768 to 32767 short Integer Smallint
integer
u16 16-bit unsigned 0 to 65535 unsigned [Not supported Word
integer short |by BASIC, use
the signed
integer (116)
instead
132 32-bit signed -2147483648 to long Long Longlnt
integer
2147483647
u32 32-bit unsigned 0 to 4294967295 unsigned [Not supported Cardinal
integer long |by BASIC, use
the signed long
integer (132)
instead
F32 32-bit single- -3.402823E38 to float Single Single
precision
3.402823E38
floating-point
F64 64-bit double- -1.797683134862315E308 | double Double Double
precision to

2.2 Function Reference

22.1 UD_AI_1902_Config

@ Description

Informs UD-DASK library of the conversion source and trigger mode selected for the
USB-1901/1902/1903 module with module ID ModuleNum. You must call this function
before calling function to perform continuous analog input operation.

@ Modules Support
USB-1901/USB-1902/USB-1903

@ Syntax

Microsoft C/C++ and Borland C++
116 UD_AI_1902_Config (U16 ModuleNum, U16 wConfigCtrl, U16 wTrigCtrl, U32
dwTrgLevel, U32 dwReTriggerCnt)

Visual Basic
UD_AI_1902_Config (ByVal ModuleNum As Integer, ByVal wConfigCtrl As Integer,
ByVal wTrigCtrl As Integer, ByVal dwTrgLevel As Long, ByVal
dwReTriggerCnt As Long) As Integer

@ Parameter

ModuleNum : The id of the module that wants to perform this operation.
wConfigCtrl : The settings for input-type and conversion-source. The valid settings
can be combined with OR (|) operator.
Input-type:
P1902_AIl_NonRef_SingEnded: None-Reference Single Ended.
P1902_AI_SingEnded: Single Ended.
P1902_AI_PseudoDifferential: Pseudo Differential.
Conversion-source:
P1902_AI_CONVSRC_INT: on-board Programmable pacer
P1902_Al_CONVSRC_EXT: external signal trigger
wTrigCtrl: The settings for trigger-source, trigger-polarity, trigger-mode and re-
trigger. The valid settings can be combined with OR (|) operator.
Trigger-Source:
P1902_AI_TRGSRC_AIO0 ~ P1902_AI_TRGSRC_AI15: Analog
trigger from AIO ~ Al15.
P1902_AI_TRGSRC_DTRIG: Digital trigger from AIDTRIG.
Trigger-Polarity:
P1902_AlI_TrgPositive: Rising edge.
P1902_AI_TrgNegative: Falling edge.
P1902_Al_Gate Pauselow: Pause low when trigger-mode is set as
P1902_AI_TRGMOD_GATED.
P1902_AIl_Gate_PauseHigh: Pause high when trigger-mode is set
as P1902_AI_TRGMOD_GATED.
Trigger-Mode:
P1902_Al_TRGMOD_POST: Post-trigger.
P1902_AI_TRGMOD_GATED: Gated-trigger.
P1902_Al_TRGMOD_DELAY: Delay-trigger.
Re-Trigger:

10

P1902_AI_EnReTigger: Enable Re-Trigger.
dwTrgLevel: The trigger level when trigger-source is set as
P1902_AI_TRGSRC_AIO0 ~ P1902_AI_TRGSRC_AI15.The onboard
circuit will use this setting to compare the ADC data.
Please refer the AdRange parameter in UD_Al_ContReadChannel()
to translate the expected trigger voltage to trigger-level.
The translation formula is:
ADC maximum number * (expected trigger-voltage / maximum
voltage of selected AdRange).
Forinstance, if AD_B 10 _V is selected and the expected trigger-
voltage is 5V, the trigger-level is 32767 * (5/ 10) = 16383 = Ox3FFF.
dwReTrigCnt: The count of re-trigger is required when the P1902_Al_EnReTigger is
set in wTrigCtrl parameter.
dwDelayCount:The count for delay. This setting is applied to one 80MHz-based
timer-counter.For instance, the value, 4,000,000, means 50
millisecond delay.

@ Return Code

NoError: The function returns successfully.

ErrorinvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.

ErrorinvalidCardType: Indicates the module-type is not USB_1901/1902/1903.

ErrorCardNotRegistered: The specific module had not been registered. Please check the
ModuleNum parameter.

ErrorinvalidinputSignal: Indicates the invalid input-signal is assigned.

ErrorFuncNotSupport: The Al function is not supported.

ErrorinvalidDelayCount: The delay-count is less than 1, or less than 320 if the trigger-source is
configured as P1902_AI_TRGSRC_AIO ~ P1902_AI_TRGSRC_AI15.

ErrorinvalidTriggerMode: This error is caused by the incorrect combination of trigger-settings.
i. P1902_Al TRGMOD_GATED is configure, but the trigger source is not
P1902_AI_TRGSRC_DTRIG.
ii. enable P1902_AI_EnReTigger with P1902_Al_TRGSRC_SOFT trigger-source.
iii. enable P1902_AIl_EnReTigger with P1902_Al_TRGMOD_GATED trigger-mode.

ErrorConfigloctl: Failed to forward the command to driver, please call GetLastError() for detailed
system-error.

ErrorCardDisconnected: Indicates the USB device was disconnected.

ErrorContloActive: The continuous Al operation is still running.

o1l

222 UD_AI 2401 Config

@ Description

Informs UD-DASK library of the analog input-type and trigger mode selected for the
USB-2401 module with module ID ModuleNum. You must call this function before
calling function to perform continuous analog input operation.

@ Modules Support
USB-2401

@ Syntax

Microsoft C/C++ and Borland C++
116 UD_AI_2401_Config (U16 ModuleNum, U16 wChanCfg1, U16 wChanCfg2, U16
wChanCfg3, U16 wChanCfg4, U16 wTrigCtrl)

Visual Basic
UD_Al 2401_Config (ByVal ModuleNum As Integer, ByVal wChanCfg1 As Integer,
ByVal wChanCfg2 As Integer, ByVal wChanCfg3 As Integer, ByVal
wChanCfg4 As Integer, ByVal wTrigCtrl As Integer) As Integer

@ Parameter

ModuleNum: The id of the module that wants to perform this operation.
wChanCfg1l:
wChanCfg2:
wChanCfg3:
wChanCfg4: The settings for input-type. The valid settings are:
P2401_Voltage 2D5V_Above: Voltage input (> 2.5V).
P2401_Voltage_2D5V_Below: Voltage input (<= 2.5V)
P2401_Current: Current input
P2401_RTD_4 Wire: 4-wire RTD type input.
P2401_RTD_3_Wire: 3-wire RTD type input.
P2401_RTD_2_Wire: 2-wire RTD type input.
P2401_Resistor: Resistance type input.
P2401_ThermoCouple: Thermo couple input.
P2401_Full_Bridge: Full-bridge input.
P2401_Half_Bridge: Half-bridge input.
P2401_ThermoCouple_Differential: Thermo-couple differential input.
(for USB-2401 A3 and newer devices)
P2401_3500hm_Full_Bridge: Full-bridge input with 350Q resistor.
P2401_3500hm_Half Bridge: Half-bridge input with 350Q resistor.
P2401_1200hm_Full_Bridge: Full-bridge input with 120Q resistor.
P2401_1200hm_Half_Bridge: Half-bridge input with 120Q resistor.

wTrigCtrl: The settings for trigger-source, trigger-polarity, trigger-mode and re-
trigger. The valid settings can be combined with OR (|) operator.
Trigger-Source:

P2401_AI_TRGSRC_SOFT: After calling UD_AI_ContReadChannel
/UD_AIl_ContReadMultiChannels, the ADC is
triggered by software immediately.

P2401_AI_TRGSRC_DTRIG: Digital trigger from GPIO.

Trigger-Mode:

P2401_AIl_TRGMOD_POST: Post-trigger.

12 e

@ Return Code

NoError: The function returns successfully.

ErrorinvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.

ErrorinvalidCardType: Indicates the module-type is not USB_2401.

ErrorCardNotRegistered: The specific module had not been registered. Please check the
ModuleNum parameter.

ErrorCardDisconnected: The surprised-removal had been reported to the specific module.

ErrorFuncNotSupport: The Al function is not supported.

ErrorinvalidinputSignal: Indicates the invalid input-type is assigned in wChanCfg1 ~ wChanCfg4.

ErrorinvalidTriggerType: Indicates the trigger-source is not configured as
P2401_AI_TRGSRC_SOFT or P2401_AI_TRGSRC_DTRIG.

ErrorinvalidTriggerMode: Indicates the trigger-mode is not configured as
P2401_Al_TRGMOD_POST.

ErrorConfigloctl: Failed to forward the command to driver, please call GetLastError() for detailed
system-error.

ErrorCardDisconnected: Indicates the USB device was disconnected.

ErrorContloActive: The continuous Al operation is still running.

e13

223 UD_AI_2401_PollConfig

@ Description

Configures the speed and moving-average of polling operation. After calling this
function, the FPGA moving-average will be terminated immediately, and will be
restarted when calling UD_AI_ReadMultiChannels().

@ Modules Support
USB-2401

@ Syntax

Microsoft C/C++ and Borland C++
116 UD_AI_2401_PollConfig (U16 ModuleNum, U16 wPollSpeed, U16
wMAvgStageCh1, U16 wMAvgStageCh2, U16 wMAvgStageCh3, U16
wMAvgStageCh4)

Visual Basic
UD_AI_2401_PollConfig (ByVal ModuleNum As Integer, ByVal wPollSpeed As
Integer, ByVal wMAvgStageCh1 As Integer, ByVal wMAvgStageCh2 As
Integer, ByVal wMAvgStageCh3 As Integer, ByVal wMAvgStageCh4 As
Integer) As Integer

@ Parameter

ModuleNum: The id of the module that wants to perform this operation.

wPollSpeed: The sampling rate in ADC. The valid settings are:
P2401_ADC_2000_SPS: 2000 samples/s
P2401_ADC_1000_SPS: 1000 samples/s.
P2401_ADC_640_SPS: 640 samples/s.
P2401_ADC_320_SPS: 320 samples/s.
P2401_ADC_160_SPS: 160 samples/s.
P2401_ADC_80_SPS: 80 samples/s.
P2401_ADC _40_SPS: 40 samples/s.
P2401_ADC_20_SPS: 20 samples/s.

wMAvgStageCh1:

wMAvgStageCh2:

wMAvgStageCh3:

wMAvgStageCh4 :Configures the moving-average stage in FPGA. The valid settings

are:

P2401_Polling_MAvg_Disable: Disable the moving-average.
P2401_Polling_MAvg_2_Samples: 2-samples moving-average.
P2401_Polling_MAvg 4 Samples: 4-samples moving-average.
P2401_Polling_MAvg_8 Samples: 8-samples moving-average.
P2401_Polling_MAvg_16_Samples: 16-samples moving-average.

@ Return Code

NoError: The function returns successfully.

ErrorinvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.

ErrorinvalidCardType: Indicates the module-type is not USB_2401.

ErrorCardNotRegistered: The specific module had not been registered. Please check the
ModuleNum parameter.

ErrorCardDisconnected: The surprised-removal had been reported to the specific module.

ErrorFuncNotSupport: The Al function is not supported.

14 ¢

ErrorinvalidSampleRate: Indicates the invalid sampling-rate is assigned to wPollSpeed.

ErrorinvalidParamSetting: Indicates the invalid moving-average is not configured in wMAvgStageCh1
~ wMAvgStageCh4.

ErrorConfigloctl: Failed to forward the command to driver, please call GetLastError() for detailed
system-error.

ErrorCardDisconnected: Indicates the USB device was disconnected.

ErrorContloActive: The continuous Al operation is still running.

e 15

224 UD_AI_2405_Chan_Config

@ Description

Informs UD-DASK library of the analog input-type selected for the USB-2405 module
with module ID ModuleNum. You must call this function before calling function to
perform continuous analog input operation.

@ Modules Support
USB-2405

@ Syntax

Microsoft C/C++ and Borland C++
116 UD_AI_2405_Chan_Config (U16 ModuleNum, U16 wChanCfg1, U16
wChanCfg2, U16 wChanCfg3, U16 wChanCfg4)

Visual Basic
UD_AIl_2405_Chan_Config (ByVal ModuleNum As Integer, ByVal wChanCfg1 As
Integer, ByVal wChanCfg2 As Integer, ByVal wChanCfg3 As Integer, ByVal
wChanCfg4 As Integer) As Integer

@ Parameter

ModuleNum: The id of the module that wants to perform this operation.

wChanCfg1l:

wChanCfg2:

wChanCfg3:

wChanCfg4: The configuration contains three parts — input-type, couple-type and
IEPE setting. Please bitwise-OR the revelant settings. The valid
settings are listed as follows:

The valid settings for input-type are:
P2405_Al_Differential or P2405_Al_PseudoDifferential
The valid couple-type settings are:
P2405_AI_Coupling_AC or P2405_AI_Coupling_None.
The valid IEPE settings are:
P2405_AIl_EnablelEPE or P2405_AI_DisablelEPE

@ Return Code

NoError: The function returns successfully.

ErrorinvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.

ErrorinvalidCardType: Indicates the module-type is not USB_2405.

ErrorCardNotRegistered: The specific module had not been registered. Please check the
ModuleNum parameter.

ErrorCardDisconnected: The surprised-removal had been reported to the specific module.

ErrorFuncNotSupport: The Al function is not supported.

ErrorinvalidlinputSignal: Indicates the invalid input-type is assigned in wChanCfg1 ~ wChanCfg4.

ErrorConfigloctl: Failed to forward the command to driver, please call GetLastError() for detailed
system-error.

ErrorCardDisconnected: Indicates the USB device was disconnected.

ErrorContloActive: The continuous Al operation is still running.

16 e

225 UD_AI_2405_Trig_Config

@ Description

Informs UD-DASK library of the trigger settings for the USB-2405 module with module
ID ModuleNum. You must call this function before calling function to perform
continuous analog input operation.

@ Modules Support
USB-2405

@ Syntax
Microsoft C/C++ and Borland C++
116 UD_AI_2405 Trig_Config (U16 ModuleNum, U16 wConvSrc, U16 wTrigMode,
U16 wTrigCtrl, U32 dwReTrigCnt, U32 dwDLY1Cnt, U32 dwDLY2Cnt, U32
dwTrgLevel)

Visual Basic
UD_AI_2405_Trig_Config (ByVal ModuleNum As Integer, ByVal wConvSrc As
Integer, ByVal wTrigMode As Integer, ByVal wTrigCtrl As Integer, ByVal
dwReTrigCnt As Long, ByVal dwDLY1Cnt As Long, ByVal dwDLY2Cnt As
Long, ByVal dwTrgLevel As Long) As Integer

@ Parameter

ModuleNum: The id of the module that wants to perform this operation.

wConvSrc: The conversion source of Al acquisition. The valid settings are:
P2405_Al_CONVSRC_INT: on-board programmable pacer
P2405 Al_CONVSRC_EXT: external strobe from GPI1.

Note: To activate external-strobe, the GPI1 must be configured as
P2405_DIGITAL_INPUT with the UD_DIO_2405_Config().

Trigger-Mode:: P2405_Al_TRGMOD_POST: Post-trigger.
P2405_AI_TRGMOD_DELAY: Delay-trigger.
P2405_Al_TRGMOD_PRE: Pre-trigger.
P2405_AI_TRGMOD_MIDDLE: Middle-trigger.
P2405_Al_TRGMOD_GATED: Gated-trigger.

wTrigCtrl: The settings for trigger-source, trigger-polarity, trigger-mode and re-
trigger. The valid settings can be combined with OR (|) operator.
Trigger-Source:

P2405_AI_TRGSRC_AIO ~ P2405_Al_TRGSRC_AI3: Analog trigger

from AIO ~ Al3.

P2405_AI_TRGSRC_SOFT: After calling UD_AI_ContReadChannel
/UD_AI_ContReadMultiChannels, the ADC is
triggered by software immediately.

P2405_AI_TRGSRC_DTRIG: Digital trigger from GPIO.

Note: To activate external-clock, the GPI0 must be configured as
P2405_DIGITAL_INPUT with the UD_DIO_2405_Config().

Trigger-Polarity:

e 17

P2405_Al_TrgPositive:
Rising edge for P2405_AI_TRGSRC_AIO ~
P2405_AI_TRGSRC_AI3.
P2405_Al_TrgNegative:
Falling edge for P2405_Al_TRGSRC_AIO ~
P2405_AI_TRGSRC_AI3.
P2405 Al_Gate Pauselow:
Pause low when trigger-mode is set as
P2405_Al_TRGMOD_GATED.
P2405 Al_Gate_PauseHigh:
Pause high when trigger-mode is set as
P2405_AI_TRGMOD_GATED.

Re-Trigger:
P2405_AI_EnReTigger: Enable Re-Trigger.

dwReTrigCnt: The count of re-trigger is required when the P2405_Al_EnReTigger is
set in wTrigCtrl parameter.

dwDLY1Cnt: The number of samples before triggering.
dwDLY2Cnt: The number of samples after triggering.

Note: The dwDLY1Cnt and dwDLY2Cnt are the total delay-count for all
selected channels, the NumChans parameter in
UD_AI_ContReadMultiChannels().

For instanace, the pre-trigger mode is set with the 4096 is set to
dwDLY1Cnt. If 4-channels are involed with the
UD_AI_ContReadMultiChannels(), only 1024 Al data will be kept
before the occurrence of trigger.

dwTrgLevel: The trigger level when trigger-source is set as
P2405_AI_TRGSRC_AIO0 ~ P2405_AIl_TRGSRC_AI3.The onboard
circuit will use this setting to compare the ADC data.
Please refer the AdRange parameter in UD_Al_ContReadChannel()
to translate the expected trigger voltage to trigger-level.
The translation formula is:
ADC maximum number * (expected trigger-voltage / maximum
voltage of selected AdRange).
Forinstance, if AD_B_10_V is selected and the expected trigger-
voltage is 5V, the trigger-level is 8388607 * (5/10) = 4194303 =
Ox3FFFFF.

@ Return Code

NoError: The function returns successfully.

ErrorinvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.

ErrorinvalidCardType: Indicates the module-type is not USB_2405.

ErrorCardNotRegistered: The specific module had not been registered. Please check the
ModuleNum parameter.

ErrorCardDisconnected: The surprised-removal had been reported to the specific module.

ErrorFuncNotSupport: The Al function is not supported.

18 e

ErrorinvalidTriggerType: Indicates the invalid trigger-source is assigned.

ErrorinvalidTriggerMode: Indicates the invalid trigger-mode is assigned.

ErrorConfigloctl: Failed to forward the command to driver, please call GetLastError() for detailed
system-error.

ErrorinvalidDelayCount: Invalid value is assigned to dwDLY1Cnt or dwDLY2Cnt parameter.

ErrorCardDisconnected: Indicates the USB device was disconnected.

ErrorContloActive: The continuous Al operation is still running.

e 19

2.2.6 UD_AI_Channel_Config

@ Description

Informs UD-DASK library of the analog input-type selected with module ID
ModuleNum. The Al channels must be configured before calling function to perform
continuous analog input operation.

@ Modules Support
USB-1210

@ Syntax

Microsoft C/C++ and Borland C++
116 UD_AI_Channel_Config (U16 ModuleNum, U16 wChanCfg1, U16 wChanCfg2,
U16 wChanCfg3, U16 wChanCfg4)

Visual Basic
UD_AIl_Channel_Config (ByVal ModuleNum As Integer, ByVal wChanCfg1 As
Integer, ByVal wChanCfg2 As Integer, ByVal wChanCfg3 As Integer, ByVal
wChanCfg4 As Integer) As Integer

@ Parameter

ModuleNum: The id of the module that wants to perform this operation.

wChanCfg1l.:

wChanCfg2:

wChanCfg3:

wChanCfg4: The configuration contains three parts — input-type, couple-type and
IEPE setting. Please bitwise-OR the revelant settings.

The valid settings for input-type are:
UD_AIl _NonRef SingEnded
UD_AI_SingEnded
UD_AI_Differential
UD_AIl_PseudoDifferential

The valid couple-type settings are:
UD_AI_Coupling_AC
UD_AI_Coupling_None

The valid IEPE settings are:
UD_AI_EnablelEPE
UD_AI_DisablelEPE

@ Return Code

NoError: The function returns successfully.

ErrorinvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.

ErrorinvalidCardType: Indicates the module-type is not supported.

ErrorCardNotRegistered: The specific module had not been registered. Please check the
ModuleNum parameter.

ErrorCardDisconnected: The surprised-removal had been reported to the specific module.

ErrorFuncNotSupport: The Al function is not supported.

ErrorinvalidinputSignal: Indicates the invalid input-type is assigned in wChanCfg1 ~ wChanCfg4.

ErrorConfigloctl: Failed to forward the command to driver, please call GetLastError() for detailed
system-error.

ErrorCardDisconnected: Indicates the USB device was disconnected.

20

ErrorContloActive: The continuous Al operation is still running.

e 21

2.2.7 UD_AI_Trigger_Config

@ Description

Informs UD-DASK library of the trigger settings with module ID ModuleNum. The
conversion-source and trigger-configuration must be set before calling function to
perform continuous analog input operation.

@ Modules Support
USB-1210

@ Syntax

Microsoft C/C++ and Borland C++
116 UD_AI_Trigger_Config (U16 ModuleNum, U16 wConvSrc, U16 wTrigMode, U16
wTrigCtrl, U32 dwReTrigCnt, U32 dwDLY1Cnt, U32 dwDLY2Cnt, U32
dwTrgLevel)

Visual Basic
UD_AI_Trigger_Config (ByVal ModuleNum As Integer, ByVal wConvSrc As Integer,
ByVal wTrigMode As Integer, ByVal wTrigCtrl As Integer, ByVal
dwReTrigCnt As Long, ByVal dwDLY1Cnt As Long, ByVal dwDLY2Cnt As
Long, ByVal dwTrgLevel As Long) As Integer

@ Parameter

ModuleNum: The id of the module that wants to perform this operation.

wConvSrc: The conversion source of Al acquisition. The valid settings are:
UD_AI_CONVSRC_INT: on-board programmable pacer
UD_Al_CONVSRC_EXT: external strobe / external clock.

Trigger-Mode:: UD_Al_ TRGMOD_POST: Post-trigger.
UD_Al TRGMOD_DELAY: Delay-trigger.
UD_AI_TRGMOD_PRE: Pre-trigger.
UD_AI_TRGMOD_MIDDLE: Middle-trigger.
UD_AlI_TRGMOD_GATED: Gated-trigger.

wTrigCtrl: The settings for trigger-source, trigger-polarity, trigger-mode and re-
trigger. The valid settings can be combined with OR (|) operator.
Trigger-Source:
UD_AI_TRGSRC_AIO ~ UD_AI_TRGSRC_AI15: Analog trigger from
AlQ ~ Al15.

UD_AI_TRGSRC_SOFT: After calling UD_AI_ContReadChannel
/UD_AIl_ContReadMultiChannels, the ADC is
triggered by software immediately.

UD_AI_TRGSRC_DTRIG: Digital trigger.

Trigger-Polarity:

UD_AIl_TrigPositive:

Rising edge for UD_AI_TRGSRC_AIOQ ~
UD_AI_TRGSRC_AI15.

UD_AIl_TrigNegative:

Falling edge for UD_AI_TRGSRC_AIO0 ~
UD_AI_TRGSRC_AI15.

22

dwReTrigCnt:

dwDLY1Cnt:
dwDLY2Cnt:

dwTrgLevel:

@ Return Code

UD_Al Gate Pauselow:
Pause low when trigger-mode is set as
UD_AI_TRGMOD_GATED.
UD_AI_Gate_PauseHigh:
Pause high when trigger-mode is set as
UD_AlI_TRGMOD_GATED.

