
Thesycon Systemsoftware & Consulting GmbH®

USBIO

USB Software Development Kit for Windows

Reference Manual

Version 2.0 January 31, 2003

ThesyconR© Systemsoftware & Consulting GmbH

Werner-von-Siemens-Str. 2· D-98693 Ilmenau· GERMANY

Tel: +49 3677 / 8462-0

Fax: +49 3677 / 8462-18

e-mail: USBIO@thesycon.de

http://www.thesycon.de

Copyright (c) 1998-2003 by Thesycon Systemsoftware & Consulting GmbH

All Rights Reserved

Disclaimer

Information in this document is subject to change without notice. No part of this manual may be
reproduced, stored in a retrieval system, or transmitted in any form or by any means electronic or
mechanical, including photocopying and recording for any purpose other than the purchaser’s per-
sonal use, without prior written permission from Thesycon Systemsoftware & Consulting GmbH.
The software described in this document is furnished under the software license agreement dis-
tributed with the product. The software may be used or copied only in accordance with the terms
of the license.

Trademarks

The following trade names are referenced throughout this manual:

Microsoft, Windows, Win32, Windows NT, Windows XP, and Visual C++ are either trademarks
or registered trademarks of Microsoft Corporation.

Other brand and product names are trademarks or registered trademarks of their respective holders.

Contents

Contents

Table of Contents 15

1 Introduction 17

2 Overview 19

2.1 Platforms . 19

2.2 Features. 20

2.3 Restrictions. 21

2.4 USB 2.0 Support . 22

2.4.1 How to install USB 2.0 Host Controller Drivers on Windows 2000. . . . 23

2.4.2 How to install USB 2.0 Host Controller Drivers on Windows XP. 23

3 Architecture 25

3.1 USBIO Object Model. 26

3.1.1 USBIO Device Objects. 26

3.1.2 USBIO Pipe Objects. 28

3.2 Establishing a Connection to the Device. 29

3.3 Power Management. 30

3.4 Device State Change Notifications. 31

4 Programming Interface 33

4.1 Programming Interface Overview. 34

4.1.1 Query Information Requests. 34

4.1.2 Device-related Requests. 34

4.1.3 Pipe-related Requests. 36

4.1.4 Data Transfer Requests. 36

4.2 Control Requests. 37

IOCTL_USBIO_GET_DESCRIPTOR. 38

IOCTL_USBIO_SET_DESCRIPTOR. 39

IOCTL_USBIO_SET_FEATURE . 40

IOCTL_USBIO_CLEAR_FEATURE . 41

IOCTL_USBIO_GET_STATUS . 42

IOCTL_USBIO_GET_CONFIGURATION. 43

IOCTL_USBIO_GET_INTERFACE. 44

IOCTL_USBIO_STORE_CONFIG_DESCRIPTOR. 45

USBIO Reference Manual 5

Contents

IOCTL_USBIO_SET_CONFIGURATION . 46

IOCTL_USBIO_UNCONFIGURE_DEVICE. 47

IOCTL_USBIO_SET_INTERFACE. 48

IOCTL_USBIO_CLASS_OR_VENDOR_IN_REQUEST. 49

IOCTL_USBIO_CLASS_OR_VENDOR_OUT_REQUEST. 50

IOCTL_USBIO_GET_DEVICE_PARAMETERS. 52

IOCTL_USBIO_SET_DEVICE_PARAMETERS. 53

IOCTL_USBIO_GET_CONFIGURATION_INFO 54

IOCTL_USBIO_RESET_DEVICE. 55

IOCTL_USBIO_GET_CURRENT_FRAME_NUMBER. 57

IOCTL_USBIO_SET_DEVICE_POWER_STATE. 58

IOCTL_USBIO_GET_DEVICE_POWER_STATE. 59

IOCTL_USBIO_GET_BANDWIDTH_INFO 60

IOCTL_USBIO_GET_DEVICE_INFO . 61

IOCTL_USBIO_GET_DRIVER_INFO . 62

IOCTL_USBIO_CYCLE_PORT. 64

IOCTL_USBIO_BIND_PIPE. 66

IOCTL_USBIO_UNBIND_PIPE. 67

IOCTL_USBIO_RESET_PIPE. 68

IOCTL_USBIO_ABORT_PIPE . 69

IOCTL_USBIO_GET_PIPE_PARAMETERS. 70

IOCTL_USBIO_SET_PIPE_PARAMETERS. 71

IOCTL_USBIO_SETUP_PIPE_STATISTICS. 72

IOCTL_USBIO_QUERY_PIPE_STATISTICS. 74

IOCTL_USBIO_PIPE_CONTROL_TRANSFER_IN. 76

IOCTL_USBIO_PIPE_CONTROL_TRANSFER_OUT. 77

4.3 Data Transfer Requests. 79

4.3.1 Bulk and Interrupt Transfers. 79

Bulk or Interrupt Write Transfers . 79

Bulk or Interrupt Read Transfers. 79

4.3.2 Isochronous Transfers. 80

Isochronous Write Transfers. 81

Isochronous Read Transfers. 81

4.4 Data Structures. 83

USBIO_BANDWIDTH_INFO . 84

6 USBIO Reference Manual

Contents

USBIO_DEVICE_INFO . 85

USBIO_DRIVER_INFO . 86

USBIO_DESCRIPTOR_REQUEST. 88

USBIO_FEATURE_REQUEST. 90

USBIO_STATUS_REQUEST . 91

USBIO_STATUS_REQUEST_DATA . 92

USBIO_GET_CONFIGURATION_DATA. 93

USBIO_GET_INTERFACE . 94

USBIO_GET_INTERFACE_DATA . 95

USBIO_INTERFACE_SETTING . 96

USBIO_SET_CONFIGURATION. 97

USBIO_CLASS_OR_VENDOR_REQUEST. 98

USBIO_DEVICE_PARAMETERS. 100

USBIO_INTERFACE_CONFIGURATION_INFO 102

USBIO_PIPE_CONFIGURATION_INFO. 104

USBIO_CONFIGURATION_INFO . 106

USBIO_FRAME_NUMBER. 107

USBIO_DEVICE_POWER. 108

USBIO_BIND_PIPE .109

USBIO_PIPE_PARAMETERS. 110

USBIO_SETUP_PIPE_STATISTICS. 111

USBIO_QUERY_PIPE_STATISTICS. 112

USBIO_PIPE_STATISTICS. 114

USBIO_PIPE_CONTROL_TRANSFER. 116

USBIO_ISO_TRANSFER. 117

USBIO_ISO_PACKET. .119

USBIO_ISO_TRANSFER_HEADER. 120

4.5 Enumeration Types. .121

USBIO_PIPE_TYPE. .121

USBIO_REQUEST_RECIPIENT. 122

USBIO_REQUEST_TYPE. 123

USBIO_DEVICE_POWER_STATE. 124

4.6 Error Codes. .125

USBIO_ERR_SUCCESS(0x00000000L) 125

USBIO_ERR_CRC(0xE0000001L) . 125

USBIO Reference Manual 7

Contents

USBIO_ERR_BTSTUFF(0xE0000002L) 125

USBIO_ERR_DATA_TOGGLE_MISMATCH(0xE0000003L) 125

USBIO_ERR_STALL_PID(0xE0000004L) 125

USBIO_ERR_DEV_NOT_RESPONDING(0xE0000005L) 125

USBIO_ERR_PID_CHECK_FAILURE(0xE0000006L) 125

USBIO_ERR_UNEXPECTED_PID(0xE0000007L) 125

USBIO_ERR_DATA_OVERRUN(0xE0000008L) 125

USBIO_ERR_DATA_UNDERRUN(0xE0000009L) 125

USBIO_ERR_RESERVED1(0xE000000AL) 126

USBIO_ERR_RESERVED2(0xE000000BL) 126

USBIO_ERR_BUFFER_OVERRUN(0xE000000CL) 126

USBIO_ERR_BUFFER_UNDERRUN(0xE000000DL) 126

USBIO_ERR_NOT_ACCESSED(0xE000000FL) 126

USBIO_ERR_FIFO(0xE0000010L) . 126

USBIO_ERR_XACT_ERROR(0xE0000011L) 126

USBIO_ERR_BABBLE_DETECTED(0xE0000012L) 126

USBIO_ERR_DATA_BUFFER_ERROR(0xE0000013L) 126

USBIO_ERR_ENDPOINT_HALTED(0xE0000030L) 127

USBIO_ERR_NO_MEMORY(0xE0000100L) 127

USBIO_ERR_INVALID_URB_FUNCTION(0xE0000200L) 127

USBIO_ERR_INVALID_PARAMETER(0xE0000300L) 127

USBIO_ERR_ERROR_BUSY(0xE0000400L) 127

USBIO_ERR_REQUEST_FAILED(0xE0000500L) 127

USBIO_ERR_INVALID_PIPE_HANDLE(0xE0000600L) 127

USBIO_ERR_NO_BANDWIDTH(0xE0000700L) 127

USBIO_ERR_INTERNAL_HC_ERROR(0xE0000800L) 127

USBIO_ERR_ERROR_SHORT_TRANSFER(0xE0000900L) 128

USBIO_ERR_BAD_START_FRAME(0xE0000A00L) 128

USBIO_ERR_ISOCH_REQUEST_FAILED(0xE0000B00L) 128

USBIO_ERR_FRAME_CONTROL_OWNED(0xE0000C00L) 128

USBIO_ERR_FRAME_CONTROL_NOT_OWNED(0xE0000D00L) 128

USBIO_ERR_NOT_SUPPORTED(0xE0000E00L) 128

USBIO_ERR_INVALID_CONFIGURATION_DESCRIPTOR(0xE0000F00L)
. .128

USBIO_ERR_INSUFFICIENT_RESOURCES(0xE8001000L) 128

8 USBIO Reference Manual

Contents

USBIO_ERR_SET_CONFIG_FAILED(0xE0002000L) 129

USBIO_ERR_USBD_BUFFER_TOO_SMALL(0xE0003000L) 129

USBIO_ERR_USBD_INTERFACE_NOT_FOUND(0xE0004000L) 129

USBIO_ERR_INVALID_PIPE_FLAGS(0xE0005000L) 129

USBIO_ERR_USBD_TIMEOUT(0xE0006000L) 129

USBIO_ERR_DEVICE_GONE(0xE0007000L) 129

USBIO_ERR_STATUS_NOT_MAPPED(0xE0008000L) 129

USBIO_ERR_CANCELED(0xE0010000L) 129

USBIO_ERR_ISO_NOT_ACCESSED_BY_HW(0xE0020000L) 129

USBIO_ERR_ISO_TD_ERROR(0xE0030000L) 130

USBIO_ERR_ISO_NA_LATE_USBPORT(0xE0040000L) 130

USBIO_ERR_ISO_NOT_ACCESSED_LATE(0xE0050000L) 130

USBIO_ERR_FAILED(0xE0001000L) . 130

USBIO_ERR_INVALID_INBUFFER(0xE0001001L) 130

USBIO_ERR_INVALID_OUTBUFFER(0xE0001002L) 130

USBIO_ERR_OUT_OF_MEMORY(0xE0001003L) 130

USBIO_ERR_PENDING_REQUESTS(0xE0001004L) 130

USBIO_ERR_ALREADY_CONFIGURED(0xE0001005L) 131

USBIO_ERR_NOT_CONFIGURED(0xE0001006L) 131

USBIO_ERR_OPEN_PIPES(0xE0001007L) 131

USBIO_ERR_ALREADY_BOUND(0xE0001008L) 131

USBIO_ERR_NOT_BOUND(0xE0001009L) 131

USBIO_ERR_DEVICE_NOT_PRESENT(0xE000100AL) 131

USBIO_ERR_CONTROL_NOT_SUPPORTED(0xE000100BL) 131

USBIO_ERR_TIMEOUT(0xE000100CL) 131

USBIO_ERR_INVALID_RECIPIENT(0xE000100DL) 132

USBIO_ERR_INVALID_TYPE(0xE000100EL) 132

USBIO_ERR_INVALID_IOCTL(0xE000100FL) 132

USBIO_ERR_INVALID_DIRECTION(0xE0001010L) 132

USBIO_ERR_TOO_MUCH_ISO_PACKETS(0xE0001011L) 132

USBIO_ERR_POOL_EMPTY(0xE0001012L) 132

USBIO_ERR_PIPE_NOT_FOUND(0xE0001013L) 132

USBIO_ERR_INVALID_ISO_PACKET(0xE0001014L) 132

USBIO_ERR_OUT_OF_ADDRESS_SPACE(0xE0001015L) 133

USBIO_ERR_INTERFACE_NOT_FOUND(0xE0001016L) 133

USBIO Reference Manual 9

Contents

USBIO_ERR_INVALID_DEVICE_STATE(0xE0001017L) 133

USBIO_ERR_INVALID_PARAM(0xE0001018L) 133

USBIO_ERR_DEMO_EXPIRED(0xE0001019L) 133

USBIO_ERR_INVALID_POWER_STATE(0xE000101AL) 133

USBIO_ERR_POWER_DOWN(0xE000101BL) 133

USBIO_ERR_VERSION_MISMATCH(0xE000101CL) 134

USBIO_ERR_SET_CONFIGURATION_FAILED(0xE000101DL) 134

USBIO_ERR_VID_RESTRICTION(0xE0001080L) 134

USBIO_ERR_ISO_RESTRICTION(0xE0001081L) 134

USBIO_ERR_BULK_RESTRICTION(0xE0001082L) 134

USBIO_ERR_EP0_RESTRICTION(0xE0001083L) 134

USBIO_ERR_PIPE_RESTRICTION(0xE0001084L) 134

USBIO_ERR_PIPE_SIZE_RESTRICTION(0xE0001085L) 135

USBIO_ERR_CONTROL_RESTRICTION(0xE0001086L) 135

USBIO_ERR_INTERRUPT_RESTRICTION(0xE0001087L) 135

USBIO_ERR_DEVICE_NOT_FOUND(0xE0001100L) 135

USBIO_ERR_DEVICE_NOT_OPEN(0xE0001102L) 135

USBIO_ERR_NO_SUCH_DEVICE_INSTANCE(0xE0001104L) 135

USBIO_ERR_INVALID_FUNCTION_PARAM(0xE0001105L) 135

USBIO_ERR_LOAD_SETUP_API_FAILED(0xE0001106L) 135

5 USBIO Class Library 137

5.1 Overview .137

5.1.1 CUsbIo Class. .137

5.1.2 CUsbIoPipe Class. 137

5.1.3 CUsbIoThread Class. 138

5.1.4 CUsbIoReader Class. 138

5.1.5 CUsbIoWriter Class. 139

5.1.6 CUsbIoBuf Class. 139

5.1.7 CUsbIoBufPool Class. 139

5.2 Class Library Reference. 140

CUsbIo class .140

Member Functions. 140

CUsbIo .140

˜CUsbIo. .140

10 USBIO Reference Manual

Contents

CreateDeviceList. 141

DestroyDeviceList . 142

Open .143

Close .145

GetDeviceInstanceDetails. 146

GetDevicePathName. 148

IsOpen .149

IsCheckedBuild. 150

IsDemoVersion. 151

IsLightVersion . 152

IsOperatingAtHighSpeed. 153

GetDriverInfo. 154

GetDeviceInfo . 155

GetBandwidthInfo . 156

GetDescriptor. 157

GetDeviceDescriptor. 159

GetConfigurationDescriptor. 160

GetStringDescriptor . 162

SetDescriptor. 164

SetFeature . 166

ClearFeature . 167

GetStatus. 168

ClassOrVendorInRequest. 169

ClassOrVendorOutRequest. 170

SetConfiguration. 171

UnconfigureDevice. 172

GetConfiguration. 173

GetConfigurationInfo. 174

SetInterface. 175

GetInterface. 176

StoreConfigurationDescriptor. 177

GetDeviceParameters. 178

SetDeviceParameters. 179

ResetDevice . 180

CyclePort . 181

USBIO Reference Manual 11

Contents

GetCurrentFrameNumber. 182

GetDevicePowerState. 183

SetDevicePowerState. 184

CancelIo . 185

IoctlSync . 186

ErrorText . 187

Data Members .188

CUsbIoPipe class. .189

Member Functions. 189

CUsbIoPipe. 189

˜CUsbIoPipe . 189

Bind .190

Unbind .192

Read .193

Write .194

WaitForCompletion. 195

ReadSync. 197

WriteSync . 199

ResetPipe. 201

AbortPipe. 202

GetPipeParameters. 203

SetPipeParameters. 204

PipeControlTransferIn. 205

PipeControlTransferOut. 207

SetupPipeStatistics. 209

QueryPipeStatistics. 210

ResetPipeStatistics. 212

CUsbIoThread class. .213

Member Functions. 213

CUsbIoThread . 213

˜CUsbIoThread. 213

AllocateBuffers. 214

FreeBuffers. 215

StartThread. 216

ShutdownThread. 217

12 USBIO Reference Manual

Contents

ProcessData. 218

ProcessBuffer. 219

BufErrorHandler . 220

OnThreadExit. 221

ThreadRoutine . 222

TerminateThread. 223

Data Members .224

CUsbIoReader class. .225

Member Functions. 225

CUsbIoReader . 225

˜CUsbIoReader. 225

ThreadRoutine . 226

TerminateThread. 227

CUsbIoWriter class. .228

Member Functions. 228

CUsbIoWriter. 228

˜CUsbIoWriter . 228

ThreadRoutine . 229

TerminateThread. 230

CUsbIoBuf class .231

Member Functions. 231

CUsbIoBuf . 231

CUsbIoBuf . 232

CUsbIoBuf . 233

˜CUsbIoBuf. 234

Buffer .235

Size .236

Data Members .237

CUsbIoBufPool class. .239

Member Functions. 239

CUsbIoBufPool. 240

˜CUsbIoBufPool . 240

Allocate .241

Free .242

Get .243

USBIO Reference Manual 13

Contents

Put .244

CurrentCount. 245

Data Members .246

CSetupApiDll class. .247

Member Functions. 247

CSetupApiDll. 247

˜CSetupApiDll . 247

Load .248

Release. .249

6 USBIO Demo Application 251

6.1 Dialog Pages for Device Operations. 251

6.1.1 Device .251

6.1.2 Descriptors. .251

6.1.3 Configuration. .251

6.1.4 Interface .252

6.1.5 Pipes .252

6.1.6 Class or Vendor Request. 252

6.1.7 Feature. .252

6.1.8 Other .253

6.2 Dialog Pages for Pipe Operations. 253

6.2.1 Pipe. .253

6.2.2 Buffers .253

6.2.3 Control .254

6.2.4 Read from Pipe to Output Window. 254

6.2.5 Read from Pipe to File. 254

6.2.6 Write from File to Pipe. 254

7 Driver Installation and Uninstallation 255

7.1 USBIO Driver Executables. 255

7.2 Installing USBIO .255

7.2.1 Automated Installation: The USBIO Installation Wizard. 255

7.2.2 Manual Installation: The USBIO Setup Information File. 257

7.3 Uninstalling USBIO. .260

7.3.1 Manual Uninstallation. 260

7.3.2 Automated Uninstallation: The USBIO Cleanup Wizard. 260

14 USBIO Reference Manual

Contents

7.4 Building a Customized Driver Setup. 262

7.5 Using USBIO on Windows XP Embedded. 264

8 Registry Entries 265

9 Related Documents 269

Index 271

USBIO Reference Manual 15

1 Introduction

1 Introduction

USBIO is a generic Universal Serial Bus (USB) device driver for Windows. It is able to control
any type of USB device and provides a convenient programming interface that can be used by
Win32 applications. The USBIO device driver supports USB 1.1 and USB 2.0.

This document describes the architecture, the features and the programming interface of the
USBIO device driver. Furthermore, it includes instructions for installing and using the device
driver.

Note that for the USBIO driver there is a high-level programming interface available which is
based on Microsoft’s COM technology. The USBIO COM Interface is included in the USBIO
Development Kit. For more information refer to the USBIO COM Interface Reference Manual.

The reader of this document is assumed to be familiar with the specification of the Universal Serial
Bus Version 1.1 and 2.0 and with common aspects of Win32-based application programming.

USBIO Reference Manual 17

2 Overview

2 Overview

Support for the Universal Serial Bus (USB) is built into the current Windows operating systems.
These systems include device drivers for the USB Host Controller hardware, for USB Hubs, and
for some classes of USB devices. The USB device drivers provided by Microsoft support devices
that conform with the appropriate USB device class definitions made by the USB Implementers
Forum. USB devices that do not conform to one of the USB device class specifications, e.g. in
the case of a new device class or a device under development, are not supported by device drivers
included with the operating system.

In order to use devices that are not supported by the operating system itself the vendor of such a
device is required to develop a USB device driver. This driver has to conform to the Win32 Driver
Model (WDM) that defines a common driver architecture for Windows 98, Windows Millennium,
Windows 2000, and Windows XP. Writing, debugging, and testing of such a driver means consid-
erable effort and requires a lot of knowledge about development of kernel mode drivers.

By using the generic USB device driver USBIO it is possible to get any USB device up and running
without spending the time and the effort of developing a device driver. Especially, this might be
useful during development or test of a new device. But in many cases it is also suitable to include
the USBIO device driver in the final product. So there is no need to develop and test a custom
device driver for the USB-based product.

2.1 Platforms

The USBIO driver supports the following operating system platforms:

• Windows 98 Second Edition (SE), the second release of Windows 98 (USB 1.1 only)

• Windows Millennium (ME), the successor to Windows 98 (USB 1.1 only)

• Windows 2000 with Service Pack 3 (USB 1.1 and USB 2.0)

• Windows XP with Service Pack 1 (USB 1.1 and USB 2.0)

• Windows XP Embedded (USB 1.1 only)

Note that Windows NT 4.0 and Windows 95 are not supported by USBIO.

USBIO Reference Manual 19

2 Overview

2.2 Features

The USBIO driver provides the following features:

• Supports USB 1.1 and USB 2.0

• Complies with the Win32 Driver Model (WDM)

• Supports Plug&Play

• Supports Power Management

• Provides an interface to USB devices that can be used by any Win32 application

• Provides an interface to USB endpoints (pipes) that is similar to files

• Fully supports asynchronous (overlapped) data transfer operations

• Supports the USB transfer types Control, Interrupt, Bulk, and Isochronous

• Multiple USB devices can be controlled by USBIO at the same time

• Multiple applications can use USBIO at the same time

The USBIO device driver can be used to control any USB device from a Win32 application running
in user mode. Examples of such devices are

• telephone and fax devices

• telephone network switches

• audio and video devices (e.g. cameras)

• measuring devices (e.g. oscilloscopes, logic analyzers)

• sensors (e.g. temperature, pressure)

• data converters (e.g. A/D converters, D/A converters)

• bus converters or adapters (e.g. RS 232, IEEE 488)

• chip card devices

20 USBIO Reference Manual

2 Overview

2.3 Restrictions

Some restrictions that apply to the USBIO device driver are listed below.

• If a particular kernel mode interface (e.g. WDM Kernel Mode Streaming or NDIS) has to be
supported in order to integrate the device into the operating system, it is not possible to use
the generic USBIO driver. However, in such a situation it is possible to develop a custom
device driver based on the source code of the USBIO though. Please contact Thesycon if
you need support on such kind of project.

• Although the USBIO device driver fully supports isochronous endpoints, there are some
limitations with respect to isochronous data transfers. They result from the fact that the
processing of the isochronous data streams has to be performed by the application which
runs in user mode. There is no guaranteed response time for threads running in user mode.
This may be critical for the implementation of some synchronization methods, for example
when the data rate is controlled by loop-back packets (see the USB Specification, Chapter 5
for synchronization issues of isochronous data streams).

However, it is possible to support all kinds of isochronous data streams using the USBIO
driver. But the delays that might be caused by the thread scheduler of the operating system
should be taken into consideration.

• There are some problems caused by the implementation of the operating system’s USB
driver stack. Thesycon encountered these problems during debugging and testing of the
USBIO driver. For some of the problems there are work-arounds built into the USBIO
driver. Others do still exist because there is no way to implement a work-around.

Problems that are known to Thesycon are documented inProblems.txtwhich is included
in the USBIO Development Kit. We strongly recommend to refer to this file when strange
behavior is observed during application development.

• There are a lot of serious problems with the USB driver stack on Windows XP. Refer to
Problems.txtto find a description of the problems that are known so far.

USBIO Reference Manual 21

2 Overview

2.4 USB 2.0 Support

The USBIO device driver supports USB 2.0 and the Enhanced Host Controller on Windows 2000
and Windows XP. However, USBIO has to be used on top of the driver stack that is provided
by Microsoft. Thesycon does not guarantee that the USBIO driver works in conjunction with a
USB driver stack that is provided by a third party. For instance, third-party drivers are available
for USB 2.0 host controllers from NEC or VIA. Because the Enhanced Host Controller hardware
interface is standardized (EHCI specification) the USB 2.0 drivers provided by Microsoft can be
used with host controllers from any vendor. However, the user has to ensure that these drivers are
installed. In some cases this requires manual installation of the host controller driver. This will be
discussed in more detail in the next sections.

Note that USBIO does not support USB 2.0 on Windows 98 and Windows ME. Microsoft does not
provide USB 2.0 host controller drivers for these systems. Any third-party host controller drivers
that may be available for Windows 98 and Windows ME are not supported by USBIO.

The USBIO driver is tested with Microsoft’s driver stack on Windows 2000 and Windows XP on
various host controllers. Table1 summarizes the versions of the driver stack components that have
been used for testing.

Table 1: Supported USB driver stack components

Windows 2000 Service Pack 3 Windows XP Service Pack 1

usbehci.sys 5.00.2195.5652 5.1.2600.1106 (xpsp1.020828-1920)

usbport.sys 5.00.2195.5652 5.1.2600.1106 (xpsp1.020828-1920)

usbhub20.sys 5.00.2195.5605 —

usbhub.sys 5.00.2195.4413 5.1.2600.1106 (xpsp1.020828-1920)

usbd.sys 5.00.2195.4943 5.1.2600.0 (XPClient.010817-1148)

The drivers for the USB 2.0 host controller are not included in the original releases of Win-
dows 2000 and Windows XP. They can be obtained by means of the Windows Update service
or by installing a service pack. The following sections describe the driver installation procedure
for each system in detail.

22 USBIO Reference Manual

2 Overview

2.4.1 How to install USB 2.0 Host Controller Drivers on Windows 2000

The device drivers for the Enhanced Host Controller are available at the Windows Update server.
To install the drivers, follow the steps described below.

• Install Service Pack 3 on the computer. Alternatively, you can launch the Windows Update
service available in the Start menu.

• Open the Device Manager by choosing Manage from the context menu of the My Computer
icon. In Device Manager locate the item that represents the USB 2.0 Enhanced Host Con-
troller. If there is no driver currently installed for the host controller the item is in the group
Other Devices and is labeled with a yellow exclamation mark. If there is already a driver
installed for the host controller, a third-party driver for instance, then the item is located in
the group Universal Serial Bus controllers.

• Open the property page of the Enhanced Host Controller item and select the Driver page.
Choose Driver Details to display detailed information on the drivers that are currently in
use. If the driver version is not correct, select Update Driver. This will launch the Upgrade
Device Driver Wizard.

• Follow the instructions shown by the Upgrade Device Driver Wizard. The wizard prompts
you to specify locations to be searched for new driver files. Make sure the location ’Mi-
crosoft Windows Update’ is the only selection and continue.

• The wizard downloads the required files and installs the driver. If there was a driver already
installed the wizard offers an option that allows you to select the new driver from a list.
Make sure you select the driver provided by Microsoft.

• Open the property page again and verify that the correct drivers are installed now.

2.4.2 How to install USB 2.0 Host Controller Drivers on Windows XP

The device drivers for the Enhanced Host Controller are available at the Windows Update server
and are included in the Service Pack 1 for Windows XP. To install the drivers, follow the steps
described below.

• Install Service Pack 1 on the computer. Alternatively, you can launch the Windows Update
service available in the Start menu.

• Open the Device Manager by choosing Manage from the context menu of the My Computer
item in the Start menu. In Device Manager locate the item that represents the USB 2.0
Enhanced Host Controller. If there is no driver currently installed for the host controller the
item is in the group Other Devices and is labeled with a yellow exclamation mark. If there
is already a driver installed for the host controller, a third-party driver for instance, then the
item is located in the group Universal Serial Bus controllers.

• Open the property page of the Enhanced Host Controller item and select the Driver page.
Choose Driver Details to display detailed information on the drivers that are currently in
use. If the driver version is not correct, select Update Driver. This will launch the Hardware
Update Wizard.

USBIO Reference Manual 23

2 Overview

• Follow the instructions shown by the Hardware Update Wizard. Normally, the wizard will
install the correct drivers automatically. If the wizard prompts you to select the new driver
from a list, make sure you select the driver provided by Microsoft.

• If there was a driver already installed for the host controller the Hardware Update Wizard
possibly selects the existing driver again and does not upgrade to a new driver. In this case
you should manually select the driver to be installed. To do so, select ’Install from a list or
specific location’ on the first dialog shown by the wizard. On the next dialog select ’Don’t
search’. In the next step, the wizard allows you to select the new driver from a list. Make
sure you select the driver provided by Microsoft.

• Open the property page again and verify that the correct drivers are installed now.

24 USBIO Reference Manual

3 Architecture

3 Architecture

Figure1 shows the USB driver stack that is part of the Windows operating system. All drivers are
embedded within the WDM layered architecture.

OpenHCI.SYS

USB Host Controller

USB Driver Interface (USBDI)

User Mode

Kernel Mode

Hardware

Win32 Application

USBD.SYS USBHUB.SYS

USBIO.SYS
Other USB device

drivers

Figure 1:USB Driver Stack

The following modules are shown in Figure1:

• USB Host Controller is the hardware component that controls the Universal Serial Bus. It
also contains the USB Root Hub. There are two implementations of the host controller
that support USB 1.1: Open Host Controller (OHC) and Universal Host Controller (UHC).
There is one implementation of the host controller that supports USB 2.0: Enhanced Host
Controller (EHC).

• OpenHCI.SYS is the host controller driver for controllers that conform with the Open Host
Controller Interface specification. Optionally, it can be replaced by a driver for a controller
that is compliant with UHCI (Universal Host Controller Interface) or EHCI (Enhanced Host
Controller Interface). Which driver is used depends on the mainboard chip set of the com-
puter. For instance, Intel chipsets contain Enhanced Host Controllers and Universal Host
Controllers.

• USBD.SYS is the USB Bus Driver that controls and manages all devices connected to the
USB. It is provided by Microsoft as part of the operating system.

• USBHUB.SYS is the USB Hub Driver. It is responsible for managing and controlling USB
Hubs.

USBIO Reference Manual 25

3 Architecture

• USBIO.SYS is the generic USB device driver USBIO.

The software interface that is provided by the operating system for use by USB device drivers is
called USB Driver Interface (USBDI). It is exported by the USBD at the top of the driver stack.
USBDI is an IRP-based interface. This means that each individual request is packaged into an I/O
request packet (IRP), a data structure that is defined by WDM. The I/O request packets are passed
to the next driver in the stack for processing and returned to the caller after completion.

The USB Driver Interface is accessible for kernel mode-drivers only. Normally, there is no way to
use this interface directly from applications that run in user mode. The USBIO device driver was
designed to overcome this limitation. It connects to the USBDI at its lower edge and provides a
private interface at its upper edge that can be used by Win32 applications. Thus, the USB driver
stack becomes accessible to applications. A Win32 application is able to communicate with one
or more USB devices by using the programming interface exported by the USBIO device driver.
Furthermore, the USBIO programming interface may be used by more than one application or by
multiple instances of one application at the same time.

The main design goal for the USBIO device driver was to make available to applications all the
features that the USB driver stack provides at the USBDI level. For that reason the programming
interface of the USBIO device driver (USBIOI) is closely related to the USBDI. But for many of
the functions there is no one-to-one relationship.

3.1 USBIO Object Model

The USBIO device driver provides a communication model that consists of device objects and pipe
objects. The objects are created, destroyed, and managed by the USBIO driver. An application
can open handles to device objects and bind these handles to pipe objects.

3.1.1 USBIO Device Objects

Each USBIO device object is associated with a physical USB device that is connected to the USB.
The device may support USB 1.1, USB 2.0 or both. A device object is created by the USBIO
driver if a USB is detected by the Plug&Play Manager of the operating system. This happens
when a USB device is connected to the system. The USBIO driver is able to handle multiple
device objects at the same time.

Each device object created by USBIO is registered with the operating system by using a unique
identifier (GUID, Globally Unique Identifier). This identifier is called "Device Interface ID". All
device objects managed by USBIO are identified by the same GUID. The GUID is defined in the
USBIO Setup Information (INF) file. Based on the GUID and an instance number, the operating
system generates a unique name for each device object. This name should be considered as opaque
by applications. It should never be used directly or stored permanently.

It is possible to enumerate all the device objects associated with a particular GUID by using func-
tions provided by the Windows Setup API. The Functions used for this purpose are:

SetupDiGetClassDevs()
SetupDiEnumDeviceInterfaces()
SetupDiGetDeviceInterfaceDetail()

26 USBIO Reference Manual

3 Architecture

The result of the enumeration process is a list of device objects currently created by USBIO.
Each of the USBIO device objects corresponds to a device currently connected to the USB.
For each device object an opaque device name string is returned. This string can be passed to
CreateFile() to open the device object.

A default Device Interface ID (GUID) is built into the USBIO driver. This default ID is defined
in USBIO_I.H. Each device object created by USBIO is registered by using this default ID. The
default Device Interface ID is used by the USBIO demo application for device enumeration. This
way, it is always possible to access devices connected to the USBIO from the demo application.

In addition, a user-defined Device Interface ID is supported by USBIO. This user-defined GUID
is specified in the USBIO INF file by theUSBIO_UserInterfaceGuid variable. If the user-
defined interface ID is present at device initialization time USBIO registers the device with this
ID. Thus, two interfaces – a default interface and a user-defined interface – are registered for each
device. The default Device Interface ID should only be used by the USBIO demo application. Cus-
tom applications should always use a private user-defined Device Interface ID. This way, device
naming conflicts are avoided.

Important:
Every USBIO customer should generate its own private device interface GUID. This is done by
using the tool GUIDGEN.EXE from the Microsoft Platform SDK or the VC++ package. This
private GUID is specified as user-defined interface inUSBIO_UserInterfaceGuid in the
USBIO INF file. The private GUID is also used by the customer’s application for device enumer-
ation. For that reason the generated GUID must also be included in the application. The macro
DEFINE_GUID() can be used for that purpose. See the Microsoft Platform SDK documentation
for further information.

As stated above, all devices connected to USBIO will be associated with the same device interface
ID that is also used for device object enumeration. Because of that, the enumeration process
will return a list of all USBIO device objects. In order to differentiate the devices an application
should query the device descriptor or string descriptors. This way, each device instance can be
unambiguously identified.

After the application has received one or more handles for the device, operations can be performed
on the device by using a handle. If there is more than one handle to the same device, it makes no
difference which handle is used to perform a certain operation. All handles that are associated
with the same device behave the same way.

Note:
Former versions of USBIO (up to V1.16) used a different device naming scheme. The device name
was generated by appending an instance number to a common prefix. So the device names were
static. In order to ensure compatibility USBIO still supports the old naming scheme. This feature
can be enabled by defining a device name prefix in the variableUSBIO_DeviceBaseName in
the USBIO INF file. However, it is strongly recommended to use the new naming scheme based
on Device Interface IDs (GUIDs), because it conforms with current Windows 2000/XP guidelines.
The old-style static names should only be used if backward-compatibility with former versions of
USBIO is required.

USBIO Reference Manual 27

3 Architecture

3.1.2 USBIO Pipe Objects

The USBIO driver uses pipe objects to represent an active endpoint of the device. The pipe objects
are created when the device configuration is set. The number and type of created pipe objects
depend on the selected configuration. The USBIO driver does not control the default endpoint
(endpoint zero) of a device. This endpoint is owned by the USB bus driver USBD. Because of
that, there is no pipe object for endpoint zero and there are no pipe objects available until the
device is configured.

In order to access a pipe the application has to create a handle by opening the device object
as described above and attach it to a pipe. This operation is called "bind". After a binding is
successfully established the application can use the handle to communicate with the endpoint that
the pipe object represents. Each pipe may be bound only once, and a handle may be bound to one
pipe only. So there is always an one-to-one relation of pipe handles and pipe objects. This means
that the application has to create a separate handle for each pipe it wants to access.

The USBIO driver also supports an "unbind" operation. That is used to delete a binding between
a handle and a pipe. After an unbind is performed the handle may be reused to bind another pipe
object and the pipe object can be used to establish a binding with another handle.

The following example is intended to explain the relationships described above. In Figure2 a
configuration is shown where one device object and two associated pipe objects exist within the
USBIO data base.

Application

Handle1

Pipe 0x81 Pipe 0x02

Device Object
identified by device name

Handle2 Handle3

User Mode

Kernel Mode

Figure 2:USBIO device and pipe objects example

The device object is identified by a device name as described in section3.1.1(page26). A pipe
object is identified by its endpoint address that also includes the direction flag at bit 7 (MSB). Pipe

28 USBIO Reference Manual

3 Architecture

0x81 is an IN pipe (transfer direction from device to host) and pipe 0x02 is an OUT pipe (transfer
direction from host to device). The application has created three handles for the device by calling
CreateFile() .

Handle1 is not bound to any pipe, therefore it can be used to perform device-related operations
only. It is called a device handle.

Handle2 is bound to the IN pipe 0x81. By using this handle with the Win32 functionReadFile()
the application can initiate data transfers from endpoint 0x81 to its buffers.

Handle3 is bound to the OUT pipe 0x02. By using Handle3 with the functionWriteFile() the
application can initiate data transfers from its buffers to endpoint 0x02 of the device.

Handle2 and Handle3 are called pipe handles. Note that while Handle1 cannot be used to com-
municate with a pipe, any operation on the device can be executed by using Handle2 or Handle3,
too.

3.2 Establishing a Connection to the Device

The following code sample demonstrates the steps that are necessary at the USBIO API to establish
a handle for a device and a pipe. The code is not complete, no error handling is included.

// include the interface header file of USBIO.SYS
#include "usbio_i.h"

// device instance number
#define DEVICE_NUMBER 0

// some local variables
HANDLE FileHandle;
USBIO_SET_CONFIGURATION SetConfiguration;
USBIO_BIND_PIPE BindPipe;
HDEVINFO DevInfo;
GUID g_UsbioID = USBIO_IID;
SP_DEVICE_INTERFACE_DATA DevData;
SP_INTERFACE_DEVICE_DETAIL_DATA *DevDetail = NULL;
DWORD ReqLen;
DWORD BytesReturned;

// enumerate the devices
// get a handle to the device list
DevInfo = SetupDiGetClassDevs(&g_UsbioID,

NULL,NULL,DIGCF_DEVICEINTERFACE|DIGCF_PRESENT);
// get the device with index DEVICE_NUMBER
SetupDiEnumDeviceInterfaces(DevInfo, NULL,

&g_UsbioID, DEVICE_NUMBER, &DevData);
// get length of detailed information
SetupDiGetDeviceInterfaceDetail(DevInfo, &DevData, NULL,

0, &ReqLen, NULL);
// allocate a buffer
DevDetail = (SP_INTERFACE_DEVICE_DETAIL_DATA*) malloc(ReqLen);
// now get the detailed device information
DevDetail->cbSize = sizeof(SP_INTERFACE_DEVICE_DETAIL_DATA);
SetupDiGetDeviceInterfaceDetail(DevInfo, &DevData, DevDetail,

ReqLen, &ReqLen, NULL);
// open the device, use OVERLAPPED flag if necessary
// use DevDetail->DevicePath as device name
FileHandle = CreateFile(

DevDetail->DevicePath,
GENERIC_READ|GENERIC_WRITE,
FILE_SHARE_WRITE|FILE_SHARE_READ,
NULL,

USBIO Reference Manual 29

3 Architecture

OPEN_EXISTING,
0 /* or FILE_FLAG_OVERLAPPED */,
NULL);

// setup the data structure for configuration
// use the configuration descriptor with index 0
SetConfiguration.ConfigurationIndex = 0;
// device has 1 interface
SetConfiguration.NbOfInterfaces = 1;
// first interface is 0
SetConfiguration.InterfaceList[0].InterfaceIndex = 0;
// alternate setting for first interface is 0
SetConfiguration.InterfaceList[0].AlternateSettingIndex = 0;
// maximum buffer size for read/write operation is 4069 bytes
SetConfiguration.InterfaceList[0].MaximumTransferSize = 4096;

// configure the device
DeviceIoControl(FileHandle,

IOCTL_USBIO_SET_CONFIGURATION,
&SetConfiguration, sizeof(SetConfiguration),
NULL,0,
&BytesReturned,
NULL
);

// setup the data structure to bind the file handle
BindPipe.EndpointAddress = 0x81; // the device has an endpoint 0x81
// bind the file handle
DeviceIoControl(FileHandle,

IOCTL_USBIO_BIND_PIPE,
&BindPipe, sizeof(BindPipe),
NULL,0,
&BytesReturned,
NULL
);

// read (or write) data from (to) the device
// use OVERLAPPED structure if necessary
ReadFile(FileHandle, ...);

// close file handle
CloseHandle(FileHandle);

Refer to the Win32 API documentation for the syntax and the parameters of the func-
tions SetupDiXxx() , CreateFile() , DeviceIoControl() , ReadFile() ,
WriteFile() , CloseHandle() . The file handle can be opened with the
FILE_FLAG_OVERLAPPEDflag if asynchronous behaviour is required.

More code samples that show the use of the USBIO programming interface are included in the
USBIO Development Kit.

3.3 Power Management

Current Windows operating systems support system-level power management. That means that if
the computer is idle for a given time, some parts of the computer can go into a sleeping mode. A
system power change can be initiated by the user or by the operating system itself, on a low battery
condition for example. A USB device driver has to support the system power management. Each
device which supports power switching has to have a device power policy owner. It is responsible
for managing the device power states in response to system power state changes. The USBIO
driver is the power policy owner of the USB devices that it controls. In addition to the system
power changes the device power policy owner can initiate device power state changes.

30 USBIO Reference Manual

3 Architecture

Before the system goes into a sleep state the operating system asks every driver if its device can
go into the sleep state. If all active drivers return success the system goes down. Otherwise, a
message box appears on the screen and informs the user that the system is not able to go into the
sleeping mode.

Before the system goes into a sleeping state the driver has to save all the information that it needs
to reinitialize the device (device context) if the system is resumed. Furthermore, all pending
requests have to be completed and further requests have to be queued. In the device power states
D1 or D2 (USB Suspend) the device context stored in the USB device will not be lost. Therefore,
a device sleeping state D1 or D2 is handled transparently for the application. In the state D3
(USB Off) the device context is lost. Because the information stored in the device is known to
the application only (e.g. the current volume level of an audio device), the generic USBIO driver
cannot restore the device context in a general way. This has to be done by the application. Note
that Windows 2000/XP restores the USB configuration of the device (SET_CONFIGURATION
request) after the system is resumed.

The behaviour with respect to power management can be customized by registry parameters. For
example, if a long time measurement should be performed the computer has to be prevented from
going power down. For a description of the supported registry parameters, see also chapter8 (page
265).

All registry entries describing device power states are DWORD parameters where the value 0
corresponds toDevicePowerD0 , 1 toDevicePowerD1 , and so on.

The parameterPowerStateOnOpen specifies the power state to which the device is set if the
first file handle is opened. If the last file handle is closed the USB device is set to the power state
specified in the entryPowerStateOnClose .

If at least one file handle is open for the device the keyMinPowerStateUsed describes the
minimal device power state that is required. If this value is set to 0 the computer will never go
into a sleep state. If this key is set to 2 the device can go into a suspend state but not into D3
(Off). A power-down request caused by a low battery condition cannot be suppressed by using
this parameter.

If no file handle is currently open for the device, the keyMinPowerStateUnused defines the
minimal power state the device can go into. Thus, its meaning is similar to that of the parameter
MinPowerStateUsed .

If the parameterAbortPipesOnPowerDown is set to 1 all pending requests submitted by the
application are returned before the device enters a sleeping state. This switch should be set to 1
if the parameterMinPowerStateUsed is different from D0. The pending I/O requests are
returned with the error codeUSBIO_ERR_POWER_DOWN. This signals to the application that the
error was caused by a power down event. The application may ignore this error and repeat the
request. The re-submitted requests will be queued by the USBIO driver. They will be executed
after the device is back in state D0.

3.4 Device State Change Notifications

The application is able to receive notifications when the state of a USB device changes. The Win32
API provides the functionRegisterDeviceNotification() for this purpose. This way,
an application will be notified if a USB device is plugged in or removed.

USBIO Reference Manual 31

3 Architecture

Please refer to the Microsoft Platform SDK documentation for detailed in-
formation on the functions RegisterDeviceNotification() and
UnregisterDeviceNotification() . In addition, the source code of the USBIO
demo application USBIOAPP provides an example.

The device notification mechanism is only available if the USBIO device naming scheme is based
on Device Interface IDs (GUIDs). See section3.1.1(page26) for details. We strongly recommend
to use this new naming scheme.

Note:
The functionUnregisterDeviceNotification() should not be used on Windows 98.
There is a bug in the implementation that causes the system to become unstable. So it may crash
at some later point in time. The bug seems to be "well known", it was discussed in some Usenet
groups.

32 USBIO Reference Manual

4 Programming Interface

4 Programming Interface

This section describes the programming interface of the USBIO device driver in detail. The pro-
gramming interface is based on Win32 functions.

Note that there is a high-level programming interface available which is based on Microsoft’s
COM technology. The USBIO COM Interface is included in the USBIO software package. For
more information refer to the USBIO COM Interface Reference Manual.

USBIO Reference Manual 33

4 Programming Interface

4.1 Programming Interface Overview

This section lists all operations supported by the USBIO programming interface sorted by cate-
gory.

4.1.1 Query Information Requests

Operation Issued On Bus Action

IOCTL_USBIO_GET_DRIVER_INFO device none

IOCTL_USBIO_GET_DEVICE_INFO device none

IOCTL_USBIO_GET_BANDWIDTH_INFO device none

IOCTL_USBIO_GET_CURRENT_FRAME_NUMBER device none

4.1.2 Device-related Requests

Operation Issued On Bus Action

IOCTL_USBIO_GET_DESCRIPTOR device SETUP request on EP0

IOCTL_USBIO_SET_DESCRIPTOR device SETUP request on EP0

IOCTL_USBIO_SET_FEATURE device SETUP request on EP0

IOCTL_USBIO_CLEAR_FEATURE device SETUP request on EP0

IOCTL_USBIO_GET_STATUS device SETUP request on EP0

IOCTL_USBIO_GET_CONFIGURATION device SETUP request on EP0

IOCTL_USBIO_SET_CONFIGURATION device SETUP request on EP0

IOCTL_USBIO_UNCONFIGURE_DEVICE device SETUP request on EP0

IOCTL_USBIO_GET_INTERFACE device SETUP request on EP0

IOCTL_USBIO_SET_INTERFACE device SETUP request on EP0

IOCTL_USBIO_CLASS_OR_VENDOR_IN_REQUEST device SETUP request on EP0

IOCTL_USBIO_CLASS_OR_VENDOR_OUT_REQUEST device SETUP request on EP0

IOCTL_USBIO_GET_DEVICE_PARAMETERS device none

IOCTL_USBIO_SET_DEVICE_PARAMETERS device none

IOCTL_USBIO_GET_CONFIGURATION_INFO device none

IOCTL_USBIO_STORE_CONFIG_DESCRIPTOR device none

34 USBIO Reference Manual

4 Programming Interface

IOCTL_USBIO_RESET_DEVICE device reset on hub port,
SET_ADDRESS request

IOCTL_USBIO_CYCLE_PORT device reset on hub port,
SET_ADDRESS request

IOCTL_USBIO_SET_DEVICE_POWER_STATE device set properties on hub port

IOCTL_USBIO_GET_DEVICE_POWER_STATE device none

USBIO Reference Manual 35

4 Programming Interface

4.1.3 Pipe-related Requests

Operation Issued On Bus Action

IOCTL_USBIO_BIND_PIPE device none

IOCTL_USBIO_UNBIND_PIPE pipe none

IOCTL_USBIO_RESET_PIPE pipe none

IOCTL_USBIO_ABORT_PIPE pipe none

IOCTL_USBIO_GET_PIPE_PARAMETERS pipe none

IOCTL_USBIO_SET_PIPE_PARAMETERS pipe none

IOCTL_USBIO_SETUP_PIPE_STATISTICS pipe none

IOCTL_USBIO_QUERY_PIPE_STATISTICS pipe none

IOCTL_USBIO_PIPE_CONTROL_TRANSFER_IN pipe SETUP request on endpoint

IOCTL_USBIO_PIPE_CONTROL_TRANSFER_OUT pipe SETUP request on endpoint

4.1.4 Data Transfer Requests

Operation Issued On Bus Action

ReadFile function pipe data transfer from IN
endpoint to host

WriteFile function pipe data transfer from host to
OUT endpoint

36 USBIO Reference Manual

4 Programming Interface

4.2 Control Requests

This section provides a detailed description of the I/O Control operations the USBIO driver sup-
ports through its programming interface. The I/O Control requests are submitted to the driver using
the Win32 functionDeviceIoControl() (see also chapter3). TheDeviceIoControl()
function is defined as follows:

BOOL DeviceIoControl(
HANDLE hDevice, // handle to device of interest
DWORD dwIoControlCode, // control code of operation to perform
LPVOID lpInBuffer, // pointer to buffer to supply input data
DWORD nInBufferSize, // size of input buffer
LPVOID lpOutBuffer, // pointer to buffer to receive output data
DWORD nOutBufferSize, // size of output buffer
LPDWORD lpBytesReturned, // pointer to variable to receive

// output byte count
LPOVERLAPPED lpOverlapped // pointer to overlapped structure

// for asynchronous operation
);

Refer to the Microsoft Platform SDK documentation for more information.

