Werter Leser!

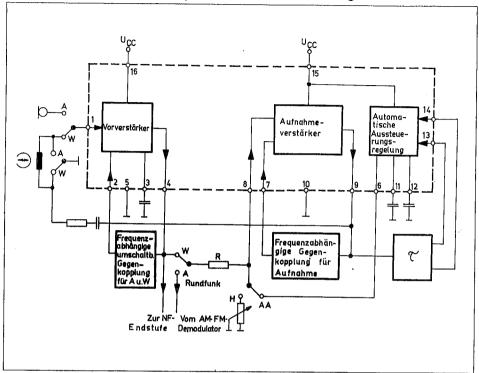
Mit dem vorliegenden Band unserer Datenbuchreihe schließen wir die Veröffentlichungen zu den in der DDR verfügbaren aktiven elektronischen Bauelementen ab.

Auf Grund der veränderten marktwirtschaftlichen Bedingungen haben wir uns bemüht, Möglichkeiten für die Veröffentlichungen von Bauelementedaten des Weltmarktes zu erschließen. Gleichzeitig werden wir dem berechtigten Wunsch entsprechen und Informationen zu passiven Bauelementen in die Datenbuchreihe aufnehmen. Deshalb wird als nächste Veröffentlichung ein Datenbuch zu passiven Bauelementen (Kondensatoren) der Firma Spraque durch uns erscheinen.

Gleichzeitig möchte wir Sie informieren, daß diese Datenbuchreihe mit der vorliegenden Ausgabe beginnend nur noch durch das Applikationszentrum Elektronik herausgegeben wird. Private Interessenten wenden sich bitte auch direkt an den AEB.

Applikationszentrum Elektronik

Mikroelektronik Gesamtübersicht


Dem Anwender soll durch diese Übersicht mit den wichtigsten Grenz- und Kenndaten die Auswahl der jeweils in Frage kommenden Typen erleichtert werden.

Bauelemente, die nur noch für Ersatzzwecke vorgesehen sind, wurden nicht aufgenommen. Die angegebenen Daten und Parameter dienen der Information, sie geben keine Auskunft über Liefermöglichkeiten.

Änderungen, die durch den technischen Fortschritt bedingt sind, behalten wir uns vor.

Schaltkreise für die Konsumgüterelektronik

A 202 D Aufnahme-, Mikrofon- und Wiedergabeverstärker

Übersichtsschaltplan

Bauform: DIP-16, Plast (Bild 4) Typstandard: TGL 35767

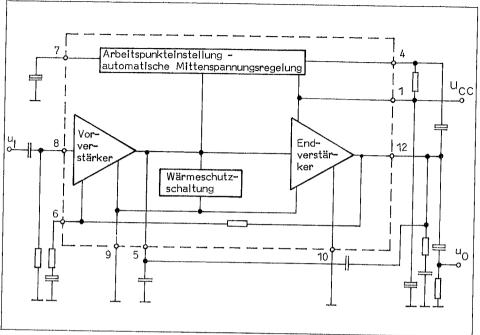
Bezeichnung der Anschlüsse

1	Eingang Vorverstärker (VV)	9	Ausgang AV
2	Emitter Eingangstransistor VV	10	Masse AV und AA
3	NF-Massepunkt VV	11	Anschluß Integrationskon-
4	Ausgang VV		densator
5	Masse VV und AA	12	Anschluß regelzeitbestimmen-
6	Ausgang automatische Aussteue-		des RC-Glied
	rungsregelung (AA)	13	Eingang AA
7	Invertierender Eingang Aufnahme-	14	Eingang AA
	verstärker (AV)	15	Betriebsspannung AV und AA
8	Nichtinvertierender Eingang AV	16	Betriebsspannung VV

Der bipolare Schaltkreis A 202 D ist ein Aufnahmeverstärker mit automatischer Aussteucrungsregelung, Mikrofonverstärker und Wiedergabevorverstärker für den Einsatz in Kassettenrecordern.

Eigenschaften

- Rauscharmer linearer Vorverstärker,
- umschaltbare externe Gegenkopplung für Mikrofonaufnahme und Wiedergabe,
- automatische Aussteuerungsregelung zur Unterdrückung kurzzeitiger Störsignale,


Folgende Baugruppen sind auf dem Chip integriert:

- Vorverstärker,
- Aufnahmeverstärker,
- automatische Aussteuerungsregelung.

Für länger anliegende große Eingangspegel regelt die automatische Aussteuerungsregelung nach der von τ bestimmten Verweilzeit sehr schnell ab. Die RC-Kombination an Pin 12 bestimmt die Aufregelzeit.

Betriebsspannung	$^{\rm U}{ m CC}$	= 5 12 V
Stromaufnahme Vorverstärker	I ₁₆	≤ 8 mA
Stromaufnahme Aufnahmever- stärker	I ₁₅	≤ 16 mA
Ausgangsspannung Vorverstärker	$^{\mathrm{U}}\mathrm{O4}$	= 5 V
Ausgangsspannung Aufnahmever- stärker	^и О9	= 800 1600 mV
Klirrfaktor Vorverstärker	k _{VV}	= 0,35 1,2 %
Klirrfaktor Aufnahmeverstärker	k _{AV}	= 0,4 1,2 %
Eingangsrauschspannung Vorver- stärker (f = 0,3 15 kHz)	u _{IN}	= $0,5 \mu V$

A 210 E, K 6-W-NF-Leistungsverstärker

Übersichtsschaltplan

Bauform: DIP-12, Plast mit Kühlkörperanschluß

A 210 E (Bild 17)

A 210 K (Bild 18)

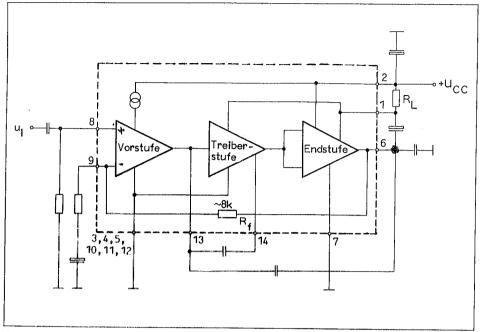
Typstandard: TGL 35797

Bezeichnung der Anschlüsse

1	Betriebsspannung	7	Entkopplung
2, 3, 11	nicht belegt	8	Eingang
4	Bootstrap	9	Vorstufenmasse
5	Frequenzkompensation	10	Endstufenmasse
6	Gegenkopplung	12	Ausgang

Der bipolare Schaltkreis A 210 E bzw. A 210 K ist ein 6-W-NF-Leistungsverstärker für den Einsatz in NF-Endverstärkern bzw. Vertikalablenkstufen von TV-Geräten. Er wird in einem speziellen 12poligen DIP-Plastgehäuse gefertigt, bei dem Anschlüsse als Kühlfahne herausgeführt werden. Es gibt, angepaßt an den jeweiligen Einsatzfall,zwei unterschiedliche Bauformen. Bauform A4 (A 210 E) nach TGL 26713 mit seitlich abstehenden Kühlfahnen für den Anschluß von Kühlkörpern. Freitragend und ohne Kühlkörper ist diese Variante für eine Ausgangsleistung bis 1,3 W verwendbar. Bauform A5 (A 210 K) mit aufgepreßtem Kühlkörper.

Eigenschaften


- Hoher Eingangswiderstand,
- hohe Verstärkung,
- großer Betriebsspannungsbereich,
- geringer Ruhestrombedarf,
- Wärmeschutzschaltung.

Folgende Baugruppen sind auf dem Chip integriert:

- Vorverstärker,
- Wärmeschutzschaltung,
- Rückkopplungsschleife ${\rm R}_6$ zwischen Anschluß 12 und Anschluß 6,
- Arbeitspunkteinstellung (Gleichstromarbeitspunkt) und automatische Mittenspannungsregelung.

Betriebsspannung	$U_{\rm CC}$	= 4 20 V
Gesamtruhestrom ($U_{CC} = 15 \text{ V}$)	I_{CCQ}	≤ 25 mA
Ausgangsspitzenstrom	IOM	= 2,5 A
offene Spannungsverstärkung	Auo	= 71,5 dB
geschlossene Spannungsverstärkung	Auon	= 36,8 dB
Ausgangsleistung (k = 10 %)	РО	≤ 5,8 W
Klirrfaktor ($P_{O} \leq 2,5 \text{ W}$)	k	= 0,32 %
obere Grenzfrequenz	$f_{\mathbf{h}}$	= 41 kHz

A 211 D 1-W-NF-Verstärker

Übersichtsschaltplan

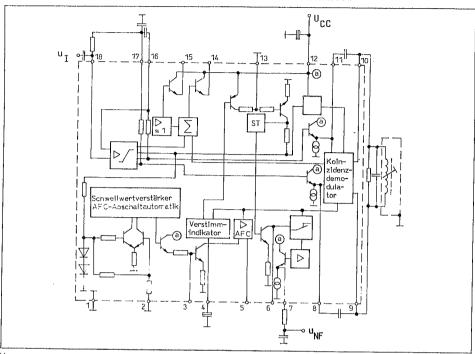
Bauform: DIP-14, Plast (Bild 3) Typstandard: TGL 29107

Bezeichnung der Anschlüsse

1	Bootstrap	8	Eingang
2	Betriebsspannung	9	Gegenkopplung
3, 4, 5	Masse, Vorstufe	10, 11, 12	Masse, Vorstufe
6	Ausgang	13	Frequenzkompensation
7	Masse, Endstufe	14	Frequenzkompensation

Der bipolare Schaltkreis A 211 D ist ein NF-Verstärker kleiner Leistung für den Einsatz in Rundfunk- und anderen elektroakustischen Geräten.

Eigenschaften


- Hoher Eingangswiderstand,
- hohe Verstärkung,
- großer Betriebsspannungsbereich und
- geringer Ruhestrombedarf

Folgende Baugruppen sind auf dem Chip integriert:

- Vorverstärker (Eingangsdifferenzverstärker),
- Treiberstufe,
- quasikomplementäre Endstufe,
- Netzwerk zur Regelung der Ausgangsmittenspannung, auf etwa die halbe Betriebsspannung.

Betriebsspannung	U_{CC}	= 4,2 15 V
Gesamtruhestrom	I_{CCQ}	≤ 10 mA
Ausgangsspitzenstrom	IOM	≤ 1 A
geschlossene Spannungsverstärkung	Auon	= 47,5 dB
Gesamtverlustleistung	Ptot	$\leq 1,35$ W
Klirrfaktor (P _O = 850 mW)	k	= 1,43 %

A 225 D FM-ZF-Verstärker und Demodulator

Übersichtsschaltplan

Bauform: DIP-18, Plast (Bild 6) Typstandard: TGL 35798

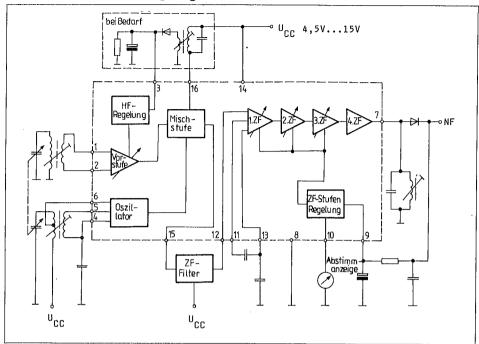
Bezeichnung der Anschlüsse

1	Masse	13	Eingang für feldstärkeabhän-
2	Sensor-Eingang für AFC-Abschaltur	ng:	gige Abschaltung
3	AFC-Abschaltzeitkonstante	14	Instrumentenanschluß und
4	Tiefpaßkondensator für verstimmab	-	Stereo-Schaltspannung
	hängige NF-Abschaltung		(positiv gehend)
5	AFC-Ausgang	15	Spannung zur Einstellung der
6	Tiefpaßkondensator zur Unterdrücke	ung	Rauschsperre und Stereo-
	des Abschaltknackens bei Verstim-		Schaltspannung (negativ ge-
	mung und zu kleiner Feldstärke		hend)
7	NF-Ausgang	16, 17	Arbeitspunkt-Rückführungen
8, 11	Begrenzerverstärker-Ausgänge		des ZF-Verstärkers
9, 10	Phasenschieberkreis	18	ZF-Eingang
12	Betriebsspannung U _{CC}		

Der bipolare Schaltkreis A 225 D ist ein FM-ZF-Verstärker und Demodulator vorzugsweise für den Einsatz im FM-ZF-Teil von Hör-Rundfunk-Empfängern.

Eigenschaften

- Instrumentenanschluß zur Amplitudenanzeige,
- wahlweise positiv oder negativ gehende Mono-Stereo-Schaltspannung,
- AFC-Ausgang mit Abschaltautomatik,
- einstellbare Rauschsperre über einen großen Eingangspegelbereich, die auch auf Verstimmung anspricht,
- die Stummschaltung des NF-Verstärkers ist mit Hilfe des Stummschalttriggers möglich.


Folgende Baugruppen sind auf dem Chip integriert:

- ZF-Begrenzerverstärker,
- Demodulator mit Phasenschieberkreis,
- NF-Verstärker, AFC-Verstärker,
- Verstimmindikator,
- Stummschalttrigger,
- NF-Abschalter,
- Schwellwertverstärker mit AFC-Abschaltautomatik,
- Phasenumkehr.

Die Hauptfunktion übernimmt ein 8stufiger Begrenzerverstärker, dessen Ausgangssignal dem Demodulator mit Phasenschieberkreis zugeführt wird. Das durch Multiplikation gewonnene Ausgangssignal des Demodulators wird dem NF-Verstärker, dem AFC-Verstärker sowie dem Verstimmindikator zugeführt. Der Ausgang des AFC-Verstärkers läßt sich durch eine Spannungsänderung am Pin 2, dem Eingang des Schwellwertdetektors stromlos schalten.

Betriebsspannung	$U_{\rm CC}$	= 4 18
NF-Ausgangsspannung (u _I = 10 mV)	u _{NF}	≥ 270 mV
Eingangsspannung für Begrenzungs- einsatz	u _{IT}	<u><</u> 50 μV
AM-Unterdrückung	a_{AM}	> 60 dB
NF-Klirrfaktor	k	< 0,8 %
Spannung zur Feldstärkeanzeige ($u_{\rm I}$ = 100 mV) ($u_{\rm I}$ = 16 μ V)	U ₁₄ U ₁₄	≥ 1,6 V ≤ 200 mV
Spannung zur Einstellung der Rauschsperre ($u_{I} = 16 \mu V$) ($u_{I} = 10 mV$)	U ₁₅ U ₁₅	≥ 2,2 V ≤ 1 V

A 244 D AM-Empfänger

Übersichtsschaltplan

Bauform: DIP-16, Plast (Bild 4) SO-16 (Bild 29)

Typstandard: TGL 32650

Bezeichnung der Anschlüsse

1, 2	Anschlüsse für Eingangskreis	9	Regeleingang ZF
3	Regeleingang HF	10	Ausgang Indikator
4, 5, 6	Anschlüsse für Oszillatorkreis	11, 13	Abblock Kondensator ZF
7	ZF-Ausgang	12	Eingang ZF
8	Masse	14	Betriebsspannung
		15, 16	Mischerausgänge

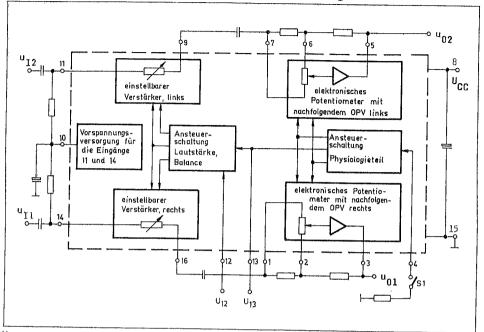
Der Schaltkreis A 244 D ist eine AM-Empfängerschaltung und dient in Verbindung mit entsprechenden Selektionsmitteln zum Aufbau von AM-Hör-Rundfunk-Empfängern für Frequenzen bis etwa 30 MHz.

Eigenschaften

- Regelbare HF-Vorstufe mit hohem Eingangswiderstand,
- multiplikative Mischung,
- vierstufiger geregelter ZF-Verstärker,

- externe Demodulation mit Diode,
- Ausgang zur Feldstärkeanzeige und
- vielseitige Beschaltungsmöglichkeiten (z. B. getrennte Vorstufenregelung, externer Oszillator usw.).

Folgende Baugruppen sind auf dem Chip integriert:


- HF-Regelung, _ Vorstufe, - ZF-Stufen und _ Mischstufe, - ZF-Stufenregelung. - Oszillator,

Das amplitudenmodulierte Eingangssignal wird in einer regelbaren Vorstufe verstärkt und in der Mischstufe mit der Oszillatorfrequenz in die ZF-Lage transportiert. Nach der Filterung wird das ZF-Signal in einem vierstufigen regelbaren ZF-Verstärker verstärkt und mit einer Diode demoduliert.

Die Regelung erfolgt für die HF und ZF über entsprechende getrennte Regelverstärker, wobei die ZF-Regelspannung mit einem Instrument zur Feldstärkeauswertung angezeigt werden kann.

11000	
Betriebsspannung	$U_{CC} = 4,5 \dots 15 V$
ZF-Teil	
Eingangsspannung ZF-Teil	$U_{13}, U_{19} \leq 2 V$
max. Regelumfang (u _{NF} = 10 dB)	$\Delta A_u = 60 \text{ dB}$
Regeleinsatzpunkt	$u_{ReZF}^{u} = 143 \mu V$
max. ZF-Eingangsspannung (k = 10 %)	u _{IZFmax} = 290 mV
ZF-Eingangswiderstand (U ₉ = 0 V)	$R_{IZF} = 2.7 \text{ kOhm}$
$(U_9 = 0, 4 \text{ V})$	$R_{IZF} = 3,2 \text{ kOhm}$
Ausgangsleitwert	$G_{OZF} = 9.8 \mu S$
Ausgangskapazität	$C_{OZF} = 7.5 pF$
<u>HF-Teil</u>	
Eingangswiderstand (U ₃ = 0 V)	R_{IHF} = 3,3 kOhm
$(U_3 = 0, 4 \text{ V})$	R_{IHF} = 4,1 kOhm
Mischerausgangsleitwert	G_{OHF} = 1,6 μS
Mischerausgangskapazität	$C_{OHF} = 4.2 pF$
Steilheit $(U_3 = 0 \text{ V; } u_{OSZ} = 500 \text{ V})$	$S_{\mathrm{HF}} = 28 \mathrm{mS}$

A 273 D Lautstärke und Balanceeinstellung (Stereo)

Übersichtsschaltplan

Bauform: DIP-16, Plast (Bild 4) Typstandard: TGL 35765

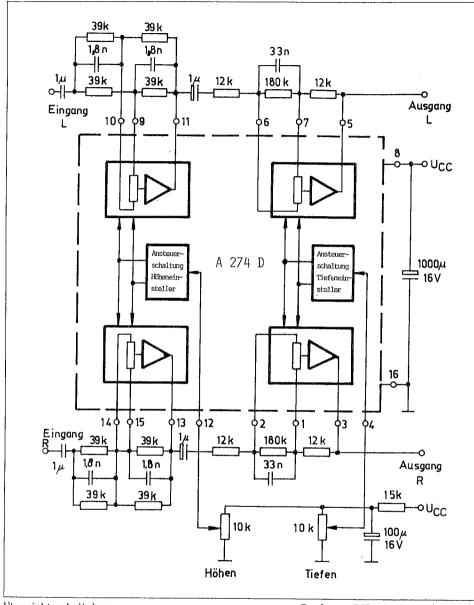
Bezeichnung der Anschlüsse

1, 2	Dinakana dan abasi 1 1 1 2 2		
1, 2	Eingänge der physiologischen Laut-	10	NF-Massepunkt
	stärkebeeinflussung rechts	11	Eingang des Lautstärke-
3	Ausgang der physiologischen Laut-		Balanceeinstellers links
	stärkebeeinflussung rechts	12	Eingang der Balanceein-
4	Anschluß für Widerstand zum Ein-		stellspannung
	schalten der physiologischen Laut-	13	Eingang der Lautstärke-
	stärkebeeinflussung		einstellspannung
5	Ausgang der physiologischen Laut-	14	Eingang des Lautstärke-
	stärkebeeinflussung links		Balanceeinstellers rechts
6, 7	Eingänge der physiologischen Laut-	15	Masse
	stärkebeeinflussung links	16	Ausgang des Lautstärke-
8	Betriebsspannung		Balanceeinstellers rechts
9	Ausgang des Lautstärke-Balance-		
	einstellers links		

 $\rm Der~A~273~D$ ist ein bipolarer Schaltkreis zur gleichspannungsgesteuerten Lautstärke- und Balanceeinstellung für NF-Stereosysteme.

Eigenschaften

- Kontinuierliches Einstellen der Lautstärke gleichlaufend für beide Stereokanäle mittels Gleichspannung,
- abschaltbare gehörrichtige Frequenzgangkorrektur,
- kontinuierliche Einstellung der Lautstärke-Balance in den Stereokanälen mittels Gleichspannung.


Folgende Baugruppen sind auf dem Chip integriert:

- Einstellbarer Verstärker,
- Ansteuerschaltung, Lautstärke, Balance,
- elektronische Potentiometer mit nachfolgendem Operationsverstärker,
- Ansteuerschaltung, Physiologieteil,
- Vorspannungsversorgung für die Eingänge 11 und 14.

Zusammen mit dem Schaltkreis A 274 D dient der Schaltkreis A 273 D zum Aufbau von kompletten NF-Stereoverstärkern.

Betriebsspannung	$U_{CC} = 13,5 \dots 16,5 \text{ V}$
Stromaufnahme	$I_{CC} \leq 40 \text{ mA}$
Steuerspannung für - Lautstärke, Balance	U ₁₂ ,U ₁₃ ≤ 12 V
- gehörrichtige Lautstärke	$U_4 \leq 3 V$
Lastwiderstand	$R_{ m L}$ \geq 4,7 kOhm
Spannungsverstärkung	$A_u \geq 17 \text{ dB}$
Klirrfaktor (u _I = 100 mV)	k ≤ 0,2 %
Übersprechdämpfung	a_{et} \geq 56 dB

A 274 D Höhen- und Tiefeneinsteller (Stereo)

Übersichtsschaltplan

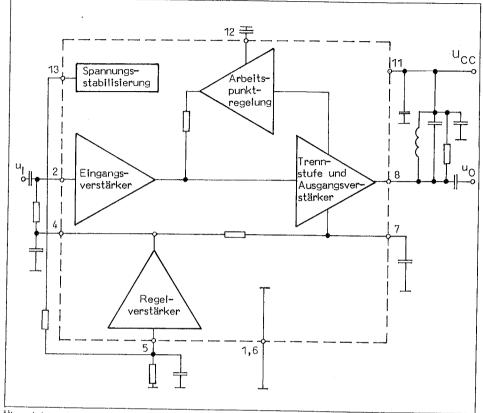
Bauform: DIP-16, Plast (Bild 4) Typstandard: TGL 35766

Bezeichnung der Anschlüsse

1.	2	Eingänge des Tiefeneinstellers rechts	11		Ausgang des Höheneinstellers
3		Ausgang des Tiefeneinstellers rechts			links
4		Eingang der Steuerspannung des	12		Eingang der Steuerspannung
-		Tiefeneinstellers			des Höheneinstellers
5		Ausgang des Tiefeneinstellers links	13		Ausgang des Höheneinstellers
_	, 7	Eingänge des Tiefeneinstellers links			rechts
8		Betriebsspannung	14,	15	Eingänge des Höheneinstellers
-	10	Eingänge des Höheneinstellers links			rechts
0	, .		16		Masse

Der A 274 D ist ein bipolarer Schaltkreis zur gleichspannungsgesteuerten Höhen- und Tiefeneinstellung für NF-Stereosysteme.

Eigenschaften


- Kontinuierliche Beeinflussung des Klangbildes durch Anheben oder Absenken bestimmter Frequenzbereiche gleichlaufend in beiden Stereokanälen mittels Gleichspannung.

Folgende Baugruppen sind auf dem Chip integriert:

- Elektronisches Potentiometer mit nachfolgendem Operationsverstärker zur Höheneinstellung links,
- Ansteuerschaltung Höheneinsteller,
- elektronisches Potentiometer mit nachfolgendem Operationsverstärker zur Höheneinstellung rechts,
- elektronisches Potentiometer mit nachfolgendem Operationsverstärker zur Tiefeneinstellung links,
- Ansteuerschaltung Tiefeneinsteller,
- elektronisches Potentiometer mit nachfolgendem Operationsverstärker mit Tiefeneinstellung rechts.

Betriebsspannung	$U_{CC} = 13,5 \dots 16,5 \text{ V}$
Steuerspannung	U ₄ ,U ₁₂ ≤ 12 V
· Abschlußwiderstand	$R_L \rightarrow 4.7 \text{ kOhm}$
max. Verstärkung	$A_{\rm u}^{\rm Z} \geq 15 \mathrm{dB}$
max. Abschwächung	$-A_{\rm H}^{\alpha} \geq 15 \text{ dB}$
Klirrfaktor (u _r = u _O = 1 V)	k = 0,06 %

A 281 D AM-FM-ZF-Verstärker für Batterie und Netzbetrieb

Übersichtsschaltplan

Bauform: DIP-14, Plast (Bild 3) Typstandard: TGL 29108

Bezeichnung der Anschlüsse

1	Masse	7	Abblockung des Ausgangs-
2	Eingang		verstärkers
3, 14	nicht belegt	8	Ausgang
4	Arbeitspunkteinstellung für den	9, 10	nicht belegt
	Eingangsverstärker	11	Betriebsspannung
5	Regelspannungsrückführung	12	Abblockung der Arbeitspunkt-
6 .	Masse		regelung
		13	interne stabilisierte Spannung

Der bipolare Schaltkreis A 281 D ist ein regelbarer AM-FM-ZF-Verstärker für den Einsatz in Hör-Rundfunk-Empfängern.

Eigenschaften

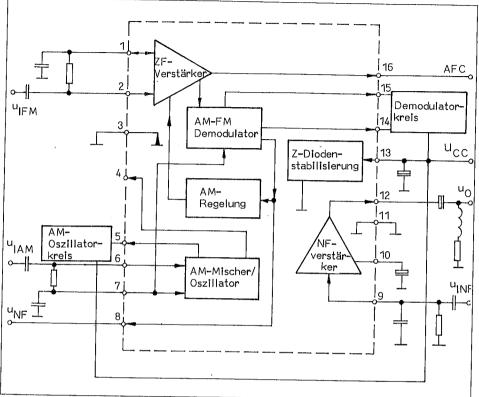
- Arbeitet bei AM als geregelter Verstärker,
- arbeitet bei FM im Begrenzerbetrieb,
- großer Betriebsspannungsbereich.

Folgende Baugruppen sind auf dem Chip integriert:

- Spannungsstabilisierung,
- Eingangsverstärker,
- Trennstufe und Ausgangsverstärker,
- Regelverstärker,
- Arbeitspunktregelung.

Ausgewählte Kennwerte

Betriebsspannung	U_{CC}	= 4,5 11 V
Gesamtstromaufnahme	I_{CC}	= 6,4 mA
Klirrfaktor	k	≤ 10 %


FM-Betrieb

Übertragungsgewinn	$G_{\mathbf{p}}$	\geq	62 dB
Spannungsverstärkung	A	=	87,9 dB

AM-Betrieb

Übertragungsgewinn	$^{ m G}_{ m P}$	>	65 dB
Spannungsverstärkung	Α	ͺ=	95,8 dB

A 283 D Einchip - AM-FM-Empfängerschaltkreis

Übersichtsschaltplan

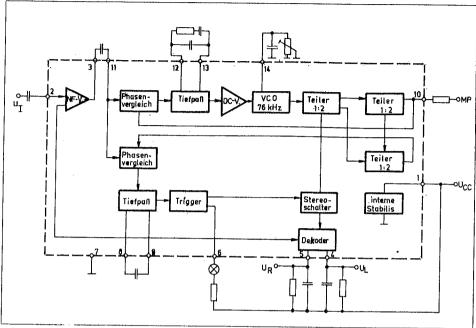
Bauform: DIP-16, Plast (Bild 4) Typstandard: TGL 38012

Bezeichnung der Anschlüsse

1	ZF-Entkopplung	8	Demodulatorausgang
2	ZF-Eingang	9	NF-Eingang
3	HF-Masse	10	NF-Gegenkopplung
4	AM-Mischerausgang	11	NF-Masse
5	AM-Oszillatorkreis	12	NF-Ausgang
6	AM-Eingang	13	Betriebsspannung
7	AM-Entkopplung	14, 15	Demodulatorkreis
		16	AGC/AFC-Spannung

Der bipolare Schaltkreis A 283 D ist ein AM-FM-Empfängerschaftkreis mit NF Leistungs verstärker für den Einsatz in Hör-Rundfunk-Empfängern.

Eigenschaften


- Einchip-AM-FM-Empfängerschaltkreis,
- Einchip-AM-FM-Empfängerschaltkreis mit NF-Leistungsverstürker vorrungig zum Aufbau von AM-FM-Klein- und Taschenempfängern,
- universelle Einsatzmöglichkeiten im Amateurbereich.

Folgende Baugruppen sind auf dem Chip integriert:

- ZF-Verstärker,
- AM-FM-Demodulator,
- AM-Regelung,
- AM-Mischer-Oszillator,
- ZF-Diodenstabilisierung und
- NF-Verstärker.

Betriebsspannung		$\rm u_{CC}$	=	3 12 V
Stromaufnahme	$(U_{CC} = 5,5 \text{ V})$	I_{CC}	≤	20 mA
Verlustleistung	¥-	P _{tot}	≤	0,6 W
Ausgangsspitzenstro	om	I_{OM}	≤	400 mA
AM-Betrieb (Kennw	erte am Demodul		gar	ng)
NF-Spannung	$(u_{IAM} = 20 \mu V)$	u _{NF}	=	58 mV
	$(u_{IAM} = 100 \text{ mV})$		=	150 mV
Signal-Rauschabstau $(u_{IAM} = 20 \mu V)$	nd .	S+N N	Ξ	20 dB
Klirrfaktor	$(u_{IAM} = 100 \text{ mV})$	k_{NF}	=	1,1 %
FM-Betrieb (Kennw	erte am Demodul	atoraus	gar	ıg)
NF-Spannung	$(u_{IFM} = 1 \text{ mV})$	$u_{\rm NF}$	Ξ	100 mV
Klirrfaktor	$(u_{IFM} = 1 \text{ mV})$	k_{NF}	=	0,16 %
AM-Unterdrückung	$(u_{IFM} = 1 \text{ mV})$	$^{\mathrm{a}}$ AM	=	49 dB
Eingangsspannung f Begrenzungseinsatz		u_{IT}	=	69 μV
NF-Verstärker				
Ausgangsleistung	(k = 10 %)	^{P}o	<u><</u>	322 mW

A 290 D Stereodekoder (PLL-Verfahren)

Übersichtsschaltplan

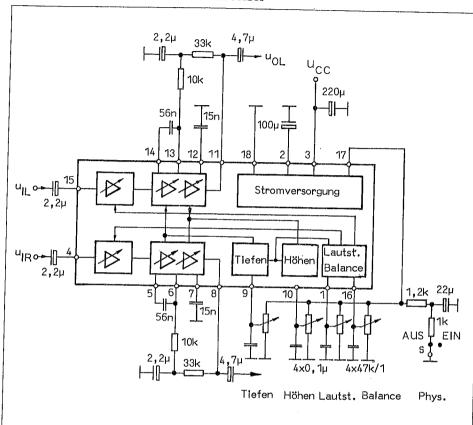
Bauform: DIP-16, Plast (Bild 4) Typstandard: TGL 34168

Bezeichnung der Anschlüsse

1	Betriebsspannung	7	Masse
2	MPX-Eingang	8, 9	Schaltfilter
3	MPX-Ausgang	10	19 kHz-Ausgang
4	Ausgang linker Kanal	11	Eingang Phasenvergleich
5	Ausgang rechter Kanal	12, 13	Tiefpaß für PLL
6	Lampentreiberausgang	14	RC-Oszillator

Der bipolare Schaltkreis A 290 D ist ein PLL-Stereodekoder nach dem Zeitmultiplexverfahren für den Einsatz in Stereo-Rundfunk-Empfängern.

Eigenschaften


- PLL-Stereodekoder nach dem Zeitmultiplexverfahren,
- spulenlose Außenbeschaltung,
- geringer Abgleichaufwand durch nur einen Abgleichpunkt,
- minimale externe Bauelementebeschaltung,
- gleicher Übertragungsfaktor sowie gleiche Ausgangsimpedanz bei Mono- und Stereo-
- betrieb.

Folgende Baugruppen sind auf dem Chip integriert:

- Interne Stabilisierung,
- NF-Vorverstärker,
- PLL-Schaltung zur Hilfsträgergewinnung,
- Phasenvergleich mit Tiefpaßfilter zur Steuerung des Mono-Stereo-Umschalters,
- Teilerstufe mit Phasendrehung des Pilottones,
- Triggerschaltung mit Lampentreiber zur Stereoanzeige,
- Stereoschalter und
- Dekoder.

Betriebsspannung		U_{CC}	= 8 15 V
Stromaufnahme ($U_{CC} = 15 \text{ V}$	I_{CC}	\leq 20 mA
Stereoeinschalt- schwelle (f _p = 19 kHz)	u _{IST}	≥ 16 mV
Übersprechdämpfung	P	act	= 40 dB
Klirrfaktor Stereo		k	= 0,2 %
Verstärkung Stereo		A_{u}	= -8,1 dB
Fangbereich		Δf	$= \pm 1 \text{ kHz}$

A 1524 D NF-Stereo-Einsteller

Übersichtsschaltplan

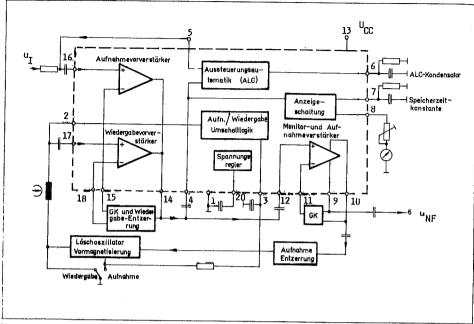
Bauform: DIP-18, Plast (Bild 6) Typstandard: TGL 42789

Bezeichnung der Anschlüsse

1	Einstellanschluß Lautstärke	11	Ausgang linker Kanal (L)
2	Betriebsspannungsabblockung	12	Netzwerk für Höhenbeein-
3	Betriebsspannung		flussung (L)
4	Eingang rechter Kanal (R)	13, 14	Netzwerk für Tiefenbeein-
5, 6	Netzwerk für Tiefenbeeinflussung (R)	•	flussung (L)
7	Netzwerk für Höhenbeeinflussung (R)	15	Eingang (L)
8	Ausgang (R)	16	Einstellanschluß Balance
9	Einstellanschluß Tiefen	17	Referenzspannung
10	Einstellanschluß Höhen	18	Masse
24			

Der bipolare Schaltkreis A 1524 D ist ein NF-Stereo-Einsteller für die Funktionen Lautstärke, Höhen, Tiefen, Balance und physiologische Lautstärkeeinstellung für NF-Stereosysteme.

Eigenschaften


- Kontinuierliches Einstellen der Lautstärke gleichlaufend für beide Stereokanäle mittels Gleichspannung,
- gehörrichtige Frequenzgangkorrektur,
- kontinuierliches Einstellen der Lautstärke-Balance in den Stereokanälen mittels Gleichspannung,
- kontinuierliche Beeinflussung des Klangbildes durch Anheben oder Absenken bestimmter Frequenzbereiche gleichlaufend in beiden Stereokanälen,
- großer Betriebsspannungsbereich,
- nur geringe Außenbeschaltung,
- eine Fernbedienung der Stellfunktionen ist möglich,
- Lautstärke umschaltbar zwischen physiologischer (gehörrichtiger) und linearer Regelung.

Folgende Baugruppen sind auf dem Chip integriert:

- Stellglieder und Verstärker linker Kanal,
- Stellglieder und Verstärker rechter Kanal,
- Stabilisierte Stromversorgung und
- Einstellspannungskonverter.

Betriebsspannung	$U_{CC} = 7,5 \dots 16,5 \text{ V}$
Stromaufnahme	I_{CC} \leq 56 mA
Referenzspannung	$U_{17} = 3,3 \dots 4,2 \text{ V}$
Verstärkung	$A_{umax} = 20 \dots 26 \text{ dB}$
Abregelung	$A_{umin} \leq -67 \text{ dB}$
Klirrfaktor (u _I = 1 V)	k < 0,5 %
Übersprechdämpfung	a _{ct} > 46 dB
Höhenanhebung	A _{uHmax} > 10 dB
Höhenabsenkung	$A_{uHmin} > -10 \text{ dB}$

A 1818 D Rauscharmer Aufnahme-Wiedergabeverstärker

Übersichtsschaltplan

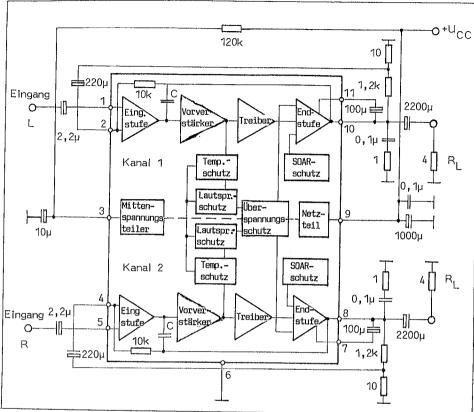
Bauform: DIP-20, Plast (Bild 8) Typstandard: TGL 43155

Bezeichnung der Anschlüsse

1	n.4		
i	Masse	11	Gegenkopplung Monitorver-
2	Kopfumschaltung		stärker
3	Aufnahme-Wiedergabe (A/W)-Um-	12	Eingang Monitorverstärker
	schaltung	13	Betriebsspannung
4	ALC-Eingang	14	Ausgang Vorverstärker (VV)
5	ALC-Transistor	15	Gegenkopplung Aufnahmevor-
6	ALC-Zeitkonstante		verstärker
7	Anzeige-Zeitkonstante	16	Eingang Aufnahmevorverstärker
8	Anzeige-Ausgang	17	Eingang Wiedergabe-Vorver-
9	Ausgang Monitorverstärker-Wieder-		stärker
	gabe	18	Gegenkopplung-Vorverstärker
10	Ausgang Aufnahmeverstärker	19	Kollektor Eingangs-Transistor
		20	Abblockung interne Versor-
			gungsspannung

Der bipolare Schaltkreis A 1818 D ist ein Aufnahme-Wiedergabeverstärker für den Einsatz in Kassetten- und Radiokassettenrekorden. Durch die niedrige Stromaufnahme ist dieser Schaltkreis besonders für batteriebetriebene Geräte geeignent.

Eigenschaften


- Enthält außer dem Löschoszillator alle aktiven Bauelementefunktionen zum Aufbau eines Kassettengerätes,
- Umschaltung zwischen Aufnahme und Wiedergabe erfolgt elektronisch,
- hohe Brummspannungsunterdrückung und großer Betriebsspannungsbereich,
- rauscharme Vorverstärker.

Folgende Baugruppen sind auf dem Chip integriert:

- Vorverstärker für Aufnahme und Wiedergabe,
- Monitor- und Aufnahmeverstärker,
- Aussteuerungsautomatik (ALC),
- Spannungsregler und
- Schaltung zur Aussteuerungsanzeige.

Betriebsspannung	U_{CC}	= 3,5 18 V
U ₃ (Wiedergabebetrieb)	$^{\mathrm{U}}_{3}$	= $0.7 \text{ U}_{\text{CC}} \dots \text{ U}_{\text{CC}}$
Stromaufnahme	I_{CC}	≤ 12 mA
Klirrfaktor Aufnahmeverstärker	k	≤ 1,5 %
Klirrfaktor Wiedergabeverstärker	k	≤ 1,5 %
Klirrfaktor Monitorverstärker (Aufnahme/Wiedergabe)	k	≤ 0,5 %
Eingangsbezogene Rauschspannung (Wiedergabebetrieb)	u _{IN}	≤ 1,4 μV
Spannung für Aussteueranzeige	U ₈	> 600 mV

A 2000 V/A 2005 V Doppel-NF-Leistungsverstärker

Übersichtsschaltplan

Bezeichnung der Anschlüsse			Typstandard: TGL 43157		
1	Eingang Verstärker 1	7	Bootstrap Verstärker 2		
2	Gegenkopplung Verstärker 1	8	Ausgang Verstärker 2		
3	Betriebsspannungsunterdrückung	9	Betriebsspannung		
4	Gegenkopplung Verstärker 2	10	Ausgang Verstärker 1		
5	Eingang Verstärker 2	11	Bootstrap Verstärker 1		
6	Masse				

Bauform: TO 220, 11polig (Bild 21)

Die bipolaren Schaltkreise A 2000 V/A 2005 V sind Doppel-NF-Leistungsverstärker mit Gegentakt-B-Endstufen für den Einsatz in Radiorecordern (A 2000 V) und in Autoempfängern (A 2005 V). Sie werden in einem 11poligen-TO 220-Leistungsplastgehäuse gefertigt. Der A 2000 V und A 2005 V unterscheiden sich im wesentlichen durch ihre Ausgangsleistung, die Ruhestromaufnahme und den intern begrenzten Ausgangsspitzenstrom. 28

Eigenschaften

- Großer Betriebsspannungsbereich,
- geringe Außenbeschaltung.
- schutzschaltung für Temperatur, Überspannung, SOAR und Lautsprecherkurzschluß und
- hohe Betriebszuverlässigkeit.

Folgende Baugruppen sind auf dem Chip integriert:

_ Eingangsstufen,

- Netzteil,

_ vorverstärker,

- Temperaturschutz,

- Treiberstufen,

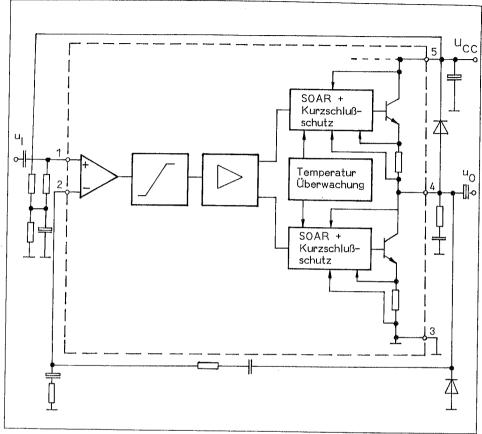
- Lautsprecherschutz,

- Endstufen,

- Überspannungsschutz und
- Mittenspannungsteiler,
- SOAR-Schutz (sicherer Arbeitsbereich).