Re-Trigger:
UD_AI_EnReTrigger: Enable Re-Trigger.
UD_AI_DisReTrigger: Disable Re-Trigger.

The count of re-trigger is required when the UD_AIl_EnReTigger is set
in wTrigCtrl parameter.

The number of samples before triggering.
The number of samples after triggering.

Note: The dwDLY1Cnt and dwDLY?2Cnt are the total delay-count for all
selected channels, the NumChans parameter in
UD_AI_ContReadMultiChannels().

For instanace, the pre-trigger mode is set with the 4096 is set to
dwDLY1Cnt. If 4-channels are involed with the
UD_AI_ContReadMultiChannels(), only 1024 Al data will be kept
before the occurrence of trigger.

If the Trigger-Mode is set to UD_Al_ TRGMOD_PRE, the
dwDLY1Cnt must be equal to the ReadCount parameter of
UD_AI_ContReadChannel(), UD_AI_ContReadMultiChannels(),
UD_AI_ContReadChannelToFile() and
UD_AI_ContReadMultiChannelsToFile()

If the Trigger-Mode is set to UD_AI_TRGMOD_MIDDLE, the
(dwDLY1Cnt + dwDLY2Cnt) must be equal to the
ReadCount parameter of UD_AI_ContReadChannel(),
UD_AI_ContReadMultiChannels(),
UD_AI_ContReadChannelToFile() and
UD_AI_ContReadMultiChannelsToFile()

The trigger level when trigger-source is set as UD_AI_TRGSRC_AIQ
~UD_AI_TRGSRC_AI15.The onboard circuit will use this setting to
compare the ADC data.

Please refer the AdRange parameter in UD_AI_ContReadChannel()
to translate the expected trigger voltage to trigger-level.

The translation formula is:

ADC maximum number * (expected trigger-voltage / maximum
voltage of selected AdRange).

For instance, if the Range of trigger-channel is AD_B_10_V, and the
expected trigger-voltage is 5V, the trigger-level for USB-1210 is
(2M5-1)*(5/10) =32767 * (5/10) = 16383 = Ox3FFF.

NoError: The function returns successfully.

e 23

ErrorinvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.

ErrorinvalidCardType: Indicates the module-type is not supported.

ErrorCardNotRegistered: The specific module had not been registered. Please check the
ModuleNum parameter.

ErrorCardDisconnected: The surprised-removal had been reported to the specific module.

ErrorFuncNotSupport: The Al function is not supported.

ErrorinvalidTriggerType: Indicates the invalid trigger-source is assigned.

ErrorinvalidTriggerMode: Indicates the invalid trigger-mode is assigned.

ErrorConfigloctl: Failed to forward the command to driver, please call GetLastError() for detailed
system-error.

ErrorinvalidDelayCount: Invalid value is assigned to dwDLY1Cnt or dwDLY2Cnt parameter.

ErrorCardDisconnected: Indicates the USB device was disconnected.

ErrorContloActive: The continuous Al operation is still running.

24 o

2.2.8 UD_AI_AsyncCheck

@ Description
Check the current status of the asynchronous analog input operation.

@ Modules Support
USB-1901/USB-1902/USB-1903/USB-2401/USB-2405/USB-1210

@ Syntax

Microsoft C/C++ and Borland C++
116 UD_AI_AsyncCheck (U16 ModuleNum, BOOLEAN *Stopped, U32 *AccessCnt)

Visual Basic
UD_AIl_AsyncCheck (ByVal ModuleNum As Integer, Stopped As Byte, AccessCnt
As Long) As Integer

@ Parameter

ModuleNum : The id of the module that wants to perform this operation.

Stopped : Whether the asynchronous analog input operation has completed. If
Stopped = TRUE, the analog input operation has stopped. Either the
number of A/D conversions indicated in the call that initiated the
asynchronous analog input operation has completed or an error has
occurred. If Stopped = FALSE, the operation is not yet complete.
(constants TRUE and FALSE are defined in UsbDask.h)

AccessCnt : In the condition that the trigger acquisition mode is not used,
AccessCnt returns the number of A/D data that has been transferred
at the time calling UD_AI1_AsyncCheck().

@ Return Code

NoError: The function returns successfully.

ErrorinvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.

ErrorCardNotRegistered: The specific module had not been registered. Please check the
ModuleNum parameter.

ErrorFuncNotSupport: The Al function is not supported.

ErrorConflictWithSyncMode: The synchronous Al operation is conflict with this function.

ErrorCardDisconnected: Indicates the USB device was disconnected.

ErrorAdFifoFull: Indicates the occurrence of FIFO overrun.

e 25

229 UD_AI_AsyncClear

@ Description

Stop the asynchronous analog input operation. The A/D data will be copied to user’s
buffer when this function is called. The configurations of channel/triggering will be
cleared as well.

@ Modules Support
USB-1901/USB-1902/USB-1903/USB-2401/USB-2405/USB-1210

@ Syntax

Microsoft C/C++ and Borland C++
116 UD_AI_AsyncClear (U16 ModuleNum, U32 *AccessCnt)

Visual Basic
UD_AIl_AsyncClear (ByVal ModuleNum As Integer, AccessCnt As Long) As Integer

@ Parameter

ModuleNum : The id of the module that wants to perform this operation.

AccessCnt : In the condition that the trigger acquisition mode is not used,
AccessCnt returns the number of A/D data that has been transferred
at the time calling UD_A1_AsyncClear().

@ Return Code

NoError: The function returns successfully.

ErrorinvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.

ErrorCardNotRegistered: The specific module had not been registered. Please check the
ModuleNum parameter.

ErrorCardDisconnected: Indicates the USB device was disconnected.

ErrorFuncNotSupport: The Al function is not supported.

26 e

2.2.10 UD_AI_AsyncDblBufferHalfReady

@ Description

In asynchronous double-buffered Al, indicates the half buffer of data in circular buffer
is ready.

@ Modules Support
USB-1901/USB-1902/USB-1903/USB-2401/USB-2405/USB-1210

@ Syntax

Microsoft C/C++ and Borland C++
116 UD_AI_AsyncDblBufferHalfReady (U16 ModuleNum, BOOLEAN *HalfReady,
BOOLEAN *StopFlag)

Visual Basic
UD_AIl_AsyncDblBufferHalfReady(ByVal ModuleNum As Integer, HalfReady As Byte,
StopFlag As Byte) As Integer

@ Parameter

ModuleNum : The id of the module that wants to perform this operation.

HalfReady : Whether the half buffer of data is available. If HalfReady = TRUE, you
can call UD_AI_AsyncDblBufferTransfer() to copy the data to
your user buffer. (constants TRUE and FALSE are defined in
UsbDask.h)

StopFlag : Whether the asynchronous analog input operation has completed. If
StopFlag = TRUE, the analog input operation has stopped. If StopFlag
= FALSE, the operation is not yet complete. (constants TRUE and
FALSE are defined in UsbDask.h)

@ Return Code

NoError: The function returns successfully.

ErrorinvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.

ErrorCardNotRegistered: The specific module had not been registered. Please check the
ModuleNum parameter.

ErrorFuncNotSupport: The Al function is not supported.

ErrorConflictWithSyncMode: The synchronous Al operation is conflict with this function.

ErrorAdFifoFull: Indicates the occurrence of FIFO overrun.

ErrorCardDisconnected: Indicates the USB device was disconnected.

NoError, ErrorinvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport

27

2.2.11 UD_AI_AsyncDblBufferMode

@ Description
Enable / disable the double-buffered data acquisition mode.

@ Modules Support
USB-1901/USB-1902/USB-1903/USB-2401/USB-2405/USB-1210

@ Syntax

Microsoft C/C++ and Borland C++
116 UD_AI_AsyncDblBufferMode (U16 ModuleNum, BOOLEAN Enable)

Visual Basic
UD_AIl_AsyncDbIBufferMode (ByVal ModuleNum As Integer, ByVal Enable As Byte)
As Integer

@ Parameter

ModuleNum : The id of the module that wants to perform this operation.
Enable : Whether the double-buffered mode is enabled or not.
TRUE: double-buffered mode is enabled.
FALSE: double-buffered mode is disabled.
(constants TRUE and FALSE are defined in UsbDask.h)

@ Return Code

NoError: The function returns successfully.

ErrorinvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.

ErrorCardNotRegistered: The specific module had not been registered. Please check the
ModuleNum parameter.

ErrorFuncNotSupport: The Al function is not supported.

ErrorCardDisconnected: Indicates the USB device was disconnected.

ErrorContloActive: The Al function had not been completed. Call UD_AI_AsyncClear()

to Stop Al function.

28 e

2.2.12 UD_AI_AsyncDblBufferTransfer

@ Description

Depending on the continuous Al function selected, half of the data of the circular
buffer will be saved into the user buffer (if continuous Al function is:
UD_AIl_ContReadChannel and UD_AI_ContReadMultiChannels) or logged into a disk
file (if continuous Al function is: UD_AI_ContReadChannelToFile and
UD_AIl_ContReadMultiChannelsToFile).

You can execute this function repeatedly to return sequential half buffers of the data.

@ Modules Support
USB-1901/USB-1902/USB-1903/USB-1210

@ Syntax

Microsoft C/C++ and Borland C++
116 UD_AI_AsyncDblBufferTransfer (U16 ModuleNum, U16 *Buffer)

Visual Basic
UD_AI_AsyncDblBufferTransfer (ByVal ModuleNum As Integer, Buffer As Integer)
As Integer

@ Parameter

ModuleNum : The id of the module that performs the asynchronous double-buffered
operation.

Buffer : The user buffer. An array that the A/D data will be copied to. If the
data will be saved into a disk file, this argument will be ignored.
Please refer to Appendix C, Al Data Format for the data format in
Buffer or the data file.

@ Return Code

NoError: The function returns successfully.

ErrorinvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.

ErrorCardNotRegistered: The specific module had not been registered. Please check the
ModuleNum parameter.

ErrorBadCardType: Indicates the module-type is not supported.

ErrorFuncNotSupport: The Al function is not supported.

ErrorCardDisconnected: Indicates the USB device was disconnected.

ErrorNotDoubleBufferMode: The Al operation is not started with double-buffered mode.

e 29

2.2.13 UD_AI_AsyncDbIBufferTransfer32

@ Description

Depending on the continuous Al function selected, half of the data of the circular
buffer will be saved into the user buffer (if continuous Al function is:
UD_AIl_ContReadChannel and UD_AI_ContReadMultiChannels) or logged into a disk
file (if continuous Al function is: UD_AI_ContReadChannelToFile and
UD_AIl_ContReadMultiChannelsToFile).

You can execute this function repeatedly to return sequential half buffers of the data.

@ Modules Support
USB-2401/USB-2405

@ Syntax

Microsoft C/C++ and Borland C++
116 UD_AI_AsyncDblBufferTransfer32 (U16 ModuleNum, U32 *Buffer)

Visual Basic
UD_AI_AsyncDblBufferTransfer32 (ByVal ModuleNum As Integer, Buffer As Long)
As Integer

@ Parameter

ModuleNum : The id of the module that performs the asynchronous double-buffered
operation.

Buffer : The user buffer. An array that the A/D data will be copied to. If the
data will be saved into a disk file, this argument will be ignored.
Please refer to Appendix C, Al Data Format for the data format in
Buffer or the data file.

@ Return Code

NoError: The function returns successfully.

ErrorinvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.

ErrorCardNotRegistered: The specific module had not been registered. Please check the
ModuleNum parameter.

ErrorBadCardType: Indicates the module-type is not supported.

ErrorFuncNotSupport: The Al function is not supported.

ErrorCardDisconnected: Indicates the USB device was disconnected.

ErrorNotDoubleBufferMode: The Al operation is not started with double-buffered mode.

30e

2.2.14 UD_AI_AsyncDblBufferOverrun

@ Description
Check or clears the overrun status of double-buffered analog input operation.

@ Modules Support
USB-1901/USB-1902/USB-1903/USB-2401/USB-2405/USB-1210

@ Syntax

Microsoft C/C++ and Borland C++
116 UD_AI_AsyncDblBufferOverrun (U16 ModuleNum, U16 op, U16 *overrunFlag)

Visual Basic
UD_AI_AsyncDblIBufferOverrun (ByVal ModuleNum As Integer, ByVal op As Integer,
overrunFlag As Integer) As Integer

@ Parameter

ModuleNum : The id of the module that performs the asynchronous double-buffered
operation.
op: Check/Clear the overrun status/flag.
0 — Check the overrun status.
1 — Clear the overrun flag.
overrunFlag : Returned overrun status.
0 — No overrun occurred.
1 — Overrun occurred.

@ Return Code

NoError: The function returns successfully.

ErrorinvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.

ErrorCardNotRegistered: The specific module had not been registered. Please check the
ModuleNum parameter.

ErrorCardDisconnected: Indicates the USB device was disconnected.

ErrorFuncNotSupport: The Al function is not supported.

e 31

2.2.15 UD_AI_AsyncDblBufferHandled

@ Description
Notifies UD-DASK the ready buffer has been handled in user application. One related
flag will be changed to indicate the overrun status of double-buffered operation.

@ Modules Support
USB-1901/USB-1902/USB-1903/USB-2401/USB-2405/USB-1210

@ Syntax
Microsoft C/C++ and Borland C++
116 UD_AI_AsyncDblBufferHandled (U16 ModuleNum)

Visual Basic
UD_AIl_AsyncDblBufferHandled (ByVal ModuleNum As Integer) As Integer

@ Parameter
ModuleNum : The id of the module that performs the asynchronous double-buffered
operation.

@ Return Code

NoError: The function returns successfully.

ErrorinvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.

ErrorCardNotRegistered: The specific module had not been registered. Please check the
ModuleNum parameter.

ErrorFuncNotSupport: The Al function is not supported.

ErrorCardDisconnected: Indicates the USB device was disconnected.

ErrorNotDoubleBufferMode: The Al operation is not started with double-buffered mode.

32e

2.2.16 UD_AI_AsyncDblBufferToFile

@ Description

For double buffer mode of continuous Al, if the continuous Al function is:
Check or clears the overrun status of double-buffered analog input operation.
Al_ContReadChannelToFile,

Al_ContReadMultiChannelsToFile or

Al_ContScanChannelsToFile

call this function to log the data of the circular buffer into a disk file.

@ Modules Support
USB-1901/USB-1902/USB-1903/USB-2401/USB-2405/USB-1210

@ Syntax
Microsoft C/C++ and Borland C++
116 UD_AI_AsyncDblBufferToFile (U16 ModuleNum)

Visual Basic
UD_AIl_AsyncDblBufferToFile (ByVal ModuleNum As Integer) As Integer

@ Parameter
ModuleNum : The id of the module that performs the asynchronous double-buffered
operation.

@ Return Code

NoError: The function returns successfully.

ErrorinvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.

ErrorCardNotRegistered: The specific module had not been registered. Please check the
ModuleNum parameter.

ErrorCardDisconnected: Indicates the USB device was disconnected.

ErrorFuncNotSupport: The Al function is not supported.

e 33

2.2.17 UD_AI_AsyncReTrigNextReady

@ Description

Checks whether the data associated to the next trigger signal is ready during an
asynchronous retriggered analog input operation.

ReTrigNextReady(U16 CardNumber, BOOLEAN *Ready, BOOLEAN *StopFlag, U32
*RdyTrigCnt);

@ Modules Support
USB-1901/USB-1902/USB-1903/USB-2405/USB-1210

@ Syntax
Microsoft C/C++ and Borland C++
116 UD_AI_AsyncReTrigNextReady (U16 ModuleNum, BOOLEAN *Ready,
BOOLEAN *StopFlag, U16 *RdyTrigCnt)
Visual Basic
UD_AI_AsyncReTrigNextReady (ByVal ModuleNum As Integer, Ready As Byte,
StopFlag As Byte, RdyTrigCnt As Integer) As Integer

@ Parameter
ModuleNum : The id of the module that performs the asynchronous double-buffered

operation.

Ready : Tells wheather the data associated with the next trigger signal is
available.
Constants TRUE and FALSE are defined in USBDASK.H.

StopFlag : Tells whether the asynchronous analog input operation is completed.

If StopFlag is TRUE, the analog input operation has stopped. If

StopFlag is FALSE, the operation is not yet completed.

Constants TRUE and FALSE are defined in USBDASK.H.
RdyTrigCnt : This argument returns the count of trigger signal that occurred if re-

trigger count is defined. If the re-trigger count is infinite, this argument

returns the index of the buffer that stored the data after the most

recent trigger signal trigger generated.

@ Return Code

NoError: The function returns successfully.

ErrorinvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.

ErrorCardNotRegistered: The specific module had not been registered. Please check the
ModuleNum parameter.

ErrorFuncNotSupport: The Al function is not supported.

ErrorBadCardType: Indicates the module-type is not supported.

ErrorinvalidTriggerMode: Indicates the Re-trigger mode is not enabled.

ErrorCardDisconnected: Indicates the USB device was disconnected.

ErrorDBHalfReadyloctl: Failed to forward the command to driver, please call

GetLastError() for detailed system-error.

34 e

2.2.18 UD_AI_ContReadChannel

@ Description

This function performs continuous A/D conversions on the specified analog input
channel at a rate as close to the rate you specified.

@ Modules Support
USB-1901/USB-1902/USB-1903/USB-2401/USB-2405/USB-1210

@ Syntax

Microsoft C/C++ and Borland C++
116 UD_AI_ContReadChannel (U16 ModuleNum, U16 Channel, U16 AdRange, U16
*Buffer, U32 ReadCount, F64 SampleRate, U16 SyncMode)

Visual Basic
UD_AIl_ContReadChannel (ByVal ModuleNum As Integer, ByVal Channel As Integer,
ByVal AdRange As Integer, Buffer As Integer, ByVal ReadCount As Long,
ByVal SampleRate As Double, ByVal SyncMode As Integer) As Integer

@ Parameter

ModuleNum : The id of the module that want to perform this operation.

Channel : Analog input channel number
USB-1901/USB-1902: 0 through 15
USB-1903: 0 through 7 (differential input signal only)

USB-2401: 0 through 3
USB-2405: 0 through 3
USB-1210: 0 through 3

AdRange: The analog input range the specified channel is setting. We define
some constants to represent various A/D input ranges in UsbDask.h.
Please refer to the Appendix B, Al Range Codes, for the valid range
values.

Buffer : An array to contain the acquired data. Buffer must has a length equal
to or greater than the value of parameter ReadCount. If double-
buffered mode is enabled, this parameter will be ignored. Please refer
to Appendix C, Al Data Format for the data format in Buffer.

ReadCount : If double-buffered mode is disabled, ReadCount is the number of A/D
conversions to be performed. For double-buffered acquisition,
ReadCount is the size (in samples) of the circular buffer.

Note: For USB-1901/1902/1903/1210, the value of ReadCount must be the
multiple of 256 for non-double-buffer mode, or multiple of 512 for
double-buffer mode.

For USB-2401/2405, the value of ReadCount must be the multiple of
128 for non-double-buffer mode, or multiple of 256 for double-buffer
mode.

SampleRate : For USB-1901/1902/1903, this parameter will be ignored. Please call
UD_AIl_1902_ConterlInterval () to set the Scan-Interval and
Sample-Interval.

The valid settings are:
USB-2401: 20, 40, 80, 160, 320, 500, 1000 and 2000 samples/s.

e 35

SyncMode : Whether this operation is performed synchronously or asynchronously.
If any trigger mode is enabled by calling
UD_AIl_1902_Config()/UD_Al_2401 Config()/UD_Al_2405
Trig_Config()/UD_AIl_Trigger_Config(), this operation
should be performed asynchronously.

Valid values:
SYNCH_OP: synchronous A/D conversion, that is, the function
does not return until the A/D operation complete.
ASYNCH_OP:asynchronous A/D conversion.

Note: When SYNCH_OP is selected, the UD_AI_SetTimeOut() can set the
Timeout for synchronous operation.

@ Return Code

NoError: The function returns successfully.

ErrorinvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check the
ModuleNum parameter.

ErrorFuncNotSupport: The Al function is not supported.

ErrorinvalidAdRange: The invalid setting is set to AdRange.

ErrorinvalidinputSignal: Indicates the invalid input-signal is assigned.
ErrorTransferCountToolLarge: The ReadCount is too large.

ErrorinvalidloChannel: The invalid setting is set to Channel.

ErrorContloNotAllowed: The continuous operation is not supported.
ErrorConflictWithSyncMode: The double-buffered Al operation is conflict with SYNCH_OP.
ErrorinvalidTransferCount: The ReadCount is not multiple of 256/512 (for USB-
190x/1210), 128/256 (for USB-2401/2405).

ErrorinvalidTriggerMode: Neither double-buffered Al nor SYNCH_OP operation supports re-
trigger feature.

ErrorinvalidSampleRate: Indicates the sampling-rate is out of range.
ErrorinvalidCounterState: Either scan-Interval or sample-Interval is zero; Sample-
interval is larger than scan-interval.

ErrorSystemCallFailed: Failed to forward the command to driver, please call
GetLastError() for detailed system-error.

ErrorContloActive: The Al function had not been completed. Call UD_AI_AsyncClear()
to Stop Al function.

ErrorConflictWithInfiniteOp: The infinite Al operation is only supported by double-
buffered acquisition.

ErrorinvalidTriggerChannel: The analog-trigger is not the first channel in Channel-
Gain-Queue. Please make sure the trigger channel is identical to the Channel
parameter.

ErrorWaitingUSBHostResponse: This is usually caused by trigger-enabled Al
operation. Call UD_AIl_AsyncClear() to disable the waiting state.
ErrorTimeoutFromSyncMode: The synchronous Al operation is time-out.
ErrorCardDisconnected: Indicates the USB device was disconnected.
ErrorConflictWithAlConfig: The AdRange is conflict with the some specific input-type.

36e

2.2.19 UD_AI_ContReadChannelToFile

@ Description

This function performs continuous A/D conversions on the specified analog input
channel and saves the acquired data in a disk file. The data is written to disk in binary
format, with the lower byte first (little endian). Please refer to Appendix D, Data File
Format for the data file structure and Appendix C, Al Data Format for the format of the
data in the data file.

@ Modules Support
USB-1901/USB-1902/USB-1903/USB-2401/USB-2405/USB-1210

@ Syntax

Microsoft C/C++ and Borland C++
116 UD_AI_ContReadChannelToFile (U16 ModuleNum, U16 Channel, U16 AdRange,
U8 *FileName, U32 ReadCount, F64 SampleRate, U16 SyncMode);

Visual Basic
UD_AI_ContReadChannelToFile (ByVal ModuleNum As Integer, ByVal Channel As
Integer, ByVal AdRange As Integer, ByVal FileName As String, ByVal
ReadCount As Long, ByVal SampleRate As Double, ByVal SyncMode As
Integer) As Integer

@ Parameter

ModuleNum : The id of the module that want to perform this operation.

Channel : Analog input channel number
USB-1901/USB-1902: 0 through 15
USB-1903: 0 through 7 (differential input signal only)
USB-2401: 0 through 3
USB-2405: 0 through 3
USB-1210: 0 through 3

AdRange : The analog input range the specified channel is setting. We define
some constants to represent various A/D input ranges in UsbDask.h.
Please refer to the Appendix B, Al Range Codes, for the valid range
values.

FileName : Name of data file which stores the acquired data

ReadCount : If double-buffered mode is disabled, ReadCount is the number of A/D
conversions to be performed. For double-buffered acquisition,
ReadCount is the size (in samples) of the circular buffer.