The following sections describe the I/O Control codes that may be passed to the
DeviceIoControl() function asdwIoControlCode and the parameters required for
lpInBuffer , nInBufferSize , lpOutBuffer , nOutBufferSize .

USBIO Reference Manual 37

4 Programming Interface

IOCTL_USBIO_GET_DESCRIPTOR

The IOCTL_USBIO_GET_DESCRIPTOR operation requests a specific descriptor from the
device.

dwIoControlCode
Set to IOCTL_USBIO_GET_DESCRIPTOR for this operation.

lpInBuffer
Points to a caller-providedUSBIO_DESCRIPTOR_REQUESTdata structure. This
data structure has to be initialized by the caller. It provides input parameters for the
IOCTL operation.

nInBufferSize
Specifies the size, in bytes, of the buffer pointed to bylpInBuffer . This value has to
be set to sizeof(USBIO_DESCRIPTOR_REQUEST) for this operation.

lpOutBuffer
Points to a caller-provided buffer that will receive the descriptor data.

nOutBufferSize
Specifies the size, in bytes, of the buffer pointed to bylpOutBuffer .

lpBytesReturned
Points to a caller-provided DWORD variable that will be set to the number of bytes
returned in the buffer pointed to bylpOutBuffer if the request succeeds.

Comments

The buffer that is passed to this function by means oflpOutBuffer should be large
enough to hold the requested descriptor. Otherwise, onlynOutBufferSize bytes from
the beginning of the descriptor will be returned.

The size of the output buffer provided atlpOutBuffer should be a multiple of the
FIFO size (maximum packet size) of endpoint zero.

If the request will be completed successfully then the variable pointed to by
lpBytesReturned will be set to the number of descriptor data bytes returned in the
output buffer.

See Also

USBIO_DESCRIPTOR_REQUEST(page88)
IOCTL_USBIO_SET_DESCRIPTOR (page39)

38 USBIO Reference Manual

4 Programming Interface

IOCTL_USBIO_SET_DESCRIPTOR

The IOCTL_USBIO_SET_DESCRIPTOR operation sets a specific descriptor of the device.

dwIoControlCode
Set to IOCTL_USBIO_SET_DESCRIPTOR for this operation.

lpInBuffer
Points to a caller-providedUSBIO_DESCRIPTOR_REQUESTdata structure. This
data structure has to be initialized by the caller. It provides input parameters for the
IOCTL operation.

nInBufferSize
Specifies the size, in bytes, of the buffer pointed to bylpInBuffer . This value has to
be set to sizeof(USBIO_DESCRIPTOR_REQUEST) for this operation.

lpOutBuffer
Points to a caller-provided buffer that contains the descriptor data to be set.

nOutBufferSize
Specifies the size, in bytes, of the buffer pointed to bylpOutBuffer . This is equal to
the number of descriptor data bytes to be transferred to the device.

lpBytesReturned
Points to a caller-provided DWORD variable that will be set to the number of bytes
transferred if the request succeeds.

Comments

USB devices do not have to support a SET_DESCRIPTOR request. Consequently, most
USB devices do not support the IOCTL_USBIO_SET_DESCRIPTOR operation.

Although the data buffer is described by the parameterslpOutBuffer and
nOutBufferSize it provides input data for the request. Some confusion is caused by
the naming scheme of the Windows API.

See Also

USBIO_DESCRIPTOR_REQUEST(page88)
IOCTL_USBIO_GET_DESCRIPTOR (page38)

USBIO Reference Manual 39

4 Programming Interface

IOCTL_USBIO_SET_FEATURE

The IOCTL_USBIO_SET_FEATURE operation is used to set or enable a specific feature.

dwIoControlCode
Set to IOCTL_USBIO_SET_FEATURE for this operation.

lpInBuffer
Points to a caller-providedUSBIO_FEATURE_REQUEST data structure. This data
structure has to be initialized by the caller. It provides input parameters for the IOCTL
operation.

nInBufferSize
Specifies the size, in bytes, of the buffer pointed to bylpInBuffer . This value has to
be set to sizeof(USBIO_FEATURE_REQUEST) for this operation.

lpOutBuffer
Not used with this operation. Set to NULL.

nOutBufferSize
Not used with this operation. Set to zero.

lpBytesReturned
Points to a caller-provided DWORD variable. The value of this variable is meaningless in
the context of this IOCTL operation.

Comments

The SET_FEATURE request appears on the bus with the parameters specified in the
USBIO_FEATURE_REQUEST data structure pointed to bylpInBuffer .

See Also

USBIO_FEATURE_REQUEST (page90)
IOCTL_USBIO_CLEAR_FEATURE (page41)

40 USBIO Reference Manual

4 Programming Interface

IOCTL_USBIO_CLEAR_FEATURE

The IOCTL_USBIO_CLEAR_FEATURE operation is used to clear or disable a specific feature.

dwIoControlCode
Set to IOCTL_USBIO_CLEAR_FEATURE for this operation.

lpInBuffer
Points to a caller-providedUSBIO_FEATURE_REQUEST data structure. This data
structure has to be initialized by the caller. It provides input parameters for the IOCTL
operation.

nInBufferSize
Specifies the size, in bytes, of the buffer pointed to bylpInBuffer . This value has to
be set to sizeof(USBIO_FEATURE_REQUEST) for this operation.

lpOutBuffer
Not used with this operation. Set to NULL.

nOutBufferSize
Not used with this operation. Set to zero.

lpBytesReturned
Points to a caller-provided DWORD variable. The value of this variable is meaningless in
the context of this IOCTL operation.

Comments

The CLEAR_FEATURE request appears on the bus with the parameters specified in the
USBIO_FEATURE_REQUEST data structure pointed to bylpInBuffer .

See Also

USBIO_FEATURE_REQUEST (page90)
IOCTL_USBIO_SET_FEATURE (page40)

USBIO Reference Manual 41

4 Programming Interface

IOCTL_USBIO_GET_STATUS

The IOCTL_USBIO_GET_STATUS operation requests status information for a specific
recipient.

dwIoControlCode
Set to IOCTL_USBIO_GET_STATUS for this operation.

lpInBuffer
Points to a caller-providedUSBIO_STATUS_REQUESTdata structure. This data
structure has to be initialized by the caller. It provides input parameters for the IOCTL
operation.

nInBufferSize
Specifies the size, in bytes, of the buffer pointed to bylpInBuffer . This value has to
be set to sizeof(USBIO_STATUS_REQUEST) for this operation.

lpOutBuffer
Points to a caller-providedUSBIO_STATUS_REQUEST_DATAdata structure. This
data structure will receive the results of the IOCTL operation.

nOutBufferSize
Specifies the size, in bytes, of the buffer pointed to bylpOutBuffer . This value has to
be set to sizeof(USBIO_STATUS_REQUEST_DATA) for this operation.

lpBytesReturned
Points to a caller-provided DWORD variable that will be set to the number of bytes
returned in the buffer pointed to bylpOutBuffer if the request succeeds. The returned
value will be equal to sizeof(USBIO_STATUS_REQUEST_DATA).

Comments

The GET_STATUS request appears on the bus with the parameters specified in the
USBIO_STATUS_REQUESTdata structure. On successful completion the IOCTL
operation returns the data structureUSBIO_STATUS_REQUEST_DATA in the buffer
pointed to bylpOutBuffer .

See Also

USBIO_STATUS_REQUEST(page91)
USBIO_STATUS_REQUEST_DATA (page92)

42 USBIO Reference Manual

4 Programming Interface

IOCTL_USBIO_GET_CONFIGURATION

The IOCTL_USBIO_GET_CONFIGURATION operation retrieves the current configuration of
the device.

dwIoControlCode
Set to IOCTL_USBIO_GET_CONFIGURATION for this operation.

lpInBuffer
Not used with this operation. Set to NULL.

nInBufferSize
Not used with this operation. Set to zero.

lpOutBuffer
Points to a caller-providedUSBIO_GET_CONFIGURATION_DATA data structure.
This data structure will receive the results of the IOCTL operation.

nOutBufferSize
Specifies the size, in bytes, of the buffer pointed to bylpOutBuffer . This value has to
be set to sizeof(USBIO_GET_CONFIGURATION_DATA) for this operation.

lpBytesReturned
Points to a caller-provided DWORD variable that will be set to the number of bytes
returned in the buffer pointed to bylpOutBuffer if the request succeeds. The returned
value will be equal to sizeof(USBIO_GET_CONFIGURATION_DATA).

Comments

A GET_CONFIGURATION request appears on the bus. The data structure
USBIO_GET_CONFIGURATION_DATA pointed to bylpOutBuffer returns the
configuration value. A value of zero means "not configured".

See Also

USBIO_GET_CONFIGURATION_DATA (page93)
IOCTL_USBIO_GET_INTERFACE (page44)
IOCTL_USBIO_SET_CONFIGURATION (page46)

USBIO Reference Manual 43

4 Programming Interface

IOCTL_USBIO_GET_INTERFACE

The IOCTL_USBIO_GET_INTERFACE operation retrieves the current alternate setting of a
specific interface.

dwIoControlCode
Set to IOCTL_USBIO_GET_INTERFACE for this operation.

lpInBuffer
Points to a caller-providedUSBIO_GET_INTERFACE data structure. This data
structure has to be initialized by the caller. It provides input parameters for the IOCTL
operation.

nInBufferSize
Specifies the size, in bytes, of the buffer pointed to bylpInBuffer . This value has to
be set to sizeof(USBIO_GET_INTERFACE) for this operation.

lpOutBuffer
Points to a caller-providedUSBIO_GET_INTERFACE_DATA data structure. This data
structure will receive the results of the IOCTL operation.

nOutBufferSize
Specifies the size, in bytes, of the buffer pointed to bylpOutBuffer . This value has to
be set to sizeof(USBIO_GET_INTERFACE_DATA) for this operation.

lpBytesReturned
Points to a caller-provided DWORD variable that will be set to the number of bytes
returned in the buffer pointed to bylpOutBuffer if the request succeeds. The returned
value will be equal to sizeof(USBIO_GET_INTERFACE_DATA).

Comments

A GET_INTERFACE request appears on the bus. The data structure
USBIO_GET_INTERFACE_DATA pointed to bylpOutBuffer returns the current
alternate setting of the interface specified in theUSBIO_GET_INTERFACE structure.

Note: This request is not supported by the USB driver stack on Windows XP.
Consequently, on Windows XP this IOCTL operation will be completed with an error
code of USBIO_ERR_NOT_SUPPORTED (0xE0000E00).

See Also

USBIO_GET_INTERFACE (page94)
USBIO_GET_INTERFACE_DATA (page95)
IOCTL_USBIO_SET_CONFIGURATION (page46)
IOCTL_USBIO_SET_INTERFACE (page48)

44 USBIO Reference Manual

4 Programming Interface

IOCTL_USBIO_STORE_CONFIG_DESCRIPTOR

The IOCTL_USBIO_STORE_CONFIG_DESCRIPTOR operation stores a configuration
descriptor to be used for subsequent set configuration requests within the USBIO device driver.

dwIoControlCode
Set to IOCTL_USBIO_STORE_CONFIG_DESCRIPTOR for this operation.

lpInBuffer
Points to a caller-provided buffer that contains the descriptor data to be set.

nInBufferSize
Specifies the size, in bytes, of the buffer pointed to bylpInBuffer . This is equal to the
number of descriptor data bytes to be stored.

lpOutBuffer
Not used with this operation. Set to NULL.

nOutBufferSize
Not used with this operation. Set to zero.

lpBytesReturned
Points to a caller-provided DWORD variable. The value of this variable is meaningless in
the context of this IOCTL operation.

Comments

This IOCTL request may be used to store a user-defined configuration descriptor within
the USBIO driver. The stored descriptor is used by the USBIO driver in subsequent
IOCTL_USBIO_SET_CONFIGURATION operations. The usage of
IOCTL_USBIO_STORE_CONFIG_DESCRIPTOR is optional. If no user-defined
configuration descriptor is stored USBIO will use the configuration descriptor provided
by the device.

Note: This IOCTL operation is obsolete and should not be used. It was introduced in
earlier versions of USBIO to work around problems caused by the Windows USB driver
stack. The stack was not able to handle some types of isochronous endpoint descriptors
correctly. In the meantime these problems are fixed and therefore the work-around is
obsolete.

See Also

IOCTL_USBIO_SET_CONFIGURATION (page46)

USBIO Reference Manual 45

4 Programming Interface

IOCTL_USBIO_SET_CONFIGURATION

The IOCTL_USBIO_SET_CONFIGURATION operation is used to set the device configuration.

dwIoControlCode
Set to IOCTL_USBIO_SET_CONFIGURATION for this operation.

lpInBuffer
Points to a caller-providedUSBIO_SET_CONFIGURATION data structure. This data
structure has to be initialized by the caller. It provides input parameters for the IOCTL
operation.

nInBufferSize
Specifies the size, in bytes, of the buffer pointed to bylpInBuffer . This value has to
be set to sizeof(USBIO_SET_CONFIGURATION) for this operation.

lpOutBuffer
Not used with this operation. Set to NULL.

nOutBufferSize
Not used with this operation. Set to zero.

lpBytesReturned
Points to a caller-provided DWORD variable. The value of this variable is meaningless in
the context of this IOCTL operation.

Comments

A SET_CONFIGURATION request appears on the bus. The USB bus driver USBD
generates additional SET_INTERFACE requests on the bus if necessary. The parameters
used for the SET_CONFIGURATION and SET_INTERFACE requests are taken from the
configuration descriptor that is reported by the device.

One or more interfaces can be configured with one call. The number of interfaces and the
alternate setting for each interface have to be specified in the
USBIO_SET_CONFIGURATION structure pointed to bylpInBuffer .

All pipe handles associated with the device will be unbound and all pending requests will
be cancelled. If this request returns with success, new pipe objects are available. The
IOCTL operationIOCTL_USBIO_GET_CONFIGURATION_INFO may be used to
query all available pipes and interfaces.

See Also

USBIO_SET_CONFIGURATION (page97)
IOCTL_USBIO_GET_CONFIGURATION_INFO (page54)
IOCTL_USBIO_UNCONFIGURE_DEVICE (page47)
IOCTL_USBIO_GET_CONFIGURATION (page43)
IOCTL_USBIO_GET_INTERFACE (page44)
IOCTL_USBIO_SET_INTERFACE (page48)

46 USBIO Reference Manual

4 Programming Interface

IOCTL_USBIO_UNCONFIGURE_DEVICE

The IOCTL_USBIO_UNCONFIGURE_DEVICE operation is used to set the device to its
unconfigured state.

dwIoControlCode
Set to IOCTL_USBIO_UNCONFIGURE_DEVICE for this operation.

lpInBuffer
Not used with this operation. Set to NULL.

nInBufferSize
Not used with this operation. Set to zero.

lpOutBuffer
Not used with this operation. Set to NULL.

nOutBufferSize
Not used with this operation. Set to zero.

lpBytesReturned
Points to a caller-provided DWORD variable. The value of this variable is meaningless in
the context of this IOCTL operation.

Comments

A SET_CONFIGURATION request with the configuration value 0 appears on the bus.
All pipe handles associated with the device will be unbound and all pending requests will
be cancelled.

See Also

IOCTL_USBIO_SET_CONFIGURATION (page46)
IOCTL_USBIO_GET_CONFIGURATION (page43)
IOCTL_USBIO_GET_CONFIGURATION_INFO (page54)
IOCTL_USBIO_GET_INTERFACE (page44)
IOCTL_USBIO_SET_INTERFACE (page48)

USBIO Reference Manual 47

4 Programming Interface

IOCTL_USBIO_SET_INTERFACE

The IOCTL_USBIO_SET_INTERFACE operation sets the alternate setting of a specific
interface.

dwIoControlCode
Set to IOCTL_USBIO_SET_INTERFACE for this operation.

lpInBuffer
Points to a caller-providedUSBIO_INTERFACE_SETTING data structure. This data
structure has to be initialized by the caller. It provides input parameters for the IOCTL
operation.

nInBufferSize
Specifies the size, in bytes, of the buffer pointed to bylpInBuffer . This value has to
be set to sizeof(USBIO_INTERFACE_SETTING) for this operation.

lpOutBuffer
Not used with this operation. Set to NULL.

nOutBufferSize
Not used with this operation. Set to zero.

lpBytesReturned
Points to a caller-provided DWORD variable. The value of this variable is meaningless in
the context of this IOCTL operation.

Comments

A SET_INTERFACE request appears on the bus.

All pipe handles associated with the interface will be unbound and all pending requests
will be cancelled. If this request returns with success, new pipe objects are available. The
operationIOCTL_USBIO_GET_CONFIGURATION_INFO may be used to query all
available pipes and interfaces.

If invalid parameters (e.g. non-existing Alternate Setting) are specified in the
USBIO_INTERFACE_SETTING data structure an error status of
USBIO_ERR_INVALID_PARAM will be returned. The previous configuration is lost in
this case. The device has to be re-configured by using the IOCTL operation
IOCTL_USBIO_SET_CONFIGURATION .

See Also

USBIO_INTERFACE_SETTING (page96)
IOCTL_USBIO_GET_INTERFACE (page44)
IOCTL_USBIO_SET_CONFIGURATION (page46)
IOCTL_USBIO_GET_CONFIGURATION (page43)
IOCTL_USBIO_GET_CONFIGURATION_INFO (page54)

48 USBIO Reference Manual

4 Programming Interface

IOCTL_USBIO_CLASS_OR_VENDOR_IN_REQUEST

The IOCTL_USBIO_CLASS_OR_VENDOR_IN_REQUEST operation is used to generate a
class or vendor specific device request with a data transfer direction from device to host.

dwIoControlCode
Set to IOCTL_USBIO_CLASS_OR_VENDOR_IN_REQUEST for this operation.

lpInBuffer
Points to a caller-providedUSBIO_CLASS_OR_VENDOR_REQUESTdata structure.
This data structure has to be initialized by the caller. It provides input parameters for the
IOCTL operation.

nInBufferSize
Specifies the size, in bytes, of the buffer pointed to bylpInBuffer . This value has to
be set to sizeof(USBIO_CLASS_OR_VENDOR_REQUEST) for this operation.

lpOutBuffer
Points to a caller-provided buffer that will receive the data bytes transferred from the
device during the data phase of the control transfer. If the class or vendor specific device
request does not return any data this value can be set to NULL.nOutBufferSize has
to be set to zero in this case.

nOutBufferSize
Specifies the size, in bytes, of the buffer pointed to bylpOutBuffer . This is equal to
the length, in bytes, of the data transfer phase of the class or vendor specific device
request. If this value is set to zero then there is no data transfer phase.lpOutBuffer
should be set to NULL in this case.

lpBytesReturned
Points to a caller-provided DWORD variable that will be set to the number of bytes
returned in the buffer pointed to bylpOutBuffer if the request succeeds.

Comments

A SETUP request appears on the default pipe (endpoint zero) of the USB device with the
parameters defined by means of theUSBIO_CLASS_OR_VENDOR_REQUEST
structure pointed to bylpInBuffer . If a data transfer phase is required an IN token
appears on the bus and the successful transfer is acknowledged by an OUT token with a
zero length data packet. If no data phase is required an IN token appears on the bus with a
zero length data packet from the USB device for acknowledge.

If the request will be completed successfully then the variable pointed to by
lpBytesReturned will be set to the number of data bytes successfully transferred
during the data transfer phase of the control transfer.

See Also

USBIO_CLASS_OR_VENDOR_REQUEST(page98)
IOCTL_USBIO_CLASS_OR_VENDOR_OUT_REQUEST (page50)

USBIO Reference Manual 49

4 Programming Interface

IOCTL_USBIO_CLASS_OR_VENDOR_OUT_REQUEST

The IOCTL_USBIO_CLASS_OR_VENDOR_OUT_REQUEST operation is used to generate a
class or vendor specific device request with a data transfer direction from host to device.

dwIoControlCode
Set to IOCTL_USBIO_CLASS_OR_VENDOR_OUT_REQUEST for this operation.

lpInBuffer
Points to a caller-providedUSBIO_CLASS_OR_VENDOR_REQUESTdata structure.
This data structure has to be initialized by the caller. It provides input parameters for the
IOCTL operation.

nInBufferSize
Specifies the size, in bytes, of the buffer pointed to bylpInBuffer . This value has to
be set to sizeof(USBIO_CLASS_OR_VENDOR_REQUEST) for this operation.

lpOutBuffer
Points to a caller-provided buffer that contains the data bytes to be transferred to the
device during the data phase of the control transfer. If the class or vendor specific device
request does not have a data phase this value can be set to NULL.nOutBufferSize
has to be set to zero in this case.

nOutBufferSize
Specifies the size, in bytes, of the buffer pointed to bylpOutBuffer . This is equal to
the length, in bytes, of the data transfer phase of the class or vendor specific device
request. If this value is set to zero then there is no data transfer phase.lpOutBuffer
should be set to NULL in this case.

lpBytesReturned
Points to a caller-provided DWORD variable that will be set to the number of bytes
transferred from the buffer pointed to bylpOutBuffer if the request succeeds.

Comments

A SETUP request appears on the default pipe (endpoint zero) of the USB device with the
parameters defined by means of theUSBIO_CLASS_OR_VENDOR_REQUEST
structure pointed to bylpInBuffer . If a data transfer phase is required an OUT token
appears on the bus and the successful transfer is acknowledged by an IN token with a zero
length data packet from the device. If no data phase is required an IN token appears on
the bus and the device acknowledges with a zero length data packet.

If the request will be completed successfully then the variable pointed to by
lpBytesReturned will be set to the number of data bytes successfully transferred
during the data transfer phase of the control transfer.

Although the data buffer is described by the parameterslpOutBuffer and
nOutBufferSize it provides input data for the request. Some confusion is caused by
the naming scheme of the Windows API.

See Also

50 USBIO Reference Manual

4 Programming Interface

USBIO_CLASS_OR_VENDOR_REQUEST(page98)
IOCTL_USBIO_CLASS_OR_VENDOR_IN_REQUEST (page49)

USBIO Reference Manual 51

4 Programming Interface

IOCTL_USBIO_GET_DEVICE_PARAMETERS

The IOCTL_USBIO_GET_DEVICE_PARAMETERS operation returns USBIO driver settings
related to a device.

dwIoControlCode
Set to IOCTL_USBIO_GET_DEVICE_PARAMETERS for this operation.

lpInBuffer
Not used with this operation. Set to NULL.

nInBufferSize
Not used with this operation. Set to zero.

lpOutBuffer
Points to a caller-providedUSBIO_DEVICE_PARAMETERS data structure. This data
structure will receive the results of the IOCTL operation.

nOutBufferSize
Specifies the size, in bytes, of the buffer pointed to bylpOutBuffer . This value has to
be set to sizeof(USBIO_DEVICE_PARAMETERS) for this operation.

lpBytesReturned
Points to a caller-provided DWORD variable that will be set to the number of bytes
returned in the buffer pointed to bylpOutBuffer if the request succeeds. The returned
value will be equal to sizeof(USBIO_DEVICE_PARAMETERS).

Comments

The default state of device-related settings is defined by a set of registry parameters which
are read by the USBIO driver at startup. The current state can be retrieved by means of
this request.

This IOCTL operation retrieves internal driver settings. It does not cause any action on
the USB.

See Also

USBIO_DEVICE_PARAMETERS (page100)
IOCTL_USBIO_SET_DEVICE_PARAMETERS (page53)
IOCTL_USBIO_GET_PIPE_PARAMETERS (page70)
IOCTL_USBIO_SET_PIPE_PARAMETERS (page71)

52 USBIO Reference Manual

4 Programming Interface

IOCTL_USBIO_SET_DEVICE_PARAMETERS

The IOCTL_USBIO_SET_DEVICE_PARAMETERS operation is used to set USBIO driver
settings related to a device.

dwIoControlCode
Set to IOCTL_USBIO_SET_DEVICE_PARAMETERS for this operation.

lpInBuffer
Points to a caller-providedUSBIO_DEVICE_PARAMETERS data structure. This data
structure has to be initialized by the caller. It provides input parameters for the IOCTL
operation.

nInBufferSize
Specifies the size, in bytes, of the buffer pointed to bylpInBuffer . This value has to
be set to sizeof(USBIO_DEVICE_PARAMETERS) for this operation.

lpOutBuffer
Not used with this operation. Set to NULL.

nOutBufferSize
Not used with this operation. Set to zero.

lpBytesReturned
Points to a caller-provided DWORD variable. The value of this variable is meaningless in
the context of this IOCTL operation.

Comments

The default state of device-related settings is defined by a set of registry parameters which
are read by the USBIO driver at startup. The current state can be modified by means of
this request.

This IOCTL operation modifies internal driver settings. It does not cause any action on
the USB.

See Also

USBIO_DEVICE_PARAMETERS (page100)
IOCTL_USBIO_GET_DEVICE_PARAMETERS (page52)
IOCTL_USBIO_GET_PIPE_PARAMETERS (page70)
IOCTL_USBIO_SET_PIPE_PARAMETERS (page71)

USBIO Reference Manual 53

4 Programming Interface

IOCTL_USBIO_GET_CONFIGURATION_INFO

The IOCTL_USBIO_GET_CONFIGURATION_INFO operation returns information about the
pipes and interfaces that are available after the device has been configured.

dwIoControlCode
Set to IOCTL_USBIO_GET_CONFIGURATION_INFO for this operation.

lpInBuffer
Not used with this operation. Set to NULL.

nInBufferSize
Not used with this operation. Set to zero.

lpOutBuffer
Points to a caller-providedUSBIO_CONFIGURATION_INFO data structure. This data
structure will receive the results of the IOCTL operation.

nOutBufferSize
Specifies the size, in bytes, of the buffer pointed to bylpOutBuffer . This value has to
be set to sizeof(USBIO_CONFIGURATION_INFO) for this operation.

lpBytesReturned
Points to a caller-provided DWORD variable that will be set to the number of bytes
returned in the buffer pointed to bylpOutBuffer if the request succeeds. The returned
value will be equal to sizeof(USBIO_CONFIGURATION_INFO).

Comments

This operation returns information about all active pipes and interfaces that are available
in the current configuration.

See Also

USBIO_CONFIGURATION_INFO (page106)
IOCTL_USBIO_SET_CONFIGURATION (page46)
IOCTL_USBIO_GET_CONFIGURATION (page43)
IOCTL_USBIO_SET_INTERFACE (page48)
IOCTL_USBIO_GET_INTERFACE (page44)

54 USBIO Reference Manual

4 Programming Interface

IOCTL_USBIO_RESET_DEVICE

The IOCTL_USBIO_RESET_DEVICE operation causes a reset at the hub port to which the
device is connected.

dwIoControlCode
Set to IOCTL_USBIO_RESET_DEVICE for this operation.

lpInBuffer
Not used with this operation. Set to NULL.

nInBufferSize
Not used with this operation. Set to zero.

lpOutBuffer
Not used with this operation. Set to NULL.

nOutBufferSize
Not used with this operation. Set to zero.

lpBytesReturned
Points to a caller-provided DWORD variable. The value of this variable is meaningless in
the context of this IOCTL operation.

Comments

The following events occur on the bus if this IOCTL request is issued:
USB Reset
GET_DEVICE_DESCRIPTOR
USB Reset
SET_ADDRESS
GET_DEVICE_DESCRIPTOR
GET_CONFIGURATION_DESCRIPTOR

Note that the device receives two USB Resets and a new USB address will be assigned by
the USB bus driver USBD.

After the IOCTL_USBIO_RESET_DEVICE operation is completed the device is in the
unconfigured state. Furthermore, all pipes associated with the device will be unbound and
all pending read and write requests will be cancelled.

The USBIO driver allows a USB reset request only if the device is configured. That
meansIOCTL_USBIO_SET_CONFIGURATION has been successfully executed. If
the device is in the unconfigured state this request returns with an error status. This
limitation is caused by the behaviour of Windows 2000. A system crash does occur on
Windows 2000 if a USB Reset is issued for an unconfigured device. Therefore, USBIO
does not allow to issue a USB Reset while the device is unconfigured.

If the device changes its USB descriptor set during a USB Reset the
IOCTL_USBIO_CYCLE_PORT request should be used instead of
IOCTL_USBIO_RESET_DEVICE.

This request does not work if the system-provided multi-interface driver is used.

USBIO Reference Manual 55

4 Programming Interface

See Also

IOCTL_USBIO_SET_CONFIGURATION (page46)
IOCTL_USBIO_CYCLE_PORT (page64)

56 USBIO Reference Manual

4 Programming Interface

IOCTL_USBIO_GET_CURRENT_FRAME_NUMBER

The IOCTL_USBIO_GET_CURRENT_FRAME_NUMBER operation returns the current value
of the frame number counter that is maintained by the USB bus driver USBD.

dwIoControlCode
Set to IOCTL_USBIO_GET_CURRENT_FRAME_NUMBER for this operation.

lpInBuffer
Not used with this operation. Set to NULL.

nInBufferSize
Not used with this operation. Set to zero.

lpOutBuffer
Points to a caller-providedUSBIO_FRAME_NUMBER data structure. This data
structure will receive the results of the IOCTL operation.

nOutBufferSize
Specifies the size, in bytes, of the buffer pointed to bylpOutBuffer . This value has to
be set to sizeof(USBIO_FRAME_NUMBER) for this operation.

lpBytesReturned
Points to a caller-provided DWORD variable that will be set to the number of bytes
returned in the buffer pointed to bylpOutBuffer if the request succeeds. The returned
value will be equal to sizeof(USBIO_FRAME_NUMBER).

Comments

The frame number returned by this IOCTL operation is an unsigned 32 bit value. The
lower 11 bits of this value correspond to the frame number value in the Start Of Frame
(SOF) token on the USB.

See Also

USBIO_FRAME_NUMBER (page107)

USBIO Reference Manual 57

4 Programming Interface

IOCTL_USBIO_SET_DEVICE_POWER_STATE

The IOCTL_USBIO_SET_DEVICE_POWER_STATE operation sets the power state of the USB
device.

dwIoControlCode
Set to IOCTL_USBIO_SET_DEVICE_POWER_STATE for this operation.

lpInBuffer
Points to a caller-providedUSBIO_DEVICE_POWER data structure. This data
structure has to be initialized by the caller. It provides input parameters for the IOCTL
operation.

nInBufferSize
Specifies the size, in bytes, of the buffer pointed to bylpInBuffer . This value has to
be set to sizeof(USBIO_DEVICE_POWER) for this operation.

lpOutBuffer
Not used with this operation. Set to NULL.

nOutBufferSize
Not used with this operation. Set to zero.

lpBytesReturned
Points to a caller-provided DWORD variable. The value of this variable is meaningless in
the context of this IOCTL operation.

Comments

The device power state is maintained internally by the USBIO driver. This request allows
to change the current device power state.

If the device is set to a suspend state (any power state different from D0) then all pending
requests should be cancelled before a new device power state is set by means of this
IOCTL operation.

See also the sections3.3(page30) and the description of the data structure
USBIO_DEVICE_POWER for more information on power management.

See Also

USBIO_DEVICE_POWER (page108)
IOCTL_USBIO_GET_DEVICE_POWER_STATE (page59)

58 USBIO Reference Manual

4 Programming Interface

IOCTL_USBIO_GET_DEVICE_POWER_STATE

The IOCTL_USBIO_GET_DEVICE_POWER_STATE operation retrieves the current power
state of the device.

dwIoControlCode
Set to IOCTL_USBIO_GET_DEVICE_POWER_STATE for this operation.

lpInBuffer
Not used with this operation. Set to NULL.

nInBufferSize
Not used with this operation. Set to zero.

lpOutBuffer
Points to a caller-providedUSBIO_DEVICE_POWER data structure. This data
structure will receive the results of the IOCTL operation.

nOutBufferSize
Specifies the size, in bytes, of the buffer pointed to bylpOutBuffer . This value has to
be set to sizeof(USBIO_DEVICE_POWER) for this operation.

lpBytesReturned
Points to a caller-provided DWORD variable that will be set to the number of bytes
returned in the buffer pointed to bylpOutBuffer if the request succeeds. The returned
value will be equal to sizeof(USBIO_DEVICE_POWER).

Comments

The device power state is maintained internally by the USBIO driver. This request allows
to query the current device power state.

See also the sections3.3(page30) and the description of the data structure
USBIO_DEVICE_POWER for more information on power management.

See Also

USBIO_DEVICE_POWER (page108)
IOCTL_USBIO_SET_DEVICE_POWER_STATE (page58)

USBIO Reference Manual 59

4 Programming Interface

IOCTL_USBIO_GET_BANDWIDTH_INFO

The IOCTL_USBIO_GET_BANDWIDTH_INFO request returns information on the current
USB bandwidth consumption.

dwIoControlCode
Set to IOCTL_USBIO_GET_BANDWIDTH_INFO for this operation.

lpInBuffer
Not used with this operation. Set to NULL.

nInBufferSize
Not used with this operation. Set to zero.

lpOutBuffer
Points to a caller-providedUSBIO_BANDWIDTH_INFO data structure. This data
structure will receive the results of the IOCTL operation.

nOutBufferSize
Specifies the size, in bytes, of the buffer pointed to bylpOutBuffer . This value has to
be set to sizeof(USBIO_BANDWIDTH_INFO) for this operation.

lpBytesReturned
Points to a caller-provided DWORD variable that will be set to the number of bytes
returned in the buffer pointed to bylpOutBuffer if the request succeeds. The returned
value will be equal to sizeof(USBIO_BANDWIDTH_INFO).

Comments

This IOCTL operation allows an application to check the bandwidth that is available on
the USB. Depending on this information an application can select an appropriate device
configuration, if desired.

See Also

USBIO_BANDWIDTH_INFO (page84)
IOCTL_USBIO_GET_DEVICE_INFO (page61)

60 USBIO Reference Manual

4 Programming Interface

IOCTL_USBIO_GET_DEVICE_INFO

The IOCTL_USBIO_GET_DEVICE_INFO request returns information on the USB device.

dwIoControlCode
Set to IOCTL_USBIO_GET_DEVICE_INFO for this operation.

lpInBuffer
Not used with this operation. Set to NULL.

nInBufferSize
Not used with this operation. Set to zero.

lpOutBuffer
Points to a caller-providedUSBIO_DEVICE_INFO data structure. This data structure
will receive the results of the IOCTL operation.

nOutBufferSize
Specifies the size, in bytes, of the buffer pointed to bylpOutBuffer . This value has to
be set to sizeof(USBIO_DEVICE_INFO) for this operation.

lpBytesReturned
Points to a caller-provided DWORD variable that will be set to the number of bytes
returned in the buffer pointed to bylpOutBuffer if the request succeeds. The returned
value will be equal to sizeof(USBIO_DEVICE_INFO).

Comments

TheUSBIO_DEVICE_INFO data structure returned by this IOCTL request includes a
flag that indicates whether a USB 2.0 device operates in high speed mode or not. An
application can use this information to detect if a USB 2.0 device is connected to a hub
port that is high speed capable.

See Also

USBIO_DEVICE_INFO (page85)
IOCTL_USBIO_GET_BANDWIDTH_INFO (page60)

USBIO Reference Manual 61

4 Programming Interface

IOCTL_USBIO_GET_DRIVER_INFO

The IOCTL_USBIO_GET_DRIVER_INFO operation returns version information about the
USBIO programming interface (API) and the USBIO driver executable that is currently running.

dwIoControlCode
Set to IOCTL_USBIO_GET_DRIVER_INFO for this operation.

lpInBuffer
Not used with this operation. Set to NULL.

nInBufferSize
Not used with this operation. Set to zero.

lpOutBuffer
Points to a caller-providedUSBIO_DRIVER_INFO data structure. This data structure
will receive the results of the IOCTL operation.

nOutBufferSize
Specifies the size, in bytes, of the buffer pointed to bylpOutBuffer . This value has to
be set to sizeof(USBIO_DRIVER_INFO) for this operation.

lpBytesReturned
Points to a caller-provided DWORD variable that will be set to the number of bytes
returned in the buffer pointed to bylpOutBuffer if the request succeeds. The returned
value will be equal to sizeof(USBIO_DRIVER_INFO).

Comments

An application should check if the API version of the USBIO driver that is currently
running matches with the version it expects. Newer versions of the USBIO driver API are
compatible with older versions. However, the backward compatibility is maintained at the
source code level. Thus, applications should be recompiled if a newer version of the
USBIO driver is used.

If an application is compiled then the USBIO API version that the application is using is
defined by the constant USBIO_API_VERSION inusbio_i.h. At runtime the application
should always check that the API version of the USBIO driver that is installed in the
system is equal to the expected API version defined at compile time by the
USBIO_API_VERSION constant. This way, problems caused by version inconsistencies
can be avoided.

Note that the USBIO API version and the USBIO driver version are maintained
separately. The API version number will be incremented only if changes are made at the
API level. The driver version number will be incremented for each USBIO release.
Typically, an application does not need to check the USBIO driver version. It can display
the driver version number for informational purposes, if desired.

See Also

USBIO_DRIVER_INFO (page86)

62 USBIO Reference Manual

4 Programming Interface

IOCTL_USBIO_GET_DEVICE_INFO (page61)
IOCTL_USBIO_GET_BANDWIDTH_INFO (page60)

USBIO Reference Manual 63

4 Programming Interface

IOCTL_USBIO_CYCLE_PORT

The IOCTL_USBIO_CYCLE_PORT operation causes a reset at the hub port to which the device
is connected and a new enumeration of the device.

dwIoControlCode
Set to IOCTL_USBIO_CYCLE_PORT for this operation.

lpInBuffer
Not used with this operation. Set to NULL.

nInBufferSize
Not used with this operation. Set to zero.

lpOutBuffer
Not used with this operation. Set to NULL.

nOutBufferSize
Not used with this operation. Set to zero.

lpBytesReturned
Points to a caller-provided DWORD variable. The value of this variable is meaningless in
the context of this IOCTL operation.

Comments

The IOCTL_USBIO_CYCLE_PORT request is similar to the
IOCTL_USBIO_RESET_DEVICE request except that from a software point of view a
device disconnect/connect is simulated. This request causes the following events to occur:

– The USBIO device object that is associated with the USB device will be removed.
The corresponding device handles and pipe handles become invalid and should be
closed by the application.

– The operating system starts a new enumeration of the device. The following events
occur on the bus:
USB Reset
GET_DEVICE_DESCRIPTOR
USB Reset
SET_ADDRESS
GET_DEVICE_DESCRIPTOR
GET_CONFIGURATION_DESCRIPTOR

– A new device object instance is created by the USBIO driver.

– The application receives a PnP notification that informs it about the new device
instance.

After an application issued this request it should close all handles for the current device.
It can open the newly created device instance after it receives the appropriate PnP
notification.

This request should be used instead ofIOCTL_USBIO_RESET_DEVICE if the USB
device modifies its descriptors during a USB Reset. Particularly, this is required to

64 USBIO Reference Manual

4 Programming Interface

implement the Device Firmware Upgrade (DFU) device class specification. Note that the
USB device receives two USB Resets after this call. This does not conform to the DFU
specification. However, this is the standard device enumeration method used by the
Windows USB bus driver (USBD).

The IOCTL_USBIO_CYCLE_PORT request does not work if the system-provided
multi-interface driver is used.

See Also

IOCTL_USBIO_RESET_DEVICE (page55)

USBIO Reference Manual 65

4 Programming Interface

IOCTL_USBIO_BIND_PIPE

The IOCTL_USBIO_BIND_PIPE operation is used to establish a binding between a device
handle and a pipe object.

dwIoControlCode
Set to IOCTL_USBIO_BIND_PIPE for this operation.

lpInBuffer
Points to a caller-providedUSBIO_BIND_PIPE data structure. This data structure has to
be initialized by the caller. It provides input parameters for the IOCTL operation.

nInBufferSize
Specifies the size, in bytes, of the buffer pointed to bylpInBuffer . This value has to
be set to sizeof(USBIO_BIND_PIPE) for this operation.

lpOutBuffer
Not used with this operation. Set to NULL.

nOutBufferSize
Not used with this operation. Set to zero.

lpBytesReturned
Points to a caller-provided DWORD variable. The value of this variable is meaningless in
the context of this IOCTL operation.

Comments

This IOCTL operation binds a device handle to a pipe object. The pipe is identified by its
endpoint address. Only the endpoints that are active in the current configuration can be
bound. After this operation is successfully completed the pipe can be accessed using pipe
related requests, e.g. read or write requests.

A handle can be bound to one pipe object only. The binding can be deleted by means of
IOCTL_USBIO_UNBIND_PIPE and the handle can be bound to another pipe object by
calling IOCTL_USBIO_BIND_PIPE again. However, it is recommended to create a
separate handle for each pipe that is used to transfer data. This will simplify the
implementation of an application.

This IOCTL operation modifies the internal driver state only. It does not cause any action
on the USB.

See Also

USBIO_BIND_PIPE (page109)
IOCTL_USBIO_UNBIND_PIPE (page67)
IOCTL_USBIO_SET_CONFIGURATION (page46)
IOCTL_USBIO_GET_CONFIGURATION_INFO (page54)

66 USBIO Reference Manual

4 Programming Interface

IOCTL_USBIO_UNBIND_PIPE

The IOCTL_USBIO_UNBIND_PIPE operation deletes the binding between a device handle and
a pipe object.

dwIoControlCode
Set to IOCTL_USBIO_UNBIND_PIPE for this operation.

lpInBuffer
Not used with this operation. Set to NULL.

nInBufferSize
Not used with this operation. Set to zero.

lpOutBuffer
Not used with this operation. Set to NULL.

nOutBufferSize
Not used with this operation. Set to zero.

lpBytesReturned
Points to a caller-provided DWORD variable. The value of this variable is meaningless in
the context of this IOCTL operation.

Comments

After this operation is successfully completed the handle is unbound and can be used to
bind another pipe. However, it is recommended to create a separate handle for each pipe
that is used to transfer data. This will simplify the implementation of an application.

The IOCTL_USBIO_UNBIND_PIPE request can safely be issued on a handle that is not
bound to a pipe object. The request has no effect in this case. However, the IOCTL
operation will be completed with an error status of USBIO_ERR_NOT_BOUND.

It is not necessary to unbind a pipe handle before it is closed. Closing a handle unbinds it
implicitly.

As a side-effect the IOCTL_USBIO_UNBIND_PIPE operation resets the statistical data
of the pipe and disables the calculation of the mean bandwidth. It has to be enabled and
configured by means of theIOCTL_USBIO_SETUP_PIPE_STATISTICS request
when the pipe is reused.

This IOCTL operation modifies the internal driver state only. It does not cause any action
on the USB.

See Also

IOCTL_USBIO_BIND_PIPE (page66)
IOCTL_USBIO_SETUP_PIPE_STATISTICS (page72)

USBIO Reference Manual 67

4 Programming Interface

IOCTL_USBIO_RESET_PIPE

The IOCTL_USBIO_RESET_PIPE operation is used to clear an error condition on a pipe.

dwIoControlCode
Set to IOCTL_USBIO_RESET_PIPE for this operation.

lpInBuffer
Not used with this operation. Set to NULL.

nInBufferSize
Not used with this operation. Set to zero.

lpOutBuffer
Not used with this operation. Set to NULL.

nOutBufferSize
Not used with this operation. Set to zero.

lpBytesReturned
Points to a caller-provided DWORD variable. The value of this variable is meaningless in
the context of this IOCTL operation.

Comments

If an error occurs while transferring data from or to the endpoint that is associated with
the pipe object then the USB bus driver USBD halts the pipe. No further data transfers
can be performed while the pipe is halted. Any read or write request will be completed
with an error status of USBIO_ERR_ENDPOINT_HALTED. To recover from this error
condition and to restart the pipe an IOCTL_USBIO_RESET_PIPE request has to be
issued on the pipe.

The IOCTL_USBIO_RESET_PIPE operation causes a
CLEAR_FEATURE(ENDPOINT_STALL) request on the USB. In addition, the endpoint
processing in the USB host controller will be reinitialized.

Isochronous pipes will never be halted by the USB bus driver USBD. This is because on
isochronous pipes no handshake protocol is used to detect errors in the data transmission.

This IOCTL operation requires that the handle on which the operation is performed has
been bound to a pipe object by means ofIOCTL_USBIO_BIND_PIPE . Otherwise, the
IOCTL operation will fail with an error status of USBIO_ERR_NOT_BOUND.

See Also

IOCTL_USBIO_ABORT_PIPE (page69)
IOCTL_USBIO_BIND_PIPE (page66)

68 USBIO Reference Manual

4 Programming Interface

IOCTL_USBIO_ABORT_PIPE

The IOCTL_USBIO_ABORT_PIPE operation is used to cancel all outstanding read and write
requests on a pipe.

dwIoControlCode
Set to IOCTL_USBIO_ABORT_PIPE for this operation.

lpInBuffer
Not used with this operation. Set to NULL.

nInBufferSize
Not used with this operation. Set to zero.

lpOutBuffer
Not used with this operation. Set to NULL.

nOutBufferSize
Not used with this operation. Set to zero.

lpBytesReturned
Points to a caller-provided DWORD variable. The value of this variable is meaningless in
the context of this IOCTL operation.

Comments

All outstanding read or write requests on the pipe will be aborted and returned with an
error status of USBIO_ERR_CANCELED.

This IOCTL operation requires that the handle on which the operation is performed has
been bound to a pipe object by means ofIOCTL_USBIO_BIND_PIPE . Otherwise, the
IOCTL operation will fail with an error status of USBIO_ERR_NOT_BOUND.

See Also

IOCTL_USBIO_RESET_PIPE (page68)
IOCTL_USBIO_BIND_PIPE (page66)

USBIO Reference Manual 69

4 Programming Interface

IOCTL_USBIO_GET_PIPE_PARAMETERS

The IOCTL_USBIO_GET_PIPE_PARAMETERS operation returns USBIO driver settings
related to a pipe.

dwIoControlCode
Set to IOCTL_USBIO_GET_PIPE_PARAMETERS for this operation.

lpInBuffer
Not used with this operation. Set to NULL.

nInBufferSize
Not used with this operation. Set to zero.

lpOutBuffer
Points to a caller-providedUSBIO_PIPE_PARAMETERS data structure. This data
structure will receive the results of the IOCTL operation.

nOutBufferSize
Specifies the size, in bytes, of the buffer pointed to bylpOutBuffer . This value has to
be set to sizeof(USBIO_PIPE_PARAMETERS) for this operation.

lpBytesReturned
Points to a caller-provided DWORD variable that will be set to the number of bytes
returned in the buffer pointed to bylpOutBuffer if the request succeeds. The returned
value will be equal to sizeof(USBIO_PIPE_PARAMETERS).