Bei einer Betriebsspannung von 14,4 V wird der A 2000 V üblicherweise mit 2 x 5 W an 4 Ohm betrieben. Der A 2005 V wird bei einer Betriebsspannung von 14,4 V dagegen typisch mit 2 x 10 W an 2 Ohm eingesetzt.

Schaltkreise mit der Typbezeichnung A 2000 Vm bzw. A 2005 Vm sind speziell für den Brückenbetrieb geeignet.


Ausgewählte Kennwerte

A 2000 V

Betriebsspannung	sbereich	$U_{\rm CC}$	=	4 18	V
Ruhestromaufnah	me	I_{CCQ}	=	28 mA	
Ausgangsspitzens	trom	IOM	≤	2,5 A	
Ausgangsspannung	gsdifferenz	Δ^{U} OQ	\leq	150 mV	
Ausgangsleistung	$(U_{CC} = 9 V)$	Po	=	3,8 W	
Klirrfaktor	$(P_{O} = 50 \text{ mW})$	k	<	1 %	
Leerlaufverstärku	ıng	A _{uo}	=	83,5 dB	
Grenzfrequenz	(bei 3 dB)	f _H	=	68 kHz	
Brummspannungst	unterdrückung	SVR	=	51 dB	
A 2005 V					
Betriebsspannung	sbereich	$U_{\rm CC}$	=	4 18	V
Ruhestrom		I_{CCQ}	=	55 mA	
Ausgangsspitzens	trom	I_{OM}	<u><</u>	3,5 A	
Ausgangsmittensp	oannungsdifferenz	ΔU_{OQ}	<u><</u>	150 mV	
Ausgangsleistung	$(R_L = 4 \text{ Ohm})$	P_{O}	=	6,4 W	
Ausgangsleistung		$^{\rm P}$ O	=	10 W	
Klirrfaktor	$(P_O = 50 \text{ mW})$	k	<	1 %	
Leerlaufverstärku	ing	A _{uo}	=	84 dB	
Grenzfrequenz	(bei 3 dB)	f _H	=	85 kHz	
Übersprechdämpf	ung	a _{ct}	=	58 dB	
Brummspannungs	unterdrückung	SVR	=	48 dB	
					29

A 2030 H/V

16-W-NF-Verstärker

Übersichtsschaltplan

Bauform: TO 220 5 H (A 2030 H) (Bild 19)

TO 220 5 V (A 2030 V) (Bild 20)

Typstandard: TGL 39609

Bezeichnung der Anschlüsse

1	nicht invertierender Eingang	4	Ausgang
2	invertierender Eingang	5	positive Betriebsspannung
:1	negative Betriebsspannung U $_{ m CC2}$		U _{CC1}

Die bipolaren Schaltkreise A 2030 H/A 2030 V sind 16-W-NF-Leistungsverstärker mit einer Gegentakt-B-Endstufe, vorwiegend für den Einsatz in NF-Endstufen der Rundfunkund Phonoindustrie.

 $_{\rm Der}$ A 2030 H wird in einem 5poligen-TO 220-Gehäuse für waagerechten Einbau gefertigt. $_{\rm Der}$ A 2030 V dagegen wird in einem 5poligen-TO 220-Gehäuse für senkrechten Einbau produziert.

Eigenschaften

- Thermischer Überlastungsschutz, SOAR
 - SOAR-Schutz (sicherer Arbeitsbereich),
- AC Ausgangskurzschlußschutz,
- minimale externe Beschaltung,
- automatische Ausgangsstrombegrenzung,
- großer Betriebsspannungsbereich und
- interne Frequenzkompensation,
- geteilte oder einfache Versorgungsspannung möglich.

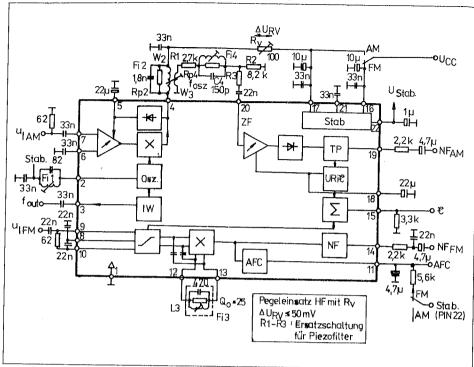
Folgende Baugruppen sind auf dem Chip integriert:

- Eingangsdifferenzverstärker,
- Kurzschlußschutz,

- Treiberstufe,

- Stromversorgung und

- Endstufe,


- Ruhestromeinstellung.
- Temperaturschutzschaltung,

Hinsichtlich seiner äußeren Beschaltung bildet der Schaltkreis einen Leistungsoperationsverstärker mit interner Frequenzkompensation. Die Operationsverstärkergleichungen für die Berechnung der äußeren Betriebsbedingungen sind durch die hohe Leerlaufverstärkung von etwa 90 dB anwendbar.

Die Leistungsoperationsverstärker B 165 H und B 165 V sind Selektionstypen des A 2030 H/V, die speziell für den industriellen Einsatz ausgemessen wurden.

Betriebsspannung	$\mathbf{u}_{\mathbf{CC}}$	$= \pm 6 \dots \pm 18 \text{ V}$
Ruhestromaufnahme ($U_{CC} = \pm 8 \text{ V}$)	I_{CCQ}	≤ 60 mA
Ausgangsspitzenstrom	I _{OM}	< 3,5 A
Klirrfaktor $(P_{C} = 12 \text{ W})$	k	< 0,5 %
Ausgangsleistung $(U_{CC} = + 14 \text{ V};$ $k = 10 \text{ %}; R_L = 4 \text{ Ohm}; f = 1 \text{ kHz})$	PO	= 18 W
offene Spannungsverstärkung	Auo	> 76 dB
Brummspannungsunterdrückung	SVR	> 40 dB
Differenzeingangsspannung	$ _{\Delta}$ U $_{ m I} $	< 30 V

A 4100 D AM-FM-Kombi-Schaltung

Übersichtsschaltplan

Bauform: DIP-22, Plast (Bild 9) Typstandard: TGL 43156

Bezeichnung der Anschlüsse

1	Masse	14	NF-Ausgang FM-Teil
2	Oszillatorbeschaltung	15	Instrumentenausgang
3	Zählerausgang	16	Betriebsspannung FM-Teil (U _{CC2})
4	ZF-Ausgang	17	Betriebsspannung AM-Teil (U _{CC1})
5	Tunerregelzeitkonstante	18	ZF-Regelzeitkonstante AM-Teil
6, 7	AM-HF-Eingänge	19	NF-Ausgang AM-Teil
8, 9	FM-ZF-Eingänge	20	AM-ZF-Eingang
10	Abblockkondensator	21	Abblockkondensator
11	AFC-Ausgang	22	Stabilisierte Spannung
12, 13	Phasenschieberkreis		

Der Schaltkreis A 4100 D beinhaltet eine komplette AM-Empfängerschaltung und einen davon getrennten FM-ZF-Verstärker mit Koinzidenzdemodulator, Feldstärkeindikator und AFC-Gegentaktstromausgang für den Einsatz in Rundfunk-Reise-Empfängern. 32

Eigenschaften

- Eigengeregelte HF-Vorstufe mit einstellbarem Regeleinsatz,
- Ausgang für die Oszillatorfrequenz.
- C-Dioden-gekoppelter AM/ZF/Verstärker,
- e interner AM-Demodulator mit aktivem NF-Tiefpaß
- Betriebsartenumschaltung über die Betriebsspannung,
- gemeinsamer Feldstärkeausgang für AM/FM,
- großer Betriebsspannungsbereich,
- "günstiges Signal-Rausch-Verhältnis der AM- und FM-Teile und
- geringe Außenbeschaltung.

Folgende Baugruppen sind auf dem Chip integriert:

AM-Betrieb

FM-Betrieb

_ HF-Vorstufe/Mischstufe,

- ZF-Verstärker,

- Regelung,

~ Demodulator und

- Oszillator,

- Ausgangsverstärker, AFC.


- ZF-Verstärker mit Demodulator, Regelung und
- . NF-Tiefpaß.

Die AM-FM-Kombi-Schaltung hat für AM- und FM-Betrieb getrennte Signalwege und somit getrennte HF-Eingänge und getrennte NF Ausgänge. Das Einschalten der ausgewählten Betriebsart erfolgt durch Anlegen der Betriebsspannung an Ansehluß 16 (FM-Betrieb) oder 17 (AM-Betrieb).

Für AM- und FM-Betrieb gemeinsam ist der Feldstärkeausgang Anschluß 15.

Betriebsspannung AM-Teil	$U_{CC} = 4,5 \dots 15 V$
Betriebsspannung FM-Teil	$U_{CC} = 4.5 \dots 15 \text{ V}$
Oszillatorfrequenz	$f_{OSZ} = 0,5 \dots 30 \text{ MHz}$
Eingangsfrequenz FM	$f = 0 \dots 15 \text{ MHz}$
Stromaufnahme AM-Teil	$I_{CC} \leq 20 \text{ mA}$
NF-Ausgangsspannung AM-Teil	$u_{ m NF}^{ m C} \geq 30~{ m mV}$
Klirrfaktor AM-Teil	k <u>≤</u> 4,5 %
NF-Ausgangsspannung FM-Teil	$u_{ m NF}^{}$ \geq 300 mV
AM-Unterdrückung FM-Teil	$a_{AM} \geq 55 \text{ dB}$
Klirrfaktor FM-Teil	k ≤ 2 %
Signal-Rauschabstand AM-Teil	$\frac{S + N}{N} \ge 20 \text{ dB}$
Eingangsfrequenz AM-HF	$f = 0,1 \dots 30 \text{ MHz}$
Eingangsferquenz AM-ZF	$f_{ZF} = 0, 2 \dots 0, 7 \text{ MHz}$

A 4510 D PLL-Stereodekoder für Batteriebetrieb

Übersichtsschaltplan

34

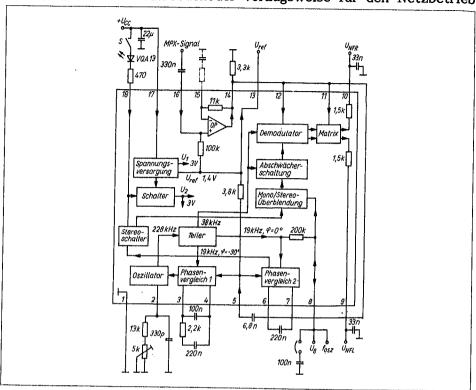
Bauform: DIP-18, Plast (Bild 6) Typstandard: TGL 43158

Bezeichnung der Anschlüsse

1	Masse	11	(L+R) Eingang
2	RC-Oszillator	12	(L-R) Eingang
3, 4	Tiefpaß für PLL	13	Referenzspannung
	(Phasenvergleich 1)	14	Ausgang des OPV
5	Pilottoneingang	15	Invertierender Eingang des
6, 7	Tiefpaß für Stereokennung		OPV
	(Phasenvergleich 2)	16	Nichtinvertierender Eingang
8	19-kHz-Ausgang bzw. Stereo-		des OPV (MPX-Eingang)
	Mono-Überblendung	17	Betriebsspannung U _{CC}
. 9	NF-Ausgang links (L)	18	Lampentreiber
10	NF-Ausgang rechts (R)		

Der bipolare Schaltkreis A 4510 D ist ein Stereo-Dekoder-Schaltkreis zur Dekodierung der senderseitigen Stereoinformation (MPX-Signal) in die Lautsprechersignale L und R. Der A 4510 D ist hauptsächlich für den Einsatz in Reise- oder Kofferempfängern vorgesehen.

Eigenschaften


- Kontinuierliches Überblenden von Stereo auf Mono ist möglich,
- Stereodekoder ist für Zeitmultiplex-(Schalter) oder Frequenzmultiplexbetrieb (Matrix) ausgelegt,
- Aufbereitung der Schaltfrequenzen mittels PLL,
- Anzeige von Stereosendern durch Lampe,
- großer Betriebsspannungsbereich von 5 bis 15 V und
- geringe Stromaufnahme.

Folgende Baugruppen sind auf dem Chip integriert:

- Eingangsoperationsverstärker,
- Dekoder bestehend aus Demodulator und Matrix,
- Mono-Stereo-Überblendung,
- Spannungskomparator,
- Frequenzteiler,
- Phasenvergleich 1 zur Synchronisation des Oszillators und
- Phasenvergleich 2 zur Aktivierung des Mono-Stereo-Schalters.

Betriebsspannung für Monobetrieb	$^{ m U}_{ m CC}$	=	4,5 18 V
Betriebsspannung für Stereobetrieb	U _{CC}	=	6 15 V
Eingangsspannung an Anschluß 16	u _{IMPXpp}	\leq	1 V
Stromaufnahme	ICC		15 mA
NF-Ausgangsspannung (Mono)	u _{MLpp} , u _{RLpp}	=	250 500 mV
	u _{Lpp} , u _{Rpp}		500 1000 mV
Klirrfaktor	k _M	\leq	0,6 %
Stromaufnahme bei Zwangsmono	I_{CC}	<	8 mA
Übersprechdämpfung	^a ct	\geq	30 dB
Schaltschwelle Stereo ein	^U OP	=	41 mV
Schaltschwelle Stereo aus	u_{IP}^{U}	=	20 mV

$A~4511~{ m D}~{ m PLL-Stereodekoder}$ vorzugsweise für den Netzbetrieb

Übersichtsschaltplan

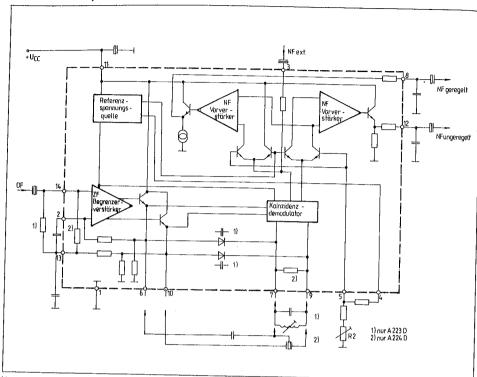
Bauform: DIP-18, Plast (Bild 6) Typstandard: TGL 45039

Bezeichnung der Anschlüsse

_			
1	Masse	11	(L+R) Eingang
2	RC-Oszillator	12	(L-R) Eingang
3, 4	Tiefpaß für PLL	13	Referenzspannung
	(Phasenvergleich 1)	14	Ausgang des OPV
5	Pilottoneingang	15	Invertierender Eingang des
6, 7	Tiefpaß für Stereokennung		OPV
	(Phasenvergleich 2)	16	Nichtinvertierender Eingang
8	19-kHz-Ausgang bzw. Stereo-		des OPV (MPX-Eingang)
	Mono-Überblendung	17	Betriebsspannung
9	NF-Ausgang links (L)	18	Lampentreiber
10	NF-Ausgang rechts (R)		

Der bipolare Schaltkreis A 4511 D ist ein Stereo-Dekoder-Schaltkreis zur Dekodierung der senderseitigen Stereoinformation (MPX-Signal) in die Lautsprechersignale L und R. Der A 4511 D ist für eine Betriebsspannung größer 8 V konzipiert und damit vorzugsweise für den Einsatz in Heim-Hörrundfunkempfängern vorgesehen.

Eigenschaften


- Kontinuierliches Überblenden von Stereo auf Mono ist möglich,
- Stereodekoder für Zeitmultiplex-(Schalter) oder Frequenzmultiplexbetrieb (Matrix),
- Anzeige von Stereosendern durch Lampe und
- Betriebsspannungsbereich 8 bis 18 V,

Folgende Baugruppen sind auf dem Chip integriert:

- Eingangsoperationsverstärker,
- Dekoder bestehend aus Demodulator und Matrix,
- Mono-Stereo-Überblendung,
- Frequenzteiler,
- Phasenvergleich 1 zur Synchronisation des Oszillators und
- Phasenvergleich 2 zur Aktivierung des Mono-Stereo-Schalters.

Betriebsspannung	$U_{CC} = 8 \dots 18 V$
Eingangsspannung an Anschluß 16	$u_{\text{IMPXpp}} \leq 1,6 \text{ V}$
Stromaufnahme	$I_{CC} \leq 20 \text{ mA}$
Stromaufnahme bei Zwangsmono	$I_{CC} \leq 15 \text{ mA}$
NF-Ausgangsspannung (Mono)	$u_{MLpp}, u_{MRpp} = 450 \dots 800 \text{ mV}$
NF-Ausgangsspannung (Stereo)	$u_{Lpp}, u_{Rpp} = 900 \dots 1600 \text{ mV}$
Klirrfaktor	k ≤ 0,6 %
Übersprechdämpfung	$a_{et} \ge 30 dB$
Schaltschwelle Stereo ein	$u_{IPpp} = 44 \text{ mV}$
Schaltschwelle Stereo aus	$u_{OPpp}^{V} = 24 \text{ mV}$

A 223 D/A 224 D Ton-ZF-Verstärker

Übersichtsschaltplan

Bauform: DIP-14, Plast (Bild 3) Typstandard: A 223 D TGL 35149

A 224 D TGL 42624

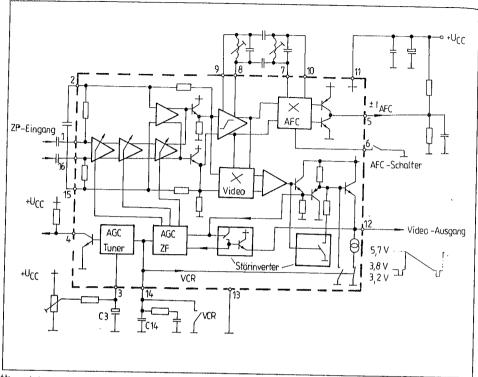
Bezeichnung der Anschlüsse

1 2 3 4 5 6, 10 8	Masse zweiter Eingang NF-Eingang Referenzspannungsausgang Lautstärkeregelung ZF-Ausgänge regelbarer NF-Ausgang	7, 9 11 13, 14	LC-Phasenschieberkreis (A 223 D) bzw. piezokeramisches Diskriminatorfilter (A 224 D) Betriebsspannung LC-Eingangsfilter oder piezokeramischer Eingangsfilter
12	ungeregelter NF-Ausgang		keramischer Eingangsiitter

Die bipolaren Schaltkreise A 223 D/A 224 D sind FM-ZF-Verstärker mit Demodulator für den Einsatz im Ton-ZF-Teil von Fernsehempfängern.

Eigenschaften

- Enthält einen 8stufigen hoch verstärkenden symmetrischen Begrenzerverstärker,
- iber Gleichspannung regelbares NF-Signal,
- die Lautstärkeeinstellercharakteristik ist keinen Schwankungen unterworfen wegen der internen Referenzspannung,
- ein konstanter NF-Ausgang und ein zusätzlicher NF-Eingang ermöglichen den Anschluß von Videorecordern oder Autorecordern,
- zehr kleine ZF-Restspannungen an den NF-Ausgängen machen Oberwellenstörungen der Bild-ZF durch die Ton-ZF vernachlässigbar.


Folgende Baugruppen sind auf dem Chip integriert:

- ZF-Begrenzerverstärker,
- symmetrischer Koinzidenzdemodulator,
- getrennte NF-Vorverstärker,
- Referenzspannungsquelle.

Beim A 224 D sind Eingang und Demodulator für den Betrieb mit piezokeramischen Filtern angepaßt, während der A 223 D zur Beschaltung mit LC-Kreisen vorgesehen ist.

Betriebsspannung	$\mathbf{u}_{\mathbf{CC}}$	= 10 18 V
Stromaufnahme	I_{CC}	= 9,5 17,5 mA
Verlustleistung	Ptot	≤ 400 mW
ZF-Spannungsverstärkung	A _{uZF}	= 67 dB
NF-Verstärkung unabgeregelt	A _{u3-8}	= 16 dB

A 241 D Bild-ZF-Verstärker

Übersichtsschaltplan

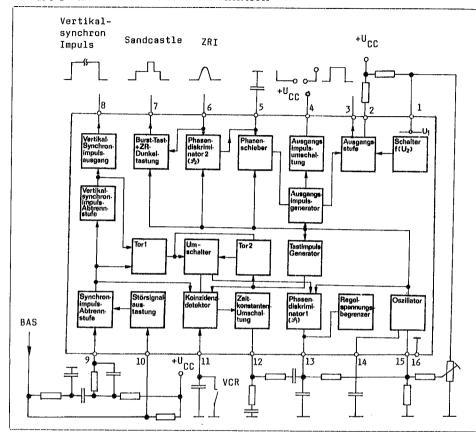
Bauform: DIP-16, Plast (Bild 4) Typstandard: TGL 37903

Bezeichnung der Anschlüsse

1, 16	Eingang ZF-Signal	7	AFC-Kreis
2, 15	Anschluß für externe Kapazität	8, 9	Referenzsignalkreis
3	Anschluß für Tunerregeleinsatz-	10	AFC-Kreis
	punkteinstellung	11	Betriebsspannung
4	Anschluß für Tunerregelung	12	Videoausgang
5	Anschluß für AFC-Regelstrom	13	Masse
6	Anschluß für AFC-An- und Ab-	14	Anschluß für Siebung der Re-
	schaltung		gelspannung VCR-Schalter

Der Schaltkreis A 241 D ist ein Bild-ZF-Verstärker für den Einsatz in Kanalwählern mit pnp-Transistoren von S/W- und Farbfernsehempfängern.

Eigenschaften


- Geregelter Bild-ZF-Verstärker und Demodulator,
- interne Regelspannungsgewinnung,
- abschaltbare AFC-Gewinnung,
- zur Einspeisung externer Signale abschaltbarer Videoausgang.

Folgende Baugruppen sind auf dem Chip integriert:

- Geregelter dreistufiger ZF-Verstärker,
- Synchrondemodulator mit abschaltbarer Videoausgangsstufe (VCR-Betrieb),
- Videovorverstärker mit Ultraweißinverter,
- Regelsignalgewinnung für die ZF-Verstärkungsregelung mit Störaustastung mit Ultraschwarzinverter,
- Koinzidenzdemodulator für die AFC-Gewinnung (abschaltbar) und
- Regelsignalaufbereitung für die verzögerte Tunerregelung (pnp-Vorstufe).

Betriebsspannung	${\rm u_{\rm CC}}$	= 10,8 14 V
Stromaufnahme	I_{CC}	≤ 70 mA
Betriebstemperaturbereich	Ta	= -25 55 °C
Tunerregelstrom	14	≤ 12 mA
Gleichspannung Pin 12 (u _I = 0 V)	$^{\mathrm{U}}_{12}$	= 6 V
Synchronpegel Pin 12 ($u_{I} = 20 \text{ mV}$)	$^{\mathrm{U}}_{12}$	= 3,04 V
Videoausgangsspannung bei 10 % Restträger	u _{12SS}	= 2,25 3,06 V
ZF-Regelumfang	A_{uZF}	
Videobandbreite	Bvideo	= 7 MHz
AFC-Schaltspannung		= 2,7 V

A 255 D Horizontalkombination

Übersichtsschaltplan

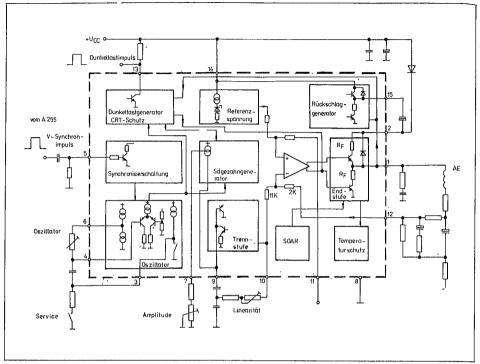
Bauform: DIP-16, Plast (Bild 4) Typstandard: TGL 38009

Bezeichnung der Anschlüsse

DOLO	e doi illicomacco		
1	Betriebspannung	9	Eingang Synchronimpulsab-
2	Betriebsspannung der Horizontal-		trennstufe
	endstufe	10	Eingang Störsignalaustaststufe
3	Ausgang Horizontalendstufe	11	Eingang VCR-Umschalter und
4	Eingang Impulsbreitenumschaltung		Ausgang Koinzidenzdetektor
5	Phasenschieberanschluß	12	Ausgang Zeitkonstantenum-
	Ausgang Phasenvergleich		schaltung
6	Eingang Zeilenrücklaufimpuls	13	Ausgang Phasenvergleich 1
7	Ausgang Sandcastle-Impuls	14, 15	Oszillatorfrequenzeinstellung
8	Ausgang Vertikalsynchronimpuls	16	Masse

Monolithisch integrierte Horizontalkombination zur Synchronisation und Ansteuerung der zeilenablenkung und Abtrennung des Bildsynchronsignals sowie zur Tastimpulserzeugung.

Eigenschaften


- Enthält alle Stufen, die für die Synchronisation von Vertikal- und Horizontalablenkung sowie für die Ansteuerung der Horizontalablenkung notwendig sind,
- liefert einen Kombinationstastimpuls, der im Farbdekoder bzw. im Videoteil verwendet wird,
- der Ausgangszeilenimpuls kann wahlweise für Transistor- und Thyristorablenkschaltungen in seiner Impulsbreite umgeschaltet werden.

Folgende Baugruppen sind auf dem Chip integriert:

- Zeilenoszillator nach dem Schwellwertschalterprinzip,
- getasteter Phasenvergleich zwischen Synchronsignal und Oszillator (φ 1),
- Phasenvergleich zwischen Zeilenrücklaufimpuls und Oszillator (φ 2),
- Koinzidenzdetektor zum Vergleich von Synchron- und Tastimpuls (ϕ 3) zur Fangbereichserweiterung der Zeitkonstanten- und Tonumschaltung bei VCR-Betrieb,
- Störsignalaustastung, Synchronimpulsabtrennung, Vertikalsynchronimpulsgewinnung,
- Erzeugung eines Kombinationstastimpulses (Bursttast- und Zeilenaustastimpuls),
- Phasenschieber für Zeilensteuerimpuls, Zeilenausgangsimpulsbreitenumschaltung für Transistor- und Thyristorablenkkonzepte,
- Ausgangsstufe mit getrennter Speisespannungszuführung, Ausgangsimpulsabschaltung bei zu geringer Speisespannung.

Betriebsspannung	$U_{\rm CC}$	= 4 13,2 V
Stromaufnahme	I_{CC}	\leq 50 mA
Verlustleistung	Ptot	≤ 0,8 W
Betriebstemperaturbereich	Ta	= -25 70 °C
Betriebsspannung der Horizontalausgangsstufe	$_{0}^{-}$	= 4 18 V
Horizontalausgangsstrom - Transistorbetrieb - Thyristorbetrieb	I ₂ ; -I ₃ I ₂ ; -I ₃	< 400 mA < 650 mA
freilaufende Oszillatorfrequenz	fO	= $15,6$ kHz
Frequenzfangbereich	of	= 700 900 Hz
Farbsynchront astimpuls amplitude	$\rm U_{7T}$	= 10,5 V

A 1670 VD Vertikalablenkschaltung

Übersichtsschaltplan

Bauform: TO 220, 15polig (Bild 22) Typstandard: TGL 45133

Bezeichnung der Anschlüsse

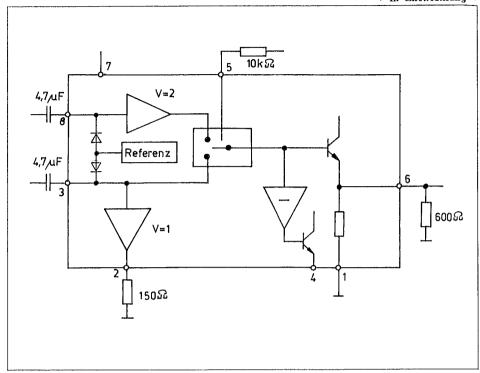
1	Verstärker-Ausgang	9	Sägezahngenerator
2	Verstärker-Versorgungsspannung	10	Sägezahngenerator
3	Oszillator	11	Nichtinvertierender Eingang-
4	Oszillator		Verstärker
5	Synchronisier-Eingang	12	Invertierender Eingang-Ver-
6	Oszillator		stärker
7	Sägezahngenerator-Bildhöhe	13	Dunkeltastimpuls-Ausgang
8	Masse	14	Betriebsspannung '
		15	Rückschlaggenerator

Der Schaltkreis A 1670 VD enthält eine Vertikalablenkschaltung für Farbfernsehgeräte mit 90° und 110° Ablenkeinheiten.

Eigenschaften

- Betriebsspannungsbereich 10 bis 35 V,
- Endstufe mit Impulsspannungen bis zu 60 V und Ströme bis zu 3 A (Spitze-Spitze),
- SOAR-Schutz und Temperatursicherung für die Endstufe.

Folgende Baugruppen sind auf dem Chip integriert:


- Referenzspannungsquelle,
- Oszillator mit Synchronisierstufe,
- Sägezahngenerator mit Trennstufe,
- Dunkeltastgenerator mit CRT-Schutz,
- Temperaturschutz, SOAR-Schutz,
- Rückschlaggenerator und
- Endstufe.

$U_{CC} = 10 \dots 35 \text{ V}$
$U_1, U_2 \le 60 \text{ V}$
$I_{15SS} \leq 3 \text{ A}$
$I_{OSS} \leq 3 A$

A 2014 DC

Videoschalterschaltkreis für TV-Geräte

* In Entwicklung *

Übersichtsschaltplan

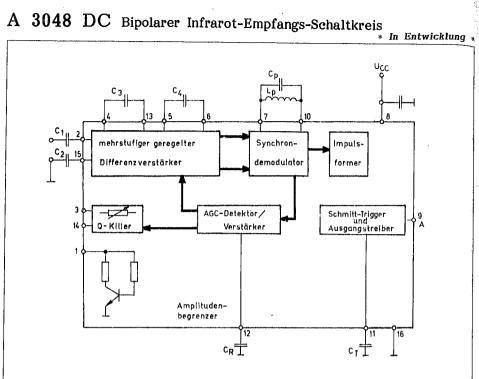
Bauform: DIP-8, Plast (Bild 2)

Bezeichnung der Anschlüsse

1	Masse	5	Schalteingang
2	Videoausgang (nicht umschaltbar)	6	umschaltbarer Videoausgang
3	interner Videoeingang	7	Betriebsspannung
4	nicht zu nutzen	8	externer Videoeingang

Der bipolare integrierte Schaltkreis A 2014 DC realisiert die elektronische Umschaltung von Videosignalen zwischen der Peri-TV-Buchse und der Videosektion des TV-Gerätes.

Grenzwerte


Grenzwert	Kurz- zeichen	min.	max.	Einheit
Spannung am Anschluß 7	UCC	0	18	ν
Spannung am Anschluß 5	U ₅	0	$^{ m U}_{ m CC}$	V
Signal am Anschluß 3	U _{3pp}		4,5	V
Signal am Anschluß 8	U _{8pp}		2,0	V
	Ptot		0,75	W

Betriebsbedingungen

Kennwert	Kurz- zeichen	min.	max.	Einheit
Betriebsspannung	UCC	8	14	ν
Betriebstemperatur	Ta	0	70	°C

Ausgewählte Kennwerte ($U_{CC} = 12 \text{ V}, T_a = 25 \text{ °C} - 5 \text{ K}$)

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Stromaufnahme unbelastet	I_{CC}				20	mA
Stromaufnahme						
Anschluß 2 - 1 (150 Ohm)	I_{CC}	$U_5 > 3 V$			62	m A
Anschluß 6 - 1 (600 Ohm)	ICC	$U_5 > 3 V$			62	mA
Signalverstärkung		$U_i = 1 V_{pp},$				1
zwischen		Sinus 15 kHz				
Anschluß 6 - 3	v ₆₋₃		-1		1	dB
Anschluß 2 - 3	V _{2:3}		-1,8		-0,4	dB
Anschluß 6 – 8	V ₆₋₈		4		6	dΒ
Gleichspannung am	U_6	R = 600 Ohm	1,7		2,4	V
Ausgang 6					i	1
Gleichspannung am	\mathtt{u}_{2}	R = 150 Ohm	1,7		2,4	V
Ausgang 2	_					
Schaltspannung Low	U _{5L}				3	V
Schaltspannung High	U _{5H}		7		n ^{CC}	V
Übersprechdämpfung	D ₃₈	f = 15 kHz	50			dB
dynam. Eingangswider-	R _i		50			kOhm
stand						
Linearitätsverzerrung	L _v				2	%

Übersichtsschaltplan

Bauform: DIP-16, Plast (Bild 4)

Bezeichnung der Anschlüsse

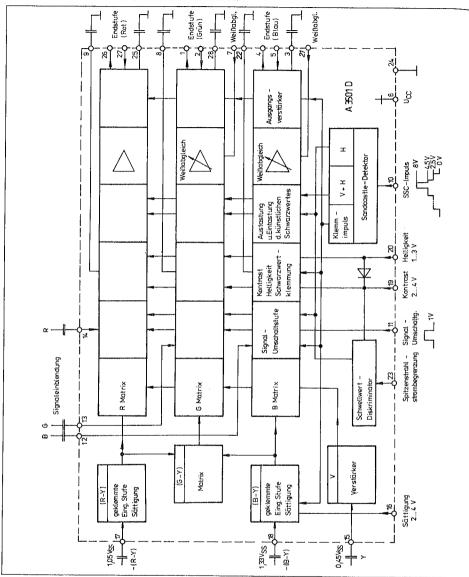
1	Eingang des Amplitudenbegrenzers	9	Signalausgang (A)
	(AMP)	10	Synchronmodulator, Ausgang 2
2	Differenzverstärker, Eingang 1 (E1)		(DM2)
3	Q-Killer, Ausgang 1 (K1)	11	Anschluß des Siebkondensators
4	Frequenzkompensation 1,		für Trigger (CT)
	Eingang 1 (FK11)	12	Anschluß des Kondensators für
5	Frequenzkompensation 2,		die Regelzeitkonstante (CR)
	Eingang 1 (FK21)	13	Frequenzkompensation 1,
6	Frequenzkompensation 2,		Eingang 2 (FK12)
	Eingang 2 (FK22)	14	Q-Killer, Ausgang 2 (K2)
7	Synchronmodulator Ausgang 1 (DM1)	15	Differenzverstärker,
8	Betriebsspannung (U _{CC})		Eingang 2 (E2)
		16	Masse

Der A 3048 DC ist ein monolithisch integrierter geregelter Vorverstärker für Infrarot-Fernbedienungssignale.

Die Schaltung eignet sich besonders zum Empfang von modulierten Impulsen eines Fernbedienungssenders. Der Einsatz ist vorzugsweise in IR-gesteuerten Geräten der Unterhaltungselektronik vorgesehen.

Eigenschaften

- geringe Verlustleistung (typ. 2,1 mA Stromaufnahme),
- 5 V-Spannungsversorgung,
- automatische Verstärkungsregelung (typ. 66 dB),
- große Reichweite der IR-Strecke durch hohe Verstärkung,
- automatische Amplitudenbegrenzung des Eingangssignals bei ca. 800 mV möglich,
- Bedämpfung des Eingangsschwingkreises in Abhängigkeit von der Signalamplitude (Q-Killer) möglich und
- gute Störsicherheit gegenüber Fremdlichteinflüssen.


Grenzwerte

Grenzwert	Kurz- zeichen	min.	max.	Einheit
Betriebsspannung	U _{CC}	0	13,2	V
Spannung zwischen den	Un	0	1,5	V
Anschlüssen				
2 und 15				
4 und 13				
5 und 6				
7 und 10				
9 und 11				
Strom aus Anschluß 11	-I ₁₁	0	10	mA

Betriebsbedingungen

Kennwert	Kurz- zeichen	min.	max.	Einheit
Betriebsspannung	U _{CC}	4,65	5,35	v
Umgebungstemperatur		0	70	°C

A 3501 D Videokombination

Typstandard: TGL 42073 Bauform: DIP-28, Plast (Bild 12) Übersichtsschaltplan Der bipolare Schaltkreis A 3501 D ist eine Videokombination mit Einblendmöglichkeit für externe analoge RGB-Signale.

Gemeinsam mit dem PAL-Dekoder A 3510 D und dem SECAM-Dekoder A 3520 D bildet die Videokombination A 3501 D ein Schaltungskonzept für den Farbdekoder. 50

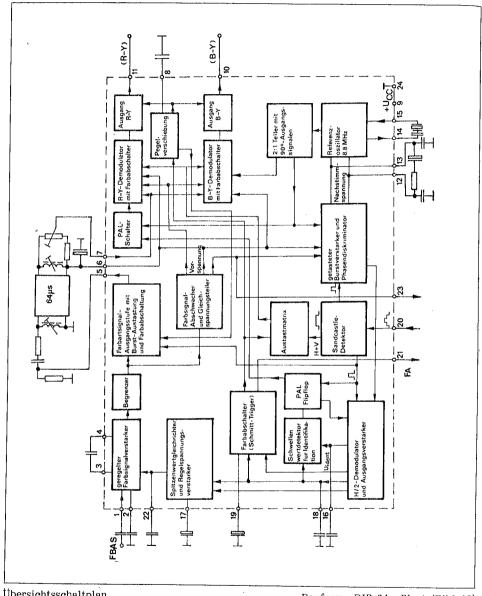
Eigenschaften

Enthält alle Schaltungsgruppen zur Verarbeitung des Leuchtdichtesignales, der Farbdifferenzsignale und zur Steuerung der RGB-Videoendstufen,

gestattet die gleichspannungsgesteuerte Einstellung von Farbsättigung, Kontrast, Helligkeit und Weißabgleich im Grün- und Blaukanal,

bewirkt eine Bildschärfenverbesserung durch Spitzenstrahlstrombegrenzung und

erlaubt die externe Einblendung von RGB-Signalen, z. B. zur Bild im Bild-Darstellung.


Bezeichnung der Anschlüsse

Dezeron	Ausgang Grün	15	Y-Signaleingang
1	Gegenkopplungseingang Grün	16	Sättigungseinstelleingang
2	Anschluß des Speicherkondensators	17	Farbdifferenzeingang Rot
3	für die Klemmregelung im Aus-	18	Farbdifferenzeingang Blau
	gangskreis Blau	19	Kontrasteinstelleingang
4	Ausgang Blau	20	Helligkeitseinstelleingang
5	Gegenkopplungseingang Blau	21	Verstärkungseinstelleingang
6	Betriebsspannung		Blau
7	Anschluß des Speicherkondensators	22	Verstärkungseinstelleingang
•	für die Klemmregelung in der		Grün
	Helligkeitseinstellstufe Blau	23	Strahlstrombegrenzungseingang
8	Anschluß des Speicherkondensators		(SSB)
Ü	für die Klemmregelung in der	24	Masse
	Helligkeitseinstellstufe Grün	25	Anschluß des Speicherkonden-
9	Anschluß des Speicherkondensators		sators für die Klemmregelung
	für die Klemmregelung in der		im Ausgangskreis Rot
	Helligkeitseinstellstufe Rot	26	Ausgang Rot
10	Tasteingang	27	Gegenkopplungseingang Rot
11	Signalumschalteingang	28	Anschluß des Speicherkonden-
12	Einblendeingang Blau		sators für die Klemmregelung
13	Einblendeingang Grün		im Ausgangskreis Grün

Einblendeingang Rot Ausgewählte Kennwerte

14

Betriebsspann	ıng	v_{cc}	2	10,6 13,2
Stromaufnahm	ie	I _{CC}	<	122 mA
Verlustleistun	g g	Ptot	<	1.7 W
Spannungsvers	tärkung 17-27/18-5	A_{u}	=	$-2 \dots 0.5 \text{ dB}$
	15-27/15-2/15-5	$A_{\mathbf{u}}^{\circ}$	=	8 11 dB
Regelbereich	Helligkeit		7 =	<u>·</u> 45 %
	Sättigung	ΔΑ		5,540 dB
	Kontrast	A,,	=	2,516 dB

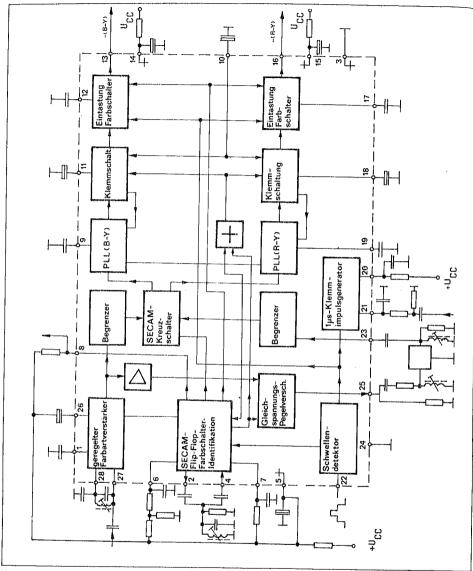
Übersichtsschaltplan

Bauform: DIP-24, Plast (Bild 10) Typstandard: TGL 42071

Bezeichnung der Anschlüsse

Rezeron	Idnib		
1	Farbsignaleingang	16	Zeitkonstante für Iden-
2	Abblockung Farbartsignalverstärker		tifikationssignal und Far-
3	Siebung Gegenkoppelungssignal		be "Aus"
4	Siebung Gegenkoppelungssignal	17	Zeitkonstante für Regel-
5	Treiberausgang für Verzögerungs-		spannungsgewinnung
	leitung	18	Ladekondensator für
6	Vorspannung für verzögerten Kanal		Referenzspannung
7	Eingang verzögerter Kanal	19	Zeitkonstante für Farbe
8	Zeitkonstante für Anstiegs- bzw.		"Ein"
J	Abfallzeit der Farbdifferenzsignal-	20	Eingang Kombinationstast-
	Gleichspannungspegel		impuls (Sandcastle)
9	Betriebsspannung U _{CC}	21	Ausgang Farbschaltspannung
10	Ausgang (B-Y)-Signal	22	Siebung Regelspannung für
11	Ausgang (R-Y)-Signal		Farbartsignalverstärker
12	Siebglied für Nachstimmspannung	23	Farbartsignalausgang, Burst-
13	Siebglied für Nachstimmspannung		kurzschluß für Oszillator-
14, 15	Farbhilfsträgeroszillator		abgleich
	8,8 MHz-Quarz	24	Masse

Der bipolare Schaltkreis A 3510 D ist ein PAL-Dekoder für Farbfernsehgeräte, der gemeinsam mit dem SECAM-Dekoder A 3520 D und der Videokombination A 3501 D ein modernes Schaltungskonzept für Farbdekoder und Videokomplex ermöglicht.