Note: For USB-1901/1902/1903/1210, the value of ReadCount must be the
multiple of 256 for non-double-buffer mode, or multiple of 512 for
double-buffer mode.

For USB-2401/2405, the value of ReadCount must be the multiple of
128 for non-double-buffer mode, or multiple of 256 for double-buffer
mode.

SampleRate : For USB-1901/1902/1903, this parameter will be ignored. Please call
UD_AIl_1902_Conterlinterval () to setthe Scan-Interval and
Sample-Interval.

The valid settings are:
USB-2401: 20, 40, 80, 160, 320, 500, 1000 and 2000 samples/s.

e 37

SyncMode : Whether this operation is performed synchronously or asynchronously.
If any trigger mode is enabled by calling
UD_AI_1902_Config()/UD_AIl_2401_Config()/UD_Al_2405_
Trig_Config()/UD_Al_Trigger_Config(), this operation
should be performed asynchronously.

Valid values:
SYNCH_OP: synchronous A/D conversion, that is, the function
does not return until the A/D operation complete.
ASYNCH_OP:asynchronous A/D conversion.

Note: When SYNCH_ORP is selected, the UD_AI_SetTimeOut() can set the
Timeout for synchronous operation.

@ Return Code

NoError: The function returns successfully.

ErrorinvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check the
ModuleNum parameter.

ErrorFuncNotSupport: The Al function is not supported.

ErrorOpenFile: Failed to create the file to save the A/D data.

ErrorinvalidAdRange: The invalid setting is set to AdRange.

ErrorinvalidinputSignal: Indicates the invalid input-signal is assigned.
ErrorTransferCountToolLarge: The ReadCount is too large.

ErrorinvalidloChannel: The invalid setting is set to Channel.

ErrorContloNotAllowed: The continuous operation is not supported.
ErrorConflictWithSyncMode: The double-buffered Al operation is conflict with SYNCH_OP.
ErrorinvalidTransferCount: The ReadCount is not multiple of 256/512 (for USB-190x),
128/256 (for USB-2401).

ErrorinvalidTriggerMode: Neither double-buffered Al nor SYNCH_OP operation supports re-
trigger feature.

ErrorinvalidSampleRate: Indicates the sampling-rate is out of range.
ErrorinvalidCounterState: Either scan-Interval or sample-Interval is zero; Sample-
interval is larger than scan-interval.

ErrorSystemCallFailed: Failed to forward the command to driver, please call
GetLastError() for detailed system-error.

ErrorContloActive: The Al function had not been completed. Call UD_AI_AsyncClear()
to Stop Al function.

ErrorConflictWithInfiniteOp: The infinite Al operation is only supported with the double-
buffered mode.

ErrorinvalidTriggerChannel: The analog-trigger is not the first channel in Channel-
Gain-Queue. Please make sure the trigger channel is identical to the Channel
parameter.

ErrorWaitingUSBHostResponse: This is usually caused by trigger-enabled Al
operation. Call UD_AIl_AsyncClear() to disable the waiting state.
ErrorTimeoutFromSyncMode: The synchronous Al operation is time-out.
ErrorCardDisconnected: Indicates the USB device was disconnected.
ErrorConflictWithAlConfig: The AdRange is conflict with the some specific input-type.

38 e

2.2.20 UD_AI_ContReadMultiChannels

@ Description

This function performs continuous A/D conversions on the specified analog input
channels at a rate as close to the rate you specified. This function takes advantage of
the channel-gain queue functionality to perform multi-channel analog input.

@ Modules Support
USB-1901/USB-1902/USB-1903/USB-2401/USB-2405/USB-1210

@ Syntax

Microsoft C/C++ and Borland C++
116 UD_AI_ContReadMultiChannels (U16 ModuleNum, U16 numChans, U16
*Chans, U16 *AdRanges, U16 *Buffer, U32 ReadCount, F32 SampleRate,
U16 SyncMode)

Visual Basic
UD_AI_ContReadMultiChannels (ByVal ModuleNum As Integer, ByVal numChans
As Integer, Chans As Integer, AdRanges As Integer, Buffer As Integer,
ByVal ReadCount As Long, ByVal SampleRate As Single, ByVal
SyncMode As Integer) As Integer

@ Parameter

ModuleNum : The id of the module that want to perform this operation.

numChans : The number of analog input channels in the array Chans. The
maximum value:
USB-1901/USB-1902/USB-1903: 256
USB-2401: 4
USB-2405: 4
USB-1210: 4

Chans : Array of analog input channel numbers. The channel order for
acquiring data is the same as the order you set in Chans.
USB-1901/USB-1902: 0 through 15
USB-1903: 0 through 7 (differential input signal only)

Since there is no restriction of channel order setting, you
can set the channel order as you wish.

USB-2401: 0 through 3
USB-2405: 0 through 3
USB-1210: 0 through 4

AdRanges : Aninteger array of length numChans that contains the analog input
range for every channel in array Chans.
Please refer to the Appendix B for the valid range values.

Buffer : An integer array to contain the acquired data. The length of Buffer
must be equal to or greater than the value of parameter ReadCount.
The A/D data is stored in interleaved sequence. For example, if the
value of numChans is 3, and the numbers in Chans are 3, 8, and 0.
Then this function input data from channel 3, then channel 8, then
channel 0, then channel 3, then channel 8, ... The data acquired is put
to Buffer by order. So the data read from channel 3 is stored in
Buffer[0], Buffer[3], Buffer[6], ... The data from channel 8 is stored in
Buffer[1], Buffer[4], Buffer[7], ... The data from channel 0 is stored in
Buffer[2], Buffer[5], Buffer[8], ... If double-buffered mode is enabled,

e 39

this buffer is of no use, you can ignore this argument. Please refer to
Appendix C, Al Data Format for the data format in Buffer.

ReadCount : If double-buffered mode is disabled, ReadCount is the number of A/D
conversions to be performed. For double-buffered acquisition,
ReadCount is the size (in samples) of the circular buffer.

Note: For USB-1901/1902/1903/1210, the value of ReadCount must be the
multiple of 256 for non-double-buffer mode, or multiple of 512 for
double-buffer mode.

For USB-2401/2405, the value of ReadCount must be the multiple of
128 for non-double-buffer mode, or multiple of 256 for double-buffer
mode.

SampleRate : For USB-1901/1902/1903, this parameter will be ignored. Please call
UD_AIl_1902_Conterlinterval () to setthe Scan-Interval and
Sample-Interval.

For USU-2401, only 20, 40, 80, 160, 320, 500, 1000 and 2000
(samples/s) are valid.

SyncMode : Whether this operation is performed synchronously or asynchronously.
If any trigger mode is enabled by calling
UD_AIl_1902 Config()/UD_Al 2401 Config()/UD_Al 2405
Trig_Config()/UD_Al_Trigger_Config(), this operation
should be performed asynchronously.
Valid values:
SYNCH_OP: synchronous A/D conversion, that is, the function
does not return until the A/D operation complete.
ASYNCH_OP:asynchronous A/D conversion.

Note: When SYNCH_OP is selected, the UD_AI_SetTimeOut() can set the
Timeout for synchronous operation.

@ Return Code

NoError: The function returns successfully.

ErrorinvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check the
ModuleNum parameter.

ErrorFuncNotSupport: The Al function is not supported.

ErrorinvalidAdRange: The invalid setting is set to AdRange.

ErrorinvalidinputSignal: Indicates the invalid input-signal is assigned.
ErrorTransferCountToolLarge: The ReadCount is too large.
ErrorChanGainQueueToolLarge: The numChans is too large.

ErrorinvalidloChannel: The invalid setting is set to Channel.

ErrorContloNotAllowed: The continuous operation is not supported.
ErrorConflictWithSyncMode: The double-buffered Al operation is conflict with SYNCH_OP.
ErrorinvalidTransferCount: The ReadCount is not multiple of 256/512 (for USB-
190x/1210), 128/256 (for USB-2401/2405).

ErrorinvalidTriggerMode: Neither double-buffered Al nor SYNCH_OP operation supports re-
trigger feature.

ErrorinvalidSampleRate: Indicates the sampling-rate is out of range.

40 e

ErrorinvalidCounterState: Either scan-Interval or sample-Interval is zero; Scan-Interval
is less than (sample-interval x NumChans)

ErrorSystemCallFailed: Failed to forward the command to driver, please call
GetLastError() for detailed system-error.

ErrorContloActive: The Al function had not been completed. Call UD_AI_AsyncClear()
to Stop Al function.

ErrorConflictWithInfiniteOp: The infinite Al operation is only supported by double-
buffered acquisition.

ErrorinvalidTriggerChannel: The analog-trigger is not the first channel in Channel-
Gain-Queue. Please make sure the trigger channel is identical to the first channel in
Channel parameter.

ErrorWaitingUSBHostResponse: This is usually caused by trigger-enabled Al
operation. Call UD_AIl_AsyncClear() to disable the waiting state.
ErrorChanGainQueueTooLarge: The numChans excesses the supported channel-
gain-queue.

ErrorTimeoutFromSyncMode: The synchronous Al operation is time-out.
ErrorCardDisconnected: Indicates the USB device was disconnected.
ErrorConflictWithAlConfig: The AdRange is conflict with the some specific input-type.

o4l

2.2.21 UD_AI_ContReadMultiChannelsToFile

@ Description

This function performs continuous A/D conversions on the specified analog input
channels and saves the acquired data in a disk file. The data is written to disk in
binary format, with the lower byte first (little endian). Please refer to Appendix D, Data
File Format for the data file structure and Appendix C, Al Data Format for the format of
the data in the data file. This function takes advantage of the USB-1902 channel-gain
queue functionality to perform multi-channel analog input.

@ Modules Support
USB-1901/USB-1902/USB-1903/USB-2401/USB-2405/USB-1210

@ Syntax

Microsoft C/C++ and Borland C++
116 UD_AI_ContReadMultiChannelsToFile (U16 ModuleNum, U16 NumChans, U16
*Chans, U16 *AdRanges, U8 *FileName, U32 ReadCount, F64
SampleRate, U16 SyncMode)

Visual Basic
UD_AIl_ContReadMultiChannelsToFile (ByVal ModuleNum As Integer, ByVal
numChans As Integer, Chans As Integer, AdRanges As Integer, ByVal
FileName As String, ByVal ReadCount As Long, ByVal SampleRate As
Double, ByVal SyncMode As Integer) As Integer

@ Parameter

ModuleNum : The id of the module that want to perform this operation.
numChans : The number of analog input channels in the array Chans. The
maximum value:
USB-1901/USB-1902/USB-1903: 256
USB-2401: 4
USB-2405: 4
USB-1210: 4
Chans : Array of analog input channel numbers. The channel order for
acquiring data is the same as the order you set in Chans.
USB-1901/USB-1902: 0 through 15
USB-1903: 0 through 7 (differential input signal only)
Since there is no restriction of channel order setting, you
can set the channel order as you wish.
USB-2401: 0 through 3
USB-2405: 0 through 3
USB-1210: 0 through 3
AdRanges : Aninteger array of length numChans that contains the analog input
range for every channel in array Chans.
Please refer to the Appendix B for the valid range values.

FileName : Name of data file which stores the acquired data

ReadCount : If double-buffered mode is disabled, ReadCount is the number of A/D
conversions to be performed. For double-buffered acquisition,
ReadCount is the size (in samples) of the circular buffer.

42 e

Note: For USB-1901/1902/1903, the value of ReadCount must be the
multiple of 256 for non-double-buffer mode, or multiple of 512 for
double-buffer mode.

For USB-2401/2405, the value of ReadCount must be the multiple of
128 for non-double-buffer mode, or multiple of 256 for double-buffer
mode.

SampleRate : For USB-1901/1902/1903, this parameter will be ignored. Please call
UD_AIl_1902_Conterlinterval () to setthe Scan-Interval and
Sample-Interval.

For USU-2401, only 20, 40, 80, 160, 320, 500, 1000 and 2000
(samples/s) are valid.

SyncMode : Whether this operation is performed synchronously or asynchronously.
If any trigger mode is enabled by calling
UD_AIl_1902_Config()/UD_Al_2401 Config()/UD_Al_2405
Trig_Config()/UD_AIl_Trigger_Config(), this operation
should be performed asynchronously.

Valid values:
SYNCH_OP: synchronous A/D conversion, that is, the function
does not return until the A/D operation complete.
ASYNCH_OP:asynchronous A/D conversion.

Note: When SYNCH_OP is selected, the UD_AI_SetTimeOut() can set the
Timeout for synchronous operation.

@ Return Code

NoError: The function returns successfully.

ErrorinvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check the
ModuleNum parameter.

ErrorFuncNotSupport: The Al function is not supported.

ErrorOpenFile: Failed to create the file to save the A/D data.

ErrorinvalidAdRange: The invalid setting is set to AdRange.

ErrorinvalidinputSignal: Indicates the invalid input-signal is assigned.
ErrorTransferCountToolLarge: The ReadCount is too large.
ErrorChanGainQueueToolarge: The numChans is too large.

ErrorinvalidloChannel: The invalid setting is set to Channel.

ErrorContloNotAllowed: The continuous operation is not supported.
ErrorConflictWithSyncMode: The double-buffered Al operation is conflict with SYNCH_OP.
ErrorinvalidTransferCount: The ReadCount is not multiple of 256/512 (for USB-
190x/1210), 128/256 (for USB-2401/2405).

ErrorinvalidTriggerMode: Neither double-buffered Al nor SYNCH_OP operation supports re-
trigger feature.

ErrorinvalidSampleRate: Indicates the sampling-rate is out of range.
ErrorinvalidCounterState: Either scan-Interval or sample-Interval is zero; Scan-Interval

is less than (sample-interval x NumChans)

ErrorSystemCallFailed: Failed to forward the command to driver, please call
GetLastError() for detailed system-error.

ErrorContloActive: The Al function had not been completed. Call UD_AI_AsyncClear()
to Stop Al function.

43

ErrorConflictWithInfiniteOp: The infinite Al operation is only supported by double-
buffered acquisition.

ErrorinvalidTriggerChannel: The analog-trigger is not the first channel in Channel-
Gain-Queue. Please make sure the trigger channel is identical to the first channel in
Channel parameter.

ErrorWaitingUSBHostResponse: This is usually caused by trigger-enabled Al
operation. Call UD_AI_AsyncClear() to disable the waiting state.
ErrorChanGainQueueToolLarge: The numChans excesses the supported channel-
gain-queue.

ErrorTimeoutFromSyncMode: The synchronous Al operation is time-out.
ErrorCardDisconnected: Indicates the USB device was disconnected.
ErrorConflictWithAlConfig: The AdRange is conflict with the some specific input-type.

44 e

2.2.22 UD_AI_VoltScale

@ Description
Converts the result from an UD_AI_ReadChannel() call to actual input voltage.

@ Modules Support
USB-1901/USB-1902/USB-1903/Usb-1210

@ Syntax

Microsoft C/C++ and Borland C++
116 UD_AI_VoltScale (U16 ModuleNum, U16 AdRange, U16 reading, F64 *voltage)

Visual Basic
UD_AIl_VoltScale (ByVal ModuleNum As Integer, ByVal AdRange As Integer, ByVal
reading As Integer, voltage As Double) As Integer

@ Parameter
ModuleNum : The id of the module that want to perform this operation.

AdRange: The analog input range the specified channel is setting. Please refer
to the Appendix B for the valid range values.

reading : Result of AD Conversion.

voltage : Computed voltage value

@ Return Code

NoError: The function returns successfully.

ErrorinvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check the
ModuleNum parameter.

ErrorFuncNotSupport: The Al function is not supported.

ErrorBadCardType: Indicates the module-type is not supported.

ErrorCardDisconnected: Indicates the USB device was disconnected.
ErrorinvalidAdRange: The invalid setting is set to AdRange.

e 45

2.2.23 UD_AI_VoltScale32

@ Description

Converts the result from an UD_AI_ReadChannel() call to actual input voltage.
@ Modules Support

USB-2405

@ Syntax

Microsoft C/C++ and Borland C++

116 UD_AI_VoltScale32 (U16 ModuleNum, U16 AdRange, U16 inType, U32 reading,
F64 *voltage)

Visual Basic

UD_AI_VoltScale (ByVal ModuleNum As Integer, ByVal AdRange As Integer, ByVal
inType As Integer, ByVal reading As Long, voltage As Double) As Integer

@ Parameter

ModuleNum : The id of the module that want to perform this operation.

AdRange: The analog input range the specified channel is setting. Please refer
to the Appendix B for the valid range values.

inType : Reserved for future use.

reading : Result of AD Conversion.

voltage : Computed voltage value

@ Return Code

NoError: The function returns successfully.

ErrorinvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check the
ModuleNum parameter.

ErrorFuncNotSupport: The Al function is not supported.

ErrorBadCardType: Indicates the module-type is not supported.

ErrorCardDisconnected: Indicates the USB device was disconnected.
ErrorinvalidAdRange: The invalid setting is set to AdRange.

46 e

2.2.24 UD_AIl 2401 Scale32

@ Description

Converts the result from an UD_AI_ReadChannel() call to actual input
voltage/current/resistance.

@ Modules Support
USB-2401

@ Syntax

Microsoft C/C++ and Borland C++
116 UD_AI_2401_Scale32 (U16 ModuleNum, U16 AdRange, U16 inType, U32
reading, F64 *scaledValue)

Visual Basic
UD_AIl_2401_Scale32 (ByVal ModuleNum As Integer, ByVal AdRange As Integer,
ByVal inType As Integer ByVal reading As Long, scaledValue As Double)
As Integer

@ Parameter

ModuleNum : The id of the module that want to perform this operation.
AdRange: The analog input range the specified channel. The valid ranges of
P2401_Voltage_2D5V_Above/ P2401_Voltage_2D5V_Below are :
AD B 25 V,AD B 12 5 V,AD B 2 5 Vand AD_B _0_3125 V.
For other input-type, any valid range is required and the specific
range will be assigned automatically.
inType: The settings for input-type. The valid settings are:
P2401_Voltage_2D5V_Above: Voltage input (> 2.5V).
P2401_Voltage_2D5V_Below: Voltage input (<= 2.5V)
P2401_Current: Current input
P2401_RTD_4_ Wire: 4-wire RTD type input.
P2401_RTD_3_Wire: 3-wire RTD type input.
P2401_RTD_2_Wire: 2-wire RTD type input.
P2401_Resistor: Resistance type input.
P2401_ThermoCouple: Thermo couple input.
P2401_Full_Bridge: Full-bridge input.
P2401_Half Bridge: Half-bridge input.
reading : Result of AD Conversion.
scaledValue : Computed value.

@ Return Code

NoError: The function returns successfully.

ErrorinvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check the
ModuleNum parameter.

ErrorFuncNotSupport: The Al function is not supported.

ErrorBadCardType: Indicates the module-type is not supported.

ErrorCardDisconnected: Indicates the USB device was disconnected.
ErrorinvalidAdRange: The invalid setting is set to AdRange.

e 47

2.2.25 UD_AI_ContVScale

@ Description

This function converts the continuous acquisition data of single channel to the actual
input voltages. The raw data is returned from the continuous A/D conversion call, say
UD_AIl_ContReadChannel. (The multiple-channels raw data, returned from
UD_AI_ContReadMultiChannels, must be splitted by channels).

@ Modules Support
USB-1901/USB-1902/USB-1903/USB-1210

@ Syntax
Microsoft C/C++ and Borland C++
116 UD_AI_ContVScale (U16 ModuleNum, U16 AdRange, U16 *readingArray, F64
*voltageArray, 132 count)
Visual Basic

UD_AI_ContVScale (ByVal ModuleNum As Integer, ByVal AdRange As Integer,

readingArray As Integer, voltageArray As Double, ByVal count As Long) As
Integer

@ Parameter

ModuleNum : The id of the module that want to perform this operation.

AdRange: The analog input range the continuous specified channel is setting.
Please refer to the Appendix B for the valid range values.

readingArray : Acquired continuous analog input data array

voltageArray : computed voltages array returned

count : The length of readingArray array.

@ Return Code

NoError: The function returns successfully.
ErrorinvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.

ErrorCardNotRegistered: The specific module had not been registered. Please check the
ModuleNum parameter.

ErrorFuncNotSupport: The Al function is not supported.
ErrorBadCardType: Indicates the module-type is not supported.
ErrorCardDisconnected: Indicates the USB device was disconnected.
ErrorinvalidAdRange: The invalid setting is set to AdRange.

48 e

2.2.26 UD_AI_ContVScale32

@ Description

This function converts the continuous acquisition data of single channel to the actual
input voltages. The raw data is returned from the continuous A/D conversion call, say
UD_AIl_ContReadChannel. (The multiple-channels raw data, returned from
UD_AI_ContReadMultiChannels, must be splitted by channels).

@ Modules Support
USB-2405

@ Syntax

Microsoft C/C++ and Borland C++

116 UD_AI_ContVScale32 (U16 ModuleNum, U16 AdRange, U16 inType, U32
*readingArray, F64 *voltageArray, 132 count)

Visual Basic

UD_AI_ContVScale (ByVal ModuleNum As Integer, ByVal AdRange As Integer,

ByVal inType As Integer readingArray As Long, voltageArray As Double,
ByVal count As Long) As Integer

@ Parameter

ModuleNum : The id of the module that want to perform this operation.

AdRange : The analog input range the continuous specified channel is setting.
Please refer to the Appendix B for the valid range values.
inType: Reserved for future use.

readingArray : Acquired continuous analog input data array
voltageArray : Computed voltages array returned.
count : The length of readingArray array.

@ Return Code

NoError: The function returns successfully.
ErrorinvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.

ErrorCardNotRegistered: The specific module had not been registered. Please check the
ModuleNum parameter.

ErrorFuncNotSupport: The Al function is not supported.
ErrorBadCardType: Indicates the module-type is not supported.
ErrorCardDisconnected: Indicates the USB device was disconnected.
ErrorinvalidAdRange: The invalid setting is set to AdRange.

e 49

2.2.27 UD_AI_2401_ContVScale32

@ Description

This function converts the continuous acquisition data of single channel to the actual
input voltages. The raw data is returned from the continuous A/D conversion call, say
UD_AIl_ContReadChannel. (The multiple-channels raw data, returned from
UD_AI_ContReadMultiChannels, must be splitted by channels).

@ Modules Support
USB-2401

@ Syntax

Microsoft C/C++ and Borland C++
116 UD_AI_2401_ContVScale32 (U16 ModuleNum, U16 AdRange, U16 inType, U32
*readingArray, F64 *ScaledArray, 132 count)

Visual Basic
UD_AI_2401_ContVScale32 (ByVal ModuleNum As Integer, ByVal AdRange As
Integer, ByVal inType As Integer, readingArray As Long, ScaledArray As
Double, ByVal count As Long) As Integer

@ Parameter

ModuleNum : The id of the module that want to perform this operation.
AdRange: The analog input range the specified channel. The invalid ranges of
P2401_Voltage_2D5V_Above/ P2401_Voltage_2D5V_Below are :
AD B 25 V,AD B 12 5 V,AD B 2 5 Vand AD B 0 3125 V.
For other input-type, any valid range is required and the specific
range will be assigned automatically.
inType: The settings for input-type. The valid settings are:
P2401_Voltage 2D5V_Above: Voltage input (> 2.5V).
P2401_Voltage_2D5V_Below: Voltage input (<= 2.5V)
P2401_Current: Current input
P2401_RTD_4_Wire: 4-wire RTD type input.
P2401_RTD_3 Wire: 3-wire RTD type input.
P2401_RTD_2_Wire: 2-wire RTD type input.
P2401_Resistor: Resistance type input.
P2401_ThermoCouple: Thermo couple input.
P2401_Full_Bridge: Full-bridge input.
P2401_Half_Bridge: Half-bridge input.
readingArray : Acquired continuous analog input data array
scaledArray : computed voltages/currents/resistances array returned
count : The length of readingArray array.