Comments

The default state of pipe-related settings is defined by a set of registry parameters which
are read by the USBIO driver at startup. The current state can be retrieved by means of
this request.

Note that a separate set of pipe settings is maintained per pipe object. The
IOCTL_USBIO_GET_PIPE_PARAMETERS request retrieves the actual settings of that
pipe object that is bound to the handle on which the request is issued.

This IOCTL operation requires that the handle on which the operation is performed has
been bound to a pipe object by means ofIOCTL_USBIO_BIND_PIPE . Otherwise, the
IOCTL operation will fail with an error status of USBIO_ERR_NOT_BOUND.

This IOCTL operation retrieves internal driver settings. It does not cause any action on
the USB.

See Also

USBIO_PIPE_PARAMETERS (page110)
IOCTL_USBIO_SET_PIPE_PARAMETERS (page71)
IOCTL_USBIO_GET_DEVICE_PARAMETERS (page52)
IOCTL_USBIO_SET_DEVICE_PARAMETERS (page53)
IOCTL_USBIO_BIND_PIPE (page66)

70 USBIO Reference Manual

4 Programming Interface

IOCTL_USBIO_SET_PIPE_PARAMETERS

The IOCTL_USBIO_SET_PIPE_PARAMETERS operation is used to set USBIO driver settings
related to a pipe.

dwIoControlCode
Set to IOCTL_USBIO_SET_PIPE_PARAMETERS for this operation.

lpInBuffer
Points to a caller-providedUSBIO_PIPE_PARAMETERS data structure. This data
structure has to be initialized by the caller. It provides input parameters for the IOCTL
operation.

nInBufferSize
Specifies the size, in bytes, of the buffer pointed to bylpInBuffer . This value has to
be set to sizeof(USBIO_PIPE_PARAMETERS) for this operation.

lpOutBuffer
Not used with this operation. Set to NULL.

nOutBufferSize
Not used with this operation. Set to zero.

lpBytesReturned
Points to a caller-provided DWORD variable. The value of this variable is meaningless in
the context of this IOCTL operation.

Comments

The default state of pipe-related settings is defined by a set of registry parameters which
are read by the USBIO driver at startup. The current state can be modified by means of
this request.

Note that a separate set of pipe settings is maintained per pipe object. The
IOCTL_USBIO_SET_PIPE_PARAMETERS request modifies the settings of that pipe
object that is bound to the handle on which the request is issued.

This IOCTL operation requires that the handle on which the operation is performed has
been bound to a pipe object by means ofIOCTL_USBIO_BIND_PIPE . Otherwise, the
IOCTL operation will fail with an error status of USBIO_ERR_NOT_BOUND.

This IOCTL operation modifies internal driver settings. It does not cause any action on
the USB.

See Also

USBIO_PIPE_PARAMETERS (page110)
IOCTL_USBIO_GET_PIPE_PARAMETERS (page70)
IOCTL_USBIO_GET_DEVICE_PARAMETERS (page52)
IOCTL_USBIO_SET_DEVICE_PARAMETERS (page53)
IOCTL_USBIO_BIND_PIPE (page66)

USBIO Reference Manual 71

4 Programming Interface

IOCTL_USBIO_SETUP_PIPE_STATISTICS

The IOCTL_USBIO_SETUP_PIPE_STATISTICS request enables or disables a statistical
analysis of the data transfer on a pipe.

dwIoControlCode
Set to IOCTL_USBIO_SETUP_PIPE_STATISTICS for this operation.

lpInBuffer
Points to a caller-providedUSBIO_SETUP_PIPE_STATISTICSdata structure. This
data structure has to be initialized by the caller. It provides input parameters for the
IOCTL operation.

nInBufferSize
Specifies the size, in bytes, of the buffer pointed to bylpInBuffer . This value has to
be set to sizeof(USBIO_SETUP_PIPE_STATISTICS) for this operation.

lpOutBuffer
Not used with this operation. Set to NULL.

nOutBufferSize
Not used with this operation. Set to zero.

lpBytesReturned
Points to a caller-provided DWORD variable. The value of this variable is meaningless in
the context of this IOCTL operation.

Comments

The USBIO driver is able to analyse the data transfer (outgoing or incoming) on a pipe
and to calculate the average data rate on that pipe. A time averaging algorithm is used to
continuously compute the mean value of the data transfer rate. In order to save resources
(kernel memory and CPU cycles) the average data rate computation is disabled by default.
It has to be enabled and to be configured by means of the
IOCTL_USBIO_SETUP_PIPE_STATISTICS request before it is available to an
application. See alsoIOCTL_USBIO_QUERY_PIPE_STATISTICS and
USBIO_PIPE_STATISTICS for more information on pipe statistics.

Note that the statistical data is maintained separately for each pipe object. The
IOCTL_USBIO_SETUP_PIPE_STATISTICS request has an effect on that pipe object
only that is bound to the handle on which the request is issued.

If a pipe is unbound from the device handle by means of the
IOCTL_USBIO_UNBIND_PIPE operation or by closing the handle then the average
data rate computation will be disabled. It has to be enabled and configured when the pipe
is reused. In other words, if the data rate computation is needed by an application then the
IOCTL_USBIO_SETUP_PIPE_STATISTICS request should be issued immediately after
the pipe is bound by means of theIOCTL_USBIO_BIND_PIPE operation.

This IOCTL operation requires that the handle on which the operation is performed has
been bound to a pipe object by means ofIOCTL_USBIO_BIND_PIPE . Otherwise, the
IOCTL operation will fail with an error status of USBIO_ERR_NOT_BOUND.

72 USBIO Reference Manual

4 Programming Interface

This IOCTL operation modifies internal driver settings. It does not cause any action on
the USB.

See Also

USBIO_SETUP_PIPE_STATISTICS(page111)
USBIO_PIPE_STATISTICS (page114)
IOCTL_USBIO_QUERY_PIPE_STATISTICS (page74)
IOCTL_USBIO_BIND_PIPE (page66)

USBIO Reference Manual 73

4 Programming Interface

IOCTL_USBIO_QUERY_PIPE_STATISTICS

The IOCTL_USBIO_QUERY_PIPE_STATISTICS operation returns statistical data related to a
pipe.

dwIoControlCode
Set to IOCTL_USBIO_QUERY_PIPE_STATISTICS for this operation.

lpInBuffer
Points to a caller-providedUSBIO_QUERY_PIPE_STATISTICS data structure. This
data structure has to be initialized by the caller. It provides input parameters for the
IOCTL operation.

nInBufferSize
Specifies the size, in bytes, of the buffer pointed to bylpInBuffer . This value has to
be set to sizeof(USBIO_QUERY_PIPE_STATISTICS) for this operation.

lpOutBuffer
Points to a caller-providedUSBIO_PIPE_STATISTICS data structure. This data
structure will receive the results of the IOCTL operation.

nOutBufferSize
Specifies the size, in bytes, of the buffer pointed to bylpOutBuffer . This value has to
be set to sizeof(USBIO_PIPE_STATISTICS) for this operation.

lpBytesReturned
Points to a caller-provided DWORD variable that will be set to the number of bytes
returned in the buffer pointed to bylpOutBuffer if the request succeeds. The returned
value will be equal to sizeof(USBIO_PIPE_STATISTICS).

Comments

The USBIO device driver internally maintains some statistical data per pipe object. This
IOCTL request allows an application to query the actual values of the various statistics
counters. Optionally, individual counters can be reset to zero after queried. See
USBIO_QUERY_PIPE_STATISTICS andUSBIO_PIPE_STATISTICS for more
information on pipe statistics.

The USBIO device driver is able to analyse the data transfer (outgoing or incoming) on a
pipe and to calculate the average data rate on that pipe. In order to save resources (kernel
memory and CPU cycles) this feature is disabled by default. It has to be enabled and to be
configured by means of theIOCTL_USBIO_SETUP_PIPE_STATISTICS request
before it is available to an application. Thus, before an application starts to (periodically)
query the value ofAverageRate that is included in the data structure
USBIO_PIPE_STATISTICS it has to enable the continuous computation of this value
by issuing anIOCTL_USBIO_SETUP_PIPE_STATISTICS request. The other
statistical counters contained in theUSBIO_PIPE_STATISTICS structure will be
updated by default and do not need to be enabled explicitly.

Note that the statistical data is maintained separately for each pipe object. The
IOCTL_USBIO_QUERY_PIPE_STATISTICS request retrieves the actual statistics of
that pipe object that is bound to the handle on which the request is issued.

74 USBIO Reference Manual

4 Programming Interface

This IOCTL operation requires that the handle on which the operation is performed has
been bound to a pipe object by means ofIOCTL_USBIO_BIND_PIPE . Otherwise, the
IOCTL operation will fail with an error status of USBIO_ERR_NOT_BOUND.

This IOCTL operation retrieves internal driver information. It does not cause any action
on the USB.

See Also

USBIO_QUERY_PIPE_STATISTICS (page112)
USBIO_PIPE_STATISTICS (page114)
IOCTL_USBIO_SETUP_PIPE_STATISTICS (page72)
IOCTL_USBIO_BIND_PIPE (page66)

USBIO Reference Manual 75

4 Programming Interface

IOCTL_USBIO_PIPE_CONTROL_TRANSFER_IN

The IOCTL_USBIO_PIPE_CONTROL_TRANSFER_IN operation is used to generate a specific
request (SETUP packet) for a control pipe with a data transfer direction from device to host.

dwIoControlCode
Set to IOCTL_USBIO_PIPE_CONTROL_TRANSFER_IN for this operation.

lpInBuffer
Points to a caller-providedUSBIO_PIPE_CONTROL_TRANSFER data structure.
This data structure has to be initialized by the caller. It provides input parameters for the
IOCTL operation.

nInBufferSize
Specifies the size, in bytes, of the buffer pointed to bylpInBuffer . This value has to
be set to sizeof(USBIO_PIPE_CONTROL_TRANSFER) for this operation.

lpOutBuffer
Points to a caller-provided buffer that will receive the data bytes transferred from the
device during the data phase of the control transfer. If the SETUP request does not return
any data this value can be set to NULL.nOutBufferSize has to be set to zero in this
case.

nOutBufferSize
Specifies the size, in bytes, of the buffer pointed to bylpOutBuffer . This is equal to
the length, in bytes, of the data transfer phase of the SETUP request. If this value is set to
zero then there is no data transfer phase.lpOutBuffer should be set to NULL in this
case.

lpBytesReturned
Points to a caller-provided DWORD variable that will be set to the number of bytes
returned in the buffer pointed to bylpOutBuffer if the request succeeds.

Comments

This request is intended to be used with additional control pipes a device might provide.
It is not possible to generate a control transfer for the default endpoint zero by means of
this IOCTL operation.

If the request will be completed successfully then the variable pointed to by
lpBytesReturned will be set to the number of data bytes successfully transferred
during the data transfer phase of the control transfer.

This IOCTL operation requires that the handle on which the operation is performed has
been bound to a pipe object by means ofIOCTL_USBIO_BIND_PIPE . Otherwise, the
IOCTL operation will fail with an error status of USBIO_ERR_NOT_BOUND.

See Also

USBIO_PIPE_CONTROL_TRANSFER (page116)
IOCTL_USBIO_PIPE_CONTROL_TRANSFER_OUT (page77)
IOCTL_USBIO_BIND_PIPE (page66)

76 USBIO Reference Manual

4 Programming Interface

IOCTL_USBIO_PIPE_CONTROL_TRANSFER_OUT

The IOCTL_USBIO_PIPE_CONTROL_TRANSFER_OUT operation is used to generate a
specific request (SETUP packet) for a control pipe with a data transfer direction from host to
device.

dwIoControlCode
Set to IOCTL_USBIO_PIPE_CONTROL_TRANSFER_OUT for this operation.

lpInBuffer
Points to a caller-providedUSBIO_PIPE_CONTROL_TRANSFER data structure.
This data structure has to be initialized by the caller. It provides input parameters for the
IOCTL operation.

nInBufferSize
Specifies the size, in bytes, of the buffer pointed to bylpInBuffer . This value has to
be set to sizeof(USBIO_PIPE_CONTROL_TRANSFER) for this operation.

lpOutBuffer
Points to a caller-provided buffer that contains the data bytes to be transferred to the
device during the data phase of the control transfer. If the SETUP request does not have a
data phase this value can be set to NULL.nOutBufferSize has to be set to zero in
this case.

nOutBufferSize
Specifies the size, in bytes, of the buffer pointed to bylpOutBuffer . This is equal to
the length, in bytes, of the data transfer phase of the SETUP request. If this value is set to
zero then there is no data transfer phase.lpOutBuffer should be set to NULL in this
case.

lpBytesReturned
Points to a caller-provided DWORD variable that will be set to the number of bytes
transferred from the buffer pointed to bylpOutBuffer if the request succeeds.

Comments

This request is intended to be used with additional control pipes a device might provide.
It is not possible to generate a control transfer for the default endpoint zero by means of
this IOCTL operation.

If the request will be completed successfully then the variable pointed to by
lpBytesReturned will be set to the number of data bytes successfully transferred
during the data transfer phase of the control transfer.

Although the data buffer is described by the parameterslpOutBuffer and
nOutBufferSize it provides input data for the request. Some confusion is caused by
the naming scheme of the Windows API.

This IOCTL operation requires that the handle on which the operation is performed has
been bound to a pipe object by means ofIOCTL_USBIO_BIND_PIPE . Otherwise, the
IOCTL operation will fail with an error status of USBIO_ERR_NOT_BOUND.

USBIO Reference Manual 77

4 Programming Interface

See Also

USBIO_PIPE_CONTROL_TRANSFER (page116)
IOCTL_USBIO_PIPE_CONTROL_TRANSFER_IN (page76)
IOCTL_USBIO_BIND_PIPE (page66)

78 USBIO Reference Manual

4 Programming Interface

4.3 Data Transfer Requests

The USBIO device driver exports an interface to USB pipes that is similar to files. For that reason
the Win32 API functionsReadFile() andWriteFile() are used to transfer data from or to
a pipe. The handle that is associated with the USB pipe is passed ashFile to this functions.

TheReadFile() function is defined as follows:

BOOL ReadFile(
HANDLE hFile, // handle of file to read
LPVOID lpBuffer, // pointer to buffer that receives data
DWORD nNumberOfBytesToRead, // number of bytes to read
LPDWORD lpNumberOfBytesRead, // pointer to number of bytes read
LPOVERLAPPED lpOverlapped // pointer to OVERLAPPED structure
);

TheWriteFile() function is defined as follows:

BOOL WriteFile(
HANDLE hFile, // handle of file to write
LPVOID lpBuffer, // pointer to data to write to file
DWORD nNumberOfBytesToWrite, // number of bytes to write
LPDWORD lpNumberOfBytesWritten,// pointer to number of bytes written
LPOVERLAPPED lpOverlapped // pointer to OVERLAPPED structure
);

By using these functions it is possible to implement both synchronous and asynchronous data
transfer operations. Both methods are fully supported by the USBIO driver. Refer to the Mi-
crosoft Platform SDK documentation for more information on using theReadFile() and
WriteFile() functions.

4.3.1 Bulk and Interrupt Transfers

For interrupt and bulk transfers the buffer size can be larger than the maximum packet size of
the endpoint (physical FIFO size) as reported in the endpoint descriptor. But the buffer size
has to be equal or smaller than the value specified in the MaximumTransferSize field of the
USBIO_INTERFACE_SETTING structure on the Set Configuration call.

Bulk or Interrupt Write Transfers

The write operation is used to transfer data from the host (PC) to the USB device. The buffer is
divided into data pieces (packets) of the FIFO size of the endpoint. These packets are sent to the
USB device. If the last packet of the buffer is smaller than the FIFO size a smaller data packet is
transferred. If the size of the last packet of the buffer is equal to the FIFO size this packet is sent.
No additional zero packet is sent automatically. To send a data packet with length zero, set the
buffer length to zero and use a NULL buffer pointer.

Bulk or Interrupt Read Transfers

The read operation is used to transfer data from the USB device to the host (PC). The buffer is
divided into data pieces (packets) of the FIFO size of the endpoint. The buffer size should be a
multiple of the FIFO size. Otherwise the last transaction can cause a buffer overflow error.

USBIO Reference Manual 79

4 Programming Interface

A read operation will be completed if the whole buffer is filled or a short packet is transmitted. A
short packet is a packet that is smaller than the FIFO size of the endpoint. To read a data packet
with a length of zero, the buffer size has to be at least one byte. A read operation with a NULL
buffer pointer will be completed with success without performing a read operation on the USB.

The behaviour during a read operation depends on the state of the flag
USBIO_SHORT_TRANSFER_OKof the related pipe. This setting may be changed by us-
ing the IOCTL_USBIO_SET_PIPE_PARAMETERS operation. The default state is defined
by the registry parameterShortTransferOk . If the flagUSBIO_SHORT_TRANSFER_OKis
set a read operation that returns a data packet that is shorter than the FIFO size of the endpoint is
completed with success. Otherwise, every data packet from the endpoint that is smaller than the
FIFO size causes an error.

4.3.2 Isochronous Transfers

For isochronous transfers the data buffer that is passed to theReadFile() or WriteFile()
function has to contain a header that describes the location and the size of the data packets to be
transferred. The rest of the buffer is divided into packets. Each packet is transmitted within a USB
frame or microframe respectively. The packet size can vary for each frame. Even a packet size of
zero bytes is allowed. This way, any data rate of the isochronous stream is supported.

In full-speed mode (12 Mbit/s) one isochronous packet is transmitted per USB frame. A USB
frame corresponds to 1 millisecond. Thus, one packet is transferred per millisecond.

A USB 2.0 compliant device that operates in high-speed mode (480 Mbit/s) reports the
isochronous frame rate for each isochronous endpoint in the corresponding endpoint descriptor.
Normally, one packet is transferred per microframe. A microframe corresponds to 125 microsec-
onds. However, it is possible to request multiple packet transfers per microframe. It is also possible
to reduce the frame rate and to transfer one isochronous packet every N microframes.

The layout of a buffer that holds isochronous data is shown in figure3. At the beginning, the
buffer contains aUSBIO_ISO_TRANSFER_HEADER structure of variable size. The rest of
the buffer holds the data packets. The header contains aUSBIO_ISO_TRANSFERstructure that
provides general information about the transfer buffer. An important member of this structure is
NumberOfPackets. This parameter specifies the number of isochronous data packets contained in
the transfer buffer. The maximum number of packets that can be used in a single transfer is limited
by the USBIO configuration parameterMaxIsoPackets that is defined in the registry. See also
section 8 (page265) for more information.

Each data packet that is contained in the buffer has to be described by aUSBIO_ISO_PACKET
structure. For that purpose, the header contains an array ofUSBIO_ISO_PACKET structures.
Because the number of packets contained in a buffer is variable, the size of this array is variable
as well.

The Offset member of theUSBIO_ISO_PACKET structure specifies the byte offset of the cor-
responding packet relative to the beginning of the whole buffer. The offset of each isochronous
data packet has to be specified by the application for both read and write transfers. The Length
member defines the length, in bytes, of the corresponding packet. For write transfers, the length of
each isochronous data packet has to be specified by the application before the transfer is initiated.
For read transfers, the length of each packet is returned by the USBIO driver after the transfer
is finished. On both read and write operations, the Status member ofUSBIO_ISO_PACKET is

80 USBIO Reference Manual

4 Programming Interface

N. USBIO_ISO_PACKET

2. USBIO_ISO_PACKET

USBIO_ISO_TRANSFER {
 NumberOfPackets = N;
 ...
}

1. USBIO_ISO_PACKET

Offset

Offset

Offset

1. Data Packet

2. Data Packet

N. Data Packet

T
ra

ns
fe

r
B

uf
fe

r

Figure 3:Layout of an isochronous transfer buffer

used to return the transfer completion status for the corresponding packet.

Isochronous Write Transfers

There are some constraints that apply to isochronous write operations. The length of each
isochronous packet has to be less than or equal to the FIFO size of the respective endpoint. The
data packets have to be placed contiguously into the buffer. In other words, there are no gaps
between the packets allowed. The Offset and Length member of allUSBIO_ISO_PACKET
structures have to be initialized correctly by the application before the transfer is initiated.

Isochronous Read Transfers

There are some constraints that apply to isochronous read operations. The length of each packet
reserved in the buffer should be equal to the FIFO size of the respective endpoint. Otherwise, a
data overrun error can occur. The data packets have to be placed contiguously into the buffer.
In other words, there are no gaps between the packets allowed. The Offset member of all
USBIO_ISO_PACKET structures has to be initialized correctly by the application before the
transfer is initiated. The length of each isochronous data packet received from the device is re-
turned in the Length member of the correspondingUSBIO_ISO_PACKET structure when the
transfer of the whole buffer completes.

Note:
Because the length of an isochronous data packet that is received from the device may be
smaller than the FIFO size, the data packets are not placed contiguously into the buffer. After
the transfer of a buffer is complete an application needs to evaluate the Length member of all

USBIO Reference Manual 81

4 Programming Interface

USBIO_ISO_PACKET structures to learn about the amount of valid data available in the corre-
sponding packet.

82 USBIO Reference Manual

4 Programming Interface

4.4 Data Structures

This section provides a detailed description of the data structures that are used in conjunction with
the various input and output requests.

USBIO Reference Manual 83

4 Programming Interface

USBIO_BANDWIDTH_INFO

The USBIO_BANDWIDTH_INFO structure contains information on the USB bandwidth
consumption.

Definition

typedef struct _USBIO_BANDWIDTH_INFO{
ULONGTotalBandwidth ;
ULONGConsumedBandwidth ;
ULONGreserved1 ;
ULONGreserved2 ;

} USBIO_BANDWIDTH_INFO;

Members

TotalBandwidth
This field contains the total bandwidth, in kilobits per second, available on the bus. This
bandwidth is provided by the USB host controller the device is connected to.

ConsumedBandwidth
This field contains the mean bandwidth that is already in use, in kilobits per second.

reserved1
This member is reserved for future use.

reserved2
This member is reserved for future use.

Comments

This structure returns the results of theIOCTL_USBIO_GET_BANDWIDTH_INFO
operation.

See Also

IOCTL_USBIO_GET_BANDWIDTH_INFO (page60)

84 USBIO Reference Manual

4 Programming Interface

USBIO_DEVICE_INFO

The USBIO_DEVICE_INFO structure contains information on the USB device.

Definition

typedef struct _USBIO_DEVICE_INFO{
ULONGFlags ;
ULONGreserved1 ;
ULONGreserved2 ;
ULONGreserved3 ;

} USBIO_DEVICE_INFO;

Members

Flags
This field contains zero or any combination (bit-wise or) of the following values.

USBIO_DEVICE_INFOFLAG_HIGH_SPEED
If this flag is set then the USB device operates in high speed mode. The USB 2.0
device is connected to a hub port that is high speed capable.

Note that this flag does not indicate whether a device is capable of high speed
operation, but rather whether it is in fact operating at high speed.

reserved1
This member is reserved for future use.

reserved2
This member is reserved for future use.

reserved3
This member is reserved for future use.

Comments

This structure returns the results of theIOCTL_USBIO_GET_DEVICE_INFO
operation.

See Also

IOCTL_USBIO_GET_DEVICE_INFO (page61)

USBIO Reference Manual 85

4 Programming Interface

USBIO_DRIVER_INFO

The USBIO_DRIVER_INFO structure contains version information about the USBIO
programming interface (API) and the USBIO driver executable.

Definition

typedef struct _USBIO_DRIVER_INFO{
USHORTAPIVersion ;
USHORTDriverVersion ;
ULONGDriverBuildNumber ;
ULONGFlags ;

} USBIO_DRIVER_INFO;

Members

APIVersion
Contains the version number of the application programming interface (API) the driver
supports. The format is as follows: upper 8 bit = major version, lower 8 bit = minor
version. The numbers are encoded in BCD format. For example, V1.41 is represented by
a numerical value of 0x0141.

The API version number will be incremented if changes are made at the API level. An
application should check the API version at runtime. Refer to the description of the
IOCTL_USBIO_GET_DRIVER_INFO request for detailed information on how this
should be implemented.

DriverVersion
Contains the version number of the driver executable. The format is as follows: upper 8
bit = major version, lower 8 bit = minor version. For example, V1.41 is represented by a
numerical value of 0x0129.

The driver version number will be incremented for each USBIO release. Typically, an
application uses the driver version number for informational purposes only. Refer to the
description of theIOCTL_USBIO_GET_DRIVER_INFO request for more
information.

DriverBuildNumber
Contains the build number of the driver executable. This number will be incremented for
each build of the USBIO driver executable. The driver build number should be understand
as an extension of the driver version number.

Flags
This field contains zero if the USBIO driver executable is a full version release build
without any restrictions. Otherwise, this field contains any combination (bit-wise or) of
the following values.

USBIO_INFOFLAG_CHECKED_BUILD
If this flag is set then the driver executable is a checked (debug) build. The
checked driver executable provides additional tracing and debug features.

86 USBIO Reference Manual

4 Programming Interface

USBIO_INFOFLAG_DEMO_VERSION
If this flag is set then the driver executable is a DEMO version. The DEMO
version has some restrictions. Refer to the fileReadMe.txtincluded in the USBIO
package for a detailed description of these restrictions.

USBIO_INFOFLAG_LIGHT_VERSION
If this flag is set then the driver executable is a LIGHT version. The LIGHT
version has some restrictions. Refer to the fileReadMe.txtincluded in the USBIO
package for a detailed description of these restrictions.

USBIO_INFOFLAG_VS_LIGHT_VERSION
If this flag is set in addition to USBIO_INFOFLAG_LIGHT_VERSION the driver
executable is a Vendor-Specific LIGHT version that has specific restrictions. Refer
to the fileReadMe.txtincluded in the USBIO package for a detailed description of
these restrictions.

Comments

This structure returns the results of theIOCTL_USBIO_GET_DRIVER_INFO
operation.

See Also

IOCTL_USBIO_GET_DRIVER_INFO (page62)

USBIO Reference Manual 87

4 Programming Interface

USBIO_DESCRIPTOR_REQUEST

The USBIO_DESCRIPTOR_REQUEST structure provides information used to get or set a
descriptor.

Definition

typedef struct _USBIO_DESCRIPTOR_REQUEST{
USBIO_REQUEST_RECIPIENTRecipient ;
UCHARDescriptorType ;
UCHARDescriptorIndex ;
USHORTLanguageId ;

} USBIO_DESCRIPTOR_REQUEST;

Members

Recipient
Specifies the recipient of the get or set descriptor request. The values are defined by the
enumeration typeUSBIO_REQUEST_RECIPIENT.

DescriptorType
Specifies the type of descriptor to get or set. The values are defined by the Universal
Serial Bus Specification 1.1, Chapter 9 and additional USB device class specifications.

Value Meaning

1 Device Descriptor

2 Configuration Descriptor

3 String Descriptor

4 Interface Descriptor

5 Endpoint Descriptor

21 HID Descriptor

DescriptorIndex
Specifies the index of the descriptor to get or set.

LanguageId
Specifies the Language ID of the descriptor to get or set. This is used for string
descriptors only. This field is set to zero for other descriptors.

Comments

This structure provides the input parameters for the
IOCTL_USBIO_GET_DESCRIPTOR and the
IOCTL_USBIO_SET_DESCRIPTOR operation.

88 USBIO Reference Manual

4 Programming Interface

See Also

USBIO_REQUEST_RECIPIENT (page122)
IOCTL_USBIO_GET_DESCRIPTOR (page38)
IOCTL_USBIO_SET_DESCRIPTOR (page39)

USBIO Reference Manual 89

4 Programming Interface

USBIO_FEATURE_REQUEST

The USBIO_FEATURE_REQUEST structure provides information used to set or clear a specific
feature.

Definition

typedef struct _USBIO_FEATURE_REQUEST{
USBIO_REQUEST_RECIPIENTRecipient ;
USHORTFeatureSelector ;
USHORTIndex ;

} USBIO_FEATURE_REQUEST;

Members

Recipient
Specifies the recipient of the set feature or clear feature request. The values are defined by
the enumeration typeUSBIO_REQUEST_RECIPIENT.

FeatureSelector
Specifies the feature selector value for the set feature or clear feature request. The values
are defined by the recipient. Refer to the Universal Serial Bus Specification 1.1, Chapter 9
for more information.

Index
Specifies the index value for the set feature or clear feature request. The values are
defined by the device. Refer to the Universal Serial Bus Specification 1.1, Chapter 9 for
more information.

Comments

This structure provides the input parameters for theIOCTL_USBIO_SET_FEATURE
and theIOCTL_USBIO_CLEAR_FEATURE operation.

See Also

USBIO_REQUEST_RECIPIENT (page122)
IOCTL_USBIO_SET_FEATURE (page40)
IOCTL_USBIO_CLEAR_FEATURE (page41)

90 USBIO Reference Manual

4 Programming Interface

USBIO_STATUS_REQUEST

The USBIO_STATUS_REQUEST structure provides information used to request status for a
specified recipient.

Definition

typedef struct _USBIO_STATUS_REQUEST{
USBIO_REQUEST_RECIPIENTRecipient ;
USHORTIndex ;

} USBIO_STATUS_REQUEST;

Members

Recipient
Specifies the recipient of the get status request. The values are defined by the enumeration
typeUSBIO_REQUEST_RECIPIENT.

Index
Specifies the index value for the get status request. The values are defined by the device.
Refer to the Universal Serial Bus Specification 1.1, Chapter 9 for more information.

Comments

This structure provides the input parameters for theIOCTL_USBIO_GET_STATUS
operation.

See Also

USBIO_REQUEST_RECIPIENT (page122)
IOCTL_USBIO_GET_STATUS (page42)

USBIO Reference Manual 91

4 Programming Interface

USBIO_STATUS_REQUEST_DATA

The USBIO_STATUS_REQUEST_DATA structure contains information returned by a get status
operation.

Definition

typedef struct _USBIO_STATUS_REQUEST_DATA{
USHORTStatus ;

} USBIO_STATUS_REQUEST_DATA;

Member

Status
Contains the 16-bit value that is returned by the recipient in response to the get status
request. The interpretation of the value is specific to the recipient. Refer to the Universal
Serial Bus Specification 1.1, Chapter 9 for more information.

Comments

This structure returns the results of theIOCTL_USBIO_GET_STATUS operation.

See Also

IOCTL_USBIO_GET_STATUS (page42)

92 USBIO Reference Manual

4 Programming Interface

USBIO_GET_CONFIGURATION_DATA

The USBIO_GET_CONFIGURATION_DATA structure contains information returned by a get
configuration operation.

Definition

typedef struct _USBIO_GET_CONFIGURATION_DATA{
UCHARConfigurationValue ;

} USBIO_GET_CONFIGURATION_DATA;

Member

ConfigurationValue
Contains the 8-bit value that is returned by the device in response to the get configuration
request. The meaning of the value is defined by the device. A value of zero means the
device is not configured. Refer to the Universal Serial Bus Specification 1.1, Chapter 9
for more information.

Comments

This structure returns the results of theIOCTL_USBIO_GET_CONFIGURATION
operation.

See Also

IOCTL_USBIO_GET_CONFIGURATION (page43)

USBIO Reference Manual 93

4 Programming Interface

USBIO_GET_INTERFACE

The USBIO_GET_INTERFACE structure provides information used to query the current
alternate setting of an interface.

Definition

typedef struct _USBIO_GET_INTERFACE{
USHORTInterface ;

} USBIO_GET_INTERFACE;

Member

Interface
Specifies the interface number of the interface to be queried. The values are defined by
the device. Refer to the Universal Serial Bus Specification 1.1, Chapter 9 for more
information.

Comments

This structure provides the input parameters for the
IOCTL_USBIO_GET_INTERFACE operation.

See Also

IOCTL_USBIO_GET_INTERFACE (page44)

94 USBIO Reference Manual

4 Programming Interface

USBIO_GET_INTERFACE_DATA

The USBIO_GET_INTERFACE_DATA structure contains information returned by a get
interface operation.

Definition

typedef struct _USBIO_GET_INTERFACE_DATA{
UCHARAlternateSetting ;

} USBIO_GET_INTERFACE_DATA;

Member

AlternateSetting
Contains the 8-bit value that is returned by the device in response to a get interface
request. The interpretation of the value is specific to the device. Refer to the Universal
Serial Bus Specification 1.1, Chapter 9 for more information.

Comments

This structure returns the results of theIOCTL_USBIO_GET_INTERFACE operation.

See Also

IOCTL_USBIO_GET_INTERFACE (page44)

USBIO Reference Manual 95

4 Programming Interface

USBIO_INTERFACE_SETTING

The USBIO_INTERFACE_SETTING structure provides information used to configure an
interface and its endpoints.

Definition

typedef struct _USBIO_INTERFACE_SETTING{
USHORTInterfaceIndex ;
USHORTAlternateSettingIndex ;
ULONGMaximumTransferSize ;

} USBIO_INTERFACE_SETTING;

Members

InterfaceIndex
Specifies the interface number of the interface to be configured. The values are defined by
the device. Refer to the Universal Serial Bus Specification 1.1, Chapter 9 for more
information.

AlternateSettingIndex
Specifies the alternate setting to be set for the interface. The values are defined by the
device. Refer to the Universal Serial Bus Specification 1.1, Chapter 9 for more
information.

MaximumTransferSize
Specifies the maximum length, in bytes, of data transfers to or from endpoints of this
interface. The value is user-defined and is valid for all endpoints of this interface. If no
special requirement exists a value of 4096 (4K) should be used.

Comments

This structure provides input parameters for theIOCTL_USBIO_SET_INTERFACE
and theIOCTL_USBIO_SET_CONFIGURATION operation.

See Also

IOCTL_USBIO_SET_INTERFACE (page48)
IOCTL_USBIO_SET_CONFIGURATION (page46)
USBIO_SET_CONFIGURATION (page97)

96 USBIO Reference Manual

4 Programming Interface

USBIO_SET_CONFIGURATION

The USBIO_SET_CONFIGURATION structure provides information used to set the device
configuration.

Definition

typedef struct _USBIO_SET_CONFIGURATION{
USHORTConfigurationIndex ;
USHORTNbOfInterfaces ;
USBIO_INTERFACE_SETTING

InterfaceList[USBIO_MAX_INTERFACES] ;
} USBIO_SET_CONFIGURATION;

Members

ConfigurationIndex
Specifies the configuration to be set as a zero-based index. The given index is used to
query the associated configuration descriptor (by means of a GET_DESCRIPTOR
request). The configuration value that is contained in the configuration descriptor is used
for the SET_CONFIGURATION request. The configuration value is defined by the
device.

For single-configuration devices the only valid value forConfigurationIndex is
zero.

Refer to the Universal Serial Bus Specification 1.1, Chapter 9 for more information.

NbOfInterfaces
Specifies the number of interfaces in this configuration. This is the number of valid
entries inInterfaceList .

InterfaceList[USBIO_MAX_INTERFACES]
An array ofUSBIO_INTERFACE_SETTING structures that describes each interface in
the configuration. There have to beNbOfInterfaces valid entries in this array.

Comments

This structure provides the input parameters for the
IOCTL_USBIO_SET_CONFIGURATION operation.

See Also

USBIO_INTERFACE_SETTING (page96)
IOCTL_USBIO_SET_CONFIGURATION (page46)

USBIO Reference Manual 97

4 Programming Interface

USBIO_CLASS_OR_VENDOR_REQUEST

The USBIO_CLASS_OR_VENDOR_REQUEST structure provides information used to
generate a class or vendor specific device request.

Definition

typedef struct _USBIO_CLASS_OR_VENDOR_REQUEST{
ULONGFlags ;
USBIO_REQUEST_TYPEType ;
USBIO_REQUEST_RECIPIENTRecipient ;
UCHARRequestTypeReservedBits ;
UCHARRequest ;
USHORTValue ;
USHORTIndex ;

} USBIO_CLASS_OR_VENDOR_REQUEST;

Members

Flags
This field contains zero or the following value.

USBIO_SHORT_TRANSFER_OK
If this flag is set then the USBIO driver does not return an error if a data packet
received from the device is shorter than the maximum packet size of the endpoint.
If this flag is not set then a short packet causes an error condition.

Type
Specifies the type of the device request. The values are defined by the enumeration type
USBIO_REQUEST_TYPE.

Recipient
Specifies the recipient of the device request. The values are defined by the enumeration
typeUSBIO_REQUEST_RECIPIENT.

RequestTypeReservedBits
Specifies the reserved bits of thebmRequestType field of the SETUP packet.

Request
Specifies the value of thebRequest field of the SETUP packet.

Value
Specifies the value of thewValue field of the SETUP packet.

Index
Specifies the value of thewIndex field of the SETUP packet.

98 USBIO Reference Manual

4 Programming Interface

Comments

The values defined by this structure are used to generate an eight byte SETUP packet for
the default control endpoint (endpoint zero) of the device. The format of the SETUP
packet is defined by the Universal Serial Bus Specification 1.1, Chapter 9. The meaning
of the values is defined by the device.

This structure provides the input parameters for the
IOCTL_USBIO_CLASS_OR_VENDOR_IN_REQUEST and the
IOCTL_USBIO_CLASS_OR_VENDOR_OUT_REQUEST operation.

See Also

USBIO_REQUEST_TYPE (page123)
USBIO_REQUEST_RECIPIENT (page122)
IOCTL_USBIO_CLASS_OR_VENDOR_IN_REQUEST (page49)
IOCTL_USBIO_CLASS_OR_VENDOR_OUT_REQUEST (page50)

USBIO Reference Manual 99

4 Programming Interface

USBIO_DEVICE_PARAMETERS

The USBIO_DEVICE_PARAMETERS structure contains USBIO driver settings related to a
device.

Definition

typedef struct _USBIO_DEVICE_PARAMETERS{
ULONGOptions ;
ULONGRequestTimeout ;

} USBIO_DEVICE_PARAMETERS;

Members

Options
This field contains zero or any combination (bit-wise or) of the following values.

USBIO_RESET_DEVICE_ON_CLOSE
If this option is set then the USBIO driver generates a USB device reset after the
last handle for a device has been closed by the application. If this option is active
then theUSBIO_UNCONFIGURE_ON_CLOSEflag will be ignored.

The default state of this option is defined by the registry parameter
ResetDeviceOnClose . Refer to section8 (page265) for more information.

USBIO_UNCONFIGURE_ON_CLOSE
If this option is set then the USBIO driver sets the USB device to its unconfigured
state after the last handle for the device has been closed by the application.

The default state of this option is defined by the registry parameter
UnconfigureOnClose . Refer to section8 (page265) for more information.

USBIO_ENABLE_REMOTE_WAKEUP
If this option is set and the USB device supports the Remote Wakeup feature the
USBIO driver will support Remote Wakeup for the operating system. That means
the USB device is able to awake the system from a sleep state. The Remote
Wakeup feature is defined by the USB 1.1 specification.

The Remote Wakeup feature requires that the device is opened by an application
and that a USB configuration is set (device is configured).

The default state of this option is defined by the registry parameter
EnableRemoteWakeup . Refer to section8 (page265) for more information.

RequestTimeout
Specifies the time-out interval, in milliseconds, to be used for synchronous operations. A
value of zero means an infinite interval (time-out disabled).

The default time-out value is defined by the registry parameterRequestTimeout .
Refer to section8 (page265) for more information.

100 USBIO Reference Manual

4 Programming Interface

Comments

This structure is intended to be used with the
IOCTL_USBIO_GET_DEVICE_PARAMETERS and the
IOCTL_USBIO_SET_DEVICE_PARAMETERS operations.

See Also

IOCTL_USBIO_GET_DEVICE_PARAMETERS (page52)
IOCTL_USBIO_SET_DEVICE_PARAMETERS (page53)

USBIO Reference Manual 101

4 Programming Interface

USBIO_INTERFACE_CONFIGURATION_INFO

The USBIO_INTERFACE_CONFIGURATION_INFO structure provides information about an
interface.

Definition

typedef struct _USBIO_INTERFACE_CONFIGURATION_INFO{
UCHARInterfaceNumber ;
UCHARAlternateSetting ;
UCHARClass ;
UCHARSubClass ;
UCHARProtocol ;
UCHARNumberOfPipes ;
UCHARreserved1 ;
UCHARreserved2 ;

} USBIO_INTERFACE_CONFIGURATION_INFO;

Members

InterfaceNumber
Specifies the index of the interface as reported by the device in the configuration
descriptor.

AlternateSetting
Specifies the index of the alternate setting as reported by the device in the configuration
descriptor. The default alternate setting of an interface is zero.

Class
Specifies the class code as reported by the device in the configuration descriptor. The
meaning of this value is defined by USB device class specifications.

SubClass
Specifies the subclass code as reported by the device in the configuration descriptor. The
meaning of this value is defined by USB device class specifications.

Protocol
Specifies the protocol code as reported by the device in the configuration descriptor. The
meaning of this value is defined by USB device class specifications.

NumberOfPipes
Specifies the number of pipes that belong to this interface and alternate setting.

reserved1
Reserved field, set to zero.

reserved2
Reserved field, set to zero.

102 USBIO Reference Manual

4 Programming Interface

Comments

This structure returns results of theIOCTL_USBIO_GET_CONFIGURATION_INFO
operation. It is a substructure within theUSBIO_CONFIGURATION_INFO structure.

See Also

USBIO_CONFIGURATION_INFO (page106)
IOCTL_USBIO_GET_CONFIGURATION_INFO (page54)

USBIO Reference Manual 103

4 Programming Interface

USBIO_PIPE_CONFIGURATION_INFO

The USBIO_PIPE_CONFIGURATION_INFO structure provides information about a pipe.

Definition

typedef struct _USBIO_PIPE_CONFIGURATION_INFO{
USBIO_PIPE_TYPE PipeType ;
ULONGMaximumTransferSize ;
USHORTMaximumPacketSize ;
UCHAREndpointAddress ;
UCHARInterval ;
UCHARInterfaceNumber ;
UCHARreserved1 ;
UCHARreserved2 ;
UCHARreserved3 ;

} USBIO_PIPE_CONFIGURATION_INFO;

Members

PipeType
Specifies the type of the pipe. The values are defined by the enumeration type
USBIO_PIPE_TYPE.

MaximumTransferSize
Specifies the maximum size, in bytes, of data transfers the USB bus driver USBD
supports on this pipe. This is the maximum size of buffers that can be used with read or
write operations on this pipe.

MaximumPacketSize
Specifies the maximum packet size of USB data transfers the endpoint is capable of
sending or receiving. This is also referred to as FIFO size. TheMaximumPacketSize
value is reported by the device in the corresponding endpoint descriptor. Refer to the
Universal Serial Bus Specification 1.1, Chapter 9 for more information.

EndpointAddress
Specifies the address of the endpoint on the USB device as reported in the corresponding
endpoint descriptor.

The endpoint address includes the direction flag at bit position 7 (MSB).

Bit 7 = 0: OUT endpoint

Bit 7 = 1: IN endpoint

Refer to the Universal Serial Bus Specification 1.1, Chapter 9 for more information.

Interval
Specifies the interval, in milliseconds, for polling the endpoint for data as reported in the
corresponding endpoint descriptor. This value is meaningful for interrupt endpoints only.
Refer to the Universal Serial Bus Specification 1.1, Chapter 9 for more information.

104 USBIO Reference Manual

4 Programming Interface

InterfaceNumber
Specifies the index of the interface the pipe belongs to. The value is equal to the field
InterfaceNumber of the corresponding
USBIO_INTERFACE_CONFIGURATION_INFO structure.

reserved1
Reserved field, set to zero.

reserved2
Reserved field, set to zero.

reserved3
Reserved field, set to zero.

Comments

This structure returns results of theIOCTL_USBIO_GET_CONFIGURATION_INFO
operation. It is a substructure within theUSBIO_CONFIGURATION_INFO structure.

See Also

USBIO_CONFIGURATION_INFO (page106)
IOCTL_USBIO_GET_CONFIGURATION_INFO (page54)

USBIO Reference Manual 105

4 Programming Interface

USBIO_CONFIGURATION_INFO

The USBIO_CONFIGURATION_INFO structure provides information about the interfaces and
pipes available in the current configuration.

Definition

typedef struct _USBIO_CONFIGURATION_INFO{
ULONGNbOfInterfaces ;
ULONGNbOfPipes ;
USBIO_INTERFACE_CONFIGURATION_INFO

InterfaceInfo[USBIO_MAX_INTERFACES] ;
USBIO_PIPE_CONFIGURATION_INFO

PipeInfo[USBIO_MAX_PIPES] ;
} USBIO_CONFIGURATION_INFO;

Members

NbOfInterfaces
Specifies the number of interfaces active in the current configuration. This value
corresponds to the number of valid entries in theInterfaceInfo array.

NbOfPipes
Specifies the number of pipes active in the current configuration. This value corresponds
to the number of valid entries in thePipeInfo array.

InterfaceInfo[USBIO_MAX_INTERFACES]
An array ofUSBIO_INTERFACE_CONFIGURATION_INFO structures that
describes the interfaces that are active in the current configuration. There are
NbOfInterfaces valid entries in this array.

PipeInfo[USBIO_MAX_PIPES]
An array ofUSBIO_PIPE_CONFIGURATION_INFO structures that describes the
pipes that are active in the current configuration. There areNbOfPipes valid entries in
this array.

Comments

This structure returns the results of the
IOCTL_USBIO_GET_CONFIGURATION_INFO operation.

Note that the data structure includes only those interfaces and pipes that are activated by
the current configuration according to the configuration descriptor.

See Also

USBIO_INTERFACE_CONFIGURATION_INFO (page102)
USBIO_PIPE_CONFIGURATION_INFO (page104)
IOCTL_USBIO_GET_CONFIGURATION_INFO (page54)

106 USBIO Reference Manual

4 Programming Interface

USBIO_FRAME_NUMBER

The USBIO_FRAME_NUMBER structure contains information about the USB frame counter
value.

Definition

typedef struct _USBIO_FRAME_NUMBER{
ULONGFrameNumber ;

} USBIO_FRAME_NUMBER;

Member

FrameNumber
Specifies the current value of the frame counter that is maintained by the USB bus driver
USBD. The frame number is an unsigned 32 bit value. The lower 11 bits of this value
correspond to the frame number value in the Start Of Frame (SOF) token on the USB.

Comments

This structure returns the results of the
IOCTL_USBIO_GET_CURRENT_FRAME_NUMBER operation.

See Also

IOCTL_USBIO_GET_CURRENT_FRAME_NUMBER (page57)

USBIO Reference Manual 107

4 Programming Interface

USBIO_DEVICE_POWER

The USBIO_DEVICE_POWER structure contains information about the power state of the USB
device.

Definition

typedef struct _USBIO_DEVICE_POWER{
USBIO_DEVICE_POWER_STATEDevicePowerState ;

} USBIO_DEVICE_POWER;

Member

DevicePowerState
Specifies the power state of the USB device. The values are defined by the
USBIO_DEVICE_POWER_STATE enumeration type.

Comments

This structure is intended to be used with the
IOCTL_USBIO_GET_DEVICE_POWER_STATE and the
IOCTL_USBIO_SET_DEVICE_POWER_STATE operations.

See Also

USBIO_DEVICE_POWER_STATE (page124)
IOCTL_USBIO_GET_DEVICE_POWER_STATE (page59)
IOCTL_USBIO_SET_DEVICE_POWER_STATE (page58)

108 USBIO Reference Manual

4 Programming Interface

USBIO_BIND_PIPE

The USBIO_BIND_PIPE structure provides information on the pipe to bind to.

Definition

typedef struct _USBIO_BIND_PIPE{
UCHAREndpointAddress ;

} USBIO_BIND_PIPE ;

Member

EndpointAddress
Specifies the address of the endpoint of the USB device that corresponds to the pipe. The
endpoint address is specified as reported in the corresponding endpoint descriptor. It
identifies the pipe unambiguously.