Eigenschaften

- Beinhaltet alle Schaltungsgruppen, die für eine vollständige PAL-Dekodierung notwendig
- ist sowohl für den Einsatz in reinen PAL-Empfängern, als auch für Zweinormenbetrieb gemeinsam mit dem A 3520 D geeignet.

Betriebsspannung	$U_{\rm CC}$	= 10,8 13,2 V
Stromaufnahme	I_{CC}	≤ 75 mA
Farbartdämpfung	a ₅	> 56 dB
Farbdifferenzsignal-Ausgangs- spannungen (R-Y)-Signal	u _{11SS}	= 0,74 1,48 V
(B-Y)-Signal	u _{10SS}	= 0,94 1,88 V
Signalabschwächung der Farbdifferenzsignale ($u_{ISS} = 100$ mV) ($u_{ISS} = 72$ mV)	^a 11 ^a 10	≥ 60 dB ≥ 60 dB
Verhältnis der Farbsignal- differenzsignale	$\frac{u_{11SS}}{u_{10SS}}$	= 0,71 0,87 mV

A 3520 D

SECAM-Dekoder

Übersichtsschaltplan

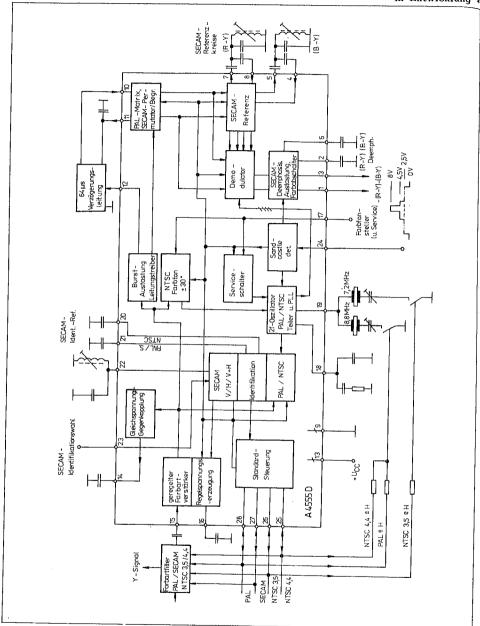
Bauform: DIP-28, Plast (Bild 12) Typstandard: TGL 42072

Der bipolare Schaltkreis A 3520 D ist ein SECAM-Dekoder für Farbfernsehgeräte, der gemeinsam mit dem PAL-Dekoder A 3510 D und der Videokombination A 3501 D ein modernes Schaltungskonzept für Farbdekoder und Videokomplex ermöglicht,

Eigenschaften

 $_{\rm Enth\"alt}$ alle Schaltungsgruppen, die notwendig sind, um aus einem SECAM-Farbartsignal die (B-Y)- und (R-Y)-Farbartdifferenzsignale zu erzeugen und

- ist sowohl für den Einsatz in reinen SECAM-Empfängern, als auch gemeinsam mit dem PAL-Dekoder A 3510 D für Zweinormenbetrieb geeignet.


Bezeichnung der Anschlüsse

1	Farbartsignalentkopplung	15	$^{ m U}{ m CC}$ für (R-Y)-Demodulator
2	Identifikationskreis (Eingang)	16	Ausgang (R-Y)
3	Masse	17	Deemphasiskondensator (R-Y)
4	Identifikationskreis (Ausgang)	18	Schwarzwertspeicherkonden-
5	U _{CC} für Schaltung (außer Demo-		sator (R-Y)
อ	dulatoren)	19	Oszillator-Kondensator (R-Y)
6	Identifikations -RC-Glied	20	Anschluß für 1 µs-RC-Glied
7	Farbeinschalt-RC-Glied	21	Synchronsignal-Eingang
8	Ausgang des unverzögerten Farb-	22	Kombinationstastimpulsein-
J	schaltsignals		gang (Sandcastle)
9	Oszillator-Kondensator (B-Y)	23	Eingang des verzögerten
10	Siebkondensator der Demodulatoren		Farbartsignals (von VZL)
11	Schwarzwertspeicherkondensator	24	Masse
	(B-Y)	25	Farbartsignal-Ausgang (zur
12	Deemphasiskondensator (B-Y)		VZL)
13	Ausgang (B-Y)	26	Regelspannungssiebung
14	U _{CC} für (B-Y)-Demodulator	27	Farbartsignal-Eingang
		28	Siebkondensator des Glocken-
			kreises

•	
Betriebsspannung	$U_{CC} = 10,8 \dots 13,2 \text{ V}$
Stromaufnahme	$I_{CC} \leq 130 \text{ mA}$
Verlustleistung	$P_{tot} \leq 1.7 W$
Farbartdämpfung	$a_{25} \geq 56 \text{ dB}$
Farbdifferenzsignal-Ausgangs- spannungen (R-Y)-Signal	$u_{16SS} = 0,74 \dots 1,48 \text{ V}$
(B-Y)-Signal	$u_{13SS} = 0.94 \dots 1.88 \text{ V}$
Signaldämpfung	$a_{13}; a_{16} \ge 60 \text{ dB}$
Verhältnis der Farb- differenzsignale	$\frac{u_{16SS}}{u_{13SS}} = 0,71 \dots 0,87 \text{ V}$

A 4555 D Multistandarddekoder

* In Entwicklung *

Übersichtsschaltplan

Bauform: DIP-28, Plast (Bild 12)

Der bipolare Schaltkreis A 4555 D ist ein Multistandarddekoder für PAL, SECAM, NTSC 3,58 MHz und NTSC 4,43 MHz mit negativen Farbdifferenz-Ausgangssignalen.

Eigenschaften

- Die Farbdekoderschaltung ist in der Lage, die Farbartsignale der meisten in Europa und Übersee verwendeten Übertragungssysteme zu verarbeiten.
- Die Schaltung ermöglicht eine Farbtoneinstellung bei NTSC, sowie eine Identifikationswahl zwischen H-, V- oder kombinierter H- und V-Identifikation bei SECAM.

Folgende Baugruppen sind auf dem Chip integriert:

- Farbartteil

mit geregeltem Farbartsignalverstärker für PAL, SECAM und NTSC,

Farbartsignal - Regelspannungserzeugung,

PAL - Burst - Austaststufe.

Leitungstreiberausgang für die 64-µs-Verzögerungsleitung (PAL, SECAM) sowie je ein Begrenzer für das verzögerte und das unverzögerte SECAM-Signal und SECAM-Kreuzschalter.

- Demodulatorteil

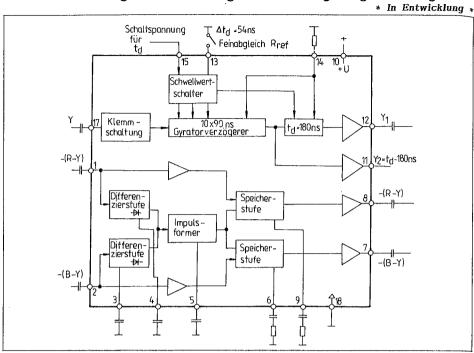
mit zwei Quadraturdemodulatoren mit externen Phasenschieberkreisen für SECAM und zwei Synchrondemodulatoren mit Austastung für PAL und NTSC mit interner Restträgerabsiebung, Deemphasis und Eintastung einer Referenzspannung als Unbuntwert bei SECAM sowie Farbdifferenz-Ausgangsstufen mit Farbabschaltung.

- Identifikationsteil

mit automatischer Standarderkennung durch sequentielle Abfrage mit Farbeinschalt- und Suchlaufstartverzögerung, Standardzwangseinschaltung.

Vier Schaltspannungsausgänge zum Schalten externer Filter,

Identifikationsschaltungen für PAL, SECAM, NTSC 3,58 MHz und NTSC 4,43 MHZ.


PAL/SECAM - Flipflop und PAL - Umschalter,

 $\label{thm:partial} Quarzos zillator\ mit\ Teilerstufe\ und\ Phasenvergleichsschaltung\ für\ doppelte\ Farbhilfsträger frequenz.$

Ausgewählte Kennwerte

Betriebsspannung $U_{CC} \le 13,2$ Strom an Leitungstreiber $I_{10} < 8$ mA

A 4565 D Signalversteilerungs- und Verzögerungsschaltung

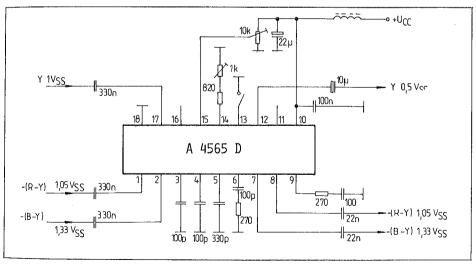
Übersichtsschaltplan

Bauform: DIP-28, Plast (Bild 12)

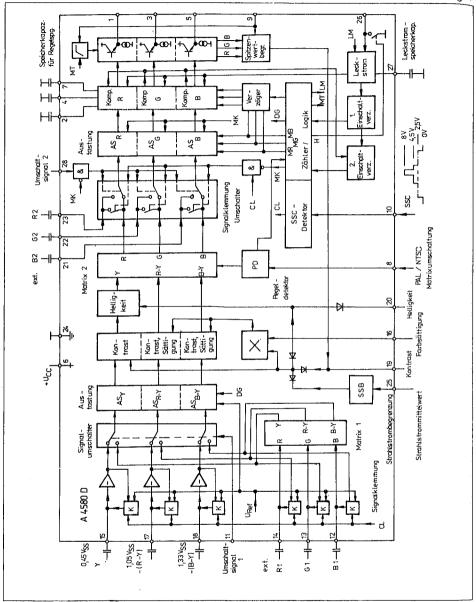
Der bipolare Schaltkreis A 4565 D ist eine Signalversteilerungs- und Verzögerungsschaltung.

Eigenschaften

- Die Schaltung wird zur Verbesserung des Kantenauflösungsvermögens der Farbdifferenzsignale eingesetzt.
- Sie wird an der (R-Y)- und (B-Y)-Schnittstelle eingefügt. Das Leuchtdichtesignal Y kann systemabhängig von 720 bis 990 ns verzögert werden, was zum Wegfall der üblichen Y-Verzögerungsleitung führt.


Folgende Baugruppen sind auf dem Chip integriert:

- Integrierte Gyratorverzögerung, umschaltbar in Schritten von 45 ns,
- Farbdifferenzkanäle (R-Y) und (B-Y) mit Speicherstufen und versteilerten Ausgangssignalen,
- Ausgang zur Geschwindigkeitsmodulation der Zeilenablenkung.


Grenzwerte

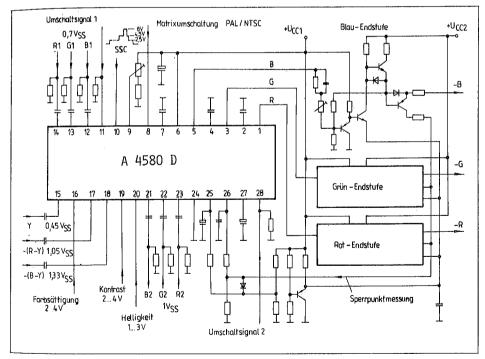
Grenzwert	Kurz- zeichen	min.	max.	Einheit
Betriebsspannung	U _{CC}	0	13,2	V
		0	T	v
Eingangsspannung an	UI		U _{CC}	'
den Anschlüssen 1,				
2, 12, 15				1
Spannung an				
Anschluß 7 gegen 6	U _{7/6}	0	5	V
Anschluß 8 gegen 9	U _{8/9}	0	5	V
Eingangsspannung an				
Anschluß 11	U ₁₁	0	U _{CC} - 3	V
Anschluß 17	U ₁₇	0	7	V
Eingangsstrom	I ₆ ,	÷	10	mA
	I ₉			
Verlustleistung	P _{tot}		1,1	W
Betriebstemperatur-	Ta	0	70	°C
bereich				
Lagerungstemperatur-	Tstg	-40	125	°C
bereich				

An die Anschlüsse 3, 4, 5, 6, 9, 13 und 14 ist das Anlegen einer Gleichspannung nicht erlaubt.

Applikationsbeispiel: Signalversteilerungs- und Verzögerungsschaltung

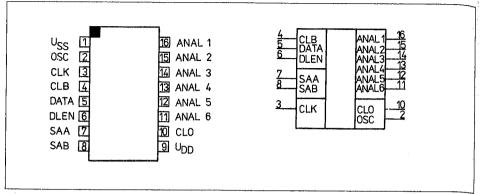
Übersichtsschaltplan

Bauform: DIP-18, Plast (Bild 6)


Der bipolare Schaltkreis A 4580 D ist eine Videokombination für RGB-Endstufen in Farbfernsehgeräten.

Eigenschaften

- Die Videokombination realisiert die Videoeinstellfunktionen in Farbfernsehgeräten mit Farbdifferenzschnittstelle.
- Sie besitzt Einblendmöglichkeiten für 2 externe analoge RGB-Signale.
- Die Schaltung ermöglicht automatischen Sperrpunktabgleich.


Polgende Besonderheiten werden durch den Schaltkreis realisiert:

- Kapazitive Signalankopplung der Farbdifferenzsignale und der externen RGB-Signale und Klemmung dieser Signale auf einen künstlichen Schwarzwert, sowie Horizontal- und Vertikalaustastung.
- z Zwei unabhängige RGB-Eingänge mit schnellen Signalumschaltern, wobei auf RGB 1 alle Einstellfunktionen wirken und auf RGB 2 nur die Helligkeitseinstellung, umschaltbare Matrix für PAL/SECAM und NTSC entsprechend der unterschiedlichen Primärfarben, Mittelwertstrahlstrombegrenzung mit Istwerteingang, Spitzenwertpegel der Endstufensteuerspannung extern wählbar, automatische Sperrpunktregelung mit Kompensation des Bildröhrenleckstroms und Einschaltverzögerungen zur Vermeidung von siehtbaren Einlaufeffekten, Bandbreite in allen Videokanälen typ. 10 MHz, Emitterfolgerausgänge zu den RGB-Endstufen.

Applikationsbeispiel: Videokombination

U 804 D 6fach-Analogwertspeicher mit D/A-Wandler

Anschlußbelegung und Schaltzeichen

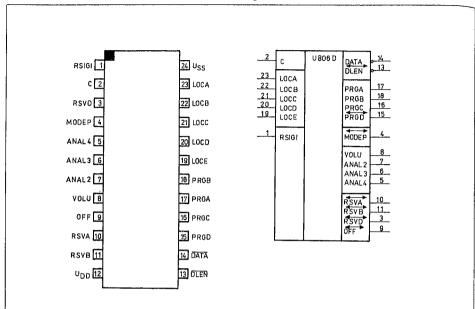
Bauform: DIP-16, Plast (Bild 4) Typstandard: TGL 43811

Bezeichnung der Anschlüsse

1	$^{ m U}_{ m SS}$	Bezugpotential	11	ANAL6	Open-drain-Analogwert-
2	OSC	Oszillator-Ausgang			Ausgang
3	CLK	Oszillator/Schmitt-Trigger-	12	ANAL5	Open-drain-Analogwert-
		Eingang			Ausgang
4	CLB	CBUS-Takteingang (asynchron)	13	ANAL4	Open-drain-Analogwert-
5	DATA	CBUS-Dateneingang			Ausgang
6	DLEN	CBUS-Datenfreigabeeingang	14	ANAL3	Open-drain-Analogwert-
7	SAA	Systemadreßeingang A			Ausgang
8	SAB	Systemadreßeingang B	15	ANAL2	Open-drain-Analogwert-
9	$U_{ m DD}$	Betriebsspannung			Ausgang
10	CLO	Open-drain-Oszillator-Ausgang	16	ANAL1	Open-drain-Analogwert-
		(gepuffert)			Ausgang

Der U 804 D ist ein mikrocomputersteuerbarer 6fach-Analogwertspeicher mit D/A-Wandler von je 6-Bit-Auflösung und pulsbreitenmodulierter Analogwertausgabe in n-Kanal-Silicon-Gate-Technik.

Eigenschaften


- Beinhaltet einen mikrocomputersteuerbaren 6fach-Analogwertspeicher mit D/A-Wandler von je 6-Bit-Auflösung,
- über den seriellen Datenkanal (CBUS) können 4 parallel betriebene Schaltkreise adressiert und gesteuert werden,
- die Chipadresse kann über zwei Eingänge extern programmiert werden,
- die Anwahl des ausgewählten Chips erfolgt über die Systemadreßbits des Datenwortes, über die Speicheradreßbits wird die Speicheradresse bestimmt und über die Analogwertbits wird der gewünschte Analogwert (binär) übertragen,
- verfügt über einen internen Taktoszillator zur Versorgung des Analogteils der Schaltung,
- an den Ausgängen werden die Analogwerte als Impulsmuster bereitgestellt und über eine externe Integration wird eine dem Analogwert proprotionale Gleichspannung gewonnen.

Folgende Baugruppen sind auf dem Chip integriert:

- Datenpuffer,
- Adreßzwischenspeicher,
- Datenzwischenspeicher,
- Zeitsteuerung,
- Referenzzahl,
- Auto-Reset,
- Register-/Empfänger-Steuerung,
- Oszillator,
- Selektionseinheit und
- Ring-SR.

Betriebsspannung	${}^{\mathrm{U}}\mathrm{_{DD}}$	$= 4,5 \dots 5,5 \text{ V}$
Stromaufnahme	I_{DD}	\leq 35 mA
Ausgangsspannung	UO	$= 0 \dots 15 V$
Oszillatorfrequenz	f_{OSZ}	= 0,7 1,4 MHz
Ausgangsströme	IO	= -10 10 mA
Eingangsspannung	U	$= -0,3 \dots 15 \text{ V}$
Gesamtverlustleistung	Ptot	≤ 250 mW
Verlustleistung pro Ausgang	PO	≤ 25 mW

U 806 D Infrarot-Fernbedienungs-Dekoder-Schaltkreis

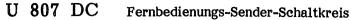
Anschlußbelegung und Schaltzeichen

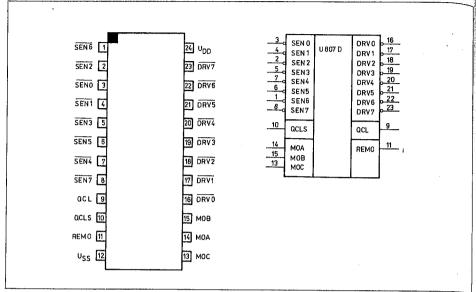
Bauform: DIP-24, Plast (Bild 10) Typstandard: TGL 38520

Bezeichnung der Anschlüsse

1	RSIGI	Serieller Signaleingang	13	$\overline{\mathrm{DLEN}}$	Datenbusfreigabe-Ein-/Ausgang
2	C	Systemtakteingang	14	DATA	Serieller Datenausgang
3	RSVD	Reserve-Ein-/Ausgang	15	PRGD	Programmregister-Ein-/-Ausgang
4	MODEF	Subsystem-Ein-/Ausgang	16	PRGC	Programmregister-Ausgang
5	ANAL4	Analogwertausgang	17	PRGA	Programmregister-Ausgang
6	ANAL3	Analogwertausgang	18	PRGB	Programmregister-Ausgang
7	ANAL2	Analogwertausgang	19	LOCE	Paralleler
8	VOLU	Analogwertausgang	20	LOCD	5-Bit-
9	OFF	Stand by-Ein-/Ausgang	21	LOCC	Eingang
1.0	RSVA	Reserve-Ein-/Ausgang	22	LOCB	für
11	RSVB	Reserve-Ein-/Ausgang	23	LOGA	Lokalbedienung
12	U_{DD}	Betriebsspannung	24	U_{SS}	Bezugspotential

Der U 806 D ist ein unipolarer Schaltkreis zur Verarbeitung von Befehlen, die durch Infrarotlicht übertragen werden und vom Fernbedienungsschaltkreis U 807 D erzeugt wurden.


Eigenschaften


- _ pekoder für 2 x 64 Befehle, Serielle Befehlsübertragung mit Pulsabstandsmodulation,
- großes Maß an Störsicherheit durch Formatprüfung und Doppelwortvergleich,
- das Steuerbit ermöglicht die Adressierung von zwei verschiedenen Empfängern,
- Ortsbedienung durch eine Tastatur am Gerät über eine externe Diodenmatrix (maximal 31 Befehle),
- Ausgabemode: Einzelbefehl (z. B. Ziffern),
 - Wiederholbefehl ca. 2/s (z. B. Schrittfunktion),
 - Wiederholbefehl ca. 8/s (z. B. Analogfunktion),
- über ein 4-Bit-Programmregister können bis zu 16 externe Programmspeicher adressiert werden (z. B. 16 verschiedene Rundfunksender),
- für Schaltfunktionen stehen 4 Schaltausgänge zur Verfügung,
- vier Ausgänge zur Steuerung analoger Größen gekoppelt mit einem 63stufigen Analogwertspeicher ermöglichen eine Analogwertspeicherung.

Folgende Baugruppen sind auf dem Chip integriert:

- a) Empfangsteil mit:
- Bit-Erkennung und Wortvergleich,
- _ Eingangscodierer,
- Auto-Reset,
- b) Ausgabeteil:
- Ausgabesteuerung,
- Programmregister,
- Analogteil,
- Schaltfunktionen.

Betriebsspannung	$U_{ m DD}$	$= 4,75 \dots 5,25 \text{ V}$
Stromaufnahme	I_{DD}	\leq 35 mA
Taktfrequenz	f_{C}	$= 65,25 \dots 68,8 \text{ kHz}$
Ausgangsstrom	IO	\leq 10 mA
Verlustleistung je Ausgang	^{P}O	≤ 50 mW
Eingangsspannung High	$v_{\rm IH}$	= 3,5 15 V
Eingangsspannung Low	v_{IL}	$= -0,3 \dots 1,2 \text{ V}$
Tastverhältnis	$\frac{t_{P}}{T}$	= 0,4 0,6

Anschlußbelegung und Schaltzeichen

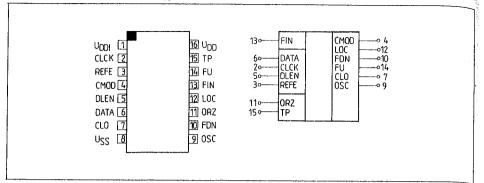
Bauform: DIP-24, Plast (Bild 10) Typstandard: TGL 38521

Bezeichnung der Anschlüsse

SEN6		${ m U}_{ m DD}$	Betriebsspannung
SEN2		DRV7	
SENØ		$\overline{\mathrm{DRV6}}$	
SEN1	Sensoreingänge der	$\overline{\mathrm{DRV5}}$	
SEN3	Tastenmatrix	$\overline{\mathrm{DRV3}}$	Treiberstufen-Ausgänge
SEN5		$\overline{\mathrm{DRV2}}$	für Tastenmatrix-Abfrage
SEN4	•	$\overline{\mathrm{DRV1}}$	
SEN7		$\overline{\mathrm{DRV}\emptyset}$	
QCL	Ausgang für Oszillator	MOB	Testeingang
QCLS	Eingang für Oszillator bzw. Systemtakt	MOA	Steuereingänge zur Auswahl
REMO	Signalausgang	MOC	der Betriebsart
$^{\mathrm{U}}\mathrm{_{SS}}$	Bezugspotential		

Der CMOS-Schaltkreis U 807 DC ist der Senderschaltkreis vorzugsweise zur Befehlsübertragung mit Infrarotlicht angepaßt an den Infrarot-Fernbedienungs-Dekoder-Schaltkreis U 806 D.

Eigenschaften


- Übertragung von 2 x 64 Befehlen (d. h. 64 Befehle pro Steuerbit) über serielle pulsabstandsmodulierte 7-Bit-Worte,
- durch einen Sender können über das adressierende Steuerbit zwei Empfängersysteme aktiviert werden,
- großer Betriebsspannungsbereich und geringer Stromverbrauch durch CMOS-Technologie,
- Doppelwortausgabe mit repetierender Übertragung,
- die Betriebsarten Infrarotfernbedienung und Lokalbedienung (Bedienung über Tasten am Gerät) sind wahlweise möglich,
- alle Eingänge sind mit integrierten Gateschutzdioden versehen.

Folgende Baugruppen sind auf dem Chip integriert:

- Oszillator beschaltet mit einem 4-MHz-Schwingquarz oder einen entsprechend dimensionierten LC-Schwingkreis,
- 6stufiger Vorteiler zur Erzeugung einer internen Taktfrequenz von 62,5 kHz,
- über die Steuereingänge MOA, MOB, MOC erfolgt die Auswahl der für den applikativen Einsatz gewünschten Betriebsart,
- _ Eingabeeinheit bestehend aus Matrix/Sensor; Matrix/Treiber und Tastatur-Abfragezähler,
- Impulsabstandsmodulator zur Kodierung der zu sendenden Ausgangssignale,
- Signalausgabesteuerung zur Ausgabe der pulsabstandsmodulierten Signale am Ausgang REMO seriell in Form von 7-Bit-Worten.

Betriebsspannung	Π^{DD}	=	$4,5 \dots 10,5 \text{ V}$
Betriebsruhestrom	I_{DDO}	<u> </u>	10 μΑ
Ausgangsstrom	$ I_{\Omega} $	<	10 mA
Oszillatorfrequenz (Fernbedienung)	f _{QCLS}	=	4 MHz
Taktfrequenz (Lokalbedienung)	fQCLS		62,5 kHz
Tastverhältnis (Lokalbedienung)	t/T		0,4 0,6
(Fernbedienung)	t/T	=	0,45 0,55

U 1056 D PLL-Synthesizer-Schaltkreis

Anschlußbelegung und Schaltzeichen

Bauform: DIP-16, Plast (Bild 4) Typstandard: TGL 42663

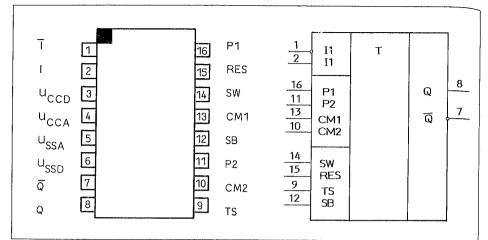
Bezeichnung der Anschlüsse

${\rm U}_{ m DD1}$	Speisespannung für Pegelkonverter	OSC	Oszillatorausgang für die Re
CLCK	Taktsignal für die Datenübertragung		ferenzfrequenz
REFE	Referenzteilerwahl	FDN	Nachstimmausgang zur Fre-
CMOD	Ausgang zur Steuerung des		quenzverringerung
	Vorteilers (open drain)	QRZ	Oszillatoreingang für Referen
DLEN	Freigabesignal für die Daten-		frequenz $(f_{max} = 4.0 \text{ MHz})$
	übertragung	LOC	Lock-Detektor-Ausgang
DATA	Eingang für die seriellen Daten-	FIN	Signaleingang, maximal 4 MH
	informationen	FU	Nachstimmausgang zur Fre-
CLO	Entkoppelter Ausgang des Referenz-		quenzerhöhung
	frequenzoszillators zur Ansteuerung	TP	Testanschluß (im Betriebs-
	weiterer Schaltungen		fall an U _{SS})
U_{SS}	Bezugspotential	U_{DD}	Betriebsspannung

Der U 1056 D ist eine PLL-Synthesizerschaltung, die zusammen mit einem diodenabgestimmten Tuner, einem HF-Vorteiler, einem aktiven Loop-Filter sowie einer Programmiereinheit ein komplettes Synthesizersystem für Rundfunkempfänger bildet.

Eigenschaften

- Es können Eingangsfrequenzen bis 4 MHz verarbeitet werden,
- die Dateneingabe erfolgt durch serielle 17-Bit-Datenwörter die nach erfolgter Formatkontrolle über ein Auffangregister zur Weiterverarbeitung gelangen,
- die Steuerleitungen sind durch Pegelumsetzer TTL-kompatibel,
- die Frequenz-Phasen-Detektor-Schaltung erzeugt über einen externen Integrator die Abstimmspannung für den Tuner,


- Referenzoszillatorfrequenz zum Erzeugen von 4 verschiedenen Frequenzrastern,
- entkoppelter Oszillatorfrequenz-Ausgang.

Folgende Baugruppen sind auf dem Chip integriert:

- Eine Teilerschaltung für die Eingangsfrequenz, die aus einem 5-Bit-Swallow-Zähler und einem 10-Bit programmierbarem Teiler besteht. (Das Teilerverhältnis wird von den letzten 15-Bit des über den DATA-Eingang eingelesenen und zwischengespeicherten 17-Bit-Datenwortes bestimmt. Das Datenwort enthält kodiert das dem gewünschten Sender entsprechende Teilerverhältnis.),
- einem 17-Bit-Auffangregister zum Speichern der 15-Bit-Daten für die Teilerzahl des Referenzteilers,
- einer Formatkontrollschaltung, die zwischen Störsignalen und Datenwörtern mit 17-Bit Wortlänge unterscheidet und Datenwörter mit anderer Wortlänge nicht annimmt,
- einem 16-Bit-Schieberegister, das die seriell eingeschriebenen Datenwörter DATA nach durchgeführter Formatkontrolle an das Auffangregister weiterleitet,
- einer Frequenz-Phasen-Detektor-Schaltung, die mit Hilfe eines externen, als Integrator eingeschalteten Verstärkers, die Abstimmspannung erzeugt,
- einer 13-Bit programmierten Teilerschaltung für die Referenzoszillatorfrequenz zum Erzeugen von vier verschiedenen Frequenzrastern,
- einem Dekoder mit zwei Setzeingängen und Ausgängen zur Programmierung des Referenzteilers auf die Teilerverhältnisse 1:160, 1:400, 1:800, 1:8000,
- einem Quarzoszillator zur Erzeugung der Oszillatorfrequenz mit einem entkoppelten Ausgang zur externen Verwendung der Oszillatorfrequenz,
- je einem Pegelumsetzer für die Eingangssignale DATA, DLEN, CLCK und REFE; diese Eingänge können mit TTL-Signalen angesteuert werden.

Betriebsspannung	$U_{ m DD}$	= 8 10 V
	U_{DDI}	= 4,5 5,5 V
Stromaufnahme	I_{DD}	= 10 μA
Ausgangsstrom	IO	= -10 10 mA
Oszillatorfrequens	$f_{\mathbf{I}}$	= $0 \dots 4 \text{ MHz}$
Eingungsfrequenz	f_{I}	= 0 100 MHz

U 1159 DC Teilerschaltkreis

Anschlußbelegung und Schaltzeichen

Bauform: DIP-16, Plast (Bild 4) Typstandard: MDS 106

Bezeichnung der Anschlüsse

Ī	Signaleingang, invertiert	TS	Tristate-Eingang
I	Signaleingang	CM2	Teilmoduseingang 2
$U_{\rm CCD}$	Betriebsspannung, digitaler Teil	P2	Programmiereingang 2
U_{CCA}	Betriebsspannung, analoger Teil	SB	Standby-Eingang
$^{ m U}_{ m SSA}$	Masse, analoger Teil	CM1	Teilmoduseingang 1
U_{SSD}	Masse, digitaler Teil	SW	Aktivierungseingang
\overline{Q}	Ausgang negiert	RES	Rücksetzeingang
Q	Ausgang	P1	Programmiereingang 1

Der U 1159 DC ist ein HF-Frequenzteiler, der zusammen mit einem diodenabgestimmten Tuner, einer PLL-Synthesizerschaltung, einem aktiven Coop-Filger sowie einer Programmiereinheit ein komplettes Synthesizersystem für Rundfunkempfänger bildet.

Eigenschaften

- $_{-\,\mathrm{Schneller}}$ programmierbarer Frequenzteiler mit einer maximalen Eingangsfrequenz von 125 MHz,
- besonders geeignet als Hochfrequenzteiler für Frequenzmeß- und Synthesizersysteme,
- symetrischer Eingang mit hoher Empfindlichkeit für den Anschluß von symetrischen Leitungen,
- bietet die Möglichkeit zwei Oszillatoren anzuschließen, sofern gewährleistet wird, daß jeweils nur ein Oszillator aktiviert wird,
- zwei komplementäre open-drain-Ausgänge ermöglichen die Ansteuerung von CMOS-Schaltungen, die entweder auf positive oder negative Flanke reagieren,
- Ricksetz-Eingang, Tristate-Eingang, Standby-Eingang,
- Programmiereingänge und Steuereingänge zur Programmierung der Teilerverhältnisse.

Folgende Baugruppen sind auf dem Chip integriert:

- Vorverstärker,
- mehrstufige Teilerlogik,
- Programmier- und Steuereinheit.

Betriebsspannung	$U_{CC} = 4,5 \dots 5,5 \text{ V}$
Stromaufnahme	$I_{CC} \leq 40 \text{ mA}$
Standby-Stromaufnahme	$I_{\text{CCSB}} \leq 20 \ \mu\text{A}$
Verlustleistung	$P_{tot} \leq 0,25 W$
max. Ausgangsstrom	$I_{\text{Omax}} \leq 20 \text{ mA}$

U 192 D Dekoderschaltkreis

Anschlußbelegung und Schaltzeichen

Bauform: DIP-16, Plast (Bild 4) Typstandard: TGL 42662

	1					·				<i>V</i> L				
D	С	В	A	Oa	Ob	Oc	Od	Oe	Of	Og	Oh	Oi	Or	Display
L	L	L	L	L	Н	Н	L	L	L	L	L	L	Н	
L	L	L	H	Н	H	L	Н	Н	L	Н	L	L	Н	
L	L	Н	L	Н	Н	Н	Н	L	L	Н	L	L	Н	\exists
L	L	Н	H	L	Н	Н	L	L	Н	Н	L	L	Н	4
L	Н	L	L	Н	L	Н	Н	L	Н	Н	L	L	Н	5
L	Н	L	Н	Н	L	Н	Н	Н	Н	Н	L	L	Н	6
L	Н	H	L	Н	Н	Н	L	L	L	L	L	L	Н	
L	Н	Н	Н	Н	H	Н	Н	H	Н	Н	L	L	Н	
H	L	L	L	Н	Н	Н	Н	L	Н	Н	L	L	Н	
H	L	L	Н	Н	Н	Н	Н	Н	Н	L	Н	Н	Н	
H	L	Н	L	L	Н	Н	L	L	L	L	Н	Н	Н	
H	L	Н	Н	Н	Н	L	Н	Н	L	Н	Н	Н	Н	
H	H	\mathbf{L}_{-}	L	Н	Н	Н	Н	L	L	Н	Н	Н	Н	
Н	Н	L	Н	L	Н	Н	L	L	Н	Н	Н	Н	Н	
H	Н	Н	L	Н	L	Н	H	L	Н	Н	Н	Н	Н	15
Н	Н	H	H	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	15

Ausgewählte Kennwerte

Kennwerte	Kurz- zeichen	Meßbedingung	min.	max.	Einheit
Betriebsspannung	$v_{ m DD}$		10,8	15	ν
Ausgangsspannung	UO		0	U _{DD}	V
Ausgangsstrom H	I _{OH}			10	mA

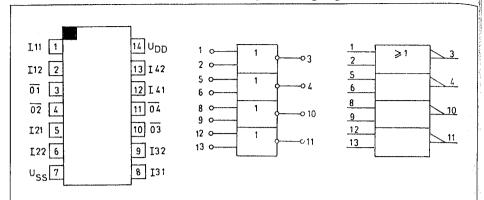
Logikbaureihen

CMOS-Schaltkreise

Die CMOS-Schaltkreise der Logikbaureihe V 4000 sind in gepufferter Schaltungstechnik ausgeführt (außer V 4007 D) und entsprechen in ihren statischen elektrischen Parametern der JEDEC-Standard-B-Serien-Spezifikation. Im Vergleich zu TTL- bzw. Low-power. TTL-Schaltkreisen zeichnen sich die CMOS-Schaltkreise durch folgende Vorteile aus

- Niedrige Verlustleistung bis ca. 10 MHz (ermöglicht den Einsatz in batteriegepufferten Schaltungen),
- der Maximalwert der Ausgangsimpedanz ist nahezu unabhängig von allen erlaubten Ein gangsbelegungen,
- nahezu ideale Übertragungskennlinie,
- großer Betriebsspannungsbereich (${\rm U}_{
 m DD}$ = 3 bis 15 V), geringe Stabilisierung der Betriebsspannung erforderlich,
- hohe statische Störsicherheit,
- niedrige, einheitliche Eingangskapazität,
- Arbeitstemperaturbereich von -40 bis 85 °C,
- Lieferung in Dual-in-line-Plastgehäusen.

Diese Eigenschaften erschließen CMOS-Schaltkreisen eine Reihe neuer Anwendungsmöglichkeiten in Ergänzung zu den TTL-Schaltkreisfamilien.


Grenzwerte

	Kurz- zeichen	min.	max.	Einheit
Betriebsspannung	$U_{ m DD}$	U _{SS} - 0,5	U _{SS} + 18	V
Eingangsspannung	UI	U _{SS} - 0,5 U _{SS} - 0,5	U _{DD} + 0,5	V
Ausgangsspannung	UO	U _{SS} - 0,5	$U_{\mathrm{DD}}^{\mathrm{DD}} + 0.5$	v
Verlustleistung je	P _V		100	m W
Ausgangstransistor				
Gesamtverlustleistung	P _{tot}		300^{1} 150^{2}	mW
			150 ²⁾	mW
Gesamtverlustleistung ³⁾	Ptot		600 ¹⁾	mW
	101		300 ²⁾	mW
Lastkapazität je Ausgang	C _{I.}		5	nF
Eingangsstrom	$\begin{vmatrix} \mathbf{c}_{\mathrm{L}} \end{vmatrix}$		10	mA
Betriebstemperaturbereich	Ta	-40	+85	°C
Lagerungstemperaturbereich	Tstg	-55	+125	°C

¹⁾ $T_a = -40...+70$ °C; 2) $T_a = +85$ °C; 3) nur V 4034 D

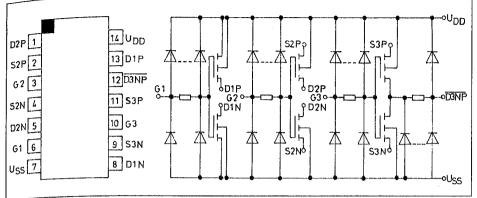
Ausgo	Kurz-	Mei	Bbeding	ungen			
Kennwert	zeichen	l	Ι _Ο (μΑ)	U _O (V)	min.	max.	Einheit
Ausgangsspannung High	U _{ОН}	5	< 1		4,95		V
Manage	011	10	< 1		9,95		v
		15	< 1		14,95		v
Ausgangsspannung Low	UOL	5	< 1			0,05	v
		10	< 1			0,05	v
		15	< 1			0,05	V
Ausgangsstrom High	-I _{OH}	5		4,6	0,4		mA
	0	10		9,5	0,9		mA
		15		13,5	2,4		mA
Ausgangsstrom Low	IOL	5		0,4	0,4		mA
	"	10		0,5	0,9		m A
		15		1,5	2,4		mA
Eingangsspannung High	U _{IH}	5	< 1	0,5/4,5	3,5		v
		10	< 1	1,0/9,0	7,0		v
		15	< 1	1,5/13,5	11,0		v
Eingangsspannung Low	U _{IL}	5	< 1	0,5/4,5		1,5	v
		10	< 1	1,0/9,0		3,0	v
		15	< 1	1,5/13,5		4,0	v
Eingangsreststrom High		15		T _a = -25 °C		0,1	μΑ
		15		T _a = 85 °C		1,0	μΑ
Reststrom der	IZH	15		15,T _a = -25 ℃		1,2	μΑ
Tristate-Ausgänge		15		15,T _a = 85 ℃		12	μA
Reststrom der	-I _{ZL}	15		0, T _a = 25 ℃		1,2	μΑ
Tristate-Ausgänge		15		0, T _a = 85 ℃	ĺ	12	μA
Eingangskapazität	CI			$T_a = -25$ °C		7,5	рF
Stromaufnahme	I_{DD}	5				7,5	μΑ
Gatter		10				15	μA
		15				30	μΑ
Stromaufnahme	I _{DD}	5				30	μA
Flip - Flop, Latch		10				60	μА
Gatter		15				120	μА
Stromaufnahme	I_{DD}	5				150	μА
Zähler, Register		10				300	μА
		_15				600	μΑ

V 4001 D 4 NOR-Gatter mit je 2 Eingängen

Anschlußbelegung, Schaltzeichen und IEC-Zeichen

Bauform V 4001 D: DIP-14, Plast (Bild 3) Bauform V 4001 S: SO-14 (Bild 28) Typstandard: TGL 38605

Funktionstabelle


In1	In2	Ōn
L	L	Н
H	L	L
L	Н	L
Н	H	L

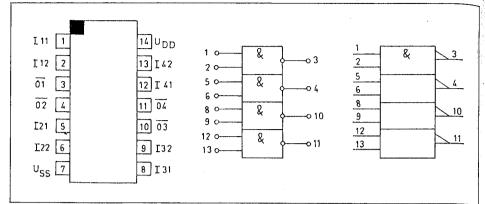
(n = 1...4)

Ausgewählte Kennwerte

Kennwerte	Kurz- zeichen	Meßbedingung	min.	max.	Einheit
Flankenübergangszeit der Ausgangssignale	t _{TLH}	$U_{DD} = 5 V$ $U_{DD} = 10 V$ $U_{DD} = 15 V$		200 100 80	ns ns ns
Verzögerungszeit	t _{PLH} t _{PHL}	$U_{DD} = 5 V$ $U_{DD} = 10 V$ $U_{DD} = 15 V$		150 75 60	ns ns ns

y 4007 D 2 Transistorpaare und 1 Inverter

Anschlußbelegung, Schaltzeichen und IEC-Zeichen


Bauform V 4007 D: DIP-14, Plast (Bild 3) Typstandard: TGL 42628

Bezeichnung der Anschlüsse

D2P	Drain 2, p-Kanal-Transistor	${\tt U}_{ m DD}$	Betriebsspannung
S2P	Source 2, p-Kanal-Transistor	D1P	Drain 1, p-Kanal-Transistor
G2	Gate 2	$\overline{\mathrm{D3NP}}$	Drain 3, p/n-Kanal-Transistor
S2N	Source 2, n-Kanal-Transistor	S3P	Source 3, p-Kanal-Transistor
D2N	'Drain2, n-Kanal-Transistor	G3	Gate 3
G1	Gate 1	S3N	Source 3, n-Kanal-Transistor
U_{SS}	Bezugspotential	D1N	Drain 1, n-Kanal-Transistor

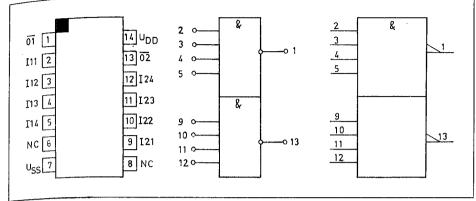
Kennwerte	Kurz- zeichen	Meßbedingung	min.	max.	Einheit
Flankenübergangszeit der	t _{TLH}	$U_{\mathrm{DD}} = 5 \text{ V}$		200	ns
Ausgangssignale	t _{THL}	$U_{\mathrm{DD}} = 10 \text{ V}$		100	ns
		$U_{\mathrm{DD}}^{}$ = 15 V		80	ns
Verzögerungszeit	t _{PLH}	$U_{\mathrm{DD}}^{\mathrm{DD}} = 5 \text{ V}$		110	ns
	t _{PHL}	$U_{\overline{DD}} = 10 \text{ V}$		60	ns
		$U_{\mathrm{DD}}^{}$ = 15 V		50	ns
	1				l

V 4011 D 4 NAND-Gatter mit je 2 Eingängen

Anschlußbelegung, Schaltzeichen und IEC-Zeichen

Bauform V 4011 D: DIP-14, Plast (Bild 3) Bauform V 4011 S: SO-14 (Bild 28) Typstandard: TGL 38605

Funktionstabelle


In1	In2	Ōn
L	L	Н
L	Н	Н
Н	L	Н
Н	Н	L

(n = 1...4)

Ausgewählte Kennwerte

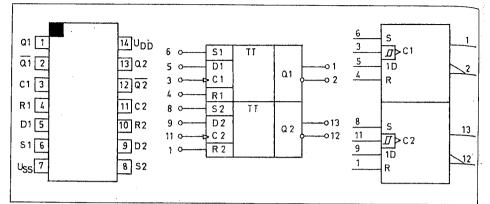
Kennwerte	Kurz- zeichen	Meßbedingung	min.	max.	Einheit
Flankenübergangszeit der Ausgangssignale	t _{TLH}	$U_{\mathrm{DD}} = 5 \text{ V}$ $U_{\mathrm{DD}} = 10 \text{ V}$ $U_{\mathrm{DD}} = 15 \text{ V}$		200 100 80	ns ns ns
Verzögerungszeit	t _{PLH}	$U_{\mathrm{DD}} = 5 \text{ V}$ $U_{\mathrm{DD}} = 10 \text{ V}$ $U_{\mathrm{DD}} = 15 \text{ V}$		150 75 60	ns ns ns

V 4012 D 2 NAND-Gatter mit je 4 Eingängen

Anschlußbelegung, Schaltzeichen und IEC-Zeichen

Bauform V 4012 D: DIP-14, Plast (Bild 3) Bauform V 4012 S: SO-14 (Bild 28) Typstandard: TGL 38605

Funktionstabelle


Laurenann							
In1	In2	In3	In4	Ōn			
L	L	L	L	Н			
H ·	L	L	L	н			
L	Н	L	L L	Н			
Н	H	L	L	Н			
l L	L	Н	L	H			
Н	L	Н	L	H			
L	Н	H	L	Н			
H	H	H	L	H			
L	L	L	Н	H			
H	L	L	H	H			
L	Н	L	H	H			
Н	H	L	H	H			
L	L	H	Н	Н			
Н	L	H	Н	H			
L	Н	H	H	Н			
Н	H	Н	н	L			

*Die mit "NC" (nicht kontaktiert) bezeichneten Anschlüsse können mit Potentialen: $U_{SS} \stackrel{\checkmark}{=} U \stackrel{\checkmark}{=} U_{SS} + 18 \text{ V}$ belegt werden.