@ Return Code

NoError: The function returns successfully.

ErrorinvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check the
ModuleNum parameter.

ErrorFuncNotSupport: The Al function is not supported.

ErrorBadCardType: Indicates the module-type is not supported.

ErrorCardDisconnected: Indicates the USB device was disconnected.
ErrorinvalidAdRange: The invalid setting is set to AdRange.

50 e

2.2.28 UD_AI_InitialMemoryAllocated

@ Description

This function returns the available memory size for analog input in the device driver in

argument MemSize. The continuous analog input transfer size can not exceed this
size.

@ Modules Support
USB-1901/USB-1902/USB-1903/USB-2401/USB-2405/USB-1210
@ Syntax
Microsoft C/C++ and Borland C++
116 UD_AI_InitialMemoryAllocated (U16 ModuleNum, U32 MemSize)
Visual Basic
UD_AI_InitialMemoryAllocated (ByVal ModuleNum As Integer, MemSize As Long)
As Integer
@ Parameter

ModuleNum : The id of the module that want to perform this operation.
MemSize : The available memory size for continuous Al in device driver of this
card. The unit is KB (1024 bytes).

@ Return Code

NoError: The function returns successfully.

ErrorinvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check the
ModuleNum parameter.

ErrorCardDisconnected: Indicates the USB device was disconnected.
ErrorFuncNotSupport: The Al function is not supported.

o5l

2.2.29 UD_AI_ReadChannel

@ Description

This function performs a software triggered A/D conversion (analog input) on an
analog input channel and returns the value converted.

@ Modules Support
USB-1901/USB-1902/USB-1903/USB-2405/USB-1210

@ Syntax

Microsoft C/C++ and Borland C++
116 UD_AI_ReadChannel (U16 ModuleNum, U16 Channel, U16 AdRange, U16
*Value)

Visual Basic
UD_AIl_ReadChannel (ByVal ModuleNum As Integer, ByVal Channel As Integer,
ByVal AdRange As Integer, Value As Integer) As Integer

@ Parameter

ModuleNum : The id of the module that want to perform this operation.

Channel : Analog input channel number
USB-1901/USB-1902: 0 through 15
USB-1903: 0 through 7 (differential input signal only)
USB-2405: 0 through 3
USB-1210: 0 through 3

AdRange : The analog input range the specified channel is setting. We define
some constants to represent various A/D input ranges in UsbDask.h.
Please refer to the Appendix B, Al Range Codes, for the valid range
values.

Value : The memory to store the A/D converted data. Please refer to
Appendix C, Al Data Format for the data format.

@ Return Code

NoError: The function returns successfully.

ErrorinvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check the
ModuleNum parameter.

ErrorBadCardType: Indicates the module-type is not supported.

ErrorFuncNotSupport: The Al function is not supported.

ErrorinvalidloChannel: The invalid setting is set to Channel.

ErrorinvalidAdRange: The invalid setting is set to AdRange.

ErrorCardDisconnected: Indicates the USB device was disconnected.
ErrorinvalidinputSignal: Indicates the invalid input-signal is assigned.

52 e

2.2.30 UD_AI_1902_Counterinterval

@ Description

This function configures the scan-interval / sample-interval for USB-1902 series
modules. Based on the conversion clock, the these two settings determine the interval
between samples and scans. For instance, when internal conversion-clock, 80MHz, is
selected, UD-Al_1902_Counterinterval(ModuleNum, 8000, 320) determined
Scan-Interval = 8,000 / 80,000,000 =1/ 10,000 = 10KHz

Sample-Interval = 320 / 80,000,000 = 1 / 250,000 = 250KHz

Note: The sample-interval determines the interval in each scan. And in every scan, the A/D
conversion will applied to all Al channels that are configured in Channel-Gain queue.
Therefore, the Scan-Interval <= (number of Chan-Gain-Queue * Sample-Interval).

@ Modules Support
USB-1901/USB-1902/USB-1903

@ Syntax

Microsoft C/C++ and Borland C++
116 UD_AI_1902_CounterInterval(U16 ModuleNum, U32 Scanlntrv, U32 Samplntrv)

Visual Basic

UD_AI_1902_Counterinterval(ByVal ModuleNum As Integer, ByVal Scanintrv As
Long, ByVal Samplntrv As Long) As Integer

@ Parameter

ModuleNum : The id of the module that want to perform this operation.

Scanintrv : The interval between scans. The Scanintrv must be larger than
Samplntrv.

Samplintrv : The interval between sample in each scan. The valid value is:
USB-1901/USB-1902//USB-1903 : 320

@ Return Code

NoError: The function returns successfully.
ErrorinvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.

ErrorCardNotRegistered: The specific module had not been registered. Please check the

ModuleNum parameter.

ErrorFuncNotSupport: The Al function is not supported.

ErrorBadCardType: Indicates the module-type is not supported.
ErrorCardDisconnected: Indicates the USB device was disconnected.
ErrorinvalidCounterValue: Invalid value is assigned to either Scanlintrv or Samplintrv;
Samplntrv is larger than Scanlintrv.

e 53

2.2.31 UD_AI_DDS_ActualRate_Get

@ Description

This function read the actual sampling-rate for the moduels that use the DDS (Direct
Digital Synthesizer) clock system.

@ Modules Support
USB-2405

@ Syntax
Microsoft C/C++ and Borland C++
116 UD_AI_DDS_ActualRate_Get(U16 ModuleNum, F64 fSampleRate, F64
*pActualRate)

Visual Basic
UD_ DDS_ActualRate_Get (ByVal ModuleNum As Integer, ByVal fSampleRate As
Double, pActualRate As Double) As Integer

@ Parameter

ModuleNum : The id of the module that want to perform this operation.
fSampleRate : The expected sampling-rate.
pActualRate : The memory that is stored the actual sampling-rate

@ Return Code

NoError: The function returns successfully.

ErrorinvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check the
ModuleNum parameter.

ErrorinvalidSampleRate: Indicates the expected sampling-rate is invalid.
ErrorFuncNotSupport: The Al function is not supported.

54 e

2.2.32 UD_AI_SetTimeOut

@ Description
This function sets the timeout for synchronous Al operation (SYNCH_OP).

@ Modules Support
USB-1901/USB-1902/USB-1903/USB-2401/USB-2405/USB-1210

@ Syntax

Microsoft C/C++ and Borland C++
116 UD_AI_SetTimeOut (U16 ModuleNum, U32 dwTimeOut)

Visual Basic
UD_AIl_SetTimeOut (ByVal ModuleNum As Integer, ByVal dwTimeOut As Long) As
Integer

@ Parameter

ModuleNum : The id of the module that want to perform this operation.
dwTimeOut : The Timeout for synchronous operation, in millisecond.
This setting is applied to WaitForSingleObject(). However, if this
parameter is set to zero, the INFINITE is applied to
WaitForSingleObject().

@ Return Code

NoError: The function returns successfully.

ErrorinvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check the
ModuleNum parameter.

ErrorCardDisconnected: Indicates the USB device was disconnected.
ErrorFuncNotSupport: The Al function is not supported.

e 55

2.2.33 UD_AI_ReadMultiChannels

@ Description

This function performs a software triggered A/D conversion (analog input) on an
analog input channel and returns the value converted.

@ Modules Support
USB-1901/USB-1902/USB-1903/USB-2401/USB-2405/USB-1210

@ Syntax

Microsoft C/C++ and Borland C++
116 UD_AI_ReadMultiChannels (U16 ModuleNum, U16 NumChans, U16* Chans,
U16* AdRangse, U16 *Buffer)

Visual Basic
UD_Al_ReadMultiChannels (ByVal ModuleNum As Integer, ByVal NumChans As
Integer, Chans As Integer, AdRanges As Integer, Buffer As Integer) As
Integer

@ Parameter

ModuleNum : The id of the module that want to perform this operation.
NumChans : The number of analog input channels in the array Chans. Valid values:

USB-1901/USB-1902: 1 through 16

USB-1903: 1 through 8 (differential input signal only)

USB-2401: 1 through 4

USB-2405: 1 through 4

USB-1210: 1 through 4

Chans : Array of analog input channel numbers. The channel order for
acquiring data is the same as the order you set in Chans.

USB-1901/USB-1902: Numbers in Chans must be within 0 and 15.
Since there is no restriction for channel order setting, you may
set the channel order as you want.

USB-1903: Numbers in Chans must be within 0 and 7. Since there is
no restriction for channel order setting, you may set the
channel order as you want.

USB-2401: Numbers in Chans must be within 0 and 3.

USB-2405: Numbers in Chans must be within 0 and 3.

USB-1210: Numbers in Chans must be withen 0 and 3;

AdRanges : An integer array of length numChans that contains the analog input
range for every channel in array Chans. Please refer to the Appendix

B, Al Range Codes, for the valid range values.

Buffer : An Integer array to contain the acquired data. The length of Buffer
must be equal to or greater than the value of parameter NumChans.

The acquired data is stored in interleaved sequence. For example, if

the value of numChans is 3, and the numbers in Chans are 3, 8 and

0, then this function input data from channel 3, then channel 8, then

channel 0. The data acquired is put to Buffer by order, so the data

read from channel 3 is stored in Buffer[0], the data read from channel

8 is stored in Buffer[1], and the data read from channel O is stored in

Buffer[2].

@ Return Code

56 e

NoError: The function returns successfully.

ErrorinvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check the
ModuleNum parameter.

ErrorFuncNotSupport: The Al function is not supported.

ErrorinvalidloChannel: The invalid setting is set to Chans.

ErrorinvalidAdRange: The invalid setting is set to AdRanges.

ErrorinvalidinputSignal: Indicates the invalid input-signal is assigned.
ErrorContloActive: The Al function had not been completed. Call UD_AI_AsyncClear()
to Stop Al function.

ErrorCardDisconnected: Indicates the USB device was disconnected.
ErrorConflictWithAlConfig: The AdRange is conflict with the some specific input-type.

e 57

2.2.34 UD_AI_VReadChannel

@ Description

This function performs a software triggered A/D conversion (analog input) on an
analog input channel and returns the value scaled to a voltage in units of volts.

@ Modules Support
USB-1901/USB-1902/USB-1903/USB-2405/USB-1210

@ Syntax

Microsoft C/C++ and Borland C++
116 UD_AI_VReadChannel (U16 ModuleNum, U16 Channel, U16 AdRange, F64
*voltage)
Visual Basic
UD_AIl_ReadChannel (ByVal ModuleNum As Integer, ByVal Channel As Integer,
ByVal AdRange As Integer, voltage As Double) As Integer

@ Parameter

ModuleNum : The id of the module that want to perform this operation.
Channel : Analog input channel number
USB-1901/USB-1902: 0 through 15
USB-1903: 0 through 7 (differential input signal only)
USB-2405: 0 through 3
USB-1210: 0 through 3
AdRange : The analog input range the specified channel is setting. We define

some constants to represent various A/D input ranges in UsbDask.h.
Please refer to the Appendix B, Al Range Codes, for the valid range

values.

voltage : The measured voltage value returned and scaled to units of voltage.

@ Return Code

NoError: The function returns successfully.
ErrorinvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.

ErrorCardNotRegistered: The specific module had not been registered. Please check the

ModuleNum parameter.

ErrorBadCardType: Indicates the module-type is not supported.
ErrorFuncNotSupport: The Al function is not supported.
ErrorinvalidloChannel: The invalid setting is set to Channel.
ErrorCardDisconnected: Indicates the USB device was disconnected.
ErrorinvalidAdRange: The invalid setting is set to AdRange.

58 e

2.2.35 UD_AI_Moving_Average32

@ Description

This function performs the software moving-average for 32-bit data.. The SrcBuf
contains multiple-channels ADC data. Only single-channel ADC data will be extracted
and calculated; that specific channel is indicated with dwTgChldx parameter.

@ Modules Support
USB-2401

@ Syntax

Microsoft C/C++ and Borland C++
116 UD_AI_Moving_Average32 (U16 ModuleNum, U32 *SrcBuf, U32 *DesBuf, U32
dwTgChldx, U32 dwTotalCh, U32 dwMovAvgWindow, U32 dwSamplCnt)
Visual Basic
UD_AIl_Moving_Average32 (ByVal ModuleNum As Integer, SrcBuf As Long, DesBuf
As Long, ByVal dwTgChldx As Long, ByVal dwTotalCh As Long, ByVal
dwMovAvgWindow As Long, ByVal dwSamplCnt As Long) As Integer

@ Parameter
ModuleNum : This parameter is reserved for future.

SrcBuf : The buffer that contains the data to be calculated.
DesBuf : The user-provided buffer to save the data with moving-average
calculation.

dwTgChldx : The index of target-channel

dwTotalCh : The total channels that are related to the ADC data in the SrcBuf.

dwMovAvgWindow :The number of samples will be applied to moving-average
operation.

dwSamplCnt : The all number of samples will be involved in this operation.

@ Return Code

NoError: The function returns successfully.
ErrorNullPoint: Either SrcBuf or DesBuf is NULL.

ErrorinvalidChannel: Indicates either the dwTgChldx is larger than dwTotalCh, or dwTotalCh is

zero.
ErrorCardDisconnected: Indicates the USB device was disconnected.
ErrorinvalidParamSetting: The dwMovAvgWindow is larger than dwSamplCnt.

e 59

2.2.36 UD_AI_EventCallBack (Win32 Only)

@ Description

Controls and notifies the user's application when a specified DAQ event occurs. The
notification is performed through a user-specified callback function. The event
message will be removed auto-matically after calling UD_Al_AsyncClear. The event
message may be manually removed by setting the Mode parameter to 0.

@ Modules Support
USB-2405

@ Syntax

Microsoft C/C++ and Borland C++
116 UD_AI_EventCallBack (U16 ModuleNum, [16 mode, 116 EventType, U32
callbackAddr)
Visual Basic
UD_AI_EventCallBack (ByVal ModuleNum As Integer, ByVal mode As Integer,
ByVal EventType As Integer, ByVal callbackAddr As Long) As Integer

@ Parameter

ModuleNum : The id of the module that want to perform this operation.

Mode : Add or remove the event message. The valid settings are :
0: remove
1: add

EventType: Event criteria. The valide settings are:
AIEnd: Notification that the asychronus analog input
DBEvent: Notification that the next half buffer of data in circular buffer
is ready for transfer.
callbackAddr : Address of the user callback function. The UD-DASKT calls this
function when the specific event occurs. If you want remove the event
message, set callbackAddr to 0.

@ Return Code

NoError: The function returns successfully.

ErrorinvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check the
ModuleNum parameter.

ErrorBadCardType: Indicates the module-type is not supported.
ErrorinvalidEventHandle: The invalid setting is set to EventType.

ErrorFuncNotSupport: The Al function is not supported.

ErrorinvalidloChannel: The invalid setting is set to Channel.

ErrorCardDisconnected: Indicates the USB device was disconnected.

60 e

2.2.37 UD_AO_1902_Config

@ Description

Configures the AO operation of USB-1902/USB-1903, including conversion control
and trigger settings

@ Modules Support
USB-1902/USB-1903

@ Syntax

Microsoft C/C++ and Borland C++
116 UD_AO_1902_Config (U16 ModuleNum, U16 wConfigCtrl, U16 wTrigCtrl, U32
dwReTriggerCnt, U32 dwDLY1Cnt, U32 dwDLY2Cnt)

Visual Basic
UD_AQO_1902_Config (ByVal ModuleNum As Integer, ByVal wConfigCtrl As Integer,
ByVal wTrigCtrl As Integer, ByVal dwReTriggerCnt As Long, ByVal
dwDLY1Cnt As Long, ByVal dwDLY2Cnt As Long) As Integer

@ Parameter

ModuleNum : The id of the module that want to perform this operation.
wConfigCtrl : Now only P1902_A0O_CONVSRC_INT is supported.
wTrigCtrl : The settings for trigger-source, trigger-polarity, trigger-mode, re-
trigger and waveform separation. The valid settings can be combined
with OR (]) operator.
Trigger-Source:
P1902_AO_TRGSRC_DTRIG: Digital trigger from AODTRIG.
Trigger-Polarity:
P1902_AQO_TrgPositive: Rising edge.
P1902_AO_TrgNegative: Falling edge.
Trigger-Mode:
P1902_AO_TRGMOD_POST: Post-trigger.
P1902_AO_TRGMOD_DELAY: Delay-trigger.
Re-Trigger:
P1902_AO_EnReTigger: Enable Re-Trigger.
Waveform-Separation:
P1902_AO_EnDelay2: Enable Separation-Delay between
waveforms.
dwReTriggerCnt : The re-trigger count is required when the P1902_AO_EnReTigger
is set in wTrigCtrl parameter.
dwDLY1Cnt : This delay-count is required for P1902_A0O_TRGMOD_DELAY
trigger-mode. Based on internal conversion clock (80MHz), this count
determines the delay-interval. For instance, assigning 800,000 to
dwDLY1Cnt means 10 millisecond delay. (800,000 / 80,000,000)
dwDLY2Cnt : This delay-count is required when the P1902_AO_EnWaveformSep is
set. Based on internal conversion clock (80MHz), this count
determines the delay-interval. For instance, assigning 800,000 to
dwDLY2Cnt means 10 millisecond separation-delay. (800,000 /
80,000,000)

@ Return Code

o6l

NoError: The function returns successfully.

ErrorinvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check the
ModuleNum parameter.

ErrorFuncNotSupport: The AO function is not supported.

ErrorinvalidAOCfgCtrl: The invalid settings is set to wConfigCirl.

ErrorinvalidAOTrigCtrl: The invalid settings is set to wTrigCtrl.

ErrorCardDisconnected: Indicates the USB device was disconnected.

62 e

2.2.38 UD_AO_VWriteChannel

@ Description

Accepts a voltage value (or a current value), scales it to the proper binary value and
writes that binary value to the specified analog output channel.

@ Modules Support

USB-1902/USB-19023

@ Syntax

Microsoft C/C++ and Borland C++
116 UD_AO_VWriteChannel (U16 ModuleNum, U16 Channel, F64 Voltage)
Visual Basic

UD_AO_VWriteChannel (ByVal ModuleNum As Integer, ByVal Channel As Integer,
ByVal Voltage As Double) As Integer

@ Parameter

ModuleNum : The id of the module that want to perform this operation.

Channel : The analog output channel number.
Range: 0 or 1 for USB-1902/USB-1903
Voltage : The value to be scaled and written to the analog output channel. The

range of voltages depends on the type of device, on the output
polarity, and on the voltage reference (external or internal).

@ Return Code

NoError: The function returns successfully.

ErrorinvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check the
ModuleNum parameter.

ErrorFuncNotSupport: The AO function is not supported.

ErrorinvalidloChannel: The invalid setting is set to Channel.
ErrorDaVoltageOutOfRange: The value assigned to Voltage parameter is out of range.
ErrorCardDisconnected: Indicates the USB device was disconnected.

® 63

2.2.39 UD_AO_WriteChannel

@ Description
Writes a binary value to the specified analog output channel.

@ Modules Support
USB-1902/USB-1903

@ Syntax

Microsoft C/C++ and Borland C++
116 UD_AO_WriteChannel (U16 ModuleNum, U16 Channel, U16 Value)

Visual Basic
UD_AO_WriteChannel (ByVal ModuleNum As Integer, ByVal Channel As Integer,
ByVal Value As Integer) As Integer
@ Parameter
ModuleNum : The id of the module that want to perform this operation.

Channel : The analog output channel number.
Range: 0 or 1 for USB-1902/USB-1903
Value : The value to be written to the analog output channel.

Range: -32768 through 32767 for USB-1902/USB-1903

@ Return Code

NoError: The function returns successfully.

ErrorinvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check the
ModuleNum parameter.

ErrorFuncNotSupport: The AO function is not supported.

ErrorinvalidloChannel: The invalid setting is set to Channel.

ErrorCardDisconnected: Indicates the USB device was disconnected.

64 o

2.2.40 UD_AO_AsyncCheck

@ Description
Check the current status of the asynchronous analog output operation.

@ Modules Support
USB-1902/USB-1903

@ Syntax

Microsoft C/C++ and Borland C++
116 UD_AO_AsyncCheck (U16 ModuleNum, BOOLEAN *Stopped, U32 *AccessCnt)

Visual Basic
UD_AQO_AsyncCheck (ByVal ModuleNum As Integer, Stopped As Byte, AccessCnt
As Long) As Integer

@ Parameter

ModuleNum : The id of the module that wants to perform this operation.

Stopped : Whether the asynchronous analog input operation has completed. If
Stopped = TRUE, the analog output operation has stopped. Either
the number of D/A conversions indicated in the call that initiated the
asynchronous analog output operation has completed or an error has
occurred. If Stopped = FALSE, the operation is not yet complete.
(constants TRUE and FALSE are defined in UsbDask.h)

AccessCnt : In the condition that the trigger acquisition mode is not used,
AccessCnt returns the number of D/A data that has been transferred
at the time calling UD_AO_AsyncCheck().

@ Return Code

NoError: The function returns successfully.

ErrorinvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check the
ModuleNum parameter.

ErrorFuncNotSupport: The AO function is not supported.

ErrorConflictWithInfiniteOp: The infinite-trigger and infinite-repeat are conflict with this function.

ErrorConflictWithSyncMode: The synchronous AO operation is conflict with this function.
ErrorCardDisconnected: Indicates the USB device was disconnected.

e 65

2.2.41 UD_AQO_AsyncClear

@ Description

Stop the asynchronous analog output operation.The configurations set with
UD_AO_1902_ConfFfigQwill be cleared as well.

@ Modules Support
USB-1902/USB-1903

@ Syntax

Microsoft C/C++ and Borland C++
116 UD_AO_AsyncClear (U16 ModuleNum, U32 *AccessCnt)

Visual Basic
UD_AO_AsyncClear (ByVal ModuleNum As Integer, AccessCnt As Long) As Integer

@ Parameter

ModuleNum : The id of the module that wants to perform this operation.
AccessCnt : In the condition that the trigger acquisition mode is not used,
AccessCnt returns the number of D/A data had been transferred out.

@ Return Code

NoError: The function returns successfully.

ErrorinvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check
the ModuleNum parameter.

ErrorFuncNotSupport: The AO function is not supported.

ErrorCardDisconnected: Indicates the USB device was disconnected.

66 o

2.2.42 UD_AO_AsyncDblBufferHalfReady

@ Description

In asynchronous double-buffered AO, indicates the half buffer is ready for data-
updatig.

@ Modules Support
USB-1902/USB-1903

@ Syntax

Microsoft C/C++ and Borland C++
116 UD_AO_AsyncDblBufferHalfReady (U16 ModuleNum, BOOLEAN *HalfReady,
BOOLEAN *StopFlag)
Visual Basic
UD_AO_AsyncDblBufferHalfReady(ByVal ModuleNum As Integer, HalfReady As
Byte, StopFlag As Byte) As Integer

@ Parameter

ModuleNum : The id of the module that wants to perform this operation.

HalfReady : Whether the half buffer of driver buffer is available. If HalfReady =
TRUE, you can call UD_AO_AsyncDblIBufferTransfer() to copy
the output data to driver buffer. (constants TRUE and FALSE are
defined in UsbDask.h)

StopFlag : Whether the asynchronous analog output operation has completed. If
StopFlag = TRUE, the analog input operation has stopped. If StopFlag
= FALSE, the operation is not yet complete. (constants TRUE and
FALSE are defined in UsbDask.h)

@ Return Code

NoError: The function returns successfully.

ErrorinvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check
the ModuleNum parameter.