The endpoint address includes the direction flag at bit position 7 (MSB).

Bit 7 = 0: OUT endpoint

Bit 7 = 1: IN endpoint

Refer to the Universal Serial Bus Specification 1.1, Chapter 9 for more information.

Comments

This structure provides the input parameters for theIOCTL_USBIO_BIND_PIPE
operation.

See Also

IOCTL_USBIO_BIND_PIPE (page66)

USBIO Reference Manual 109

4 Programming Interface

USBIO_PIPE_PARAMETERS

The USBIO_PIPE_PARAMETERS structure contains USBIO driver settings related to a pipe.

Definition

typedef struct _USBIO_PIPE_PARAMETERS{
ULONGFlags ;

} USBIO_PIPE_PARAMETERS;

Member

Flags
This field contains zero or the following value.

USBIO_SHORT_TRANSFER_OK
If this flag is set then the USBIO driver does not return an error during read
operations from a Bulk or Interrupt pipe if a packet received from the device is
shorter than the maximum packet size of the endpoint. If this flag is not set then a
short packet causes an error condition.

Note that this option is meaningful for Bulk or Interrupt IN pipes only. It has an
effect only for read operations from Bulk or Interrupt pipes. For Isochronous
pipes the flags in the appropriate ISO data structures are used (see
USBIO_ISO_TRANSFER).

The default state of the USBIO_SHORT_TRANSFER_OK flag is defined by the
registry parameterShortTransferOk . Refer to section8 (page265) for more
information.

Comments

This structure is intended to be used with the
IOCTL_USBIO_GET_PIPE_PARAMETERS and the
IOCTL_USBIO_SET_PIPE_PARAMETERS operations.

See Also

IOCTL_USBIO_GET_PIPE_PARAMETERS (page70)
IOCTL_USBIO_SET_PIPE_PARAMETERS (page71)
USBIO_ISO_TRANSFER (page117)

110 USBIO Reference Manual

4 Programming Interface

USBIO_SETUP_PIPE_STATISTICS

The USBIO_SETUP_PIPE_STATISTICS structure contains information used to configure the
statistics maintained by the USBIO driver for a pipe.

Definition

typedef struct _USBIO_SETUP_PIPE_STATISTICS{
ULONGAveragingInterval ;
UCHARreserved1 ;
UCHARreserved2 ;

} USBIO_SETUP_PIPE_STATISTICS;

Members

AveragingInterval
Specifies the time interval, in milliseconds, that is used to calculate the average data rate
of the pipe. A time averaging algorithm is used to continuously compute the mean value
of the data transfer rate. The USBIO driver internally allocates memory to implement an
averaging filter. There are 2048 bytes of memory required per second of the averaging
interval. To limit the memory consumption the maximum supported value of
AveragingInterval is 5000 milliseconds (5 seconds). If a longer interval is
specified then theIOCTL_USBIO_SETUP_PIPE_STATISTICS request will fail with
an error status ofUSBIO_ERR_INVALID_PARAMETER . It is recommended to use
an averaging interval of 1000 milliseconds.

If AveragingInterval is set to zero then the average data rate computation is
disabled. This is the default state. An application should only enable the average data rate
computation if it is needed. This will save resources (kernel memory and CPU cycles).

See alsoIOCTL_USBIO_QUERY_PIPE_STATISTICS and
USBIO_PIPE_STATISTICS for more information on pipe statistics.

reserved1
This member is reserved for future use. It has to be set to zero.

reserved2
This member is reserved for future use. It has to be set to zero.

Comments

This structure provides the input parameters for the
IOCTL_USBIO_SETUP_PIPE_STATISTICS operation.

See Also

IOCTL_USBIO_SETUP_PIPE_STATISTICS (page72)
IOCTL_USBIO_QUERY_PIPE_STATISTICS (page74)
USBIO_PIPE_STATISTICS (page114)

USBIO Reference Manual 111

4 Programming Interface

USBIO_QUERY_PIPE_STATISTICS

The USBIO_QUERY_PIPE_STATISTICS structure provides options that modify the behaviour
of theIOCTL_USBIO_QUERY_PIPE_STATISTICS operation.

Definition

typedef struct _USBIO_QUERY_PIPE_STATISTICS{
ULONGFlags ;

} USBIO_QUERY_PIPE_STATISTICS;

Member

Flags
This field contains zero or any combination (bit-wise or) of the following values.

USBIO_QPS_FLAG_RESET_BYTES_TRANSFERRED
If this flag is specified then the BytesTransferred counter will be reset to zero after
its current value has been captured. The BytesTransferred counter is an unsigned
64 bit integer. It counts the total number of bytes transferred on a pipe, modulo
2^64.

USBIO_QPS_FLAG_RESET_REQUESTS_SUCCEEDED
If this flag is specified then the RequestsSucceeded counter will be reset to zero
after its current value has been captured. The RequestsSucceeded counter is an
unsigned 32 bit integer. It counts the total number of read or write requests that
have been completed successfully on a pipe, modulo 2^32.

USBIO_QPS_FLAG_RESET_REQUESTS_FAILED
If this flag is specified then the RequestsFailed counter will be reset to zero after
its current value has been captured. The RequestsFailed counter is an unsigned
32 bit integer. It counts the total number of read or write requests that have been
completed with an error status on a pipe, modulo 2^32.

USBIO_QPS_FLAG_RESET_ALL_COUNTERS
This value combines the three flags described above. If
USBIO_QPS_FLAG_RESET_ALL_COUNTERSis specified then all three
counters BytesTransferred, RequestsSucceeded, and RequestsFailed will be reset
to zero after their current values have been captured.

Comments

This structure provides the input parameters for the
IOCTL_USBIO_QUERY_PIPE_STATISTICS operation.

See also the description of theUSBIO_PIPE_STATISTICS data structure for more
information on pipe statistics.

112 USBIO Reference Manual

4 Programming Interface

See Also

IOCTL_USBIO_QUERY_PIPE_STATISTICS (page74)
USBIO_PIPE_STATISTICS (page114)

USBIO Reference Manual 113

4 Programming Interface

USBIO_PIPE_STATISTICS

The USBIO_PIPE_STATISTICS structure contains statistical data related to a pipe.

Definition

typedef struct _USBIO_PIPE_STATISTICS{
ULONGActualAveragingInterval ;
ULONGAverageRate ;
ULONGBytesTransferred_L ;
ULONGBytesTransferred_H ;
ULONGRequestsSucceeded ;
ULONGRequestsFailed ;
ULONGreserved1 ;
ULONGreserved2 ;

} USBIO_PIPE_STATISTICS ;

Members

ActualAveragingInterval
A time averaging algorithm is used to continuously compute the mean value of the data
transfer rate. This field specifies the actual time interval, in milliseconds, that was used to
calculate the average data rate returned inAverageRate . Normally, this value
corresponds to the interval that has been configured by means of the
IOCTL_USBIO_SETUP_PIPE_STATISTICS operation. However, if the capacity of
the internal averaging filter is not sufficient for the interval set then
ActualAveragingInterval can be less than the averaging interval that has been
configured.

If ActualAveragingInterval is zero then the data rate computation is disabled.
TheAverageRate field of this structure is always set to zero in this case.

AverageRate
Specifies the current average data rate of the pipe, in bytes per second. The average data
rate will be continuously calculated if theActualAveragingInterval field of this
structure is not null. IfActualAveragingInterval is null then the data rate
computation is disabled and this field is always set to zero.

The computation of the average data rate has to be enabled and to be configured explicitly
by an application. This has to be done by means of the
IOCTL_USBIO_SETUP_PIPE_STATISTICS request.

BytesTransferred_L
Specifies the lower 32 bits of the current value of the BytesTransferred counter. The
BytesTransferred counter is an unsigned 64 bit integer. It counts the total number of bytes
transferred on a pipe, modulo 2^64.

BytesTransferred_H
Specifies the upper 32 bits of the current value of the BytesTransferred counter. The
BytesTransferred counter is an unsigned 64 bit integer. It counts the total number of bytes

114 USBIO Reference Manual

4 Programming Interface

transferred on a pipe, modulo 2^64.

RequestsSucceeded
Specifies the current value of the RequestsSucceeded counter. The RequestsSucceeded
counter is an unsigned 32 bit integer. It counts the total number of read or write requests
that have been completed successfully on a pipe, modulo 2^32.

On a bulk or interrupt pipe the term request corresponds to a buffer that is submitted to
perform a read or write operation. Thus, this counter will be incremented by one for each
buffer that was successfully transferred.

On an isochronous pipe the term request corresponds to an isochronous data frame. Each
buffer that is submitted to perform a read or write operation contains several isochronous
data frames. This counter will be incremented by one for each isochronous data frame
that was successfully transferred.

RequestsFailed
Specifies the current value of the RequestsFailed counter. The RequestsFailed counter is
an unsigned 32 bit integer. It counts the total number of read or write requests that have
been completed with an error status on a pipe, modulo 2^32.

On a bulk or interrupt pipe the term request corresponds to a buffer that is submitted to
perform a read or write operation. Thus, this counter will be incremented by one for each
buffer that is completed with an error status.

On an isochronous pipe the term request corresponds to an isochronous data frame. Each
buffer that is submitted to perform a read or write operation contains several isochronous
data frames. This counter will be incremented by one for each isochronous data frame
that is completed with an error status.

reserved1
This member is reserved for future use.

reserved2
This member is reserved for future use.

Comments

This structure returns results of theIOCTL_USBIO_QUERY_PIPE_STATISTICS
operation.

See Also

IOCTL_USBIO_QUERY_PIPE_STATISTICS (page74)
USBIO_QUERY_PIPE_STATISTICS (page112)
IOCTL_USBIO_SETUP_PIPE_STATISTICS (page72)

USBIO Reference Manual 115

4 Programming Interface

USBIO_PIPE_CONTROL_TRANSFER

The USBIO_PIPE_CONTROL_TRANSFER structure provides information used to generate a
specific control request.

Definition

typedef struct _USBIO_PIPE_CONTROL_TRANSFER{
ULONGFlags ;
UCHARSetupPacket[8] ;

} USBIO_PIPE_CONTROL_TRANSFER;

Members

Flags
This field contains zero or the following value.

USBIO_SHORT_TRANSFER_OK
If this flag is set then the USBIO driver does not return an error if a data packet
received from the device is shorter than the maximum packet size of the endpoint.
If this flag is not set then a short packet causes an error condition.

SetupPacket[8]
Specifies the SETUP packet to be issued to the device. The format of the eight byte
SETUP packet is defined by the Universal Serial Bus Specification 1.1, Chapter 9.

Comments

The values defined by this structure are used to generate an eight byte SETUP packet for a
control endpoint. However, it is not possible to generate a control transfer for the default
endpoint zero.

This structure provides the input parameters for the
IOCTL_USBIO_PIPE_CONTROL_TRANSFER_IN and the
IOCTL_USBIO_PIPE_CONTROL_TRANSFER_OUT operation.

See Also

IOCTL_USBIO_PIPE_CONTROL_TRANSFER_IN (page76)
IOCTL_USBIO_PIPE_CONTROL_TRANSFER_OUT (page77)

116 USBIO Reference Manual

4 Programming Interface

USBIO_ISO_TRANSFER

The USBIO_ISO_TRANSFER data structure provides information about an isochronous data
transfer buffer.

Definition

typedef struct _USBIO_ISO_TRANSFER{
ULONGNumberOfPackets ;
ULONGFlags ;
ULONGStartFrame ;
ULONGErrorCount ;

} USBIO_ISO_TRANSFER;

Members

NumberOfPackets
Specifies the number of packets to be sent to or to be received from the device. Each
packet corresponds to a USB frame or a microframe respectively. The maximum number
of packets allowed in a read or write operation is limited by the registry parameter
MaxIsoPackets . Refer to section8 (page265) for more information.

Flags
This field contains zero or any combination (bit-wise or) of the following values.

USBIO_SHORT_TRANSFER_OK
If this flag is set then the USBIO driver does not return an error if a data packet
received from the device is shorter than the maximum packet size of the endpoint.
If this flag is not set then a short packet causes an error condition.

USBIO_START_TRANSFER_ASAP
If this flag is set then the transfer will be started as soon as possible and the
StartFrame parameter is ignored. This flag has to be used if a continuous data
stream shall be sent to the isochronous endpoint of the USB device.

StartFrame
Specifies the frame number or microframe number respectively at which the transfer is to
be started. The value has to be within a system-defined range relative to the current frame.
Normally, this range is set to 1024 frames.

If USBIO_START_TRANSFER_ASAPis not specified inFlags thenStartFrame
has to be initialized by the caller. The caller has to specify the frame number at which the
first packet of the data transfer is to be transmitted. An error occurs if the frame number is
not in the valid range, relative to the current frame number.

If USBIO_START_TRANSFER_ASAPis specified inFlags then theStartFrame
value specified by the user will be ignored. After the transfer has been started and the
write request has been completed theStartFrame field contains the frame number
assigned to the first packet of the transfer.

USBIO Reference Manual 117

4 Programming Interface

ErrorCount
After the isochronous read or write request has been completed by the USBIO driver this
member contains the total number of errors occurred during the data transfer. In other
words,ErrorCount specifies the number of frames that caused an error. This field can
be used by an application to check if an isochronous read or write request has been
completed successfully.

Comments

This data structure is a substructure within theUSBIO_ISO_TRANSFER_HEADER
structure. It is the fixed sized part of the header.

See also section4.3.2(page80) for more information on isochronous data transfers.

See Also

USBIO_ISO_TRANSFER_HEADER (page120)

118 USBIO Reference Manual

4 Programming Interface

USBIO_ISO_PACKET

The USBIO_ISO_PACKET structure defines the size and location of a single isochronous data
packet within an isochronous data transfer buffer.

Definition

typedef struct _USBIO_ISO_PACKET{
ULONGOffset ;
ULONGLength ;
ULONGStatus ;

} USBIO_ISO_PACKET;

Members

Offset
Specifies the offset, in bytes, of the isochronous packet, relative to the start of the data
buffer. This parameter has to be specified by the caller for isochronous read and write
operations.

Length
Specifies the size, in bytes, of the isochronous packet. This parameter has to be specified
by the caller for write operations. On read operations this field is set by the USBIO driver
when the read request is completed.

Status
After the isochronous read or write request is completed by the USBIO driver this field
specifies the completion status of the isochronous packet.

Comments

An array ofUSBIO_ISO_PACKETstructures is embedded within the
USBIO_ISO_TRANSFER_HEADER structure. OneUSBIO_ISO_PACKETstructure
is required for each isochronous data packet to be transferred.

See also section4.3.2(page80) for more information on isochronous data transfers.

See Also

USBIO_ISO_TRANSFER_HEADER (page120)

USBIO Reference Manual 119

4 Programming Interface

USBIO_ISO_TRANSFER_HEADER

The USBIO_ISO_TRANSFER_HEADER structure defines the header that has to be placed at
the beginning of an isochronous data transfer buffer.

Definition

typedef struct _USBIO_ISO_TRANSFER_HEADER{
USBIO_ISO_TRANSFERIsoTransfer ;
USBIO_ISO_PACKET IsoPacket[1] ;

} USBIO_ISO_TRANSFER_HEADER;

Members

IsoTransfer
This is the fixed-size part of the header. See the description of the
USBIO_ISO_TRANSFERdata structure for more information.

IsoPacket[1]
This array ofUSBIO_ISO_PACKET structures has a variable length. Each element of
the array corresponds to an isochronous data packet that is to be transferred either from or
to the transfer buffer.

The number of valid elements inIsoPacket is specified by theNumberOfPackets
member ofIsoTransfer . See the description of theUSBIO_ISO_TRANSFERdata
structure for more information. The maximum number of isochronous data packets per
transfer buffer is defined by the registry parameterMaxIsoPackets . Refer to section8
(page265) for more information.

Comments

A data buffer that is passed toReadFile or WriteFile on an isochronous pipe has to
contain a validUSBIO_ISO_TRANSFER_HEADER structure at offset zero. After this
header the buffer contains the isochronous data which is divided into packets. The
IsoPacket array describes the location and the size of each single isochronous data
packet. The isochronous data packets have to be placed into the transfer buffer in such a
way that a contiguous data area will be created. In other words, there are no gaps allowed
between the isochronous data packets.

See also section4.3.2(page80) for more information on isochronous data transfers.

See Also

USBIO_ISO_TRANSFER (page117)
USBIO_ISO_PACKET (page119)

120 USBIO Reference Manual

4 Programming Interface

4.5 Enumeration Types

USBIO_PIPE_TYPE

The USBIO_PIPE_TYPE enumeration type contains values that identify the type of a USB pipe
or a USB endpoint, respectively.

Definition

typedef enum _USBIO_PIPE_TYPE{
PipeTypeControl = 0,
PipeTypeIsochronous ,
PipeTypeBulk ,
PipeTypeInterrupt

} USBIO_PIPE_TYPE;

Comments

The meaning of the values is defined by the Universal Serial Bus Specification 1.1,
Chapter 9.

See Also

USBIO_PIPE_CONFIGURATION_INFO (page104)

USBIO Reference Manual 121

4 Programming Interface

USBIO_REQUEST_RECIPIENT

The USBIO_REQUEST_RECIPIENT enumeration type contains values that identify the
recipient of a USB device request.

Definition

typedef enum _USBIO_REQUEST_RECIPIENT{
RecipientDevice = 0,
RecipientInterface ,
RecipientEndpoint ,
RecipientOther

} USBIO_REQUEST_RECIPIENT;

Comments

The meaning of the values is defined by the Universal Serial Bus Specification 1.1,
Chapter 9.

See Also

USBIO_DESCRIPTOR_REQUEST(page88)
USBIO_FEATURE_REQUEST (page90)
USBIO_STATUS_REQUEST(page91)
USBIO_CLASS_OR_VENDOR_REQUEST(page98)

122 USBIO Reference Manual

4 Programming Interface

USBIO_REQUEST_TYPE

The USBIO_REQUEST_TYPE enumeration type contains values that identify the type of a USB
device request.

Definition

typedef enum _USBIO_REQUEST_TYPE{
RequestTypeClass = 1,
RequestTypeVendor

} USBIO_REQUEST_TYPE;

Comments

The meaning of the values is defined by the Universal Serial Bus Specification 1.1,
Chapter 9.

The enumeration does not contain the Standard request type defined by the USB
specification. This is because the USB bus driver USBD supports Class and Vendor
requests only at its programming interface. Standard requests are generated internally by
the USBD.

See Also

USBIO_CLASS_OR_VENDOR_REQUEST(page98)

USBIO Reference Manual 123

4 Programming Interface

USBIO_DEVICE_POWER_STATE

The USBIO_DEVICE_POWER_STATE enumeration type contains values that identify the
power state of a device.

Definition

typedef enum _USBIO_DEVICE_POWER_STATE{
DevicePowerStateD0 = 0,
DevicePowerStateD1 ,
DevicePowerStateD2 ,
DevicePowerStateD3

} USBIO_DEVICE_POWER_STATE;

Entries

DevicePowerStateD0
Device fully on, normal operation.

DevicePowerStateD1
Suspend.

DevicePowerStateD2
Suspend.

DevicePowerStateD3
Device off.

Comments

The meaning of the values is defined by the Power Management specification.

See Also

USBIO_DEVICE_POWER (page108)

124 USBIO Reference Manual

4 Programming Interface

4.6 Error Codes

USBIO_ERR_SUCCESS(0x00000000L)

The operation has been successfully completed.

USBIO_ERR_CRC (0xE0000001L)

A CRC error has been detected. This error is reported by the USB host controller driver.

USBIO_ERR_BTSTUFF (0xE0000002L)

A bit stuffing error has been detected. This error is reported by the USB host controller driver.

USBIO_ERR_DATA_TOGGLE_MISMATCH (0xE0000003L)

A DATA toggle mismatch (DATA0/DATA1 tokens) has been detected. This error is reported by
the USB host controller driver.

USBIO_ERR_STALL_PID (0xE0000004L)

A STALL PID has been detected. This error is reported by the USB host controller driver.

USBIO_ERR_DEV_NOT_RESPONDING(0xE0000005L)

The USB device is not responding. This error is reported by the USB host controller driver.

USBIO_ERR_PID_CHECK_FAILURE (0xE0000006L)

A PID check has failed. This error is reported by the USB host controller driver.

USBIO_ERR_UNEXPECTED_PID (0xE0000007L)

An unexpected PID has been detected. This error is reported by the USB host controller driver.

USBIO_ERR_DATA_OVERRUN (0xE0000008L)

A data overrun error has been detected. This error is reported by the USB host controller driver.

USBIO Reference Manual 125

4 Programming Interface

USBIO_ERR_DATA_UNDERRUN (0xE0000009L)

A data underrun error has been detected. This error is reported by the USB host controller
driver.

USBIO_ERR_RESERVED1(0xE000000AL)

This error code is reserved by the USB host controller driver.

USBIO_ERR_RESERVED2(0xE000000BL)

This error code is reserved by the USB host controller driver.

USBIO_ERR_BUFFER_OVERRUN (0xE000000CL)

A buffer overrun has been detected. This error is reported by the USB host controller driver.

USBIO_ERR_BUFFER_UNDERRUN(0xE000000DL)

A buffer underrun has been detected. This error is reported by the USB host controller driver.

USBIO_ERR_NOT_ACCESSED(0xE000000FL)

A data buffer was not accessed. This error is reported by the USB host controller driver. An
isochronous data buffer was scheduled too late. The specified frame number does not match the
actual frame number.

USBIO_ERR_FIFO (0xE0000010L)

A FIFO error has been detected. This error is reported by the USB host controller driver. The PCI
bus latency was too long.

USBIO_ERR_XACT_ERROR (0xE0000011L)

A XACT error has been detected. This error is reported by the USB host controller driver.

USBIO_ERR_BABBLE_DETECTED (0xE0000012L)

A device is babbling. This error is reported by the USB host controller driver. The data transfer
phase exceeds the USB frame length.

126 USBIO Reference Manual

4 Programming Interface

USBIO_ERR_DATA_BUFFER_ERROR (0xE0000013L)

A data buffer error has been detected. This error is reported by the USB host controller driver.

USBIO_ERR_ENDPOINT_HALTED (0xE0000030L)

The endpoint has been halted by the USB bus driver USBD. This error is reported by the USB
bus driver USBD. A pipe will be halted by USBD when a data transmission error (CRC, bit
stuff, DATA toggle) occurs. In order to re-enable a halted pipe aIOCTL_USBIO_RESET_PIPE
request has to be issued on that pipe. See the description ofIOCTL_USBIO_RESET_PIPE for
more information.

USBIO_ERR_NO_MEMORY (0xE0000100L)

A memory allocation attempt has failed. This error is reported by the USB bus driver USBD.

USBIO_ERR_INVALID_URB_FUNCTION (0xE0000200L)

An invalid URB function code has been passed. This error is reported by the USB bus driver
USBD.

USBIO_ERR_INVALID_PARAMETER (0xE0000300L)

An invalid parameter has been passed. This error is reported by the USB bus driver USBD.

USBIO_ERR_ERROR_BUSY(0xE0000400L)

There are data transfer requests pending for the device. This error is reported by the USB bus
driver USBD.

USBIO_ERR_REQUEST_FAILED (0xE0000500L)

A request has failed. This error is reported by the USB bus driver USBD.

USBIO_ERR_INVALID_PIPE_HANDLE (0xE0000600L)

An invalid pipe handle has been passed. This error is reported by the USB bus driver USBD.

USBIO_ERR_NO_BANDWIDTH (0xE0000700L)

There is not enough bandwidth available. This error is reported by the USB bus driver USBD.

USBIO Reference Manual 127

4 Programming Interface

USBIO_ERR_INTERNAL_HC_ERROR (0xE0000800L)

An internal host controller error has been detected. This error is reported by the USB bus driver
USBD.

USBIO_ERR_ERROR_SHORT_TRANSFER(0xE0000900L)

A short transfer has been detected. This error is reported by the USB bus driver USBD. If the
pipe is not configured accordingly a short packet sent by the device causes this error. Support for
short packets has to be enabled explicitly. SeeIOCTL_USBIO_SET_PIPE_PARAMETERS
andIOCTL_USBIO_CLASS_OR_VENDOR_IN_REQUEST for more information.

USBIO_ERR_BAD_START_FRAME (0xE0000A00L)

A bad start frame has been specified. This error is reported by the USB bus driver USBD.

USBIO_ERR_ISOCH_REQUEST_FAILED (0xE0000B00L)

An isochronous request has failed. This error is reported by the USB bus driver USBD.

USBIO_ERR_FRAME_CONTROL_OWNED (0xE0000C00L)

The USB frame control is currently owned. This error is reported by the USB bus driver USBD.

USBIO_ERR_FRAME_CONTROL_NOT_OWNED (0xE0000D00L)

The USB frame control is currently not owned. This error is reported by the USB bus driver
USBD.

USBIO_ERR_NOT_SUPPORTED(0xE0000E00L)

The operation is not supported. This error is reported by the USB bus driver USBD.

USBIO_ERR_INVALID_CONFIGURATION_DESCRIPTOR (0xE0000F00L)

An invalid configuration descriptor was reported by the device. This error is reported by the USB
bus driver USBD.

128 USBIO Reference Manual

4 Programming Interface

USBIO_ERR_INSUFFICIENT_RESOURCES (0xE8001000L)

There are not enough resources available to complete the operation. This error is reported by the
USB bus driver USBD.

USBIO_ERR_SET_CONFIG_FAILED (0xE0002000L)

The set configuration request has failed. This error is reported by the USB bus driver USBD.

USBIO_ERR_USBD_BUFFER_TOO_SMALL (0xE0003000L)

The buffer is too small. This error is reported by the USB bus driver USBD.

USBIO_ERR_USBD_INTERFACE_NOT_FOUND (0xE0004000L)

The interface was not found. This error is reported by the USB bus driver USBD.

USBIO_ERR_INVALID_PIPE_FLAGS (0xE0005000L)

Invalid pipe flags have been specified. This error is reported by the USB bus driver USBD.

USBIO_ERR_USBD_TIMEOUT (0xE0006000L)

The operation has been timed out. This error is reported by the USB bus driver USBD.

USBIO_ERR_DEVICE_GONE (0xE0007000L)

The USB device is gone. This error is reported by the USB bus driver USBD.

USBIO_ERR_STATUS_NOT_MAPPED(0xE0008000L)

This error is reported by the USB bus driver USBD.

USBIO_ERR_CANCELED (0xE0010000L)

The operation has been cancelled. This error is reported by the USB bus driver USBD. If the data
transfer requests pending on a pipe are aborted by means ofIOCTL_USBIO_ABORT_PIPE or
CancelIo then the operations will be completed with this error code.

USBIO Reference Manual 129

4 Programming Interface

USBIO_ERR_ISO_NOT_ACCESSED_BY_HW(0xE0020000L)

The isochronous data buffer was not accessed by the USB host controller. This error is reported
by the USB bus driver USBD. An isochronous data buffer was scheduled too late. The specified
frame number does not match the actual frame number.

USBIO_ERR_ISO_TD_ERROR(0xE0030000L)

The USB host controller reported an error in a transfer descriptor. This error is reported by the
USB bus driver USBD.

USBIO_ERR_ISO_NA_LATE_USBPORT (0xE0040000L)

An isochronous data packet was submitted in time but failed to reach the USB host controller in
time. This error is reported by the USB bus driver USBD.

USBIO_ERR_ISO_NOT_ACCESSED_LATE(0xE0050000L)

An isochronous data packet was submitted too late. This error is reported by the USB bus driver
USBD.

USBIO_ERR_FAILED (0xE0001000L)

The operation has failed. This error is reported by the USBIO driver.

USBIO_ERR_INVALID_INBUFFER (0xE0001001L)

An invalid input buffer has been passed to an IOCTL operation. This error is reported by the
USBIO driver. Make sure the input buffer matches the type and size requirements specified for the
IOCTL operation.

USBIO_ERR_INVALID_OUTBUFFER (0xE0001002L)

An invalid output buffer has been passed to an IOCTL operation. This error is reported by the
USBIO driver. Make sure the output buffer matches the type and size requirements specified for
the IOCTL operation.

USBIO_ERR_OUT_OF_MEMORY (0xE0001003L)

There is not enough system memory available to complete the operation. This error is reported by
the USBIO driver.

130 USBIO Reference Manual

4 Programming Interface

USBIO_ERR_PENDING_REQUESTS(0xE0001004L)

There are read or write requests pending. This error is reported by the USBIO driver.

USBIO_ERR_ALREADY_CONFIGURED (0xE0001005L)

The USB device is already configured. This error is reported by the USBIO driver.

USBIO_ERR_NOT_CONFIGURED (0xE0001006L)

The USB device is not configured. This error is reported by the USBIO driver.

USBIO_ERR_OPEN_PIPES(0xE0001007L)

There are open pipes. This error is reported by the USBIO driver.

USBIO_ERR_ALREADY_BOUND (0xE0001008L)

Either the handle is already bound to a pipe or the specified pipe is already bound to another
handle. This error is reported by the USBIO driver. SeeIOCTL_USBIO_BIND_PIPE for more
information.

USBIO_ERR_NOT_BOUND (0xE0001009L)

The handle is not bound to a pipe. This error is reported by the USBIO driver. The operation
that has been failed with this error code is related to a pipe. Therefore, the handle has to be
bound to a pipe before the operation can be executed. SeeIOCTL_USBIO_BIND_PIPE for
more information.

USBIO_ERR_DEVICE_NOT_PRESENT (0xE000100AL)

The USB device has been removed from the system. This error is reported by the USBIO driver.
An application should close all handles for the device. After it receives a Plug and Play notification
it should perform a re-enumeration of devices.

USBIO_ERR_CONTROL_NOT_SUPPORTED(0xE000100BL)

The specified control code is not supported. This error is reported by the USBIO driver.

USBIO Reference Manual 131

4 Programming Interface

USBIO_ERR_TIMEOUT (0xE000100CL)

The operation has been timed out. This error is reported by the USBIO driver.

USBIO_ERR_INVALID_RECIPIENT (0xE000100DL)

An invalid recipient has been specified. This error is reported by the USBIO driver.

USBIO_ERR_INVALID_TYPE (0xE000100EL)

Either an invalid request type has been specified or the operation is not supported by that pipe
type. This error is reported by the USBIO driver.

USBIO_ERR_INVALID_IOCTL (0xE000100FL)

An invalid IOCTL code has been specified. This error is reported by the USBIO driver.

USBIO_ERR_INVALID_DIRECTION (0xE0001010L)

The direction of the data transfer request is not supported by that pipe. This error is reported by
the USBIO driver. On IN pipes read requests are supported only. On OUT pipes write requests
are supported only.

USBIO_ERR_TOO_MUCH_ISO_PACKETS (0xE0001011L)

The number of isochronous data packets specified in an isochronous read or write request exceeds
the maximum number of packets supported by the USBIO driver. This error is reported by the
USBIO driver. Note that the maximum number of packets allowed per isochronous data buffer
can be adjusted by means of the registry parameterMaxIsoPackets . Refer to section8 (page
265) for more information.

USBIO_ERR_POOL_EMPTY (0xE0001012L)

The memory resources are exhausted. This error is reported by the USBIO driver.

USBIO_ERR_PIPE_NOT_FOUND(0xE0001013L)

The specified pipe was not found in the current configuration. This error is reported by the USBIO
driver. Note that only endpoints that are included in the current configuration can be used to
transfer data.

132 USBIO Reference Manual

4 Programming Interface

USBIO_ERR_INVALID_ISO_PACKET (0xE0001014L)

An invalid isochronous data packet has been specified. This error is reported by the USBIO
driver. An isochronous data buffer contains an isochronous data packet with invalidOffset
and/orLength parameters. SeeUSBIO_ISO_PACKET for more information.

USBIO_ERR_OUT_OF_ADDRESS_SPACE(0xE0001015L)

There are not enough system resources to complete the operation. This error is reported by the
USBIO driver.

USBIO_ERR_INTERFACE_NOT_FOUND (0xE0001016L)

The specified interface was not found in the current configuration or in the configuration descriptor.
This error is reported by the USBIO driver. Note that only interfaces that are included in the current
configuration can be used.

USBIO_ERR_INVALID_DEVICE_STATE (0xE0001017L)

The operation cannot be executed while the USB device is in the current state. This error is
reported by the USBIO driver. It is not allowed to submit requests to the device while it is in a
power down state.

USBIO_ERR_INVALID_PARAM (0xE0001018L)

An invalid parameter has been specified with an IOCTL operation. This error is reported by the
USBIO driver.

USBIO_ERR_DEMO_EXPIRED (0xE0001019L)

The evaluation interval of the USBIO DEMO version has expired. This error is reported by the
USBIO driver. The USBIO DEMO version is limited in runtime. After the DEMO evaluation
period has expired every operation will be completed with this error code. After the system is
rebooted the USBIO DEMO driver can be used for another evaluation interval.

USBIO_ERR_INVALID_POWER_STATE (0xE000101AL)

An invalid power state has been specified. This error is reported by the USBIO driver. Note that
it is not allowed to switch from one power down state to another. The device has to be set to D0
before it can be set to another power down state.

USBIO Reference Manual 133

4 Programming Interface

USBIO_ERR_POWER_DOWN (0xE000101BL)

The device has entered a power down state. This error is reported by the USBIO driver. When the
USB device leaves power state D0 and enters a power down state then all pending read and write
requests will be cancelled and completed with this error status. If an application detects this error
status it can re-submit the read or write requests immediately. The requests will be queued by the
USBIO driver internally.

USBIO_ERR_VERSION_MISMATCH (0xE000101CL)

The API version reported by the USBIO driver does not match the expected version. This error is
reported by the USBIO C++ class library USBIOLIB. SeeIOCTL_USBIO_GET_DRIVER_INFO
for more information on USBIO version numbers.

USBIO_ERR_SET_CONFIGURATION_FAILED (0xE000101DL)

The set configuration operation has failed. This error is reported by the USBIO driver.

USBIO_ERR_VID_RESTRICTION (0xE0001080L)

The operation has failed due to a restriction of the USBIO LIGHT version. This error is reported
by the USBIO driver. The LIGHT version does not support the Vendor ID reported by the USB
device.

USBIO_ERR_ISO_RESTRICTION (0xE0001081L)

The operation has failed due to a restriction of the USBIO LIGHT version. This error is reported
by the USBIO driver. The LIGHT version does not support isochronous transfers.

USBIO_ERR_BULK_RESTRICTION (0xE0001082L)

The operation has failed due to a restriction of the USBIO LIGHT version. This error is reported
by the USBIO driver. The LIGHT version does not support bulk transfers.

USBIO_ERR_EP0_RESTRICTION (0xE0001083L)

The operation has failed due to a restriction of the USBIO LIGHT version. This error is reported by
the USBIO driver. The LIGHT version does not support class or vendor specific SETUP requests
or the data transfer length exceeds the limit.

134 USBIO Reference Manual

4 Programming Interface

USBIO_ERR_PIPE_RESTRICTION (0xE0001084L)

The operation has failed due to a restriction of the USBIO LIGHT version. This error is reported
by the USBIO driver. The number of endpoints active in the current configuration exceeds the
limit enforced by the LIGHT version.

USBIO_ERR_PIPE_SIZE_RESTRICTION (0xE0001085L)

The operation has failed due to a restriction of the USBIO LIGHT version. This error is reported
by the USBIO driver. The FIFO size of an endpoint of the current configuration exceeds the limit
enforced by the LIGHT version.

USBIO_ERR_CONTROL_RESTRICTION (0xE0001086L)

The operation has failed due to a restriction of the USBIO LIGHT version. This error is reported
by the USBIO driver. The LIGHT version does not support control endpoints besides EP0.

USBIO_ERR_INTERRUPT_RESTRICTION (0xE0001087L)

The operation has failed due to a restriction of the USBIO LIGHT version. This error is reported
by the USBIO driver. The LIGHT version does not support interrupt transfers.

USBIO_ERR_DEVICE_NOT_FOUND (0xE0001100L)

The specified device object does not exist. This error is reported by the USBIO C++ class library
USBIOLIB. The USB device is not connected to the system or it has been removed by the user.

USBIO_ERR_DEVICE_NOT_OPEN (0xE0001102L)

No device object was opened. There is no valid handle to execute the operation. This error is
reported by the USBIO C++ class library USBIOLIB.

USBIO_ERR_NO_SUCH_DEVICE_INSTANCE (0xE0001104L)

The enumeration of the specified devices has failed. There are no devices of the specified type
available. This error is reported by the USBIO C++ class library USBIOLIB.

USBIO_ERR_INVALID_FUNCTION_PARAM (0xE0001105L)

An invalid parameter has been passed to a function. This error is reported by the USBIO C++
class library USBIOLIB.

USBIO Reference Manual 135

4 Programming Interface

USBIO_ERR_LOAD_SETUP_API_FAILED (0xE0001106L)

The library setupapi.dllcould not be loaded. This error is reported by the USBIO C++ class
library USBIOLIB. The Setup API that is exported by the system-providedsetupapi.dllis part of
the Win32 API. It is available in Windows 98 and later systems.

136 USBIO Reference Manual

5 USBIO Class Library

5 USBIO Class Library

5.1 Overview

The USBIO Class Library (USBIOLIB) contains classes which provide wrapper functions for
all of the features supported by the USBIO programming interface. Using these classes in an
application is more convenient than using the USBIO interface directly. The classes are designed
to be capable of being extended. In order to meet the requirements of a particular application new
classes may be derived from the existing ones. The class library is provided fully in source code.

The following figure shows the classes included in the USBIOLIB and their relations.

CUsbIoReader

CUsbIoBuf CUsbIoBufPool

CUsbIoWriter

CUsbIoThread

CUsbIoPipe

CUsbIo

Figure 4:USBIO Class Library

5.1.1 CUsbIo Class

The classCUsbIo implements the basic interface to the USBIO device driver. It includes all
functions that are related to a USBIO device object. Thus, by using an instance of theCUsbIo
class all operations which do not require a pipe context can be performed.

TheCUsbIo class supports device enumeration and anOpen() function that is used to connect
an instance of the class to a USBIO device object. The handle that represents the connection is
stored inside the class instance. It is used for all subsequent requests to the device.

For each device-related operation the USBIO driver supports, a member function exists in the
CUsbIo class. The function takes the parameters that are required for the operation and returns
the status that is reported by the USBIO driver.

5.1.2 CUsbIoPipe Class

The classCUsbIoPipe extends theCUsbIo class by functions that are related to a USBIO pipe
object. An instance of theCUsbIoPipe class is associated directly with a USBIO pipe object.

USBIO Reference Manual 137

5 USBIO Class Library

In order to establish the connection to the pipe the class provides aBind() function. After
a CUsbIoPipe instance is bound, pipe-related functions can be performed by using member
functions of the class.

For each pipe-related operation that the USBIO driver supports a member function exists in the
CUsbIoPipe class. The function takes the parameters that are required for the operation and
returns the status that is reported by the USBIO driver.

TheCUsbIoPipe class supports an asynchronous communication model for data transfers from
or to the pipe. TheRead() or Write() function is used to submit a data buffer to the USBIO
driver. The function returns immediately indicating success if the buffer was sent to the driver
successfully. There is no blocking within theRead() or Write() function. Therefore, it is
possible to send multiple buffers to the pipe. The buffers are processed sequentially in the same
order as they were submitted. TheWaitForCompletion() member function is used to wait
until the data transfer from or to a particular buffer is finished. This function blocks the calling
thread until the USBIO driver has completed the I/O operation with the buffer.

In order to use a data buffer with theRead() , Write() , andWaitForCompletion() func-
tions of theCUsbIoPipe class the buffer has to be described by aCUsbIoBuf object. The
CUsbIoBuf helper class stores context information while the read or write operation is pending.

5.1.3 CUsbIoThread Class

The classCUsbIoThread provides basic functions needed to implement a worker thread that
performs input or output operations on a pipe. It includes functions that are used to start and stop
the worker thread.

TheCUsbIoThread class does not implement the thread’s main routine. This has to be done in a
derived class. Thus,CUsbIoThread is an universal base class that simplifies the implementation
of a worker thread that performs I/O operations on a pipe.

Note:
The worker thread created byCUsbIoThread is a native system thread. That means it cannot be
used to call MFC (Microsoft Foundation Classes) functions. It is necessary to usePostMessage ,
SendMessage or some other communication mechanism to switch over to MFC-aware threads.

5.1.4 CUsbIoReader Class

The classCUsbIoReader extends theCUsbIoThread class by a specific worker thread rou-
tine that continuously sends read requests to the pipe. The thread’s main routine gets buffers
from an internal buffer pool and submits them to the pipe using theRead() function of the
CUsbIoPipe class. After all buffers are submitted the routine waits for the first pending buffer to
complete. If a buffer is completed by the USBIO driver the virtual member functionProcessData
is called with this buffer. Within this function the data received from the pipe should be pro-
cessed. TheProcessData function has to be implemented by a class that is derived from
CUsbIoReader . After that, the buffer is put back to the pool and the main loop is started from
the beginning.

138 USBIO Reference Manual

5 USBIO Class Library

5.1.5 CUsbIoWriter Class

The classCUsbIoWriter extends theCUsbIoThread class by a specific worker thread rou-
tine that continuously sends write requests to the pipe. The thread’s main routine gets a buffer
from an internal buffer pool and calls the virtual member functionProcessBuffer to fill the
buffer with data. After that, the buffer is sent to the pipe using theWrite() function of the
CUsbIoPipe class. After all buffers are submitted the routine waits for the first pending buffer
to complete. If a buffer is completed by the USBIO driver the buffer is put back to the pool and
the main loop is started from the beginning.

5.1.6 CUsbIoBuf Class

The helper classCUsbIoBuf is used as a descriptor for buffers that are processed by the class
CUsbIoPipe and derived classes. One instance of theCUsbIoBuf class has to be created
for each buffer. TheCUsbIoBuf object stores context and status information that is needed to
process the buffer asynchronously.

TheCUsbIoBuf class contains a link element (Next pointer). This may be used to build a chain of
linked buffer objects to hold them in a list. This way, the management of buffers can be simplified.

5.1.7 CUsbIoBufPool Class

The classCUsbIoBufPool is used to manage a pool of free buffers. It provides functions used
to allocate an initial number of buffers, to get a buffer from the pool, and to put a buffer back to
the pool.

USBIO Reference Manual 139

5 USBIO Class Library

5.2 Class Library Reference

CUsbIo class

This class implements the interface to the USBIO device driver. It contains only general
device-related functions that can be executed without a pipe context. Pipe specific functions are
implemented by theCUsbIoPipeclass.

Member Functions

CUsbIo::CUsbIo

Standard constructor of the CUsbIo class.

Definition

CUsbIo ();

See Also

CUsbIo::˜CUsbIo (page140)
CUsbIo::Open (page143)

CUsbIo::˜CUsbIo

Destructor of the CUsbIo class.

Definition

virtual
˜CUsbIo ();

See Also

CUsbIo::CUsbIo (page140)
CUsbIo::Close(page145)

140 USBIO Reference Manual

5 USBIO Class Library

CUsbIo::CreateDeviceList

Creates an internal device list.

Definition

static HDEVINFO
CreateDeviceList (

const GUID* InterfaceGuid
);

Parameter

InterfaceGuid
This is the predefined interface GUID of the USBIO device driver or a user defined GUID
which must be inserted in the USBIO.INF file.

Return Value

Returns a handle to the device list if successful, or NULL otherwise.

Comments

The function creates a windows-internal device list that contains all matching interfaces.
The device interface is identified byInterfaceGuid . A handle for the list is returned
in case of success, or NULL is returned in case of error. The device list can be iterated by
means ofCUsbIo::Open.

The device list returned must be freed by a call toCUsbIo::DestroyDeviceList.

Note that CreateDeviceList is declared static. It can be used independently of class
instances.

See Also

CUsbIo::DestroyDeviceList(page142)
CUsbIo::Open (page143)

USBIO Reference Manual 141

5 USBIO Class Library

CUsbIo::DestroyDeviceList

Destroy the internal device list.

Definition

static void
DestroyDeviceList (

HDEVINFO DeviceList
);

Parameter

DeviceList
A handle to a device list returned byCUsbIo::CreateDeviceList.

Comments

Use this function to destroy a device list that was generated by a call to
CUsbIo::CreateDeviceList.

Note that DestroyDeviceList is declared static. It can be used independently of class
instances.

See Also

CUsbIo::CreateDeviceList(page141)

142 USBIO Reference Manual

5 USBIO Class Library

CUsbIo::Open

Open an USB device.

Definition

DWORD
Open(

int DeviceNumber ,
HDEVINFO DeviceList ,
const GUID* InterfaceGuid
);

Parameters

DeviceNumber
Specifies the index number of the USB Device. The index is zero-based. Note that the
association between this number and the USB device can change with each call to
CUsbIo::CreateDeviceList.

DeviceList
A handle to the internal device list which was returned by the function
CUsbIo::CreateDeviceListor NULL. For more information see below.

InterfaceGuid
Points to a caller-provided variable of type GUID. The specified GUID is the predefined
interface GUID of the USBIO device driver, or a user-defined GUID which has to be
defined in the USBIO.INF file. This parameter will be ignored if DeviceList is set to
NULL. For more information, see below.

Return Value

The function returns 0 if successful, an USBIO error code otherwise.

Comments

There are two options:

(A) DeviceList != NULL
The device list provided in DeviceList must have been built using
CUsbIo::CreateDeviceList. The GUID that identifies the device interface must be
provided in InterfaceGuid.DeviceNumber is used to iterate through the device list. It
should start with zero and should be incremented after each call toOpen. If no more
instances of the interface are available then the status code
USBIO_ERR_NO_SUCH_DEVICE_INSTANCEis returned.
Note: This is the recommended way of implementing a device enumeration.

USBIO Reference Manual 143

5 USBIO Class Library

(B) DeviceList == NULL
The parameter InterfaceGuid will be ignored. DeviceNumber will be used to build an
old-style device name that starts with the string defined byUSBIO_DEVICE_NAME(see
also the comments onUSBIO_DEVICE_NAMEin UsbIo.h).
Note: This mode should be used only if compatibility to earlier versions of USBIO is
required! It will work only if the creation of static device names is enabled in the
USBIO.INF file. It is not recommended to use this mode.

See Also

CUsbIo::CreateDeviceList(page141)
CUsbIo::DestroyDeviceList(page142)
CUsbIo::Close(page145)
CUsbIo::IsOpen (page149)
CUsbIo::IsCheckedBuild (page150)
CUsbIo::IsDemoVersion(page151)
CUsbIo::IsLightVersion (page152)

144 USBIO Reference Manual

5 USBIO Class Library

CUsbIo::Close

Close the USB device.

Definition

void
Close ();

Comments

This function can be called if the device is not open. It does nothing in this case.

Any thread associated with the class instance should have been stopped before this
function is called. SeeCUsbIoThread::ShutdownThread.

See Also

CUsbIo::CreateDeviceList(page141)
CUsbIo::DestroyDeviceList(page142)
CUsbIo::Open (page143)
CUsbIoThread::ShutdownThread (page217)

USBIO Reference Manual 145

5 USBIO Class Library

CUsbIo::GetDeviceInstanceDetails

Get detailed information on an USB device instance.

Definition

DWORD
GetDeviceInstanceDetails (

int DeviceNumber ,
HDEVINFO DeviceList ,
const GUID* InterfaceGuid
);

Parameters

DeviceNumber
Specifies the index of the USB Device. The index is zero-based. Note that the association
between this number and the USB device can change with each call to
CUsbIo::CreateDeviceList.

DeviceList
A handle to the internal device list which was returned by the function
CUsbIo::CreateDeviceList.

InterfaceGuid
Points to a caller-provided variable of type GUID. The specified GUID is the predefined
interface GUID of the USBIO device driver, or a user-defined GUID which has to be
defined in the USBIO.INF file.

Return Value

The function returns 0 if successful, an USBIO error code otherwise.

Comments

This function retrieves detailed information on a device instance that has been enumerated
by means ofCUsbIo::CreateDeviceList. That information includes the device path
name that has to be passed to CreateFile in order to open the device instance. The device
path name is returned byCUsbIo::GetDevicePathName.

