char is 8 bits, int is 16 bits, long is 32 bits, long long is 64 bits, float and double are 32 bits (this is the only supported floating point format), pointers are 16 bits (function pointers are word addresses, to allow addressing up to 128K program memory space). There is a -mint8 option (see Options for the C compiler avr-gcc) to make int 8 bits, but that is not supported by avr-libc and violates C standards (int must be at least 16 bits). It may be removed in a future release.
r0 - temporary register, can be clobbered by any C code (except interrupt handlers which save it), may be used to remember something for a while within one piece of assembler code
r1 - assumed to be always zero in any C code, may be used to remember something for a while within one piece of assembler code, but must then be cleared after use (clr r1). This includes any use of the [f]mul[s[u]] instructions, which return their result in r1:r0. Interrupt handlers save and clear r1 on entry, and restore r1 on exit (in case it was non-zero).
char, have one free register above them). This allows making better use of the movw instruction on the enhanced core. If too many, those that don't fit are passed on the stack.
Return values: 8-bit in r24 (not r25!), 16-bit in r25:r24, up to 32 bits in r22-r25, up to 64 bits in r18-r25. 8-bit return values are zero/sign-extended to 16 bits by the called function (unsigned char is more efficient than signed char - just clr r25). Arguments to functions with variable argument lists (printf etc.) are all passed on stack, and char is extended to int.