ErrorFuncNotSupport: The AO function is not supported.

ErrorConflictWithSyncMode: The synchronous Al operation is conflict with this function.

ErrorCardDisconnected: Indicates the USB device was disconnected.

® 67

2.2.43 UD_AO_AsyncDblBufferMode

@ Description
Enable/disable the double-buffered mode or FIFO mode for D/A data output.

@ Modules Support
USB-1902/USB-1903

@ Syntax

Microsoft C/C++ and Borland C++
116 UD_AO_AsyncDblBufferMode (U16 ModuleNum, BOOLEAN Enable, BOOLEAN
bEnFifoMode)

Visual Basic
UD_AO_AsyncDblBufferMode (ByVal ModuleNum As Integer, ByVal Enable As Byte,
ByVal bEnFifoMode As Byte) As Integer

@ Parameter

ModuleNum : The id of the module that wants to perform this operation.
Enable : Whether the double-buffered mode is enabled or not.

TRUE: double-buffered mode is enabled.

FALSE: double-buffered mode is disabled.

(constants TRUE and FALSE are defined in UsbDask.h)
bEnFifoMode : Whether the FIFO mode is enabled or not.

TRUE: FIFO mode is enabled.

FALSE: FIFO mode is disabled.

(constants TRUE and FALSE are defined in UsbDask.h)

Note: The Double-Buffered mode and FIFO mode are manual exclusive. The FIFO mode only
can be enabled while disabling double-buffered mode.

@ Return Code

NoError: The function returns successfully.

ErrorinvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check
the ModuleNum parameter.

ErrorFuncNotSupport: The AO function is not supported.
ErrorinvalidOperationMode: The double-buffered mode and FIFO mode cannot be
enabled at the same time.

ErrorDbiBufModeNotAllowed: Re-trigger is not supported in double-buffered mode.
ErrorContloActive: The AO function had not been completed. Call
UD_AQO_AsyncClear() to Stop AO function.

ErrorCardDisconnected: Indicates the USB device was disconnected.

68 o

2.2.44 UD_AO_ContBufferCompose

@ Description

Fills the data for a specified channel in the buffer for multi-channels of continuous
analog output operation.

@ Modules Support
USB-1902/USB-1903

@ Syntax

Microsoft C/C++ and Borland C++
116 UD_AO_AsyncDblBufferMode (U16 ModuleNum, U16 TotalChnCount, U16
ChnNum, U32 UpdateCount, void *ConBuffer, void *Buffer)

Visual Basic
UD_AQO_AsyncDblBufferMode (ByVal ModuleNum As Integer, ByVal TotalChnCount
As Integer, ByVal ChnNum As Integer, ByVal UpdateCount As Long,
ConBuffer As Any, Buffer As Any) As Integer

Buffer containing the output data for the specified channel.

@ Parameter

ModuleNum : The id of the module that wants to perform this operation.

TotalChnCount : Number of AO channels to be performed. Valid value: 1 or 2.

ChnNum : Specified AO channel number. Valid value: 0 or 1.

UpdateCount : Size (in samples) of the specified channel buffer. This is not the size
of the buffer for continuous output operation.

ConBuffer : Buffer for multi-channels of continuous output operation.

Buffer : Buffer containing the output data for the specified channel.

@ Return Code

NoError: The function returns successfully.

ErrorinvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check
the ModuleNum parameter.

ErrorFuncNotSupport: The AO function is not supported.

ErrorUndefinedParameter: The invalid settings are assigned to TotalChnCount or
ChnNum parameters.

® 69

2.2.45 UD_AO_AsyncDbIBufferTransfer

@ Description

This function helps to update the output D/A data. The target half-buffer is specified
with the wBufferlD parameter.

@ Modules Support

USB-1902/USB-1903

@ Syntax
Microsoft C/C++ and Borland C++
116 UD_AO_AsyncDblBufferTransfer (U16 ModuleNum, U16 wBufferID, U16 *Buffer)
Visual Basic
UD_AO_AsyncDblBufferTransfer (ByVal ModuleNum As Integer, ByVal wBufferlD
As Integer, Buffer As Integer) As Integer
@ Parameter

ModuleNum : The id of the module that performs the asynchronous double-buffered

operation.
wBufferlD : The id of the half-buffer that the D/A data will be copied into.
Buffer : The user buffer. An array that the D/A data will be updated.

Please refer to Appendix C, Al Data Format for the data format in
Buffer or the data file.

@ Return Code

NoError: The function returns successfully.

ErrorinvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check
the ModuleNum parameter.

ErrorFuncNotSupport: The Al function is not supported.

ErrorNotDoubleBufrerMode: The AO operation is not started with double-buffered
mode.

ErrorinvalidBufferID: The half-buffer that is specified with wBufferID is not ready yet.
ErrorCardDisconnected: Indicates the USB device was disconnected.

70 @

2.2.46 UD_AO_SetTimeOut

@ Description
This function sets the timeout for synchronous AO operation (SYNCH_OP).

@ Modules Support
USB-1902/USB-1903

@ Syntax

Microsoft C/C++ and Borland C++
116 UD_AO_SetTimeOut (U16 ModuleNum, U32 dwTimeOut)

Visual Basic
UD_AQO_ReadChannel (ByVal ModuleNum As Integer, ByVal dwTimeOut As Long)
As Integer

@ Parameter

ModuleNum : The id of the module that want to perform this operation.
dwTimeOut : The Timeout for synchronous operation, in millisecond.
This setting is applied to WaitForSingleObject(). However, if this
parameter is set to zero, the INFINITE is applied to
WaitForSingleObject().

@ Return Code

NoError: The function returns successfully.

ErrorinvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check
the ModuleNum parameter.

ErrorFuncNotSupport: The AO function is not supported.

ErrorCardDisconnected: Indicates the USB device was disconnected.

71

2.2.47 UD_AO_ContWriteChannel

@ Description

This function performs continuous D/A conversions on the specified analog output

channels.

@ Modules Sup

port

USB-1902/USB-1903

@ Syntax

Microsoft C/C++ and Borland C++
116 UD_AO_ContWriteChannel (U16 ModuleNum, U16 wChannel, VOID* pAOBuffer,

u32

dwWriteCount, U32 wlterations, U32 dwCHUI, U16 finite, U16

SyncMode)

Visual Basic

UD_AQO_ContWriteChannel (ByVal ModuleNum As Integer, ByVal wChannel As
Integer, pAOBuffer As Any, ByVal dwWriteCount As Long, ByVal

wlte

rations As Long, ByVal dwCHUI As Long, ByVal finite As Integer, ByVal

SyncMode As Integer) As Integer

@ Parameter

ModuleNum :
wChannel :

pAOBuffer :

dwWriteCount :

wlterations :

dwCHUI :

finite:

SyncMode :

The id of the module that want to perform this operation.
The channel to be performed the D/A updating:
USB-1901/USB-1902/USB-1903: 0 or 1
The memory that stores the update A/D data.

If double-buffered mode is disabled, the total update count for each channel to be
performed. For double-buffered output, dwWriteCount is the size (in samples) of the
circular buffer.

Note: The value of dwWriteCount must be the multiple of 256 for non-
double-buffer mode, or multiple of 512 for double-buffer mode.

The iterations to repeat the D/A data. If the D/A operation is performed
synchronously, this parameter must be 1.
The update-interval counter for D/A data output. Based on the
conversion-clock, this counter determines the interval between D/A
data.
USB-1902/USB-1903 : 80 to 4294967295.=
D/A output is infinitely or finitely.
0 : infinitely.
1 : finitely.
Whether this operation is performed synchronously or asynchronously.
If any trigger mode is enabled by calling UD_AO_1902_Config(),
this operation should be performed asynchronously.
Valid values:
SYNCH_OP: synchronous A/D conversion, that is, the function
does not return until the A/D operation complete.
ASYNCH_OP:asynchronous A/D conversion.

Note: When SYNCH_OP is selected, the UD_AO_SetTimeOut() can set the
Timeout for synchronous operation.

T2

@ Return Code

NoError: The function returns successfully.

ErrorinvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check
the ModuleNum parameter.

ErrorFuncNotSupport: The Al function is not supported.

ErrorinvalidAOlteration: The Iteration is zero with finite is 1.
ErrorTransferCountTooLarge: The wWriteCount is too large.
ErrorZeroChannelNumber;: The numChans is zero.

ErrorContloNotAllowed: The continuous operation is not supported.
ErrorConflictWithSyncMode: Only one-shot D/A operation supports SYNCH_OP.
ErrorinvalidTransferCount: The dwWriteCount is not multiple of 256/512.
ErrorinvalidOperationMode: Either FIFO mode or double-buffered mode can support
AO re-trigger / repeat.

ErrorAOFifoCountToolLarge: The dwWriteCount is larger than onboard FIFO size.
ErrorConflictWithDelay2: The P1902_AO_EnDelay2 in UD_AO_1902_Config() needs
at least 2 iterations.

ErrorConflictWithReTrig: The re-trigger is manual-exclusive to repeating D/A operation.

ErrorinvalidSampleRate: The dwCHUI is less than 80.
ErrorinvalidTriggerMode: Neither double-buffered AO nor SYNCH_OP operation
supports re-trigger feature.

ErrorSystemCallFailed: Failed to forward the command to driver, please call
GetLastError() for detailed system-error.

ErrorContloActive: The AO function had not been completed. Call
UD_AOQO_AsyncClear() to Stop AO function.

ErrorWaitingUSBHostResponse: This is usually caused by trigger-enabled AO
operation. Call UD_AQO_AsyncClear() to disable the waiting state.
ErrorAOFifoModeTimeout: The D/A data transmission timeout with FIFO mode.
ErrorTimeoutFromSyncMode: The synchronous AO operation is time-out.
ErrorCardDisconnected: Indicates the USB device was disconnected.

e 73

2.2.48 UD_AO_ContWriteMultiChannels

@ Description

This function performs continuous D/A conversions on the specified analog output
channels.

@ Modules Support
USB-1902/USB-1903

@ Syntax

Microsoft C/C++ and Borland C++
116 UD_AO_ContWriteMultiChannels (U16 ModuleNum, U16 numChans, U16
Chans, VOID pAOBuffer, U32 dwWriteCount, U32 wlterations, U32
dwCHUI, U16 finite, U16 SyncMode)

Visual Basic
UD_AQO_ContWriteMultiChannels (ByVal ModuleNum As Integer, ByVal numChans
As Integer, Chans As Integer, pAOBuffer As Any, ByVal dwWriteCount As
Long, ByVal wlterations As Long, ByVal dwCHUI As Long, ByVal finite As
Integer, ByVal SyncMode As Integer) As Integer

@ Parameter

ModuleNum : The id of the module that want to perform this operation.

numChans : The number of analog input channels in the array Chans. The valid
value:
USB-1902/USB-1903: 1 to 2

Chans : Array of analog output channel numbers.
USB-1902/USB-1903: 0 or 1

pAOBuffer : The memory that stores the update A/D data.

dwWriteCount : If double-buffered mode is disabled, the total update count for each channel to be
performed. For double-buffered output, dwWriteCount is the size (in samples) of the
circular buffer.

Note: The value of dwWriteCount must be the multiple of 256 for non-
double-buffer mode, or multiple of 512 for double-buffer mode.

wlterations : The iterations to repeat the D/A data. If the D/A operation is performed
synchronously, this parameter must be 1.

dwCHUI : The update-interval for D/A data output. Based on the conversion-
clock, this counter determines the interval between D/A data.
USB-1902/USB-1903 : 80 to 4294967295.

finite: D/A output is infinitely or finitely.

0 : infinitely.
1 : finitely.

SyncMode : Whether this operation is performed synchronously or asynchronously.
If any trigger mode is enabled by calling UD_AO_1902_ConTig(),
this operation should be performed asynchronously.

Valid values:
SYNCH_OP: synchronous A/D conversion, that is, the function
does not return until the A/D operation complete.
ASYNCH_OP:asynchronous A/D conversion.

74 o

Note: When SYNCH_ORP is selected, the UD_AO_SetTimeOut() can set the
Timeout for synchronous operation.

@ Return Code

NoError: The function returns successfully.

ErrorinvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check
the ModuleNum parameter.

ErrorFuncNotSupport: The Al function is not supported.

ErrorinvalidAOlteration: The Iteration is zero with finite is 1.
ErrorTransferCountTooLarge: The wWriteCount is too large.
ErrorZeroChannelNumber;: The numChans is zero.

ErrorContloNotAllowed: The continuous operation is not supported.
ErrorConflictWithSyncMode: Only one-shot D/A operation supports SYNCH_OP.
ErrorinvalidTransferCount: The dwWriteCount is not multiple of 256/512.
ErrorinvalidOperationMode: Either FIFO mode or double-buffered mode can support
AO re-trigger / repeat.

ErrorAOFifoCountToolLarge: The dwWriteCount is larger than onboard FIFO size.
ErrorConflictWithDelay2: The P1902_AO_EnDelay2 in UD_AQO_1902_Config() needs
at least 2 iterations.

ErrorConflictWithReTrig: The re-trigger is manual-exclusive to repeating D/A operation.
ErrorinvalidSampleRate: The dwCHUI is less than 80.

ErrorinvalidTriggerMode: Neither double-buffered AO nor SYNCH_OP operation
supports re-trigger feature.

ErrorSystemCallFailed: Failed to forward the command to driver, please call
GetLastError() for detailed system-error.

ErrorContloActive: The AO function had not been completed. Call
UD_AOQO_AsyncClear() to Stop AO function.

ErrorWaitingUSBHostResponse: This is usually caused by trigger-enabled AO
operation. Call UD_AQO_AsyncClear() to disable the waiting state.
ErrorAOFifoModeTimeout: The D/A data transmission timeout with FIFO mode.
ErrorTimeoutFromSyncMode: The synchronous AO operation is time-out.
ErrorCardDisconnected: Indicates the USB device was disconnected.

e 75

2.2.49 UD_AO_InitialMemoryAllocated

@ Description

This function returns the available memory size for analog input in the device driver in
argument MemSize. The continuous analog input transfer size can not exceed this
size.

@ Modules Support
USB-1902/USB-1903

@ Syntax

Microsoft C/C++ and Borland C++
116 UD_AO_InitialMemoryAllocated (U16 ModuleNum, U32 MemSize)
Visual Basic

UD_AO_InitialMemoryAllocated (ByVal ModuleNum As Integer, MemSize As Long)
As Integer

@ Parameter

ModuleNum : The id of the module that want to perform this operation.
MemSize : The available memory size for continuous AO in device driver of this
card. The unit is KB (1024 bytes).

@ Return Code

NoError: The function returns successfully.

ErrorinvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check the
ModuleNum parameter.

ErrorCardDisconnected: Indicates the USB device was disconnected.
ErrorFuncNotSupport: The Al function is not supported.

76 @

2250 UD_GPTC Clear

@ Description

Halts the specified general-purpose timer/counter operation and reloads the initial
value of the timer/counter.

@ Cards Support
USB-1901/USB-1902/USB-1903/USB-2401/USB-2405/USB-1210

@ Syntax

Microsoft C/C++ and Borland C++
116 UD_GPTC_Clear (U16 CardNumber, U16 GCtr)

Visual Basic
UD_GPTC_Clear (ByVal CardNumber As Integer, ByVal GCtr As Integer) As Integer

@ Parameter

CardNumber : The card id of the card that want to perform this operation.
GCtr : The counter number.

USB-1901/USB-1902/USB-1903: 0 to 3

USB-2401: 0to 1

USB-2405: 0 to 1

USB-1210: 0to 3

@ Return Code

NoError: The function returns successfully.

ErrorinvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check
the ModuleNum parameter.

ErrorCardDisconnected: The module is disconnected. Please close the related
application and re-register the module again.

ErrorinvalidCounter: The invalid setting is assigned to GCtr parameter.
ErrorFuncNotSupport: The Al function is not supported.
ErrorConflictWithGPIOConfig: Incorrect GPIO configuration, please check the settings
in UD_DIO_1902_Config() / UD_DIO_2401_Config() / UD_DIO_2405_Config() /
UD_DIO_Config().

ErrorCardDisconnected: Indicates the USB device was disconnected.

o 77

2.251 UD_GPTC_Setup

@ Description
Sets the configuration of selected counter/timer.

@ Modules Support
USB-1901/USB-1902/USB-1903/USB-2401/USB-2405/USB-1210

@ Syntax

Microsoft C/C++ and Borland C++
116 UD_GPTC_Setup (U16 ModuleNum, U16 GCtr, U16 Mode, U16 SrcCtrl, U16
PolCtrl, U32 LReg_Val1, U32 LReg2_Val2, U32 PulseCount)

Visual Basic
UD_GPTC_Setup (ByVal ModuleNum As Integer, ByVal GCtr As Integer, ByVal
Mode As Integer, ByVal SrcCtrl As Integer, ByVal PolCtrl As Integer, ByVal
LReg_Val1 As Long, ByVal LReg_Val2 As Long, ByVal PulseCount As
Long) As Integer

@ Parameter

ModuleNum : The card id of the card that want to perform this operation.
GCtr : The counter number.
USB-1901/USB-1902/USB-1903: 0 to 3
USB-2401/USB-2405: 0 to 1
USB-1210: 0to 3
Mode : The timer/counter mode. Refer to the hardware manual for the mode
description. Valid modes:
USB-1901/USB-1902/USB-1903/USB-2401/USB-1210:
SimpleGatedEventCNT
SinglePeriodMSR
SinglePulseWidthMSR
SingleGatedPulseGen
SingleTrigPulseGen
RetrigSinglePulseGen
SingleTrigContPulseGen
ContGatedPulseGen
EdgeSeparationMSR
SingleTrigContPulseGenPWM
ContGatedPulseGenPWM
MultipleGatedPulseGen
USB -2405:
ContGatedPulseGen
MultipleGatedPulseGen
(The Internal Gate will be applied, and always be active)

SrcCtrl : The setting for general-purpose timer/counter source control. This
argument is an integer expression formed from one or more of the
manifest constants defined in UsbDask.h. There are three groups of
constants:

USB-1901/USB-1902/USB-1903/USB-2401/USB-1210:
Timer/Counter Source
GPTC_CLK_SRC_Int Internal time base

78 o

GPTC_CLK_SRC_Ext External time base from the GPTC_CLK pin

Timer/Counter Gate Source

GPTC_GATE_SRC_Int Gate is controlled by software.
GPTC_GATE_SRC_Ext Gate is controlled by the GPTC_GATE pin.

Timer/Counter UpDown Source

GPTC_UPDOWN _Int Up/Down is controlled by software.
GPTC_UPDOWN_Ext Up/Down is controlled by the GPTC_UD pin.

USB-2405:

This parameter will be ignored.

PolCtrl : The polarity settings for general-purpose timer/counter. This argument
is an integer expression formed from one or more of the manifest
constants defined in UsbDask.h. There are three groups of constants:
USB-1901/USB-1902/USB-1903/USB-2401/USB-1210:

Timer/Counter Gate Polarity
GPTC_GATE_LACTIVE Low active
GPTC_GATE_HACTIVE High active
Timer/Counter UpDown Polarity

GPTC_UPDOWN_LACTIVE Low active
GPTC_UPDOWN_HACTIVE High active
Timer/Counter Clock Source Polarity
GPTC_CLKSRC_LACTIVE Low active
GPTC_CLKSRC_HACTIVE High active

Timer/Counter Output Polarity

GPTC_OUTPUT_LACTIVE Low active
GPTC_OUTPUT_HACTIVE High active

USB-2405:

Timer/Counter Output Polarity

GPTC_OUTPUT_LACTIVE Low active
GPTC_OUTPUT_HACTIVE High active

dwLReg_Vall :The meaning for the value depends on the mode the timer /counter

performs.

USB-1901/USB-1902/USB-1903/USB-2401/USB-2405/USB-1210:

SimpleGatedEventCNT
SinglePeriodMSR
SinglePulseWidthMSR
SingleGatedPulseGen
SingleTrigPulseGen
RetrigSinglePulseGen
SingleTrigContPulseGen
ContGatedPulseGen
EdgeSeparationMSR
SingleTrigContPulseGenPWM
ContGatedPulseGenPWM
MultipleGatedPulseGen

Configures as nitial count of GPTC
Configures as initial count of GPTC
Configures as initial count of GPTC
Configures as the pulse width
Configures as the pulse width
Configures as the pulse width
Configures as the pulse width
Configures as the pulse width
Configures as initial count of GPTC
Configures as the pulse initial count
Configures as the pulse initial count
Configures as the pulse initial count

Note: for USB-2405, if the MultipleGatedPulseGen mode is set, this
parameter, dwLReg Val1l, will be ignored.

e 79

dwLReg_Val2 :The meaning for the value depends on the mode the timer /counter

performs.

USB-1901/USB-1902/USB-1903/USB-2401/USB-2405/USB-1210:
SimpleGatedEventCNT Not used
SinglePeriodMSR Not used
SinglePulseWidthMSR Not used
SingleGatedPulseGen Not used
SingleTrigPulseGen Not used
RetrigSinglePulseGen Not used
SingleTrigContPulseGen Not used
ContGatedPulseGen Not used
EdgeSeparationMSR Not used
SingleTrigContPulseGenPWM Configures as the pulse length count
ContGatedPulseGenPWM Configures as the pulse length count
MultipleGatedPulseGen Configures as the pulse length count

PulseCount : The count of output-pulse. This parameter is required when
MultipleGatedPulseGen mode is selected.

@ Return Code

NoError: The function returns successfully.

ErrorinvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check
the ModuleNum parameter.

ErrorCardDisconnected: The module is disconnected. Please close the related
application and re-register the module again.

ErrorinvalidCounter: The invalid setting is assigned to GCtr parameter.
ErrorFuncNotSupport: The Al function is not supported.

ErrorinvalidPulseCount: The PulseCount is zero when MultipleGatedPulseGen mode
is selected.

ErrorinvalidCounterMode: GCtr1 and GCtr3 only support MultipleGatedPulseGen
mode; Invalid setting is assigned to Mode parameter.

ErrorConflictWithGPIOConfig: Incorrect GPIO configuration, please check the settings
in UD_DIO_1902_Config() / UD_DIO_2401_Config() / UD_DIO_2405_Config() /
UD_DIO_Config().

ErrorCardDisconnected: Indicates the USB device was disconnected.

80 e

2252 UD_GPTC_Setup_N

@ Description

This function provides the simlar features of UD_GPTC_Setup().
In the UD_GPTC_Setup(),the duty-cycle of pulse-generating modes, XXXPulseGen,
is always 50%; this setting can be configured in this function.