This function is used internally by the implementation ofCUsbIo::Open. Normally, it is
not called directly by an application.

See Also

CUsbIo::CreateDeviceList(page141)
CUsbIo::DestroyDeviceList(page142)
CUsbIo::Open (page143)

146 USBIO Reference Manual

5 USBIO Class Library

CUsbIo::GetDevicePathName(page148)

USBIO Reference Manual 147

5 USBIO Class Library

CUsbIo::GetDevicePathName

Returns the path name that is required to open the device instance.

Definition

const char*
GetDevicePathName ();

Return Value

Returns a pointer to the path name associated with this device instance, or NULL. The
returned pointer is temporarily valid only and should not be stored for later use. It
becomes invalid if the device is closed. If no device is opened, the return value is NULL.

The return value is always NULL if the device was opened using case (A) described in the
comments of theCUsbIo::Open function.

Comments

This function retrieves the device path name of the device instance. The path name is
available after a device enumeration has been performed by a call to
CUsbIo::CreateDeviceListandCUsbIo::GetDeviceInstanceDetailsor CUsbIo::Open
has been called.

This function is used internally by the implementation ofCUsbIo::Open. Normally, it is
not called directly by an application.

See Also

CUsbIo::CreateDeviceList(page141)
CUsbIo::DestroyDeviceList(page142)
CUsbIo::GetDeviceInstanceDetails(page146)
CUsbIo::Open (page143)
CUsbIo::Close(page145)

148 USBIO Reference Manual

5 USBIO Class Library

CUsbIo::IsOpen

Returns TRUE if the class instance is attached to a device.

Definition

BOOL
IsOpen ();

Return Value

Returns TRUE when a device was opened by a successful call toOpen. Returns FALSE
if no device is opened.

See Also

CUsbIo::Open (page143)
CUsbIo::Close(page145)

USBIO Reference Manual 149

5 USBIO Class Library

CUsbIo::IsCheckedBuild

Returns TRUE if a checked build (debug version) of the USBIO driver was detected.

Definition

BOOL
IsCheckedBuild ();

Return Value

Returns TRUE if the checked build of the USBIO driver is running, FALSE otherwise.

Comments

The device must have been opened before this function is called.

See Also

CUsbIo::Open (page143)
CUsbIo::IsDemoVersion(page151)
CUsbIo::IsLightVersion (page152)

150 USBIO Reference Manual

5 USBIO Class Library

CUsbIo::IsDemoVersion

Returns TRUE if the Demo version of the USBIO driver was detected.

Definition

BOOL
IsDemoVersion ();

Return Value

Returns TRUE if the Demo version of the USBIO driver is running, FALSE otherwise.

Comments

The device must have been opened before this function is called.

See Also

CUsbIo::Open (page143)
CUsbIo::IsCheckedBuild (page150)
CUsbIo::IsLightVersion (page152)

USBIO Reference Manual 151

5 USBIO Class Library

CUsbIo::IsLightVersion

Returns TRUE if the Light version of the USBIO driver was detected.

Definition

BOOL
IsLightVersion ();

Return Value

Returns TRUE if the Light version of the USBIO driver is running, FALSE otherwise.

Comments

The device must have been opened before this function is called.

See Also

CUsbIo::Open (page143)
CUsbIo::IsCheckedBuild (page150)
CUsbIo::IsDemoVersion(page151)

152 USBIO Reference Manual

5 USBIO Class Library

CUsbIo::IsOperatingAtHighSpeed

Returns TRUE if the USB 2.0 device is operating at high speed (480 Mbit/s).

Definition

BOOL
IsOperatingAtHighSpeed ();

Return Value

Returns TRUE if the USB device is operating at high speed, FALSE otherwise.

Comments

If this function returns TRUE then the USB device operates in high speed mode. The
USB 2.0 device is connected to a hub port that is high speed capable.

Note that this function does not indicate whether a device is capable of high speed
operation, but rather whether it is in fact operating at high speed.

This function callsCUsbIo::GetDeviceInfo to get the requested information.

The device must have been opened before this function is called.

See Also

CUsbIo::Open (page143)
CUsbIo::GetDeviceInfo (page155)

USBIO Reference Manual 153

5 USBIO Class Library

CUsbIo::GetDriverInfo

Get information on the USBIO device driver.

Definition

DWORD
GetDriverInfo (

USBIO_DRIVER_INFO* DriverInfo
);

Parameter

DriverInfo
Pointer to a caller-provided variable. The structure returns the API version, the driver
version, and the build number.

Return Value

The function returns 0 if successful, an USBIO error code otherwise.

Comments

The device must have been opened before this function is called.

This function is a wrapper for theIOCTL_USBIO_GET_DRIVER_INFO operation.
See also the description ofIOCTL_USBIO_GET_DRIVER_INFO for further
information.

See Also

CUsbIo::Open (page143)
CUsbIo::Close(page145)
USBIO_DRIVER_INFO (page86)
IOCTL_USBIO_GET_DRIVER_INFO (page62)

154 USBIO Reference Manual

5 USBIO Class Library

CUsbIo::GetDeviceInfo

Get information about the USB device.

Definition

DWORD
GetDeviceInfo (

USBIO_DEVICE_INFO* DeviceInfo
);

Parameter

DeviceInfo
Pointer to a caller-provided variable. The structure returns information on the USB
device. This includes a flag that indicates whether the device operates in high speed mode
or not.

Return Value

The function returns 0 if successful, an USBIO error code otherwise.

Comments

This function can be used to detect if the device operates in high speed mode.

The device must have been opened before this function is called.

This function is a wrapper for theIOCTL_USBIO_GET_DEVICE_INFO operation.
See also the description ofIOCTL_USBIO_GET_DEVICE_INFO for further
information.

See Also

CUsbIo::Open (page143)
USBIO_DEVICE_INFO (page85)
IOCTL_USBIO_GET_DEVICE_INFO (page61)

USBIO Reference Manual 155

5 USBIO Class Library

CUsbIo::GetBandwidthInfo

Get information on the current USB bandwidth consumption.

Definition

DWORD
GetBandwidthInfo (

USBIO_BANDWIDTH_INFO*BandwidthInfo
);

Parameter

BandwidthInfo
Pointer to a caller-provided variable. The structure returns information on the bandwidth
that is available on the USB.

Return Value

The function returns 0 if successful, an USBIO error code otherwise.

Comments

The function enables an application to check the bandwidth that is available on the USB.
Depending on this information an application can select an appropriate device
configuration, if desired.

The device must have been opened before this function is called.

This function is a wrapper for theIOCTL_USBIO_GET_BANDWIDTH_INFO
operation. See also the description ofIOCTL_USBIO_GET_BANDWIDTH_INFO for
further information.

See Also

CUsbIo::Open (page143)
USBIO_BANDWIDTH_INFO (page84)
IOCTL_USBIO_GET_BANDWIDTH_INFO (page60)

156 USBIO Reference Manual

5 USBIO Class Library

CUsbIo::GetDescriptor

Get a descriptor from the device.

Definition

DWORD
GetDescriptor (

void* Buffer ,
DWORD&ByteCount ,
USBIO_REQUEST_RECIPIENTRecipient ,
UCHARDescriptorType ,
UCHARDescriptorIndex = 0,
USHORTLanguageId = 0
);

Parameters

Buffer
Pointer to a caller-provided buffer. The buffer receives the requested descriptor.

ByteCount
When the function is calledByteCount specifies the size, in bytes, of the buffer pointed
to byBuffer . After the function successfully returnedByteCount contains the
number of valid bytes returned in the buffer.

Recipient
Specifies the recipient of the request. Possible values are enumerated by
USBIO_REQUEST_RECIPIENT.

DescriptorType
The type of the descriptor to request. Values are defined by the USB specification,
chapter 9.

DescriptorIndex
The index of the descriptor to request. Set to zero if an index is not used for the descriptor
type, e.g. for a device descriptor.

LanguageId
The language ID of the descriptor to request. Used for string descriptors only. Set to zero
if not used.

Return Value

The function returns 0 if successful, an USBIO error code otherwise.

USBIO Reference Manual 157

5 USBIO Class Library

Comments

If the size of the provided buffer is less than the total size of the requested descriptor then
only the specified number of bytes from the beginning of the descriptor is returned.

The device must have been opened before this function is called.

This function is a wrapper for theIOCTL_USBIO_GET_DESCRIPTOR operation. See
also the description ofIOCTL_USBIO_GET_DESCRIPTOR for further information.

See Also

CUsbIo::Open (page143)
CUsbIo::GetDeviceDescriptor(page159)
CUsbIo::GetConfigurationDescriptor (page160)
CUsbIo::GetStringDescriptor (page162)
CUsbIo::SetDescriptor (page164)
USBIO_REQUEST_RECIPIENT (page122)
IOCTL_USBIO_GET_DESCRIPTOR (page38)

158 USBIO Reference Manual

5 USBIO Class Library

CUsbIo::GetDeviceDescriptor

Get the device descriptor from the device.

Definition

DWORD
GetDeviceDescriptor (

USB_DEVICE_DESCRIPTOR*Desc
);

Parameter

Desc
Pointer to a caller-provided variable that receives the requested descriptor.

Return Value

The function returns 0 if successful, an USBIO error code otherwise.

Comments

GetDeviceDescriptor callsCUsbIo::GetDescriptor to retrieve the descriptor. Thus, for
detailed information see alsoCUsbIo::GetDescriptor.

The device must have been opened before this function is called.

See Also

CUsbIo::Open (page143)
CUsbIo::GetDescriptor (page157)
CUsbIo::GetConfigurationDescriptor (page160)
CUsbIo::GetStringDescriptor (page162)

USBIO Reference Manual 159

5 USBIO Class Library

CUsbIo::GetConfigurationDescriptor

Get a configuration descriptor from the device.

Definition

DWORD
GetConfigurationDescriptor (

USB_CONFIGURATION_DESCRIPTOR*Desc ,
DWORD&ByteCount ,
UCHARIndex = 0
);

Parameters

Desc
Pointer to a caller-provided buffer that receives the requested descriptor. Note that the size
of the configuration descriptor depends on the USB device. See also the comments below.

ByteCount
When the function is calledByteCount specifies the size, in bytes, of the buffer pointed
to byDesc . After the function successfully returnedByteCount contains the number
of valid bytes returned in the buffer.

Index
The index of the descriptor to request.

Return Value

The function returns 0 if successful, an USBIO error code otherwise.

Comments

GetConfigurationDescriptor callsCUsbIo::GetDescriptor to retrieve the descriptor.
Thus, for detailed information see alsoCUsbIo::GetDescriptor.

If the total size of the configuration descriptor is not known it can be retrieved in a two
step process. With a first call to this function the fixed part of the descriptor which is
defined byUSB_CONFIGURATION_DESCRIPTORis retrieved. The total size of the
descriptor is indicated by thewTotalLengthfield of the structure. In a second step a buffer
of the required size can be allocated and the complete descriptor can be retrieved with
another call to this function.

The device must have been opened before this function is called.

160 USBIO Reference Manual

5 USBIO Class Library

See Also

CUsbIo::Open (page143)
CUsbIo::GetDescriptor (page157)
CUsbIo::GetDeviceDescriptor(page159)
CUsbIo::GetStringDescriptor (page162)

USBIO Reference Manual 161

5 USBIO Class Library

CUsbIo::GetStringDescriptor

Get a string descriptor from the device.

Definition

DWORD
GetStringDescriptor (

USB_STRING_DESCRIPTOR*Desc ,
DWORD&ByteCount ,
UCHARIndex = 0,
UCHARLanguageId = 0
);

Parameters

Desc
Pointer to a caller-provided buffer that receives the requested descriptor. Note that
according to the USB specification the maximum size of a string descriptor is 256 bytes.

ByteCount
When the function is calledByteCount specifies the size, in bytes, of the buffer pointed
to byDesc . After the function successfully returnedByteCount contains the number
of valid bytes returned in the buffer.

Index
The index of the descriptor to request. Set to 0 to retrieve a list of supported language IDs.
See also the comments below.

LanguageId
The language ID of the string descriptor to request.

Return Value

The function returns 0 if successful, an USBIO error code otherwise.

Comments

GetStringDescriptor callsCUsbIo::GetDescriptor to retrieve the descriptor. Thus, for
detailed information see alsoCUsbIo::GetDescriptor.

If this function is called withIndex set to 0 the device returns a list of language IDs it
supports. An application can select the correct language ID and use it in subsequent calls
to this function.

The device must have been opened before this function is called.

162 USBIO Reference Manual

5 USBIO Class Library

See Also

CUsbIo::Open (page143)
CUsbIo::GetDescriptor (page157)
CUsbIo::GetDeviceDescriptor(page159)
CUsbIo::GetConfigurationDescriptor (page160)

USBIO Reference Manual 163

5 USBIO Class Library

CUsbIo::SetDescriptor

Set a descriptor of the device.

Definition

DWORD
SetDescriptor (

const void* Buffer ,
DWORD&ByteCount ,
USBIO_REQUEST_RECIPIENTRecipient ,
UCHARDescriptorType ,
UCHARDescriptorIndex = 0,
USHORTLanguageId = 0
);

Parameters

Buffer
Pointer to a caller-provided buffer. The buffer contains the descriptor data to be set.

ByteCount
When the function is calledByteCount specifies the size, in bytes, of the descriptor
pointed to byBuffer . After the function successfully returnedByteCount contains
the number of bytes transferred.

Recipient
Specifies the recipient of the request. Possible values are enumerated by
USBIO_REQUEST_RECIPIENT.

DescriptorType
The type of the descriptor to set. Values are defined by the USB specification, chapter 9.

DescriptorIndex
The index of the descriptor to set.

LanguageId
The language ID of the descriptor to set. Used for string descriptors only. Set to zero if
not used.

Return Value

The function returns 0 if successful, an USBIO error code otherwise.

Comments

Note that most devices do not support the set descriptor request.

The device must have been opened before this function is called.

164 USBIO Reference Manual

5 USBIO Class Library

This function is a wrapper for theIOCTL_USBIO_SET_DESCRIPTOR operation. See
also the description ofIOCTL_USBIO_SET_DESCRIPTOR for further information.

See Also

CUsbIo::Open (page143)
CUsbIo::GetDescriptor (page157)
CUsbIo::GetDeviceDescriptor(page159)
CUsbIo::GetConfigurationDescriptor (page160)
CUsbIo::GetStringDescriptor (page162)
USBIO_REQUEST_RECIPIENT (page122)
IOCTL_USBIO_SET_DESCRIPTOR (page39)

USBIO Reference Manual 165

5 USBIO Class Library

CUsbIo::SetFeature

Send a set feature request to the USB device.

Definition

DWORD
SetFeature (

USBIO_REQUEST_RECIPIENTRecipient ,
USHORTFeatureSelector ,
USHORTIndex = 0
);

Parameters

Recipient
Specifies the recipient of the request. Possible values are enumerated by
USBIO_REQUEST_RECIPIENT.

FeatureSelector
Specifies the feature selector value for the request. The values are defined by the
recipient. Refer to the USB specification, chapter 9 for more information.

Index
Specifies the index value for the set feature request. The values are defined by the device.
Refer to the USB specification, chapter 9 for more information.

Return Value

The function returns 0 if successful, an USBIO error code otherwise.

Comments

The device must have been opened before this function is called.

This function is a wrapper for theIOCTL_USBIO_SET_FEATURE operation. See also
the description ofIOCTL_USBIO_SET_FEATURE for further information.

See Also

CUsbIo::Open (page143)
CUsbIo::ClearFeature (page167)
CUsbIo::GetStatus(page168)
USBIO_REQUEST_RECIPIENT (page122)
IOCTL_USBIO_SET_FEATURE (page40)

166 USBIO Reference Manual

5 USBIO Class Library

CUsbIo::ClearFeature

Send a clear feature request to the USB device.

Definition

DWORD
ClearFeature (

USBIO_REQUEST_RECIPIENTRecipient ,
USHORTFeatureSelector ,
USHORTIndex =0
);

Parameters

Recipient
Specifies the recipient of the request. Possible values are enumerated by
USBIO_REQUEST_RECIPIENT.

FeatureSelector
Specifies the feature selector value for the request. The values are defined by the
recipient. Refer to the USB specification, chapter 9 for more information.

Index
Specifies the index value for the clear feature request. The values are defined by the
device. Refer to the USB specification, chapter 9 for more information.

Return Value

The function returns 0 if successful, an USBIO error code otherwise.

Comments

The device must have been opened before this function is called.

This function is a wrapper for theIOCTL_USBIO_CLEAR_FEATURE operation. See
also the description ofIOCTL_USBIO_CLEAR_FEATURE for further information.

See Also

CUsbIo::Open (page143)
CUsbIo::SetFeature(page166)
CUsbIo::GetStatus(page168)
USBIO_REQUEST_RECIPIENT (page122)
IOCTL_USBIO_CLEAR_FEATURE (page41)

USBIO Reference Manual 167

5 USBIO Class Library

CUsbIo::GetStatus

Send a get status request to the USB device.

Definition

DWORD
GetStatus (

USHORT&StatusValue ,
USBIO_REQUEST_RECIPIENTRecipient ,
USHORTIndex = 0
);

Parameters

StatusValue
If the function call is successful this variable returns the 16-bit value that is returned by
the recipient in response to the get status request. The interpretation of the value is
specific to the recipient. Refer to the USB specification, chapter 9 for more information.

Recipient
Specifies the recipient of the request. Possible values are enumerated by
USBIO_REQUEST_RECIPIENT.

Index
Specifies the index value for the get status request. The values are defined by the device.
Refer to the USB specification, chapter 9 for more information.

Return Value

The function returns 0 if successful, an USBIO error code otherwise.

Comments

The device must have been opened before this function is called.

This function is a wrapper for theIOCTL_USBIO_GET_STATUS operation. See also
the description ofIOCTL_USBIO_GET_STATUS for further information.

See Also

CUsbIo::Open (page143)
CUsbIo::SetFeature(page166)
CUsbIo::ClearFeature (page167)
USBIO_REQUEST_RECIPIENT (page122)
IOCTL_USBIO_GET_STATUS (page42)

168 USBIO Reference Manual

5 USBIO Class Library

CUsbIo::ClassOrVendorInRequest

Sends a class or vendor specific request with a data phase in device to host (IN) direction.

Definition

DWORD
ClassOrVendorInRequest (

void* Buffer ,
DWORD&ByteCount ,
const USBIO_CLASS_OR_VENDOR_REQUEST*Request
);

Parameters

Buffer
Pointer to a caller-provided buffer. The buffer receives the data transferred in the IN data
phase.

ByteCount
When the function is calledByteCount specifies the size, in bytes, of the buffer pointed
to byBuffer . After the function successfully returnedByteCount contains the
number of valid bytes returned in the buffer.

Request
Pointer to a caller-provided variable that defines the request to be generated.

Return Value

The function returns 0 if successful, an USBIO error code otherwise.

Comments

The device must have been opened before this function is called.

This function is a wrapper for the
IOCTL_USBIO_CLASS_OR_VENDOR_IN_REQUEST operation. See also the
description ofIOCTL_USBIO_CLASS_OR_VENDOR_IN_REQUEST for further
information.

See Also

CUsbIo::Open (page143)
CUsbIo::ClassOrVendorOutRequest(page170)
USBIO_CLASS_OR_VENDOR_REQUEST(page98)
IOCTL_USBIO_CLASS_OR_VENDOR_IN_REQUEST (page49)

USBIO Reference Manual 169

5 USBIO Class Library

CUsbIo::ClassOrVendorOutRequest

Sends a class or vendor specific request with a data phase in host to device (OUT) direction.

Definition

DWORD
ClassOrVendorOutRequest (

const void* Buffer ,
DWORD&ByteCount ,
const USBIO_CLASS_OR_VENDOR_REQUEST*Request
);

Parameters

Buffer
Pointer to a caller-provided buffer that contains the data to be transferred in the OUT data
phase.

ByteCount
When the function is calledByteCount specifies the size, in bytes, of the buffer pointed
to byBuffer . This is the number of bytes to be transferred in the data phase. After the
function successfully returnedByteCount contains the number of bytes transferred.

Request
Pointer to a caller-provided variable that defines the request to be generated.

Return Value

The function returns 0 if successful, an USBIO error code otherwise.

Comments

The device must have been opened before this function is called.

This function is a wrapper for the
IOCTL_USBIO_CLASS_OR_VENDOR_OUT_REQUEST operation. See also the
description ofIOCTL_USBIO_CLASS_OR_VENDOR_OUT_REQUEST for further
information.

See Also

CUsbIo::Open (page143)
CUsbIo::ClassOrVendorInRequest(page169)
USBIO_CLASS_OR_VENDOR_REQUEST(page98)
IOCTL_USBIO_CLASS_OR_VENDOR_OUT_REQUEST (page50)

170 USBIO Reference Manual

5 USBIO Class Library

CUsbIo::SetConfiguration

Set the device to the configured state.

Definition

DWORD
SetConfiguration (

const USBIO_SET_CONFIGURATION* Conf
);

Parameter

Conf
Points to a caller-provided structure that defines the configuration to be set.

Return Value

The function returns 0 if successful, an USBIO error code otherwise.

Comments

The device has to be configured before any data transfer from or to its endpoints can take
place. Only those endpoints that are included in the configuration will be activated and
can be subsequently used for data transfers.

If the device provides more than one interface all interfaces must be configured in one call
to this function.

The device must have been opened before this function is called.

This function is a wrapper for theIOCTL_USBIO_SET_CONFIGURATION
operation. See also the description ofIOCTL_USBIO_SET_CONFIGURATION for
further information.

See Also

CUsbIo::Open (page143)
CUsbIo::UnconfigureDevice(page172)
CUsbIo::GetConfiguration (page173)
CUsbIo::SetInterface (page175)
USBIO_SET_CONFIGURATION (page97)
IOCTL_USBIO_SET_CONFIGURATION (page46)

USBIO Reference Manual 171

5 USBIO Class Library

CUsbIo::UnconfigureDevice

Set the device to the unconfigured state.

Definition

DWORD
UnconfigureDevice ();

Return Value

The function returns 0 if successful, an USBIO error code otherwise.

Comments

The device must have been opened before this function is called.

This function is a wrapper for theIOCTL_USBIO_UNCONFIGURE_DEVICE
operation. See also the description ofIOCTL_USBIO_UNCONFIGURE_DEVICE for
further information.

See Also

CUsbIo::Open (page143)
CUsbIo::SetConfiguration (page171)
CUsbIo::GetConfiguration (page173)
IOCTL_USBIO_UNCONFIGURE_DEVICE (page47)

172 USBIO Reference Manual

5 USBIO Class Library

CUsbIo::GetConfiguration

This function returns the current configuration value.

Definition

DWORD
GetConfiguration (

UCHAR&ConfigurationValue
);

Parameter

ConfigurationValue
If the function call is successful this variable returns the current configuration value. A
value of 0 means the USB device is not configured.

Return Value

The function returns 0 if successful, an USBIO error code otherwise.

Comments

The configuration value returned by this function corresponds to thebConfigurationfield
of the active configuration descriptor. Note that the configuration value does not
necessarily correspond to the index of the configuration descriptor.

The device must have been opened before this function is called.

This function is a wrapper for theIOCTL_USBIO_GET_CONFIGURATION
operation. See also the description ofIOCTL_USBIO_GET_CONFIGURATION for
further information.

See Also

CUsbIo::Open (page143)
CUsbIo::SetConfiguration (page171)
IOCTL_USBIO_GET_CONFIGURATION (page43)

USBIO Reference Manual 173

5 USBIO Class Library

CUsbIo::GetConfigurationInfo

Get information on the interfaces and endpoints available in the current configuration.

Definition

DWORD
GetConfigurationInfo (

USBIO_CONFIGURATION_INFO* Info
);

Parameter

Info
Points to a caller-provided variable that receives the configuration information.

Return Value

The function returns 0 if successful, an USBIO error code otherwise.

Comments

The information returned is retrieved from the USBIO driver’s internal data base. This
function does not cause any action on the USB.

The device must have been opened and configured before this function is called.

This function is a wrapper for theIOCTL_USBIO_GET_CONFIGURATION_INFO
operation. See also the description of
IOCTL_USBIO_GET_CONFIGURATION_INFO for further information.

See Also

CUsbIo::Open (page143)
CUsbIo::SetConfiguration (page171)
USBIO_CONFIGURATION_INFO (page106)
IOCTL_USBIO_GET_CONFIGURATION_INFO (page54)

174 USBIO Reference Manual

5 USBIO Class Library

CUsbIo::SetInterface

This function changes the alternate setting of an interface.

Definition

DWORD
SetInterface (

const USBIO_INTERFACE_SETTING* Setting
);

Parameter

Setting
Points to a caller-provided structure that specifies the interface and the alternate settings
to be set.

Return Value

The function returns 0 if successful, an USBIO error code otherwise.

Comments

The device must have been opened and configured before this function is called.

This function is a wrapper for theIOCTL_USBIO_SET_INTERFACE operation. See
also the description ofIOCTL_USBIO_SET_INTERFACE for further information.

See Also

CUsbIo::Open (page143)
CUsbIo::SetConfiguration (page171)
CUsbIo::GetInterface (page176)
USBIO_INTERFACE_SETTING (page96)
IOCTL_USBIO_SET_INTERFACE (page48)

USBIO Reference Manual 175

5 USBIO Class Library

CUsbIo::GetInterface

This function returns the active alternate setting of an interface.

Definition

DWORD
GetInterface (

UCHAR&AlternateSetting ,
USHORTInterface = 0
);

Parameters

AlternateSetting
If the function call is successful this variable returns the current alternate setting of the
interface.

Interface
Specifies the index of the interface to be queried.

Return Value

The function returns 0 if successful, an USBIO error code otherwise.

Comments

The device must have been opened and configured before this function is called.

This function is a wrapper for theIOCTL_USBIO_GET_INTERFACE operation. See
also the description ofIOCTL_USBIO_GET_INTERFACE for further information.

See Also

CUsbIo::Open (page143)
CUsbIo::SetConfiguration (page171)
CUsbIo::SetInterface (page175)
IOCTL_USBIO_GET_INTERFACE (page44)

176 USBIO Reference Manual

5 USBIO Class Library

CUsbIo::StoreConfigurationDescriptor

Store a configuration descriptor in the USBIO device driver.
This function is obsolete (see below).

Definition

DWORD
StoreConfigurationDescriptor (

const USB_CONFIGURATION_DESCRIPTOR*Desc
);

Parameter

Desc
Pointer to the configuration descriptor to be stored.

Return Value

The function returns 0 if successful, an USBIO error code otherwise.

Comments

Store a configuration descriptor in the USBIO device driver and use it for the next set
configuration request. This allows to work around problems with certain devices.

The device must have been opened before this function is called.

Note: This function is obsolete and should not be used. It was introduced in earlier
versions of USBIO to work around problems caused by the Windows USB driver stack.
The stack was not able to handle some types of isochronous endpoint descriptors
correctly. In the meantime these problems are fixed and therefore the
StoreConfigurationDescriptor work-around is obsolete.

This function is a wrapper for theIOCTL_USBIO_STORE_CONFIG_DESCRIPTOR
operation. See also the description of
IOCTL_USBIO_STORE_CONFIG_DESCRIPTOR for further information.

See Also

CUsbIo::Open (page143)
CUsbIo::SetConfiguration (page171)
IOCTL_USBIO_STORE_CONFIG_DESCRIPTOR (page45)

USBIO Reference Manual 177

5 USBIO Class Library

CUsbIo::GetDeviceParameters

Query device-related parameters from the USBIO device driver.

Definition

DWORD
GetDeviceParameters (

USBIO_DEVICE_PARAMETERS*DevParam
);

Parameter

DevParam
Points to a caller-provided variable that receives the current parameter settings.

Return Value

The function returns 0 if successful, an USBIO error code otherwise.

Comments

The device must have been opened before this function is called.

This function is a wrapper for theIOCTL_USBIO_GET_DEVICE_PARAMETERS
operation. See also the description of
IOCTL_USBIO_GET_DEVICE_PARAMETERS for further information.

See Also

CUsbIo::Open (page143)
CUsbIo::SetDeviceParameters(page179)
USBIO_DEVICE_PARAMETERS (page100)
IOCTL_USBIO_GET_DEVICE_PARAMETERS (page52)

178 USBIO Reference Manual

5 USBIO Class Library

CUsbIo::SetDeviceParameters

Set device-related parameters in the USBIO device driver.

Definition

DWORD
SetDeviceParameters (

const USBIO_DEVICE_PARAMETERS* DevParam
);

Parameter

DevParam
Points to a caller-provided variable that specifies the parameters to be set.

Return Value

The function returns 0 if successful, an USBIO error code otherwise.

Comments

Default device parameters are stored in the registry during USBIO driver installation. The
default value can be changed in the INF file or in the registry. Device parameters set by
means of this function are valid until the device is removed from the PC or the PC is
booted. A modification during run-time does not change the default in the registry.

The device must have been opened before this function is called.

This function is a wrapper for theIOCTL_USBIO_SET_DEVICE_PARAMETERS
operation. See also the description of
IOCTL_USBIO_SET_DEVICE_PARAMETERS for further information.

See Also

CUsbIo::Open (page143)
CUsbIo::GetDeviceParameters(page178)
USBIO_DEVICE_PARAMETERS (page100)
IOCTL_USBIO_SET_DEVICE_PARAMETERS (page53)

USBIO Reference Manual 179

5 USBIO Class Library

CUsbIo::ResetDevice

Force an USB reset.

Definition

DWORD
ResetDevice ();

Return Value

The function returns 0 if successful, an USBIO error code otherwise.

Comments

This function causes an USB reset to be issued on the hub port the device is connected to.
This will abort all pending read and write requests and unbind all pipes. The device will
be set to the unconfigured state.

Note: The device must be in the configured state when this function is called.
ResetDevice does not work when the system-provided USB multi-interface driver is used
(see alsoproblems.txtin the USBIO package).

The device must have been opened before this function is called.

This function is a wrapper for theIOCTL_USBIO_RESET_DEVICE operation. See
also the description ofIOCTL_USBIO_RESET_DEVICE for further information.

See Also

CUsbIo::Open (page143)
CUsbIo::SetConfiguration (page171)
CUsbIo::UnconfigureDevice(page172)
CUsbIo::CyclePort (page181)
CUsbIoPipe::Bind (page190)
CUsbIoPipe::Unbind (page192)
CUsbIoPipe::AbortPipe (page202)
IOCTL_USBIO_RESET_DEVICE (page55)

180 USBIO Reference Manual

5 USBIO Class Library

CUsbIo::CyclePort

Simulates a device disconnect/connect cycle.

Definition

DWORD
CyclePort ();

Return Value

The function returns 0 if successful, an USBIO error code otherwise.

Comments

This function causes a device disconnect/connect cycle and an unload/load cycle for the
USBIO device driver as well.

Note: CyclePort does not work on multi-interface devices (see alsoproblems.txtin the
USBIO package).

The device must have been opened before this function is called.

This function is a wrapper for theIOCTL_USBIO_CYCLE_PORT operation. See also
the description ofIOCTL_USBIO_CYCLE_PORT for further information.

See Also

CUsbIo::Open (page143)
CUsbIo::ResetDevice(page180)
IOCTL_USBIO_CYCLE_PORT (page64)

USBIO Reference Manual 181

5 USBIO Class Library

CUsbIo::GetCurrentFrameNumber

Get the current USB frame number from the host controller.

Definition

DWORD
GetCurrentFrameNumber (

DWORD&FrameNumber
);

Parameter

FrameNumber
If the function call is successful this variable returns the current frame number.

Return Value

The function returns 0 if successful, an USBIO error code otherwise.

Comments

The returned frame number is a 32 bit value. The 11 least significant bits correspond to
the frame number in the USB frame token.

The device must have been opened before this function is called.

This function is a wrapper for the
IOCTL_USBIO_GET_CURRENT_FRAME_NUMBER operation. See also the
description ofIOCTL_USBIO_GET_CURRENT_FRAME_NUMBER for further
information.

See Also

CUsbIo::Open (page143)
IOCTL_USBIO_GET_CURRENT_FRAME_NUMBER (page57)

182 USBIO Reference Manual

5 USBIO Class Library

CUsbIo::GetDevicePowerState

Returns the current device power state.

Definition

DWORD
GetDevicePowerState (

USBIO_DEVICE_POWER_STATE&DevicePowerState
);

Parameter

DevicePowerState
If the function call is successful this variable returns the current device power state.

Return Value

The function returns 0 if successful, an USBIO error code otherwise.

The device must have been opened before this function is called.

This function is a wrapper for theIOCTL_USBIO_GET_DEVICE_POWER_STATE
operation. See also the description of
IOCTL_USBIO_GET_DEVICE_POWER_STATE for further information.

See Also

CUsbIo::Open (page143)
CUsbIo::SetDevicePowerState(page184)
USBIO_DEVICE_POWER_STATE (page124)
IOCTL_USBIO_GET_DEVICE_POWER_STATE (page59)

USBIO Reference Manual 183

5 USBIO Class Library

CUsbIo::SetDevicePowerState

Set the device power state.

Definition

DWORD
SetDevicePowerState (

USBIO_DEVICE_POWER_STATEDevicePowerState
);

Parameter

DevicePowerState
Specifies the device power state to be set.

Return Value

The function returns 0 if successful, an USBIO error code otherwise.

Comments

In order to set the device to suspend it must be in the configured state.

When the device is set to suspend all pending read and write requests will be returned by
the USBIO driver with an error status ofUSBIO_ERR_POWER_DOWN. An application
can ignore this error status and submit the requests to the driver again.

The device must have been opened before this function is called.

This function is a wrapper for theIOCTL_USBIO_SET_DEVICE_POWER_STATE
operation. See also the description of
IOCTL_USBIO_SET_DEVICE_POWER_STATE for further information.

See Also

CUsbIo::Open (page143)
CUsbIo::GetDevicePowerState(page183)
USBIO_DEVICE_POWER_STATE (page124)
IOCTL_USBIO_SET_DEVICE_POWER_STATE (page58)

184 USBIO Reference Manual

5 USBIO Class Library

CUsbIo::CancelIo

Cancels outstanding I/O requests issued by the calling thread.

Definition

BOOL
CancelIo ();

Return Value

If the function succeeds the return value is TRUE, FALSE otherwise.

Comments

CancelIo cancels all outstanding I/O requests that were issued by the calling thread on the
class instance. Requests issued on the instance by other threads are not cancelled.

This function is a wrapper for the Win32 functionCancelIo. For a description of this
function refer to the Win32 Platform SDK documentation.

USBIO Reference Manual 185

5 USBIO Class Library

CUsbIo::IoctlSync

Call a driver I/O control function and wait for its completion.

Definition

DWORD
IoctlSync (

DWORDIoctlCode ,
const void* InBuffer ,
DWORDInBufferSize ,
void* OutBuffer ,
DWORDOutBufferSize ,
DWORD*BytesReturned
);

Parameters

IoctlCode
The IOCTL code that identifies the driver function.

InBuffer
Pointer to the input buffer. The input buffer contains information to be passed to the
driver. Set to NULL if no input buffer is needed.

InBufferSize
Size, in bytes, of the input buffer. Set to 0 if no input buffer is needed.

OutBuffer
Pointer to the output buffer. The output buffer receives information returned from the
driver. Set to NULL if no output buffer is needed.

OutBufferSize
Size, in bytes, of the output buffer. Set to 0 if no output buffer is needed.

BytesReturned
Points to a caller-provided variable that, on a successful call, will be set to the number of
bytes returned in the output buffer. Set to NULL if this information is not needed.

Return Value

The function returns 0 if successful, an USBIO error code otherwise.

Comments

IoctlSync is a generic support function that can be used to submit any IOCTL request to
the USBIO device driver.

This function is used internally to handle the asynchronous USBIO API.

186 USBIO Reference Manual

5 USBIO Class Library

CUsbIo::ErrorText

Translate an USBIO error code to a description string.

Definition

static char*
ErrorText (

char* StringBuffer ,
DWORDStringBufferSize ,
DWORDErrorCode
);

Parameters

StringBuffer
A caller-provided string buffer that receives the text. The function returns a
null-terminated ASCII string.

StringBufferSize
Specifies the size, in bytes, of the buffer pointed to byStringBuffer .

ErrorCode
The error code to be translated.

Return Value

The function returns theStringBuffer pointer.

Comments

This function supports private USBIO error codes only. These codes start with a prefix of
0xE. The function cannot be used to translate general Windows error codes.

Note that ErrorText is declared static. It can be used independently of class instances.

USBIO Reference Manual 187

5 USBIO Class Library

Data Members

HANDLE FileHandle
This protected member contains the handle for the USBIO device object. The value is
NULL if no open handle exists.

OVERLAPPEDOverlapped
This protected member provides an OVERLAPPED data structure that is required to
perform asynchronous (overlapped) I/O operations by means of the Win32 function
DeviceIoControl . The Overlapped member is used byCUsbIo::IoctlSync.

CRITICAL_SECTION CritSect
This protected member provides a Win32 Critical Section object that is used to
synchronize IOCTL operations onFileHandle . Synchronization is required because
there is only one OVERLAPPED data structure per CUsbIo object, see also
CUsbIo::Overlapped.

The CUsbIo object is thread-save. It can be accessed by multiple threads simultaneously.

BOOL CheckedBuildDetected
This protected member provides a flag. It is set to TRUE if a checked (debug) build of the
USBIO driver has been detected, FALSE otherwise. The flag is initialized by the
CUsbIo::Open function. See alsoCUsbIo::GetDriverInfo for more information.

The state of this flag can be queried by means of the functionCUsbIo::IsCheckedBuild.

BOOL DemoVersionDetected
This protected member provides a flag. It is set to TRUE if a DEMO version of the
USBIO driver has been detected, FALSE otherwise. The flag is initialized by the
CUsbIo::Open function. See alsoCUsbIo::GetDriverInfo for more information.

The state of this flag can be queried by means of the functionCUsbIo::IsDemoVersion.

BOOL LightVersionDetected
This protected member provides a flag. It is set to TRUE if a LIGHT version of the
USBIO driver has been detected, FALSE otherwise. The flag is initialized by the
CUsbIo::Open function. See alsoCUsbIo::GetDriverInfo for more information.

The state of this flag can be queried by means of the functionCUsbIo::IsLightVersion .

SP_DEVICE_INTERFACE_DETAIL_DATA* mDevDetail
This private member contains information on the device instance opened by the CUsbIo
object. It is used by the CUsbIo implementation internally.

static CSetupApiDll smSetupApi
This protected member is used to manage the librarysetupapi.dll. TheCSetupApiDll
class provides functions to load the system-provided librarysetupapi.dllexplicitly at
run-time.

188 USBIO Reference Manual

5 USBIO Class Library

CUsbIoPipe class

This class implements the interface to an USB pipe that is exported by the USBIO device driver.
It provides all pipe-related functions that can be executed on a file handle that is bound to an USB
endpoint. Particularly, it provides the functions needed for a data transfer from or to an endpoint.

Note that this class is derived fromCUsbIo. All general and device-related functions can be
executed on an instance of CUsbIoPipe as well.

Member Functions

CUsbIoPipe::CUsbIoPipe

Standard constructor of the CUsbIoPipe class.

Definition

CUsbIoPipe ();

See Also

CUsbIoPipe::˜CUsbIoPipe(page189)

CUsbIoPipe::˜CUsbIoPipe

Destructor of the CUsbIoPipe class.

Definition

˜CUsbIoPipe ();

See Also

CUsbIoPipe::CUsbIoPipe(page189)

USBIO Reference Manual 189

5 USBIO Class Library

CUsbIoPipe::Bind

Bind the object to an endpoint of the USB device.

Definition

DWORD
Bind (

int DeviceNumber ,
UCHAREndpointAddress ,
HDEVINFO DeviceList = NULL,
const GUID* InterfaceGuid = NULL
);

Parameters

DeviceNumber
Specifies the index number of the USB Device. The index is zero-based. Note that the
association between this number and the USB device can change with each call to
CUsbIo::CreateDeviceList. For more details see alsoCUsbIo::Open.

Note that this parameter is ignored if the device has already been opened. See the
comments below.

EndpointAddress
Specifies the address of the endpoint to bind the object to. The endpoint address is
specified as reported in the corresponding endpoint descriptor.

The endpoint address includes the direction flag at bit position 7 (MSB).

Bit 7 = 0: OUT endpoint

Bit 7 = 1: IN endpoint

For example, an IN endpoint with endpoint number 1 has the endpoint address 0x81.

DeviceList
A handle to the internal device list which was returned by the function
CUsbIo::CreateDeviceListor NULL. For more details see alsoCUsbIo::Open.

Note that this parameter is ignored if the device has already been opened. See the
comments below.

InterfaceGuid
Points to a caller-provided variable of type GUID, or can be set to NULL. The provided
GUID is the predefined interface GUID of the USBIO device driver, or a user-defined
GUID which has to be defined in the USBIO.INF file. For more details see also
CUsbIo::Open.

Note that this parameter is ignored if the device has already been opened. See the
comments below.

190 USBIO Reference Manual

5 USBIO Class Library

Return Value

The function returns 0 if successful, an USBIO error code otherwise.

Comments

If an USB device has not already been opened this function callsCUsbIo::Open to attach
the object to a device. It passes the parametersDeviceNumber , DeviceList , and
InterfaceGuid unmodified toCUsbIo::Open. Thus, a device and an endpoint can be
attached to the object in one step.

Alternatively, an application can attach a device first by means ofCUsbIo::Open
(derived fromCUsbIo, and then in a second step attach an endpoint by means of Bind.
The parametersDeviceNumber , DeviceList , andInterfaceGuid will be
ignored in this case.

The device must be set to the configured state before an endpoint can be bound, see
CUsbIo::SetConfiguration. Only endpoints that are included in the active configuration
can be bound by this function and subsequently used for a data transfer.

Note that an instance of the CUsbIoPipe class can be bound to exactly one endpoint only.
Consequently, one instance has to be created for each endpoint to be activated.

This function is a wrapper for theIOCTL_USBIO_BIND_PIPE operation. See also the
description ofIOCTL_USBIO_BIND_PIPE for further information.

See Also

CUsbIoPipe::Unbind (page192)
CUsbIo::CreateDeviceList(page141)
CUsbIo::Open (page143)
CUsbIo::Close(page145)
CUsbIo::SetConfiguration (page171)
IOCTL_USBIO_BIND_PIPE (page66)

USBIO Reference Manual 191

5 USBIO Class Library

CUsbIoPipe::Unbind

Delete the association between the object and an endpoint.

Definition

DWORD
Unbind ();

Return Value

The function returns 0 if successful, an USBIO error code otherwise.

Comments

A call to this function causes all pending read and write requests to be aborted.

After this function was called the object can be bound to another endpoint. However, it is
recommended to use a separate object for each endpoint. See also the comments on
CUsbIoPipe::Bind.

It is not an error to call Unbind when no endpoint is currently bound. The function does
nothing in this case.

Note that closing the device either by means ofCUsbIo::Closeor by destructing the
object will also cause an unbind. Thus, normally there is no need to call Unbind explicitly.

This function is a wrapper for theIOCTL_USBIO_UNBIND_PIPE operation. See also
the description ofIOCTL_USBIO_UNBIND_PIPE for further information.

See Also

CUsbIoPipe::Bind (page190)
CUsbIo::Close(page145)
IOCTL_USBIO_UNBIND_PIPE (page67)

192 USBIO Reference Manual

5 USBIO Class Library

CUsbIoPipe::Read

Submit a read request on the pipe.

Definition

BOOL
Read(

CUsbIoBuf* Buf
);

Parameter

Buf
Pointer to a buffer descriptor the read buffer is attached to. The buffer descriptor has to be
prepared by the caller. See the comments below.

Return Value

Returns TRUE if the request was successfully submitted, FALSE otherwise. If FALSE is
returned then theStatus member ofBuf contains an error code.

Comments

The function submits the buffer memory that is attached toBuf to the USBIO device
driver. The caller has to prepare the buffer descriptor pointed to byBuf . Particularly, the
NumberOfBytesToTransfer member has to be set to the number of bytes to read.

The call returns immediately (asynchronous behavior). After the function succeeded the
read operation is pending. It will be completed later on by the USBIO driver when data is
received from the device. To determine when the operation has been completed the
functionCUsbIoPipe::WaitForCompletion should be called.

The device must have been opened and the object must have been bound to an endpoint
before this function is called, seeCUsbIoPipe::Bind.

See Also

CUsbIoPipe::Bind (page190)
CUsbIoPipe::ReadSync(page197)
CUsbIoPipe::Write (page194)
CUsbIoPipe::WaitForCompletion (page195)
CUsbIoBuf (page231)

USBIO Reference Manual 193

5 USBIO Class Library

CUsbIoPipe::Write

Submit a write request on the pipe.

Definition

BOOL
Write (

CUsbIoBuf* Buf
);

Parameter

Buf
Pointer to a buffer descriptor the write buffer is attached to. The buffer descriptor has to
be prepared by the caller. See the comments below.

Return Value

Returns TRUE if the request was successfully submitted, FALSE otherwise. If FALSE is
returned then theStatus member ofBuf contains an error code.

Comments

The function submits the buffer memory that is attached toBuf to the USBIO device
driver. The buffer contains the data to be written. The caller has to prepare the buffer
descriptor pointed to byBuf . Particularly, theNumberOfBytesToTransfer member
has to be set to the number of bytes to write.

The call returns immediately (asynchronous behavior). After the function succeeded the
write operation is pending. It will be completed later on by the USBIO driver when data
has been sent to the device. To determine when the operation has been completed the
functionCUsbIoPipe::WaitForCompletion should be called.

The device must have been opened and the object must have been bound to an endpoint
before this function is called, seeCUsbIoPipe::Bind.

See Also

CUsbIoPipe::Bind (page190)
CUsbIoPipe::WriteSync (page199)
CUsbIoPipe::Write (page194)
CUsbIoPipe::WaitForCompletion (page195)
CUsbIoBuf (page231)

194 USBIO Reference Manual

5 USBIO Class Library

CUsbIoPipe::WaitForCompletion

Wait for completion of a pending read or write operation.

Definition

DWORD
WaitForCompletion (

CUsbIoBuf* Buf ,
DWORDTimeout = INFINITE
);

Parameters

Buf
Pointer to the buffer descriptor that has been submitted by means ofCUsbIoPipe::Read
or CUsbIoPipe::Write .

Timeout
Specifies a timeout interval, in milliseconds. The function returns if the interval elapses
and the read or write operation is still pending.

When INFINITE is specified then the interval never elapses. The function does not return
until the read or write operation is finished.

Return Value

The function returnsUSBIO_ERR_TIMEOUTif the timeout interval elapsed. If the read
or write operation has been finished the return value is the final completion status of the
operation. Note that theStatus member ofBuf will also be set to the final completion
status. The completion status is 0 if the read or write operation has been successfully
finished, an USBIO error code otherwise.

Comments

After a buffer was submitted to the USBIO device driver by means ofCUsbIoPipe::Read
or CUsbIoPipe::Write this function is used to wait for the completion of the data
transfer. Note that WaitForCompletion can be called regardless of the return status of the
CUsbIoPipe::Reador CUsbIoPipe::Write function. It returns always the correct status
of the buffer.

Optionally, a timeout interval for the wait operation may be specified. When the interval
elapses before the read or write operation is finished the function returns with a special
status ofUSBIO_ERR_TIMEOUT. The data transfer operation is still pending in this
case. WaitForCompletion should be called again until the operation is finished.

The device must have been opened and the object must have been bound to an endpoint
before this function is called, seeCUsbIoPipe::Bind.

USBIO Reference Manual 195

5 USBIO Class Library

See Also

CUsbIoPipe::Bind (page190)
CUsbIoPipe::Read(page193)
CUsbIoPipe::Write (page194)
CUsbIoBuf (page231)

196 USBIO Reference Manual

5 USBIO Class Library

CUsbIoPipe::ReadSync

Submit a read request on the pipe and wait for its completion.