(n = 1...2)

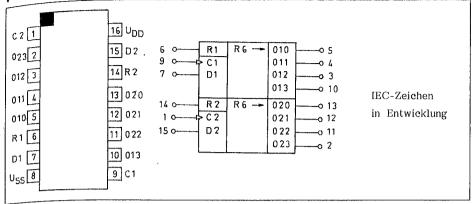
Kennwerte	Kurz- zeichen	Meßbedingung	min.	max.	Einheit
Flankenübergangszeit der	t _{TLH}	$U_{ m DD} = 5 \text{ V}$		200	ns
Ausgangssignale	t _{THL}	$U_{\mathrm{DD}}^{\mathrm{DD}} = 10 \mathrm{V}$		100	ns
	1112	$U_{\mathrm{DD}}^{\mathrm{DD}} = 15 \mathrm{V}$		80	ns
Verzögerungszeit	t _{PLH}	$U_{\mathrm{DD}}^{\mathrm{DD}} = 5 \mathrm{V}$		170	ns
	t _{PHL}	$U_{\mathrm{DD}}^{\mathrm{DD}} = 10 \text{ V}$		75	ns
		$U_{\mathrm{DD}} = 15 \text{ V}$		60	ns

V 4013 D 2 x D-Flip-Flop

Anschlußbelegung, Schaltzeichen und IEC-Zeichen

Funktionstabelle

Bauform V 4013 D: DIP-14, Plast (Bild 3) Bauform V 4013 S: SO-14 (Bild 28) Typstandard: TGL 38996


	Eingänge	Ause	änge		
С	D	R	s	ବ	ହି
L/H-Flanke	L	L	L	L	Н
L/H-Flanke	Н	L	L	Н	L
H/L-Flanke	x	L	L	Q	ହ
x	x	Н	L	L	н
x	x	L	Н	н	L
x	x	Н	Н	H ¹⁾	H ¹⁾

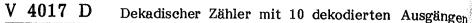
Ausgewählte Kennwerte

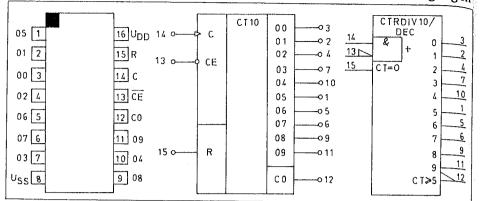
(x = L oder H) 1) ungültige Verknüpfung

Hubge wantee Heminter et		, <u></u>	, 1, angareng	0 (01	~6
Kennwerte	Kurz- zeichen	Meßbedingung	min.	max.	Einheit
Setzimpulsbreite bzw.	t _{SH}	$U_{\mathrm{DD}} = 5 \text{ V}$	180		ns
Rücksetzimpulsbreite	$t_{ m RH}$	$U_{\mathrm{DD}} = 10 \text{ V}$	80		ns
		$U_{\mathrm{DD}} = 15 \text{ V}$	50		ns .
Verzögerungszeit	t _{PCHL}	$U_{\mathrm{DD}} = 5 \text{ V}$		300	ns
C → Q, Q̄ S → Q	t _{PCLH}	$U_{\overline{DD}} = 10 \text{ V}$		130	ns
$S \rightarrow Q$	t _{PSLH}	$U_{\mathrm{DD}} = 15 \text{ V}$		90	ns
$R \rightarrow \overline{Q}$	t _{PRLH}				
Verzögerungszeit	t _{PSHL}	$U_{\mathrm{DD}} = 5 \text{ V}$		400	ns
$S \rightarrow \overline{Q}$	tPRHL	$U_{\mathrm{DD}}^{} = 10 \text{ V}$		170	ns
$R \rightarrow Q$		$U_{\mathrm{DD}}^{-1} = 15 \text{ V}$		120	ns

V 4015 D 2 x 4 Bit Schieberegister

Anschlußbelegung und Schaltzeichen

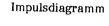

Bauform: DIP-16, Plast (Bild 4) Typstandard: TGL 38997


Funktionstabelle

Eingi	inge			Ausgänge				
m	С	D	R	On0	On1	On2	On3	
1	L/H-Flanke	D1	L	D1	х	x	x	
2	L/H-Flanke	D2	L	D2	D1	х	x	
3	L/H-Flanke	D3	L	D3	D2	D1	x	
4	L/H-Flanke	D4	L	D4	D3	D2	D1	
	H/L-Flanke	x	L	keine Änderung				
	х	х	Ĥ	L	L	L	L	

(m = Anzahl der Takte; x = L oder H; n = 1,2)

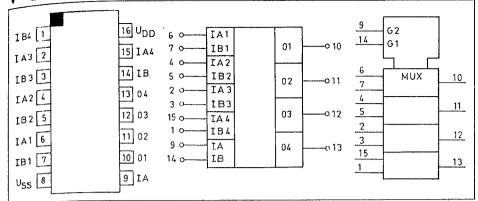
Kennwerte	Kurz- zeichen	Meßbedingung	min.	max.	Einheit
Taktfrequenz	$f_{\mathbf{C}}$	U _{DD} = 5 V		3	MHz
		$U_{\mathrm{DD}}^{\mathrm{DD}} = 10 \text{ V}$		6	MHz
		$U_{\mathrm{DD}}^{\mathrm{DD}} = 15 \mathrm{V}$		8,5	MHz
Verzögerungszeit	t _{PHL}	$U_{\mathrm{DD}}^{\mathrm{DD}} = 5 \mathrm{V}$		320	ns
C On	t _{PLH}	$U_{\mathrm{DD}}^{\mathrm{DD}} = 10 \text{ V}$		160	ns
	1 211	$U_{\mathrm{DD}}^{\mathrm{DD}}$ = 15 V		120	ns
Verzögerungszeit	t _{PRHL}			400	ns
R -→ On		$U_{\mathrm{DD}} = 10 \text{ V}$		200	ns
		$U_{\mathrm{DD}} = 15 \text{ V}$		160	ns



Anschlußbelegung, Schaltzeichen und IEC-Zeichen

Bauform: DIP-16, Plast (Bild 4)

Typstandard: TGL 42631



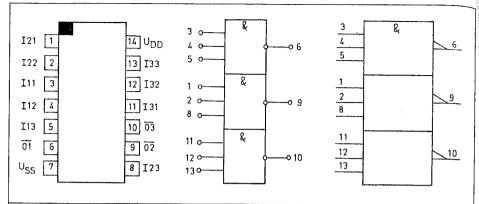
Ausgewählte Kennwerte

Kennwerte	Kurz- zeichen	Meßbedingung	min.	max.	Einheit
Beruhigungszeit nach	t _{SR}	$U_{\mathrm{DD}} = 5 \text{ V}$	400		ns
H/L-Flanke Reset vor		$U_{\mathrm{DD}}^{\mathrm{DD}} = 10 \mathrm{V}$	280		ns
L/H-Flanke des Taktes		$U_{\mathrm{DD}}^{\mathrm{DD}} = 15 \mathrm{V}$	150		ns
Verzögerungszeit	t _{PC}	$U_{\mathrm{DD}}^{\mathrm{DD}} = 5 \mathrm{V}$		650	ns
Takt -► Ausgang		$U_{\mathrm{DD}}^{\mathrm{DD}} = 10 \mathrm{V}$		270	ns
		$U_{\mathrm{DD}}^{\mathrm{DD}} = 15 \text{ V}$		170	ns
Verzögerungszeit	t _{PCCO}	$U_{DD} = 5 V$		600	ns
Takt -+ CO		$U_{\mathrm{DD}}^{\mathrm{DD}}$ = 10 V		250	ns
		$U_{\mathrm{DD}}^{\mathrm{DD}} = 15 \text{ V}$		160	ns

V 4019 D 4 AND/OR-Auswahlgatter

Anschlußbelegung, Schaltzeichen und IEC-Zeichen

Bauform: DIP-16, Plast (Bild 4) Typstandard: TGL 42632


Funktionstabelle

IA	IB	IAn	IBn	On
Х	Н	Х	Н	Н
Н	x	Н	х	Н
x	x	L	L	L
L	L	х	х	L
Н	L	L	Н	L
L	Н	Н	L	L

(x = L oder H)

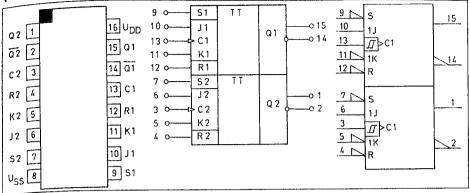
Kennwerte	Kurz- zeichen	Meßbedingung	min.	max.	Einheit
Flankenübergangszeit der Ausgangssignale Verzögerungszeit	t _{TLH} t _{THL} t _{PLH} t _{PLH}	$U_{DD} = 5 V$ $U_{DD} = 10 V$ $U_{DD} = 15 V$ $U_{DD} = 5 V$ $U_{DD} = 10 V$ $U_{DD} = 15 V$		200 100 80 300 120 100	ns ns ns ns ns

V 4023 D 3 NAND-Gatter mit je 3 Eingängen

Anschlußbelegung, Schaltzeichen und IEC-Zeichen

Bauform V 4023 D: DIP-14, Plast (Bild 3) Bauform V 4023 S: SO-14 (Bild 28) Typstandard: TGL 42632

Funktionstabelle


In1	In2	In3	Ōn
L	L	L	Н
Н	L	L	н
L	Н	L	Н
Н	Н	L	Н
L	L	Н	Н
H	L	Н	Н
L	Н	Н	Н
Н	Н	Н	L

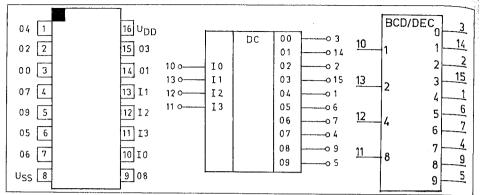
(n = 1...3)

Ausgewählte Kennwerte

Kennwerte	Kurz- zeichen	Meßbedingung	min.	max.	Einheit
Flankenübergangszeit der	t _{TLH}	$U_{\mathrm{DD}} = 5 \text{ V}$		200	ns
Ausgangssignale	t _{THL}	$U_{\mathrm{DD}} = 10 \text{ V}$		100	ns
		$U_{\mathrm{DD}}^{} = 15 \text{ V}$		80	ns
Verzögerungszeit	t_{PLH}	$U_{\mathrm{DD}} = 5 \text{ V}$		170	ns
	t _{PHL}	$U_{\overline{DD}} = 10 \text{ V}$		75	ns
		$U_{\mathrm{DD}} = 15 \text{ V}$		60	ns

V 4027 D 2 Master-Slave-JK-Flip-Flop

Anschlußbelegung, Schaltzeichen und IEC-Zeichen Funktionstabelle


Bauform: DIP-16, Plast (Bild 4) Typstandard: TGL 42629

Ein	gänge			Ausgang		Ausga	änge
J	K	S	R	Q t _n	С	Q t _{n+1}	Q t _{n+1}
Н	x	L	L	L	L/H-Flanke	Н	L
х	L	L	L	H	L/H-Flanke	Н	L
L	x	L	L	L	L/H-Flanke	L	Н
х	Н	L	L	H	L/H-Flanke	L	Н
х	x	L	L	х	H/L-Flanke	Q _n	\bar{Q}_{n}
x	x	Н	L	х	x	Н	L
х	x	L	н	х	x	L	Н
x	X.	Н	Н	х	x	Н	Н
			1		l	1	

(x = L oder H)

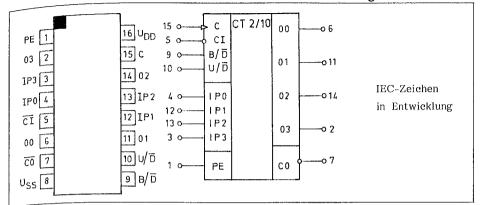
Kennwerte	Kurz- zeichen	Meßbedingung	min.	max.	Einheit
Setzimpulsbreite Rücksetzimpulsbreite	t _{SH}	$U_{\mathrm{DD}} = 5 \text{ V}$ $U_{\mathrm{DD}} = 10 \text{ V}$ $U_{\mathrm{DD}} = 15 \text{ V}$	180 80 50		ns ns ns
Verzögerungszeit C -+ Q, Q S -+ Q R -+ Q	t _{PCHL} t _{PCLH} t _{PSLH} t _{PRLH}	$U_{DD} = 5 \text{ V}$ $U_{DD} = 10 \text{ V}$ $U_{DD} = 15 \text{ V}$		300 130 90	ns ns ns
Verzögerungszeit S -+ Q R Q	t _{PSHL}	$U_{\mathrm{DD}} = 5 \text{ V}$ $U_{\mathrm{DD}} = 10 \text{ V}$		400 170	ns ns

V 4028 D BCD-zu-Dezimal-Dekoder

Anschlußbelegung, Schaltzeichen und IEC-Zeichen

Funktionstabelle

Bauform V 4028 D: DIP-16, Plast (Bild 4) Bauform V 4028 S: SO-16 (Bild 29) Typstandard: TGL 38997


10	I1	I2	13	O0	01	O2	O3	04	O5	O6	07	O8	O9
L	L	L	L	Н	L	L	L	L	L	L	L	L	L
Н	. T	L	L	L	Н	L	L	L	L	L	L	L	L
L	H	L	L	L	L	Н	\mathbf{L}	L	L	L	L	\mathbf{L}	L
Н	Н	L	L	L	L	\mathbf{L}	Н	\mathbf{L}	L	L	\mathbf{L}	L	L
L	L	Н	L	L	L	L	L	Н	L	L	L	L	L
Н	L	Н	L	L	L	L	L	L	H	L	L	L	Γ .
L	Н	Н	L	L	L	L	L	L	L	Н	L	L	L
Н	Н	Н	L	L	L	L	L	L	L	L	Н	L	\mathbf{L}
L	L	L	Н	L	L	L	L	\mathbf{L}	L	L	L	Н	L
Н	L	\mathbf{L}	H	L	L	L	L	L	L	L	L	L	Н
L	Н	L	Н	L	L	L	L	L	L	L	L	L	L
Н	Н	L	Н	L	L	L	L	L	\mathbf{L} .	L	\mathbf{L}	L	L
L	L	Н	H	L	L	L	L	L	L	L	L	L	\mathbf{L}
Н	L	Н	Н	L	L	\mathbf{L}	L	L	L	L	L	L	L
L	Н	Н	Н	L	L	L	L	L	L	L	\mathbf{L}	L	L
H	Н	Н	Н	L	L	L	L	L	L	L	L	L	L

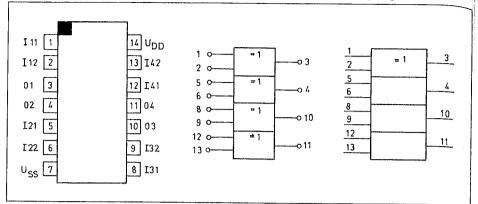
Ausgewählte Kennwerte

B- Hanzeo Itchill	CI CG				
Kennwerte	Kurz- zeichen	Meßbedingung	min.	max.	Einheit
Verzögerungszeit	t _{PHL}	$U_{DD} = 5 \text{ V}$	 	350	ns
In → On	t _{PLH}	$U_{\mathrm{DD}}^{\mathrm{DD}} = 10 \mathrm{V}$		160	ns
		$U_{\mathrm{DD}} = 15 \text{ V}$		120	ns

v 4029 D

Synchroner 4stufiger binärer BCD-Vor-/ Rückwärtszähler mit Voreinstellung

Anschlußbelegung, Schaltzeichen


Bauform: DIP-16, Plast (Bild 4) Typstandard: TGL 42629

Funktionstabelle

Steuereingang	Logiksymbol	Funktion
B/D̄	Н	binär
B/D	L	dezimal
U/D̄	Н	vorwärts zählen
U/D̄	L	rückwärts zählen
PE	Н	voreinstellen
PE	L	nicht voreinstellen
CI	Н	keine Änderungen
$\overline{\text{CI}}$	L	zählen

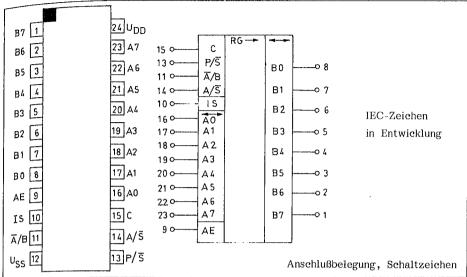
Kennwerte	Kurz- zeichen	Meßbedingung	min.	max.	Einheit
Verzögerungszeit Takt→ On	t _{PC}	$U_{\mathrm{DD}} = 5 \text{ V}$ $U_{\mathrm{DD}} = 10 \text{ V}$		500 240	ns ns
Verzögerungszeit Takt→ CO	t _{PCCO}	$U_{\mathrm{DD}} = 15 \text{ V}$ $U_{\mathrm{DD}} = 5 \text{ V}$ $U_{\mathrm{DD}} = 10 \text{ V}$		180 560 260	ns ns ns
Verzögerungszeit PE O	t _{PPE}	$U_{\mathrm{DD}} = 15 \text{ V}$ $U_{\mathrm{DD}} = 5 \text{ V}$ $U_{\mathrm{DD}} = 10 \text{ V}$		190 470 200	ns ns ns
		$U_{\mathrm{DD}}^{\mathrm{DD}} = 15 \mathrm{V}$		160	ns

V 4030 D 4 Exklusiv-OR-Gatter mit je 2 Eingängen

Anschlußbelegung, Schaltzeichen und IEC-Zeichen

Bauform V 4030 D: DIP-14, Plast (Bild 3) Bauform V 4030 S: SO-14 (Bild 28) Typstandard: TGL 38605

Funktionstabelle


Eir In1	Eingänge In1 In2						
L	L	L					
Н	L	Н					
L	Н	Н					
Н	Н	L					

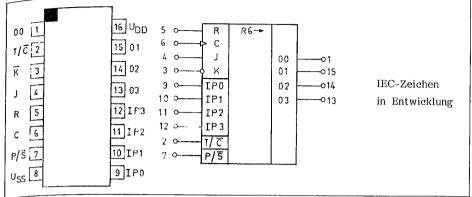
$$(n = 1...4)$$

Ausgewählte Kennwerte

Kennwerte	Kurz- zeichen	Meßbedingung	min.	max.	Einheit
Flankenübergangszeit der Ausgangssignale	t _{TLH}	$U_{\mathrm{DD}} = 5 \text{ V}$ $U_{\mathrm{DD}} = 10 \text{ V}$ $U_{\mathrm{DD}} = 15 \text{ V}$		200 100 80	ns ns ns
Verzögerungszeit	t _{PLH}	$U_{DD} = 5 V$ $U_{DD} = 10 V$ $U_{DD} = 15 V$		220 100 75	ns ns ns

γ 4034 D 8stufiges bidirektionales paralleles/ serielles Busregister

Funktionstabelle Typstandard: TGL 42630 Bauform: DIP-24, Plast (Bild 10)

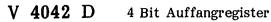

AE	P/S	Ā∕B	A/\overline{S}	Arbeitsweise
L	L	L	X	Serieller Mode; serieller Dateneingang; A-Ausgänge gesperrt
L	L	Н	X	Serieller Mode; serieller Dateneingang; Kanal-B-Ausgabe
L	Н	L	L	Paralleler Mode; B-synchrone Eingänge;
				A-Datenausgänge gesperrt
L	Н	L	Н	Paralleler Mode; B-asynchrone Eingänge;
				A-Datenausgänge gesperrt
L	Н	Н	L	Paralleler Mode; A-Eingabe gesperrt;
				B-Ausgabe; synchroner Datenumlauf
L	Н	H	Н	Paralleler Mode; A-Eingabe gesperrt;
				B-Ausgabe; asynchroner Datenumlauf
Н	L	L	X	Serieller Mode; synchrone serielle Dateneingabe; Kanal A
H	L	H	X	Serieller Mode; synchrone serielle Dateneingabe; Kanal B
Н	Н	L	L	Paralleler Mode; synchroner Eingang Kanal B;
				Kanal-A-Ausgabe
H	H	Н	L	Paralleler Mode; synchrone Eingabe Kanal A;
				Kanal-B-Ausgabe
Н	H	H	H	Paralleler Mode; asynchrone Eingabe Kanal A;
		,		Kanal-B-Ausgabe

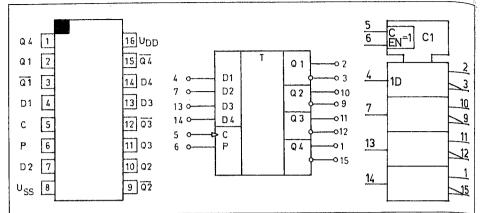
$$(X = L \text{ oder } H)$$

Ausgewählte Kennwerte

Kennwerte	Kurz- zeichen	Meßbedingung	min.	max.	Einhei
Flankenübergangszeit der	t _{TLH}	$U_{DD} = 5 V$		200	ns
Ausgangssignale	t _{THL}	$U_{DD}^{DD} = 10 \text{ V}$		100	ns
	''''	$U_{DD}^{DD} = 15 \text{ V}$		80	ns
Taktfrequenz	f _C	$U_{DD}^{DD} = 5 \text{ V}$		2	MH
		$U_{DD} = 10 \text{ V}$	Ì	5	MHz
		$U_{DD}^{DD} = 15 \text{ V}$		7	MHz
Taktimpulsbreite	t _{CH}	$U_{DD}^{DD} = 5 \text{ V}$	250		ns
		$U_{DD} = 10 \text{ V}$	100		ns
	İ	$U_{DD}^{DD} = 15 \text{ V}$	70		ns
Impulsbreite AE, P/\overline{S} , A/\overline{S}	t _{AEH}	$U_{DD} = 5 \text{ V}$	350		ns
	t _{PSH}	$U_{\mathrm{DD}} = 10 \text{ V}$	140		ns
	t _{ASH}	U _{DD} = 15 V	80		ns
Datensetzzeit seriell	tssD	$U_{DD} = \dot{5} V$	160		ns
	ODD	$U_{\mathrm{DD}}^{\mathrm{DD}} = 10 \mathrm{V}$	60		ns
		$U_{\rm DD}^{\rm DD} = 15 \text{ V}$	40		ns
Datensetzzeit parallel	t _{SPD}	$U_{DD}^{DD} = 5 \text{ V}$	50		ns
	J Si D	$U_{DD}^{DD} = 10 \text{ V}$	30		ns
		$U_{DD} = 15 \text{ V}$	20		ns
Verzögerungszeit AB	t _{PHL}	$U_{\rm DD} = 5 \text{ V}$		700	ns
	t _{PLH}	$U_{DD}^{DD} = 10 \text{ V}$		240	ns
	1 1311	$U_{\rm DD}^{\rm DD} = 15 \text{ V}$		170	ns
Verzögerungszeit	t _{PC}	$U_{DD}^{DD} = 5 \text{ V}$		700	ns
C← An oder Bn	10	$U_{\mathrm{DD}}^{\mathrm{DD}} = 10 \mathrm{V}$		240	ns
		$U_{DD}^{DD} = 15 \text{ V}$		170	ns
Selektions- und Deselek-	t _{PZL}	$U_{\rm DD}^{\rm DD} = 5 \text{ V}$		400	ns
tionszeit AE An	t _{PZH}	$U_{DD}^{DD} = 10 \text{ V}$		160	ns
	tPLZ	$U_{DD}^{DD} = 15 \text{ V}$		120	ns
	t _{PHZ}	DD			1
Taktanstiegs- und	t _{CLH}	U _{DD} = 5 V		15	μs
abfallzeit	t _{CHL}	$U_{DD} = 10 \text{ V}$		15	μs
		$U_{DD}^{DD} = 15 \text{ V}$		15	μs
Setzzeit seriell bzw.	t _{SSS}	$U_{DD}^{DD} = 5 \text{ V}$	250		ns
Setzzeit parallel Steuer-	t _{SPS}	$U_{DD}^{DD} = 10 \text{ V}$	120		ns
signal zum Takt		$U_{DD}^{DD} = 15 \text{ V}$	100		ns

V 4035 D 4 Bit Schieberegister mit synchroner Paralleleingabe


Anschlußbelegung und Schaltzeichen


Bauform: DIP-16, Plast (Bild 4)

Typstandard: TGL 38998

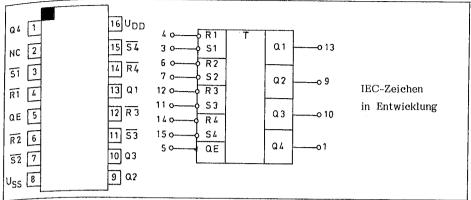
Einge	inge			Registerat		Typstandard: TGL 3
J	K	R	С	tm	tm+1	
L	х	L	L/H-Flanke	L	L	
H	x	L	L/H-Flanke	L	Н	
x	Г	L	L/H-Flanke	Н	L	
Н	L	L	L/H-Flanke	Q1	$\overline{Q1}$	
x	H	L	L/H-Flanke	H	Н	
х	x	L	H/L-Flanke	Q1	Q1	
x	x	Н	x	x	L	Funktionstabelle
					L	\perp (x = L ode

Kennwerte	Kurz- zeichen	Meßbedingung	min.	max.	Einheit
Verzögerungszeit C→O	t _{PC}	U _{DD} = 5 V		300	ns
R→O	t _{PR}	$U_{\mathrm{DD}} = 10 \text{ V}$		200	ns
		$U_{ m DD}$ = 15 V		160	ns
Setzzeit der JK-Eingänge	t _{SJK}	$U_{\overline{DD}} = 5 \text{ V}$	220		ns
	,	$U_{\mathrm{DD}} = 10 \text{ V}$	80		ns
		$U_{\mathrm{DD}}^{-} = 15 \text{ V}$	60		ns
Setzzeit Paralleleingänge	t _{SP}	$U_{\mathrm{DD}}^{\mathrm{DD}} = 5 \text{ V}$	100		ns
		$U_{\mathrm{DD}} = 10 \text{ V}$	50		ns
		$U_{\mathrm{DD}}^{\mathrm{DD}} = 15 \mathrm{V}$	40		ns
Rücksetzimpulsbreite	t _{RH}	$U_{\mathrm{DD}}^{\mathrm{DD}} = 5 \mathrm{V}$	200		ns
		$U_{\mathrm{DD}} = 10 \text{ V}$	90		ns

Anschlußbelegung, Schaltzeichen und IEC-Zeichen

Bauform V 4042 D: DIP-16, Plast (Bild 4) Bauform V 4042 S: SO-16 (Bild 29) Typstandard: TGL 38999

Eingi C	Ausgänge Qn	
L	L	D
L/H-Flanke	L	Latch
Н	H	D
H/L-Flanke	Н	Latch


Funktion stabelle

(n = 1...4)

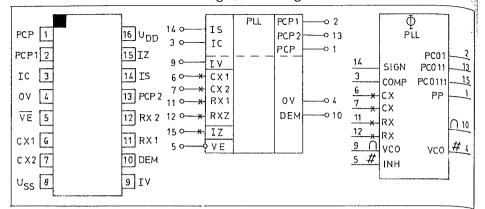
Ausgewählte Kennwerte

Kennwerte	Kurz- zeichen	Meßbedingung	min.	max.	Einheit
Verzögerungszeit DnQn	t _{PDQHL}	U _{DD} = 5 V		220	ns
	t _{PDQLH}	$U_{\mathrm{DD}}^{\mathrm{DD}} = 10 \text{ V}$:	110	ns
	LD&DI	$U_{\rm DD}^{\rm DD} = 15 \text{ V}$		80	ns
Verzögerungszeit Dn -+ Q̄n	t _{PD} QHL	$U_{\mathrm{DD}}^{\mathrm{DD}} = 5 \mathrm{V}$		300	ns
-	t _{PDQLH}	$U_{\rm DD}^{\rm DD} = 10 \text{ V}$		150	ns
	1 D&DI	$U_{\mathrm{DD}}^{\mathrm{DD}} = 15 \mathrm{V}$		100	ns
Verzögerungszeit C Q	t _{PCQHL}	$U_{\mathrm{DD}}^{\mathrm{DD}} = 5 \mathrm{V}$		450	ns
-	t _{PCQLH}	$U_{\mathrm{DD}}^{\mathrm{DD}} = 10 \text{ V}$		200	ns
	1 CQLIII	$U_{\mathrm{DD}}^{\mathrm{DD}} = 15 \text{ V}$		160	ns
Verzögerungszeit C Q	t _{PCOHI}	$U_{\mathrm{DD}}^{\mathrm{DD}} = 5 \mathrm{V}$		500	ns
	t _{PCQHL} t _{PCQLH}	$U_{\rm DD}^{\rm DD} = 10 \text{ V}$		230	ns
	1 C&TII	$U_{\rm DD}^{\rm DD} = 15 \text{ V}$		180	ns

 $\sqrt{4044}$ D 4 \overline{RS} -Flip-Flop

Anschlußbelegung und Schaltzeichen

Bauform V 4044 D: DIP-16, Plast (Bild 4) Bauform V 4044 S: SO-16 (Bild 29) Typstandard: TGL 42633


Funktionstabelle

QE	Eingänge Sn	R̄n	Ausgänge Qn	
L	X	X	hochohmig	
Н	L .	Н	Н	
Н	X	L	L	(n = 14,
Н	Н	Н	Latch	X = L oder H)

Kennwerte	Kurz- zeichen	Meßbedingung	min.	max.	Einheit
Verzögerungszeit R oder S zu Q Selektions- und Deselektionszeit durch QE von Q = High	t _{PS} t _{PR} t _{PZH} t _{PHZ}	$U_{\rm DD} = 5 \text{ V}$ $U_{\rm DD} = 10 \text{ V}$ $U_{\rm DD} = 15 \text{ V}$ $U_{\rm DD} = 5 \text{ V}$ $U_{\rm DD} = 10 \text{ V}$ $U_{\rm DD} = 15 \text{ V}$		300 140 100 230 110 80	ns ns ns ns ns
Selektions- und Deselek- tionszeit durch QE von Q = Low SET-und RESET- Impulsbreite Low	t _{PLZ} t _{PZL} tsL tsL	$U_{DD} = 5 \text{ V}$ $U_{DD} = 10 \text{ V}$ $U_{DD} = 15 \text{ V}$ $U_{DD} = 5 \text{ V}$ $U_{DD} = 10 \text{ V}$ $U_{DD} = 15 \text{ V}$	160 80 40	180 100 70	ns ns ns ns ns

PLL-Schaltung (Phasenregelkreis)

Anschlußbelegung, Schaltzeichen und IEC-Zeichen

Bauform: DIP-16, Plast (Bild at Typstandard: TGL 43014

Bezeichnung der Anschlüsse

PCP	Ausgang Phasenimpuls	U_{DD}	Betriebsspannung
PCP1	Ausgang Phasenkomparator 1	IZ	Z-Diode
IC	Komparatoreingang der Pha-	IS	Signaleingang Phasenkom-
	senkomparatoren		paratoren
OV	Ausgang spannungsgesteuerter	PCP2	Ausgang Phasenkomparator 2
	Oszillator	RX1,RX2	Widerstandsanschlüsse
$\overline{\text{VE}}$	Oszillatorfreigabe	DEM	Ausgang Demodulator
CX1,CX2	Kapazitätsanschlüsse	IV	Eingang spannungsgesteuerter
U_{SS}	Bezugspotential		Oszillator

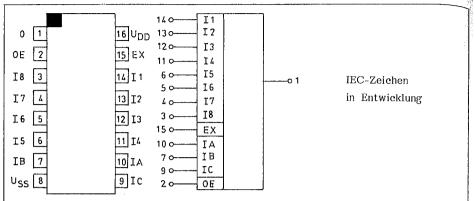
Der Schaltkreis V 4046 D beinhaltet einen spannungsgesteuerten Oszillator (VCO) und ? verschiedene Phasenkomparatoren, die einen gemeinsamen Eingangsverstärker und einen gemeinsamen Komparatoreingang haben. In Verbindung mit der einfachen externen Beschaltung wird der Aufbau von PLL-Schaltungen ermöglicht. Die einzelnen Schaltungs komplexe sind aber auch getrennt anwendbar. Zur Stabilisierung der externen Spannungs versorgung ist eine Z-Diode integriert.

Externe Beschaltung

			min.	max.	Einheit
RX1			5	$1 \cdot 10^{3}$	kOhm
RX 2			5	$1 \cdot 10^3$	kOhm
CX1	\mathtt{U}_{DD}	≥ 3 V	100		pF
		≥ 10 V	50		рF
$R_{ m DEM}$	22		1.103		kOhm

vCO-Teil

per spannungsgesteuerte Oszillator (VCO) benötigt für seinen Betrieb eine externe Kapa- $_{
m zitt}$ CX1 und einen oder zwei externe Widerstände RX1, RX2. Mit RX1 und CX1 wird der Frequenzbereich des VCO festgelegt, RX2 dient zur Erzeugung eines Frequenzoffsets. Wird dieser nicht benötigt, so bleibt der Anschluß RX2 offen. Der VCO kann entweder direkt oder über einen Frequenzteiler an den Komparatoreingang IC angeschlossen werden. Der am VCC-Ausgang OV verfügbare typische CMOS-Pegelhub erlaubt den Anschluß von Typen der CMOS-Baureihen. Über den Eingang IV wird der VCO in seinem Frequenzbereich gesteuert.


Das Tastverhältnis des Ausgangssignals beträgt 0,5. Der hohe Eingangswiderstand am Eingang IV vereinfacht den Entwurf der Tiefpaßfilter, da dann hohe Kapazitäts-zu-Widerstandsverhältnisse erlaubt sind. Die VCO-Eingangsspannung kann über einen Sourcefolger am Anschluß DEM ausgekoppelt werden. Wird dieser Anschluß benutzt, so ist er mit ei- $_{
m nem}$ Widerstand $R_{
m DEM}$ gegen Masse abzuschließen. Mit einem L-Pegel am Eingang $\overline{
m VE}$ werden der VCO und der Sourcefolger aktiviert. Ein H-Pegel an diesem Eingang schaltet den VCO ab und minimiert dadurch den Leistungsbedarf des V 4046 D.

phasenkomparatoren

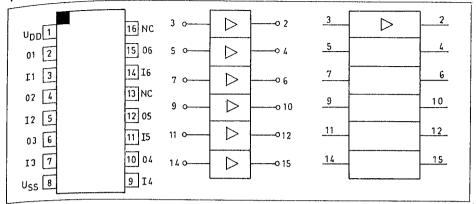
Reide Phasenkomparatoren haben einen gemeinsamen Signaleingang IS und einen gemeinsamen Komparatoreingang IC. Eine direkte Kopplung am Signaleingang kann nur bei CMOS-Pegel-Ansteuerung vorgenommen werden. Unterschreitet das Eingangssignal die CMOS-Pegelwerte, so ist das Signal an IS einzukoppeln. Zu diesem Zweck ist der Signaleingang mit einem Verstärker und automatischer Gatevorspannungserzeugung ausgerüstet. Phasenkomparator 1 ist eine EX-OR-Schaltung, sie arbeitet analog zu einem übergesteuerten Brückenmischer. Um den Fangbereich maximal zu halten, müssen Signaleingangsund Komparatorfrequenz ein Tastverhältnis von 0,5 haben. Ohne Eingangssignal hat der Phasenkomparator 1 eine Ausgangsspannung von $U_{\rm DD}/2$.

Phasenkomparator 2 ist eine digitale, flankengesteuerte Speicherschaltung. Sie besteht aus 4 Flip-Flop, einer Steuerschaltung sowie einer Ausgabeschaltung mit Tristate-Charakteristik. Der Phasenkomparator arbeitet nur bei L/H-Flanken an Signal- und Komparatoreingängen. Das Tastverhältnis der Komparator- und Signaleingänge ist unkritisch. Ist die Signaleingangsfrequenz höher als die Komparatorfrequenz, so wird der p-Kanal-Transistor des Ausgangs PCP2 die meiste Zeit im ELN-Zustand gehalten und für die restliche Zeit zusammen mit dem n-Kanal-Transistor im AUS-Zustand, PCP2 befindet sich dann im hochohmigen Zustand. Im anderen Fall, wenn die Signaleingangsfrequenz kleiner ist, ist der n-Kanal-Transistor öfter eingeschaltet und der p-Kanal-Transistor befindet sich im AUS-Zustand.