@ Modules Support
USB-1901/USB-1902/USB-1903/USB-2401/USB-1210

@ Syntax

Microsoft C/C++ and Borland C++
116 UD_GPTC_Setup (U16 ModuleNum, U16 GCtr, U16 Mode, U16 SrcCtrl, U16
PolCtrl, U32 LReg_Val1, U32 LReg2 Val2, U32 PulseCount)

Visual Basic
UD_GPTC_Setup (ByVal ModuleNum As Integer, ByVal GCir As Integer, ByVal
Mode As Integer, ByVal SrcCtrl As Integer, ByVal PolCtrl As Integer, ByVal
LReg_Val1 As Long, ByVal LReg_Val2 As Long, ByVal PulseCount As
Long) As Integer

@ Parameter

ModuleNum : The card id of the card that want to perform this operation.
GCtr : The counter number.
USB-1901/USB-1902/USB-1903: 0 to 3
USB-2401: 0 to 1
USB-1210: 0 to 3
Mode : The timer/counter mode. Refer to the hardware manual for the mode
description. Valid modes:
USB-1901/USB-1902/USB-1903/USB-2401/USB-1210:
SimpleGatedEventCNT
SinglePeriodMSR
SinglePulseWidthMSR
SingleGatedPulseGen
SingleTrigPulseGen
RetrigSinglePulseGen
SingleTrigContPulseGen
ContGatedPulseGen
EdgeSeparationMSR
SingleTrigContPulseGenPWM
ContGatedPulseGenPWM
MultipleGatedPulseGen

SrcCitrl : The setting for general-purpose timer/counter source control. This
argument is an integer expression formed from one or more of the
manifest constants defined in UsbDask.h. There are three groups of
constants:

USB-1901/USB-1902/USB-1903/USB-2401/USB-1210:
Timer/Counter Source
GPTC_CLK_SRC_Int Internal time base
GPTC_CLK_SRC_Ext External time base from the GPTC_CLK pin
Timer/Counter Gate Source

e 81

GPTC_GATE_SRC_Int Gate is controlled by software.
GPTC_GATE_SRC_Ext Gate is controlled by the GPTC_GATE pin.
Timer/Counter UpDown Source

GPTC_UPDOWN_Int Up/Down is controlled by software.
GPTC_UPDOWN_Ext Up/Down is controlled by the GPTC_UD pin.

PolCtrl : The polarity settings for general-purpose timer/counter. This argument
is an integer expression formed from one or more of the manifest
constants defined in UsbDask.h. There are three groups of constants:
USB-1901/USB-1902/USB-1903/USB-2401/USB-1210:

Timer/Counter Gate Polarity
GPTC_GATE_LACTIVE Low active
GPTC_GATE_HACTIVE High active
Timer/Counter UpDown Polarity

GPTC_UPDOWN_LACTIVE Low active
GPTC_UPDOWN_HACTIVE High active
Timer/Counter Clock Source Polarity
GPTC_CLKSRC_LACTIVE Low active
GPTC_CLKSRC_HACTIVE High active

Timer/Counter Output Polarity

GPTC_OUTPUT_LACTIVE Low active
GPTC_OUTPUT_HACTIVE High active

dwLReg_Vall :The meaning for the value depends on the mode the timer /counter

performs.

USB-1901/USB-1902/USB-1903/USB-2401/USB-1210:

SimpleGatedEventCNT Configures as nitial count of GPTC
SinglePeriodMSR Configures as initial count of GPTC
SinglePulseWidthMSR Configures as initial count of GPTC
SingleGatedPulseGen Configures as the pulse initial count
SingleTrigPulseGen Configures as the pulse initial count
RetrigSinglePulseGen Configures as the pulse initial count
SingleTrigContPulseGen Configures as the pulse initial count
ContGatedPulseGen Configures as the pulse initial count
EdgeSeparationMSR Configures as initial count of GPTC
SingleTrigContPulseGenPWM Configures as the pulse initial count
ContGatedPulseGenPWM Configures as the pulse initial count
MultipleGatedPulseGen Configures as the pulse initial count

dwLReg_Val2 :The meaning for the value depends on the mode the timer /counter

performs.

USB-1901/USB-1902/USB-1903/USB-2401/USB-1210:
SimpleGatedEventCNT Not used
SinglePeriodMSR Not used
SinglePulseWidthMSR Not used
SingleGatedPulseGen Configures as the pulse length count
SingleTrigPulseGen Configures as the pulse length count
RetrigSinglePulseGen Configures as the pulse length count
SingleTrigContPulseGen Configures as the pulse length count
ContGatedPulseGen Configures as the pulse length count
EdgeSeparationMSR Not used
SingleTrigContPulseGenPWM Configures as the pulse length count
ContGatedPulseGenPWM Configures as the pulse length count
MultipleGatedPulseGen Configures as the pulse length count

82 e

PulseCount : The count of output-pulse. This parameter is required when
MultipleGatedPulseGen mode is selected.

@ Return Code

NoError: The function returns successfully.

ErrorinvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check
the ModuleNum parameter.

ErrorCardDisconnected: The module is disconnected. Please close the related
application and re-register the module again.

ErrorinvalidCounter: The invalid setting is assigned to GCtr parameter.
ErrorFuncNotSupport: The Al function is not supported.

ErrorinvalidPulseCount: The PulseCount is zero when MultipleGatedPulseGen mode
is selected.

ErrorinvalidCounterMode: GCtr1 and GCtr3 only support MultipleGatedPulseGen
mode; Invalid setting is assigned to Mode parameter.

ErrorConflictWithGPIOConfig: Incorrect GPIO configuration, please check the settings
in UD_DIO_Config().

ErrorCardDisconnected: Indicates the USB device was disconnected.

e 83

2.2.53 UD_GPTC_Control

@ Description
Controls for the selected counter/timer by software.

@ Modules Support
USB-1901/USB-1902/USB-1903/USB-2401/USB-2405/USB-1210

@ Syntax

Microsoft C/C++ and Borland C++
116 UD_GPTC_Control (U16 ModuleNum, U16 GCtr, U16 ParamID, U16 Value)

Visual Basic
UD_GPTC_Control (ByVal ModuleNum As Integer, ByVal GCtr As Integer, ByVal
ParamID As Integer, ByVal Value As Integer) As Integer

@ Parameter

ModuleNum : The card id of the card that want to perform this operation.

GCtr : The counter number.
USB-1901/USB-1902/USB-1903: 0 to 3
USB-2401/USB-2405: 0 to 1
USB-1210: 0 to 3

ParamiD : The ID of the internal parameter of the general purpose timer/counter
you want to control. Valid control parameters:
USB-1901/USB-1902/USB-1903/USB-2401/USB-1210:

INtGATE Internal gate
IntUpDnCTR Internal updown counter
INtENABLE Starts or stops counter operation
USB-2405:
INtENABLE Starts or stops counter operation
Value : The value for the control item specified by the ParamID parameter.

The valid value is 0 or 1.

@ Return Code

NoError: The function returns successfully.

ErrorinvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check
the ModuleNum parameter.

ErrorCardDisconnected: The module is disconnected. Please close the related
application and re-register the module again.

ErrorinvalidCounter: The invalid setting is assigned to GCtr parameter.
ErrorFuncNotSupport: The Al function is not supported.
ErrorConflictWithGPIOConfig: Incorrect GPIO configuration, please check the settings
in UD_DIO_1902_Config() / UD_DIO_2401_Config() / UD_DIO_2405_Config() /
UD_DIO_Config().

ErrorCardDisconnected: Indicates the USB device was disconnected.

84 e

2.254 UD_GPTC_Read

@ Description

Reads the counting-value of specified general-purpose timer/counter.

@ Cards Support
USB-1901/USB-1902/USB-1903/USB-2401/USB-1210

@ Syntax

Microsoft C/C++ and Borland C++
116 UD_GPTC_Read (U16 CardNumber, U16 GCtr, U32 *pValue)

Visual Basic
UD_GPTC_Read (ByVal CardNumber As Integer, ByVal GCtr As Integer, pValue As
Long) As Integer

@ Parameter

CardNumber : The card id of the card that want to perform this operation.
GCtr : The counter number.
USB-1901/USB-1902/USB-1903: 0 to 3
USB-2401: 0to 1
USB-1210: 0to 3
pValue : Returns the counter value of the specified general purpose
timer/counter.

@ Return Code

NoError: The function returns successfully.

ErrorinvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check
the ModuleNum parameter.

ErrorCardDisconnected: The module is disconnected. Please close the related
application and re-register the module again.

ErrorinvalidCounter: The invalid setting is assigned to GCtr parameter.
ErrorFuncNotSupport: The Al function is not supported.
ErrorConflictWithGPIOConfig: Incorrect GPIO configuration, please check the settings
in UD_DIO_1902_Config() / UD_DIO_2401_Config() / UD_DIO_Config().
ErrorCardDisconnected: Indicates the USB device was disconnected.

e 85

2.2.55 UD_GPTC_Status

@ Description
Gets the status of specified general-purpose timer/counter.

@ Cards Support
USB-1901/USB-1902/USB-1903/USB-2401/USB-1210

@ Syntax

Microsoft C/C++ and Borland C++
116 UD_GPTC_Status (U16 CardNumber, U16 GCtr, U16 *pValue)

Visual Basic
UD_GPTC_Status (ByVal CardNumber As Integer, ByVal GCir As Integer, pValue
As Integer) As Integer

@ Parameter

CardNumber : The card id of the card that want to perform this operation.
GCtr : The counter number.
USB-1901/USB-1902/USB-1903: 0 to 3
USB-2401: 0to 1
USB-1210: 0 to 3
pValue : Returns the latched GPTC status of the specified general-purpose
timer/counter from the GPTC status register. Value formats:
bit0 1 indicates that the GPTC is counting.
0 indicates that the GPTC is not counting.
bit1 1 indicates that the GPTC operation is done.
0 indicates that the GPTC operation is not yet done.

@ Return Code

NoError: The function returns successfully.

ErrorinvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check
the ModuleNum parameter.

ErrorCardDisconnected: The module is disconnected. Please close the related
application and re-register the module again.

ErrorinvalidCounter: The invalid setting is assigned to GCtr parameter.
ErrorFuncNotSupport: The Al function is not supported.
ErrorConflictWithGPIOConfig: Incorrect GPIO configuration, please check the settings
in UD_DIO_1902_Config() / UD_DIO_2401_Config() / UD_DIO_Config().
ErrorCardDisconnected: Indicates the USB device was disconnected.

86 e

2.256 UD_DIO_1902_Config

@ Description

The USBDAQ module provides the multiple function DIO to support GPIO (General
Purpose Input/Output), GPTC (General Purpose Timer Counter) and TC (Timer
Couner). These multi-function pins are divided into 2 groups, and configured with
wPart1Cfg and wPart2Cfg parameters.

@ Modules Support
USB-1901/USB-1902/USB-1903

@ Syntax

Microsoft C/C++ and Borland C++
116 UD_DIO_1902_Config (U16 ModuleNum, U16 wPart1Cfg, U16 wPart2Cfg)
Visual Basic

UD_DIO_1902_Config (ByVal CardNumber As Integer, ByVal wPart1Cfg As Integer,
ByVal wPart2Cfg As Integer) As Integer

@ Parameter

ModuleNum: The card id of the card that want to perform this operation.
wPartlCfg : The configuration for multiple-function group1 are:
USB-1901/USB-1902/USB-1903:
GPTCO_GPO1 : configure to GPTCO and GPO1
GPI0_3_GPOO0_1: configure to GPIO ~ GPI3 and GPO0 ~ GPO1
GPTCO_TC1: GPTCO and TC1 (TimerCouner1)
wPart2Cfg : The configuration for multiple-function group2 are:
USB-1901/USB-1902/USB-1903:
GPTC2_GPO3 : configure to GPTC2 and GPO3
GPI4_7_GPO2_3: configure to GPI4 ~ GP17 and GPO2 ~ GPO3
GPTC2_TC3: GPTC2 and TC3 (TimerCouner3)
@ Return Code
NoError: The function returns successfully.
ErrorinvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check
the ModuleNum parameter.
ErrorFuncNotSupport: The DIO function is not supported.
ErrorBadCardType: Indicates the module-type is not supported.
ErrorinvalidDioConfig: Invalid setting in either wPart1Cfg or wPart2Cfg.
ErrorCardDisconnected: Indicates the USB device was disconnected.

e 87

2.257 UD_DIO_2401_Config

@ Description

The USBDAQ module provides the multiple function DIO to support GPIO (General
Purpose Input/Output), GPTC (General Purpose Timer Counter) and TC (Timer
Couner).

@ Modules Support
USB-2401

@ Syntax

Microsoft C/C++ and Borland C++
116 UD_DIO_2401_Config (U16 ModuleNum, U16 wPart1Cfg)

Visual Basic

UD_DIO_2401_Config (ByVal CardNumber As Integer, ByVal wPart1Cfg As Integer)
As Integer

@ Parameter

ModuleNum: The card id of the card that want to perform this operation.

wPartlCfg : The configuration for multiple-function group1 are:
GPTCO_GPO1 : configure to GPTCO and GPO1
GPI0_3_GPOO0_1: configure to GPI0 ~ GPI3 and GPO0 ~ GPO1
GPTCO_TC1: GPTCO and TC1 (TimerCouner1)

@ Return Code

NoError: The function returns successfully.

ErrorinvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.

ErrorCardNotRegistered: The specific module had not been registered. Please check

the ModuleNum parameter.

ErrorFuncNotSupport: The DIO function is not supported.

ErrorBadCardType: Indicates the module-type is not supported.

ErrorinvalidDioConfig: Invalid setting in wPart1Cfg.

ErrorCardDisconnected: Indicates the USB device was disconnected.

88 e

2.258 UD_DIO_2405_Config

@ Description

The USB-2405 provides the multiple-function DIO to support GPIO (General Purpose
Input/Output), and GPTC (General Purpose Timer Counter). The DIO must be
configured before calling other GPIO/GPTC related functions.

@ Modules Support

USB-2405

@ Syntax

Microsoft C/C++ and Borland C++
116 UD_DIO_2405 Config (U16 ModuleNum, U16 wPart1Cfg, U16 wPart2Cfg)

Visual Basic

UD_DIO_2405_Config (ByVal CardNumber As Integer, ByVal wPart1Cfg As Integer,

ByVal wPart2Cfg As Integer) As Integer

@ Parameter

ModuleNum: The card id of the card that want to perform this operation.

wPartlCfg : The configuration for multiple-function port1 are:
P2405_DIGITAL_INPUT : configure to Digital-Input
P2405_COUNTER_INPUT: configure to Pulse-Input
P2405_DIGITAL_OUTPUT: configure to Digital-Output
P2405_PULSE_OUTPUT: configure to Pulse-Output

wPart2Cfg : The configuration for multiple-function port2 are:
P2405_DIGITAL_INPUT : configure to Digital-Input
P2405_COUNTER_INPUT: configure to Pulse-Input
P2405_DIGITAL_OUTPUT: configure to Digital-Output
P2405 PULSE_OUTPUT: configure to Pulse-Output

@ Return Code
NoError: The function returns successfully.
ErrorinvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check
the ModuleNum parameter.
ErrorFuncNotSupport: The DIO function is not supported.
ErrorBadCardType: Indicates the module-type is not supported.
ErrorinvalidDioConfig: Invalid setting in either wPart1Cfg or wPart2Cfg.
ErrorCardDisconnected: Indicates the USB device was disconnected.

e 389

2.259 UD_DIO_Config

@ Description

The UD-DASK devices provide the multiple-function DIO to support GPIO (General
Purpose Input/Output), and GPTC (General Purpose Timer Counter). The DIO ports
must be configured before calling other GPIO/GPTC related functions.

@ Modules Support
USB-1210

@ Syntax
Microsoft C/C++ and Borland C++

116 UD_DIO_Config (U16 ModuleNum, U16 wPortOCfg, U16 wPort1Cfg)
Visual Basic

UD_DIO_Config (ByVal CardNumber As Integer, ByVal wPortOCfg As Integer, ByVal
wPort1Cfg As Integer) As Integer

@ Parameter

ModuleNum: The card id of the card that want to perform this operation.

wPort0OCfg : The configuration for multiple-function port0. The valid settings are:
GPTCO_GPO1 : configure to GPTCO and GPO1
GPI0_3_GPOO0_1: configure to GPIO ~ GPI3 and GPO0 ~ GPO1
GPTCO_TC1: GPTCO and TC1 (TimerCouner1)

wPortlCfg : The configuration for multiple-function port1 The valid settings are:
GPTC2_GPO3 : configure to GPTC2 and GPO3
GPI4_7_GPO2_3: configure to GPI4 ~ GP17 and GPO2 ~ GPO3
GPTC2_TC3: GPTC2 and TC3 (TimerCouner3)

@ Return Code
NoError: The function returns successfully.
ErrorinvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.

ErrorCardNotRegistered: The specific module had not been registered. Please check
the ModuleNum parameter.

ErrorFuncNotSupport: The DIO function is not supported.

ErrorBadCardType: Indicates the module-type is not supported.
ErrorinvalidDioConfig: Invalid setting in either wPart1Cfg or wPart2Cfg.
ErrorCardDisconnected: Indicates the USB device was disconnected.

9N e

2.2.60 UD_DI_ReadLine

@ Description
Read the digital logic state of the specified DI port/line.

@ Modules Support
USB-1901/USB-1902/USB-1903/USB-7250/USB-7230/USB-2405/USB-1210

@ Syntax

Microsoft C/C++ and Borland C++
116 UD_DI_ReadLine (U16 ModuleNum, U16 Port, U16 Line, U16 *State)

Visual Basic

UD_DI_ReadLine (ByVal ModuleNum As Integer, ByVal Port As Integer, ByVal Line
As Integer, State As Integer) As Integer

@ Parameter

ModuleNum : The id of the module that want to perform this operation.

Port : Digital input port number. The valid value:
USB-1901/USB-1902/USB-1903/USB-2405/USB-1210: 0, 1
USB-7250/USB-7230: 0

Line: The digital line to be read. The valid value:
USB-1901/USB-1902/USB-1903/USB-1210: 0 through 3
USB-7250: 0 through 7
USB-7230: 0 through 15
USB-2405: 0

State : Returns the digital logic state, 0 or 1, of the specified line.

@ Return Code

NoError: The function returns successfully.

ErrorinvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check
the ModuleNum parameter.

ErrorFuncNotSupport: The DIO function is not supported.

ErrorinvalidDioLine: Invalid value is assigned to Line parameter.
ErrorConflictWithGPIOConfig: Incorrect GPIO configuration, please check the settings
in UD_DIO_1902_Config() / UD_DIO_2405_Config() / UD_DIO_Config().
ErrorCardDisconnected: Indicates the USB device was disconnected.

o901

2.2.61 UD_DI_ReadPort

@ Description
Read digital data from the specified digital input port.

@ Modules Support

USB-1901/USB-1902/USB-1903/USB-2401/USB-7250/USB-7230/USB-2405/USB-
1210

@ Syntax

Microsoft C/C++ and Borland C++
116 UD_DI_ReadPort (116 ModuleNum, U16 Port, U32 *Value)

Visual Basic
UD_DI_ReadPort (ByVal ModuleNum As Integer, ByVal Port As Integer, Value As
Long) As Integer

@ Parameter

ModuleNum : The id of the module that want to perform this operation.

Port : Digital input port number. The valid value:
USB-1901/USB-1902/USB-1903/USB-2405/USB-1210: 0, 1
USB-2401/USB-7250/USB-7230: 0

Value : Returns the digital data read from the specified port.
USB-1901/USB-1902/USB-1903/USB-2401/USB-1210: 4-bit data
USB-7250: 8-bit data
USB-7230: 16-bit data
USB-2405: 1-bit data

@ Return Code

NoError: The function returns successfully.

ErrorinvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check
the ModuleNum parameter.

ErrorFuncNotSupport: The DIO function is not supported.
ErrorConflictWithGPIOConfig: Incorrect GPIO configuration, please check the settings
in UD_DIO_1902_Config() / UD_DIO_2401_Config() / UD_DIO_2405_Config() /
UD_DIO_Config().

ErrorCardDisconnected: Indicates the USB device was disconnected.

92 e

2.2.62 UD_DO_ReadLine

@ Description
Read back the digital-input state from the specified DO port/line.

@ Modules Support

USB-1901/USB-1902/USB-1903/USB-2401/USB-7250/USB-7230/USB-2405/USB-
1210

@ Syntax

Microsoft C/C++ and Borland C++
116 UD_DO_ReadLine (U16 CardNumber, U16 Port, U16 Line, U16 *State)

Visual Basic
UD_DO_ReadLine (ByVal CardNumber As Integer, ByVal Port As Integer, ByVal
Line As Integer, State As Integer) As Integer

@ Parameter

ModuleNum : The id of the module that want to perform this operation.

Port : Digital output port number. The valid value:
USB-1901/USB-1902/USB-1903/USB-2405/USB-1210: 0, 1
USB-2401/USB-7250/USB-7230: 0

Line: The digital line to be accessed. The valid value:
USB-1901/USB-1902/USB-1903/USB-2401/USB-1210: 0 through 1
USB-7250: 0 through 7
USB-7230: 0 through 15
USB-2405: 0

State : Returns the digital logic state, 0 or 1, of the specified line.

@ Return Code

NoError: The function returns successfully.

ErrorinvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check
the ModuleNum parameter.

ErrorFuncNotSupport: The DIO function is not supported.

ErrorinvalidDioLine: Invalid value is assigned to Line parameter.
ErrorConflictWithGPIOConfig: Incorrect GPIO configuration, please check the settings
in UD_DIO_1902_Config() / UD_DIO_2401_Config() / UD_DIO_2405_Config() /
UD_DIO_Config().

ErrorCardDisconnected: Indicates the USB device was disconnected.

e 93

2.2.63 UD_DO_ReadPort

@ Description
Read back the output digital data from the specified digital output port.

@ Modules Support

USB-1901/USB-1902/USB-1903/USB-2401/USB-7250/USB-7230/USB-2405/USB-
1210

@ Syntax

Microsoft C/C++ and Borland C++
116 UD_DO_ReadPort (U16 ModuleNum, U16 Port, U32 *Value)

Visual Basic
UD_DO_ReadPort (ByVal ModuleNum As Integer, ByVal Port As Integer, Value As
Long) As Integer

@ Parameter

ModuleNum : The id of the module that want to perform this operation.

Port : Digital output port number. The valid value:
USB-1901/USB-1902/USB-1903/USB-2405/USB-1210: 0, 1
USB-2401/USB-7250/USB-7230: 0

Value : Returns the digital data read from the specified output port.
USB-1901/USB-1902/USB-1903/USB-2401/USB-1210: 2-bit data
USB-7250: 8-bit data
USB-7230: 16-bit data
USB-2405: 1-bit data

@ Return Code

NoError: The function returns successfully.

ErrorinvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check
the ModuleNum parameter.

ErrorFuncNotSupport: The DIO function is not supported.
ErrorConflictWithGPIOConfig: Incorrect GPIO configuration, please check the settings
in UD_DIO_1902_Config() / UD_DIO_2401_Config() / UD_DIO_2405_Config() /
UD_DIO_Config.

ErrorCardDisconnected: Indicates the USB device was disconnected.

94

2.2.64 UD_DO_WriteLine

@ Description

Sets the digital-output state to specified DO port/line. This function is only available for
these cards that support digital output read-back functionality.

@ Modules Support

USB-1901/USB-1902/USB-1903/USB-2401/USB-7250/USB-7230/USB-2405/USB-
1210

@ Syntax

Microsoft C/C++ and Borland C++
116 UD_DO_WriteLine (U16 ModuleNum, U16 Port, U16 Line, U16 State)
Visual Basic
UD_DO_WriteLine (ByVal ModuleNum As Integer, ByVal Port As Integer, ByVal
DoLine As Integer, ByVal State As Integer) As Integer

@ Parameter

ModuleNum : The id of the module that want to perform this operation.

Port : Digital output port number. The valid value:
USB-1901/USB-1902/USB-1903/USB-2405/USB-1210: 0, 1
USB-2401/USN-7250/USB-7230: 0

Line: The digital line to write to. The valid value:
USB-1901/USB-1902/USB-1903/USB-2401/USB-1210: 0 through 1
USB-7250: 0 through 7
USB-7230: 0 through 15
USB-2405: 0

State : The new digital logic state, 0 or 1.

@ Return Code

NoError: The function returns successfully.

ErrorinvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check
the ModuleNum parameter.

ErrorFuncNotSupport: The DIO function is not supported.

ErrorinvalidDioLine: Invalid value is assigned to Line parameter.
ErrorConflictWithGPIOConfig: Incorrect GPIO configuration, please check the settings
in UD_DIO_1902_Config() / UD_DIO_2401_Config() / UD_DIO_2405_Config() /
UD_DIO_Config().