Definition

DWORD
ReadSync (

void* Buffer ,
DWORD&ByteCount ,
DWORDTimeout = INFINITE
);

Parameters

Buffer
Pointer to a caller-provided buffer. The buffer receives the data transferred from the
device.

ByteCount
When the function is calledByteCount specifies the size, in bytes, of the buffer pointed
to byBuffer . After the function succeedsByteCount contains the number of bytes
successfully read.

Timeout
Specifies a timeout interval, in milliseconds. If the interval elapses and the read operation
is not yet finished the function aborts the operation and returns with
USBIO_ERR_TIMEOUT.

When INFINITE is specified then the interval never elapses. The function does not return
until the read operation is finished.

Return Value

The function returnsUSBIO_ERR_TIMEOUTif the timeout interval elapsed and the read
operation was aborted. If the read operation has been finished the return value is the
completion status of the operation which is 0 for success, or an USBIO error code
otherwise.

Comments

The function transfers data from the endpoint attached to the object to the specified buffer.
The function does not return to the caller until the data transfer has been finished or
aborted due to a timeout. It behaves in a synchronous manner.

Optionally, a timeout interval for the synchronous read operation may be specified. When
the interval elapses before the operation is finished the function aborts the operation and
returns with a special status ofUSBIO_ERR_TIMEOUT. In this case, it is not possible to

USBIO Reference Manual 197

5 USBIO Class Library

determine the number of bytes already transferred. After a timeout error occurred
CUsbIoPipe::ResetPipeshould be called.

Note that there is some overhead involved when this function is used. This is due to a
temporary Win32 Event object that is created and destroyed internally.

Note: Using synchronous read requests does make sense in rare cases only and can lead
to unpredictable results. It is recommended to handle read operations asynchronously by
means ofCUsbIoPipe::ReadandCUsbIoPipe::WaitForCompletion.

The device must have been opened and the object must have been bound to an endpoint
before this function is called, seeCUsbIoPipe::Bind.

See Also

CUsbIoPipe::Bind (page190)
CUsbIoPipe::WriteSync (page199)
CUsbIoPipe::Read(page193)
CUsbIoPipe::WaitForCompletion (page195)
CUsbIoPipe::ResetPipe(page201)

198 USBIO Reference Manual

5 USBIO Class Library

CUsbIoPipe::WriteSync

Submit a write request on the pipe and wait for its completion.

Definition

DWORD
WriteSync (

void* Buffer ,
DWORD&ByteCount ,
DWORDTimeout = INFINITE
);

Parameters

Buffer
Pointer to a caller-provided buffer that contains the data to be transferred to the device.

ByteCount
When the function is calledByteCount specifies the size, in bytes, of the buffer pointed
to byBuffer . This is the number of bytes to be transferred to the device. After the
function succeedsByteCount contains the number of bytes successfully written.

Timeout
Specifies a timeout interval, in milliseconds. If the interval elapses and the write operation
is not yet finished the function aborts the operation and returns with
USBIO_ERR_TIMEOUT.

When INFINITE is specified then the interval never elapses. The function does not return
until the write operation is finished.

Return Value

The function returnsUSBIO_ERR_TIMEOUTif the timeout interval elapsed and the
write operation was aborted. If the write operation has been finished the return value is
the completion status of the operation which is 0 for success, or an USBIO error code
otherwise.

Comments

The function transfers data from the specified buffer to the endpoint attached to the
object. The function does not return to the caller until the data transfer has been finished
or aborted due to a timeout. It behaves in a synchronous manner.

Optionally, a timeout interval for the synchronous write operation may be specified.
When the interval elapses before the operation is finished the function aborts the
operation and returns with a special status ofUSBIO_ERR_TIMEOUT. In this case, it is
not possible to determine the number of bytes already transferred. After a timeout error
occurredCUsbIoPipe::ResetPipeshould be called.

USBIO Reference Manual 199

5 USBIO Class Library

Note that there is some overhead involved when this function is used. This is due to a
temporary Win32 Event object that is created and destroyed internally.

The device must have been opened and the object must have been bound to an endpoint
before this function is called, seeCUsbIoPipe::Bind.

See Also

CUsbIoPipe::Bind (page190)
CUsbIoPipe::ReadSync(page197)
CUsbIoPipe::ResetPipe(page201)

200 USBIO Reference Manual

5 USBIO Class Library

CUsbIoPipe::ResetPipe

Reset pipe.

Definition

DWORD
ResetPipe ();

Return Value

The function returns 0 if successful, an USBIO error code otherwise.

Comments

This function resets the software state of a pipe in the USB driver stack. Besides, on a
bulk or interrupt pipe a CLEAR_FEATURE Endpoint Stall request will be generated on
the USB. This should reset the endpoint state in the device as well.

This function has to be used after an error condition occurred on the pipe and the pipe was
halted by the USB drivers.

It is recommended to call ResetPipe every time a data transfer is initialized on the pipe.

The device must have been opened and the object must have been bound to an endpoint
before this function is called, seeCUsbIoPipe::Bind.

This function is a wrapper for theIOCTL_USBIO_RESET_PIPE operation. See also
the description ofIOCTL_USBIO_RESET_PIPE for further information.

See Also

CUsbIoPipe::Bind (page190)
CUsbIoPipe::AbortPipe (page202)
IOCTL_USBIO_RESET_PIPE (page68)

USBIO Reference Manual 201

5 USBIO Class Library

CUsbIoPipe::AbortPipe

Cancel all pending read and write requests on this pipe.

Definition

DWORD
AbortPipe ();

Return Value

The function returns 0 if successful, an USBIO error code otherwise.

Comments

This function is used to abort pending I/O operations on the pipe. All pending buffers will
be returned to the application with an error status. Note that it is not possible to determine
the number of bytes already transferred from or to an aborted buffer.

After a call to this function and before the data transfer is restarted the state of the pipe
should be reset by means ofCUsbIoPipe::ResetPipe. See also the comments on
CUsbIoPipe::ResetPipe.

Note that it will take some milliseconds to cancel all buffers. Therefore, AbortPipe should
not be called periodically.

The device must have been opened and the object must have been bound to an endpoint
before this function is called, seeCUsbIoPipe::Bind.

This function is a wrapper for theIOCTL_USBIO_ABORT_PIPE operation. See also
the description ofIOCTL_USBIO_ABORT_PIPE for further information.

See Also

CUsbIoPipe::Bind (page190)
CUsbIoPipe::ResetPipe(page201)
IOCTL_USBIO_ABORT_PIPE (page69)

202 USBIO Reference Manual

5 USBIO Class Library

CUsbIoPipe::GetPipeParameters

Query pipe-related parameters from the USBIO device driver.

Definition

DWORD
GetPipeParameters (

USBIO_PIPE_PARAMETERS*PipeParameters
);

Parameter

PipeParameters
Points to a caller-provided variable that receives the current parameter settings.

Return Value

The function returns 0 if successful, an USBIO error code otherwise.

Comments

The device must have been opened and the object must have been bound to an endpoint
before this function is called, seeCUsbIoPipe::Bind.

This function is a wrapper for theIOCTL_USBIO_GET_PIPE_PARAMETERS
operation. See also the description ofIOCTL_USBIO_GET_PIPE_PARAMETERS
for further information.

See Also

CUsbIoPipe::Bind (page190)
CUsbIoPipe::SetPipeParameters(page204)
USBIO_PIPE_PARAMETERS (page110)
IOCTL_USBIO_GET_PIPE_PARAMETERS (page70)

USBIO Reference Manual 203

5 USBIO Class Library

CUsbIoPipe::SetPipeParameters

Set pipe-related parameters in the USBIO device driver.

Definition

DWORD
SetPipeParameters (

const USBIO_PIPE_PARAMETERS* PipeParameters
);

Parameter

PipeParameters
Points to a caller-provided variable that specifies the parameters to be set.

Return Value

The function returns 0 if successful, an USBIO error code otherwise.

Comments

The device must have been opened and the object must have been bound to an endpoint
before this function is called, seeCUsbIoPipe::Bind.

This function is a wrapper for theIOCTL_USBIO_SET_PIPE_PARAMETERS
operation. See also the description ofIOCTL_USBIO_SET_PIPE_PARAMETERS for
further information.

See Also

CUsbIoPipe::Bind (page190)
CUsbIoPipe::GetPipeParameters(page203)
USBIO_PIPE_PARAMETERS (page110)
IOCTL_USBIO_SET_PIPE_PARAMETERS (page71)

204 USBIO Reference Manual

5 USBIO Class Library

CUsbIoPipe::PipeControlTransferIn

Generates a control transfer (SETUP token) on the pipe with a data phase in device to host (IN)
direction.

Definition

DWORD
PipeControlTransferIn (

void* Buffer ,
DWORD&ByteCount ,
const USBIO_PIPE_CONTROL_TRANSFER* ControlTransfer
);

Parameters

Buffer
Pointer to a caller-provided buffer. The buffer receives the data transferred in the IN data
phase.

ByteCount
When the function is calledByteCount specifies the size, in bytes, of the buffer pointed
to byBuffer . After the function successfully returnedByteCount contains the
number of valid bytes returned in the buffer.

ControlTransfer
Pointer to a caller-provided variable that defines the request to be generated.

Return Value

The function returns 0 if successful, an USBIO error code otherwise.

Comments

This function is used to send a SETUP token to a Control type endpoint.

Note: This function cannot be used to send a SETUP request to the default endpoint 0.

The device must have been opened and the object must have been bound to an endpoint
before this function is called, seeCUsbIoPipe::Bind.

This function is a wrapper for the
IOCTL_USBIO_PIPE_CONTROL_TRANSFER_IN operation. See also the
description ofIOCTL_USBIO_PIPE_CONTROL_TRANSFER_IN for further
information.

See Also

CUsbIoPipe::Bind (page190)

USBIO Reference Manual 205

5 USBIO Class Library

CUsbIoPipe::PipeControlTransferOut (page207)
USBIO_PIPE_CONTROL_TRANSFER (page116)
IOCTL_USBIO_PIPE_CONTROL_TRANSFER_IN (page76)

206 USBIO Reference Manual

5 USBIO Class Library

CUsbIoPipe::PipeControlTransferOut

Generates a control transfer (SETUP token) on the pipe with a data phase in host to device (OUT)
direction.

Definition

DWORD
PipeControlTransferOut (

const void* Buffer ,
DWORD&ByteCount ,
const USBIO_PIPE_CONTROL_TRANSFER* ControlTransfer
);

Parameters

Buffer
Pointer to a caller-provided buffer that contains the data to be transferred in the OUT data
phase.

ByteCount
When the function is calledByteCount specifies the size, in bytes, of the buffer pointed
to byBuffer . This is the number of bytes to be transferred in the data phase. After the
function successfully returnedByteCount contains the number of bytes transferred.

ControlTransfer
Pointer to a caller-provided variable that defines the request to be generated.

Return Value

The function returns 0 if successful, an USBIO error code otherwise.

Comments

This function is used to send a SETUP token to a Control type endpoint.

Note: This function cannot be used to send a SETUP request to the default endpoint 0.

The device must have been opened and the object must have been bound to an endpoint
before this function is called, seeCUsbIoPipe::Bind.

This function is a wrapper for the
IOCTL_USBIO_PIPE_CONTROL_TRANSFER_OUT operation. See also the
description ofIOCTL_USBIO_PIPE_CONTROL_TRANSFER_OUT for further
information.

See Also

CUsbIoPipe::Bind (page190)

USBIO Reference Manual 207

5 USBIO Class Library

CUsbIoPipe::PipeControlTransferIn (page205)
USBIO_PIPE_CONTROL_TRANSFER (page116)
IOCTL_USBIO_PIPE_CONTROL_TRANSFER_OUT (page77)

208 USBIO Reference Manual

5 USBIO Class Library

CUsbIoPipe::SetupPipeStatistics

Enables or disables a statistical analysis of the data transfer on the pipe.

Definition

DWORD
SetupPipeStatistics (

ULONGAveragingInterval
);

Parameter

AveragingInterval
Specifies the time interval, in milliseconds, that is used to calculate the average data rate
of the pipe. A time averaging algorithm is used to continuously compute the mean value
of the data transfer rate.

If AveragingInterval is set to zero then the average data rate computation is
disabled. This is the default state. An application should only enable the average data rate
computation if it is needed. This will save resources (kernel memory and CPU cycles).

Return Value

The function returns 0 if successful, an USBIO error code otherwise.

Comments

The USBIO driver is able to analyse the data transfer (outgoing or incoming) on a pipe
and to calculate the average data rate on that pipe. A time averaging algorithm is used to
continuously compute the mean value of the data transfer rate. In order to save resources
(kernel memory and CPU cycles) the average data rate computation is disabled by default.
It has to be enabled and to be configured by means of this function before it is available to
an application. See alsoCUsbIoPipe::QueryPipeStatisticsand
USBIO_PIPE_STATISTICS for more information on pipe statistics.

The device must have been opened and the object must have been bound to an endpoint
before this function is called, seeCUsbIoPipe::Bind.

This function is a wrapper for theIOCTL_USBIO_SETUP_PIPE_STATISTICS
operation. See also the description ofIOCTL_USBIO_SETUP_PIPE_STATISTICS
for further information.

See Also

CUsbIoPipe::Bind (page190)
CUsbIoPipe::QueryPipeStatistics(page210)
IOCTL_USBIO_SETUP_PIPE_STATISTICS (page72)

USBIO Reference Manual 209

5 USBIO Class Library

CUsbIoPipe::QueryPipeStatistics

Returns statistical data related to the pipe.

Definition

DWORD
QueryPipeStatistics (

USBIO_PIPE_STATISTICS* PipeStatistics ,
ULONGFlags = 0
);

Parameters

PipeStatistics
Points to a caller-provided variable that receives the statistical data.

Flags
This parameter is set to zero or any combination (bit-wise or) of the following values.

USBIO_QPS_FLAG_RESET_BYTES_TRANSFERRED
If this flag is specified then the BytesTransferred counter will be reset to zero after
its current value has been captured. The BytesTransferred counter is an unsigned
64 bit integer. It counts the total number of bytes transferred on a pipe, modulo
2^64.

USBIO_QPS_FLAG_RESET_REQUESTS_SUCCEEDED
If this flag is specified then the RequestsSucceeded counter will be reset to zero
after its current value has been captured. The RequestsSucceeded counter is an
unsigned 32 bit integer. It counts the total number of read or write requests that
have been completed successfully on a pipe, modulo 2^32.

USBIO_QPS_FLAG_RESET_REQUESTS_FAILED
If this flag is specified then the RequestsFailed counter will be reset to zero after
its current value has been captured. The RequestsFailed counter is an unsigned
32 bit integer. It counts the total number of read or write requests that have been
completed with an error status on a pipe, modulo 2^32.

USBIO_QPS_FLAG_RESET_ALL_COUNTERS
This value combines the three flags described above. If
USBIO_QPS_FLAG_RESET_ALL_COUNTERS is specified then all three
counters BytesTransferred, RequestsSucceeded, and RequestsFailed will be reset
to zero after their current values have been captured.

Return Value

The function returns 0 if successful, an USBIO error code otherwise.

210 USBIO Reference Manual

5 USBIO Class Library

Comments

The USBIO driver internally maintains some statistical data per pipe object. This function
allows an application to query the actual values of the various statistics counters.
Optionally, individual counters can be reset to zero after queried. See also
CUsbIoPipe::SetupPipeStatisticsandUSBIO_PIPE_STATISTICS for more
information on pipe statistics.

The USBIO driver is able to analyse the data transfer (outgoing or incoming) on a pipe
and to calculate the average data rate on that pipe. In order to save resources (kernel
memory and CPU cycles) this feature is disabled by default. It has to be enabled and to be
configured by means of the functionCUsbIoPipe::SetupPipeStatisticsbefore it is
available to an application. Thus, before an application starts to (periodically) query the
value ofAverageRate that is included in the data structure
USBIO_PIPE_STATISTICS it has to enable the continuous computation of this value
by a call toCUsbIoPipe::SetupPipeStatistics. The other statistical counters contained in
theUSBIO_PIPE_STATISTICS structure will be updated by default and do not need to
be enabled explicitly.

Note that the statistical data is maintained for each pipe object separately.

The device must have been opened and the object must have been bound to an endpoint
before this function is called, seeCUsbIoPipe::Bind.

This function is a wrapper for theIOCTL_USBIO_QUERY_PIPE_STATISTICS
operation. See also the description ofIOCTL_USBIO_QUERY_PIPE_STATISTICS
for further information.

See Also

CUsbIoPipe::Bind (page190)
CUsbIoPipe::SetupPipeStatistics(page209)
USBIO_PIPE_STATISTICS (page114)
IOCTL_USBIO_QUERY_PIPE_STATISTICS (page74)

USBIO Reference Manual 211

5 USBIO Class Library

CUsbIoPipe::ResetPipeStatistics

Reset the statistics counters of the pipe.

Definition

DWORD
ResetPipeStatistics ();

Return Value

The function returns 0 if successful, an USBIO error code otherwise.

Comments

The USBIO driver internally maintains some statistical data per pipe object. This function
resets the counters BytesTransferred, RequestsSucceeded, and RequestsFailed to zero.
See alsoCUsbIoPipe::SetupPipeStatisticsandUSBIO_PIPE_STATISTICS for more
information on pipe statistics.

Note that this function callsCUsbIoPipe::QueryPipeStatisticsto reset the counters.

The device must have been opened and the object must have been bound to an endpoint
before this function is called, seeCUsbIoPipe::Bind.

See Also

CUsbIoPipe::Bind (page190)
CUsbIoPipe::SetupPipeStatistics(page209)
CUsbIoPipe::QueryPipeStatistics(page210)
USBIO_PIPE_STATISTICS (page114)

212 USBIO Reference Manual

5 USBIO Class Library

CUsbIoThread class

This class provides a basic implementation of a worker-thread that is used to continuously
perform I/O operations. CUsbIoThread is a base class for theCUsbIoReaderand
CUsbIoWriter worker-thread implementations.

The CUsbIoThread class contains pure virtual functions. Consequently, it is not possible to create
an instance of the class.

Note that CUsbIoThread is derived fromCUsbIoPipe. Thus, all USBIO functions can be
executed on an instance of CUsbIoThread.

Member Functions

CUsbIoThread::CUsbIoThread

Constructs a CUsbIoThread object.

Definition

CUsbIoThread ();

See Also

CUsbIoThread::˜CUsbIoThread (page213)

CUsbIoThread::˜CUsbIoThread

Destructor of the CUsbIoThread class.

Definition

virtual
˜CUsbIoThread ();

Comments

The internal worker-thread must have been terminated when the object’s destructor is
called. That meansCUsbIoThread::ShutdownThread must be called before the object
is destroyed.

See Also

CUsbIoThread::CUsbIoThread (page213)
CUsbIoThread::ShutdownThread (page217)

USBIO Reference Manual 213

5 USBIO Class Library

CUsbIoThread::AllocateBuffers

Allocate the internal buffer pool.

Definition

BOOL
AllocateBuffers (

DWORDSizeOfBuffer ,
DWORDNumberOfBuffers
);

Parameters

SizeOfBuffer
Specifies the size, in bytes, of the buffers to be allocated internally.

NumberOfBuffers
Specifies the number of buffers to be allocated internally.

Return Value

Returns TRUE in case of success, FALSE otherwise.

Comments

The function initializes an internalCUsbIoBufPoolobject. For more information on the
parameters and the behavior of the function refer to the description of
CUsbIoBufPool::Allocate.

See Also

CUsbIoThread::FreeBuffers (page215)
CUsbIoBufPool (page239)
CUsbIoBufPool::Allocate (page241)

214 USBIO Reference Manual

5 USBIO Class Library

CUsbIoThread::FreeBuffers

Free the internal buffer pool.

Definition

void
FreeBuffers ();

Comments

The function frees the buffers allocated by the internalCUsbIoBufPoolobject. For more
information on the behavior of the function refer to the description of
CUsbIoBufPool::Free.

See Also

CUsbIoThread::AllocateBuffers (page214)
CUsbIoBufPool (page239)
CUsbIoBufPool::Free (page242)

USBIO Reference Manual 215

5 USBIO Class Library

CUsbIoThread::StartThread

Start the internal worker-thread.

Definition

BOOL
StartThread (

DWORDMaxIoErrorCount = 3
);

Parameter

MaxIoErrorCount
Specifies the maximum number of I/O errors caused by read or write operations that will
be tolerated by the thread. The thread will terminate itself when the specified limit is
reached.

Return Value

Returns TRUE in case of success, FALSE otherwise.

Comments

The internal worker-thread will be created. Possibly, it starts its execution before this
function returns.

The error limit specified inMaxIoErrorCount prevents an end-less loop in the
worker-thread that can occur when the device permanently fails data transfer requests.

The internal buffer pool must have been initialized by means of
CUsbIoThread::AllocateBuffers before this function is called.

Note: The internal worker-thread is a native system thread. That means it cannot call
MFC (Microsoft Foundation Classes) functions. It is necessary to usePostMessage,
SendMessageor some other communication mechanism to switch over to MFC-aware
threads.

See Also

CUsbIoThread::AllocateBuffers (page214)
CUsbIoThread::ThreadRoutine (page222)
CUsbIoThread::ShutdownThread (page217)

216 USBIO Reference Manual

5 USBIO Class Library

CUsbIoThread::ShutdownThread

Terminate the internal worker-thread.

Definition

BOOL
ShutdownThread ();

Return Value

Returns TRUE in case of success, FALSE otherwise.

Comments

The function sets the member variableTerminateFlag to TRUE. Then it calls the
virtual member functionCUsbIoThread::TerminateThread. The implementation of
CUsbIoThread::TerminateThread should cause the worker-thread to resume from a
wait function and to terminate itself.

ShutdownThread blocks until the worker-thread has been terminated by the operating
system.

It is not an error to call ShutdownThread when the internal thread is not started. The
function does nothing in this case.

Note: This function has to be called before the CUsbIoThread object is destroyed. In
other words, the worker-thread must have been terminated when the object’s destructor
CUsbIoThread::˜CUsbIoThread is called.

See Also

CUsbIoThread::StartThread (page216)
CUsbIoThread::˜CUsbIoThread (page213)
CUsbIoThread::TerminateThread (page223)

USBIO Reference Manual 217

5 USBIO Class Library

CUsbIoThread::ProcessData

This handler is called by the worker-thread to process data that has been received from the device.

Definition

virtual void
ProcessData (

CUsbIoBuf* Buf
);

Parameter

Buf
Pointer to a buffer descriptor the buffer is attached to.

Comments

This handler function is used by theCUsbIoReaderimplementation of the
worker-thread. It is called when data has been successfully received on the pipe. Note that
the function is called in the context of the worker-thread.

There is a default implementation of ProcessData that is just empty. ProcessData should
be overloaded by a derived class to implement a specific functionality.

An implementation of ProcessData should examine the fieldsCUsbIoBuf::Status and
CUsbIoBuf::BytesTransferred to determine if there are valid data bytes in the buffer.

See Also

CUsbIoThread::StartThread (page216)
CUsbIoThread::ProcessBuffer(page219)
CUsbIoReader(page225)
CUsbIoBuf (page231)
CUsbIoBuf::Status (page237)
CUsbIoBuf::BytesTransferred (page237)

218 USBIO Reference Manual

5 USBIO Class Library

CUsbIoThread::ProcessBuffer

This handler is called by the worker-thread if a buffer must be filled with data before it will be
submitted on the pipe.

Definition

virtual void
ProcessBuffer (

CUsbIoBuf* Buf
);

Parameter

Buf
Pointer to a buffer descriptor the buffer is attached to.

Comments

This handler function is used by theCUsbIoWriter implementation of the worker-thread.
It is called when a buffer has to be filled before it will be submitted on the pipe. Note that
the function is called in the context of the worker-thread.

There is a default implementation of ProcessBuffer. It fills the buffer with zeroes and sets
theCUsbIoBuf::NumberOfBytesToTransfer member ofBuf to the buffer’s size.
ProcessBuffer should be overloaded by a derived class to implement a specific
functionality.

See Also

CUsbIoThread::StartThread (page216)
CUsbIoThread::ProcessData(page218)
CUsbIoWriter (page228)
CUsbIoBuf (page231)
CUsbIoBuf::NumberOfBytesToTransfer (page237)

USBIO Reference Manual 219

5 USBIO Class Library

CUsbIoThread::BufErrorHandler

This handler is called by the worker-thread when a read or write operation has been completed
with an error status.

Definition

virtual void
BufErrorHandler (

CUsbIoBuf* Buf
);

Parameter

Buf
Pointer to a buffer descriptor the failed buffer is attached to.

Comments

This handler function is used by both theCUsbIoReaderandCUsbIoWriter
implementation of the worker-thread. It is called when a read or write request failed. Note
that the function is called in the context of the worker-thread.

There is a default implementation of BufErrorHandler that is just empty. BufErrorHandler
should be overloaded by a derived class to implement a specific error handling.

An implementation of BufErrorHandler should examine the fieldCUsbIoBuf::Status to
determine the reason for failing the read or write request.

See Also

CUsbIoThread::StartThread (page216)
CUsbIoThread::ProcessData(page218)
CUsbIoThread::ProcessBuffer(page219)
CUsbIoReader(page225)
CUsbIoWriter (page228)
CUsbIoBuf (page231)
CUsbIoBuf::Status (page237)

220 USBIO Reference Manual

5 USBIO Class Library

CUsbIoThread::OnThreadExit

This notification handler is called by the worker-thread before the thread terminates itself.

Definition

virtual void
OnThreadExit ();

Comments

The function is called in the context of the worker-thread.

There is a default implementation of OnThreadExit that is just empty. OnThreadExit can
be overloaded by a derived class to implement a specific behavior.

See Also

CUsbIoThread::StartThread (page216)
CUsbIoThread::ShutdownThread (page217)

USBIO Reference Manual 221

5 USBIO Class Library

CUsbIoThread::ThreadRoutine

The main routine that is executed by the worker-thread.

Definition

virtual void
ThreadRoutine () = 0;

Comments

The function is declared pure virtual. Consequently, it must be implemented by a derived
class.

The derived classesCUsbIoReaderandCUsbIoWriter implement this function.

See Also

CUsbIoThread::StartThread (page216)
CUsbIoThread::ShutdownThread (page217)
CUsbIoReader(page225)
CUsbIoWriter (page228)

222 USBIO Reference Manual

5 USBIO Class Library

CUsbIoThread::TerminateThread

This routine is called byCUsbIoThread::ShutdownThread to terminate the internal
worker-thread.

Definition

virtual void
TerminateThread () = 0;

Comments

The function is declared pure virtual. Consequently, it must be implemented by a derived
class. Note that TerminateThread is called in the context of
CUsbIoThread::ShutdownThread.

The derived classesCUsbIoReaderandCUsbIoWriter implement this function.

See Also

CUsbIoThread::ShutdownThread (page217)
CUsbIoReader(page225)
CUsbIoWriter (page228)

USBIO Reference Manual 223

5 USBIO Class Library

Data Members

CUsbIoBufPool BufPool
The internal buffer pool, seeCUsbIoThread::AllocateBuffers and
CUsbIoThread::FreeBuffers.

HANDLE ThreadHandle
The handle that identifies the worker-thread. The value is NULL if the worker-thread is
not started.

unsigned int ThreadID
The thread ID assigned by the operating system for the worker-thread.

volatile BOOL TerminateFlag
This flag will be set to TRUE byCUsbIoThread::ShutdownThread to indicate that the
worker-thread shall terminate itself.

DWORDMaxErrorCount
An error limit for the worker-thread’s main loop. For a description see
CUsbIoThread::StartThread .

CUsbIoBuf* FirstPending
Used byCUsbIoReaderandCUsbIoWriter to implement a list of currently pending
buffers.

CUsbIoBuf* LastPending
Used byCUsbIoReaderandCUsbIoWriter to implement a list of currently pending
buffers.

224 USBIO Reference Manual

5 USBIO Class Library

CUsbIoReader class

This class implements a worker-thread that continuously reads a data stream from a pipe.

Note that this class is derived fromCUsbIoThread which provides the basic handling of the
internal worker-thread.

Member Functions

CUsbIoReader::CUsbIoReader

Constructs a CUsbIoReader object.

Definition

CUsbIoReader ();

See Also

CUsbIoReader::˜CUsbIoReader(page225)

CUsbIoReader::˜CUsbIoReader

Destructor of the CUsbIoReader class.

Definition

virtual
˜CUsbIoReader ();

Comments

The internal worker-thread must have been terminated when the object’s destructor is
called. That meansCUsbIoThread::ShutdownThread must be called before the object
is destroyed.

See Also

CUsbIoReader::CUsbIoReader(page225)
CUsbIoThread::ShutdownThread (page217)

USBIO Reference Manual 225

5 USBIO Class Library

CUsbIoReader::ThreadRoutine

The main routine that is executed by the worker-thread.

Definition

virtual void
ThreadRoutine ();

Comments

This function implements the main loop of the worker-thread. It submits all buffers from
the internal buffer pool to the driver and waits for the completion of the first buffer.

ThreadRoutine can be overloaded by a derived class to implement a different behavior.

See Also

CUsbIoThread::ThreadRoutine (page222)
CUsbIoThread (page213)
CUsbIoReader::TerminateThread (page227)

226 USBIO Reference Manual

5 USBIO Class Library

CUsbIoReader::TerminateThread

This routine is called byCUsbIoThread when the worker-thread shall be terminated.

Definition

virtual void
TerminateThread ();

Comments

The implementation of this function callsCUsbIoPipe::AbortPipe. This will cancel all
pending read operations and cause the worker-thread to resume.

TerminateThread can be overloaded by a derived class to implement a different behavior.

See Also

CUsbIoThread::TerminateThread (page223)
CUsbIoThread (page213)
CUsbIoReader::ThreadRoutine(page226)

USBIO Reference Manual 227

5 USBIO Class Library

CUsbIoWriter class

This class implements a worker-thread that continuously writes a data stream to a pipe.

Note that this class is derived fromCUsbIoThread which provides the basic handling of the
internal worker-thread.

Member Functions

CUsbIoWriter::CUsbIoWriter

Constructs a CUsbIoWriter object.

Definition

CUsbIoWriter ();

See Also

CUsbIoWriter::˜CUsbIoWriter (page228)

CUsbIoWriter::˜CUsbIoWriter

Destructor of the CUsbIoWriter class.

Definition

virtual
˜CUsbIoWriter ();

Comments

The internal worker-thread must have been terminated when the object’s destructor is
called. That meansCUsbIoThread::ShutdownThread must be called before the object
is destroyed.

See Also

CUsbIoWriter::CUsbIoWriter (page228)
CUsbIoThread::ShutdownThread (page217)

228 USBIO Reference Manual

5 USBIO Class Library

CUsbIoWriter::ThreadRoutine

The main routine that is executed by the worker-thread.

Definition

virtual void
ThreadRoutine ();

Comments

This function implements the main loop of the worker-thread. It submits all buffers from
the internal buffer pool to the driver and waits for the completion of the first buffer.

ThreadRoutine can be overloaded by a derived class to implement a different behavior.

See Also

CUsbIoThread::ThreadRoutine (page222)
CUsbIoThread (page213)
CUsbIoWriter::TerminateThread (page230)

USBIO Reference Manual 229

5 USBIO Class Library

CUsbIoWriter::TerminateThread

This routine is called byCUsbIoThread when the worker-thread shall be terminated.

Definition

virtual void
TerminateThread ();

Comments

The implementation of this function callsCUsbIoPipe::AbortPipe. This will cancel all
pending read operations and cause the worker-thread to resume.

TerminateThread can be overloaded by a derived class to implement a different behavior.

See Also

CUsbIoThread::TerminateThread (page223)
CUsbIoThread (page213)
CUsbIoWriter::ThreadRoutine (page229)

230 USBIO Reference Manual

5 USBIO Class Library

CUsbIoBuf class

This class is used as a buffer descriptor of buffers used for read and write operations.

Member Functions

CUsbIoBuf::CUsbIoBuf

Construct a CUsbIoBuf object.

Definition

CUsbIoBuf ();

Comments

This is the default constructor. It creates an empty descriptor. No buffer is attached.

See Also

CUsbIoBuf::˜CUsbIoBuf (page234)

USBIO Reference Manual 231

5 USBIO Class Library

CUsbIoBuf::CUsbIoBuf

Construct a CUsbIoBuf object and attach an existing buffer.

Definition

CUsbIoBuf (
void* Buffer ,
DWORDBufferSize
);

Parameters

Buffer
Points to a caller-provided buffer to be attached to the descriptor object.

BufferSize
Specifies the size, in bytes, of the buffer to be attached to the descriptor object.

See Also

CUsbIoBuf::˜CUsbIoBuf (page234)

232 USBIO Reference Manual

5 USBIO Class Library

CUsbIoBuf::CUsbIoBuf

Construct a CUsbIoBuf object and allocate a buffer internally.

Definition

CUsbIoBuf (
DWORDBufferSize
);

Parameter

BufferSize
Specifies the size, in bytes, of the buffer to be allocated and attached to the descriptor
object.

Comments

This constructor allocates a buffer of the specified size and attaches it to the descriptor
object. The buffer will be automatically freed by the destructor of this class.

See Also

CUsbIoBuf::˜CUsbIoBuf (page234)

USBIO Reference Manual 233

5 USBIO Class Library

CUsbIoBuf::˜CUsbIoBuf

Destructor for a CUsbIoBuf object.

Definition

˜CUsbIoBuf ();

Comments

The destructor frees a buffer that was allocated by a constructor. A buffer that has been
attached after construction will not be freed.

See Also

CUsbIoBuf::CUsbIoBuf (page231)

234 USBIO Reference Manual

5 USBIO Class Library

CUsbIoBuf::Buffer

Get buffer pointer.

Definition

void*
Buffer ();

Return Value

The function returns a pointer to the first byte of the buffer that is attached to the
descriptor object. The return value is NULL if no buffer is attached.

See Also

CUsbIoBuf::Size (page236)

USBIO Reference Manual 235

5 USBIO Class Library

CUsbIoBuf::Size

Get buffer size, in bytes.

Definition

DWORD
Size ();

Return Value

The function returns the size, in bytes, of the buffer that is attached to the descriptor
object. The return value is 0 if no buffer is attached.

See Also

CUsbIoBuf::Buffer (page235)

236 USBIO Reference Manual

5 USBIO Class Library

Data Members

DWORDNumberOfBytesToTransfer
This public member specifies the number of bytes to be transferred to or from the buffer
in a subsequent read or write operation.

Note that this member has to be set before the read or write operation is initiated by
means ofCUsbIoPipe::Reador CUsbIoPipe::Write .

DWORDBytesTransferred
This public member indicates the number of bytes successfully transferred to or from the
buffer during a read or write operation.

Note that this member will be set after a read or write operation is completed.

DWORDStatus
This public member indicates the completion status of a read or write operation.

Note that this member will be set after a read or write operation is completed.

CUsbIoBuf* Next
This public member allows to build a chain of buffer descriptor objects. It is used by
CUsbIoBufPool, CUsbIoReader, andCUsbIoWriter to manage buffer lists.

BOOL OperationFinished
This public member is used as a flag. If it is set to TRUE then it indicates that the data
transfer operation is finished altogether. Read or write processing will be terminated by
CUsbIoReaderor CUsbIoWriter .

DWORDContext
This public member is a general purpose field. It will never be touched by any class in the
USBIO class library. Thus, it can be used by an application to store a context value that it
associates with the buffer object.

void* BufferMem
This protected member contains the address of the memory block that is attached to the
CUsbIoBuf object. A value of NULL indicates that no memory block is attached.

DWORDBufferSize
This protected member contains the size, in bytes, of the memory block that is attached to
the CUsbIoBuf object. The value is zero if no memory block is attached.

OVERLAPPEDOverlapped
This protected member provides the OVERLAPPED data structure that is required to
perform asynchronous (overlapped) I/O operations by means of the Win32 functions
ReadFile , WriteFile , andDeviceIoControl . One instance of the
OVERLAPPED structure is required per I/O buffer. The data structure stores context
information while the asynchronous I/O operation is in progress. Most important, it
provides a Win32 Event object that signals the completion of the asynchronous operation.

This member is used byCUsbIoReaderandCUsbIoWriter to perform I/O operations.

USBIO Reference Manual 237

5 USBIO Class Library

BOOL BufferMemAllocated
This protected member provides a flag. It is set to TRUE if the memory block that is
attached to the CUsbIoBuf object was allocated by a constructor of the class. The
memory block has to be freed by the destructor in this case. The flag is set to FALSE if
the memory block that is attached to the CUsbIoBuf object was provided by the user.

238 USBIO Reference Manual

5 USBIO Class Library

CUsbIoBufPool class

This class implements a pool of CUsbIoBuf objects. It is used byCUsbIoReaderand
CUsbIoWriter to simplify management of buffer pools.

Member Functions

USBIO Reference Manual 239

5 USBIO Class Library

CUsbIoBufPool::CUsbIoBufPool

Construct a CUsbIoBufPool object.

Definition

CUsbIoBufPool ();

Comments

This is the default constructor. It creates an empty pool.

See Also

CUsbIoBufPool::˜CUsbIoBufPool (page240)

CUsbIoBufPool::˜CUsbIoBufPool

Destructor for a CUsbIoBufPool object.

Definition

˜CUsbIoBufPool ();

Comments

The destructor frees allCUsbIoBuf objects allocated by the pool.

See Also

CUsbIoBufPool::CUsbIoBufPool (page240)

240 USBIO Reference Manual

5 USBIO Class Library

CUsbIoBufPool::Allocate

Allocate all elements of the buffer pool.

Definition

BOOL
Allocate (

DWORDSizeOfBuffer ,
DWORDNumberOfBuffers
);

Parameters

SizeOfBuffer
Specifies the size, in bytes, of the buffers to be allocated internally.

NumberOfBuffers
Specifies the number of buffers to be allocated internally.

Return Value

Returns TRUE in case of success, FALSE otherwise.

Comments

The function allocates the required number of buffer descriptors (CUsbIoBuf objects).
Then it allocates the specified amount of buffer memory. The total number of bytes to
allocate is calculated as follows.

TotalSize = NumberOfBuffers * SizeOfBuffer

In a last step the buffers are attached to the descriptors and stored in an internal list.

The function fails by returning FALSE when an internal pool is already allocated.
CUsbIoBufPool::Freehas to be called before a new pool can be allocated.

See Also

CUsbIoBufPool::Free (page242)

USBIO Reference Manual 241

5 USBIO Class Library

CUsbIoBufPool::Free

Free all elements of the buffer pool.

Definition

void
Free ();

Comments

The function frees all buffer descriptors and all the buffer memory allocated by a call to
CUsbIoBufPool::Allocate. The pool is empty after this call.

A call to Free on an empty pool is allowed. The function does nothing in this case.

Note that after a call to Free, another pool can be allocated by means of
CUsbIoBufPool::Allocate.

See Also

CUsbIoBufPool::Allocate (page241)

242 USBIO Reference Manual

5 USBIO Class Library

CUsbIoBufPool::Get

Get a buffer from the pool.

Definition

CUsbIoBuf*
Get ();

Return Value

The function returns a pointer to the buffer descriptor removed from the pool, or NULL if
the pool is exhausted.

Comments

The function removes a buffer from the pool and returns a pointer to the associated
descriptor. The caller is responsible for releasing the buffer, seeCUsbIoBufPool::Put.

See Also

CUsbIoBufPool::Put (page244)
CUsbIoBufPool::CurrentCount (page245)

USBIO Reference Manual 243

5 USBIO Class Library

CUsbIoBufPool::Put

Put a buffer back to the pool.

Definition

void
Put (

CUsbIoBuf* Buf
);

Parameter

Buf
Pointer to the buffer descriptor that was returned byCUsbIoBufPool::Get.

Comments

This function is called to release a buffer that was returned byCUsbIoBufPool::Get.

See Also

CUsbIoBufPool::Get (page243)
CUsbIoBufPool::CurrentCount (page245)

244 USBIO Reference Manual

5 USBIO Class Library

CUsbIoBufPool::CurrentCount

Get current number of buffers in the pool.

Definition

long
CurrentCount ();

Return Value

The function returns the current number of buffers stored in the pool.

See Also

CUsbIoBufPool::Get (page243)
CUsbIoBufPool::Put (page244)

USBIO Reference Manual 245

5 USBIO Class Library

Data Members

CRITICAL_SECTION CritSect
This protected member provides a Win32 Critical Section object that is used to
synchronize access to the members of the class. Thus, the CUsbIoBufPool object is
thread-save. It can be accessed by multiple threads simultaneously.

CUsbIoBuf* Head
This protected member points to the first buffer object that is available in the pool. The
buffer pool is managed by means of a single-linked list. This member points to the
element at the head of the list. TheCUsbIoBuf objects are linked by means of their
Next member. The list is terminated by aNext pointer that is set to NULL.

Head is set to NULL if the buffer list is empty.

long Count
This protected member contains the number of buffers that are currently linked to the
pool.

CUsbIoBuf* BufArray
This protected member points to the array of CUsbIoBuf objects that are allocated by the
pool internally.

char* BufferMemory
This protected member points to the buffer memory block that is allocated by the pool
internally.

246 USBIO Reference Manual

5 USBIO Class Library

CSetupApiDll class

This class provides a mean to load the system-providedsetupapi.dllexplicitly. The method is
also called Run-Time Dynamic Linking.

The librarysetupapi.dllis part of the Win32 API and provides functions for managing Plug&Play
devices. It is supported by Windows 98 and later systems. The filesetupapi.dllis not available on
older systems like Windows 95 and Windows NT. Therefore, if an application is implicitly linked
to setupapi.dllthen it will not load on older systems. In order to avoid such kind of problems the
DLL should be loaded explicitly at run-time. The CSetupApiDll class provides the appropriate
implementation.

Member Functions

CSetupApiDll::CSetupApiDll

Construct a CSetupApiDll object.

Definition

CSetupApiDll ();

Comments

This is the default constructor. It initializes the object.

CSetupApiDll::˜CSetupApiDll

Destructor for a CSetupApiDll object.

Definition

˜CSetupApiDll ();

Comments

The destructor frees thesetupapi.dlllibrary if loaded.

USBIO Reference Manual 247

5 USBIO Class Library

CSetupApiDll::Load

Load the system-provided librarysetupapi.dll.

Definition

BOOL
Load ();

Return Value

The function returns TRUE if successful, FALSE otherwise.

Comments

The function loads the DLL and if this was successful then it initializes all function
pointers to contain the address of the appropriate function.

The function can safely be called repeatedly. It returns TRUE if thesetupapi.dllis already
loaded.

See Also

CSetupApiDll::Release(page249)

248 USBIO Reference Manual

5 USBIO Class Library

CSetupApiDll::Release

Release thesetupapi.dlllibrary.

Definition

void
Release ();

Comments

The function frees the DLL and invalidates all function pointers.

The function can safely be called if the DLL is not loaded. It does not perform any
operation in this case.

See Also

CSetupApiDll::Load (page248)

USBIO Reference Manual 249

6 USBIO Demo Application

6 USBIO Demo Application

The USBIO Demo Application demonstrates the usage of the USBIO driver interface. It is based
on the USBIO Class Library which covers the native API calls. The Application is designed to
handle one USB device that can contain multiple pipes. It is possible to run multiple instances of
the application, each connected to another USB device.

The USBIO Demo Application is a dialog based MFC (Microsoft Foundation Classes) application.
The main dialog contains a button that allows to open an output window. All output data and all
error messages are directed to this window. The button "Clear Output Window" discards the actual
contents of the window.

The main dialog contains several dialog pages which allow to access the device-related driver
operations. From the dialog page "Pipes" a separate dialog can be started for each configured
pipe. The pipe dialogs are non-modal. More than one pipe dialog can be opened at a given point
in time.

6.1 Dialog Pages for Device Operations

6.1.1 Device

This page allows to scan for available devices. The application enumerates the USBIO device
objects currently available. It opens each device object and queries the USB device descriptor.
The USB devices currently attached to USBIO are listed in the output window. A device can be
opened and closed, and the device parameters can be requested or set.

Related driver interfaces:

• CreateFile();

• CloseHandle();

• IOCTL_USBIO_GET_DEVICE_PARAMETERS (page52)

• IOCTL_USBIO_SET_DEVICE_PARAMETERS (page53)

6.1.2 Descriptors

This page allows to query standard descriptors from the device. The index of the configuration and
the string descriptors can be specified. The descriptors are dumped to the output window. Some
descriptors are interpreted. Unknown descriptors are presented as HEX dump.

Related driver interfaces:

• IOCTL_USBIO_GET_DESCRIPTOR (page38)

6.1.3 Configuration

This page is used to set a configuration, to unconfigure the device, or to request the current con-
figuration.

USBIO Reference Manual 251

6 USBIO Demo Application

Related driver interfaces:

• IOCTL_USBIO_GET_DESCRIPTOR (page38)

• IOCTL_USBIO_GET_CONFIGURATION (page43)

• IOCTL_USBIO_STORE_CONFIG_DESCRIPTOR (page45)

• IOCTL_USBIO_SET_CONFIGURATION (page46)

• IOCTL_USBIO_UNCONFIGURE_DEVICE (page47)

6.1.4 Interface

By using this page the alternate setting of a configured interface can be changed.

Related driver interfaces:

• IOCTL_USBIO_SET_INTERFACE (page48)

• IOCTL_USBIO_GET_INTERFACE (page44)

6.1.5 Pipes

This page allows to show all configured endpoints and interfaces by using the button "Get Config-
uration Info". A new non-modal dialog for each configured pipe can be opened as well.

Related driver interfaces:

• IOCTL_USBIO_GET_CONFIGURATION_INFO (page54)

• IOCTL_USBIO_BIND_PIPE (page66)

• IOCTL_USBIO_UNBIND_PIPE (page67)

6.1.6 Class or Vendor Request

By using this page a class or vendor specific request can be send to the USB device.

Related driver interfaces:

• IOCTL_USBIO_CLASS_OR_VENDOR_IN_REQUEST (page49)

• IOCTL_USBIO_CLASS_OR_VENDOR_OUT_REQUEST (page50)

6.1.7 Feature

This page can be used to send set or clear feature requests.

Related driver interfaces:

• IOCTL_USBIO_SET_FEATURE (page40)

• IOCTL_USBIO_CLEAR_FEATURE (page41)

252 USBIO Reference Manual

6 USBIO Demo Application

6.1.8 Other

This page allows to query the device state, to reset the USB device, to get the current frame
number, and to query or set the device power state.

Related driver interfaces:

• IOCTL_USBIO_GET_STATUS (page42)

• IOCTL_USBIO_RESET_DEVICE (page55)

• IOCTL_USBIO_GET_CURRENT_FRAME_NUMBER (page57)

• IOCTL_USBIO_SET_DEVICE_POWER_STATE (page58)

• IOCTL_USBIO_GET_DEVICE_POWER_STATE (page59)

6.2 Dialog Pages for Pipe Operations

Three different types of pipe dialogs can be selected. For IN pipes aRead from pipe to filedialog
and aRead from pipe to output window dialog can be activated. For OUT pipes aWrite from
file to pipe dialog can be started. The pipe dialogRead from pipe to output window cannot be
used with isochronous pipes.

When a new pipe dialog is opened it is bound to a pipe. If the dialog is closed the pipe is unbound.
Each pipe dialog contains pipe-related and transfer-related functions. The first three dialog pages
are the same in all pipe dialogs. The last page has a special meaning.

6.2.1 Pipe

By using this page it is possible to access the functions Reset Pipe, Abort Pipe, Get Pipe Parame-
ters, and Set Pipe Parameters.

Related driver interfaces:

• IOCTL_USBIO_RESET_PIPE (page68)

• IOCTL_USBIO_ABORT_PIPE (page69)

• IOCTL_USBIO_GET_PIPE_PARAMETERS (page70)

• IOCTL_USBIO_SET_PIPE_PARAMETERS (page71)

6.2.2 Buffers

By means of this page the size and the number of buffers can be selected. For Interrupt and Bulk
pipes the "Size of Buffer" field is relevant. For Isochronous pipes the "Number of Packets" field
is relevant and the required buffer size is calculated internally. In the "Max Error Count" field a
maximum number of errors can be specified. When this number is exceeded, the data transfer is
aborted. Each successful transfer resets the error counter to zero.