V 4048 D Multifunktionsgatter

Anschlußbelegung und Schaltzeichen

Bauform: DIP-16, Plast (Bild 4) Typstandard: TGL 42632


Funktionstabelle (EX = L/OE = H)

Ausgangs- funktion	Logikfunktion	IA	IB	IC	unbenutzte Eingänge
NOR	$O = \overline{11+12+13+14+15+16+17+18}$	L	L	L	USS
OR	O = I1+I2+I3+I4+I5+I6+I7+I8	L	L	H	USS
OR/AND	$O = (I1+I2+I3+I4) \cdot (I5+I6+I7+I8)$	L	Н	L	USS
OR/NAND	$O = \overline{(11+12+13+14) \cdot (15+16+17+18)}$	L	Н	Н	USS
AND	$O = I1 \cdot 12 \cdot 13 \cdot 14 \cdot 15 \cdot 16 \cdot 17 \cdot 18$	Н	L	L	UDD
NAND	$O = \overline{11 \cdot 12 \cdot 13 \cdot 14 \cdot 15 \cdot 16 \cdot 17 \cdot 18}$	Н	L	Н	$v_{ m DD}$
AND/NOR	$O = \overline{(I1 \cdot I2 \cdot I3 \cdot I4) + (I5 \cdot I6 \cdot I7 \cdot I8)}$	Н	Н	L	u _{DD}
AND/OR	$O = (I1 \cdot I2 \cdot I3 \cdot I4) + (I5 \cdot I6 \cdot I7 \cdot I8)$	Н	Н	Н	UDD

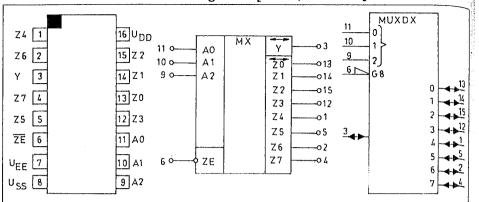
Ausgewählte Kennwerte

Kennwerte	Kurz- zeichen	Meßbedingung	min.	max.	Einheit
Verzögerungszeit In→ O	t _{PHL}	$U_{\mathrm{DD}} = 5 \text{ V}$		600	ns
	t _{PLH}	$U_{\mathrm{DD}} = 10 \text{ V}$		300	ns
	1 211	$U_{\mathrm{DD}}^{\mathrm{DD}} = 15 \mathrm{V}$		240	ns
Verzögerungszeit EX→O	t _{PEX}	$U_{\mathrm{DD}}^{\mathrm{DD}} = 5 \mathrm{V}$		380	ns
	1 2023	$U_{\mathrm{DD}}^{\mathrm{DD}} = 10 \mathrm{V}$		180	ns
		$U_{\mathrm{DD}}^{\mathrm{DD}} = 15 \mathrm{V}$		130	ns
Selektions- und Deselek-	t _{PHZ}	$U_{DD}^{DD} = 5 \text{ V}$		160	ns
tionszeit durch OEO	t _{PZH}	$U_{\mathrm{DD}}^{\mathrm{DD}} = 10 \text{ V}$		70	ns
	t _{PLZ}	$U_{\mathrm{DD}}^{\mathrm{DD}} = 15 \mathrm{V}$		50	ns

$_{ m V}$ 4050 D $_{ m 6}$ nichtinvertierende Treiberstufen

Anschlußbelegung, Schaltzeichen und IEC-Zeichen

Bauform V 4050 D: DIP-16, Plast (Bild 4) Bauform V 4050 S: SO-16 (Bild 29) Typstandard: TGL 38694


Funktionstabelle

Eingang In	Ausgang On
·L	L
Н	Н

(n = 1...6)

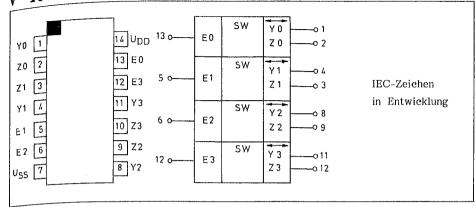
Kennwerte	Kurz- zeichen	Meßbedingung	min.	max.	Einheit
Verzögerungszeit	t _{PLH}	$U_{DD} = U_{IH} = 5 V$		140	ns
I►O		$U_{\overline{DD}} = U_{\overline{IH}} = 10 \text{ V}$		80	ns
		$U_{\mathrm{DD}} = U_{\mathrm{IH}} = 15 \mathrm{V}$		60	ns
Verzögerungszeit	t _{PHL}	$U_{DD} = U_{IH} = 5 V$		110	ns
I → O		$U_{DD} = U_{IH} = 10 \text{ V}$		55	ns
	l i	$U_{\mathrm{DD}} = U_{\mathrm{IH}} = 15 \mathrm{V}$		30	ns
Verzögerungszeit	t _{PLH}	$U_{\mathrm{DD}} = 5 \text{ V}$		90	ns
I►O		$U_{IH} = 10 \text{ V}$			
		$U_{\mathrm{DD}} = 5 \text{ V}$		80	ns
		$U_{IH} = 15 \text{ V}$			
Verzögerungszeit	t _{PHL}	$U_{\mathrm{DD}}^{\mathrm{TD}} = 5 \text{ V}$		100	ns
I O		$U_{IH} = 10 \text{ V}$			
		$U_{DD}^{III} = 5 \text{ V}$		100	ns
		U _{IH} = 15 V			

V 4051 D 8-Kanal-Analog-Multiplexer/ Demultiplexer

Anschlußbelegung, Schaltzeichen und IEC-Zeichen

Bauform: DIP-16, Plast (Bild 4) Typstandard: TGL 43013

AC) A1	A2	ΖĒ	Kanal "EIN"
L	L	L	L	Z0
Н	L	L	L	Z1
L	Н	L	L	Z2
Н	Н	L	L	Z3
L	L	Н	L	Z4
Н	L	Н	L	Z5
L	Н	Н	L	Z6
Н	Н	Н	L	Z7
X	X	Х	Н	-


Funktionstabelle

(X = L oder H)

Ausgewählte Kennwerte

Kennwerte	Kurz- zeichen	Meßbedingung	min.	max.	Einheit
Verzögerungszeit Zn+ Y Y+ Zn	t _{PZY} t _{PYZ}	$U_{\mathrm{DD}} = 5 \text{ V}$ $U_{\mathrm{ID}} = 0 \text{ V oder}$ $U_{\mathrm{ID}} = U_{\mathrm{DD}}$		60	ns
$R_{L} = 10 \text{ kOhm}$ $U_{EE} = 0 \text{ V}$		$U_{\mathrm{DD}} = 10 \text{ V}$ $U_{\mathrm{ID}} = 0 \text{ V oder}$ $U_{\mathrm{ID}} = U_{\mathrm{DD}}$		30	ns
		$U_{\overline{DD}} = 15 \text{ V}$ $U_{\overline{ID}} = 0 \text{ V oder}$ $U_{\overline{ID}} = U_{\overline{DD}}$		20	ns

V 4066 D 4 bilaterale Analogschalter

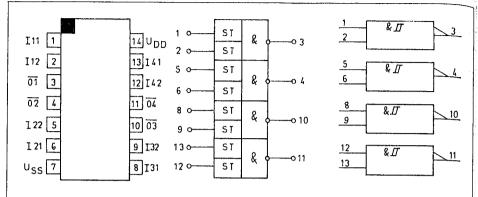
Anschlußbelegung und Schaltzeichen

Bauform V 4066 D: DIP-14, Plast (Bild 3) Bauform V 4066 S: SO-14 (Bild 28)

Typstandard: TGL 43014

Der Schaltkreis V 4066 D enthält 4 voneinander unabhängige bilaterale Analogschalter. Je Schalter ist ein Steuereingang En vorhanden, mit dem dieser vom EIN- in den AUS-Zustand und umgekehrt geschaltet werden kann.

Es gilt:


En = H Schalter EIN

En = L Schalter AUS

Kennwerte	Kurz- zeichen	Meßbedingung	min.	max.	Einheit
Verzögerungszeit Yn Zn Zn Yn (n = 03) Selektionszeit des Ausgangs durch En	t _{PYZ} t _{PZY}	$\begin{array}{l} {\rm R_{L}} &= 200 \; {\rm kOhm} \\ {\rm U_{DD}} &= 5 \; {\rm V} \\ {\rm U_{DD}} &= 10 \; {\rm V} \\ {\rm U_{DD}} &= 15 \; {\rm V} \\ {\rm U_{ID}} &= 0 \; {\rm V} \\ {\rm U_{DD}} &= 0 \; {\rm V} \\ {\rm U_{IE}} &= 0 \; {\rm V} \\ {\rm U_{IE}} &= 0 \; {\rm V} \\ {\rm U_{DD}} &= 0 \; {\rm V} \\ {\rm U_{IE}} &= 0 \; {\rm V} \\ {\rm U_$		40 20 15 70 40	ns ns ns

V 4093 D

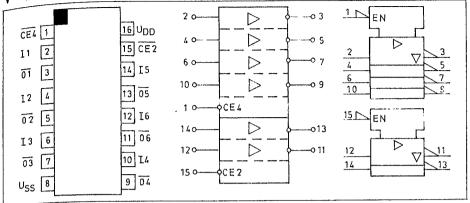
4 NAND-Gatter mit je 2 Eingängen mit Schmitt-Trigger-Verhalten

Anschlußbelegung, Schaltzeichen und IEC-Zeichen

Funktionstabelle

Bauform V 4093 D: DIP-14, Plast (Bild 3) Bauform V 4093 S: SO-14 (Bild 28) Typstandard: TGL 38692

In1	In2	Ön
L	Ł	Н
H	L	Н
L	Н	Н
Н	Н	L


(n = 1...4)

Ausgewählte Kennwerte

Kennwerte	Kurz- zeichen	Meßbedingung	min.	max.	Einheit
Hysteresespannung	U _{IP} -U _{IN}	$U_{\mathrm{DD}} = 5 \text{ V}$	0,5	2	V
		$U_{DD} = 10 \text{ V}$	1	4	V
		$U_{\mathrm{DD}} = 15 \text{ V}$	1,5	6	V
positive	U _{IP}	$U_{DD} = 5 \text{ V}$	2,2	3,6	V
Triggerschwellspannung		$U_{DD} = 10 \text{ V}$	4,6	7,1	V
		$U_{\mathrm{DD}}^{\mathrm{DD}} = 15 \mathrm{V}$	6,8	10,8	V
negative	U _{IN}	$U_{\mathrm{DD}} = 5 \text{ V}$	0,9	2,8	V
Triggerschwellspannung		$U_{\mathrm{DD}}^{\mathrm{DD}} = 10 \text{ V}$	2,5	5,2	V
		$U_{DD} = 15 \text{ V}$	0,4	7,4	ν
Verzögerungszeit	t _{PHL}	$U_{DD} = 5 \text{ V}$		380	ns
I→O	t _{PLH}	$U_{\rm DD}^{\rm DD} = 10 \text{ V}$		180	ns
	1 1111	$U_{\mathrm{DD}}^{\mathrm{DD}} = 15 \mathrm{V}$		130	ns

V 40098 D 6 inverties

6 invertierende Treiber mit Tristate-Ausgängen

Anschlußbelegung, Schaltzeichen und IEC-Zeichen

Bauform: DIP-16, Plast (Bild 4)
Typstandard: TGL 38691

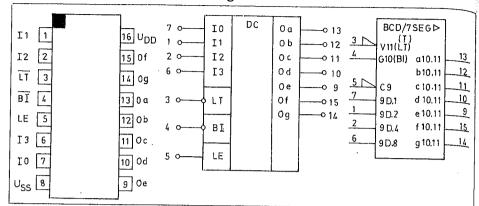
 In
 CEm
 On

 L
 L
 H

 L
 H
 hoehohmig

 H
 L
 L

 H
 H
 hoehohmig


Funktionstabelle

(m = 4 für n = 1, 2, 3, 4) (m = 2 für n = 5, 6)

Muobowania a a a a a a a a a a a a a a a a a a					
Kennwerte	Kurz- zeichen	Meßbedingung	min.	max.	Einheit
Ausgangsstrom Low	I _{OL}	$U_{\rm DD} = 5 \text{ V}$	2,3		m A
		$U_{OL} = 0.4 \text{ V}$ $U_{DD} = 10 \text{ V}$	8		m A
·		$U_{OL} = 0.5 \text{ V}$ $U_{DD} = 15 \text{ V}$	16		m A
Auggenggetnem High	lr)	$U_{OL} = 1.5 \text{ V}$	0,8		m A
Ausgangsstrom High	I _{OH}	$U_{\text{DD}} = 5 \text{ V}$ $U_{\text{OH}} = 4,6 \text{ V}$	0,0		11123
		$U_{\mathrm{DD}} = 10 \text{ V}$ $U_{\mathrm{OH}} = 9,5 \text{ V}$	2,5		m A
Verzögerungszeit	t _{PHL}	$U_{\mathrm{DD}} = 5 \text{ V}$		160	ns
I → O		$U_{\mathrm{DD}} = 10 \text{ V}$		70	ns
		$U_{\mathrm{DD}} = 10 \text{ V}$ $U_{\mathrm{DD}} = 15 \text{ V}$		50	ns

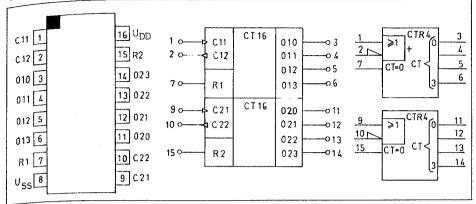
V 40511 D

BCD-zu-7-Segment-Dekoder

Anschlußbelegung, Schaltzeichen und IEC-Zeichen

Funktionstabelle

Bauform: DIP-16, Plast (Bild 4) Typstandard: TGL 38693


LE	ΒΪ	ĽΤ	13	12	I1	10	Oa	Ob	Oc	Od	Oe	Of	Og	Display
X	X	L	X	X	X	X	Н	Н	Н	Н	Н	Н	Н	В
Х	$_{ m L}$	Н	Х	X	X	X	L	L	L	L	L	L	L	aus
L	H	Н	L	L	L	L	Н	Н	Н	Н	Н	Н	L	
L	Н	Н	L	L	$_{ m L}$	H	L	Н	Н	L	L	L	L	
L	Н	Н	L	L	Н	\mathbf{L}	Н	Н	L	Н	Н	L	Н	
L	H	Н	L	L	Н	Н	Н	H	Н	H	L	L	Н	2 3
L	Н	н	L	Н	L	L	L	H	Н	L	L	Н	Н	l
L	Н	Н	L	H	L	Н	Н	L	Н	Н	L	Н	H	4 5
L	Н	Н	L	H	H	L	Н	L	Н	H	Н	Н	Н	<u>6</u> .
L	Н	Н	\mathbf{L}	H	H	Н	Н	Н	Н	\mathbf{L}	L	L	L	7
L	H	Н	Н	L	L	L	Н	Н	Н	H	Н	Н	Н	В
L	H	Н	H	L	L	H	H	H	H	Н	L	Н	Н	9
\mathbf{L}	H	Н	Н	L	Н	L	Н	Н	Н	L	Н	Н	Н	Я
L	Н	Н	H	L	H	Н	L	L	H	H	Н	Н	Н	Ь
L	Н	Н	H	H	L	L	Н	L	L	Н	H	Н	L	Ε
L	Н	Н	Н	H	L	H	L	H	Н	H	Н	L	Н	Ь
L	H	Н	Н	H	H	L	Н	L	L	H	H	H	Н	Е
L	Н	Н	Н	H	Н	Н	Н	L	L	\mathbf{L}	Н	Н	Н	F
Н	Н	Н	X	X	X	X	+	+	+	+	+	+	+	+

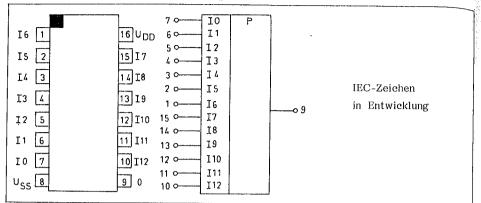
(X = L oder H;

+ = abhängig von der bei L/H-Flanke an LE anliegenden Ein-

gangsbelegung an I0...I3)

V 4520 D 2 binäre 4 Bit Vorwärtszähler

Anschlußbelegung, Schaltzeichen und IEC-Zeichen


Bauform: DIP-16, Plast (Bild 4) Typstandard: TGL 43016

Funktionstabelle

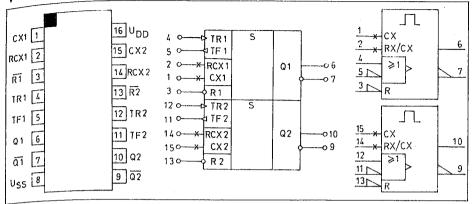
Cn1	Cn2	Rn	Zählerreaktion	
L/H-Flanke	Н	L	Increment Zähler	
L	H/L-Flanke	L	Increment Zähler	
H/L-Flanke	X	L	keine Änderung	
X	L/H-Flanke	L	keine Änderung	
Н	H/L-Flanke	L	keine Änderung	
L/H-Flanke	L	L	keine Änderung	(n = 1; 2)
Х	X	Н	On0On3 = L	(X = L oder H)
	1		!	

Kennwerte	Kurz- zeichen	Meßbedingung	min.	max.	Einheit
Verzögerungszeit	t _{PC}	U _{DD} = 5 V		560	ns
Cnm+ On		$U_{\mathrm{DD}} = 10 \text{ V}$		230	ns
(m;n = 1,2)		$U_{\mathrm{DD}}^{\mathrm{DD}} = 15 \mathrm{V}$		160	ns
Verzögerungszeit	t _{PR}	$U_{\mathrm{DD}}^{\mathrm{DD}} = 5 \mathrm{V}$		650	ns
Rn→ On	""	U _{DD} = 10 V		225	ns
		$U_{\mathrm{DD}}^{\mathrm{DD}} = 15 \mathrm{\ V}$		170	ns
	1 -		1		1

V 4531 D 13 Bit Paritätsprüfer

Anschlußbelegung und Schaltzeichen

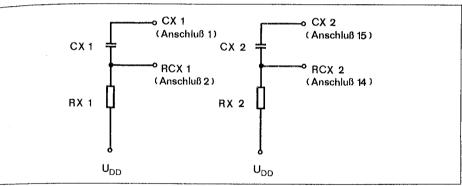
Bauform: DIP-16, Plast (Bild 4). Typstandard: TGL 43016


Funktionstabelle

Eing	gänge												Aus- gang
10	I1	12	13	I4	15	16	17	18	19	I10	I11	I12	0
L	L	L	L	L	L	L	L	L	L	L	L	L	L
unge	ungerade Anzahl von H-Belegungen									Н			
gera	ade An	zahl v	on H-	Belegu	ngen								L
H	H	H	Н	H	H	H	H	H	Н	H	Н	H	Н

Ausgewählte Kennwerte

Kennwerte	Kurz- zeichen	Meßbedingung	min.	max.	Einheit
Verzögerungszeit	t _{PHL}	U _{DD} = 5 V		580	ns
I0I11 0	11111	$U_{DD} = 10 \text{ V}$		240	ns
		$U_{\mathrm{DD}} = 15 \text{ V}$		180	ns
	t _{PLH}	$U_{\mathrm{DD}} = 5 \text{ V}$		540	ns
		$U_{\mathrm{DD}} = 10 \text{ V}$		220	ns
		U _{DD} = 15 V		180	ns
Verzögerungszeit	t _{P12HL}	$U_{\mathrm{DD}} = 5 \text{ V}$		420	ns
I12 0		U _{DD} = 10 V		180	ns
		$U_{\mathrm{DD}} = 15 \text{ V}$		140	ns
		$U_{\overline{DD}} = 5 \text{ V}$		340	ns
		$U_{\mathrm{DD}} = 10 \text{ V}$		140	ns
		$U_{\mathrm{DD}} = 15 \text{ V}$		100	ns


V 4538 D 2 x Monoflop

Anschlußbelegung, Schaltzeichen und IEC-Zeichen

Bauform: DIP-16, Plast (Bild 4) Typstandard: TGL 43017

Externe Beschaltung

Kennwerte	Symbol	min.	max.	Einheit	
externer Widerstand	RX1	4		kOhm	
externer Widerstand	RX2	4		kOhm	
externe Kapazität	CX1	5 · 10 ⁻³	100	μF	
externe Kapazität	CX2	5 · 10 ⁻³	100	μF	

Bezeichnung der Anschlüsse:

CX1,CX2 RCX1,	externe Kapazitäten externe Widerstände	$egin{array}{l} \mathrm{Q}_{1}, \overline{\mathrm{Q}_{1}}, \ \mathrm{Q}_{2}, \overline{\mathrm{Q}_{2}} \end{array}$	Ausgänge	TR1,TF1, TR2,TF2	Triggereingänge
RCX2	externe widerstande	${}^{\mathrm{U}}\mathrm{_{SS}}$	Bezugspotential		
$\overline{R1}$, $\overline{R2}$	Rücksetzeingänge	v_{DD}	Betriebsspar	nung	

V 4585 D

4 Bit Größenkomparator

	$10 \circ A0 = A>B \longrightarrow 13$	COMP
B2 1	16 U _{DD} 7 0 A1 A=B 3	10 0
,	A 2 A < B C 12	12 13 >P
A2 2	15 A3 15 O A3	
A=B 3	14 B3 11 0 BO	15 3
IA>B 4	9 0 B1	9 0) P <q 7<="" td=""></q>
	B2	11 P=Q 6
IA <b 5<="" td=""><td>12 A<b 0——="" 14="" b3<="" td=""><td>14 >Q P>Q 5</td></td>	12 A <b 0——="" 14="" b3<="" td=""><td>14 >Q P>Q 5</td>	14 >Q P>Q 5
IA-B 6	11 BO 6 0 IA>B	1 3
	5 0 IA-B	2
A1 7	10 A O 5 0 IA <b< td=""><td>2</td></b<>	2
U _{SS} 8	9 B1	4
		·>

Anschlußbelegung, Schaltzeichen und IEC-Zeichen Bauform: DIP-Plast 16, Plast (Bild 4) Typstandard: TGL 43018

	Komparate	oreingänge		Ubert	tragseingäng	e	Ausgänge			
A3, B3	A2, B2	A1, B1	A0, B0	iÀ ≺ B	IA = B	IA > B	A <b< th=""><th>A = B</th><th>A >B</th></b<>	A = B	A >B	
A3 > B3	х	х	х	х	х	Ił	L	L	H	
A3 = B3	A2 > B2	X	x	х	x	H	L	Ĺ	8	
A3 = B3	A2 = B2	A1 > B1	X	х	x	H.	L	L	H	
A3 = B3	A2 = B2	A1 = B1	A0 > B0	х	х	Н	L	L	H	
A3 = B3	A2 = B2	A1 = B2	A0 = B0	L	L	н	L	L	- FI	
A3 = B3	A2 = B2	A1 = B1	A0 = B0	L	н	x	L	н	L	
A3 = B3	A2 = B2	A1 = B1	A0 = B0	Н	L	х	Н	L	L	
A3 = B3	A2 = B2	A1 = B1	A0 < B0	X	x	x	Н	L	L	
A3 = B3	A2 = B2	A1 < B1	x	х	x	х	н	L	L	
A3 = B3	A2 < B2	х	х	х	х .	X	Н	L	L	
A3 < .B3	х	х	x .	x	х	x	н	L	L	

Ausrewählte Konnwerte

Kennwerte	Kurz- zeichen	Meßbedingung	min.	max.	Einhei
Verzögerungszeit	t _{PA}	U _{DD} = 5 V		600	ns
An; Bn→A > B,	t _{PB}	U _{DD} = 10 V		250	ns
A = B, A < B		$U_{\mathrm{DD}} = 15 \text{ V}$		160	ns
Verzögerungszeit	t _{PI}	$U_{\mathrm{DD}} = 5 \text{ V}$		400	ns
IA = B, IA > B,		$U_{\mathrm{DD}} = 10 \text{ V}$		160	ns
IA < B►A > B,		$U_{\mathrm{DD}}^{\mathrm{DD}} = 15 \mathrm{V}$		120	ns
A = B, A < B		55			

HCT-Schaltkreise

CMOS-Schaltkreise der Logikbaureihe U 74 HCT 00 DK sind durch folgende Eigenschaften gekennzeichnet:

- _ Kompatibilität zur internationalen CMOS-Baureihe 74 HCT 00,
- Anschluß- und Funktionskompatibilität zur internationalen LS-TTL-Baureihe 74 LS 00,
- Schaltgeschwindigkeit ähnlich der internationalen LS-TTL-Baureihe.
- Im Frequenzbereich bis etwa 5 MHz geringere Leistungsaufnahme der Schaltkreise gegenüber Schaltkreisen der LS-TTL-Baureihe, damit erhebliche Senkung des Aufwandes für die Realisierung von Stromversorgungseinheiten. Die geringere Leistungsaufnahme bildet die Voraussetzung für die Realisierung portabler, batteriegespeister, komfortabler Geräte und ermöglicht eine höhere Packungsdichte auf Leiterkarten und damit ein geringeres Gehäusevolumen.
- pie höhere Störsicherheit ermöglicht die Realisierung störsicherer Schaltungskonzepte und die Vergrößerung der Anwenderbreite von Logikschaltkreisen.
- Die Übereinstimmung in Anschlußfolge und Funktion sowie eine ähnliche Schaltgeschwindigkeit ermöglicht den Austausch mit Schaltkreisen der LS-TTL-Baureihe 74 LS 00.

Grenzwerte

J	Betriebsspannung	$^{\mathrm{U}}\mathrm{cc}$	=	-0,	5	7,0	V
	Eingangsspannung	$v_{_{\rm I}}$	=	-0,	5	0,5	٧
,	Ausgangsspannung	UO	=	-0,	5	0,5	V
]	Eingangsdiodenstrom	I _{IK}					
	Ausgangsdiodenstrom	I _{OK}	<u> </u>	20	mΑ		
	Ausgangsstrom für Standardausgänge	$ I_{O}^{O} $	<u><</u>	25	mA		
	Ausgangsstrom für Buffer-Tristate-Ausgänge	$ I_{O} $	<u></u>	35	m A		
	Betriebsstrom für IS mit Standardausgängen	$ I_{CC} , I_{GND} $	<u><</u>	50	mΑ		
	Betriebsstrom für IS mit Buffer-Tristate-Ausgänge	$ I_{CC} , I_{GND} $	<u> </u>	70	m A		
(Gesamtverlustleistung (DIP-Gehäuse)	P _{tot}	≤	350	m W		
(Γ _a = -40 ··· 70 °C Gesamtverlustleistung (DIP-Gehäuse) Γ _a = 85 °C	Ptot	<u><</u>	250	m W		
Ι	Lagertemperaturbereich	$T_{ m stg}$	=	-40	8	15 °C	

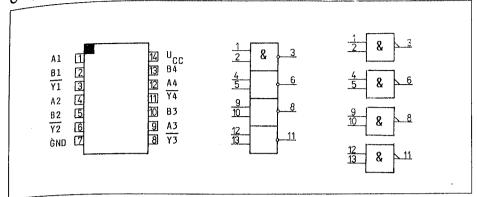
Betriebsbedingungen

Betriebsspannung	$U_{CC} = 4,5 \dots 5,5 \text{ V}$
Eingangsspannung (t < 15 ms)	$U_{I} = -1.5 \dots U_{CC} + 1.5 V$
(t < 15 ms)	$U_{I} = GND - 0.5 \dots U_{CC} + 0.5 V$
Eingangsspannung H	$U_{IH} \leq 2 V$
Eingangsspannung L	$U_{\rm IL}^{\rm out} \leq 0.8 \text{ V}$
Betriebstemperaturbereich	$T_a = -40 \dots 85 \text{ °C}$
Anstiegs- und Abfallzeit der Eingangsimpulse an Eingängen ohne Schmitt-	$t_{\rm LH}, t_{\rm HL}^{-} \leq 500 {\rm ns}$
Trigger-Charakteristik	Haltezeiten

Eingängen ohne Schmitt- Trigger-Charakteristik	Haltezeiten	
Taktfrequenzen		$t_{\mathrm{HD}}^{}$ \leq 3 ns
U 74 HCT 74, 175 DK $f_{e} \leq$ 20 MHz	U 74 HCT 175, 374, 534 DK	t_{HD} \leq 5 ns
U 74 HCT 374, 534 DK $f_{e} \leq 18$ MHz	U 74 HCT 192, 193 DK	t _{HD} ≤ 0 ns
Taktimpulsbreiten U 74 HCT 74, 175 DK t t < 25.	Setzzeiten	t / 95

		20	tazerten	
U 74 HCT 74, 175 DK	$t_{\rm CL}, t_{\rm CH}$	≤ 25 ns	U 74 HCT 74, 192, 193 t _{SD}	≤ 25 ns
U 74 HCT 192, 193,	t_{CI}, t_{CII}	< 31 ns	374, 534 DK	
534 DK	CL CH		U 74 HCT 175 DK t _{SD}	≤ 20 ns
U 74 HCT 374 DK	t_{CL}, t_{CH}	< 28 ns		

Zählfrequenzen U 74 HCT 192, 193 DK $f_{\rm CU}, f_{\rm CD} \leq$ 16 MHz


Statische Kennwerte

für IS mit Bus-Treiber-Ausgängen

Statische Kennwerte			
Ausgangsspannung H (U_{CC} = 4,5 V, ^{-1}OH = 20 μA)	U _{ОН}	= 4,4 V	Statische Stromaufnahme $(U_{CC} = 5,5 \text{ V})$
Ausgangsspannung H (U_{CC} = 4,5 V, ^{-1}OH = 4 mA) für IS mit Standard-Ausgängen	U _{ОН}	= 3,84 V	für Gatter-IS I_{CC} = 20 μ A für Flip-Flop I_{CC} = 40 μ A
Ausgangsspannung H (U_{CC} = 4,5 V, $-I_{OH}$ = 6 mA) für IS mit Bus-Treiber-Ausgängen	U _{ОН}	= 3,84 V	für MSI-IS $I_{CC} = 80 \mu A$
Ausgangsspannung L ($U_{CC} = 4.5 \text{ V}, I_{OL} = 20 \mu\text{A}$)	$^{\mathrm{U}}\mathrm{OL}$	= 0,1 V	Reststrom der Tristate-Ausgänge im hochohmigen Zustand sowie der Ein-/Ausgänge im Zustand Eingabe
Ausgangsspannung L (U_{CC} = 4,5 V, I_{OL} = 4 mA) für IS mit Standard-Ausgängen	$^{ m U}_{ m OL}$	= 0,33 V	I_{ZH} , $ I_{ZL} $ = 5 μA
Ausgangsspannung L ($U_{CC} = 4.5 \text{ V}, I_{OL} = 6 \text{ mA}$)	$^{\mathrm{U}}\mathrm{OL}$	= 0,33 V	! :

U 74 HCT 00 DK

4 NAND-Gatter mit je 2 Eingängen

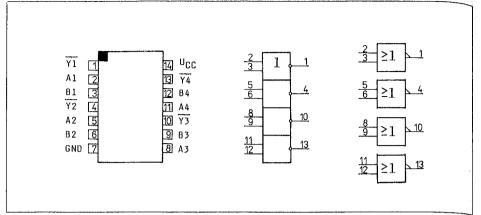
Anschlußbelegung, Schaltzeichen und IEC-Zeichen

Bauform U 74 HCT 00 DK: DIP-14, Plast (Bild 3) Bauform U 74 HCT 00 S: SO-14 (Bild 28) Typstandard: TGL 42643/02

Funktionstabelle

Än	Bn	Ϋ́n
L	L	Н
Н	L	Н
L	Н	H
H	Н	L

(n = 1 bis 4)


Ausgewählte Kennwerte

* Standardausgänge *

		· J	landardaus	sgange *
Kurz- zeichen	Meßbedingung	min.	max.	Einheit
t _P	$T_a = -40$ bis 85 °C		25	ns
t _P	T _a = 25 °C		20	ns
t _T	$T_a = -40$ bis 85 °C		19	ns
t_{T}	T _a = 25 °C		15	ns
c^{I}	T _a = 25 °C		10	рF
	$\begin{array}{c} \text{zeichen} \\ & \textbf{t}_{\textbf{P}} \\ & \textbf{t}_{\textbf{P}} \\ & \textbf{t}_{\textbf{T}} \\ & \textbf{t}_{\textbf{T}} \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

4 NOR-Gatter mit je 2 Eingängen

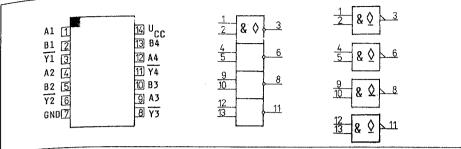
Anschlußbelegung, Schaltzeichen und IEC-Zeichen

Bauform U 74 HCT 02 DK: DIP-14, Plast (Bild 3) Bauform U 74 HCT 02 S: SO-14 (Bild 28) Typstandard: TGL 42643/03

Funktionstabelle

An	Bn	Ÿn
L	L	Н
Н	L	L
L	Н	L
Н	Н	L

(n = 1 bis 4)


Ausgewählte Kennwerte

* Standardausgänge *

		. 31	anuaruaus	janye
Kurz- zeichen	Meßbedingung	min.	max.	Einheit
t _P	$T_a = -40$ bis 85 °C		28	ns
t _p	$T_a = 25$ °C		22	ns
t _T	$T_{a} = -40 \text{ bis } 85 \text{ °C}$		19	ns
t _T	T _a = 25 °C		15	ns
CI	T _a = 25 °C		10	pF
	$\begin{array}{c} \text{zeichen} \\ \\ \text{t}_{\text{p}} \\ \\ \text{t}_{\text{T}} \\ \\ \text{t}_{\text{T}} \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	zeichen Meisbedingung min. max. t _p T _a = -40 bis 85 °C 28 t _p T _a = 25 °C 22 t _T T _a = -40 bis 85 °C 19 t _T T _a = 25 °C 15

U 74 HCT 03 DK

4 NAND-Gatter mit je 2 Eingängen

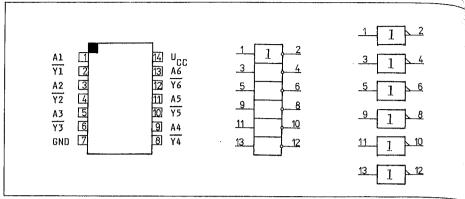
Anschlußbelegung, Schaltzeichen und IEC-Zeichen

Bauform U 74 HCT 03 DK: DIP-14, Plast (Bild 3) Bauform U 74 HCT 03 S: SO-14 (Bild 28) Typstandard: TGL 42643/22

Funktionstabelle

An	Bn	y n
L H L H	L L H	hochohmig hochohmig hochohmig L

(n = 1 bis 4)


Ausgewählte Kennwerte

* Standardausgänge *

				tanuaruaus	yanye
Kennwert	Kurz- zeichen	Meßbedingung	min.	max.	Einheit
Verzögerungszeit	t _{PZL} ;	$T_a = -40 \text{ bis } 85 ^{\circ}\text{C}$		30	ns
hochohmig→Low	t _{PLZ}	$T_a = 25 ^{\circ}\text{C}$		24	ns
Low▶hochohmig	122	, a			
Anstiegs- und Abfallzeit	t _T	$T_a = -40 \text{ bis } 85 ^{\circ}\text{C}$		19	ns
	t _T	T _B = 25 °C		15	ns
Eingangskapazität	c ^I	T _a = 25 °C		10	pF
L	1			I	1 1

6 Inverter

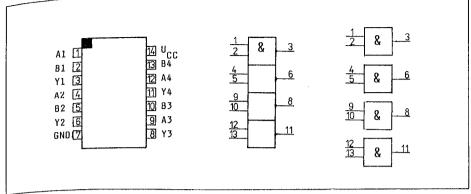
Anschlußbelegung, Schaltzeichen und IEC-Zeichen

Bauform U 74 HCT 04 DK: DIP-14, Plast (Bild 3) Bauform U 74 HCT 04 S: SO-14 (Bild 28) Typstandard: TGL 42643/04

Funktionstabelle

An	Yn ·
Н	L
L	Н

(n = 1 bis 6)


Ausgewählte Kennwerte

* Standardausgänge *

			9(Junuaraaaa	gange
Kennwert	Kurz- zeichen	Meßbedingung	min.	max.	Einheit
Anstiegs- und Abfallzeit	t _T	T _a = -40 bis 85 °C		19	ns
	t _T	T _a = 25 °C		15	ns
Verzögerungszeit	t _p	$T_{8} = -40 \text{ bis } 85 \text{ °C}$		25	ns
	t _p	T _B = 25 °C		20	ns
Eingangskapazität	CI	T _a = 25 °C		10	pF

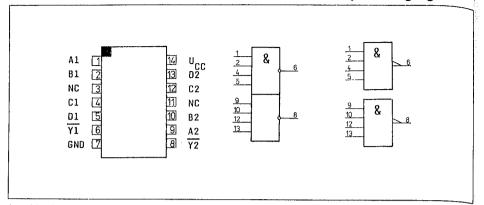
U 74 HCT 08 DK

4 AND-Gatter mit je 2 Eingängen

Anschlußbelegung, Schaltzeichen und IEC-Zeichen

Bauform U 74 HCT 08 DK: DIP-14, Plast (Bild 3) Bauform U 74 HCT 08 S: SO-14 (Bild 28) Typstandard: TGL 42643/11

Funktionstabelle


Án	Bn	Yn
L	L	L
Н	L	L
L	Н	L
Н	Н	Н

(n = 1 bis 4)

Transformation from Weller	* 5	tandardaus	gänge *		
Kennwert	Kurz- zeichen	Meßbedingung	min.	max.	Einheit
Anstiegs- und Abfallzeit	t _T	$T_a = -40$ bis 85 °C		19	ns
	l t _T	T _a = 25 °C		15	ns
Verzögerungszeit	t _P	T _a = -40 bis 85 °C		30	ns
	t _P	T _a = 25 °C		24	ns
Eingangskapazität	CI	$T_a = 25 ^{\circ}\text{C}$		10	pF

U 74 HCT 20 DK

2 NAND-Gatter mit je 4 Eingängen

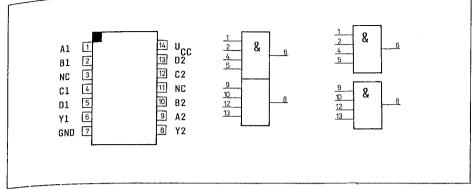
Anschlußbelegung, Schaltzeichen und IEC-Zeichen

Bauform U 74 HCT 20 DK: DIP-14, Plast (Bild 3) Bauform U 74 HCT 20 S: SO-14 (Bild 28) Typstandard: TGL 42643/12

Funktionstabelle

An	Bn	Cn	Dn	Ϋ́n
L	x	х	x	Н
х	L	х	x	H
х	х	· L	x	Н
x	x	х	L	Н
Н	Н	Н	Н	L

(n = 1, 2)(x = L oder H)


Ausgewählte Kennwerte

* Standardausgänge

				Standardau.	sgange .
Kennwert	Kurz- zeichen	Meßbedingung	min.	max.	Einheit
Verzögerungszeit	t _P	T _a = -40 bis 85 °C		35	ns
	t _P	$T_a = 25 ^{\circ}C$		28	ns
Anstiegs- und Abfallzeit	t _T	$T_{a} = -40$ bis 85 °C		19	ns
	t _T	$T_a = 25 ^{\circ}\text{C}$		15	ns
Eingangskapazität	C^{I}	$T_a = 25$ °C		10	pF

U 74 HCT 21 DK

2 AND-Gatter mit je 4 Eingängen

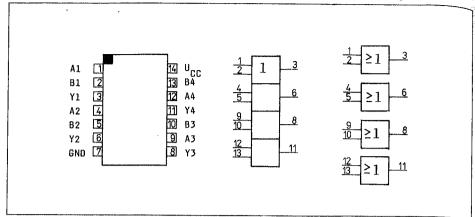
Anschlußbelegung, Schaltzeichen und IEC-Zeichen

Bauform U 74 HCT 21 DK: DIP-14, Plast (Bild 3) Bauform U 74 HCT 21 S: SO-14 (Bild 28) Typstandard: TGL 42643/13

Funktionstabelle

					•
	An	Bn	Cn	Dn	Yn
	L	x	x	х	L
	х	L	x	х	L
	x	x	L	x	L
	х	х	х	L	L
į	Н	Н	Н	Н	Н

(n = 1, 2)(x = L oder H)


Ausgewählte Kennwerte

* Standardausgänge *

				tanuaruaus	jange
Kennwert	Kurz- zeichen	Meßbedingung	min.	max.	Einheit
Verzögerungszeit	t _P	$T_a = -40$ bis 85 °C		35	ns
	t _P	T _a = 25 °C		28	ns
Anstiegs- und Abfallzeit	t _T	$T_a = -40$ bis 85 °C		19	ns
	t _T	T _B = 25 °C		15	ns
Eingangskapazität	C_{I}	T _a = 25 °C		10	pF

U 74 HCT 32 DK

4 OR-Gatter mit je 2 Eingängen

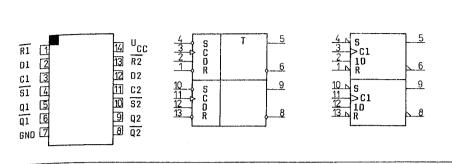
Anschlußbelegung, Schaltzeichen und IEC-Zeichen

Bauform U 74 HCT 32 DK: DIP-14, Plast (Bild 3) Bauform U 74 HCT 32 S: SO-14 (Bild 28) Typstandard: TGL 42643/14

Funktionstabelle

An	Bn	Yn
L	L	L
Н	${f L}$	Н
L	Н	H
Н	Н	Н

(n = 1 bis 4)


Ausgewählte Kennwerte

* Standardausgänge *

			,	Stanuaruaus	gange
Kennwert	Kurz- zeichen	Meßbedingung	min.	max.	Einheit
Verzögerungszeit	t _P	$T_a = -40 \text{ bis } 85.{}^{\circ}\text{C}$		30	ns
	t _p	$T_a = 25$ °C		24	ns
Anstiegs- und Abfallzeit	t _T	$T_a = -40$ bis 85%		19	ns
	t_{T}	T _B = 25 °C		15	ns
Eingangskapazität	$^{\mathrm{C}}$ I	T _a = 25 °C		10	pF

U 74 HCT 74 DK

2 D-Flip-Flop

Anschlußbelegung, Schaltzeichen und IEC-Zeichen

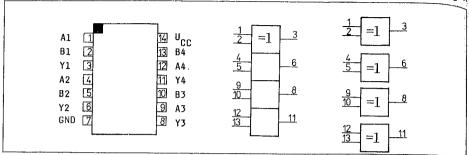
Bauform U 74 HCT 74 DK: DIP-14, Plast (Bild 3) Bauform U 74 HCT 74 S: SO-14 (Bild 28) Typstandard: TGL 42643/06

Funktionstabelle

Eingänge				Ausgänge		
С	D	$-\overline{s}$	R	Q _t	ହି _t	
L/H-Flanke	Н	Н	Н	H	${f L}$	
L/H-Flanke	L	Н	н	L	н	
х	x	L	L	н1)	_H 1)	
х	х	Н	L	L	H	
х	x	L	Н	Н	${f L}$	
L	x	Н	Н	Q_{t-1}	\overline{Q}_{t-1}	

1) Zustand der Ausgänge undefiniert, wenn \overline{S} und \overline{R} gleichzeitig auf H-Potential geschal-

Ausgewählte Kennwerte


* Standardausgänge *

tet werden

Ausgewährte Reinwerte		* Standardau	sgänge *	te	t werder
Kennwert	Kurz- zeichen	Meßbedingung	min.	max.	Einheit
Verzögerungszeit	t _{PC}	T _a = -40 bis 85 ℃		44	ns
Cn→Qn, Q̄n	t _{PC}	$T_a = 25$ °C		35	ns
Verzögerungszeit	t _{PS}	T _a = -40 bis 85 °C		50	ns
Sn, Rn→Qn, Qn	t _{PS}	$T_a = 25$ °C		40	ns
	${}^{\mathrm{t}}_{\mathrm{P}\mathbf{\overline{R}}}$	$T_a = -40$ bis 85 °C		50	ns
	$^{\mathrm{t}}_{\mathrm{P}\overline{\mathrm{R}}}$	$T_a = 25$ °C		50	ns
Anstiegs- und Abfallzeit	$t_{ m T}$	$T_a = -40$ bis 85 °C		19	ns
	${ m t}_{ m T}$	T _a = 25 °C		15	ns
Eingangskapazität	$\vec{c_I}$	T _a = 25 °C		10	pF