ErrorCardDisconnected: Indicates the USB device was disconnected.

e 95

2.2.65 UD_DO_WritePort

@ Description
Writes digital data to the specified digital output port.

@ Modules Support

USB-1901/USB-1902/USB-1903/USB-2401/USB-7250/USB-7230/USB-2405/USB-
1210

@ Syntax

Microsoft C/C++ and Borland C++
116 UD_DO_WritePort (U16 ModuleNum, U16 Port, U32 Value)

Visual Basic
UD_DO_WritePort (ByVal ModuleNum As Integer, ByVal Port As Integer, ByVal
Value As Long) As Integer

@ Parameter

ModuleNum : The id of the module that want to perform this operation.

Port : Digital output port number. The cards that support this function and
their corresponding valid value are as follows:
USB-1901/USB-1902/USB-1903/USB-2405/USB-1210: 0, 1
USB-2401/USB-7250/USB-7230: 0

Value : Digital data that is written to the specified port.
USB-1901/USB-1902/USB-1903/USB-2401/USB-1210: 2-bit data
USB-7250: 8-bit data
USB-7230: 16-bit data
USB-2405: 1-bit data

@ Return Code

NoError: The function returns successfully.

ErrorinvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check
the ModuleNum parameter.

ErrorFuncNotSupport: The DIO function is not supported.
ErrorConflictWithGPIOConfig: Incorrect GPIO configuration, please check the settings
in UD_DIO_1902_Config() / UD_DIO_2401_Config() / UD_DIO_2405_Config() /
UD_DIO_Config().

ErrorCardDisconnected: Indicates the USB device was disconnected.

96 e

2.2.66 UD_DO_SetInitPattern

@ Description

Set the state of the initial. The initial pattern is sent to DO channel while power-on
initializes.

@ Modules Support

USB-7250/USB-7230

@ Syntax
Microsoft C/C++ and Borland C++

116 UD_DO_SetlInitPattern (U16 ModuleNum, U16 Port, U32 *Pattern)
Visual Basic

UD_DO_SetlInitPattern (ByVal ModuleNum As UShort, ByVal Port As UShort, ByRef
Pattern As Ulnteger) As Short

@ Parameter

ModuleNum : The id of the module that want to perform this operation.

Port : Digital output port number. The cards that support this function and
their corresponding valid value are as follows:
USB-2401/USB-7250/USB-7230: 0

Pattern : State of the set pattern..

USB-7250: 8-bit data
USB-7230: 16-bit data

@ Return Code

NoError: The function returns successfully.
ErrorinvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.

ErrorCardNotRegistered: The specific module had not been registered. Please check
the ModuleNum parameter.

ErrorFuncNotSupport: The DIO function is not supported.
ErrorCardDisconnected: Indicates the USB device was disconnected.

e 97

2.2.67 UD_DO_GetlInitPattern

@ Description
Obtains the state of the state set by SetInitPattern.

@ Modules Support
USB-7250/USB-7230

@ Syntax

Microsoft C/C++ and Borland C++
116 UD_DO_GetlnitPattern (U16 ModuleNum, U16 Port, U32 *Pattern)

Visual Basic

UD_DO_GetlnitPattern (ByVal ModuleNum As UShort, ByVal Port As UShort, ByRef
Pattern As Ulnteger) As Short

@ Parameter

ModuleNum : The id of the module that want to perform this operation.

Port : Digital output port number. The cards that support this function and
their corresponding valid value are as follows:
USB-2401/USB-7250/USB-7230: 0

Pattern : Returns the state set by SetlnitPattern function.

USB-7250: 8-bit data
USB-7230: 16-bit data

@ Return Code

NoError: The function returns successfully.

ErrorinvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check
the ModuleNum parameter.

ErrorFuncNotSupport: The DIO function is not supported.

ErrorCardDisconnected: Indicates the USB device was disconnected.

98 e

2.2.68 UD_DI_SetCOSlInterrupt32

@ Description

Enables or disables the COS (Change Of State) interrupt detection capability of the
specified port.

@ Modules Support
USB-7250/USB-7230

@ Syntax

Microsoft C/C++ and Borland C++
116 UD_DI_SetCOSinterrupt32 (U16 ModuleNum, U16 Port, U32 Ctrl, HANDLE
*hEvent, BOOLEAN ManualReset)

Visual Basic
UD_DI_SetCOSInterrupt32 (ByVal ModuleNum As UShort, ByVal Port As UShort,
ByVal Ctrl As Ulnteger, ByRef hEvent As IntPtr, ByVal ManualReset As
Boolean) As Short

@ Parameter

ModuleNum : The id of the module that want to perform this operation.

Port : Digital output port number. The cards that support this function and
their corresponding valid value are as follows:
USB-7250/USB-7230: 0

Ctrl : Each bit of the value of ctrl controls one DI channel. The '0' value of
the bit value disable the COS function of the corresponding line, and
the "1' value of the bit value enable the COS function of the
corresponding line. The valid values for ctrl are as follows:
USB-7250: 0 to OxFF
USB-7230: 0 to OxFFFF

hEvent : Returned COS interrupt event handle.

ManualReset : Specifies whether the event is (1) manual-reset by function
ResetEvent in user's application or (0) auto-reset by driver.

@ Return Code

NoError: The function returns successfully.

ErrorinvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check
the ModuleNum parameter.

ErrorFuncNotSupport: The DIO function is not supported.

ErrorCardDisconnected: Indicates the USB device was disconnected.

e 99

2.2.69 UD_DI_GetCOSLatchData32

@ Description

Gets the 32-bit width DI data latched in the COS Latch register while the Change-of-
State (COS) interrupt occurs.

@ Modules Support
USB-7250/USB-7230

@ Syntax

Microsoft C/C++ and Borland C++
116 DIO_GetCOSLatchData32 (U16 ModuleNum, U16 Port, U32 *CosLData)

Visual Basic
UD_DI_GetCOSLatchData32 (ByVal ModuleNum As UShort, ByVal Port As UShort,
ByRef CosLData As Ulnteger) As Short

@ Parameter

ModuleNum : The id of the module that want to perform this operation.

Port : Digital output port number. The cards that support this function and
their corresponding valid value are as follows:
USB-7250/USB-7230: 0

CosLData: Returns the DI data latched in the COS Latch register while the
Change-of-State(COS) interrupt occurs.

USB-7250: 8-bit data
USB-7230: 16-bit data

@ Return Code

NoError: The function returns successfully.

ErrorinvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check
the ModuleNum parameter.

ErrorFuncNotSupport: The DIO function is not supported.

ErrorCardDisconnected: Indicates the USB device was disconnected.

100

2.2.70 UD_DI_Control

@ Description

Set the filter enable state of the DI channel.

@ Modules Support
USB-7250/USB-7230

@ Syntax

Microsoft C/C++ and Borland C++
116 UD_DI_Control (U16 ModuleNum, U16 Port, U32 Ctrl)

Visual Basic

UD_DI_Control (ByVal ModuleNum As UShort, ByVal Port As UShort, ByVal Ctrl As
Ulnteger) As Short

@ Parameter

ModuleNum : The id of the module that want to perform this operation.

Port : Digital output port number. The cards that support this function and
their corresponding valid value are as follows:
USB-7250/USB-7230: 0

Ctrl : Each bit of the value of ctrl controls one DI channel. The '0' value of
the bit value disable the filter function of the corresponding line, and
the '1' value of the bit value enable the filter function of the
corresponding line. The valid values for ctrl are as follows:
USB-7250: 0 to OxFF
USB-7230: 0 to OxFFFF

@ Return Code

NoError: The function returns successfully.
ErrorinvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.

ErrorCardNotRegistered: The specific module had not been registered. Please check
the ModuleNum parameter.

ErrorFuncNotSupport: The DIO function is not supported.
ErrorCardDisconnected: Indicates the USB device was disconnected.

101

2.2.71 UD_DI_SetupMinPulseWidth

@ Description
Set the filter width of the DI channel.

@ Modules Support
USB-7250/USB-7230

@ Syntax

Microsoft C/C++ and Borland C++
116 UD_DI_SetupMinPulseWidth (U16 ModuleNum, U16 Value)

Visual Basic

UD_DI_SetupMinPulseWidth (ByVal ModuleNum As UShort, ByVal Value As UShort)
As Short

@ Parameter

ModuleNum : The id of the module that want to perform this operation.

Value : Multiples of the period of 48MHz as the DI filter width. The valid
values for value are as follows:
USB-7250/USB-7230: 1 to 65535

@ Return Code

NoError: The function returns successfully.

ErrorinvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check
the ModuleNum parameter.

ErrorFuncNotSupport: The DIO function is not supported.

ErrorCardDisconnected: Indicates the USB device was disconnected.

102

2.2.72 UD_CTR_ReadEdgeCounter

@ Description

Get the rising edge counter value of the Counter channel.

@ Modules Support
USB-7250/USB-7230/USB-2405

@ Syntax

Microsoft C/C++ and Borland C++
116 UD_CTR_ReadEdgeCounter (U16 ModuleNum, U16 Ctr, U32* Value)

Visual Basic

UD_CTR_ReadEdgeCounter (ByVal ModuleNum As UShort, ByVal Ctr as UShort,
ByRef Value As Ulnteger) As Short

@ Parameter

ModuleNum : The id of the module that want to perform this operation.

Ctr : Counter number. The cards that support this function and their
corresponding valid value are as follows:
USB-7250/USB-7230/USB-2405: 0, 1

Value : Value of the internal rising edge counter. The valid values for value
are as follows:

USB-7250/USB-7230/USB-2405: 32-bit data

@ Return Code

NoError: The function returns successfully.

ErrorinvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check
the ModuleNum parameter.

ErrorFuncNotSupport: The DIO function is not supported.

ErrorCardDisconnected: Indicates the USB device was disconnected.

¢ 103

2.2.73 UD_CTR_ReadFrequency

@ Description
Get the frequency counter value of the Counter channel.

@ Modules Support
USB-7250/USB-7230

@ Syntax

Microsoft C/C++ and Borland C++
116 UD_CTR_ReadFrequency (U16 ModuleNum, U16 Ctr, F64* Value)
Visual Basic

UD_CTR_SetupMinPulseWidth (ByVal ModuleNum As UShort, ByVal Ctr as UShort,
ByRef Value As Double) As Short

@ Parameter

ModuleNum : The id of the module that want to perform this operation.

Ctr : Counter number. The cards that support this function and their
corresponding valid value are as follows:
USB-7250/USB-7230: 0, 1

Value : Value of the internal frequency counter.

@ Return Code

NoError: The function returns successfully.

ErrorinvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check
the ModuleNum parameter.

ErrorFuncNotSupport: The DIO function is not supported.

ErrorCardDisconnected: Indicates the USB device was disconnected.

104 »

2.2.74 UD_CTR_Control

@ Description

Configures the selected counter to operate in the specified mode.

@ Modules Support
USB-7250/USB-7230/USB-2405

@ Syntax

Microsoft C/C++ and Borland C++
116 UD_CTR_Control (U16 ModuleNum, U16 Ctr, U32 Ctrl)

Visual Basic

UD_CTR_Control (ByVal ModuleNum As UShort, ByVal Ctr as UShort, ByVal Ctrl As

Uinteger) As Short

@ Parameter

ModuleNum :
Ctr:

Ctrl :

@ Return Code

The id of the module that want to perform this operation.
Counter number. The cards that support this function and their
corresponding valid value are as follows:
USB-7250/USB-7230/USB-2405: 0, 1
Bitwise or of the following enumerative values:
USB-7250/USB-7230:
UD_CTR Filter_Disable/UD_CTR_Filter_Enable
UD_CTR_Reset_Rising_Edge Counter
UD_CTR_Reset_Frequency_ Counter
UD_CTR_Polarity_Positive/UD_CTR_Polarity Negative
USB-2405:
UD_CTR_Reset_Rising_Edge Counter
UD_CTR_Polarity_Positive/UD_CTR_Polarity Negative

NoError: The function returns successfully.

ErrorinvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check
the ModuleNum parameter.

ErrorFuncNotSupport: The DIO function is not supported.

ErrorCardDisconnected: Indicates the USB device was disconnected.

* 105

2.2.75 UD_CTR_SetupMinPulseWidth

@ Description
Set the filter width of the Counter channel.

@ Modules Support
USB-7250/USB-7230

@ Syntax

Microsoft C/C++ and Borland C++
116 UD_CTR_SetupMinPulseWidth (U16 ModuleNum, U16 Ctr, U16 Value)
Visual Basic

UD_CTR_SetupMinPulseWidth (ByVal ModuleNum As UShort, ByVal Ctr as UShort,
ByVal Value As UShort) As Short

@ Parameter

ModuleNum : The id of the module that want to perform this operation.

Ctr : Counter number. The cards that support this function and their
corresponding valid value are as follows:
USB-7250/USB-7230: 0, 1

Value : Multiples of the period of 48MHz as the CTR filter width. The valid
values for value are as follows:
USB-7250/USB-7230: 1 to 65535

@ Return Code

NoError: The function returns successfully.

ErrorinvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check
the ModuleNum parameter.

ErrorFuncNotSupport: The DIO function is not supported.

ErrorCardDisconnected: Indicates the USB device was disconnected.

106

2.2.76 UD_Read_ColdJunc_Thermo

@ Description
Read the temperature for the thermocouple cold-junction compensation.

@ Modules Support
USB-2401

@ Syntax

Microsoft C/C++ and Borland C++
116 UD_Read_ColdJunc_Thermo (U16 ModuleNum, F64 *fValue)

Visual Basic

UD_Read_ColdJunc_Thermo (ByVal ModuleNum As UShort, ByRef fValue As
Double) As Short

@ Parameter

ModuleNum : The id of the module that want to perform this operation.
fValue : The memory that is stored the cold-junction temperature.

@ Return Code

NoError: The function returns successfully.
ErrorinvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.

ErrorCardNotRegistered: The specific module had not been registered. Please check

the ModuleNum parameter.

ErrorFuncNotSupport: The Cold-Junction sensor is not supported.
ErrorTimeoutFromSyncMode: The synchronous calibration-operation is time-out.
ErrorCardDisconnected: Indicates the USB device was disconnected.

® 107

2.2.77 UD_2405_Calibration

@ Description

Start the auto-calibration and update the settings into EEPROM. Please re-start the
USB module to activate the calibration settings.

@ Modules Support
USB-2405

@ Syntax

Microsoft C/C++ and Borland C++
116 UD_2405_Calibration (U16 ModuleNum)

Visual Basic
UD_2405_Calibration (ByVal ModuleNum As UShort) As Short

@ Parameter

ModuleNum : The id of the module that want to perform this operation.

@ Return Code

NoError: The function returns successfully.

ErrorinvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check
the ModuleNum parameter.

ErrorOpenEventFailed: Open event failed in device driver.

ErrorinvalidRefVoltage: Indicates the reference-voltage is invalid.
ErrorTimeoutFromSyncMode: The synchronous calibration-operation is time-out.
ErrorCardDisconnected: Indicates the USB device was disconnected.

108

2.2.78 UD_AI_Calibration

@ Description

Start the Al auto-calibration and program the calibration-settings into EEPROM.
Please re-start the USB module to activate the calibration settings.

@ Modules Support
USB-1210

@ Syntax

Microsoft C/C++ and Borland C++
116 UD_AI_Calibration (U16 ModuleNum, U32 dwReserved)

Visual Basic
UD_AI_Calibration (ByVal ModuleNum As Integer, By dwReserved As Long) As
Integer

@ Parameter

ModuleNum : The id of the module that want to perform this operation.
dwReserved: This parameter is reserved for future.

@ Return Code

NoError: The function returns successfully.

ErrorinvalidCardNumber: The ModuleNum is larger than MAX_USB_DEVICE.
ErrorCardNotRegistered: The specific module had not been registered. Please check
the ModuleNum parameter.

ErrorOpenEventFailed: Open event failed in device driver.

ErrorinvalidRefVoltage: Indicates the reference-voltage is invalid.
ErrorTimeoutFromSyncMode: The synchronous calibration-operation is time-out.
ErrorCardDisconnected: Indicates the USB device was disconnected.

* 109

2.2.79 UD_Register_Card

@ Description

Initializes the hardware and software states of a USBDAQ module, and then returns a
numeric card ID that corresponds to the card initialized. UD_Register_Card must be
called before any other USB-DASK library functions can be called for that card. The
function initializes the card and variables internal to USB-DASK library.

@ Modules Support

USB-1901/USB-1902/USB-1903/USB-2401/USB-7250/USB-7230/USB-2405/USB-
1210

@ Syntax

Microsoft C/C++ and Borland C++
116 UD_Register_Card (U16 ModuleType, U16 module_num)

Visual Basic
UD_Register_Card (ByVal ModuleType As Integer, ByVal module_num As Integer)
As Integer

@ Parameter

ModuleType : The type of USB module to be initialized. ADLink will periodically
upgrades USB-DASK to support new USB-DASK modules. Please
refer to Release Notes for the module types that are supported in the
latest USB-DASK. Following are the constants defined in UsbDask.h
that USBDASK supports currently or in the near future:

USB_1901
USB_1902
USB_1903
USB_2401
USB_7250
USB_7230
USB_2405
USB-1210

module_num : The sequence number of the card with the same
module type (as defined in argument ModuleType). The sequence
number setting is according to the onboard DIP-switch.

@ Return Code

This function returns a numeric id for the module initialized. The range of module id is
between 0 and (MAX_USB_DEVICE-1). If there is any error occurs, it will return
negative error code, the possible error codes are listed below:
ErrorTooManyRegisteredCards : more than MAX_USB_DEVICE tasks register
USBDASK devices.

ErrorUnknownCardType : Invalid Module-Type is assigned to ModuleType parameter.
ErrorOpenDriverFailed : Failed to open the device-node, please call GetLastError() for
detailed system error.

ErrorConfigloctl : Failed to get module description from device driver, please call
GetlLastError() for detailed system error.

ErrorOpenEvtloctl : Failed to bind the event objects, please call GetLastError() for
detailed system error.

110 »

2.2.80 UD_Release Card

@ Description

There are at most MAX_USB_DEVICE modules that can be registered simultaneously.
This function is called to release the registered module. Also by the end of a program,

you need to use this function to release all cards that were registered.
@ Modules Support

USB-1901/USB-1902/USB-1903/USB-2401/USB-7250/USB-7230/USB-2405/USB-
1210

@ Syntax

Microsoft C/C++ and Borland C++
116 Release_Card (U16 CardNumber)
Visual Basic
Release Card (ByVal CardNumber As Integer) As Integer
@ Parameter

CardNumber : The module id that want to be released.
@ Return Code
NoError: The function returns successfully.

ErrorinvalidCardNumber : The CardNumber is larger than MAX_USB_DEVICE.

ErrorMemUMapSetloctl : Failed to Unmap the memory, please call GetLastError() for
detailed system error.

o111

2.2.81 UD_Device_Scan

@ Description

This function checks all active USB-DAQ devices in your system. The pModuleNum
saves the numbers of active USB-DAQ devices.

@ Modules Support

USB-1901/USB-1902/USB-1903/USB-2401/USB-7250/USB-7230/USB-2405/USB-
1210

@ Syntax
Microsoft C/C++ and Borland C++
116 UD_Device_Scan(U16* pModuleNum, USBDAQ_DEVICE AvailModules][])

@ Parameter

pModuleNum: The pointer to the memory that stores the numbers of active USB-
DAQ devices.
AvailableModule: The user-provided USBDAQ_DEVICE array that is save the

available USBDAQ modules. The USBDAQ_DEVICE data structure is
defined in UsbDask.h.
typedef struct

{
USHORTwModuleType;

USHORTwCardID;
} USBDAQ_DEVICE, *PUSBDAQ_DEVICE

@ Return Code

NoError: The function returns successfully.
ErrorNoModuleFound: There is no active device available in your system.

112«

Associated Functions

The associated library, UsbThermo.dll, provides the functions to convert the
thermoelectric-voltage to temperature. Plesae refer to the header file, UsbThermo.h,
and the related library.

ADC to_Thermo

@ Description
This function converts the voltage to temperature

@ Syntax

Microsoft C/C++ and Borland C++
116 ADC_to_Thermo(unsigned short wThermoType, double fScaleADC, double
fColdJuncTemp, double* fTemp)

@ Parameter

wThermoType:The thermo-type, the valid types are:
THERMO_B_TYPE,
THERMO_C_TYPE,
THERMO_E_TYPE,
THERMO_K_TYPE,
THERMO_R_TYPE,
THERMO_S_TYPE,
THERMO_T_TYPE,
THERMO_J_TYPE,
THERMO_N_TYPE
RTD_RT100.

fScaleADC: The thermoelectric voltage.

fColdJuncTemp: The temperature for the thermocouple cold-junction compensation.

fTemp: The memory to store the converted temperature.

pfTemp

@ Return Code

NoThermoError: The function returns successfully.

ErrorinvalidThermoType: The thermo-type is not supported.
ErrorOutThermoTange: The thermoelectric-voltage is out of range of the reference-
table.

ErrorThernoTable: No suitable entry can be found in the reference table,

113

Appendix A Status Codes

This appendix lists the status codes returned by UD-DASK, including the name and
description.

Each UD-DASK function returns a status code that indicates whether the function was
performed successfully. When a UD-DASK function returns a negative number, it

means that an error occurred while executing the function.

Status Status Name Description
Code

0 NoError No error occurred

-1 ErrorUnknownCardType The CardType argument is not valid

-2 ErrorinvalidCardNumber The CardNumber argument is out of
range (larger than 31).

-3 ErrorTooManyCardRegistered | There have been 32 cards that were
registered.

-4 ErrorCardNotRegistered No card registered as id
CardNumber.

-5 ErrorFuncNotSupport The function called is not supported
by this type of card..

-6 ErrorinvalidloChannel The specified Channel or Port
argument is out of range..

-7 ErrorinvalidAdRange The specified analog input range is
invalid.

-8 ErrorContloNotAllowed The specified continuous 10
operation is not supported by this
type of card.

-9 ErrorDiffRangeNotSupport All the analog input ranges must be
the same for multi-channel analog
input.

-10 ErrorLastChannelNotZero The channels for multi-channel
analog input must be ended with or
started from zero.

-11 ErrorChannelNotDescending The channels for multi-channel
analog input must be contiguous and
in descending order.

-12 ErrorChannelNotAscending The channels for multi-channel
analog input must be contiguous and
in ascending order.

-13 ErrorOpenDriverFailed Failed to open the device driver.

-14 ErrorOpenEventFailed Open event failed in device driver.

-15 ErrorTransferCountTooLarge The size of transfer is larger than the
size of Initially allocated memory in
driver.

-16 ErrorNotDoubleBufferMode Double buffer mode is disabled.

-17 ErrorinvalidSampleRate The specified sampling rate is out of
range.

-18 ErrorinvalidCounterMode The value of the Mode argument is
invalid.

-19 ErrorinvalidCounter The value of the Ctr argument is out
of range.

-20 ErrorinvalidCounterState The value of the State argument is

114 »

out of range.

-21 ErrorinvalidBinBcdParam The value of the BinBcd argument is
invalid.