USBIO Reference Manual 253

6 USBIO Demo Application

6.2.3 Control

This dialog page allows to access user-defined control pipes. It cannot be used to access the default
pipe (endpoint zero) of a USB device.

Related driver interfaces:

• IOCTL_USBIO_PIPE_CONTROL_TRANSFER_IN (page76)

• IOCTL_USBIO_PIPE_CONTROL_TRANSFER_OUT (page77)

6.2.4 Read from Pipe to Output Window

This dialog page allows to read data from an Interrupt or Bulk pipe and to dump it to the output
window. For large amounts of data the transfer may be slowed down because of the overhead
involved with printing to the output window. The printing of the data can be enabled/disabled by
the switchPrint to Output Window .

Related driver interfaces:

• ReadFile();

• IOCTL_USBIO_ABORT_PIPE (page69)

6.2.5 Read from Pipe to File

This dialog page allows to read data from the pipe to a file. This transfer type can be used for
Isochronous pipes as well. The synchronization type of the Isochronous pipe has to be "asyn-
chronous". The application does not support data rate feedback.

Related driver interfaces:

• ReadFile();

• IOCTL_USBIO_ABORT_PIPE (page69)

6.2.6 Write from File to Pipe

This dialog page allows to write data from a file to the pipe. This transfer type can be used for
Isochronous pipes as well. The synchronization type of the isochronous pipe has to be "asyn-
chronous". The application does not support data rate feedback.

Related driver interfaces:

• WriteFile();

• IOCTL_USBIO_ABORT_PIPE (page69)

254 USBIO Reference Manual

7 Driver Installation and Uninstallation

7 Driver Installation and Uninstallation

7.1 USBIO Driver Executables

There are two separate driver executable files:usbio.sys for use on Windows 2000 and Win-
dows XP, andusbio98.sys for use on Windows 98 and Windows ME. Depending on the
operating system version, the correct driver executable file is installed by the USBIO .INF file.
Thus, a complete USBIO device driver package consists of the following files:

• usbio.sys

• usbio98.sys

• usbio.inf

Note that the files should be renamed if a customized driver package is created. See section7.4
(page265) for detailed information.

The two USBIO driver executables usbio.sys and usbio98.sys behave identically. The only dif-
ference is that usbio.sys uses the kernel functionMmGetSystemAddressForMdlSafe and
usbio98.sys usesMmGetSystemAddressForMdl instead. In Windows 2000 and later ver-
sions the kernel callMmGetSystemAddressForMdl was replaced by a new function named
MmGetSystemAddressForMdlSafe . Starting with Windows XP a device driver is required
to useMmGetSystemAddressForMdlSafe rather thanMmGetSystemAddressForMdl .
Otherwise, the device driver cannot be certified by Microsoft’s Windows Hardware Quality Labs
(WHQL) and receive the Designed for Microsoft Windows logo. Unfortunately, the kernel func-
tion MmGetSystemAddressForMdlSafe is not available in older systems. For that reason, a
separate executable is required to support Windows 98 and Windows ME.

7.2 Installing USBIO

This section discusses the topics related to the installation of the USBIO device driver.

Note:
On Windows 2000 and XP administrator privileges are required to install a device driver. Because
the USBIO driver is installed in the same way as any other Plug&Play device driver the installation
requires administrator rights. Once the USBIO driver is installed standard user rights are sufficient
to load the driver and to access its programming interface.

7.2.1 Automated Installation: The USBIO Installation Wizard

Using the USBIO Installation Wizard is the quickest and easiest way for installing the USBIO de-
vice driver. This wizard performs the driver installation automatically in a step-by-step procedure.
The device the USBIO driver will be installed for can be selected from a list. It is not necessary
to manually edit or copy any files. After installation is complete the wizard allows to save the
specific setup files that has been generated for the selected device. These files can be used at a
later time to manually install the USBIO driver for the same device, without using the Installation
Wizard.

USBIO Reference Manual 255

7 Driver Installation and Uninstallation

The steps required to install the USBIO driver by using the Installation Wizard are described
below.

• On Windows 2000/XP make sure you are logged on as an administrator or have enough
privileges to install device drivers on the system. In general, special privileges are required
to install device drivers on Windows 2000/XP.

• Connect your USB device to the system. After plugging in the device Windows launches the
New Hardware Wizard and prompts you for a device driver. Complete the New Hardware
Wizard by clicking Next on each page and Finish on the last page. Windows either installs
a system-provided driver or registers the device as "Unknown".

Do not abort the New Hardware Wizard by clicking the Cancel button. This will prevent
Windows from enumerating the device and storing enumeration information in the Registry.
As a result, the device is not visible in the system and the USBIO Installation Wizard is not
able to install the driver for it.

For some kinds of devices the system does not launch the New Hardware Wizard. A system-
provided device driver will be installed without any user interaction. This will happen if
the device belongs to a predefined device class, Human Interface Devices (HID), Audio
Devices, or Printer Devices for example. The USBIO Installation Wizard is able to install
the USBIO driver for such devices but this will disable any system-provided driver.

• Start the USBIO Installation Wizard by selecting the appropriate shortcut from the Start
menu. It is also possible to start the wizard directly by executing USBIOwiz.exe.

• The first page shows some hints concerning the installation process. Click the Next button
to continue. Note that you can abort the Installation Wizard at any time by clicking the
Cancel button.

• On the next page the wizard shows a list containing all USB devices currently connected to
the system. Select the device for which the USBIO driver is to be installed. The Hardware
ID will be shown for the selected device. A Hardware ID is a string that is used internally by
the operating system to unambiguously identify the device. It is built from a bus identifier
(which is "USB"), the 16-bit vendor ID (VID), the 16-bit product ID (PID), and optionally
the revision code (REV). The IDs and the revision code are reported by the device in the
USB Device Descriptor.

If your device is not shown in the list make sure it is plugged in properly and you have
finished the New Hardware Wizard as described above. You may use the Device Manager
to check if the device was enumerated by the system. The Device Manager can be accessed
by right-clicking the "My Computer" icon on the desktop and then chosing Properties.

Use the Refresh button to rescan for active devices and to rebuild the list. To continue, click
the Next button.

• The next page shows detailed information about the selected USB device. If a driver is
already installed for the device, information about the driver is also shown. Verify that you
have selected the correct device. If not, use the Back button to return to the device list and
select another device.

To install the USBIO driver for the selected device, click the Next button.

256 USBIO Reference Manual

7 Driver Installation and Uninstallation

Warning: If you install the USBIO driver for a device that is currently controlled by another
device driver the existing driver will be disabled. This will happen immediately. As a result,
the device may no longer be used by the operating system and by applications. If the device
belongs to the HID class, a mouse or a keyboard for example, this can cause problems.

• On the last page the Installation Wizard shows the completion status of driver installation. If
the installation was successful, the USBIO driver is already running. It has been dynamically
loaded by the operating system.

The USBIO Installation Wizard allows you to save the specific driver installation file (INF)
that it has been generated for the device. The INF file is specific for the selected device
because it contains the Hardware ID of that device. You can use the button labeled "Save
INF file" to save the generated INF file with a name of your choice and in a location of
your choice. The Installation Wizard copies also the USBIO driver binaries usbio.sys and
usbio98.sys to the same location as the INF file. You can use these files at a later time to
install the USBIO driver manually.

You can use the button labeled "Run USBIO Application" to start the demo application that
is included in the USBIO Development Kit. The application allows you to test several USB
operations manually. Please refer to chapter6 (page251) for further information.

To quit the USBIO Installation Wizard, click Finish.

7.2.2 Manual Installation: The USBIO Setup Information File

A Setup Information File (INF) is required for proper installation of the USBIO device driver.
This file describes the driver to be installed and defines the operations to be performed during the
installation process.

An INF file is in ASCII text format. It can be viewed and modified with any text editor, Notepad
for example. The contents and the syntax of an INF file are documented in the Microsoft Win-
dows DDK.

The INF file is loaded and interpreted by a software component that is built into the operating sys-
tem, called Device Installer. The Device Installer is closely related to the Plug&Play Manager that
handles hot plugging and removal of USB devices. After the Plug&Play Manager has detected a
new USB device the system searches its internal INF file data base, located in%WINDIR%\INF\ ,
for a matching driver. If no driver can be found the New Hardware Wizard pops up and the user
will be asked for a driver.

The association of device and driver is based on a string that is called Hardware ID. The Plug&Play
Manager builds the Hardware ID string from the 16-bit vendor ID (VID), the 16-bit product ID
(PID), and optionally the revision code (REV). The string is pefixed by the bus identifier USB.
Examples for Hardware ID strings are:

USB\VID_046D&PID_0100
USB\VID_046D&PID_C001&REV_0401
USB\CLASS_09&SUBCLASS_01&PROT_00

As shown in the last example a Hardware ID can also describe a device class and subclass. This
makes it possible to provide a driver that will be used whenever the system detects a device that
belongs to a specific device class. An example for such a kind of driver is the system-provided

USBIO Reference Manual 257

7 Driver Installation and Uninstallation

HID mouse driver. This driver is installed for any type of USB mouse, regardless of the vendor,
the USB Vendor ID, and the USB Product ID. The driver selection is based on the class, subclass,
and protocol identifiers. Please refer to the Microsoft Windows DDK for detailed information
on Harware IDs and driver selection algorithms. Another suitable source of information are the
INF files that ship with the operating system. They are located in a subdirectory of the Windows
system directory, named "INF". Note that on Windows 2000/XP this subdirectory has a Hidden
attribute by default.

In order to prepare an installation disk that can be used to install the USBIO driver for your device
the following steps are required.

• Copy the USBIO driver binaries usbio.sys and usbio98.sys to a floppy disk or to a directory
of your choice. Copy the INF file usbio.inf provided with the USBIO Development Kit
to the same location. Note that you can choose any name for the INF file, based on your
company name or your product name for example. But the file name extension has to be
".inf". In the following discussion it is assumed the INF file is named usbio.inf.

• Open the usbio.inf file using a text editor, Notepad for example. Edit the[_Devices] sec-
tion. There are various examples of Hardware ID strings prepared in this section. Select one
of the examples that matches your needs. Usually, the very first example is appropriate. It
associates the USBIO driver with your device by using the USB Vendor ID and Product ID.
Remove the semicolon at the start of the line and replace theVID_XXXX andPID_XXXX
placeholders in the Hardware ID string by your USB Vendor ID and Product ID as shown
in the examples above. Note that the IDs are given as 4-digit hexadecimal numbers.

• Edit the[Strings] section at the end of the usbio.inf file to modify the device description
string for your device, defined by the value ofS_DeviceDesc1 . The device description
text will be displayed in the Device Manager next to the icon that represents your device.

• Save the INF file to accommodate your changes.

Now you are prepared to start the driver installation. The required steps are described below.

• Connect your USB device to the system. After plugging in the device Windows launches
the New Hardware Wizard and prompts you for a device driver. Provide the New Hardware
Wizard with the location of your installation files (usbio.inf, usbio.sys, usbio98.sys). Com-
plete the wizard by following the instructions shown on screen. If the INF file matches with
your device the driver should be installed successfully.

Note that on Windows 2000, Windows XP, and Windows Millennium the New Hardware
Wizard shows a warning message that complains about the fact that the driver is not certified
and digitally signed. You may ignore this warning and continue with driver installation. The
USBIO driver is not certified because it is not an end-user product. When the USBIO driver
is integrated into such a product it is possible to get a certification and a digital signature
from the Windows Hardware Quality Labs (WHQL).

• If the device belongs to a predefined device class that is supported by the operating system,
the system does not launch the New Hardware Wizard after the device is plugged in. Instead
of that a system-provided device driver will be installed silently. Human Interface Devices
(HID) like mice and keyboards, Audio Devices, or Printer Devices are examples for such

258 USBIO Reference Manual

7 Driver Installation and Uninstallation

devices. The operating system does not ask for a driver because it finds a matching entry for
the device’s class and subclass ID in its internal INF file data base, as mentioned above.

Use the Device Manager to install the USBIO driver for a device for that a driver is already
running. To start the Device Manager choose Properties on the "My Computer" icon on the
desktop. In the Device Manager locate your device and choose Properties on the entry. On
the property page that pops up choose Driver and click the button labeled "Update Driver".
The Upgrade Device Driver Wizard is started which is similar to the New Hardware Wizard
mentioned above. Provide the wizard with the location of your installation files (usbio.inf,
usbio.sys, usbio98.sys) and complete the driver installation by following the instructions
shown on screen.

• For some device classes, especially HID devices like mice and keyboards, Windows does
not allow you to install a driver with a different device class. That means you have to
modify the device class entry in the[Version] section of the usbio.inf file to match with
the device’s class. The device class is specified by the keywordsClass andClassGUID
in the[Version] section.

For example, if you want to use a keyboard or a mouse to test the USBIO driver the new
entries should be
Class=HIDClass and
ClassGUID={745a17a0-74d3-11d0-b6fe-00a0c90f57da} .

The ClassGUID value that is associated with a device class can be found in system-provided
INF files in%WINDIR%\INF\ or in the Windows DDK documentation.

Note that at least two drivers are used for USB keyboard and mouse devices. One belongs to
the USB HID class and the other one belongs to the keyboard or mouse class. The keyboard
or mouse driver runs on top of the USB HID driver. The USBIO driver can replace the
USB HID driver only. In the Device Manager the HID driver is shown in a section labeled
"Human Interface Devices". To be sure to replace the correct driver refer to the "Driver
File Details" dialog in the Properties page of the entry. If the driver stack contains the file
HIDUSB.SYS then you have selected the correct entry in the Device Manager.

• In the Device Manager the section "Universal Serial Bus controllers" contains an item la-
beled "USB Root Hub".

Do not install USBIO for the USB Root Hub!

The USB Root Hub is not a USB device. It is built into the USB host controller and is
controlled by a special device driver provided by the operating system.

• After the driver installation was successfully completed your device should be shown in
the Device Manager in the section that corresponds to the device class you specified in the
usbio.inf file. You may use the Properties dialog box of that entry to verify that the USBIO
driver is installed and running.

• In order to verify that the USBIO driver is working properly with your device you should
use the USBIO Demo Application USBIOAPP.EXE. Please refer to chapter6 (page251)
for detailed information on the Demo Application.

USBIO Reference Manual 259

7 Driver Installation and Uninstallation

7.3 Uninstalling USBIO

This section discusses the topics related to uninstallation of the USBIO device driver.

7.3.1 Manual Uninstallation

In order to manual uninstall USBIO for a given device the Device Manager has to be used. The
Device Manager can be accessed by right-clicking the "My Computer" icon on the desktop and
then choosing Properties. In the Device Manager double-click on the entry of the device and
choose the property page that is labeled "Driver". There are two options:

• Remove the device from the system by clicking the button "Uninstall". The operating system
will reinstall a driver the next time the device is connected or the system is rebooted.

• Install a new driver for the device by clicking the button "Update Driver". The operating
system launches the Upgrade Device Driver Wizard which searches for driver files or lets
you select a driver.

In order to avoid that USBIO is reinstalled automatically and silently by the operating system it is
necessary to manually remove the INF file that was used to install the USBIO driver.

During driver installation Windows stores a copy of the INF file in its internal INF file data base
that is located in%WINDIR%\INF\ . The original INF file is renamed and stored asoemX.inf
for example, where X is a decimal number. The exact INF naming scheme depends on the operat-
ing system (Windows 2000/XP uses a slightly different scheme than Windows 98/ME). The best
way to find the correct INF file is to do a search for some significant string in all the INF files in
the directory%WINDIR%\INF\ and its subdirectories.

Note that on Windows 98 and Windows ME the INF file may also be stored in a directory named
%WINDIR%\INF\OTHER\. Another naming scheme based on the provider name is used in that
case.

Note also that on Windows 2000/XP the%WINDIR%\INF\ directory has a Hidden attribute by
default. Therefore, the directory is not shown in Windows Explorer by default.

Once you have located the INF file, delete it. This will prevent Windows from reinstalling the
USBIO driver. Instead of that the New Hardware Wizard will be launched and you will be asked
for a driver.

The process described above can be automated by using the USBIO Cleanup Wizard. This proce-
dure is described in the next section.

7.3.2 Automated Uninstallation: The USBIO Cleanup Wizard

The USBIO Cleanup Wizard makes it easy to completely remove the USBIO device driver from
a system. The wizard performs uninstallation automatically in a step-by-step procedure. It is not
necessary to manually remove files or registry entries.

Important:
On Windows 2000 and XP administrator privileges are required to execute the USBIO Cleanup
Wizard.

260 USBIO Reference Manual

7 Driver Installation and Uninstallation

The steps performed by the USBIO Cleanup Wizard are described below.

• The cleanup wizard removes the device instances created for USBIO from the registry. For
each USB device that has been enumerated successfully the operating system creates a reg-
istry key called device instance key. On Windows 2000 and Windows XP these keys are lo-
cated underHKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Enum\USB .
On Windows 98 and ME the location isHKEY_LOCAL_MACHINE\Enum\USB. When the
USBIO device driver is installed for a USB device an additional registry key called driver
key is created. By default, all registry keys associated with USBIO will be removed by the
USBIO Cleanup Wizard. The wizard allows to de-select particular keys that are not to be
removed.

• The cleanup wizard removes .INF files related to USBIO from the system’s INF directory.
The .INF files copied to the operating system’s INF directory, e.g.%WINDIR%\INF\ ,
during USBIO driver installation will be deleted. The cleanup wizard scans all .INF files
and locates the USBIO setup INF files. By default, all .INF files associated with USBIO
will be deleted. The wizard allows to de-select particular files that are not to be removed.

After the USBIO Cleanup Wizard has been executed any association between particular USB de-
vices and USBIO is removed. When the USB device is connected to the system again, the Hard-
ware Wizard is shown and a system-provided or vendor-provided device driver can be installed.

USBIO Reference Manual 261

7 Driver Installation and Uninstallation

7.4 Building a Customized Driver Setup

When the USBIO driver is included and shipped with a retail product some setup parameters
should be customized. This is necessary because the USBIO device driver might be used by several
vendors and it is possible that a user has two products and both of them use the USBIO driver. This
can cause conflicts with respect to the file name of the driver executable, the location of Registry
parameters, the device names, and the driver interface GUIDs used. To avoid such problems a
vendor who redistributes the USBIO driver for use with a hardware product should choose a new
file name for the driver binary, generate a private interface GUID, and select a private location in
the Registry to be used to store startup parameters. In order to do that the usbio.inf file has to be
customized.

The following list shows the steps required to build a customized USBIO device driver setup:

• Choose a new name for each of the driver executable files usbio.sys and usbio98.sys. The
name should not cause conflicts with drivers provided by Windows. Rename the file usbio.sys
and usbio98.sys respectively to your new name.

• Rename the Setup Information file usbio.inf. You can choose any name you want. For
instance, the file name may be based on your company name or your product name. Note
that the file extension should not be changed. It has to be ".inf".

• Edit the[_CopyFiles_sys] section in the INF file to include the new name of the driver
executable file for Windows 2000 and XP.

• Edit the [_CopyFiles_sys_98] section to include the new name of the driver exe-
cutable file for Windows 98 and ME.

• Edit the[SourceDisksFiles] section to include the new driver executable file names.

• Edit the valuesS_DriverName andS_DriverName_98 in the[Strings] section to
match each with the new name you defined for the corresponding driver executable. Note
that the .sys extension is not specified.

• Edit the[Strings] section in the INF file to modify text strings that are shown at the user
interface. You may change the following parameters:

S_Provider
S_Mfg
S_DeviceClassDisplayName
S_DeviceDesc1
S_DiskName
S_ServiceDisplayName

• Edit the following values in the[Strings] section to specify a location in the Registry
that is used to store the USBIO driver’s configuration parameters:

S_ConfigPath
S_DeviceConfigPath1

Note thatS_ConfigPath should specify a location that is a subkey of
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services .
The name of the subkey should be the same as the name you choosed for the driver binary.

262 USBIO Reference Manual

7 Driver Installation and Uninstallation

• Generate a private Globally Unique Identifier (GUID) to unambiguously identify the de-
vice instances that will be created by USBIO for your device. Use GUIDGEN.EXE from
the Microsoft Platform SDK or from the Visual C++ package for this purpose. Copy the
text representation of the GUID to the line in the INF file that defines the Registry value
DriverUserInterfaceGuid . Activate this line by removing the ";" at the beginning.

Use the private GUID in your application to search for available devices. GUIDGEN.EXE
allows you to export astatic const struct GUID = {...} statement that can
be included in the source code of an application. Refer to the source code of USBIOAPP or
ReaderCpp for an example.

• Edit the driver parameter settings in the sections[_Parameters1_98] and
[_Parameters1_NT] . The parameters in[_Parameters1_98] define the default
behaviour of the USBIO driver on Windows 98 and Windows ME.
The parameters in[_Parameters1_NT] define the default behaviour of the USBIO
driver on Windows 2000 and Windows XP. For a detailed description of the supported set-
tings, refer to chapter8 (page265).

• After you finished testing your INF file, remove any lines and comments that are not needed.
Especially, make sure that the word USBIO does not occur in the files you ship with your
product. This is a requirement that is defined by the USBIO licensing conditions. See also
the License Agreement you received with the USBIO package.

USBIO Reference Manual 263

7 Driver Installation and Uninstallation

7.5 Using USBIO on Windows XP Embedded

Windows XP Embedded is a retail version of the Windows XP operating system. TheMicrosoft
Windows Embedded Studiois used to configure a Windows XP Embedded version for a particular
hardware. The USBIO device driver can also be used on Windows XP Embedded.

In order to prepare USBIO for use on Windows XP Embedded the following steps are required:

• Create a USBIO driver package that is adapted to your device. Refer to section7.4 (page
262) for detailed information on how to do that.

• Test the correct operation of the driver on a Windows XP operating system.

• Use theComponent Designerof Windows Embedded Studio to create a new component.
Refer to the Embedded Studio manual for more information.

• Use theComponent Database Managerof Windows Embedded Studio to add the compo-
nent to your data base.

• Use theTarget Designerof Windows Embedded Studio to add the created component to
your Windows XP Embedded project.

The USBIO device driver is loaded when the USB device is connected to the system running
Windows XP Embedded. There is no user interaction required. The Hardware Wizard is not
launched.

On Windows XP Embedded the USBIO COM interface is supported as well. The USBIO COM
component that is implemented in USBIOCOM.DLL has to be registered before it can be used.
This can be done in the Resources section of theComponent Designerin Windows Embedded
Studio. Alternatively, the library USBIOCOM.DLL can be registered by means of regsvr32.exe
as described in the USBIO COM Interface Reference Manual.

264 USBIO Reference Manual

8 Registry Entries

8 Registry Entries

The behaviour of the driver can be customized by startup parameters stored in the registry. The
parameters are stored under a path that is specified in the INF file. By default this registry path is

\HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\USBIO\Parameters .

The location can be customized by changing theS_ConfigPath andS_DeviceConfigPath1
variables in the[Strings] section of the INF file.

The driver reads the parameters when a new device object is added. If a parameter does not exist
when the driver attempts to read it, the driver creates the entry using an internal default value.

The following table lists all registry parameters.

Table 6: Registry parameters supported by the USBIO driver

Value Min Default Max Description

RequestTimeout 0 1000 Time-out interval for synchronous I/O
requests, in milliseconds.
Zero means infinite (no time-out).

ShortTransferOk 0 1 1 If set to 1 short packets in read
transfers are allowed.
If set to 0 short packets in read
transfers cause errors.

UnconfigureOnClose 0 1 1 If set to 1 the device will be
unconfigured when the last file handle
is closed.
If set to 0 the device state is not
changed.

ResetDeviceOnClose 0 0 1 If set to 1 the device receives a USB
reset if the last file handle is closed.
If set to 0 the device state is not
changed.

EnableRemoteWakeup 0 1 1 If set to 1 Remote Wakeup is enabled.
If set to 0 Remote Wakeup is disabled.

USBIO Reference Manual 265

8 Registry Entries

Table 6: (continued)

Value Min Default Max Description

MaxIsoPackets 16 512 1024 Maximum number of packets allowed
in an isochronous data transfer. Note
that for isochronous transfers at
full-speed a maximum packet count of
64 is sufficient for most devices
(corresponds to 64 milliseconds per
buffer). For high-speed transfers the
maximum packet count should be at
least 512. This is because one
isochronous packet can be transferred
per microframe.

PowerStateOnOpen 0 0 3 Device power state that will be set
when the device is opened (first handle
is opened).
0. . . 3 correspond to D0. . . D3

PowerStateOnClose 0 3 3 Device power state that will be set
when the device is closed (last handle
is closed).
0. . . 3 correspond to D0. . . D3

MinPowerStateUsed 0 3 3 The minimum power state of the
device while it is used (open handles
exist). On system suspend the device
is not allowed to go into states higher
than this value.
0. . . 3 correspond to D0. . . D3
The value 0 (D0) means: no suspend
allowed if the device is in use.
The value 3 (D3) means: full suspend
(off) allowed if the device is in use.

MinPowerStateUnused 0 3 3 The minimum power state of the
device while it is not used (no open
handles exist). On system suspend the
device is not allowed to go into states
higher than this value.
0. . . 3 correspond to D0. . . D3
The value 0 (D0) means: no suspend
allowed if the device is not in use.
The value 3 (D3) means: full suspend
(off) allowed if the device is not in use.

266 USBIO Reference Manual

8 Registry Entries

Table 6: (continued)

Value Min Default Max Description

AbortPipesOnPowerDown 0 0 1 Handling of outstanding read or write
requests when the device goes into a
suspend state (leaves D0):
1 = abort pending requests
0 = do not abort pending requests

SuppressPnPRemoveDlg 0 1 1 If this flag is set, Windows 2000/XP
does not show a warning dialog if the
device is removed.

DebugPort 0 0 3 Destination of trace messages for
debugging purposes:
0 = kernel debugger or debug monitor
1. . . 3 = COM1. . . COM3
This parameter is available only if the
debug (checked) build of the USBIO
driver is used.

DebugMask 0 3 Control of message output for
debugging. This parameter is available
only if the debug (checked) build of
the USBIO driver is used.

DebugBaud 2.400 57.600 115.200 Baudrate selection for debug output to
COM port. This parameter is available
only if the debug (checked) build of
the USBIO driver is used.

USBIO Reference Manual 267

9 Related Documents

9 Related Documents

• USBIO COM Interface Reference Manual, Thesycon GmbH, http://www.thesycon.de

• Universal Serial Bus Specification 1.1, http://www.usb.org

• Universal Serial Bus Specification 2.0, http://www.usb.org

• USB device class specifications (Audio, HID, Printer, etc.), http://www.usb.org

• Microsoft Windows DDK Documentation, http://msdn.microsoft.com

• Microsoft Platform SDK Documentation, http://msdn.microsoft.com

USBIO Reference Manual 269

Index

˜CSetupApiDll
CSetupApiDll::˜CSetupApiDll , 247

˜CUsbIoBufPool
CUsbIoBufPool::˜CUsbIoBufPool , 240

˜CUsbIoBuf
CUsbIoBuf::˜CUsbIoBuf , 234

˜CUsbIoPipe
CUsbIoPipe::˜CUsbIoPipe , 189

˜CUsbIoReader
CUsbIoReader::˜CUsbIoReader , 225

˜CUsbIoThread
CUsbIoThread::˜CUsbIoThread , 213

˜CUsbIoWriter
CUsbIoWriter::˜CUsbIoWriter , 228

˜CUsbIo
CUsbIo::˜CUsbIo , 140

AbortPipe
CUsbIoPipe::AbortPipe , 202

ActualAveragingInterval
Member ofUSBIO_PIPE_STATISTICS , 114

AllocateBuffers
CUsbIoThread::AllocateBuffers , 214

Allocate
CUsbIoBufPool::Allocate , 241

AlternateSetting
Member ofUSBIO_GET_INTERFACE_DATA, 95
Member ofUSBIO_INTERFACE_CONFIGURATION_INFO, 102
Parameter ofCUsbIo::GetInterface , 176

AlternateSettingIndex
Member ofUSBIO_INTERFACE_SETTING, 96

APIVersion
Member ofUSBIO_DRIVER_INFO, 86

AverageRate
Member ofUSBIO_PIPE_STATISTICS , 114

AveragingInterval
Member ofUSBIO_SETUP_PIPE_STATISTICS, 111
Parameter ofCUsbIoPipe::SetupPipeStatistics , 209

BandwidthInfo
Parameter ofCUsbIo::GetBandwidthInfo , 156

Bind
CUsbIoPipe::Bind , 190

Buf
Parameter ofCUsbIoBufPool::Put , 244
Parameter ofCUsbIoPipe::Read , 193
Parameter ofCUsbIoPipe::WaitForCompletion , 195

271

Parameter ofCUsbIoPipe::Write , 194
Parameter ofCUsbIoThread::BufErrorHandler , 220
Parameter ofCUsbIoThread::ProcessBuffer , 219
Parameter ofCUsbIoThread::ProcessData , 218

BufArray
Member ofCUsbIoBufPool , 246

BufErrorHandler
CUsbIoThread::BufErrorHandler , 220

Buffer
Parameter ofCUsbIo::ClassOrVendorInRequest , 169
Parameter ofCUsbIo::ClassOrVendorOutRequest , 170
Parameter ofCUsbIo::GetDescriptor , 157
Parameter ofCUsbIo::SetDescriptor , 164
Parameter ofCUsbIoBuf::CUsbIoBuf , 232
Parameter ofCUsbIoPipe::PipeControlTransferIn , 205
Parameter ofCUsbIoPipe::PipeControlTransferOut , 207
Parameter ofCUsbIoPipe::ReadSync , 197
Parameter ofCUsbIoPipe::WriteSync , 199

BufferMem
Member ofCUsbIoBuf , 237

BufferMemAllocated
Member ofCUsbIoBuf , 238

BufferMemory
Member ofCUsbIoBufPool , 246

BufferSize
Member ofCUsbIoBuf , 237
Parameter ofCUsbIoBuf::CUsbIoBuf , 232, 233

Buffer
CUsbIoBuf::Buffer , 235

BufPool
Member ofCUsbIoThread , 224

ByteCount
Parameter ofCUsbIo::ClassOrVendorInRequest , 169
Parameter ofCUsbIo::ClassOrVendorOutRequest , 170
Parameter ofCUsbIo::GetConfigurationDescriptor , 160
Parameter ofCUsbIo::GetDescriptor , 157
Parameter ofCUsbIo::GetStringDescriptor , 162
Parameter ofCUsbIo::SetDescriptor , 164
Parameter ofCUsbIoPipe::PipeControlTransferIn , 205
Parameter ofCUsbIoPipe::PipeControlTransferOut , 207
Parameter ofCUsbIoPipe::ReadSync , 197
Parameter ofCUsbIoPipe::WriteSync , 199

BytesReturned
Parameter ofCUsbIo::IoctlSync , 186

BytesTransferred
Member ofCUsbIoBuf , 237

BytesTransferred_H
Member ofUSBIO_PIPE_STATISTICS , 115

272

BytesTransferred_L
Member ofUSBIO_PIPE_STATISTICS , 114

CancelIo
CUsbIo::CancelIo , 185

CheckedBuildDetected
Member ofCUsbIo , 188

Class
Member ofUSBIO_INTERFACE_CONFIGURATION_INFO, 102

ClassOrVendorInRequest
CUsbIo::ClassOrVendorInRequest , 169

ClassOrVendorOutRequest
CUsbIo::ClassOrVendorOutRequest , 170

ClearFeature
CUsbIo::ClearFeature , 167

Close
CUsbIo::Close , 145

Conf
Parameter ofCUsbIo::SetConfiguration , 171

ConfigurationIndex
Member ofUSBIO_SET_CONFIGURATION, 97

ConfigurationValue
Member ofUSBIO_GET_CONFIGURATION_DATA, 93
Parameter ofCUsbIo::GetConfiguration , 173

ConsumedBandwidth
Member ofUSBIO_BANDWIDTH_INFO, 84

Context
Member ofCUsbIoBuf , 237

ControlTransfer
Parameter ofCUsbIoPipe::PipeControlTransferIn , 205
Parameter ofCUsbIoPipe::PipeControlTransferOut , 207

Count
Member ofCUsbIoBufPool , 246

CreateDeviceList
CUsbIo::CreateDeviceList , 141

CritSect
Member ofCUsbIoBufPool , 246
Member ofCUsbIo , 188

CSetupApiDll
CSetupApiDll::CSetupApiDll , 247

CSetupApiDll , 247
CSetupApiDll::˜CSetupApiDll , 247
CSetupApiDll::CSetupApiDll , 247
CSetupApiDll::Load , 248
CSetupApiDll::Release , 249
CurrentCount

CUsbIoBufPool::CurrentCount , 245
CUsbIoBufPool

273

CUsbIoBufPool::CUsbIoBufPool , 240
CUsbIoBufPool , 239
CUsbIoBufPool::˜CUsbIoBufPool , 240
CUsbIoBufPool::Allocate , 241
CUsbIoBufPool::CurrentCount , 245
CUsbIoBufPool::CUsbIoBufPool , 240
CUsbIoBufPool::Free , 242
CUsbIoBufPool::Get , 243
CUsbIoBufPool::Put , 244
CUsbIoBuf

CUsbIoBuf::CUsbIoBuf , 231–233
CUsbIoBuf , 231
CUsbIoBuf::˜CUsbIoBuf , 234
CUsbIoBuf::Buffer , 235
CUsbIoBuf::CUsbIoBuf , 231–233
CUsbIoBuf::Size , 236
CUsbIoPipe

CUsbIoPipe::CUsbIoPipe , 189
CUsbIoPipe , 189
CUsbIoPipe::˜CUsbIoPipe , 189
CUsbIoPipe::AbortPipe , 202
CUsbIoPipe::Bind , 190
CUsbIoPipe::CUsbIoPipe , 189
CUsbIoPipe::GetPipeParameters , 203
CUsbIoPipe::PipeControlTransferIn , 205
CUsbIoPipe::PipeControlTransferOut , 207
CUsbIoPipe::QueryPipeStatistics , 210
CUsbIoPipe::ReadSync , 197
CUsbIoPipe::Read , 193
CUsbIoPipe::ResetPipeStatistics , 212
CUsbIoPipe::ResetPipe , 201
CUsbIoPipe::SetPipeParameters , 204
CUsbIoPipe::SetupPipeStatistics , 209
CUsbIoPipe::Unbind , 192
CUsbIoPipe::WaitForCompletion , 195
CUsbIoPipe::WriteSync , 199
CUsbIoPipe::Write , 194
CUsbIoReader

CUsbIoReader::CUsbIoReader , 225
CUsbIoReader , 225
CUsbIoReader::˜CUsbIoReader , 225
CUsbIoReader::CUsbIoReader , 225
CUsbIoReader::TerminateThread , 227
CUsbIoReader::ThreadRoutine , 226
CUsbIoThread

CUsbIoThread::CUsbIoThread , 213
CUsbIoThread , 213
CUsbIoThread::˜CUsbIoThread , 213

274

CUsbIoThread::AllocateBuffers , 214
CUsbIoThread::BufErrorHandler , 220
CUsbIoThread::CUsbIoThread , 213
CUsbIoThread::FreeBuffers , 215
CUsbIoThread::OnThreadExit , 221
CUsbIoThread::ProcessBuffer , 219
CUsbIoThread::ProcessData , 218
CUsbIoThread::ShutdownThread , 217
CUsbIoThread::StartThread , 216
CUsbIoThread::TerminateThread , 223
CUsbIoThread::ThreadRoutine , 222
CUsbIoWriter

CUsbIoWriter::CUsbIoWriter , 228
CUsbIoWriter , 228
CUsbIoWriter::˜CUsbIoWriter , 228
CUsbIoWriter::CUsbIoWriter , 228
CUsbIoWriter::TerminateThread , 230
CUsbIoWriter::ThreadRoutine , 229
CUsbIo

CUsbIo::CUsbIo , 140
CUsbIo , 140
CUsbIo::˜CUsbIo , 140
CUsbIo::CancelIo , 185
CUsbIo::ClassOrVendorInRequest , 169
CUsbIo::ClassOrVendorOutRequest , 170
CUsbIo::ClearFeature , 167
CUsbIo::Close , 145
CUsbIo::CreateDeviceList , 141
CUsbIo::CUsbIo , 140
CUsbIo::CyclePort , 181
CUsbIo::DestroyDeviceList , 142
CUsbIo::ErrorText , 187
CUsbIo::GetBandwidthInfo , 156
CUsbIo::GetConfigurationDescriptor , 160
CUsbIo::GetConfigurationInfo , 174
CUsbIo::GetConfiguration , 173
CUsbIo::GetCurrentFrameNumber , 182
CUsbIo::GetDescriptor , 157
CUsbIo::GetDeviceDescriptor , 159
CUsbIo::GetDeviceInfo , 155
CUsbIo::GetDeviceInstanceDetails , 146
CUsbIo::GetDeviceParameters , 178
CUsbIo::GetDevicePathName , 148
CUsbIo::GetDevicePowerState , 183
CUsbIo::GetDriverInfo , 154
CUsbIo::GetInterface , 176
CUsbIo::GetStatus , 168
CUsbIo::GetStringDescriptor , 162

275

CUsbIo::IoctlSync , 186
CUsbIo::IsCheckedBuild , 150
CUsbIo::IsDemoVersion , 151
CUsbIo::IsLightVersion , 152
CUsbIo::IsOpen , 149
CUsbIo::IsOperatingAtHighSpeed , 153
CUsbIo::Open , 143
CUsbIo::ResetDevice , 180
CUsbIo::SetConfiguration , 171
CUsbIo::SetDescriptor , 164
CUsbIo::SetDeviceParameters , 179
CUsbIo::SetDevicePowerState , 184
CUsbIo::SetFeature , 166
CUsbIo::SetInterface , 175
CUsbIo::StoreConfigurationDescriptor , 177
CUsbIo::UnconfigureDevice , 172
CyclePort

CUsbIo::CyclePort , 181

DemoVersionDetected
Member ofCUsbIo , 188

Desc
Parameter ofCUsbIo::GetConfigurationDescriptor , 160
Parameter ofCUsbIo::GetDeviceDescriptor , 159
Parameter ofCUsbIo::GetStringDescriptor , 162
Parameter ofCUsbIo::StoreConfigurationDescriptor , 177

DescriptorIndex
Member ofUSBIO_DESCRIPTOR_REQUEST, 88
Parameter ofCUsbIo::GetDescriptor , 157
Parameter ofCUsbIo::SetDescriptor , 164

DescriptorType
Member ofUSBIO_DESCRIPTOR_REQUEST, 88
Parameter ofCUsbIo::GetDescriptor , 157
Parameter ofCUsbIo::SetDescriptor , 164

DestroyDeviceList
CUsbIo::DestroyDeviceList , 142

DeviceInfo
Parameter ofCUsbIo::GetDeviceInfo , 155

DeviceList
Parameter ofCUsbIo::DestroyDeviceList , 142
Parameter ofCUsbIo::GetDeviceInstanceDetails , 146
Parameter ofCUsbIo::Open , 143
Parameter ofCUsbIoPipe::Bind , 190

DeviceNumber
Parameter ofCUsbIo::GetDeviceInstanceDetails , 146
Parameter ofCUsbIo::Open , 143
Parameter ofCUsbIoPipe::Bind , 190

DevicePowerState

276

Member ofUSBIO_DEVICE_POWER, 108
Parameter ofCUsbIo::GetDevicePowerState , 183
Parameter ofCUsbIo::SetDevicePowerState , 184

DevicePowerStateD0
Entry ofUSBIO_DEVICE_POWER_STATE, 124

DevicePowerStateD1
Entry ofUSBIO_DEVICE_POWER_STATE, 124

DevicePowerStateD2
Entry ofUSBIO_DEVICE_POWER_STATE, 124

DevicePowerStateD3
Entry ofUSBIO_DEVICE_POWER_STATE, 124

DevParam
Parameter ofCUsbIo::GetDeviceParameters , 178
Parameter ofCUsbIo::SetDeviceParameters , 179

DriverBuildNumber
Member ofUSBIO_DRIVER_INFO, 86

DriverInfo
Parameter ofCUsbIo::GetDriverInfo , 154

DriverVersion
Member ofUSBIO_DRIVER_INFO, 86

dwIoControlCode
Parameter ofIOCTL_USBIO_ABORT_PIPE, 69
Parameter ofIOCTL_USBIO_BIND_PIPE , 66
Parameter ofIOCTL_USBIO_CLASS_OR_VENDOR_IN_REQUEST, 49
Parameter ofIOCTL_USBIO_CLASS_OR_VENDOR_OUT_REQUEST, 50
Parameter ofIOCTL_USBIO_CLEAR_FEATURE, 41
Parameter ofIOCTL_USBIO_CYCLE_PORT, 64
Parameter ofIOCTL_USBIO_GET_BANDWIDTH_INFO, 60
Parameter ofIOCTL_USBIO_GET_CONFIGURATION_INFO, 54
Parameter ofIOCTL_USBIO_GET_CONFIGURATION, 43
Parameter ofIOCTL_USBIO_GET_CURRENT_FRAME_NUMBER, 57
Parameter ofIOCTL_USBIO_GET_DESCRIPTOR, 38
Parameter ofIOCTL_USBIO_GET_DEVICE_INFO, 61
Parameter ofIOCTL_USBIO_GET_DEVICE_PARAMETERS, 52
Parameter ofIOCTL_USBIO_GET_DEVICE_POWER_STATE, 59
Parameter ofIOCTL_USBIO_GET_DRIVER_INFO, 62
Parameter ofIOCTL_USBIO_GET_INTERFACE, 44
Parameter ofIOCTL_USBIO_GET_PIPE_PARAMETERS, 70
Parameter ofIOCTL_USBIO_GET_STATUS, 42
Parameter ofIOCTL_USBIO_PIPE_CONTROL_TRANSFER_IN, 76
Parameter ofIOCTL_USBIO_PIPE_CONTROL_TRANSFER_OUT, 77
Parameter ofIOCTL_USBIO_QUERY_PIPE_STATISTICS, 74
Parameter ofIOCTL_USBIO_RESET_DEVICE, 55
Parameter ofIOCTL_USBIO_RESET_PIPE, 68
Parameter ofIOCTL_USBIO_SET_CONFIGURATION, 46
Parameter ofIOCTL_USBIO_SET_DESCRIPTOR, 39
Parameter ofIOCTL_USBIO_SET_DEVICE_PARAMETERS, 53
Parameter ofIOCTL_USBIO_SET_DEVICE_POWER_STATE, 58

277

Parameter ofIOCTL_USBIO_SET_FEATURE, 40
Parameter ofIOCTL_USBIO_SET_INTERFACE, 48
Parameter ofIOCTL_USBIO_SET_PIPE_PARAMETERS, 71
Parameter ofIOCTL_USBIO_SETUP_PIPE_STATISTICS , 72
Parameter ofIOCTL_USBIO_STORE_CONFIG_DESCRIPTOR, 45
Parameter ofIOCTL_USBIO_UNBIND_PIPE, 67
Parameter ofIOCTL_USBIO_UNCONFIGURE_DEVICE, 47

EndpointAddress
Member ofUSBIO_BIND_PIPE , 109
Member ofUSBIO_PIPE_CONFIGURATION_INFO, 104
Parameter ofCUsbIoPipe::Bind , 190

ErrorCode
Parameter ofCUsbIo::ErrorText , 187

ErrorCount
Member ofUSBIO_ISO_TRANSFER, 118

ErrorText
CUsbIo::ErrorText , 187

FeatureSelector
Member ofUSBIO_FEATURE_REQUEST, 90
Parameter ofCUsbIo::ClearFeature , 167
Parameter ofCUsbIo::SetFeature , 166

FileHandle
Member ofCUsbIo , 188

FirstPending
Member ofCUsbIoThread , 224

Flags
Member ofUSBIO_CLASS_OR_VENDOR_REQUEST, 98
Member ofUSBIO_DEVICE_INFO, 85
Member ofUSBIO_DRIVER_INFO, 87
Member ofUSBIO_ISO_TRANSFER, 117
Member ofUSBIO_PIPE_CONTROL_TRANSFER, 116
Member ofUSBIO_PIPE_PARAMETERS, 110
Member ofUSBIO_QUERY_PIPE_STATISTICS, 112
Parameter ofCUsbIoPipe::QueryPipeStatistics , 210

FrameNumber
Member ofUSBIO_FRAME_NUMBER, 107
Parameter ofCUsbIo::GetCurrentFrameNumber , 182

FreeBuffers
CUsbIoThread::FreeBuffers , 215

Free
CUsbIoBufPool::Free , 242

GetBandwidthInfo
CUsbIo::GetBandwidthInfo , 156

GetConfigurationDescriptor
CUsbIo::GetConfigurationDescriptor , 160

GetConfigurationInfo

278

CUsbIo::GetConfigurationInfo , 174
GetConfiguration

CUsbIo::GetConfiguration , 173
GetCurrentFrameNumber

CUsbIo::GetCurrentFrameNumber , 182
GetDescriptor

CUsbIo::GetDescriptor , 157
GetDeviceDescriptor

CUsbIo::GetDeviceDescriptor , 159
GetDeviceInfo

CUsbIo::GetDeviceInfo , 155
GetDeviceInstanceDetails

CUsbIo::GetDeviceInstanceDetails , 146
GetDeviceParameters

CUsbIo::GetDeviceParameters , 178
GetDevicePathName

CUsbIo::GetDevicePathName , 148
GetDevicePowerState

CUsbIo::GetDevicePowerState , 183
GetDriverInfo

CUsbIo::GetDriverInfo , 154
GetInterface

CUsbIo::GetInterface , 176
GetPipeParameters

CUsbIoPipe::GetPipeParameters , 203
GetStatus

CUsbIo::GetStatus , 168
GetStringDescriptor

CUsbIo::GetStringDescriptor , 162
Get

CUsbIoBufPool::Get , 243

Head
Member ofCUsbIoBufPool , 246

InBuffer
Parameter ofCUsbIo::IoctlSync , 186

InBufferSize
Parameter ofCUsbIo::IoctlSync , 186

Index
Member ofUSBIO_CLASS_OR_VENDOR_REQUEST, 98
Member ofUSBIO_FEATURE_REQUEST, 90
Member ofUSBIO_STATUS_REQUEST, 91
Parameter ofCUsbIo::ClearFeature , 167
Parameter ofCUsbIo::GetConfigurationDescriptor , 160
Parameter ofCUsbIo::GetStatus , 168
Parameter ofCUsbIo::GetStringDescriptor , 162
Parameter ofCUsbIo::SetFeature , 166

Info

279

Parameter ofCUsbIo::GetConfigurationInfo , 174
Interface

Member ofUSBIO_GET_INTERFACE, 94
Parameter ofCUsbIo::GetInterface , 176

InterfaceGuid
Parameter ofCUsbIo::CreateDeviceList , 141
Parameter ofCUsbIo::GetDeviceInstanceDetails , 146
Parameter ofCUsbIo::Open , 143
Parameter ofCUsbIoPipe::Bind , 190

InterfaceIndex
Member ofUSBIO_INTERFACE_SETTING, 96

InterfaceInfo[USBIO_MAX_INTERFACES]
Member ofUSBIO_CONFIGURATION_INFO, 106

InterfaceList[USBIO_MAX_INTERFACES]
Member ofUSBIO_SET_CONFIGURATION, 97

InterfaceNumber
Member ofUSBIO_INTERFACE_CONFIGURATION_INFO, 102
Member ofUSBIO_PIPE_CONFIGURATION_INFO, 105