U 74 HCT 86 DK

4 Exklusiv-OR-Gatter mit je 2 Eingängen

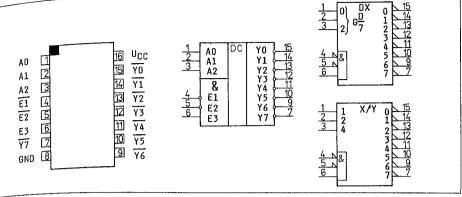
Anschlußbelegung, Schaltzeichen und IEC-Zeichen

Bauform U 74 HCT 86 DK: DIP-14, Plast (Bild 3) Bauform U 74 HCT 86 S: SO-14 (Bild 28) Typstandard: TGL 42643/05

Funktionstabelle

An	Bn	Yn
L	L	L
Н	${f L}$	Н
L	H	Н
Н	Ĥ	L

(n = 1 bis 4)


Ausgewählte Kennwerte

* Standardausgänge *

Kennwert	Kurz- zeichen	Meßbedingung	min.	max.	Einheit
Verzögerungszeit	t _P	$T_a = -40$ bis 85 °C		40	ns
	t _p	T _a = 25 °C		32	ns
Anstiegs- und Abfallzeit	t _T	$T_a = -40$ bis 85 °C		19	ns
	t _T	$T_a = 25 ^{\circ}\text{C}$		15	ns
Eingangskapazität	c^{I}	T _a = 25 °C		10	pF

U 74 HCT 138 DK 1

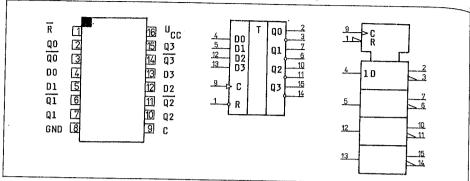
1 aus 8 Dekoder/Demultiplexer

Anschlußbelegung, Schaltzeichen und IEC-Zeichen

Bauform U 74 HCT 138 DK: DIP-16, Plast (Bild 4) Bauform U 74 HCT 138 S: SO-16 (Bild 29) Typstandard: TGL 42643/08

Funktionstabelle

Steuereingänge Eingänge Freigabe/Auswahl					Ausgänge								
ĒĪ	$\overline{E2}$	E3	A0	A1	A2	$\overline{Y0}$	<u> </u>	$\overline{Y2}$	$\overline{Y3}$	$\overline{Y4}$	<u> </u>	$\overline{Y6}$	¥7
х	х	L	х	х	Х	Н	Н	Н	Н	Н	Н	Н	Н
x	H	х	х	х	х	Н	Н	Н	Н	Н	Н	Н	Н
н	х	х	x	x	x	Н	Н	Н	Н	Н	Н	Н	Н
L	L	Н	L	L	L	L	Н	Н	Н	H	Н	Н	Н
L	L	Н	Н	L	L	Н	L	Н	Н	Н	Н	Н	Н
Г	L	Н	L	Н	L	Н	Н	L	Н	Н	Н	Н	Н
L	L	Н	H	H	L	Н	Н	Н	L	Н	Н	Н	Н
L	L	Н	L	L	Н	Н	Н	Н	Н	L	Н	Н	Н
L	L	Н	Н	L	Н	Н	Н	Н	Н	Н	L	Н	н
L	L	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	L	н
L	L	Н	Н	Н	H	Н	Н	Н	Н	Н	Н	Н	L


Ausgewählte Kennwerte

* Standardausgänge *

-							
Kennwert	Kurz- zeichen	Meßbedingung	min.	max.	Einheit		
Verzögerungszeit	t _{PA}	$T_{9} = -40$ bis 85 °C		44	ns		
An → \overline{Y} m	t _{PA}	$T_a = 25 ^{\circ}\text{C}$		35	ns		
Verzögerungszeit	t _{PE} t _{PE}	$T_{a} = -40 \text{ bis } 85 ^{\circ}\text{C}$		50	ns		
Ēī, Ē2, E3→Ÿm	$t_{ m PE}t_{ m P\overline{E}}$	i		40	ns		

U 74 HCT 175 DK

4 D-Flip-Flop mit gemeinsamen Rücksetzeingang, invertierend

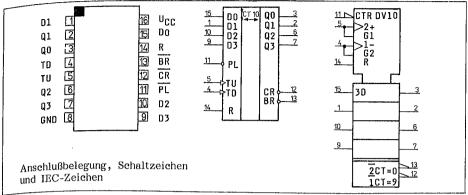
Anschlußbelegung, Schaltzeichen und IEC-Zeichen

Bauform U 74 HCT 175 DK: DIP-16, Plast (Bild 4) Bauform U 74 HCT 175 S: SO-16 (Bild 29) Typstandard: TGL 42643/15

Funktionstabelle

Ein	gänge		Ausgänge			
С	Dn	R	Qn	Qn		
L/H-Flanke	Н	Н	Н	L		
L/H-Flanke	L	Н	L	Н		
x	x	L	L	н		

(n = 0 bis 3), (x = L oder H)


Ausgewählte Kennwerte

* Standardausgänge *

				o tunadi dada	33-
Kennwert	Kurz- zeichen	Meßbedingung	min.	max.	Einheit
Verzögerungszeit	t _{PC}	T _a = -40 bis 85 °C		41	ns
C→Qn, Qn	t _{PC}	T _a = 25 °C		33	ns
Verzögerungszeit	$t_{ m P \overline{R} HL}$	$T_a = -40$ bis 85 °C		48	ns
R̄→ Qn	t _{PRHL}	Ta = 25 °C	ļ	38	ns
Verzögerungszeit	t _{PRLH}	$T_a = -40 \text{ bis } 85 ^{\circ}\text{C}$		44	ns
$\overline{R} \longrightarrow \overline{Qn}$	t _{PRLH}	T _a = 25 °C		35	ns
Anstiegs- und Abfallzeit	t _T	$T_a = -40 \text{ bis } 85 ^{\circ}\text{C}$		19	ns
	t _T	$T_a = 25 ^{\circ}\text{C}$		15	ns
Eingangskapazität	CI	T _a = 25 °C		10	pF

U 74 HCT 192 DK

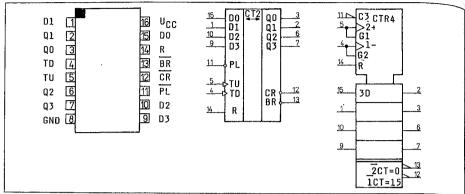
Synchroner, voreinstellbarer BCD-Vor-/Rückwärtszähler

Funktionstabelle

Bauform U 74 HCT 192 DK: DIP-16, Plast (Bild 4) Bauform U 74 HCT 192 S: SO-16 (Bild 29) Typstandard: TGL 42643/16 * Standardausgänge *

Betriebsart		Eingänge							Ausgänge					
	R	$\overline{ ext{PL}}$	TU	TD	D0	D1	D2	D3	Q0	Q1	Q2	Q3	CR	\overline{BR}
Rücksetzen	Н	х	х	L	х	x	х	х	L	L	L	L	Н	L
	H	<u>x</u> _	<u>x</u>	H	_x	_x	X	X	L	L	L	_L_	Н	Н
Zähler vorein-	L	L	х	L	L	L	L	L	L	L	L	L	H	L
stellen	L	L	x	Н	\mathbf{L}	L	L	·L	L	L	L	L	Н	Н
	\mathbf{L}	L	L	х	Н	х	х	Н		Qn	= Dn		L	Н
	L	L	H	x	Н	х	x	Н		Qn_	= Dn		Н	Н
Vorwärtszählen	\mathbf{L}	Н	1	Н	х	х	x	x	Vo	rwär	tszähl	en .	$_{\rm H}^{-1}$	
Rückwärtszählen	L	H	Н	 	х	х	х	х	Rü	ckwä	rtszäl	nlen	Н	H ²⁾

1) CR = TU beim Zählerstand HxxH


Ausgewählte Kennwerte

(x = L oder H, = L/H-Flanke)

2) \overline{BR} = TD beim Zählerstand LLLL

		2, 2			
Kennwert	Kurz- zeichen	Meßbedingung	min.	max.	Einheit
Verzögerungszeit	t _{PTU} ;	T _a = -40 bis 85 °C		54	ns
TU, TD→Qn	t_{PTD}	$T_a = 25 ^{\circ}\text{C}$		43	ns
Verzögerungszeit	tp	T _a = -40 bis 85 °C		38	ns
TU→ CR TD→BR	t _P	T _a = 25 °C		30	ns
Verzögerungszeit	$t_{P\overline{P}\overline{L}}$	$T_a = -40$ bis 85 °C		55	ns
PL▶Qn	$t_{\overline{PPL}}$	T _a = 25 °C		44	ns
Verzögerungszeit	t_{PR}	$T_a = -40 \text{ bis } 85 ^{\circ}\text{C}$		50	ns
R→Qn	t _{PR}	$T_a = 25 ^{\circ}\text{C}$		40	ns

U 74 HCT 193 DK Synchroner, voreinstellbarer 4 Bit binärer Vor-/Rückwärtszähler

Anschlußbelegung, Schaltzeichen und IEC-Zeichen

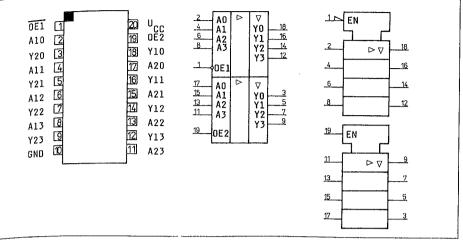
Bauform U 74 HCT 193 DK: DIP-16, Plast (Bild 4) Bauform U 74 HCT 193 S: SO-16 (Bild 29) Typstandard: TGL 42643/17

Funktionstabelle

* Standardausgänge *

													5	J
Betriebsart				Eingä	nge				Ausgänge					
	R	PL	TU	TD	D0	D1	D2	D3	Q0	Q1	Q2	Q3	CR	BR
Rücksetzen	Н	x	х	L	х	х	х	х	L	L	L	L	Н	L
	H	_x_	<u>x</u> _	H_	_x_	_x_	x	x	L	L	L	L	Н	Н
Zähler vorein-	L	L	х	L	L	L	L	L	L	L	L	L	H	L
stellen	L	L	x	Н	L	L	L	L	L	L	L	L	Н	Н
	L	L	L	х	Н	Н	Н	Н	Н	Н	Н	Н	L	H
	L	L	Н	х	Н	Н	Н	Н	Н	H	Н	Н	н	Н
	L	L	x	_x	х_	_x_	_x_	_x_		Qn	= D	n	Н	н
Vorwärtszählen	L	Н	†	Н	X	x	x	x	Vo	rwärt	szäh	len	H ¹⁾	H
Rückwärtszählen	L	Н	Н	†	х	х	x	x	Rü	ckwär	tszäl	nlen	Н	$H^{2)}$

1) \overline{CR} = TU beim Zählerstand HHHH · Ausgewählte Kennwerte


 $(x = L \text{ oder } H, \uparrow = L/H\text{-Flanke})$

2) BR = TD beim Zählerstand LLLL

rz- ichen	Meßbedingung	min.	max.	Einheit
eTU;	$T_8 = -40$ bis 85 °C		54	ns
	T = 25 °C		43	ns
, '	T = -40 bis 85 °C		38	ns
			30	ns
PPL /	$T_a = -40$ bis 85 °C		58	ns
	$T_a^{\circ} = 25 {}^{\circ}C$		46	ns
i	chen TU; TD	chen Melbedingung T = -40 bis 85 °C T = 25 °C T = -40 bis 85 °C	chen Melsbedingung min. $T_{\rm TU}$; $T_{\rm a} = -40$ bis 85 °C $T_{\rm a} = 25$ °C $T_{\rm a} = -40$ bis 85 °C	chen Melsbedingung min. max. max. min. max. max. min. max. max. min. min. max. min. min. max. min. max. min. min. max. min. min. min. min. min. max. min. min.

U 74 HCT 241 DK

2 x 4-Bit-Buffer/Leitungstreiber, nicht invertierend

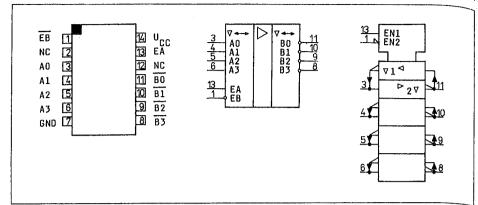
Anschlußbelegung, Schaltzeichen und IEC-Zeichen

Bauform U 74 HCT 241 DK: DIP-20, Plast (Bild 8) Bauform U 74 HCT 241 S: SO-20 (Bild 30) Typstandard: TGL 42643/18

Funktionstabelle

Eingë	inge	Ausgänge
OE1	A1n	Y1n
L	L	L
L	Н	Н
H	x	hochohmig

Ein	gänge	Ausgänge
OE2	A2n	Y2n
Н	L	L
H	Н	Н
L	x	hochohmig


(n = 0 bis 3), (x = L oder H)

	•		
*	Buffer-Tris	state-Ausgänge	*

			Duller .	illotate Au	syange
Kennwert	Kurz- zeichen	Meßbedingung	min.	max.	Einheit
Verzögerungszeit	t _P	$T_{a} = -40$ bis 85 °C		28	ns
A▶Y	t _P	$T_a = 25 ^{\circ}\text{C}$		22	ns
Selektionszeit	t _{PZH} ;	$T_0 = -40$ bis 85 °C		38	ns
hochohmig→ High, Low	t _{PZL}	T _B = 25 °C		30	ns
Deselektionszeit	t _{PHZ} ;	$T_{\rm g} = -40 \text{ bis } 85 ^{\circ}\text{C}$		38	ns
High, Low→ hochohmig	t _{PLZ}	T _n = 25 °C		30	ns
Anstiegs- und Abfallzeit	t _T	$T_a^a = -40 \text{ bis } 85 ^{\circ}\text{C}$		15	ns
	t _T	T _a = 25 °C		12	ns

U 74 HCT 242 DK

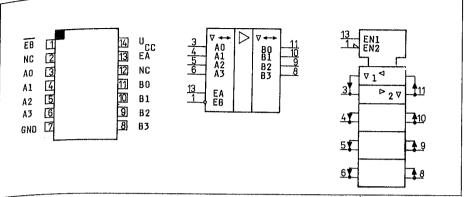
4 Bit Bus-Transceiver, invertierend

Anschlußbelegung, Schaltzeichen und IEC-Zeichen

Bauform U 74 HCT 242 DK: DIP-14, Plast (Bild 3) Bauform U 74 HCT 242 S: SO-14 (Bild 28) Typstandard: TGL 42643/09

Steuerein	gänge		
EA	ĒB	An	Bn
Н	Н	Ausgang	Eingang
Н	H	Н	${f L}$
Н	H	L	Н
L	Н	hochohmig	hochohmig
H	L	hochohmig	hochohmig
L	${f L}$	Eingang	Ausgang
L	${f L}$	Н	L
L	L	L	H

Funktionstabelle


Ausgewählte Kennwerte

* Buffer-Tristate-Ausgänge *

(n = 0 bis 3)

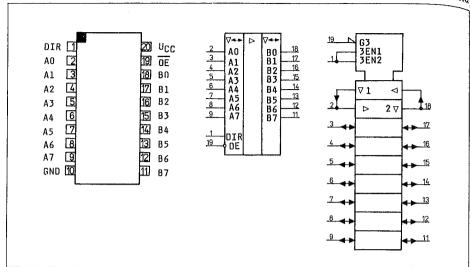
			Duller II	istate Aus	gange
Kennwert	Kurz- zeichen	Meßbedingung	min.	max.	Einheit
Verzögerungszeit	t _P	$T_a = -40$ bis 85 °C		38	ns
A→B, B→A	t _P	T _a = 25 °C		30	ns
Selektionszeit	t _{PZH} ;	$T_a = -40$ bis 85 °C		56	ns
hochohmig> High, Low	t _{PZL}	$T_a = 25 ^{\circ}\text{C}$		45	ns
Deselektionszeit	t _{PHZ} ;	$T_a = -40$ bis 85 °C		56	ns
High, Low>hochohmig	$t_{ m PLZ}$	T _a = 25 °C		45	ns
Anstiegs- und Abfallzeit	t _T	$T_a = -40$ bis 85 °C		15	ns
	t _T	$T_a = 25$ °C		12	ns

U 74 HCT 243 DK 4 Bit Bus-Transceiver, nicht invertierend

Anschlußbelegung, Schaltzeichen und IEC-Zeichen

Bauform U 74 HCT 243 DK: DIP-14, Plast (Bild 3) Bauform U 74 HCT 243 S: SO-14 (Bild 28) Typstandard: TGL 42643/09

Funktionstabelle


Steuere	eingänge		
EA	ĒB	An	Bn
Н	Н	Ausgang	Eingang
Н	Н	Н	Н
Н	Н	L	L
L	Н	hochohmig	hochohmig
Н	${f L}$	hochohmig	hochohmig
L	${f L}$	Eingang	Ausgang
L	L	Н	Н
L	L	L	L

(n = 0 bis 3)

Ausgewählte Kennwerte

Kennwert	Kurz- zeichen	Meßbedingung	min.	max.	Einheit
Verzögerungszeit	t _P	T _a = -40 bis 85 °C		34	ns
A→B, B→A	t _P	T = 25 °C		27	ns
Selektionszeit	t _{PZH} ;	$T_0^{\alpha} = -40$ bis 85 °C		56	ns
hochohmig→High, Low	tPZL	$T_{\Omega}^{\alpha} = 25 ^{\circ}\text{C}$		45	ns
Deselektionszeit	t _{PHZ} ;	$T_n^{\alpha} = -40$ bis 85 °C		56	ns
High, Low→hochohmig	t _{PLZ}	T _a = 25 °C		45	ns
Anstiegs- und Abfallzeit	t _T	$T_a^a = -40$ bis 85 °C		15	ns

U 74 HCT 245 DK 8 Bit Bus-Transceiver, nicht invertierend

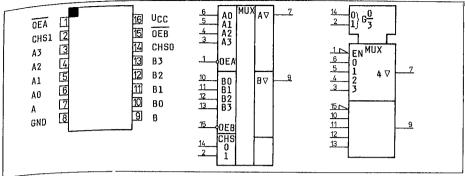
Anschlußbelegung, Schaltzeichen und IEC-Zeichen

Bauform U 74 HCT 245 DK: DIP-20, Plast (Bild 8) Bauform U 74 HCT 245 S: SO-20 (Bild 30) Typstandard: TGL 42643/19

Funktionstabelle

Eing	gänge	Ein-/Ausgänge		
ŌĒ	DIR	An	Bn	
L	L	Bn	Eingang	
L	Н	Eingang	An	
Н	x	hochohmig	hochohmig	

(n = 0 bis 7)(x = L oder H)


Ausgewählte Kennwerte

* Buffer-Tristate-Ausgänge

					gange
Kennwert	Kurz- zeichen	Meßbedingung	min.	max.	Einheit
Verzögerungszeit	t _P	$T_a = -40$ bis 85 °C		29	ns
An▶Bn	t _P	T _a = 25 °C		23	ns
Bn→ An	1	α			
Selektionszeit	t _{PZH} ;	$T_a = -40$ bis 85 °C		38	ns
hochohmig→High, Low	t _{PZL}	T _a = 25 °C		30	ns
Deselektionszeit	t _{PHZ} ;	$T_a = -40$ bis 85 °C		38	ns
High, Low→hochohmig	t _{PLZ}	T _a = 25 °C		30	ns
Anstiegs- und Abfallzeit	t _T	$T_a = -40$ bis 85 °C		15	ns
	t _T	$T_a = 25 ^{\circ}\text{C}$		12	ns
	1 -	l u		f .	I

U 74 HCT 253 DK

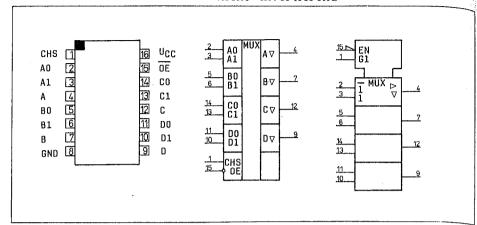
2 Multiplexer mit je 4 Eingängen, nicht invertierend

Anschlußbelegung, Schaltzeichen und IEC-Zeichen

Bauform U 74 HCT 253 DK: DIP-16, Plast (Bild 4) Bauform U 74 HCT 253 S: SO-16 (Bild 29) Typstandard: TGL 42643/20

Funktionstabelle

Funktions							
	Eingänge						
	Kanal- Daten- Freigabe auswahl eingänge Ausgang						
CHS0	CHS1	n0	n1	n2	n3	OEn	n
х	х	x	х	х	х	Н	hochohmig
L .	L	L	х	х	x	L	L
L	L	Н	х	x	x	L	Н
Н	L	x	L	х	x	L	L
Н	L	х	Н	x	x	L	н
L	Н	х	х	L	х	L	L
L	Н	х	x	Н	x	${f L}$	Н
Н	H	х	х	X	L	\cdot L	L
Н	Н	х	х	х	Н	L	Н


Ausgewählte Kennwerte

(n = A oder B); (x = L oder H)

					33
Kennwert	Kurz- zeichen	Meßbedingung	min.	max.	Einheit
Verzögerungszeit	t _{PA} ;	$T_{8} = -40 \text{ bis } 85 ^{\circ}\text{C}$		48	ns
Daten▶Ausgang	t _{PB}	T _a = 25 °C		38	ns
Verzögerungszeit	tPCHS	$T_{a}^{u} = -40$ bis 85 °C		50	ns
CHS▶ Ausgang	tPCHS	Ta = 25 °C		40	ns
Selektions- Deselektionszeit	t _p ;	$T_a^a = -40 \text{ bis } 85 ^{\circ}\text{C}$		38	ns
	t _P	$T_a = 25 ^{\circ}\text{C}$		30	ns
The state of the s	1				1

U 74 HCT 257 DK

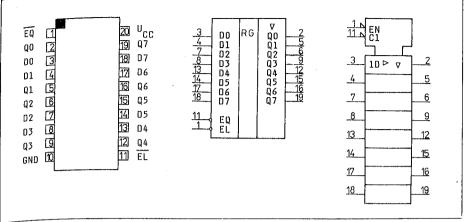
4 Multiplexer mit je 2 Eingängen, nicht invertierend

Anschlußbelegung, Schaltzeichen und IEC-Zeichen

Bauform U 74 HCT 257 DK: DIP-16, Plast (Bild 4) Bauform U 74 HCT 257 S: SO-16 (Bild 29) Typstandard: TGL 42643/21

	Eingänge	Ausgang		
CHS	n0	n1	ŌĒ	n
Н	х	L	L	L
Н	x	Н	L	Н
L	L	x	L	L
L	Н	х	L	Н
х	X	Х	Н	hochohmig

Funktionstabelle


(n = A, B, C oder D)(x = L oder H)

Ausgewählte Kennwerte

* Buffer-Tristate-Ausgänge *

Kennwert	Kurz- zeichen	Meßbedingung	min.	max.	Einheit
Verzögerungszeit	t _{PA} ;	$T_a = -40$ bis 85 °C		38	ns
Daten→Ausgang	t _{PB} ; t _{PC} ;			30	ns
Verzögerungszeit	t _{PD}	$T_a = -40 \text{ bis } 85 ^{\circ}\text{C}$		44	ns
CHS▶ Ausgang	t _{PCHS}	T _a = 25 °C		35	ns
Selektionszeit	t _{PZH} ;	$T_a = -40$ bis 85 °C		38	ns
hochohmig→High, Low	t _{PZL}	T _a = 25 °C		30	ns
Deselektionszeit	t _{PHZ} ;	$T_a = -40$ bis 85 °C		38	ns
High, Low≯hochohmig	t _{PLZ}	$T_a = 25 ^{\circ}\text{C}$		30	ns

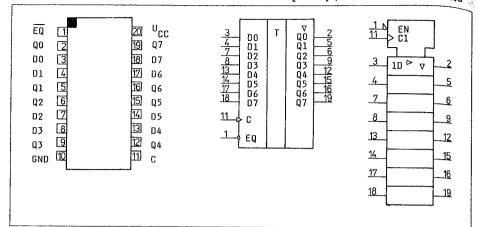
74 HCT 373 DK 8 Bit Transparentlatch, nicht invertierend

Anschlußbelegung, Schaltzeichen und IEC-Zeichen

Bauform U 74 HCT 373 DK: DIP-20, Plast (Bild 8) Bauform U 74 HCT 373 S: SO-20 (Bild 30) Typstandard: TGL 42643/10

Funktionstabelle

	Eingänge	Ausgänge	
ĒQ	EL	Dn	Qn
L	Н	Н	H
L	H	L	L
L	L	х	Latch
H	x	х	hochohmig


(x = L oder H)(n = 0 bis 7)

Ausgewählte Kennwerte

Ausgewährte Kennwerte	* Buffer-Tristate-Ausgan			gange *	
Kennwert	Kurz- zeichen	Meßbedingung	min.	max.	Einheit
Verzögerungszeit	t _{PD}	T _a = -40 bis 85 °C		44	ns
Dn > Qn	t _{PD}	$T_a = 25 \text{ °C}$		35	ns
Verzögerungszeit	tPEL	$T_a = -40 \text{ bis } 85 ^{\circ}\text{C}$		44	ns
ĒL→Qn	tPEL	T _a = 25 °C		35	ns
Selektionszeit	t _{PZH} ;	$T_a = -40$ bis 85 °C		44	ns
hochohmig→High, Low	t _{PZL}	T _a = 25 °C		35	ns
Deselektionszeit	t _{PHZ} ;	$T_{a} = -40 \text{ bis } 85 ^{\circ}\text{C}$		44	ns
Low, High→hochohmig	t _{PLZ}	$T_a = 25$ °C		35	ns
Anstiegs- und Abfallzeit	t _T	$T_a^\alpha = -40 \text{ bis } 85 ^{\circ}\text{C}$		15	ns
	t _T	$T_a = 25 ^{\circ}\text{C}$		12	ns
	1 -	, u	}		

U 74 HCT 374 DK

8 Bit D-Flip-Flop, nicht invertierend

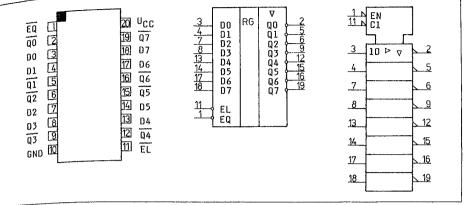
Anschlußbelegung, Schaltzeichen und IEC-Zeichen

Bauform U 74 HCT 374 DK: DIP-20, Plast (Bild 8) Bauform U 74 HCT 374 S: SO-20 (Bild 30) Typstandard: TGL 42643/07

Funktionstabelle

Eingän	ge		Ausgänge
C ·	Dn	EQ	Qn
L/H-Flanke	L	L	L
L/H-Flanke	Н	L	Н
x	x	Н	hochohmig

(n = 0 bis 7)(x = L oder H)


Ausgewählte Kennwerte

* Buffer-Tristate-Ausgänge *

					J J -
Kennwert	Kurz- zeichen	Meßbedingung	min.	max.	Einheit
Verzögerungszeit	t _{PC}	$T_a = -40$ bis 85 °C		40	ns
C → Qn	t _{PC}	T _a = 25 °C		32	ns
Selektionszeit	t _{PZH} ;	$T_a = -40 \text{ bis } 85 ^{\circ}\text{C}$		40	ns
hochohmig→High, Low	tPZL	T _a = 25 °C		32	ns
Deselektionszeit	t _{PLZ} ;	$T_a = -40 \text{ bis } 85 ^{\circ}\text{C}$		43	ns
Low, High→hochohmig	t _{PHZ}	T _a = 25 °C		34	ns
Anstiegs- und Abfallzeit	t _T	$T_n^a = -40 \text{ bis } 85 ^{\circ}\text{C}$		15	ns
	t _T	T _a = 25 °C		12	ns
		u .			i J

U 74 HCT 533 DK

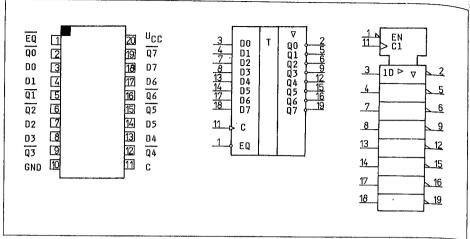
8 Bit Transparentlatch, invertierend

Anschlußbelegung, Schaltzeichen und IEC-Zeichen

Bauform U 74 HCT 533 DK: DIP-20, Plast (Bild 8) Bauform U 74 HCT 533 S: SO-20 (Bild 30) Typstandard: TGL 42643/10

	Eingänge	Ausgänge			
EQ	EL	Dn	Qn		
L .	Н	Н	L		
Г.	Н	L	H		
L	L	x	Latch		
H	x	х	hochohmig		

Funktionstabelle


(n = 0 bis 7)(x = L oder H)

Ausgewählte Kennwerte

Kennwert	Kurz- zeichen	Meßbedingung	min.	max.	Einheit
Verzögerungszeit	t _{PDHL}	$T_a = -40$ bis 85 °C		43	ns
Dn▶Qn (H/L-Flanke)	tPDHL	T _a = 25 °C		34	ns
Verzögerungszeit	tPDLH	$T_a = -40$ bis 85 °C		46	ns
Dn→ Qn (L/H-Flanke)	tPDLH	T _a = 25 °C		37	ns
Selektionszeit	t _{PZH}	$T_{a} = -40$ bis 85 °C		40	ns
hochohmig→ High	t _{PZH}	T _a = 25 °C		32	ns
Selektionszeit	tPZL	$T_a = -40 \text{ bis } 85 ^{\circ}\text{C}$		49	ns
hochohmig→Low	t _{PZL}	$T_a = 25 ^{\circ}\text{C}$		39	ns
Deselektionszeit	t _{PHZ}	$T_a = -40$ bis 85 °C		41	ns
High≻hochohmig	tPHZ	T _a = 25 °C		33	ns
Deselektionszeit	t _{PLZ}	$T_a = -40$ bis 85 °C		45	ns
Low→ hochohmig	t _{PLZ}	$T_a^a = 25 ^{\circ}\text{C}$		36	ns

U 74 HCT 534 DK

8 Bit D-Flip-Flop, invertierend

Anschlußbelegung, Schaltzeichen und IEC-Zeichen

Bauform U 74 HCT 534 DK: DIP-20, Plast (Bild 8) Bauform U 74 HCT 534 S: SO-20 (Bild 30) Typstandard: TGL 42643/07

Funktionstabelle

Eingäng	Eingänge					
С	Dn	EQ	Qn			
L/H-Flanke	L	L	Н			
L/H-Flanke	Н	L .	L			
x	х	Н	hochohmig			

(n = 0 bis 7)(x = L oder H)

Ausgewählte Kennwerte

* Buffer-Tristate-Ausgänge *

Kennwert	Kurz- zeichen	Meßbedingung	min.	max.	Einheit
Verzögerungszeit	t _{PC}	$T_a = -40$ bis 85 °C		38	ns
Cn → Q̄n	t _{PC}	T _a = 25 °C		30	ns
Selektionszeit	t _{PZH} ;	$T_a = -40$ bis 85 °C		38	ns
hochohmig→High, Low	t _{PZL}	$T_a = 25$ °C		30	ns
Deselektionszeit	t _{PLZ} ;	$T_a = -40$ bis 85 °C		38	ns
Low, High>hochohmig	t _{PHZ}	$T_a = 25 ^{\circ}\text{C}$		30	ns

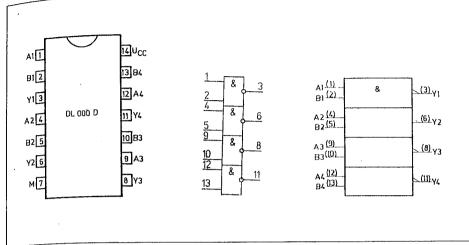
Low-Power-Schottky-TTL-Schaltkreise

Die Low-Power-Schottky-TTL (LS-TTL)-Schaltkreise weisen bei gleicher Verzögerungszeit wie Standard-TTL-Schaltkreise eine um den Faktor 5 niedrigere Leistungsaufnahme auf. Daraus ergeben sich für den Anwender folgende Vorteile:

- senkung der Verlustleistung bei konstanter Packungsdichte,
- Erhöhung der Zuverlässigkeit,
- Verkleinerung der Stromversorgungsmodule,
- . kleinere Stromdichte und damit weniger Störungen.

 $_{\mbox{\scriptsize Die}}$ LS-TTL-Reihe ist mit anderen Schaltkreisen der TTL-Familie und der HCT-CMOS-Reihe kompatibel.

Grenzwerte


Grenzwert	Kurz- zeichen	min.	max.	Einheit
Betriebsspannung	U _{CC}	0	7	V
Eingangsspannung	U	-0,5	7	V
Ausgangsspannung (aktiv)	UO		$U_{\rm CC}^{+0,5}$	V
Ausgangsspannung	UOZ		5,5	V
(Tristate)				
Betriebstemperaturbereich	Ta	0	70	°C
Sperrschichttemperatur	T _j		150	°C

Ausgewählte Kennwerte

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Betriebsspannung	UCC		4,75	5,0	5,25	V
High-Eingangsspannung	U _{IH}		2,0			ν
Low-Eingangsspannung	$v_{ m IL}$				0,8	ν
Eingangsklemmspannung	-U _{IK}	$U_{CC} = 4,75$				
		$-I_{I} = 18 \text{ mA}$		0,9	1,5	V
High-Ausgangsstrom	-I _{OH}				400	μА
Low-Ausgangsstrom	IOL				8	mĄ
High-Ausgangsspannung	UOH	$U_{\mathrm{CC}} = 4,75 \text{ V}$				
	1	$^{-I}OH = 400 \mu A$	2,7	3,3		ν
Low-Ausgangsspannung	UOL	$U_{CC} = 4,75 \text{ V}$				
		$I_{OL} = 8 \text{ mA}$		0,35	0,5	ν
Ausgangsreststrom	IOZH	$U_{CC} = 5,25 \text{ V}$				
	_	$U_{OH} = 2,4 \text{ V}$			20	μА
	IOZL	$U_{CC} = 5,25 \text{ V}$				
Diamen and		$U_{OL} = 0.4 \text{ V}$			20	μA
Eingangsstrom	I _{IH}	$U_{CC} = 5,25 \text{ V}$				
	_	$U_{IH} = 2.7 \text{ V}$			20	μA
	-I _{IL}	$U_{CC} = 5,25 \text{ V}$				
		$U_{IL} = 0.4 \text{ V}$			360	μA
	I	$U_{CC} = 5,25 \text{ V}$				
Kurzschlußstrom ¹⁾		$U_{I} = 7 V$			100	μА
Nurzsemuistrom	Ios	$U_{\rm CC} = 5,25 \text{ V}$	20		100	mA

¹⁾ Nicht mehr als ein Ausgang gleichzeitig, Dauer des Kurzschlusses <1 sec

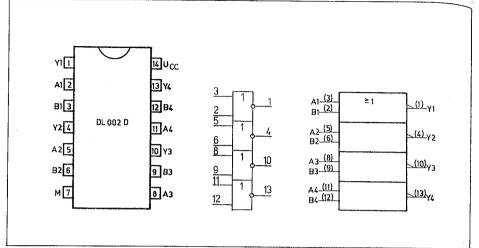
DL 000 D, DL 000 DG 4 NAND-Gatter mit je 2 Eingängen

Anschlußbelegung, Schaltzeichen und IEC-Zeichen

Bauform DL 000 D: DIP-14, Plast (Bild 3) Bauform DL 000 S: SO-14 (Bild 28) Typstandard: TGL 39865

Funktionstabelle

Eing	gang	Ausgang
A	В	Y
L	L	Н
L	Н	H
Н	L	Н
Н	Н	L
		<u> </u>


Logische Funktion

$$Y = \overline{A \cdot B}$$

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Signalverzögerungszeit	t _{PLH}	C_L = 15 pF; R_L = 2 kOhm		9	15 15	ns ns

DL 002 D, DL 002 DG

4 NOR-Gatter mit je 2 Eingängen

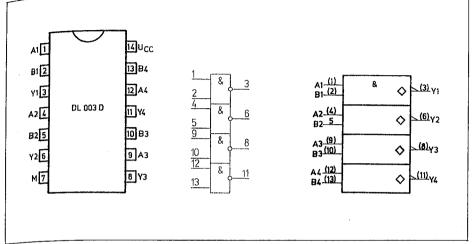
Anschlußbelegung, Schaltzeichen und IEC-Zeichen

Bauform DL 002 D: DIP-14, Plast (Bild 3) Bauform DL 002 S: SO-14 (Bild 28) Typstandard: TGL 39865

Funktionstabelle

	Eing	gang	Ausgang
	A	В	Y
	L	L	Н
	L	H	L
	Н	L	L
ĺ	Н	Н	${f L}$

Logische Funktion


$$Y = \overline{A + B}$$

Ausgewählte Kennwerte

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Signalverzögerungszeit	t _{PLH}	$C_L = 15 \text{ pF};$ $R_L = 2 \text{ kOhm}$		6,5 8	15 15	ns ns

DL 003 D, DL 003 DG

4 NAND-Gatter, offene Kollektoren

Anschlußbelegung, Schaltzeichen und IEC-Zeichen

Bauform DL 003 D: DIP-14, Plast (Bild 3) Bauform DL 003 S: SO-14 (Bild 28) Typstandard: TGL 39865

Funktionstabelle

Eing	gang	Ausgang
A	В	Y
L	L	H
L	Н	H
Н	L	Н
Н	Н	L


Logische Funktion

 $Y = \overline{A \cdot B}$

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Signalverzögerungszeit	t _{PLH}	C_L = 15 pF; R_L = 2 kOhm		10 11	32 28	ns ns

DL 004 D, DL 004 DG

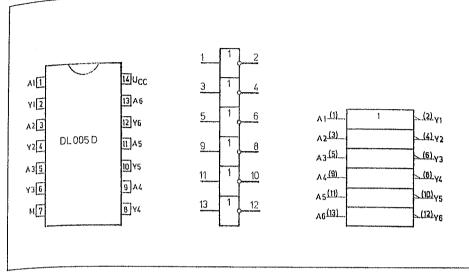
6 Inverter

Anschlußbelegung, Schaltzeichen und IEC-Zeichen

Bauform DL 004 D: DIP-14, Plast (Bild 3) Bauform DL 004 S: SO-14 (Bild 28) Typstandard: TGL 39865

Funktionstabelle

Ausgang	Eingang
Y	A
Н	L
L	Н
H L	L H


Logische Funktion

$$Y = \overline{A}$$

Ausgewählte Kennwerte

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Signalverzögerungszeit	t _{PLH}	$C_L = 15 \text{ pF};$ $R_L = 2 \text{ kOhm}$		8 10	15 15	ns ns

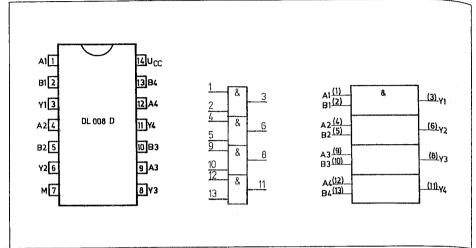
DL 005 DC 6 Inverter mit offenen Kollektoren

Anschlußbelegung, Schaltzeichen und IEC-Zeichen

Bauform: DIP-14, Plast (Bild 3) Typstandard: TGL 39865

Funktionstabelle

Eingang	Ausgang
A	Y
L	Н
Н	L


Logische Funktion

 $Y = \overline{A}$

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Signalverzögerungszeit	t _{PLH} t _{PHL}	$C_L = 15 \text{ pF};$ $R_L = 2 \text{ kOhm}$		10 11	32 28	ns ns

DL 008 D, DL 008 DG

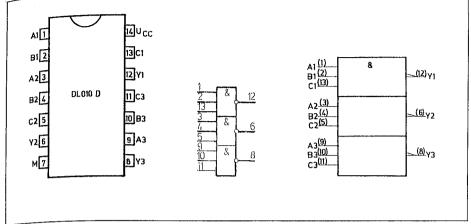
4 AND-Gatter mit je 2 Eingängen

Anschlußbelegung, Schaltzeichen und IEC-Zeichen

Bauform DL 008 D: DIP-14, Plast (Bild 3) Bauform DL 008 S: SO-14 (Bild 28) Typstandard: TGL 39865

Funktionstabelle

Eing	ang	Ausgang
A	В	Y
L	L	L
L	H	,L
Н	L	L
Н	Н	Н


Logische Funktion

$$Y = A \cdot B$$

Ausgewählte Kennwerte

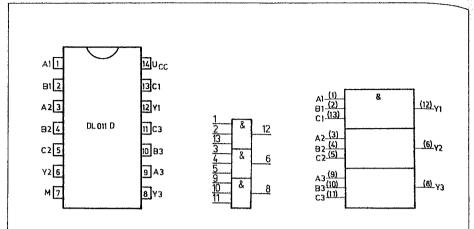
Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Signalverzögerungszeit	t _{PLH}	$C_L = 15 \text{ pF};$ $R_L = 2 \text{ kOhm}$		9,5 9	15 20	ns ns

DL 010 D, DL 010 DG 3 NAND-Gatter mit je 3 Eingängen

Anschlußbelegung, Schaltzeichen und IEC-Zeichen

Bauform DL 010 D: DIP-14, Plast (Bild 3) Bauform DL 010 S: SO-14 (Bild 28) Typstandard: TGL 39865

Funktionstabelle


	Eingänge	e	Ausgang
A	В	C	Y
L	L	L	Н
L	ь	Н	Н
L	Н	L	Н
L	Н	Н	H
Н	L	L	H
Н	L	Н	Н
Н	Н	L	Н
Н	Н	Н	L

Logische Funktion

 $Y = A \cdot B \cdot C$

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Signalverzögerungszeit	t _{PLH} t _{PHL}	$C_L = 15 \text{ pF};$ $R_L = 2 \text{ kOhm}$		9 11	15 15	ns ns