-22 ErrorBadCardType The value of Card Type argument is
invalid

-23 ErrorinvalidDaRefVoltage The value of DA reference voltage
argument is invalid

-24 ErrorAdTimeOut Time out for AD operation

-25 ErrorNoAsyncAl Continuous Analog Input is not set
as Asynchronous mode

-26 ErrorNoAsyncAO Continuous Analog Output is not set
as Asynchronous mode

-27 ErrorNoAsyncDI Continuous Digital Input is not set as
Asynchronous mode

-28 ErrorNoAsyncDO Continuous Digital Output is not set
as Asynchronous mode

-29 ErrorNotInputPort The value of Al/DI port argument is
invalid

-30 ErrorNotOutputPort The value of AO/DO argument is
invalid

-31 ErrorinvalidDioPort The value of DI/O port argument is
invalid

-32 ErrorinvalidDioLine The value of DI/O line argument is
invalid

-33 ErrorContloActive Continuous 10 operation is not
active

.34 ErrorDbIBufModeNotAllowed | Double Buffer mode is not allowed

-35 ErrorConfigFailed The specified function configuration
is failed

-36 ErrorinvalidPortDirection The value of DIO port direction
argument is invalid

-37 ErrorBeginThreadError Failed to create thread

-38 ErrorinvalidPortWidth The port width setting is not allowed

-39 ErrorinvalidCtrSource The clock source setting is invalid

-40 ErrorOpenFile Failed to Open file

-41 ErrorAllocateMemory The memory allocation is failed

-42 ErrorDaVoltageOutOfRange The value of DA voltage argument is
out of range

-50 ErrorinvalidCounterValue The value of count for a counter is
invalid.

-60 ErrorinvalidEventHandle The event handle is invalid.

-61 ErrorNoMessageAvailable No event message can be added.

-62 ErrorEventMessgaeNotAdded The specified event message does
not exist.

-63 ErrorCalibrationTimeOut Auto-calibration has timed-out.

-64 ErrorUndefinedParameter Parameter(s) is not defined.

-65 ErrorinvalidBufferID Buffer ID is invalid.

-66 ErrorinvalidSampledClock The set sampled clock is invalid.

-67 ErrorinvalisOperationMode The set operation mode is invalid.

-201 | ErrorConfigloctl The configuration API failed.

-202 | ErrorAsyncSetloctl The async. mode API failed.

-203 | ErrorDBSetloctl The double-buffer setting API failed.

-204 | ErrorDBHalfReadyloctl The half-ready API failed.

-205 | ErrorContOPloctl The continuous data acquisition API
failed.

-206 | ErrorContStatusloctl continuous data acquisition status

API setting failed.

e 115

-207

ErrorP1Oloctl

The polling data API failed.

-208 | ErrorDIntSetloctl The dual-interrupt setting API failed.

-209 | ErrorWaitEvtloctl The wait event API failed.

-210 | ErrorOpenEvtloctl The open event API failed.

-211 | ErrorCOSIntSetloctl The COS interrupt setting AP failed.

-212 | ErrorMemMaploctl The memory mapping API failed.

-213 | ErrorMemUMapSetloctl The memory unmapping API failed.

-214 | ErrorCTRIoctl The counter API failed.

-215 | ErrorGetResloctl The resource getting AP failed.

-216 | ErrorCalloctl The calibration API failed.

-301 | ErrorAccessViolationDataCopy | Indicates the system exception is
occurred while memory-copying.

-302 | ErrorNoModuleFound There is no active device
available in your system.

-303 | ErrorCardIDDuplicated Indicates the same ID is
configured in multiple modules.

-304 | ErrorCardDisconnected Indicates the USB device was
disconnected.

-305 | ErrorinvalidScannedindex <The relative function had been
removed. reserved for future
use.>

-306 | ErrorUndefinedException Indicates the undefined
exception is caught, usually
returned in beta version.

-307 | ErrorlnvalidDioConfig Invalid setting in DIO
configuration.

-308 | ErrorinvalidAOCfgCtrl The invalid settings in AO
Control Configuration.

-309 | ErrorinvalidAOTrigCtrl The invalid settings in AO
Trigger Configuration.

-310 | ErrorConflictWithSyncMode The synchronous AlI/AO
operation is conflict with this
function.

-311 | ErrorConflictWithFifoMode <The relative function had been
removed, reserved for future
use.>

-312 | ErrorinvalidAOIteration The lteration is zero with finite
operation.

-313 | ErrorZeroChannelNumber The number of channel is zero.

-314 | ErrorSystemCallFailed Failed to forward the command
to driver, please call
GetlLastError() for detailed
system-error.

-315 | ErrorTimeoutFromSyncMode | The synchronous Al / AO
operation is time-out.

-316 | ErrorinvalidPulseCount The Pulse-Connt is zero when
MultipleGatedPulseGen mode is
selected

-317 | ErrorinvalidDelayCount The delay-count is less than 1,
or less than 320 if the trigger-
source is configured as
P1902_AI_TRGSRC_AIO ~
P1902_Al_TRGSRC_Al15.

-318 | ErrorConflictWithDelay2 The P1902_AO_EnDelay2 in
UD_AO_1902_Config() needs at
least 2 iterations.

-319 | ErrorAOFifoCountTooLarge The Write-Count is larger than
onboard FIFO size.

-320 | ErrorConflictWithWaveRepeat | <The relative function had been

116 e

removed, reserved for future
use.>

-321

ErrorConflictWithReTrig

The re-trigger is manual-
exclusive to repeating D/A
operation.

-322

ErrorinvalidTriggerChannel

The analog-trigger is not the first
channel in Channel-Gain-Queue.
Please make sure the trigger
channel is identical to the
Channel parameter.

-323

ErrorinvalidinputSignal

Indicates the invalid input-signal
is assigned.

-324

ErrorinvalidConversionSrc

<The relative function had been
removed, reserved for future
use.>

-325

ErrorinvalidRefVoltage

The measured voltage is invalid
for the specification calibration
operation. (this error only for the
calibration related functions, now
no auto-calibration function is
added.)

-326

ErrorCalibrateFailed

Calibration failed. (this error only
for the calibration related
functions, now no auto-
calibration function is added.)

-327

ErrorinvalidCalData

The input calibration data is
invalid. (this error only for the
calibration related functions, now
no auto-calibration function is
added.)

-328

ErrorChanGainQueueTooLarge

The numChans is too large.

-329

ErrorinvalidCardType

Indicates the module-type is
invalid.

-397

ErrorinvalidChannel

<Now is used by the beta
function,
UD_AI_Moving_Average32().>
In UD_AI_Moving_Average32(),
indicates the target-channel is
larger than total-channels.

-398

ErrorNullPoint

<Now is used by the beta
function,
UD_AIl_Moving_Average32().>
In UD_AI_Moving_Average32(),
indicates either SrcBuf or
DesBufis NULL.

-399

ErrorInvalidParamSetting

Indicates some parameters are
invalid. This error has different
definition in functions.

-401

ErrorAlStartFailed

Indicates the Al acquisition had
been started, but the relevant
status cannot be read from
FPGA. (this error ought not to be
returned)

-402

ErrorAOStartFailed

Indicates the AO acquisition had
been started, but the relevant
status cannot be read from
FPGA. (this error ought not to be
returned)

-403

ErrorConflictWithGP10Config

Incorrect GPIO configuration,
please check the settings in

117

UD_DIO_1902_Config() /
UD_DIO_2401_Config().

-404

ErrorEepromReadback

Indicates the failure in
Calibration data/information
writing (this error only for the
calibration related functions, now
no auto-calibration function is
added.)

-405

ErrorConflictWithInfiniteOp

The infinite Al operation is only
supported by double-buffered
acquisition.

-406

ErrorWaitingUSBHostResponse

This error is usually caused by
trigger-enabled Al/AO operation.
Call
UD_AIl_AsyncClear()/UD_AO_A
syncClear() to disable the
waiting state.

-407

ErrorAOFifoModeTimeout

The D/A data transmission
timeout with FIFO mode.

-408

ErrorinvalidModuleFunction

Indicate the specific function is
not supported by this module.

-409

ErrorAdFifoFull

Indicates the occurrence of FIFO
overrun.

-410

ErrorinvalidTransferCount

The ReadCount is not multiple of
256/512 (for USB-190x),
128/256 (for USB-2401).

-411

ErrorConflictWithAlConfig

The AdRange is conflict with the
some specific input-type.

-412

ErrorDDSConfigFailed

The DDS configuration failed (for
us

-413

ErrorFpgaAccessFailed

Failed to access FPGA

-414

ErrorPLDBusy

PLD is busy

-415

ErrorPLDTimeout

PLD access timeout

-420

ErrorUndefinedKernelError

The error returned from kernel is
undefined (this error ought not to
be returned, usually caused by
incompatible error-definitions
between driver and library)

-501

ErrorSyncModeNotSupport

Synchronization operation is not
supported yet. (usually returned
in beta verion)

-601

ErrorinvalidThermoType

Thermo type is not supported.

-602

ErrorOutThermoRange

Voltage out of thermo table
range

-603

ErrorThermoTable

Error inside the thermo table

118 e

Appendix B Al Range Codes

The Analog Input Range of NuDAQ PCl-bus Cards

AD B 10 V Bipolar -10V to +10V

AD B 5V Bipolar -5V to +5V

AD B 25V Bipolar -2.5V to +2.5V

AD B 1 25V Bipolar -1.25V to +1.25V
AD B 0 625 V Bipolar -0.625V to +0.625V
AD B 0 3125 V Bipolar -0.3125V to +0.3125V
AD B 05V Bipolar -0.5V to +0.5V

AD B 0 05 V Bipolar -0.05V to +0.05V
AD B 0 005 V Bipolar -0.005V to +0.005V
AD B 1V Bipolar -1V to +1V

AD B 01V Bipolar -0.1V to +0.1V

AD B 0 01 V Bipolar -0.01V to +0.01V
AD B 0 001 V Bipolar -0.01V to +0.001V
AD U 20 V Unipolar 0 to +20V

AD U 10V Unipolar 0 to +10V

AD U 5V Unipolar 0 to +5V

AD U225V Unipolar 0 to +2.5V

AD U 125V Unipolar 0 to +1.25V

AD U 1V Unipolar 0 to +1V

AD U0 1V Unipolar 0 to +0.1V

AD U 0 01V Unipolar 0 to +0.01V

AD U 0 001 V Unipolar 0 to +0.001V

AD B 2 V Bipolar -2V to +2V

AD B 0 25 V Bipolar -0.25V to +0.25V
AD B 02V Bipolar -0.2V to +0.2V

AD U 4V Unipolar 0 to +4V

AD U 2V Unipolar 0 to +2V

AD UOQ5YV Unipolar 0 to +0.5V

AD U044V Unipolar 0 to +0.4V

AD B 15V Bipolar -1.5V to +1.5V
AD B 0 2125 V Bipolar -0.2125V to +0.2125V
AD B 40 V Bipolar -40V to +40V

AD B 3 16 V Bipolar -3.16V to +3.16V
AD B 0 316 V Bipolar -0.316V to +0.316V
AD B 25 V Bipolar -25V to +25V

AD B 12 5V Bipolar -12.5V to +12.5V

Valid values for each card:

USB-1901

USB-1902

USB-1903

USB-2401

USB-2405
USB-1210

AD_B_10_V,
AD B 0 2

A
_V,
AD_B_10_V,AD_B 2 V,AD_B_1_V,
AD_B_0_2_V,

‘AD_B_10_V

I\)U‘I

AD_B_10_V
AD_B_10_V,AD B_2 V

D B 2 V,AD B 1V,

o119

Appendix C Al DATA FORMAT

This appendix lists the Al data format for the cards performing analog input operation,
as well as the calculation methods to retrieve the A/D converted data and the channel
where the data read from.

Card Type Data Format Al type Value calculation
* channel no. (CH#)
* A/D converted data (ND)
* Value returned from Al
function (OD)
UBS-1901 Every 16-bit signed integer data: One-Shot Al ND = OD
D15 D14 ... D1 DO Continuous Al |
where D15, D14, ..., DO : A/D converted data
UBS-1902 | Every 16-bit signed integer data: One-Shot Al ND = OD
D15 D14 ... D1 DO Continuous Al |
where D15, D14, ..., DO : A/D converted data
UBS-1903 | Every 16-bit signed integer data: One-Shot Al ND = OD
D15 D14 ... D1 DO Continuous Al |
where D15, D14, ..., DO : A/D converted data
UBS-2401 Every 24-bit signed long data: One-Shot Al ND = OD
D23 D22 ... D1 DO Continuous Al |
where D23, D22, ..., DO : A/D converted data
USB-2405 | Every 24-bit signed long data: One-Shot Al ND = OD
D23 D22 ... D1 DO Continuous Al |
where D23, D22, ..., DO : A/D converted data
USB-1210 | Every 16-bit signed integer data: One-Shot Al ND = OD
D15 D14 ... D1 DO Continuous Al |
where D15, D14, ..., DO : A/D converted data

120

Appendix D DATA File FORMAT

This appendix describes the file format of the data files generated by the functions
performing continuous data acquisition followed by storing the data to disk.

The data file includes three parts, Header, ChannelRange (optional) and Data block.

The file structure is as the figure below:

Header

ChannelRange (Optional)

DAQ data

Header

The header part records the information related to the stored data and its total length is

60 bytes. The data structure of the file header is as follows:

Header Total Length: 60 bytes
Elements Type Size Comments
(bytes)
ID char 10 |file ID
ex. ADLinkDAQ1
card_type short 2 card Type

ex. USB_ 1901, USB_1902

num_of_channel short 2 number of scanned channels
ex.1,2

channel_no unsigned 1 channel number where the data read
char from (only available as the

num_of_channel is 1)
ex.0,1

num_of scan long 4 the number of scan for each channel
(total count / num_of_channel)

data_width short 2 the data width

0: 8 bits, 1: 16 bits, 2: 32 bits

channel_order short 2 the channel scanned sequence
0: normal (ex. 0-1-2-3)
1: reverse (ex. 3-2-1-0)
2: custom* (ex. 0, 1, 3)

ad_range short 2 the Al range code

Please refer to Appexdix B

o121

ex. 0 (AD_B_5V)

scan_rate double 8 The scanning rate of each channel

(total sampling rate / num_of_channel)

num_of channel_range| short 2 The number of ChannelRange* structure

start_date char 8 The starting date of data acquisition
ex. 12/31/99

start_time char 8 The starting time of data acquisition
ex. 18:30:25
start_millisec char 3 The starting millisecond of data
acquisition
ex. 360
reserved char 6 not used

* If the num_of_channel_range is 0, the ChannelRange block won’t be included in the
data file.

* The channel_order is set to “custom” only when the card supports variant channel
scanning order.

ChannelRange

The ChannelRange part records the channel number and data range information
related to the stored data. This part consists of several channel & range units. The
length of each unit is 2 bytes. The total length depends on the value of
num_of_channel_range (one element of the file header) and is calculated as the
following formula:

Total Length = 2 * num_of_channel_range bytes

The data structure of each ChannelRange unit is as follows:

ChannelRange Unit
Length: 2 bytes

Elements Type Size Comments
(bytes)
channel char 1 scanned channel number
ex.0,1
range char 1 the Al range code of channel
Please refer to Appexdix B
ex. 0 (AD_B_5V)

Data Block

The last part is the data block. The data is written to file in 16-bit binary format, with the
lower byte first (little endian). For example, the value 0x1234 is written to disk with 34
first followed by 12. The total length of the data block depends on the data width and
the total data count.

The file is written in Binary format and can’t be read in normal text editor. You can use
any binary file editor to view it or the functions used for reading files, e.g. fread, to get

122 o

the file information and data value.

Appendix E Function Support

This appendix shows which data acquisition hardware each UD-DASK function supports.

Function

RPoORr—mWwC

NOOFrRr—mwmwC

WwoOVr—wWwwC

RFOoORNT TWC

CUNN"TImW!WC

cCwN~NTmWWC

qoORN—T TV C

OFRrNFP—TITmWC

UD_AI_1902_Config

UD_AI_2401_Config

UD_AI_2401_PollConfig

UD_AI_2405_Chan_Config

UD_AI_2405_Trig_Cofnig

UD_AI_Channel_Config

UD_AI_Trigger_Cofnig

UD_AI_1902_CounterInterval

UD_AI_DDS_ActualRate_Get

UD_AI_AsyncCheck

UD_AI_AsyncClear

UD_AI_AsyncDblBufferHalfReady

UD_AI_AsyncDblBufferMode

UD_AI_AsyncDblBufferTransfer

UD_AI_AsyncDblBufferTransfer32

UD_AI_AsyncDblBufferOverrun

UD_AI_AsyncDblBufferHandled

UD_AI_AsyncDblBufferToFile

UD_AI_AsyncReTrigNextReady

UD_AI_ContReadChannel

UD_AI_ContReadMultiChannels

UD_AI_ContReadChannelToFile

UD_AI_ContReadMultiChannelsToFile

UD_AI_VoltScale

UD_AI_VoltScale32

UD_AI_ContVScale

UD_AI_ContVScale32

UD_AI_2401_Scale32

UD_AI_2401_ContVScale32

UD_AI_InitialMemoryAllocated

UD_AI_ReadChannel

UD_AI_VReadChannel

UD_AI_ReadMultiChannels

UD_AI_SetTimeOut

UD_AI_EventCallBack

UD_AI_Moving_Average32

UD_AO_1902_Config

® 123

Function

RroORr—mWwC

NOOFrRr—mwC

WwoOwor—wwC

mPOBRNT TWC

CONNTImmW!WC

CwWNNTTmWC

gJOoORNT mW®WC

OFRLrNFPTImWC

UD_AO_VWriteChannel

UD_AO_WriteChannel

UD_AO_AsyncCheck

UD_AO_AsyncClear

UD_AO_AsyncDblBufferHalfReady

UD_AO_AsyncDblBufferMode

UD_AO_ContBufferCompose

UD_AO_AsyncDblBufferTransfer

UD_AO_SetTimeOut

UD_AO_ContWriteChannel

UD_AO_ContWriteMultiChannels

UD_AO_InitialMemoryAllocated

UD_GPTC_Clear

UD_GPTC_Control

UD_GPTC_Setup

UD_GPTC_Setup_N

UD_GPTC_Read

UD_GPTC_Status

UD_CTR_ReadEdgeCounter

UD_CTR_ReadRequency

UD_CTR_Control

UD_CTR_SetMinPulseWidth

UD_DIO_1902_Config

UD_DIO_2401_Config

UD_DIO_2405_Config

UD_DIO_Config

UD_DI_ReadLine

UD_DI_ReadPort

UD_DI_SetCOSiInterrupt32

UD_DI_GetCOSLatchData32

UD_DI_Control

UD_DI_SetMinPulseWidth

UD_DO_ReadLine

UD_DO_ReadPort

UD_DO_WriteLine

UD_DO_WritePort

UD_DO_SetlnitPattern

UD_DO_GetlnitPattern

UD_2405_Calibration

UD_AI_Calibration

UD_Read_ColdJunc_Thermo

UD_Device_Scan

UD_Register_Card

UD_Release_Card

124

	Manual Rev 1.6.2: August 28, 2015
	How to Use This Manual
	Using UD-DASK Functions
	1.1 The Fundamentals of Building Windows XP/7 Application wi
	1.1.1 Creating a Windows XP/7 USB-DASK Application Using Mic
	1.1.2 Creating a Windows XP/7 UD-DASK Application Using Micr

	UD-DASK Functions Overview

	Function Description
	2.1 Data Types
	2.2 Function Reference
	2.2.1 UD_AI_1902_Config
	2.2.2 UD_AI_2401_Config
	2.2.3 UD_AI_2401_PollConfig
	2.2.4 UD_AI_2405_Chan_Config
	2.2.5 UD_AI_2405_Trig_Config
	2.2.6 UD_AI_Channel_Config
	2.2.7 UD_AI_Trigger_Config
	2.2.8 UD_AI_AsyncCheck
	2.2.9 UD_AI_AsyncClear
	2.2.10 UD_AI_AsyncDblBufferHalfReady
	2.2.11 UD_AI_AsyncDblBufferMode
	2.2.12 UD_AI_AsyncDblBufferTransfer
	2.2.13 UD_AI_AsyncDblBufferTransfer32
	2.2.14 UD_AI_AsyncDblBufferOverrun
	2.2.15 UD_AI_AsyncDblBufferHandled
	2.2.16 UD_AI_AsyncDblBufferToFile
	2.2.17 UD_AI_AsyncReTrigNextReady
	2.2.18 UD_AI_ContReadChannel
	2.2.19 UD_AI_ContReadChannelToFile
	2.2.20 UD_AI_ContReadMultiChannels
	2.2.21 UD_AI_ContReadMultiChannelsToFile
	2.2.22 UD_AI_VoltScale
	2.2.23 UD_AI_VoltScale32
	2.2.24 UD_AI_2401_Scale32
	2.2.25 UD_AI_ContVScale
	2.2.26 UD_AI_ContVScale32
	2.2.27 UD_AI_2401_ContVScale32
	2.2.28 UD_AI_InitialMemoryAllocated
	2.2.29 UD_AI_ReadChannel
	2.2.30 UD_AI_1902_CounterInterval
	2.2.31 UD_AI_DDS_ActualRate_Get
	2.2.32 UD_AI_SetTimeOut
	2.2.33 UD_AI_ReadMultiChannels
	2.2.34 UD_AI_VReadChannel
	2.2.35 UD_AI_Moving_Average32
	2.2.36 UD_AI_EventCallBack (Win32 Only)
	2.2.37 UD_AO_1902_Config
	2.2.38 UD_AO_VWriteChannel
	2.2.39 UD_AO_WriteChannel
	2.2.40 UD_AO_AsyncCheck
	2.2.41 UD_AO_AsyncClear
	2.2.42 UD_AO_AsyncDblBufferHalfReady
	2.2.43 UD_AO_AsyncDblBufferMode
	2.2.44 UD_AO_ContBufferCompose
	2.2.45 UD_AO_AsyncDblBufferTransfer
	2.2.46 UD_AO_SetTimeOut
	2.2.47 UD_AO_ContWriteChannel
	2.2.48 UD_AO_ContWriteMultiChannels
	2.2.49 UD_AO_InitialMemoryAllocated
	2.2.50 UD_GPTC_Clear
	2.2.51 UD_GPTC_Setup
	2.2.52 UD_GPTC_Setup_N
	2.2.53 UD_GPTC_Control
	2.2.54 UD_GPTC_Read
	2.2.55 UD_GPTC_Status
	2.2.56 UD_DIO_1902_Config
	2.2.57 UD_DIO_2401_Config
	2.2.58 UD_DIO_2405_Config
	2.2.59 UD_DIO_Config
	2.2.60 UD_DI_ReadLine
	2.2.61 UD_DI_ReadPort
	2.2.62 UD_DO_ReadLine
	2.2.63 UD_DO_ReadPort
	2.2.64 UD_DO_WriteLine
	2.2.65 UD_DO_WritePort
	2.2.66 UD_DO_SetInitPattern
	2.2.67 UD_DO_GetInitPattern
	2.2.68 UD_DI_SetCOSInterrupt32
	2.2.69 UD_DI_GetCOSLatchData32
	2.2.70 UD_DI_Control
	2.2.71 UD_DI_SetupMinPulseWidth
	2.2.72 UD_CTR_ReadEdgeCounter
	2.2.73 UD_CTR_ReadFrequency
	2.2.74 UD_CTR_Control
	2.2.75 UD_CTR_SetupMinPulseWidth
	2.2.76 UD_Read_ColdJunc_Thermo
	2.2.77 UD_2405_Calibration
	2.2.78 UD_AI_Calibration
	2.2.79 UD_Register_Card
	2.2.80 UD_Release_Card
	2.2.81 UD_Device_Scan

	Associated Functions
	ADC_to_Thermo

	Appendix A Status Codes
	Appendix B AI Range Codes
	Appendix C AI DATA FORMAT
	Appendix D DATA File FORMAT
	Appendix E Function Support