Interval
Member ofUSBIO_PIPE_CONFIGURATION_INFO, 104

IOCTL_USBIO_ABORT_PIPE, 69
IOCTL_USBIO_BIND_PIPE , 66
IOCTL_USBIO_CLASS_OR_VENDOR_IN_REQUEST, 49
IOCTL_USBIO_CLASS_OR_VENDOR_OUT_REQUEST, 50
IOCTL_USBIO_CLEAR_FEATURE, 41
IOCTL_USBIO_CYCLE_PORT, 64
IOCTL_USBIO_GET_BANDWIDTH_INFO, 60
IOCTL_USBIO_GET_CONFIGURATION_INFO, 54
IOCTL_USBIO_GET_CONFIGURATION, 43
IOCTL_USBIO_GET_CURRENT_FRAME_NUMBER, 57
IOCTL_USBIO_GET_DESCRIPTOR, 38
IOCTL_USBIO_GET_DEVICE_INFO, 61
IOCTL_USBIO_GET_DEVICE_PARAMETERS, 52
IOCTL_USBIO_GET_DEVICE_POWER_STATE, 59
IOCTL_USBIO_GET_DRIVER_INFO, 62
IOCTL_USBIO_GET_INTERFACE, 44
IOCTL_USBIO_GET_PIPE_PARAMETERS, 70
IOCTL_USBIO_GET_STATUS, 42
IOCTL_USBIO_PIPE_CONTROL_TRANSFER_IN, 76
IOCTL_USBIO_PIPE_CONTROL_TRANSFER_OUT, 77
IOCTL_USBIO_QUERY_PIPE_STATISTICS, 74
IOCTL_USBIO_RESET_DEVICE, 55
IOCTL_USBIO_RESET_PIPE, 68
IOCTL_USBIO_SET_CONFIGURATION, 46
IOCTL_USBIO_SET_DESCRIPTOR, 39
IOCTL_USBIO_SET_DEVICE_PARAMETERS, 53
IOCTL_USBIO_SET_DEVICE_POWER_STATE, 58
IOCTL_USBIO_SET_FEATURE, 40

280

IOCTL_USBIO_SET_INTERFACE, 48
IOCTL_USBIO_SET_PIPE_PARAMETERS, 71
IOCTL_USBIO_SETUP_PIPE_STATISTICS , 72
IOCTL_USBIO_STORE_CONFIG_DESCRIPTOR, 45
IOCTL_USBIO_UNBIND_PIPE, 67
IOCTL_USBIO_UNCONFIGURE_DEVICE, 47
IoctlCode

Parameter ofCUsbIo::IoctlSync , 186
IoctlSync

CUsbIo::IoctlSync , 186
IsCheckedBuild

CUsbIo::IsCheckedBuild , 150
IsDemoVersion

CUsbIo::IsDemoVersion , 151
IsLightVersion

CUsbIo::IsLightVersion , 152
IsoPacket[1]

Member ofUSBIO_ISO_TRANSFER_HEADER, 120
IsOpen

CUsbIo::IsOpen , 149
IsOperatingAtHighSpeed

CUsbIo::IsOperatingAtHighSpeed , 153
IsoTransfer

Member ofUSBIO_ISO_TRANSFER_HEADER, 120

LanguageId
Member ofUSBIO_DESCRIPTOR_REQUEST, 88
Parameter ofCUsbIo::GetDescriptor , 157
Parameter ofCUsbIo::GetStringDescriptor , 162
Parameter ofCUsbIo::SetDescriptor , 164

LastPending
Member ofCUsbIoThread , 224

Length
Member ofUSBIO_ISO_PACKET, 119

LightVersionDetected
Member ofCUsbIo , 188

Load
CSetupApiDll::Load , 248

lpBytesReturned
Parameter ofIOCTL_USBIO_ABORT_PIPE, 69
Parameter ofIOCTL_USBIO_BIND_PIPE , 66
Parameter ofIOCTL_USBIO_CLASS_OR_VENDOR_IN_REQUEST, 49
Parameter ofIOCTL_USBIO_CLASS_OR_VENDOR_OUT_REQUEST, 50
Parameter ofIOCTL_USBIO_CLEAR_FEATURE, 41
Parameter ofIOCTL_USBIO_CYCLE_PORT, 64
Parameter ofIOCTL_USBIO_GET_BANDWIDTH_INFO, 60
Parameter ofIOCTL_USBIO_GET_CONFIGURATION_INFO, 54
Parameter ofIOCTL_USBIO_GET_CONFIGURATION, 43

281

Parameter ofIOCTL_USBIO_GET_CURRENT_FRAME_NUMBER, 57
Parameter ofIOCTL_USBIO_GET_DESCRIPTOR, 38
Parameter ofIOCTL_USBIO_GET_DEVICE_INFO, 61
Parameter ofIOCTL_USBIO_GET_DEVICE_PARAMETERS, 52
Parameter ofIOCTL_USBIO_GET_DEVICE_POWER_STATE, 59
Parameter ofIOCTL_USBIO_GET_DRIVER_INFO, 62
Parameter ofIOCTL_USBIO_GET_INTERFACE, 44
Parameter ofIOCTL_USBIO_GET_PIPE_PARAMETERS, 70
Parameter ofIOCTL_USBIO_GET_STATUS, 42
Parameter ofIOCTL_USBIO_PIPE_CONTROL_TRANSFER_IN, 76
Parameter ofIOCTL_USBIO_PIPE_CONTROL_TRANSFER_OUT, 77
Parameter ofIOCTL_USBIO_QUERY_PIPE_STATISTICS, 74
Parameter ofIOCTL_USBIO_RESET_DEVICE, 55
Parameter ofIOCTL_USBIO_RESET_PIPE, 68
Parameter ofIOCTL_USBIO_SET_CONFIGURATION, 46
Parameter ofIOCTL_USBIO_SET_DESCRIPTOR, 39
Parameter ofIOCTL_USBIO_SET_DEVICE_PARAMETERS, 53
Parameter ofIOCTL_USBIO_SET_DEVICE_POWER_STATE, 58
Parameter ofIOCTL_USBIO_SET_FEATURE, 40
Parameter ofIOCTL_USBIO_SET_INTERFACE, 48
Parameter ofIOCTL_USBIO_SET_PIPE_PARAMETERS, 71
Parameter ofIOCTL_USBIO_SETUP_PIPE_STATISTICS , 72
Parameter ofIOCTL_USBIO_STORE_CONFIG_DESCRIPTOR, 45
Parameter ofIOCTL_USBIO_UNBIND_PIPE, 67
Parameter ofIOCTL_USBIO_UNCONFIGURE_DEVICE, 47

lpInBuffer
Parameter ofIOCTL_USBIO_ABORT_PIPE, 69
Parameter ofIOCTL_USBIO_BIND_PIPE , 66
Parameter ofIOCTL_USBIO_CLASS_OR_VENDOR_IN_REQUEST, 49
Parameter ofIOCTL_USBIO_CLASS_OR_VENDOR_OUT_REQUEST, 50
Parameter ofIOCTL_USBIO_CLEAR_FEATURE, 41
Parameter ofIOCTL_USBIO_CYCLE_PORT, 64
Parameter ofIOCTL_USBIO_GET_BANDWIDTH_INFO, 60
Parameter ofIOCTL_USBIO_GET_CONFIGURATION_INFO, 54
Parameter ofIOCTL_USBIO_GET_CONFIGURATION, 43
Parameter ofIOCTL_USBIO_GET_CURRENT_FRAME_NUMBER, 57
Parameter ofIOCTL_USBIO_GET_DESCRIPTOR, 38
Parameter ofIOCTL_USBIO_GET_DEVICE_INFO, 61
Parameter ofIOCTL_USBIO_GET_DEVICE_PARAMETERS, 52
Parameter ofIOCTL_USBIO_GET_DEVICE_POWER_STATE, 59
Parameter ofIOCTL_USBIO_GET_DRIVER_INFO, 62
Parameter ofIOCTL_USBIO_GET_INTERFACE, 44
Parameter ofIOCTL_USBIO_GET_PIPE_PARAMETERS, 70
Parameter ofIOCTL_USBIO_GET_STATUS, 42
Parameter ofIOCTL_USBIO_PIPE_CONTROL_TRANSFER_IN, 76
Parameter ofIOCTL_USBIO_PIPE_CONTROL_TRANSFER_OUT, 77
Parameter ofIOCTL_USBIO_QUERY_PIPE_STATISTICS, 74
Parameter ofIOCTL_USBIO_RESET_DEVICE, 55

282

Parameter ofIOCTL_USBIO_RESET_PIPE, 68
Parameter ofIOCTL_USBIO_SET_CONFIGURATION, 46
Parameter ofIOCTL_USBIO_SET_DESCRIPTOR, 39
Parameter ofIOCTL_USBIO_SET_DEVICE_PARAMETERS, 53
Parameter ofIOCTL_USBIO_SET_DEVICE_POWER_STATE, 58
Parameter ofIOCTL_USBIO_SET_FEATURE, 40
Parameter ofIOCTL_USBIO_SET_INTERFACE, 48
Parameter ofIOCTL_USBIO_SET_PIPE_PARAMETERS, 71
Parameter ofIOCTL_USBIO_SETUP_PIPE_STATISTICS , 72
Parameter ofIOCTL_USBIO_STORE_CONFIG_DESCRIPTOR, 45
Parameter ofIOCTL_USBIO_UNBIND_PIPE, 67
Parameter ofIOCTL_USBIO_UNCONFIGURE_DEVICE, 47

lpOutBuffer
Parameter ofIOCTL_USBIO_ABORT_PIPE, 69
Parameter ofIOCTL_USBIO_BIND_PIPE , 66
Parameter ofIOCTL_USBIO_CLASS_OR_VENDOR_IN_REQUEST, 49
Parameter ofIOCTL_USBIO_CLASS_OR_VENDOR_OUT_REQUEST, 50
Parameter ofIOCTL_USBIO_CLEAR_FEATURE, 41
Parameter ofIOCTL_USBIO_CYCLE_PORT, 64
Parameter ofIOCTL_USBIO_GET_BANDWIDTH_INFO, 60
Parameter ofIOCTL_USBIO_GET_CONFIGURATION_INFO, 54
Parameter ofIOCTL_USBIO_GET_CONFIGURATION, 43
Parameter ofIOCTL_USBIO_GET_CURRENT_FRAME_NUMBER, 57
Parameter ofIOCTL_USBIO_GET_DESCRIPTOR, 38
Parameter ofIOCTL_USBIO_GET_DEVICE_INFO, 61
Parameter ofIOCTL_USBIO_GET_DEVICE_PARAMETERS, 52
Parameter ofIOCTL_USBIO_GET_DEVICE_POWER_STATE, 59
Parameter ofIOCTL_USBIO_GET_DRIVER_INFO, 62
Parameter ofIOCTL_USBIO_GET_INTERFACE, 44
Parameter ofIOCTL_USBIO_GET_PIPE_PARAMETERS, 70
Parameter ofIOCTL_USBIO_GET_STATUS, 42
Parameter ofIOCTL_USBIO_PIPE_CONTROL_TRANSFER_IN, 76
Parameter ofIOCTL_USBIO_PIPE_CONTROL_TRANSFER_OUT, 77
Parameter ofIOCTL_USBIO_QUERY_PIPE_STATISTICS, 74
Parameter ofIOCTL_USBIO_RESET_DEVICE, 55
Parameter ofIOCTL_USBIO_RESET_PIPE, 68
Parameter ofIOCTL_USBIO_SET_CONFIGURATION, 46
Parameter ofIOCTL_USBIO_SET_DESCRIPTOR, 39
Parameter ofIOCTL_USBIO_SET_DEVICE_PARAMETERS, 53
Parameter ofIOCTL_USBIO_SET_DEVICE_POWER_STATE, 58
Parameter ofIOCTL_USBIO_SET_FEATURE, 40
Parameter ofIOCTL_USBIO_SET_INTERFACE, 48
Parameter ofIOCTL_USBIO_SET_PIPE_PARAMETERS, 71
Parameter ofIOCTL_USBIO_SETUP_PIPE_STATISTICS , 72
Parameter ofIOCTL_USBIO_STORE_CONFIG_DESCRIPTOR, 45
Parameter ofIOCTL_USBIO_UNBIND_PIPE, 67
Parameter ofIOCTL_USBIO_UNCONFIGURE_DEVICE, 47

283

MaxErrorCount
Member ofCUsbIoThread , 224

MaximumPacketSize
Member ofUSBIO_PIPE_CONFIGURATION_INFO, 104

MaximumTransferSize
Member ofUSBIO_INTERFACE_SETTING, 96
Member ofUSBIO_PIPE_CONFIGURATION_INFO, 104

MaxIoErrorCount
Parameter ofCUsbIoThread::StartThread , 216

mDevDetail
Member ofCUsbIo , 188

NbOfInterfaces
Member ofUSBIO_CONFIGURATION_INFO, 106
Member ofUSBIO_SET_CONFIGURATION, 97

NbOfPipes
Member ofUSBIO_CONFIGURATION_INFO, 106

Next
Member ofCUsbIoBuf , 237

nInBufferSize
Parameter ofIOCTL_USBIO_ABORT_PIPE, 69
Parameter ofIOCTL_USBIO_BIND_PIPE , 66
Parameter ofIOCTL_USBIO_CLASS_OR_VENDOR_IN_REQUEST, 49
Parameter ofIOCTL_USBIO_CLASS_OR_VENDOR_OUT_REQUEST, 50
Parameter ofIOCTL_USBIO_CLEAR_FEATURE, 41
Parameter ofIOCTL_USBIO_CYCLE_PORT, 64
Parameter ofIOCTL_USBIO_GET_BANDWIDTH_INFO, 60
Parameter ofIOCTL_USBIO_GET_CONFIGURATION_INFO, 54
Parameter ofIOCTL_USBIO_GET_CONFIGURATION, 43
Parameter ofIOCTL_USBIO_GET_CURRENT_FRAME_NUMBER, 57
Parameter ofIOCTL_USBIO_GET_DESCRIPTOR, 38
Parameter ofIOCTL_USBIO_GET_DEVICE_INFO, 61
Parameter ofIOCTL_USBIO_GET_DEVICE_PARAMETERS, 52
Parameter ofIOCTL_USBIO_GET_DEVICE_POWER_STATE, 59
Parameter ofIOCTL_USBIO_GET_DRIVER_INFO, 62
Parameter ofIOCTL_USBIO_GET_INTERFACE, 44
Parameter ofIOCTL_USBIO_GET_PIPE_PARAMETERS, 70
Parameter ofIOCTL_USBIO_GET_STATUS, 42
Parameter ofIOCTL_USBIO_PIPE_CONTROL_TRANSFER_IN, 76
Parameter ofIOCTL_USBIO_PIPE_CONTROL_TRANSFER_OUT, 77
Parameter ofIOCTL_USBIO_QUERY_PIPE_STATISTICS, 74
Parameter ofIOCTL_USBIO_RESET_DEVICE, 55
Parameter ofIOCTL_USBIO_RESET_PIPE, 68
Parameter ofIOCTL_USBIO_SET_CONFIGURATION, 46
Parameter ofIOCTL_USBIO_SET_DESCRIPTOR, 39
Parameter ofIOCTL_USBIO_SET_DEVICE_PARAMETERS, 53
Parameter ofIOCTL_USBIO_SET_DEVICE_POWER_STATE, 58
Parameter ofIOCTL_USBIO_SET_FEATURE, 40

284

Parameter ofIOCTL_USBIO_SET_INTERFACE, 48
Parameter ofIOCTL_USBIO_SET_PIPE_PARAMETERS, 71
Parameter ofIOCTL_USBIO_SETUP_PIPE_STATISTICS , 72
Parameter ofIOCTL_USBIO_STORE_CONFIG_DESCRIPTOR, 45
Parameter ofIOCTL_USBIO_UNBIND_PIPE, 67
Parameter ofIOCTL_USBIO_UNCONFIGURE_DEVICE, 47

nOutBufferSize
Parameter ofIOCTL_USBIO_ABORT_PIPE, 69
Parameter ofIOCTL_USBIO_BIND_PIPE , 66
Parameter ofIOCTL_USBIO_CLASS_OR_VENDOR_IN_REQUEST, 49
Parameter ofIOCTL_USBIO_CLASS_OR_VENDOR_OUT_REQUEST, 50
Parameter ofIOCTL_USBIO_CLEAR_FEATURE, 41
Parameter ofIOCTL_USBIO_CYCLE_PORT, 64
Parameter ofIOCTL_USBIO_GET_BANDWIDTH_INFO, 60
Parameter ofIOCTL_USBIO_GET_CONFIGURATION_INFO, 54
Parameter ofIOCTL_USBIO_GET_CONFIGURATION, 43
Parameter ofIOCTL_USBIO_GET_CURRENT_FRAME_NUMBER, 57
Parameter ofIOCTL_USBIO_GET_DESCRIPTOR, 38
Parameter ofIOCTL_USBIO_GET_DEVICE_INFO, 61
Parameter ofIOCTL_USBIO_GET_DEVICE_PARAMETERS, 52
Parameter ofIOCTL_USBIO_GET_DEVICE_POWER_STATE, 59
Parameter ofIOCTL_USBIO_GET_DRIVER_INFO, 62
Parameter ofIOCTL_USBIO_GET_INTERFACE, 44
Parameter ofIOCTL_USBIO_GET_PIPE_PARAMETERS, 70
Parameter ofIOCTL_USBIO_GET_STATUS, 42
Parameter ofIOCTL_USBIO_PIPE_CONTROL_TRANSFER_IN, 76
Parameter ofIOCTL_USBIO_PIPE_CONTROL_TRANSFER_OUT, 77
Parameter ofIOCTL_USBIO_QUERY_PIPE_STATISTICS, 74
Parameter ofIOCTL_USBIO_RESET_DEVICE, 55
Parameter ofIOCTL_USBIO_RESET_PIPE, 68
Parameter ofIOCTL_USBIO_SET_CONFIGURATION, 46
Parameter ofIOCTL_USBIO_SET_DESCRIPTOR, 39
Parameter ofIOCTL_USBIO_SET_DEVICE_PARAMETERS, 53
Parameter ofIOCTL_USBIO_SET_DEVICE_POWER_STATE, 58
Parameter ofIOCTL_USBIO_SET_FEATURE, 40
Parameter ofIOCTL_USBIO_SET_INTERFACE, 48
Parameter ofIOCTL_USBIO_SET_PIPE_PARAMETERS, 71
Parameter ofIOCTL_USBIO_SETUP_PIPE_STATISTICS , 72
Parameter ofIOCTL_USBIO_STORE_CONFIG_DESCRIPTOR, 45
Parameter ofIOCTL_USBIO_UNBIND_PIPE, 67
Parameter ofIOCTL_USBIO_UNCONFIGURE_DEVICE, 47

NumberOfBuffers
Parameter ofCUsbIoBufPool::Allocate , 241
Parameter ofCUsbIoThread::AllocateBuffers , 214

NumberOfBytesToTransfer
Member ofCUsbIoBuf , 237

NumberOfPackets
Member ofUSBIO_ISO_TRANSFER, 117

285

NumberOfPipes
Member ofUSBIO_INTERFACE_CONFIGURATION_INFO, 102

Offset
Member ofUSBIO_ISO_PACKET, 119

OnThreadExit
CUsbIoThread::OnThreadExit , 221

Open
CUsbIo::Open , 143

OperationFinished
Member ofCUsbIoBuf , 237

Options
Member ofUSBIO_DEVICE_PARAMETERS, 100

OutBuffer
Parameter ofCUsbIo::IoctlSync , 186

OutBufferSize
Parameter ofCUsbIo::IoctlSync , 186

Overlapped
Member ofCUsbIoBuf , 237
Member ofCUsbIo , 188

PipeControlTransferIn
CUsbIoPipe::PipeControlTransferIn , 205

PipeControlTransferOut
CUsbIoPipe::PipeControlTransferOut , 207

PipeInfo[USBIO_MAX_PIPES]
Member ofUSBIO_CONFIGURATION_INFO, 106

PipeParameters
Parameter ofCUsbIoPipe::GetPipeParameters , 203
Parameter ofCUsbIoPipe::SetPipeParameters , 204

PipeStatistics
Parameter ofCUsbIoPipe::QueryPipeStatistics , 210

PipeType
Member ofUSBIO_PIPE_CONFIGURATION_INFO, 104

ProcessBuffer
CUsbIoThread::ProcessBuffer , 219

ProcessData
CUsbIoThread::ProcessData , 218

Protocol
Member ofUSBIO_INTERFACE_CONFIGURATION_INFO, 102

Put
CUsbIoBufPool::Put , 244

QueryPipeStatistics
CUsbIoPipe::QueryPipeStatistics , 210

ReadSync
CUsbIoPipe::ReadSync , 197

Read

286

CUsbIoPipe::Read , 193
Recipient

Member ofUSBIO_CLASS_OR_VENDOR_REQUEST, 98
Member ofUSBIO_DESCRIPTOR_REQUEST, 88
Member ofUSBIO_FEATURE_REQUEST, 90
Member ofUSBIO_STATUS_REQUEST, 91
Parameter ofCUsbIo::ClearFeature , 167
Parameter ofCUsbIo::GetDescriptor , 157
Parameter ofCUsbIo::GetStatus , 168
Parameter ofCUsbIo::SetDescriptor , 164
Parameter ofCUsbIo::SetFeature , 166

Release
CSetupApiDll::Release , 249

Request
Member ofUSBIO_CLASS_OR_VENDOR_REQUEST, 98
Parameter ofCUsbIo::ClassOrVendorInRequest , 169
Parameter ofCUsbIo::ClassOrVendorOutRequest , 170

RequestsFailed
Member ofUSBIO_PIPE_STATISTICS , 115

RequestsSucceeded
Member ofUSBIO_PIPE_STATISTICS , 115

RequestTimeout
Member ofUSBIO_DEVICE_PARAMETERS, 100

RequestTypeReservedBits
Member ofUSBIO_CLASS_OR_VENDOR_REQUEST, 98

reserved1
Member ofUSBIO_BANDWIDTH_INFO, 84
Member ofUSBIO_DEVICE_INFO, 85
Member ofUSBIO_INTERFACE_CONFIGURATION_INFO, 102
Member ofUSBIO_PIPE_CONFIGURATION_INFO, 105
Member ofUSBIO_PIPE_STATISTICS , 115
Member ofUSBIO_SETUP_PIPE_STATISTICS, 111

reserved2
Member ofUSBIO_BANDWIDTH_INFO, 84
Member ofUSBIO_DEVICE_INFO, 85
Member ofUSBIO_INTERFACE_CONFIGURATION_INFO, 102
Member ofUSBIO_PIPE_CONFIGURATION_INFO, 105
Member ofUSBIO_PIPE_STATISTICS , 115
Member ofUSBIO_SETUP_PIPE_STATISTICS, 111

reserved3
Member ofUSBIO_DEVICE_INFO, 85
Member ofUSBIO_PIPE_CONFIGURATION_INFO, 105

ResetDevice
CUsbIo::ResetDevice , 180

ResetPipeStatistics
CUsbIoPipe::ResetPipeStatistics , 212

ResetPipe
CUsbIoPipe::ResetPipe , 201

287

SetConfiguration
CUsbIo::SetConfiguration , 171

SetDescriptor
CUsbIo::SetDescriptor , 164

SetDeviceParameters
CUsbIo::SetDeviceParameters , 179

SetDevicePowerState
CUsbIo::SetDevicePowerState , 184

SetFeature
CUsbIo::SetFeature , 166

SetInterface
CUsbIo::SetInterface , 175

SetPipeParameters
CUsbIoPipe::SetPipeParameters , 204

Setting
Parameter ofCUsbIo::SetInterface , 175

SetupPacket[8]
Member ofUSBIO_PIPE_CONTROL_TRANSFER, 116

SetupPipeStatistics
CUsbIoPipe::SetupPipeStatistics , 209

ShutdownThread
CUsbIoThread::ShutdownThread , 217

SizeOfBuffer
Parameter ofCUsbIoBufPool::Allocate , 241
Parameter ofCUsbIoThread::AllocateBuffers , 214

Size
CUsbIoBuf::Size , 236

smSetupApi
Member ofCUsbIo , 188

StartFrame
Member ofUSBIO_ISO_TRANSFER, 117

StartThread
CUsbIoThread::StartThread , 216

Status
Member ofCUsbIoBuf , 237
Member ofUSBIO_ISO_PACKET, 119
Member ofUSBIO_STATUS_REQUEST_DATA, 92

StatusValue
Parameter ofCUsbIo::GetStatus , 168

StoreConfigurationDescriptor
CUsbIo::StoreConfigurationDescriptor , 177

StringBuffer
Parameter ofCUsbIo::ErrorText , 187

StringBufferSize
Parameter ofCUsbIo::ErrorText , 187

SubClass
Member ofUSBIO_INTERFACE_CONFIGURATION_INFO, 102

288

TerminateFlag
Member ofCUsbIoThread , 224

TerminateThread
CUsbIoReader::TerminateThread , 227
CUsbIoThread::TerminateThread , 223
CUsbIoWriter::TerminateThread , 230

ThreadHandle
Member ofCUsbIoThread , 224

ThreadID
Member ofCUsbIoThread , 224

ThreadRoutine
CUsbIoReader::ThreadRoutine , 226
CUsbIoThread::ThreadRoutine , 222
CUsbIoWriter::ThreadRoutine , 229

Timeout
Parameter ofCUsbIoPipe::ReadSync , 197
Parameter ofCUsbIoPipe::WaitForCompletion , 195
Parameter ofCUsbIoPipe::WriteSync , 199

TotalBandwidth
Member ofUSBIO_BANDWIDTH_INFO, 84

Type
Member ofUSBIO_CLASS_OR_VENDOR_REQUEST, 98

Unbind
CUsbIoPipe::Unbind , 192

UnconfigureDevice
CUsbIo::UnconfigureDevice , 172

USBIO_BANDWIDTH_INFO, 84
USBIO_BIND_PIPE , 109
USBIO_CLASS_OR_VENDOR_REQUEST, 98
USBIO_CONFIGURATION_INFO, 106
USBIO_DESCRIPTOR_REQUEST, 88
USBIO_DEVICE_INFO, 85
USBIO_DEVICE_PARAMETERS, 100
USBIO_DEVICE_POWER_STATE, 124
USBIO_DEVICE_POWER, 108
USBIO_DRIVER_INFO, 86
USBIO_ERR_ALREADY_BOUND, 131
USBIO_ERR_ALREADY_CONFIGURED, 131
USBIO_ERR_BABBLE_DETECTED, 126
USBIO_ERR_BAD_START_FRAME, 128
USBIO_ERR_BTSTUFF, 125
USBIO_ERR_BUFFER_OVERRUN, 126
USBIO_ERR_BUFFER_UNDERRUN, 126
USBIO_ERR_BULK_RESTRICTION, 134
USBIO_ERR_CANCELED, 129
USBIO_ERR_CONTROL_NOT_SUPPORTED, 131
USBIO_ERR_CONTROL_RESTRICTION, 135

289

USBIO_ERR_CRC, 125
USBIO_ERR_DATA_BUFFER_ERROR, 127
USBIO_ERR_DATA_OVERRUN, 125
USBIO_ERR_DATA_TOGGLE_MISMATCH, 125
USBIO_ERR_DATA_UNDERRUN, 126
USBIO_ERR_DEMO_EXPIRED, 133
USBIO_ERR_DEV_NOT_RESPONDING, 125
USBIO_ERR_DEVICE_GONE, 129
USBIO_ERR_DEVICE_NOT_FOUND, 135
USBIO_ERR_DEVICE_NOT_OPEN, 135
USBIO_ERR_DEVICE_NOT_PRESENT, 131
USBIO_ERR_ENDPOINT_HALTED, 127
USBIO_ERR_EP0_RESTRICTION, 134
USBIO_ERR_ERROR_BUSY, 127
USBIO_ERR_ERROR_SHORT_TRANSFER, 128
USBIO_ERR_FAILED, 130
USBIO_ERR_FIFO, 126
USBIO_ERR_FRAME_CONTROL_NOT_OWNED, 128
USBIO_ERR_FRAME_CONTROL_OWNED, 128
USBIO_ERR_INSUFFICIENT_RESOURCES, 129
USBIO_ERR_INTERFACE_NOT_FOUND, 133
USBIO_ERR_INTERNAL_HC_ERROR, 128
USBIO_ERR_INTERRUPT_RESTRICTION, 135
USBIO_ERR_INVALID_CONFIGURATION_DESCRIPTOR, 128
USBIO_ERR_INVALID_DEVICE_STATE, 133
USBIO_ERR_INVALID_DIRECTION, 132
USBIO_ERR_INVALID_FUNCTION_PARAM, 135
USBIO_ERR_INVALID_INBUFFER, 130
USBIO_ERR_INVALID_IOCTL, 132
USBIO_ERR_INVALID_ISO_PACKET, 133
USBIO_ERR_INVALID_OUTBUFFER, 130
USBIO_ERR_INVALID_PARAMETER, 127
USBIO_ERR_INVALID_PARAM, 133
USBIO_ERR_INVALID_PIPE_FLAGS, 129
USBIO_ERR_INVALID_PIPE_HANDLE, 127
USBIO_ERR_INVALID_POWER_STATE, 133
USBIO_ERR_INVALID_RECIPIENT, 132
USBIO_ERR_INVALID_TYPE, 132
USBIO_ERR_INVALID_URB_FUNCTION, 127
USBIO_ERR_ISO_NA_LATE_USBPORT, 130
USBIO_ERR_ISO_NOT_ACCESSED_BY_HW, 130
USBIO_ERR_ISO_NOT_ACCESSED_LATE, 130
USBIO_ERR_ISO_RESTRICTION, 134
USBIO_ERR_ISO_TD_ERROR, 130
USBIO_ERR_ISOCH_REQUEST_FAILED, 128
USBIO_ERR_LOAD_SETUP_API_FAILED, 136
USBIO_ERR_NO_BANDWIDTH, 127
USBIO_ERR_NO_MEMORY, 127

290

USBIO_ERR_NO_SUCH_DEVICE_INSTANCE, 135
USBIO_ERR_NOT_ACCESSED, 126
USBIO_ERR_NOT_BOUND, 131
USBIO_ERR_NOT_CONFIGURED, 131
USBIO_ERR_NOT_SUPPORTED, 128
USBIO_ERR_OPEN_PIPES, 131
USBIO_ERR_OUT_OF_ADDRESS_SPACE, 133
USBIO_ERR_OUT_OF_MEMORY, 130
USBIO_ERR_PENDING_REQUESTS, 131
USBIO_ERR_PID_CHECK_FAILURE, 125
USBIO_ERR_PIPE_NOT_FOUND, 132
USBIO_ERR_PIPE_RESTRICTION, 135
USBIO_ERR_PIPE_SIZE_RESTRICTION, 135
USBIO_ERR_POOL_EMPTY, 132
USBIO_ERR_POWER_DOWN, 134
USBIO_ERR_REQUEST_FAILED, 127
USBIO_ERR_RESERVED1, 126
USBIO_ERR_RESERVED2, 126
USBIO_ERR_SET_CONFIG_FAILED, 129
USBIO_ERR_SET_CONFIGURATION_FAILED, 134
USBIO_ERR_STALL_PID, 125
USBIO_ERR_STATUS_NOT_MAPPED, 129
USBIO_ERR_SUCCESS, 125
USBIO_ERR_TIMEOUT, 132
USBIO_ERR_TOO_MUCH_ISO_PACKETS, 132
USBIO_ERR_UNEXPECTED_PID, 125
USBIO_ERR_USBD_BUFFER_TOO_SMALL, 129
USBIO_ERR_USBD_INTERFACE_NOT_FOUND, 129
USBIO_ERR_USBD_TIMEOUT, 129
USBIO_ERR_VERSION_MISMATCH, 134
USBIO_ERR_VID_RESTRICTION, 134
USBIO_ERR_XACT_ERROR, 126
USBIO_FEATURE_REQUEST, 90
USBIO_FRAME_NUMBER, 107
USBIO_GET_CONFIGURATION_DATA, 93
USBIO_GET_INTERFACE_DATA, 95
USBIO_GET_INTERFACE, 94
USBIO_INTERFACE_CONFIGURATION_INFO, 102
USBIO_INTERFACE_SETTING, 96
USBIO_ISO_PACKET, 119
USBIO_ISO_TRANSFER_HEADER, 120
USBIO_ISO_TRANSFER, 117
USBIO_PIPE_CONFIGURATION_INFO, 104
USBIO_PIPE_CONTROL_TRANSFER, 116
USBIO_PIPE_PARAMETERS, 110
USBIO_PIPE_STATISTICS , 114
USBIO_PIPE_TYPE, 121
USBIO_QUERY_PIPE_STATISTICS, 112

291

USBIO_REQUEST_RECIPIENT, 122
USBIO_REQUEST_TYPE, 123
USBIO_SET_CONFIGURATION, 97
USBIO_SETUP_PIPE_STATISTICS, 111
USBIO_STATUS_REQUEST_DATA, 92
USBIO_STATUS_REQUEST, 91

Value
Member ofUSBIO_CLASS_OR_VENDOR_REQUEST, 98

WaitForCompletion
CUsbIoPipe::WaitForCompletion , 195

WriteSync
CUsbIoPipe::WriteSync , 199

Write
CUsbIoPipe::Write , 194

292

	Table of Contents
	Introduction
	Overview
	Platforms
	Features
	Restrictions
	USB 2.0 Support
	How to install USB 2.0 Host Controller Drivers on Windows 2000
	How to install USB 2.0 Host Controller Drivers on Windows XP

	Architecture
	USBIO Object Model
	USBIO Device Objects
	USBIO Pipe Objects

	Establishing a Connection to the Device
	Power Management
	Device State Change Notifications

	Programming Interface
	Programming Interface Overview
	Query Information Requests
	Device-related Requests
	Pipe-related Requests
	Data Transfer Requests

	Control Requests
	IOCTL_USBIO_GET_DESCRIPTOR
	IOCTL_USBIO_SET_DESCRIPTOR
	IOCTL_USBIO_SET_FEATURE
	IOCTL_USBIO_CLEAR_FEATURE
	IOCTL_USBIO_GET_STATUS
	IOCTL_USBIO_GET_CONFIGURATION
	IOCTL_USBIO_GET_INTERFACE
	IOCTL_USBIO_STORE_CONFIG_DESCRIPTOR
	IOCTL_USBIO_SET_CONFIGURATION
	IOCTL_USBIO_UNCONFIGURE_DEVICE
	IOCTL_USBIO_SET_INTERFACE
	IOCTL_USBIO_CLASS_OR_VENDOR_IN_REQUEST
	IOCTL_USBIO_CLASS_OR_VENDOR_OUT_REQUEST
	IOCTL_USBIO_GET_DEVICE_PARAMETERS
	IOCTL_USBIO_SET_DEVICE_PARAMETERS
	IOCTL_USBIO_GET_CONFIGURATION_INFO
	IOCTL_USBIO_RESET_DEVICE
	IOCTL_USBIO_GET_CURRENT_FRAME_NUMBER
	IOCTL_USBIO_SET_DEVICE_POWER_STATE
	IOCTL_USBIO_GET_DEVICE_POWER_STATE
	IOCTL_USBIO_GET_BANDWIDTH_INFO
	IOCTL_USBIO_GET_DEVICE_INFO
	IOCTL_USBIO_GET_DRIVER_INFO
	IOCTL_USBIO_CYCLE_PORT
	IOCTL_USBIO_BIND_PIPE
	IOCTL_USBIO_UNBIND_PIPE
	IOCTL_USBIO_RESET_PIPE
	IOCTL_USBIO_ABORT_PIPE
	IOCTL_USBIO_GET_PIPE_PARAMETERS
	IOCTL_USBIO_SET_PIPE_PARAMETERS
	IOCTL_USBIO_SETUP_PIPE_STATISTICS
	IOCTL_USBIO_QUERY_PIPE_STATISTICS
	IOCTL_USBIO_PIPE_CONTROL_TRANSFER_IN
	IOCTL_USBIO_PIPE_CONTROL_TRANSFER_OUT

	Data Transfer Requests
	Bulk and Interrupt Transfers
	Bulk or Interrupt Write Transfers
	Bulk or Interrupt Read Transfers

	Isochronous Transfers
	Isochronous Write Transfers
	Isochronous Read Transfers

	Data Structures
	USBIO_BANDWIDTH_INFO
	USBIO_DEVICE_INFO
	USBIO_DRIVER_INFO
	USBIO_DESCRIPTOR_REQUEST
	USBIO_FEATURE_REQUEST
	USBIO_STATUS_REQUEST
	USBIO_STATUS_REQUEST_DATA
	USBIO_GET_CONFIGURATION_DATA
	USBIO_GET_INTERFACE
	USBIO_GET_INTERFACE_DATA
	USBIO_INTERFACE_SETTING
	USBIO_SET_CONFIGURATION
	USBIO_CLASS_OR_VENDOR_REQUEST
	USBIO_DEVICE_PARAMETERS
	USBIO_INTERFACE_CONFIGURATION_INFO
	USBIO_PIPE_CONFIGURATION_INFO
	USBIO_CONFIGURATION_INFO
	USBIO_FRAME_NUMBER
	USBIO_DEVICE_POWER
	USBIO_BIND_PIPE
	USBIO_PIPE_PARAMETERS
	USBIO_SETUP_PIPE_STATISTICS
	USBIO_QUERY_PIPE_STATISTICS
	USBIO_PIPE_STATISTICS
	USBIO_PIPE_CONTROL_TRANSFER
	USBIO_ISO_TRANSFER
	USBIO_ISO_PACKET
	USBIO_ISO_TRANSFER_HEADER

	Enumeration Types
	USBIO_PIPE_TYPE
	USBIO_REQUEST_RECIPIENT
	USBIO_REQUEST_TYPE
	USBIO_DEVICE_POWER_STATE

	Error Codes
	USBIO_ERR_SUCCESS (0x00000000L)
	USBIO_ERR_CRC (0xE0000001L)
	USBIO_ERR_BTSTUFF (0xE0000002L)
	USBIO_ERR_DATA_TOGGLE_MISMATCH (0xE0000003L)
	USBIO_ERR_STALL_PID (0xE0000004L)
	USBIO_ERR_DEV_NOT_RESPONDING (0xE0000005L)
	USBIO_ERR_PID_CHECK_FAILURE (0xE0000006L)
	USBIO_ERR_UNEXPECTED_PID (0xE0000007L)
	USBIO_ERR_DATA_OVERRUN (0xE0000008L)
	USBIO_ERR_DATA_UNDERRUN (0xE0000009L)
	USBIO_ERR_RESERVED1 (0xE000000AL)
	USBIO_ERR_RESERVED2 (0xE000000BL)
	USBIO_ERR_BUFFER_OVERRUN (0xE000000CL)
	USBIO_ERR_BUFFER_UNDERRUN (0xE000000DL)
	USBIO_ERR_NOT_ACCESSED (0xE000000FL)
	USBIO_ERR_FIFO (0xE0000010L)
	USBIO_ERR_XACT_ERROR (0xE0000011L)
	USBIO_ERR_BABBLE_DETECTED (0xE0000012L)
	USBIO_ERR_DATA_BUFFER_ERROR (0xE0000013L)
	USBIO_ERR_ENDPOINT_HALTED (0xE0000030L)
	USBIO_ERR_NO_MEMORY (0xE0000100L)
	USBIO_ERR_INVALID_URB_FUNCTION (0xE0000200L)
	USBIO_ERR_INVALID_PARAMETER (0xE0000300L)
	USBIO_ERR_ERROR_BUSY (0xE0000400L)
	USBIO_ERR_REQUEST_FAILED (0xE0000500L)
	USBIO_ERR_INVALID_PIPE_HANDLE (0xE0000600L)
	USBIO_ERR_NO_BANDWIDTH (0xE0000700L)
	USBIO_ERR_INTERNAL_HC_ERROR (0xE0000800L)
	USBIO_ERR_ERROR_SHORT_TRANSFER (0xE0000900L)
	USBIO_ERR_BAD_START_FRAME (0xE0000A00L)
	USBIO_ERR_ISOCH_REQUEST_FAILED (0xE0000B00L)
	USBIO_ERR_FRAME_CONTROL_OWNED (0xE0000C00L)
	USBIO_ERR_FRAME_CONTROL_NOT_OWNED (0xE0000D00L)
	USBIO_ERR_NOT_SUPPORTED (0xE0000E00L)
	USBIO_ERR_INVALID_CONFIGURATION_DESCRIPTOR (0xE0000F00L)
	USBIO_ERR_INSUFFICIENT_RESOURCES (0xE8001000L)
	USBIO_ERR_SET_CONFIG_FAILED (0xE0002000L)
	USBIO_ERR_USBD_BUFFER_TOO_SMALL (0xE0003000L)
	USBIO_ERR_USBD_INTERFACE_NOT_FOUND (0xE0004000L)
	USBIO_ERR_INVALID_PIPE_FLAGS (0xE0005000L)
	USBIO_ERR_USBD_TIMEOUT (0xE0006000L)
	USBIO_ERR_DEVICE_GONE (0xE0007000L)
	USBIO_ERR_STATUS_NOT_MAPPED (0xE0008000L)
	USBIO_ERR_CANCELED (0xE0010000L)
	USBIO_ERR_ISO_NOT_ACCESSED_BY_HW (0xE0020000L)
	USBIO_ERR_ISO_TD_ERROR (0xE0030000L)
	USBIO_ERR_ISO_NA_LATE_USBPORT (0xE0040000L)
	USBIO_ERR_ISO_NOT_ACCESSED_LATE (0xE0050000L)
	USBIO_ERR_FAILED (0xE0001000L)
	USBIO_ERR_INVALID_INBUFFER (0xE0001001L)
	USBIO_ERR_INVALID_OUTBUFFER (0xE0001002L)
	USBIO_ERR_OUT_OF_MEMORY (0xE0001003L)
	USBIO_ERR_PENDING_REQUESTS (0xE0001004L)
	USBIO_ERR_ALREADY_CONFIGURED (0xE0001005L)
	USBIO_ERR_NOT_CONFIGURED (0xE0001006L)
	USBIO_ERR_OPEN_PIPES (0xE0001007L)
	USBIO_ERR_ALREADY_BOUND (0xE0001008L)
	USBIO_ERR_NOT_BOUND (0xE0001009L)
	USBIO_ERR_DEVICE_NOT_PRESENT (0xE000100AL)
	USBIO_ERR_CONTROL_NOT_SUPPORTED (0xE000100BL)
	USBIO_ERR_TIMEOUT (0xE000100CL)
	USBIO_ERR_INVALID_RECIPIENT (0xE000100DL)
	USBIO_ERR_INVALID_TYPE (0xE000100EL)
	USBIO_ERR_INVALID_IOCTL (0xE000100FL)
	USBIO_ERR_INVALID_DIRECTION (0xE0001010L)
	USBIO_ERR_TOO_MUCH_ISO_PACKETS (0xE0001011L)
	USBIO_ERR_POOL_EMPTY (0xE0001012L)
	USBIO_ERR_PIPE_NOT_FOUND (0xE0001013L)
	USBIO_ERR_INVALID_ISO_PACKET (0xE0001014L)
	USBIO_ERR_OUT_OF_ADDRESS_SPACE (0xE0001015L)
	USBIO_ERR_INTERFACE_NOT_FOUND (0xE0001016L)
	USBIO_ERR_INVALID_DEVICE_STATE (0xE0001017L)
	USBIO_ERR_INVALID_PARAM (0xE0001018L)
	USBIO_ERR_DEMO_EXPIRED (0xE0001019L)
	USBIO_ERR_INVALID_POWER_STATE (0xE000101AL)
	USBIO_ERR_POWER_DOWN (0xE000101BL)
	USBIO_ERR_VERSION_MISMATCH (0xE000101CL)
	USBIO_ERR_SET_CONFIGURATION_FAILED (0xE000101DL)
	USBIO_ERR_VID_RESTRICTION (0xE0001080L)
	USBIO_ERR_ISO_RESTRICTION (0xE0001081L)
	USBIO_ERR_BULK_RESTRICTION (0xE0001082L)
	USBIO_ERR_EP0_RESTRICTION (0xE0001083L)
	USBIO_ERR_PIPE_RESTRICTION (0xE0001084L)
	USBIO_ERR_PIPE_SIZE_RESTRICTION (0xE0001085L)
	USBIO_ERR_CONTROL_RESTRICTION (0xE0001086L)
	USBIO_ERR_INTERRUPT_RESTRICTION (0xE0001087L)
	USBIO_ERR_DEVICE_NOT_FOUND (0xE0001100L)
	USBIO_ERR_DEVICE_NOT_OPEN (0xE0001102L)
	USBIO_ERR_NO_SUCH_DEVICE_INSTANCE (0xE0001104L)
	USBIO_ERR_INVALID_FUNCTION_PARAM (0xE0001105L)
	USBIO_ERR_LOAD_SETUP_API_FAILED (0xE0001106L)

	USBIO Class Library
	Overview
	CUsbIo Class
	CUsbIoPipe Class
	CUsbIoThread Class
	CUsbIoReader Class
	CUsbIoWriter Class
	CUsbIoBuf Class
	CUsbIoBufPool Class

	Class Library Reference
	CUsbIo class
	Member Functions
	CUsbIo
	˜CUsbIo
	CreateDeviceList
	DestroyDeviceList
	Open
	Close
	GetDeviceInstanceDetails
	GetDevicePathName
	IsOpen
	IsCheckedBuild
	IsDemoVersion
	IsLightVersion
	IsOperatingAtHighSpeed
	GetDriverInfo
	GetDeviceInfo
	GetBandwidthInfo
	GetDescriptor
	GetDeviceDescriptor
	GetConfigurationDescriptor
	GetStringDescriptor
	SetDescriptor
	SetFeature
	ClearFeature
	GetStatus
	ClassOrVendorInRequest
	ClassOrVendorOutRequest
	SetConfiguration
	UnconfigureDevice
	GetConfiguration
	GetConfigurationInfo
	SetInterface
	GetInterface
	StoreConfigurationDescriptor
	GetDeviceParameters
	SetDeviceParameters
	ResetDevice
	CyclePort
	GetCurrentFrameNumber
	GetDevicePowerState
	SetDevicePowerState
	CancelIo
	IoctlSync
	ErrorText

	Data Members

	CUsbIoPipe class
	Member Functions
	CUsbIoPipe
	˜CUsbIoPipe
	Bind
	Unbind
	Read
	Write
	WaitForCompletion
	ReadSync
	WriteSync
	ResetPipe
	AbortPipe
	GetPipeParameters
	SetPipeParameters
	PipeControlTransferIn
	PipeControlTransferOut
	SetupPipeStatistics
	QueryPipeStatistics
	ResetPipeStatistics

	CUsbIoThread class
	Member Functions
	CUsbIoThread
	˜CUsbIoThread
	AllocateBuffers
	FreeBuffers
	StartThread
	ShutdownThread
	ProcessData
	ProcessBuffer
	BufErrorHandler
	OnThreadExit
	ThreadRoutine
	TerminateThread

	Data Members

	CUsbIoReader class
	Member Functions
	CUsbIoReader
	˜CUsbIoReader
	ThreadRoutine
	TerminateThread

	CUsbIoWriter class
	Member Functions
	CUsbIoWriter
	˜CUsbIoWriter
	ThreadRoutine
	TerminateThread

	CUsbIoBuf class
	Member Functions
	CUsbIoBuf
	CUsbIoBuf
	CUsbIoBuf
	˜CUsbIoBuf
	Buffer
	Size

	Data Members

	CUsbIoBufPool class
	Member Functions
	CUsbIoBufPool
	˜CUsbIoBufPool
	Allocate
	Free
	Get
	Put
	CurrentCount

	Data Members

	CSetupApiDll class
	Member Functions
	CSetupApiDll
	˜CSetupApiDll
	Load
	Release

	USBIO Demo Application
	Dialog Pages for Device Operations
	Device
	Descriptors
	Configuration
	Interface
	Pipes
	Class or Vendor Request
	Feature
	Other

	Dialog Pages for Pipe Operations
	Pipe
	Buffers
	Control
	Read from Pipe to Output Window
	Read from Pipe to File
	Write from File to Pipe

	Driver Installation and Uninstallation
	USBIO Driver Executables
	Installing USBIO
	Automated Installation: The USBIO Installation Wizard
	Manual Installation: The USBIO Setup Information File

	Uninstalling USBIO
	Manual Uninstallation
	Automated Uninstallation: The USBIO Cleanup Wizard

	Building a Customized Driver Setup
	Using USBIO on Windows XP Embedded

	Registry Entries
	Related Documents
	Index