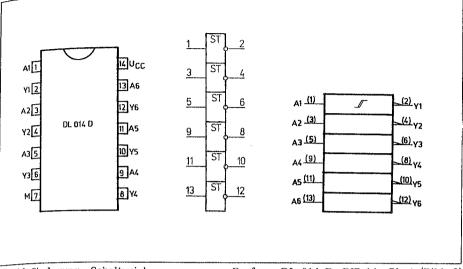
DL 011 D 3 AND-Gatter mit je 3 Eingängen

Anschlußbelegung, Schaltzeichen und IEC-Zeichen

Bauform DL 011 D: DIP-14, Plast (Bild 3) Bauform DL 011 S: SO-14 (Bild 28) Typstandard: TGL 39865

Funktionstabelle

	Eingänge)	Ausgang
A	В	C	Y
L	L	L	L
L	L	Н	L
L	H	L	L
L	Н	Н	L
Н	L	L	L
Н	L	H	L
Н	Н	L	L
н	Н	Н	Н


Logische Funktion

 $Y = A \cdot B \cdot C$

Ausgewählte Kennwerte

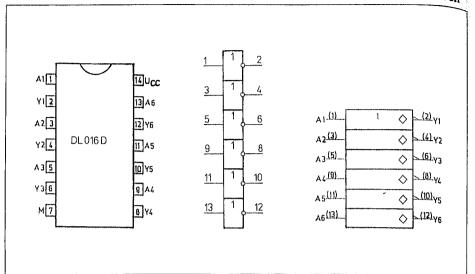
Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Signalverzögerungszeit	t _{PLH}	C_L = 15 pF; R_L = 2 kOhm		11 11	15 20	ns ns

DL 014 D 6 invertierende Schmitt-Trigger

Anschlußbelegung, Schaltzeichen und IEC-Zeichen

Bauform DL 014 D: DIP-14, Plast (Bild 3) Bauform DL 014 S: SO-14 (Bild 28) Typstandard: TGL 39865

Funktionstabelle


Eingang	Ausgang		
A	Y		
L	Н		
Н	L		

Logische Funktion

 $Y = \overline{A}$

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Signalverzögerungszeit	t _{PLH}	C_L = 15 pF; R_L = 2 kOhm		17 11	22 22	ns ns

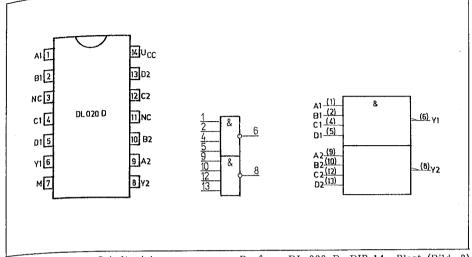
DL 016 DC 6 invertierende Treiber mit offenen Kollektoren

Anschlußbelegung, Schaltzeichen und IEC-Zeichen

Bauform: DIP-16, Plast (Bild 3) Typstandard: TGL 39865

Funktionstabelle

Eingang	Ausgang
A	Y
L	Н
H	L


Logische Funktion

$$Y = \overline{A}$$

Ausgewählte Kennwerte

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Signalverzögerungszeit	t _{PLH}	C_L = 15 pF; R_L = 2 kOhm			32 28	ns ns

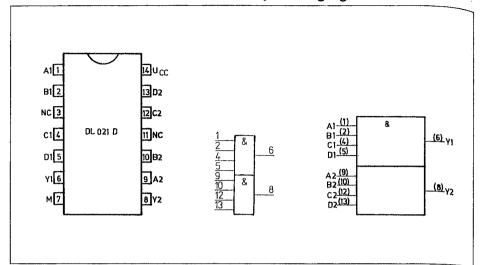
DL 020 D, DL 020 DG 2 NAND-Gatter mit je 4 Eingängen

Anschlußbelegung, Schaltzeichen und IEC-Zeichen

Bauform DL 020 D: DIP-14, Plast (Bild 3) Bauform DL 020 S: SO-14 (Bild 28) Typstandard: TGL 39865

Funktionstabelle

	Eing	gänge	Ausgang	
A	В	C	D	Y
L	X	Х	X	Н
X	L	X	X	Н
Х	X	L	X	Н
Х	X	X	L	Н
Н	Н	Н	Н	L
		1		


X Pegel beliebig (L oder H)

Logische Funktion

 $Y = \overline{A \cdot B \cdot C \cdot D}$

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Signalverzögerungszeit	t _{PLH}	C_L = 15 pF; R_L = 2 kOhm		9,5 11	15 15	ns ns

DL 021 D 2 AND-Gatter mit je 4 Eingängen

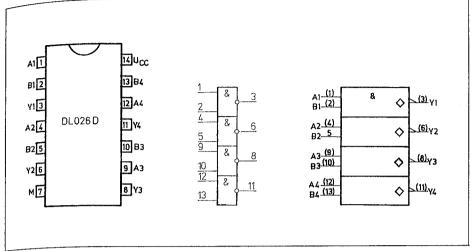
Anschlußbelegung, Schaltzeichen und IEC-Zeichen

Bauform DL 021 D: DIP-14, Plast (Bild 3) Bauform DL 021 S: SO-14 (Bild 28) Typstandard: TGL 39865

Logische Funktion

 $Y = A \cdot B \cdot C \cdot D$

Funktionstabelle


	Eing	Ausgang		
Α	В	C	D	Y
L	X	X	X	L·
X	L	X	X	L
X	X	L	X	L
X	X	X	L	L
Н	Н	Н	Н	Н

X Pegel beliebig (L oder H)

Ausgewählte Kennwerte

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Signalverzögerungszeit	t _{PLH}	C_L = 15 pF; R_L = 2 kOhm		11 11	15 20	ns ns

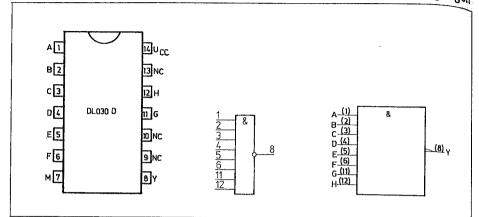
DL 026 D 4 NAND-Gatter mit offenen Kollektorausgängen für 15 V

Anschlußbelegung, Schaltzeichen und IEC-Zeichen

Bauform: DIP-14, Plast (Bild 3)

Typstandard: TGL 39865

Funktionstabelle


Eing	gang	Ausgang
A	В	Y
L	L	Н
L	Н	H
Н	L	Н
Н	Н	L
1		

Logische Funktion

 $Y = \overline{A \cdot B}$

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Signalverzögerungszeit	t _{PLH}	C_L = 15 pF; R_L = 2 kOhm			32 28	ns ns

DL 030 D, DL 030 DG 1 NAND-Gatter mit 8 Eingängen

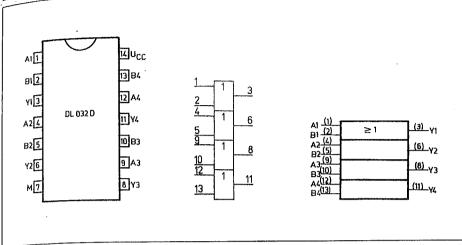
Anschlußbelegung, Schaltzeichen und IEC-Zeichen

Bauform DL 030 D: DIP-14, Plast (Bild 3) Bauform DL 030 S: SO-14 (Bild 28) Typstandard: TGL 39865

Logische Funktion

 $Y = \overline{A \cdot B \cdot C \cdot D \cdot E \cdot F \cdot G \cdot H}$

Funktionstabelle


	Eingänge								
Α	В	C	D	E	F	G	Н	Y	
L	X	X	Х	Х	X	Х	Х	Н	
X	L	Х	X	X	X	X	X	Н	
X	Х	L	X	X	X	X	X	Н	
X	X	X	L	X	Х	X	X	Н	
X	Х	X	Х	L	Х	X	X	Н	
X	X	X	X	X	L	X	X	Н	
X	X	X	Х	X	X	L	X	Н	
X	X	X	X	X	X	X	L	Н	
Н	Н	Н	Н	Н	Н	Н	Н	L	

X Pegel beliebig (L oder H)

Ausgewählte Kennwerte

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Signalverzögerungszeit	t _{PLH}	$C_L = 15 \text{ pF};$ $R_L = 2 \text{ kOhm}$		10 11	15 20	ns ns

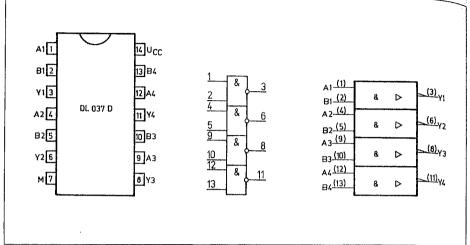
DL 032 D 4 OR-Gatter mit je 2 Eingängen

Anschlußbelegung, Schaltzeichen und IEC-Zeichen

Bauform DL 032 D: DIP-14, Plast (Bild 3) Bauform DL 032 S: SO-14 (Bild 28) Typstandard: TGL 43606

Funktionstabelle

Einę	gang	Ausgang
A	В	Y
L	L	L
L.	Н	Н
Н	L	H
Н	Н	Н
·	l	


Logische Funktion

Y = A + B

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Signalverzögerungszeit	t _{PLH}	C_L = 50 pF; R_L = 500 Ohm		11 13	22 22	ns ns

DL 037 D

4 NAND-Leistungsgatter mit je 2 Eingängen

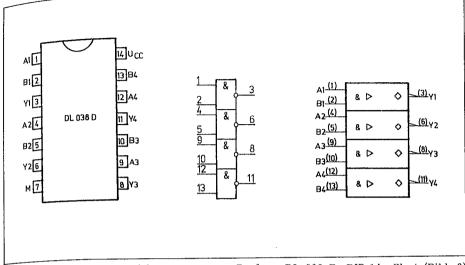
Anschlußbelegung, Schaltzeichen und IEC-Zeichen

Bauform DL 037 D: DIP-14, Plast (Bild 3) Bauform DL 037 S: SO-14 (Bild 28) Typstandard: TGL 39894

Funktionstabelle

Eing	gang	Ausgang
A	В	Y
L	L	Н
L	Н	Н
Н	L	Н
Н	Н	L
l		

Logische Funktion


$$Y = \overline{A \cdot B}$$

Ausgewählte Kennwerte

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Signalverzögerungszeit	t _{PLH}	C_L = 45 pF; R_L = 667 Ohm		7 16	24 24	ns ns

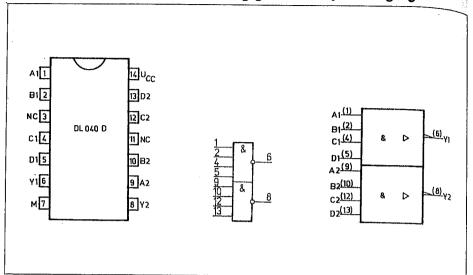
DL 038 D

4 NAND-Leistungsgatter mit offenen Kollektorausgängen

Anschlußbelegung, Schaltzeichen und IEC-Zeichen

Bauform DL 038 D: DIP-14, Plast (Bild 3) Bauform DL 038 S: SO-14 (Bild 28) Typstandard: TGL 39894

Funktionstabelle


	Eingä	inge	Ausgang
	A	В	Y
	L	L	Н
ļ	L	Н	H
1	Н	L	H
	Н	H	L
į			

Logische Funktion

 $Y = \overline{A \cdot B}$

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Signalverzögerungszeit	t _{PLH}	$C_L = 45 \text{ pF};$ $R_L = 667 \text{ Ohm}$		18 18	32 28	ns ns

DL 040 D 2 NAND-Leistungsgatter mit je 4 Eingängen

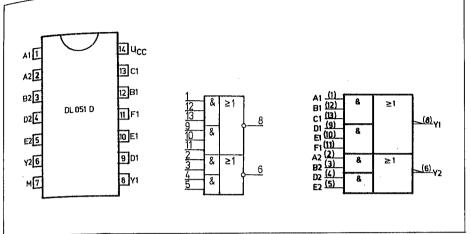
Anschlußbelegung, Schaltzeichen und IEC-Zeichen

Bauform DL 040 D: DIP-14, Plast (Bild: 3) Bauform DL 040 S: SO-14 (Bild 28) Typstandard: TGL 39894

Funktionstabelle

	Eing	gänge		Ausgang
Α	В	С	D	Y
L	X	X	X	Н
X	L	X	X	Н
X	X	L	X	Н
X	X	X	L	Н
Н	Н	Н	H	L

Logische Funktion


$$Y = \overline{A \cdot B \cdot C \cdot D}$$

Ausgewählte Kennwerte

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Signalverzögerungszeit	t _{PLH}	$C_L = 45 \text{ pF};$ $R_L = 667 \text{ Ohm}$		7 16	24 24	ns ns

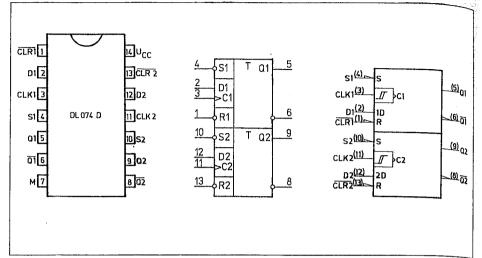
DL 051 D

2 AND-NOR-Gatter mit je 2 x 3 bzw. 2 x 2 Eingängen

Anschlußbelegung, Schaltzeichen und IEC-Zeichen

Bauform DL 051 D: DIP-14, Plast (Bild 3) Bauform DL 051 S: SO-14 (Bild 28) Typstandard: TGL 43929

Funktionstabelle


		ETHE	gänge			Ausgang
A1/A2	B1/B2			E1/E2 F1		Y1, Y2
Н	Н	Н	х	X	X	L
X	Х	X	н	Н	H	L
Alle übr	igen Kom	bination	en		Н	Н

X Pegel beliebig (L oder H)

Logische Funktion $Y1 = \overline{A \cdot B \cdot C} + \overline{D \cdot E} \cdot \overline{F}$ $Y2 = \overline{A \cdot B} + \overline{D \cdot E}$

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Signalverzögerungszeiten	t _{PLH}	C_L = 50 pF; R_L = 500 Ohm		11 12	20 20	ns ns

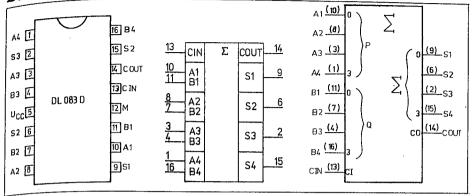
DL 074 D 2 D-Flip-Flop mit Setz- und Rücksetzeingängen

Anschlußbelegung, Schaltzeichen und IEC-Zeichen

Bauform DL 074 D: DIP-14, Plast (Bild 3) Bauform DL 074 S: SO-14 (Bild 28) Typstandard: TGL 39865

Funktionstabelle

	Eingäng	e		Ausgi	Ausgänge		
D	- S	$\overline{\text{CLR}}$	CLK	ବ	$ar{f Q}$		
X	L	Н	х	Н	L		
X	н	L	X	L	Н		
X	L	L	X	н*	н*		
Н	H.	Н	L-H	H	L		
L	Н	Н	L-H	${f L}$	Н		
X	Н	Н	L	Q0	$\overline{Q0}$		


Logische Funktion

$$Q(t_{n+1}) = D(t_n)$$

Ausgewählte Kennwerte

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Signalverzögerungszeit Taktfrequenz	t _{PLH} t _{PHL} f _{max} .	C_L = 15 pF; R_L = 2 kOhm C_L = 15 pF; R_L = 2 kOhm	25	14 17 40	25 40	ns ns MHz

DL 083 D 4 Bit Volladdierer

Funktionstabelle

Typstandard: TGL 43608 Bauform: DIP-16, Plast (Bild 4)

Eingänge				Ausgän	Ausgänge					
				CIN =	CIN = L; C2 = L			CIN = H; C2 = H		
A1/A3	B1/B3	A2/A4	B2/B4	S1/S3	S2/S4	C2/COUT	S1/S3	S2/S4	C2/COUT	
L	L	L	L	L	L	L	Н	L	L	
H ·	L	L	L	Н	L	L	$_{ m L}$	Н	L	
L	Н	L	L	Н	L	L	L	H	L	
Н	Н	L	L	L	H	L	H	H	L	
L	L	H	L	L	H	L	H	H	L	
H	L	Н	L	Н	H	L	L	L	н	
L	H	H	L	Н	H	L	\mathbf{L}	L	н	
H	Н	Н	L	L	L	H	H	L	Н	
L	$_{\rm L}$	L	H	L	Н	L	H	Н	L	
H	L	L	H	Н	Н	L	\mathbf{L}	\mathbf{L}	Н	
.L	H	L	Н	Н	Н	L	L	L	Н	
H	H	L	H	L	L	H	H	L	Н	
L	L	Н	H	L	\mathbf{L}	Н	H	L	Н	
Н	L	Н	Н	Н	L	Н	L	Н	H	
L	Н	Н	H	Н	L	Н	\mathbf{L}	Н	Н	
Н	H	Н	H	L	H	Н	Н	H	Н	

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Signalverzögerungszeiten		C _L = 50 pF,				
CIN►S	1.	$R_L = 500 \text{ Ohm}$		00	0.1	
	t _P			22	31	ns
A,B → S	t _{PLH} ,t _{PHL}			20	28	ns
CIN▶COUT	t _{PLH}			19	23	ns
	t _{PHL}			15	20	ns
A, B→ COUT	t _{PLH} ,t _{PHL}			19	23	ns

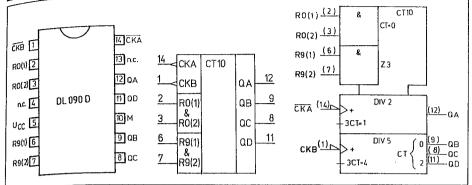
DL 086 D 4 Exklusiv-OR-Gatter mit je 2 Eingängen

Anschlußbelegung, Schaltzeichen und IEC-Zeichen

Bauform DL 086 D: DIP-14, Plast (Bild 3) Bauform DL 086 S: SO-14 (Bild 28) Typstandard: TGL 43291

Funktionstabelle

Eingä	inge	Ausgang
A	В	Y
L	L	L
L	Н	H
Н	L	н
Н	Н	L,


Logische Funktion

$$Y = A \cdot \overline{B} + \overline{A} \cdot B$$

Ausgewählte Kennwerte

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Signalverzögerungszeiten						
anderer Eingang Low anderer Eingang High	t _{PLH} t _{PHL} t _{PLH}	$C_{L} = 50 \text{ pF};$ $R_{L} = 500 \text{ Ohm}$ $C_{L} = 50 \text{ pF};$		16 11 11	28 18 28	ns ns ns
	t _{PHL}	R_{L} = 500 Ohm		9,5	18	ns

DL 090 D Dezimalzähler

Zähltabellen

Stand

BCD-Zählung (Ausgang QA mit Eingang CKB verbunden)

> Ausgänge QA QB QC QD

L L L H H L L H

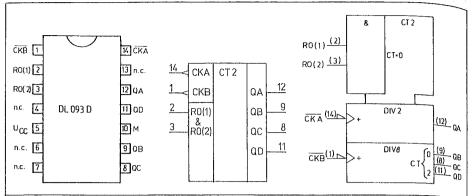
L L L

(QD mit CKA verbunden)

_					
1	Zähl-	A	usgä	nge	
1	Stand	QA	QD	QC	QB
٦	0	L	L,	L	L
1	1	L	L	L	Н
١	2	L	L	H	L
ı	3	L	L	Н	Н
1	4	L	H	L	L
	5	Н	L	L	L
1	6	Н	L	Ĺ	H
ı	7	н	L	Н	L
ı	8	Н	L	H	Н
ı	9	Н	Н	L	Ł

Bauform DL 090 D: DIP-14, Plast (Bild 3) Symmetrische 10:1-Zählung Bauform DL 090 S: SO-14 (Bild 28)

Typstandard: TGL 43205


Wirkung der Stelleingänge

RO(1)	RO(2)	R9(1)	R9(2)	QA	QB	QC	QD
Н	Н	L	X	L	L	L	L
Н	Н	х	L	L	L	L	L
Х	х	Н	H	Н	L	L	Н
Х	L	Х	L	zäi	nle	n	
L	Х	L	Х	zä	ıle	n	
L	х	х	L	zäl	ıle	n	
Х	L	L	Х	zä	ıle:	n	

X Pegel beliebig (L oder H)

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Signalverzögerungszeiten		C _{T.} = 15 pF;				
		$R_{L} = 2 \text{ kOhm}$				
CKA → QA	t _{PLH}	L		9	16	ns
CKA →QD					48	ns
CKA ▶QA	t _{PHL}			12	18	ns
CKA▶QD	,				50	ns
CKB▶QB	t _{PLH}			9	16	ns
CKB▶QC, QD] .	20	32	ns
CKB→QB	t _{PHL}			13	21	ns
CKB▶QC, QD				23	35	ns
Zählfrequenz						
CKA→QA	f _{max}		32	45		MHz
CKB▶QB			16	25 .		MHz

DL 093 D 4 Bit Binärzähler

Anschlußbelegung, Schaltzeichen und IEC-Zeichen

Н

L

Η

L

Η

L Η

 \mathbf{L}

Η

 \mathbf{L}

Η

L Н

L

Н

Η

L

L

Η

Η

Zähl-

stand

10

11

12

13

14

15

Bauform DL 093 D: DIP-14, Plast (Bild 3) Bauform DL 093 S: SO-14 (Bild 28) Typstandard: TGL 43205

	Aus	gänge		Zähltabelle
QA	QΒ	QС	QD	Binärzählung 4 Bit; QA mit $\overline{ ext{CKB}}$ verbunden
T	T	T Y	T	

•		
L	L	L
L	L	[L]
H	L	L
H	L	L
L	H	L
\mathbf{L}	H	L
H	H	L
H	H ·	L
L ,	L	Н
L	L	Н
H	L	H

L

Η

Η

Η

Н

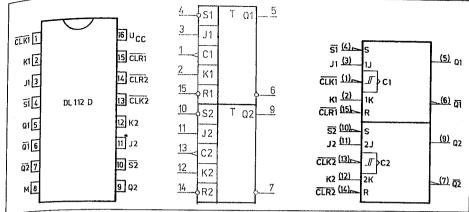
Η

Н

Η

Η

Wirkung der Stelleingänge


R0(1)	R0(2)	QA	QB	ąс	QD
Н	Н	L	L	L	L
L	X	zählei	n		
X	L	zählei	n		

X Pegel beliebig (L oder H)

Ausgewählte Kennwerte

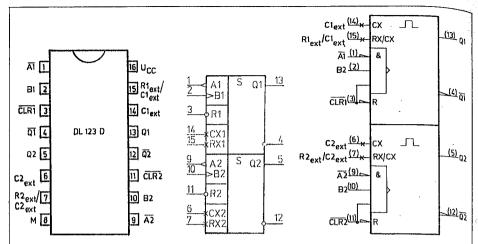
Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Signalverzögerungszeiten		$C_L = 15 \text{ pF};$ $R_L = 2 \text{ kOhm}$				
CKA→QA		L - z komi		9	16	ns
	PLH		1	9		118
CKA ► QD	1				70	ns
CKA ▶QA	t _{PHL}			12	18	ns
CKA ▶QD					70	ns
Zählfrequenz						
CKA→QA CKB→QB	fmax		32	45		MHz
CKB▶QB	, max		16	25		MHz

DL 112 D 2 J-K-Flip-Flop, flankengetriggert

Anschlußbelegung, Schaltzeichen und IEC-Zeichen

Funktionstabelle

Bauform DL 112 D: DIP-16, Plast (Bild 4) Bauform DL 112 S: SO-16 (Bild 29) Typstandard: TGL 43202


	Е	ingän	ge		Ausga	änge	Bedeutung
Ī	J	K	CLR	CLK	ବ	୍ ବି	
L	Х	X	Н	X	Н	L	Asynchrones Setzen
Н	X	X	L	X	L	Н	Asynchrones Rücksetzen
L	Х	X	L	Х	н*	н*	Instabiler Zustand
H	L	L	Н	L-H	Q _n	\overline{Q}_{n}	Halten (keine Zustandsänderung)
Н	Н	L	H	L-H	H	L	Laden "1" (Setzen)
Н	L	Н	Н	L-H	L	Н	Laden "0" (Rücksetzen)
Н	Н	Н	Н	L-H	\overline{Q}_{n}	Q _n	Kippen
Н	X	X	Н	Н	$Q_{n}^{"}$	$\bar{Q}_{n}^{"}$	Halten (keine Zustandsänderung)

X	Pegel	beliebig	(T.	oder	H)

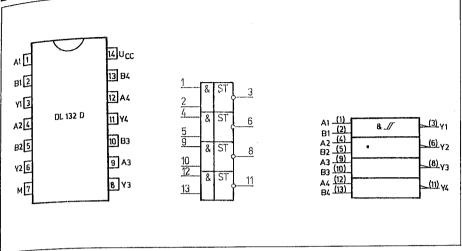
Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Signalverzögerungszeiten		$C_L = 15 \text{ pF};$ $R_L = 2 \text{ kOhm}$				
<u>CLR</u> →Q, S̄→Q; <u>CLK</u> →Q, Q̄	t _{PLH}			11	20	ns
<u>CLR</u> → Q; \$ → Q <u>CLK</u> → Q, Q	^t PHL			12	20	ns
Taktfrequenz	fmax	$C_L = 15 \text{ pF};$ $R_L = 2 \text{ kOhm}$	30	45		MHz

DL 123 D

2 monostabile Multivibratoren

Anschlußbelegung, Schaltzeichen und IEC-Zeichen

Bauform DL 123 D: DIP-16, (Bild 4) Bauform DL 123 S: SO-16 (Bild 29) Typstandard: TGL 43203


	Eingänge		Ausgänge				
Ā	В	$\overline{\text{CLR}}$	Q	Q			
X	Х	L	L	Н			
Н	X	X	L	Н			
X	L	X	L	Н			
L		H					
	Н	H					
L	Н	厂					

Funktionstabelle

Ausgewählte Kennwerte

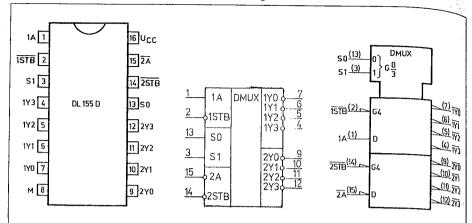
				-		
Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Signalverzögerungszeiten		$C_{ext} = 0 pF;$				
$\frac{C_L}{A} = 15 \text{ pF; } R_L = 2 \text{ kOhm}$	1	$R_{ext} = 5 \text{ kOhm}$			•	
Ā → Q	t _{PLH}			23	33	ns
B → Q	2 222			17	44	ns
CLR→ Q				23	45	ns
Ā → Q	t _{PHL}			27	45	ns
B → Q	1 112			22	56	ns
<u>CLR</u> → Q				17	27	ns
Minimale Impulsbreite	t _{wQmin}			70	200	ns
am Ausgang Q	w cyllin					

DL 132 D 4 Schmitt-Trigger-NAND-Gatter mit je 2 Eingängen

Anschlußbelegung, Schaltzeichen und IEC-Zeichen

Bauform DL 132 D: DIP-14, Plast (Bild 3) Bauform DL 132 S: SO-14 (Bild 28) Typstandard: TGL 43206

Funktionstabelle


Eingë	inge	Ausgang
A	В	Y
L	L	Н
L	Н	Н
Н	L	Н
Н	Н	L

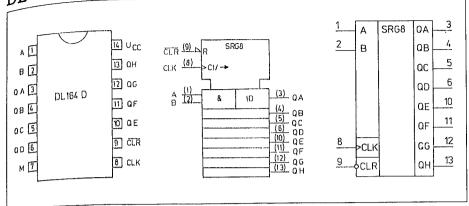
Logische Funktion

 $Y = \overline{A \cdot B}$

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Signalverzögerungszeit	t _{PLH}	${ m C_L}$ = 15 pF; ${ m R_L}$ = 2 kOhm		17 12	22 22	ns ns

DL 155 D 2 Dekoder/ Demultiplexer 2 auf 4

Anschlußbelegung, Schaltzeichen und IEC-Zeichen


Bauform DL 155 D: DIP-16, Plast (Bild 4) Bauform DL 155 S: SO-16 (Bild 29) Typstandard: TGL 43292

			Eingäng	ge			Aus	gänge		
	S0	S1	1A	2Ā	STB	$\overline{Y0}$	<u> </u>	$\overline{Y2}$	<u> </u>	Funktionstabelle
	X	X	X	X	Н	Н	Н	Н	Н	
	L	L	Н	L	L	L	Н	Н	Н	
	L	Н	Н	L	L	Н	L	Н	Н	
1	H	L	Н	L	L	Н	Н	L	Н	
	Н	H	Н	L	L	Н	Н	Н	L	X Pegel beliebig
	X	X	L	Н	X	Н	Н	Н	Н	(L oder H)

Ausgewählte Kennwerte

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Signalverzögerungszeiten		$C_{L} = 50 \text{ pF};$				
$U_{IH} = 4.5 \text{ V}; U_{IL} = 0 \text{ V}$		C_L^{-} = 50 pF; R_L^{-} = 500 Ohm				
<u>STB</u> ▶ Y	t _{PLH}			12	18	ns
S0,S1→Y				17	30	ns
1A→Y				16	30	ns
<u>2A</u> ►Y				12	17	ns
<u>STB</u> , <u>2A</u> → Y	t _{PHL}			17	30	ns
S0, S1→Y				18	35	ns
1A→ Y				20	30	ns

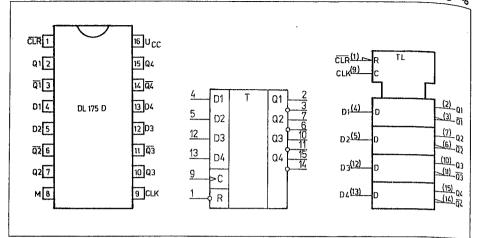
DL 164 D Serielles 8 Bit Schieberegister mit Parallelausgängen

Anschlußbelegung, Schaltzeichen und IEC-Zeichen

Bauform DL 164 D: DIP-14, Plast (Bild 3) Bauform DL 164 S: SO-14 (Bild 28) Typstandard: TGL 43609

Funktionstabelle

		Eir	gänge			Ausgänge								
	Α	В	$\overline{\text{CLR}}$	CLK	QA	QΒ	QC	QD	QΕ	QF	QG	QH		
İ	X	X	L	X	L	L	L	L	L	L	L	L		
	X	X	Н	L	QA_0	QB_0	QC_0	QD_0	QE_0	QF_0	QG_0	QH_0		
	Н	Н	Н	L-H	Н	QA _n	QB _n	QC _n	QD_n	QE_n	QF _n	QG _n		
	L	X	Н	L-H	L	QA _n	QB _n	QC _n	QD_n	QE _n	QF _n	QG _n		
	Х	L	Н	L-H	L	QA _n	QB _n	QC _n	QD _n	QE _n	QF _n	QG _n		


X Pegel beliebig (L oder H)

 $\mathrm{QA}_0 \ldots \mathrm{QH}_0$ Pegel an $\mathrm{QA} \ldots \mathrm{QH}$ vor Anliegen der statischen Eingangsbedingungen

 QA_n ... QH_n Pegel an QA ... QG vor der letzten Schaltflanke an CLK

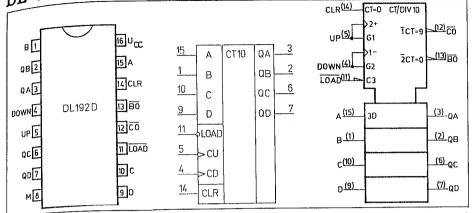
Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Signalverzögerungszeiten		$C_L = 50 \text{ pF};$ $R_T = 500 \text{ Ohm}$				
CLR▶ Q CLK▶ Q	t _{PHL}	L		20 14 17	36 27 32	ns ns
Taktfrequenz	f _{max}		25	35	02	MHz

DL 175 D 4 D-Flip-Flop, gemeinsamer Clear- und Takteingang

Anschlußbelegung, Schaltzeichen und IEC-Zeichen

Bauform DL 175 D: DIP-16, Plast (Bild 4) Bauform DL 175 S: SO-16 (Bild 29) Typstandard: TGL 43293

Funktionstabelle


	Eingänge		Ausgänge			
CLR	CLK	D	ବ	$ ar{Q} $		
L .	X	X	L	Н		
Н	L-H	H	H	L		
Н	L-H	L	L	Н		
Н	L	X	Q0	$\overline{Q0}$		

X Pegel beliebig (L oder H)

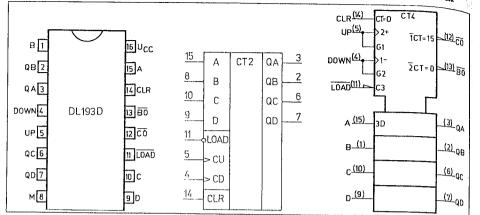
Ausgewählte Kennwerte

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Signalverzögerungszeiten		C _L = 50 pF;				
		$R_{L} = 500 \text{ Ohm}$			İ	
CLR→Q CLK→Q, Q	t _{PLH}			20	32	ns
CLK → Q, Q̄				18	30	ns
CLR→Q	t _{PHL}			25	36	ns
CLK→Q, Q				21	30	ns
Taktfrequenz	fmax		25	40		MHz
					l	

DL 192 D Synchroner dekadischer Vor-/Rückwärtszähler mit Clear

Funktionstabelle Typstandard: TGL 43204 Bauform DL 192 D: DIP-16, Plast (Bild 4) Bauform DL 192 S: SO-16 (Bild 29)

Betriebsart		Eingänge							Ausgänge				
	CLR	LOAD	UP	DOWN	A	В	C	D	QA QB QC QD CO BO				
Rücksetzen	Н	X	X	L	X	X	X	X	L L L L H L				
	H	X	X	H	X	Χ	X	X	LLLLHH				
Voreinstellen	L	L	X	L	L	$_{\rm L}$	L	L	LLLLHL				
VOI 01.1.5	L	L	X	Н	L	L	L	L					
	L	L	L	X	Н	$_{ m L}$	L	H	wie A D L H				
	L	L	Н	X	Н	L	L	Η	wie A D H H				
Zählen vorwärts rückwärts	L L	H H	H	н	X X	X X	X X	X X	vorwärts $H^{1)}$ H_{2}				


1) CO = UP, vorwärts ab HLLH; 2) BO = DOWN, rückwärts ab LLLL

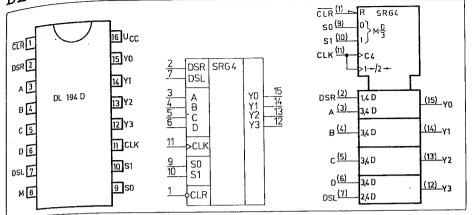
Augenwählte Konnwerte

Low-High-Flanke: X Pegel beliebig (L oder H)

Ausgewanit	e kennwerte		_ Low-High-Halik	Low-righ-Flanke; A reger believing (if oder 11)								
Kennwert		Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit					
Signalverzög	erungszeiten		$C_L = 15 \text{ pF};$ $R_L = 2 \text{ kOhm}$									
UP	▶ CO	t _{PLH}	ь		13	26	ns					
DOWN	> BO	LUII			13	24	ns					
UP, DOWN	> Q				22	38	ns					
LOAD	► Q				25	40	ns					
UP	> CO	t _{PHL}			15	24	ns					
DOWN	> BO	1 1111			15	24	ns					
UP, DOWN	► Q				27	47	ns					
LOAD	→ Q				28	40	ns					
CLR	→ Q				28	35	ns					

DL 193 D Synchroner 4 Bit Vor-/Rückwärtszähler mit Clear

Funktionstabelle


Typstandard: TGL 43204 Bauform DL 193 D: DIP-16, Plast (Bild 4) Bauform DL 193 S: SO-16 (Bild 29)

													- 201	
Betriebsart	GI D	IT OAD		gänge		_					Ausg	änge		
	CLR	LOAD	UP	DOWN	A	В	C	_D_	QA.	QB	QC	$_{ m QD}$	CO	BO
Rücksetzen	H	X	X	L H	X	X X	X X	X	L	L	Ļ	L	Н	L
Voreinstellen	L	L	X	L	Ĺ	L	L	$_{ m L}^{ m X}$	L	L	L L	$_{ m L}^{ m L}$	H H	H L
	L L	L L	X L	H X	L H	L H	L H	L H	L H	L H	L H	L H	H L	H H
Zählen	L	L	H	X	Н	Н	Н	H	H	H	Н	Н	Н	Н
vorwärts rückwärts	L L	H H	Н	H	X	X X	X X	X X	1	värts «wär			H ¹⁾ H	H ₂)

1) $\overline{\text{CO}}$ = UP, vorwärts ab HHHH; 2) $\overline{\text{BO}}$ = DOWN, rückwärts ab LLLL Ausgewählte Kennwerte Low-High-Flanke: X Pegel beliebig (L ode

rusgewaiii	e Kennwerte		Low-High-Flank	e; x Pe	eger berr	ebig (L	oder H
Kennwert		Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Signalverzög	gerungszeiten		$C_L = 15 \text{ pF};$ $R_T = 2 \text{ kOhm}$				
UP	► CO		L Z KOIMI				ŀ
- '		t _{PLH}			13	26	ns
DOWN	→ BO				13	24	ns
UP, DOWN	► Q				22	38	ns
LOAD	▶ Q				25	40	ns
UP	→ CO	t _{PHL}		!	15	24	ns
DOWN	> BO				15	24	ns
UP, DOWN	. ► Q				27	47	ns
LOAD	> ତ୍ୱ > ତ୍ୱ				28	40	ns
CLR	→ Q				28	35	ns

DL 194 D 4 Bit Rechts-Links-Schieberegister

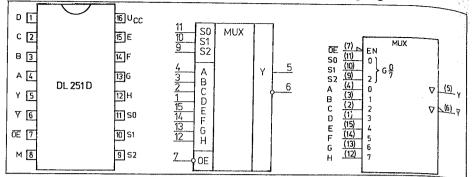
Anschlußbelegung, Schaltzeichen und IEC-Zeichen

Bauform DL 194 D: DIP-16, Plast (Bild 4) Bauform DL 194 S: SO-16 (Bild 29) Typstandard: TGL 43294

Funktionstabelle

Lamen														
Betriebs-				Eingän	ge						A	usgäng	ge	ļ
art	S0	S1	$\overline{\text{CLR}}$	CLK	DSL	DSR	A	В	С	D	Y0	Y 1	Y2	Y3
Rücksetzen	X	X	L	X	X	X	X	X	X	Χ	L	L	L	L
Halten	X	X	Н	L	X	X	X	X	X	Χ	$Y0_{t-1}$	$Y1_{t-1}$	Y2 _{t-1}	Y3 _{t-1}
Laden	Н	H	H		X	X	a	b	c	d	а	b	С	d
Schieben	Н	L	Н	丁	X	r	X	X	X	X	r	Y0 _{t-1}	Y1 _{t-1}	Y2 _{t-1}
rechts Schieben	L	Н	Н	丁	1	X	X	X	X	X	Y1 _{t-1}		Y3 _{t-1}	1
links Halten	L	L	Н	X	X	X	Х	X	X	X	Y0 _{t-1}	Y1 _{t-1}	Y2 _{t-1}	Y3 _{t-1}

Low-High-Flanke; X Pegel beliebig (L oder H)


Ausgewählte Kennwerte

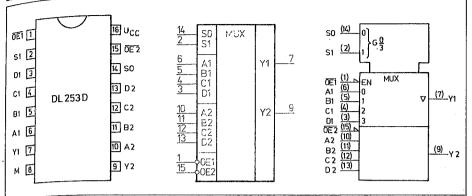
a, b, c, d, r, l statischer H- oder L-Pegel $\mathrm{Yn}_{\mathrm{t-1}}$ Pegel vom vorhergehenden Zustand

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Signalverzögerungszeiten $U_{\rm IL}$ = 0 V; $U_{\rm IH}$ = 4,5 V		$C_{L} = 50 \text{ pF};$ $R_{I} = 500 \text{ Ohm}$				
CLR→Y	t _{PHL} t _{PLH} t _{PHL}	Б		19 18 22	30 26 31	ns ns ns
Taktfrequenz	fmax	U _{IH} = 2,4 V	25	32		MHz

DL 251 D

8-auf-1-Multiplexer, Tristate-Ausgänge

				·	
	Eingi	inge		Aus	gänge
S0	S1	S2	OE	Y	Ϋ́
X	X	X	Н	Z	\bar{Z}
L	L	L	L	A	$ar{Z}$ $ar{A}$
H	L	L	L	В	B
L	Н	L	L	С	Ĉ
H	Н	L	L	D	D
L	L	Н	Ĺ	Е	Ē
Н	L	Н	L	F	$\overline{\mathrm{F}}$
L	Н	Н	L	G	G
Н	Н	Н	L	Н	Ħ


Bauform: DIP-16, Plast (Bild 4) SO-16 (Bild 29) Typstandard: TGL 43295

Funktionstabelle

Ausgewählte Kennwerte

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Signalverzögerungszeiten		C _L = 50 pF;				
$U_{IL} = 0 \text{ V}; \ U_{IH} = 4.5 \text{ V}$		$R_L = 500 \text{ Ohm}$				
A H→Y	t _{PLH}			15	33	ns
	t _{PHL}			18	33	ns
$A \dots H \longrightarrow \overline{Y}$	t _{PLH}			12	19	ns .
	t _{PHL}			8	17	ns
S0 S2→Y	t _{PLH}		1	31	52	ns
	t _{PHL}			28	50	ns
OE > Y	t _{PZH}			12	35	ns
	t _{PZL}			18	35	ns
	t _{PHZ}			14	35	ns
	t _{PLZ}			18	35	ns

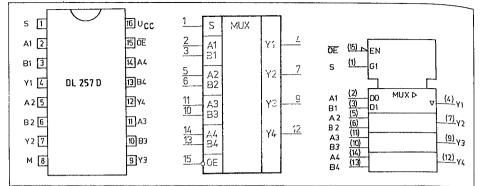
DL 253 D 2 Multiplexer 4 auf 1, Tristate-Ausgänge

Anschlußbelegung, Schaltzeichen und IEC-Zeichen

Bauform DL 253 D: DIP-16, Plast (Bild 4) Bauform DL 253 S: SO-16 (Bild 29) Typstandard: TGL 43295

	Eingär	nge	Ausgänge
S0	S1	OE1/OE2	Y1/Y2
Х	X	Н	Z
L	L	L	A
Н	L	L	В
L	Н	L	С
Н	Н	L	D
	1		1

Funktionstabelle


X Pegel beliebig (L oder H)

Ausgewählte Kennwerte

Ausgewährte Kennwert	-			· · · ·	1	Т
Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Signalverzögerungszeit		C _L = 50pF;				
		$R_L^D = 500$ Ohm				
A bis D▶Y	t _{PLH}			12	25	ns
	t _{PHL}			14	21	ns
S0, S1, S2→ Y ¹⁾	t _{PLH}			23	40	ns
	t _{PHL}			24	33	ns
<u>OE</u> ▶Y	t _{PZH}			19	28	ns
	t _{PZL}			18	27	ns
	t _{PHZ} ,			19	30	ns
	t _{PLZ}					

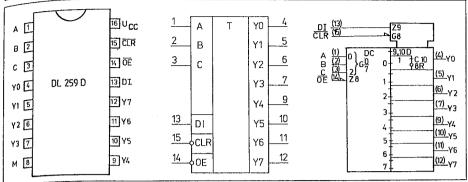
1) Die Dateneingänge A bis C sind auf L-Pegel, der Dateneingang D ist auf H-Pegel zu legen.

DL 257 D 4 Multiplexer 2 auf 1, Tristate-Ausgänge

Anschlußbelegung, Schaltzeichen und IEC-Zeichen

Bauform DL 257 D: DIP-16, Plast (Bild 4) Bauform DL 257 S: SO-16 (Bild 29) Typstandard: TGL 43295

Funktionstabelle


	Eing	änge		Ausgang
A	В	S	ŌĒ	Y
Х	Х	Х	Н	Z
L	X	L	L	L (A)
Н	Х	L	L	H (A)
X	L	H	L	L (B)
X	Н	Н	L	н (в)

Ausgewählte Kennwerte

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Signalverzögerungszeiten U _{IL} = 0 V; U _{IH} = 4,5 V		C_L = 50 pF; R_L = 500 Ohm				
A, B → Y	t _{PLH}			8	21 21	ns ns
S▶Y ¹⁾	t _{PLH}			20 18	32 25	ns ns
<u>OE</u> ≯ Y	t _{PZH}			10,5 13,5	25 30	ns ns
	t _{PHZ}			8,5 13	26 30	ns ns

1) Dateneingänge A auf L-Pegel, Dateneingänge B auf H-Pegel legen 170

DL 259 D 8-Bit-Latch, adressierbar, mit Enable und Clear

Anschlußbelegung, Schaltzeichen und IEC-Zeichen

Latch-Adressierung

Bauform DL 259 D: DIP-16, Plast (Bild 4) Bauform DL 259 S: SO-16 (Bild 29)

Funktion

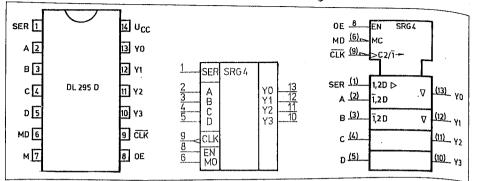
Speichern 1-aus-8-Dekoder Rücksetzen

Latch adressierbar

Funktionstabelle

				runktionstabelle	
С	В	Α	adressiertes Latch		Übrige Ausgänge
L	L	L	0	Latches	00-
L	L	Н	1	H L D	
L	Η	L	2		Q _O
L	H	Н	3	0	Q _O
Н	\mathbf{L}	L	4		L
Н	L	Н	5	L H L	L
Н	Н	L	6	D Pegel des Dateneingangs	
Н	Н	Н	7	Qo Pegel des entsprechenden	Ausgangs

 $\mathbf{Q}_{\mathbf{O}}$ Pegel des entsprechenden Ausgangs vor dem Einstellen


Typstandard: TGL 43610

Ausgewählte Kennwerte

der anliegenden Eingangspegel

	,					,
Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Signalverzögerungszeiten		$C_L = 50 \text{ pF};$ $R_L = 500 \text{ Ohm}$				
CLR → Y DI → Y A C→ Y OE → Y	t _{PHL} t _{PLH} t _{PHL} t _{PLH} t _{PLH} t _{PLH} t _{PLH}	Б		20 18 18 24 17 22 14	27 28 24 38 29 32 24	ns ns ns ns ns ns

DL 295 D 4 Bit Rechts-/Links-Schieberegister

Anschlußbelegung, Schaltzeichen, IEC-Zeichen

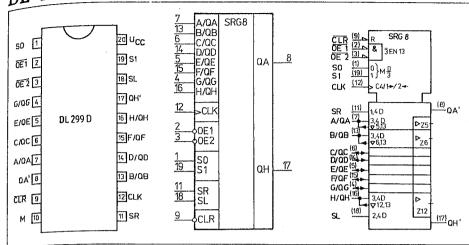
Bauform DL 295 D: DIP-14, Plast (Bild 3) Bauform DL 295 S: SO-14 (Bild 28) Typstandard: TGL 43611

Funktionstabelle

	Ein	ngänge				Ausgė	inge	
Output Enable	Mode	Takt	Serieller Eingang	Parallel- Eingänge		i.		1
OE	MD	CLK	SER	ABCD	Y0	Y1	Y2	Y3
L	X	X	X	X X X X	Z	Z	Z	Z
Н	X	Н	X	x x x x	Y0 _{t-1}	Y1 _{t-1}	Y2 _{t-1}	Y3 _{t-1}
Н	Ĥ		X	a b c d	a	b	e	d
Н	Н		X	* Y1 Y2 Y3 d	Y1 _{t-1}	Y2 _{t-1}	Y3 _{t-1}	d
Н	L		ser	x x x x	ser	Y0 _{t-1}	Y1 _{t-1}	Y2 _{t-1}

X Pegel beliebig (L oder H); Z hochohmiger Zustand; H-L-Flaa, b, c, d statischer H- oder L-Pegel während der H-L-Flanke H-L-Flanke

Ausgangszustand vor der letzten H-L-Flanke


Y * n-1

Linksschiebemodus; die Parallelausgänge A ... C werden jeweils mit den Ausgängen Y1 ... Y3 verbunden. Paralleleingang D wird zum seriellen Eingang der Schiebekette.

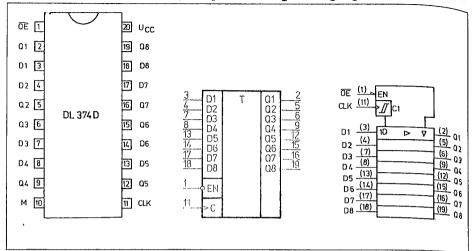
Ausgewählte Kennwerte

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Signalverzögerungszeiten		$C_L = 50 \text{ pF};$ $R_L = 500 \text{ Ohm}$				
$U_{IH} = 5 \text{ V}; U_{IL} = 0 \text{ V}$ $\overrightarrow{CLK} \longrightarrow Y$	t _{PLH}	rr = 200 Omi		15	22	ns
OF W	t _{PHL}			22 16	30 30	ns ns
OE → Y	t _{PZH}			20	35	ns
	t _{PLZ}			15	25	ns
	t _{PHZ}			10	20	ns

DL 299 D 8 Bit Universalschieberegister

Anschlußbelegung, Schaltzeichen und IEC-Zeichen

Bauform: DIP-20, Plast (Bild 8) Typstandard: TGL 43611


Funktionstabelle

Betriebs-			E	ing	inge				E	in/Au	sgäng	е					Ausgä	nge
art	51	S0	SL	SR	CLK	CLR	OE1	OE2	A/QA	B/QB	C/QC	D/QD	E/QE	F/QF	G/QG	H/QH	QA'	OH'
Rück-	Х	L	Х	Х	Х	L	L	L	L	L	L,	L	L	L	L .	L	L.	L
setzen	L	Х	Х	Х	Х	L	L	L	L	L	L	L	L	L	L	L	L	L
	Н	Н	Х	Х	Х	L	Х	Х	L	L	L	L	L	L	L	L	L	L
Halten	L	L	Х	Х	Х	H	L	L	QA _O	QB_0	QC_0	QD_{0}	QE_n	QF_0	qg_0	OH _O	QA_0	QH_0
	Н	L	Х	Х	L	H	L	L	QA _O	QB_0	QC_0	QD_Q	QE _n	QF ₀	qq_0	QH _O	QA_0	QH_{0}
	L	H	Х	Х	L	Н	L	L	QAO	QB_{Q}	QC_0	QD_0	QEn	QF ₀	QG_0	QH _O	QA_0	oH_0
	Н	Н	Х	Х	L	Н	Ľ	L	QA ₀ *	QBO*	QC ₀ *	ob_0*	QE _n *	QF_0	QG_0*	QH ₀ *	QΛ ₀ *	°0HO
Schieben	L	Н	Х	Н	Ţ	Н	L	L	н	QA_n	QB_n	QC_n	QDn	QEn	$QF_{\mathbf{n}}$	QG_n	H	qc_n
rechts	L	Н	Х	L		Н	L	L	L	QAn	QBn	qc_n	QD _n	QE_n	QF_n	QG_n	L	QC_n
Schieben	Н	L	Н	Х	5	H	L	L	QBn	oc _n	od_n	QEn	QF _n	QG_n	$QH_{\mathbf{n}}$	Н	$\mathtt{QB}_{\mathbf{n}}$	Н
links	Н	L	L	Х	٦	Н	L	L	QBn	QC _n	QDn	QE _n	QF _n	QGn	QH_n	L	QB_n	L
Ein-	Н	Н	х	Х		Н	Х	Х	a	b	с	d	е "	f	g	h	a	h
chreiben																		

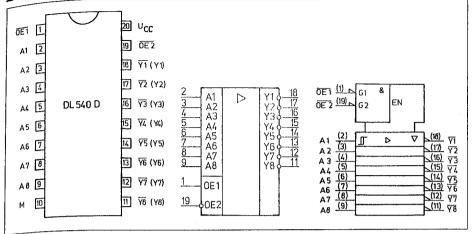
X Pegel beliebig (L oder H); J Low-High-Flanke

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Signalverzögerungszeiten		$C_L = 50 \text{ pF};$	-			
		$R_L = 500$ Ohm				
CLK▶Q	t _{PHL}			22	27	ns
	t _{PLH}			13	27	ns

DL 374 D 8 D-Flip-Flop mit Freigabeeingang

Anschlußbelegung, Schaltzeichen und IEC-Zeichen

Bauform: DIP-20, Plast (Bild 8) Typstandard: TGL 43612


Funktionstabelle

	Eingänge		Ausgang
ŌĒ	CLK	D	ବ
L		Н	Н
L		L	L
L	L	Х	Q_0
Н	X	Х	Z

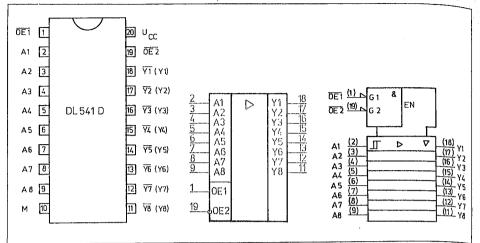
Ausgewählte Kennwerte

	-					
Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Signalverzögerungszeiten		$C_L = 50 \text{ pF};$ $R_L = 500 \text{ Ohm}$				
CLK▶Q	t _{PLH}	L		20	28	ns
	t _{PHL}			16	30	ns
ŌĒ→Q	t _{PZH}			15	28	ns
	tPZL			18	28	ns
	t _{PHZ}			7	20	ns
	t _{PLZ}			12	25	ns
Taktfrequenz	fc		32	40		MHz

DL 540 D 8 Bit Leitungstreiber, invertierend, Tristate-Ausgänge

Anschlußbelegung, Schaltzeichen und IEC-Zeichen

Bauform: DIP-20, Plast (Bild 8) Typstandard: TGL 43613


Funktionstabelle

ŌE1	Eingänge	e A	Ausgang Ÿ
L	L	L	L
L	L	н	Ĥ
Х	Н	X	Z
Н	X	X	Z

X Pegel beliebig (L oder H)

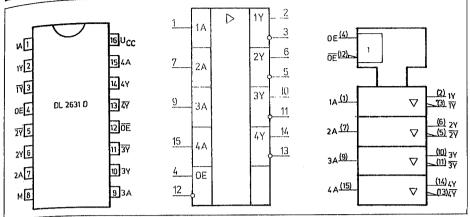
Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Signalverzögerungszeiten		$C_L = 50 \text{ pF};$ $R_L = 500 \text{ Ohm}$				
A → Y	t _{PLH}		ł	10	15	ns
	t _{PHL}			13	18	ns
<u>OE1</u> , <u>OE2</u> ▶Ÿ	t _{PZL}			19	36	ns
	t _{PZH}			12	25	ns
	t _{PLZ}			21	28	ns
	t _{PHZ}			10	18	ns

DL 541 D 8 Bit Leitungstreiber, nichtinvertierend, Tristate

Anschlußbelegung, Schaltzeichen und IEC-Zeichen

Bauform: DIP-20, Plast (Bild 8) Typstandard: TGL 43613

Funktionstabelle


ŌE1	Eingänge OE2	A	Ausgang Y
L	L	L	Н
. L	L	Н	L
X	Н	X	Z
Н	X	X	Z
1	l		

X Pegel beliebig (L oder H)

Ausgewählte Kennwerte

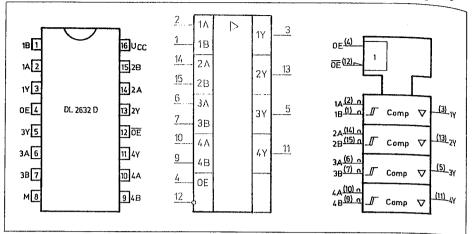
Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Signalverzögerungszeiten		$C_L = 50 \text{ pF};$ $R_L = 500 \text{ Ohm}$:	
A▶Y	t _{PLH}	_		10	17	ns
	t _{PHL}			13	20	ns
OE1, OE2→Y	t _{PZL}			19	36	ns
	tPZH			12	25	ns
	t _{PLZ}			22	35	ns
	t _{PHZ}			10	18	ns

DL 2631 D 4facher Leitungssender für Differenzsignale

Anschlußbelegung, Schaltzeichen und IEC-Zeichen

Bauform DL 2631 D: DIP-16, Plast (Bild 4) Bauform DL 2631 S: SO-16 (Bild 29) Typstandard: TGL 43607

]	Eingänge		Ausgänge				
OE	ŌĒ	A	Y	Ϋ́			
Н	X	Н	Н	L			
Н	X	L	L	Н			
Х	L	Н	Н	L			
Х	L	L	L	Н			
L	Н	X	Z	z			


Funktionstabelle

X Pegel beliebig (L oder H)

Ausgewanite Kennwerte	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
	zerenen					
Signalverzögerungszeiten	t _{PLH}	$C_{L} = 50 \pm 5 \text{ pF};$		12	20	ns
	t _{PHL}	$R_{L1}^2 = 500 \pm 15 \text{ Ohm}$		19	23	ns
	t _{PZH}			27	40	ns
	tPZL			36	45	ns
	t _{PHZ}			13	30	ns
	t _{PLZ}			19	35	ns
Differenzsignalver- zögerungszeit	t _{DD}	$R_{L2} = 100 \pm 3$ Ohm		18	25	ns
Flankensteilheit	t _{mn} , u	$R_{L2} = 100 \pm 3$ Ohm		7	25	ns
	t _{TDHL}			13	25	ns

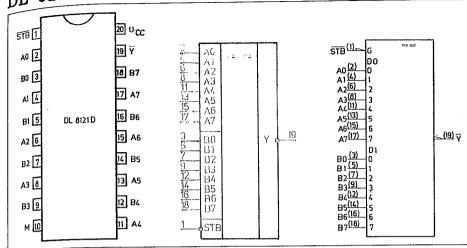
DL 2632 D

4facher Leitungsempfänger für Differenzsignale

Anschlußbelegung, Schaltzeichen und IEC-Zeichen

Bauform DL 2632 D: DIP-16, Plast (Bild 4) Bauform DL 2632 S: SO-16 (Bild 29) Typstandard: TGL 43297

Differenz- Eingänge A, B	Steue Einge OE		Ausgang Y
$U_{\mathrm{ID}} \geq 0.2 \text{ V}$	Н	X	Н
10 - 1	X	L	H
$ -0,2 \text{ V} < \text{U}_{\text{ID}} < 0,2 \text{ V} $	Н	X	?
ID ,	X	L	?
$U_{\rm ID} \le -0.2 \text{ V}$	H	X	L
ID .	X	L	L
X	L	Н	Z
offen	Н	X	Н
offen	X	L	H
	ł		t


Funktionstabelle

X Pegel beliebig (L oder H)

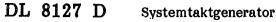
Ausgewählte Kennwerte

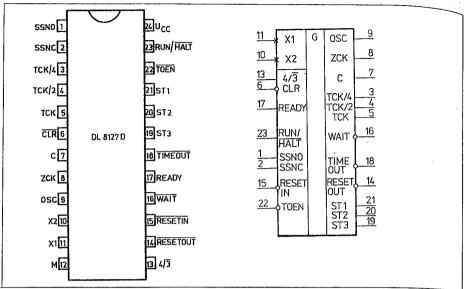
Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Signalverzögerungszeiten U _{TS} = 7 V	$t_{\rm PLH}$ $t_{\rm PHL}$ $t_{\rm PZH}$ $t_{\rm PZL}$ $t_{\rm PHZ}$ $t_{\rm PLZ}$	$C_{L} = 50 \pm 5 \text{ pF};$ $R_{L1} = 500 \pm 15 \text{ Ohm}$		25 23 15 18 13	35 35 25 30 25 30	ns ns ns ns ns

DL 8121 D 8 Bit Komparator

Anschlußbelegung, Schaltzeichen und IEC-Zeichen

Bauform: DIP-20, Plast (Bild 8) Typstandard: TGL 43297


Funktionstabelle


FULLKULO	DECEDENTE		
An	Eingänge Bn	Ausgang $\overline{ar{\Upsilon}}$	
L	L	L	L
Н	Н	L	L
L	L	Н	Н
Н	Н	Н	Н
L	Н	L	H
H	L	L	Н
L	Н	H	Н
Н	L	Н	Н
i	1	I	1

Logische Funktion

$$\overline{Y} = (A0 + B0) \cdot (A1 + B1) \dots (A7 + B7) \cdot SIB$$

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Signalverzögerungszeiten		C _L = 50 pF;				
		$R_L = 500 \text{ Ohm}$				
An, Bn→ Y	t _{PLH}	L			17	ns
	tPHL				17	ns
STB▶ Ÿ	tPLH				12	ns
	t _{PHL}				10	ns
	Lur				1	

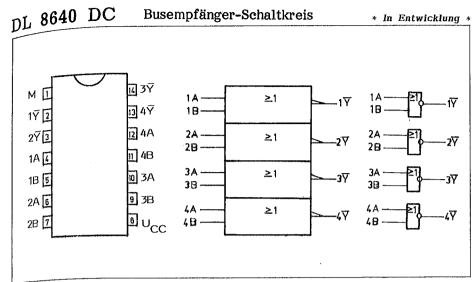
Anschlußbelegung und Schaltzeichen Funktionstabelle

Bauform: DIP-24, Plast (Bild 10) Typstandard: TGL 43298

RUN/HALT SSNC ST1 ST2 ST3 TOEN TIMEOUT-Zähler TIMEOUT READY WAIT X L L L X rückgesetzt Η Η Н '>1 ST H X Η Η Н Inhalt + 1¹⁾ L L 2) 3) Χ L-H $X \quad X \quad X$ X gestoppt L-H-L ٠. ٠.

X Pegel beliebig (L oder H)

1) mit jeder L-H-Flanke von ZCK


2) Nach H-L-Flanke von READY 15 ZCK-Perioden H, dann 1 Periode L

3) Nach H-L-Flanke von READY 15 ZCK-Perioden L, dann 1 Periode H

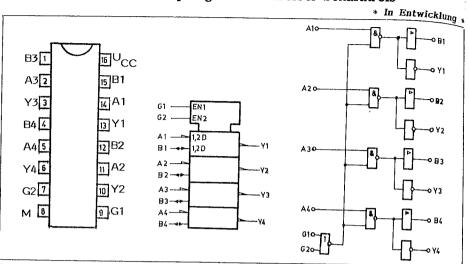
4) 1 ZCK-Periode H

Ausgewählte Kennwerte

0						
Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Signalverzögerungszeiten		C _L = 50 pF;				
		$R_{\underline{L}} = 500 \text{ Ohm}$				
READY ₩ AIT	t _{PLH}	A-4			16	ns
	t _{PHL}				19	ns
ST1ST3→WAIT	tPLH				26	ns
,	tPHL				24	ns

Anschlußbelegung, Schaltzeichen und IEC-Zeichen

Bauform DL 8640 DC: DIP-14, Plast (Bild 3) Bauform DL 8640 S: SO-14 (Bild 28) Typstandard: HFO-S. 805.90


Funktionstabelle

Eir	gänge	Ausgang
A B		\overline{Y}
L	L	Н
L	Н	L
H	L	L
Н	Н	L

H - High-Pegel L - Low-Pegel

Kennwert	Kurz- zeichen	min.	max.	Einheit
High-Ausgangsstrom Low-Ausgangsstrom Signalverzögerungszeiten	-I _{OH} I _{OL} t _{PHL} t _{PLH}		0,4 16 30 35	mA mA ns

DL 8641 DC Busempfänger- und Treiber-Schaltkreis

Anschlußbelegung, Schaltzeichen, Übersichtsschaltplan

Bauform: DIP-16, Plast (Bild 4)

Funktionstabelle

Typstandard: HFO-S. 805.61

	Eingänge					gänge	
Funktion als	Treiber- Eingang			Treiber- Ausgang	Empfänger Ausgang		
	A	G1	G2	В		Y	
Busempfänger	X	Н	X	Н		L	
	X	X	Н	Н	Н		
	X	Н	X	L	L		
	X	X	Н	L		Н	
Bustreiber	Н	L	L	L		Н	
	L	L	L	Н		L	

Ausgewählte Kennwerte

X - Pegel beliebig (H oder L)

Kennwert	Kurz- zeichen	min.	max.	Einheit	
Signalverzögerungszeit	en				
G - → B	t _p		30	ns	
A → B	$\mid t_{\mathrm{PLH}}^{r} \mid$		25	ns	
	t _{PHL}		15	ns	
B → Y	t _{PLH}		35	ns	
	t _{PHL}		30	ns	

_{DL} 75113 DC Leitungssender-Schaltkreis

* In Entwicklung * D-01YS 1BO-L U-O1YP ®∪_{CC} ъј–о1₹s 15 2**Y**P 14 2√S 20E 13 2YS -OZYP 12 2YP --o2₹s -1YS - IYP 11 2A 10 20E 2A-- 2YS -- 2₹S 9 OE −2ŸP 2 0E O

Anschlußbelegung, Schaltzeichen, Übersichtsschaltplan Bauform: DIP-16, Plast (Bild 4)
Typstandard: HFO-S. 805.90

Funktionstabelle

1YP 2

1YS 3

1YP 4

1A 5

18 6

10E 7

М

Eing	gänge	Enable Ei	Ausg	änge	
A	В*	10E/20E O		Y	\overline{Y}
X	Х	L	X	Z	Z
X	X	X	L	Z	Z
L	X	Н	Н	L	Н
Х	L	H	Н	L	Н
Н	н	Н	Н	Н	L

B* Gilt nur für Treiber 1; Treiber 2 entfällt Zeile 4 und Eingang B.

Kennwert	Kurz- zeichen	min.	max.	Einheit
Signalverzögerungszeiten Differenzsignalverzöge- rungszeit	t _{PLH} t _{PHL} t _{PZH} t _{PZL} t _{PHZ} t _{PLZ} t _{DD}		25 25 40 45 30 35 25	ns ns ns ns ns ns

Schottky-TTL-Interface-Schaltkreise

Ausgangsstrom (DS 8205 D) $I_{OL} \le 10$ mA $-I_{OL} \le 1,5$ mA

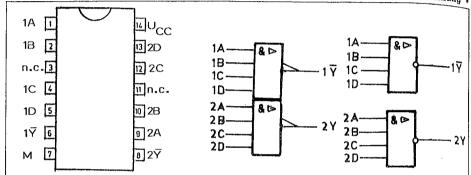
Ausgangsstrom (DS 8216 D, $I_{\rm OL} \leq$ 55 $m_{\rm A}$ B-Ausgänge)

Ausgangsstrom (DS 8212 D, $I_{OL} \le 15$ mA DS 8216 D, Y-Ausgänge) $-I_{OL} \le 1$ mA

Ausgangsstrom (DS 8282 D, $I_{OL} \leq$ 30 mA DS 8283 D, DS 8286 D, $-I_{OL} \leq$ 5 mA

Ausgangsstrom (DS 8286 D, $I_{OL} \le 16$ mA DS 8287 D, Anschluß A) $^{-1}OL \le 1$ mA

 $U_{CC} = 4,75 \dots 5,25 \text{ V}$


Betriebstemperaturbereich $T_{a} = 0 \dots 70 \text{ }^{\circ}\text{C}$

DS 140 DC

Betriebsspannung

Leitungstreiber-Schaltkreis

* In Entwicklung *

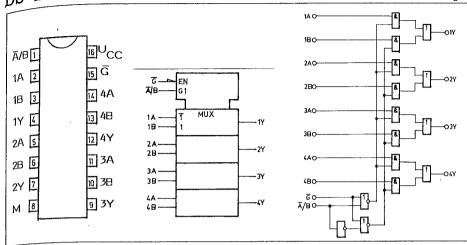
Anschlußbelegung, Schaltzeichen, IEC-Zeichen

Bauform: DIP-14, Plast (Bild 3) Typstandard: HFO-S. 806.15

	Eing	Ausgang		
A	В	С	D	Y
X	Х	X	L	Н
X	X	L	Х	Н
X	L	X	Х	Н
L	X	X	X	Н
Н	Н	Н	Н	L

Funktionstabelle

X - Pegel beliebig (H oder L)


Ausgewählte Kennwerte

Kennwert	Kurz- zeichen	min.	max.	Einheit
Betriebsspannung	U _{CC}	4,5	5,5	V
High-Ausgangsstrom	-I _{OH}		40	mA
Ausgangskurzschlußstrom	-I _{OS}	50	225	mA
Signalverzögerungszeit	t _{PHL}		9,5	ns

 $_{
m DS}$ 157 DC

Multiplexer Schaltkreis

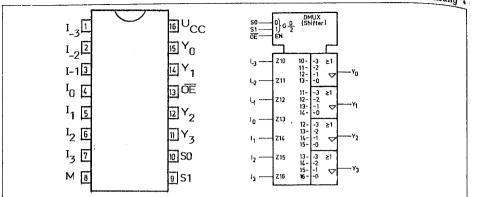
* In Entwicklung *

Anschlußbelegung, Schaltzeichen, Übersichtsschaltplan Bauform: DIP-16, Plast (Bild 4)

n Bauform: DIP-16, Plast (Bild 4)
Typstandard: HFO-S. 806.20

Funktionstabelle

,	Eing	Ausgang		
ā	Ā/B	A	В	Y
Н	X	X	X	L
L	L	L	X	${f L}$
L	L	Н	X	Н
L	Н	X	L	L
L	Н	X	Н	Н


X - Pegel beliebig (H oder L)

Kennwert	Kurz- zeichen	min.	max.	Einheit
Betriebsspannung Signalverzögerungszeiter	U _{CC}	4,75	5,25	V
A, B Y	$egin{array}{c} t_{ m PLH} \ t_{ m PHL} \end{array}$		11 10	ns ns
Ā/B ▶ Y	t _{PLH}		18 18	ns ns
Ğ ▶ Y	t _{PLH}		16 15	ns ns

DS 2510 DC

4 Bit Shifter-Schaltkreis

* In Entwicklung *

Anschlußbelegung und Schaltzeichen

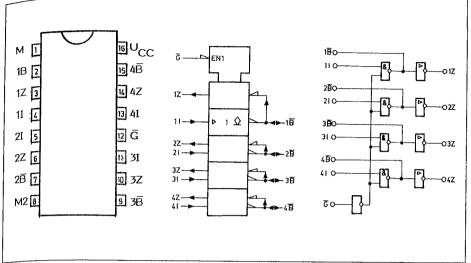
Funktionstabelle

Bauform: DIP-16, Plast (Bild 4) Typstandard: HFO-S. 806.50

	Eingänge										Ausgär	nge	
OE	s_1	s_0	I ₃	^I 2	I ₁	I ₀	I_1	1_2	I3	Y ₃	Y ₂	Y ₁	Y ₀
Н	Х	X	X	X	X	Х	X	Х	Х	Z	Z	Z	Z
L	L	L	D_3	D_2	D_1	D_0	X	Х	X	D_3	$^{ m D}_2$	D ₁	D ₀
L	L	Н	X.	D_2	D_1	D_0	D1	X	X	D_2	D ₁	D ₀	D ₋₁
L	Н	L	х	Х	D ₁	D_0	D ₋₁	D_2	X	D_1	$^{\mathrm{D}}{}_{\mathrm{0}}$	D ₋₁	D2
L	Н	Н	х	X	X	$^{\mathrm{D}}0$	D ₋₁	D ₋₂	D ₋₃	D_0	D ₋₁		l .

X - Pegel beliebig (H oder L)

Z - hochohmiger Zustand


Ausgewählte Kennwerte

D_n - Pegel des n-ten Dateneinganges bzw. -ausganges

Kennwert	Kurz- zeichen	min.	max.	Einhei
Signalverzögerungszeiten				
I → Y	t _{PLH}		12	ns
	t _{PHL}		16	, ns
S► Y	t _{PLH}		20	ns
	t _{PHL}		17	ns
ŌĒ▶ Y	t _{PZH}		18	ns
	t _{PZL}		18	ns
	t _{PHZ}		13	ns
	t _{PLZ}		18	ns

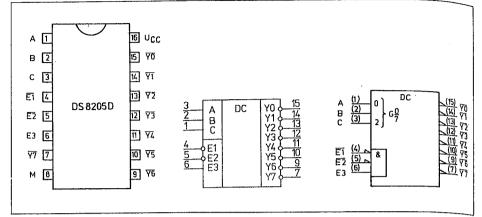
$_{ m DS}$ 2610 DC

Vierfach Bus-Sende- und Empfänger-Schaltkreis
* In Entwicklung *

Anschlußbelegung, Schaltzeichen, Übersichtsschaltplan Bauform: DIP-16, Plast (Bild 4)
Typstandard: HFO-S. 806.56

Eing	inge	Ausgänge		
Ğ	I	B	Z	
ľ	L	H	L	
L	Н	L	H	
Н	X	Y	$\overline{\mathrm{Y}}$	

Funktionstabelle


X - Pegel beliebig (H oder L)

Y - Pegel des angeschlossenen Busses

Kennwert	Kurz- zeichen	min.	max.	Einheit
Betriebsspannung Signalverzögerungszeiten	UCC	4,75	5,25	V
I - → B	t _{PLH}		15	ns
Ğ → B	t _{PLH}		18	ns
B̃ → Z	t _{PLH}		21	ns

1-aus-8-Binärdekoder

Anschlußbelegung, Schaltzeichen und IEC-Zeichen

Bauform: DIP-16, Plast (Bild 4) Typstandard: TGL 39866

Funktionstabelle


	Eingänge							Aus	sgäng	e			
A	В	C	$\overline{\text{E1}}$	E2	E3	Y0	Y1	Y2	Y3	Y4	Y5	Y6	Y7
L H L H L H X X X X	L H H L H H X X X X X	L L H H H X X X X X	L L L L L L L H H H H			L H H H H H H H H	H H H H H H H H H	H H H H H H H H H	H H H H H H H H H	H H H H H H H H	H H H H H H H H H H	H H H H H H H H H H	H H H H H H H H H H H H H H H H H H H

X Pegel beliebig (L oder H)

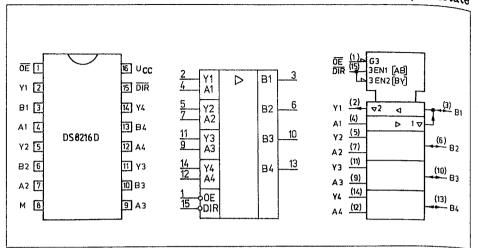
Ausgewählte Kennwerte

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Signalverzögerungszeiten		$C_{L} = 30 \text{ pF};$ $R_{I} = 390 \text{ Ohm}$				
A, B, C, <u>E1</u> , <u>E2</u> , E3 → Y	t _{PLH}	r - 390 Oum		9	18	ns
	t _{PHL}			8	18	ńs

DS 8212 D 8 Bit Bustreiber mit Speicher, Tristate-Ausgänge

Anschlußbelegung, Schaltzeichen und IEC-Zeichen

Bauform: DIP-24, Plast (Bild 10) Typstandard: TGL 42623


Funktionstabelle

T Million and a second a second and cond and								
Funktion CLR	Ster CLR					Dateneingänge An	Datenausgänge Yn	
Clear 3-State Speichern Datenbus	L X X H H H	H L L L H L H	H L X H H L L	X H L X L H H	X L X X X L X	X X X X X X	L L Z Z Q0 Q0	X Pege (L oder H-
			1	l		l		

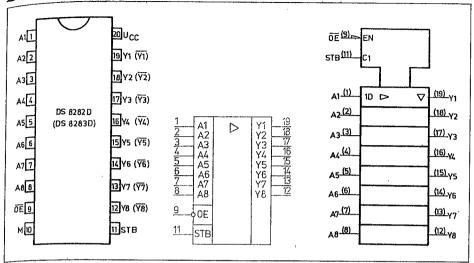
X Pegel beliebig L oder H) H-L-Flanke

Kennwert		Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Signalverzöge	erungszeiten						
A	→ Y	$t_{ m PLH}$			18	30	ns
$\overline{S1}$, S2	→ ĪNT				22	30	ns
STB, $\overline{S1}$, S2	→ Y				29	40	ns
A	> Y	t _{PHL}			16	30	ns
CLR	→ Y	* ***			28	55	ns
STB	→ IN′Γ				24	40	ns
STB, $\overline{S1}$, S2	→ Y					40	ns

DS 8216 D Paralleler bidirektionaler 4 Bit Bustreiber, Tristate

Anschlußbelegung, Schaltzeichen und IEC-Zeichen

Bauform: DIP-16, Plast (Bild 4) Typstandard: TGL 42622


Funktionstabelle

Eingä	inge	Ausgänge,
DIR.	ŌĒ	Datentransport
L,	L	A > B
Н	L	B → Y
L	Н	Z
Н	H	Z

Ausgewählte Kennuerte

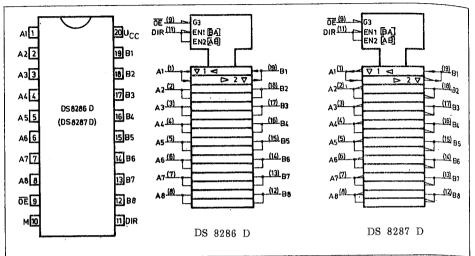
Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Signalverzögerungszeiten A→B B→Y OE→B, Y	t _{PLH} t _{PHL} t _{PZH} t _{PZL} t _{PHZ} t _{PHZ}			16 18 32 27 6 10	30 25 65 65 35 35	ns ns ns ns ns

DS 8282 D 8 Bit Bustreiber mit Speicher, Tristate DS 8283 D 8 Bit Bustreiber mit Speicher, Tristate, invertierend

Anschlußbelegung, Schaltzeichen und IEC-Zeichen

Bauform: DIP-20, Plast (Bild 8) Typstandard: TGL 42623

Funktionstabelle


ŌĒ	STB	Ausgänge, Datentransport	Zustand
L L H H X	H L H L	$\begin{array}{ccc} A & \longrightarrow Y & (\overline{Y}) \\ A & \longrightarrow Y & (\overline{Y}) \\ Z & \\ Z & \\ A & \longrightarrow Y & (\overline{Y}) \end{array}$	Bustreiber Speichern hochohmig hochohmig Einschreiben

X Pegel beliebig (L oder H) H-L-Flanke

Kennwert	Kurz- zeichen	min.	typ.	max.	min.	typ.	max.	Einheit
Signalverzögerungszeiten C _L = 300 pF ± 10 % A▶Y (Y)		DS	8282 D	(Y)	DS	8283 D	$\overline{(\overline{Y})}$	
A→Y (\(\overline{Y}\))	$t_{\rm PLH}$		23	35		15	25	ns
_	t _{PHL}		19	35		17	25	ns
$STB \longrightarrow Y (\overline{Y})$	t _{PSTBL}		28	55		21	45	ns
	t _{PSTBH}		28	55		31	45	ns
$\overline{OE} \longrightarrow Y (\overline{Y})$	t _{PHZ}		6	18		6	18	ns
	t _{PLZ}		12	25		12	25	ns
	t _{PZH}	10	18	35	10	20	35	ns
	t _{PZL}	10	29	50	10	34	50	ns

DS 8286 D 8 Bit Bustreiber, Tristate

DS 8287 D 8 Bit Bustreiber, Tristate, invertierend

Anschlußbelegung, Schaltzeichen und IEC-Zeichen

Bauform: DIP-20, Plast (Bild 8) Typstandard: TGL 42622

Funktionstabelle

ŌĒ	DIR	Datentransport, Ausgänge	Zustand
L	Н	A▶B	Aus-/Eingänge
L	L	B►A	freigegeben
Н	Н	z	hochohmiger
Н	L	z	Zustand

Ausgewählte Kennwerte

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Signalverzögerungszeiten	t _{PLH}	DS 8286 D		19	35	ns
A ← → B	t _{PLH}	DS 8287 D		16	25	ns
	t _{PHL}	DS 8286 D		23	35	ns
	tPHL	DS 8287 D		15	25	ns
OE → A,B	tPHZ			9	18	ns
	t _{PLZ}			15	25	ns
	tPZH			17	35	ns
	tPZL			30	50	ns

Mikrorechnerschaltkreise

U 880 8 Bit Mikroprozessorsystem

Das Mikroprozessorsystem U 880 umfaßt ein komplettes Sortiment an Mikrorechnerbausteinen, welches so konzipiert ist, daß komplette Mikrorechnersysteme mit minimaler Bausteinzahl realisierbar sind. Als Speicherbauelemente sind sämtliche Standardbauelemente verwendbar. Alle Bausteine des Systems benötigen nur eine einzige 5 V Stromversorgung und einen Einphasentakt.

Das 8 Bit Mikroprozessorsystem U 880 in NMOS-Technologie ist pin- und funktions- kompatibel zum U 84 C 00-System in CMOS-Technologie.

	T		T		
Taktfrequenz	2,5	MHz	4 MHz		
Temperatur- bereich	0 bis 70 °C	-25 bis 85 °C	0 bis 70 °C	Bauform	Typstandard
Funktion					
CPU -Zentrale Verarbeitungs- einheit	UB 880 D	VB 880 D	UA 880 D	DIP-40, Plast (Bild 14)	TGL 26176
PIO-Schaltkreis für parallele Ein-/Ausgabe	UB 855 D	VB 855 D	UA 855 D	DIP-40, Plast (Bild 14)	TGL 35837
SIO-Schaltkreis für serielle Ein-/Ausgabe	UB 856 D	VB 856 D	UA 856 D	DIP-40, Plast (Bild 14)	TGL 37001
DART-Asynchro- ner serieller Ein-/ Ausgabeschaltkreis	UB 8563 D	VB 8563 D	UA 8563 D	DIP-40, Plast (Bild 14)	TGL 37029
CTC-Schaltkreis für Zähler- und Zeitgeberfunktion	UB 857 D	VB 857 D	UA 857 D	DIP-28, Plast (Bild 12)	TGL 37002
DMA-programmier- barer Peripherie- schaltkreis für direkten Speicher- zugriff	UB 858 D		UA 858 D	DIP-40, Plast (Bild 14)	TGL 37003

U 84 C 00 CMOS - Mikroprozessorsystem

* In Entwicklung *

Das Mikroprozessorsystem U 84 C 00 umfaßt ein Sortiment an Mikrorechnerbausteinen,

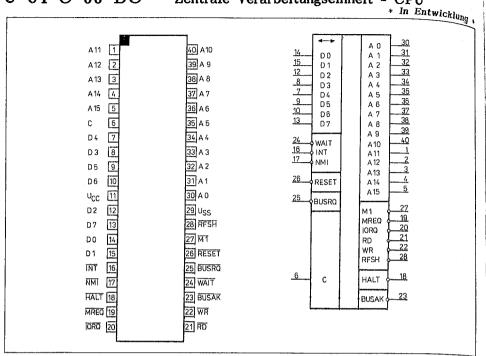
Welches so konzipiert ist, daß Mikrorechnersysteme mit minimaler Bausteinanzahl zu rea
lisieren sind. Als Speicherbausteine sind sämtliche Standardbauelemente verwendbar. Alle

Bausteine des Systems benötigen nur eine einzige 5 V Stromversorgung und einen 5 V

Einphasentakt. Hervorzuheben ist der geringe Stromverbrauch der CMOS-Schaltkreise.

Das Schaltkreissystem ist für den Einsatz in einem Temperaturbereich von 0 bis 70 °C

geeignet.


thersicht Mikroprozessorsystem U 84 C 00

Funktion	2,5 MHz	4 MHz
CPU	U 84 C 00 DC 02	U 84 C 00 DC 04
PIO	U 84 C 20 DC 02	U 84 C 20 DC 04
CTC	U 84 C 30 DC 02	U 84 C 30 DC 04
SIO	U 84 C 40 DC 02	U 84 C 40 DC 04

 $_{\rm Das}$ Mikroprozessorsystem U 84 C 00 ist pin- und funktionskompatibel zum Mikroprozessorsystem U 880.

U 84 C 00 DC

Zentrale Verarbeitungseinheit - CPU

Anschlußbelegung und Schaltzeichen

Typstandard: TGL 42653 Bauform: DIP-40, Plast (Bild 14)

Bezeichnung der Anschlüsse

A0 bis A15	16 Bit Adreßbus, Ausgänge
D0 bis D7	8 Bit bidirektionaler Datenbus
$\overline{M1}$	Maschinenzyklus M1, Ausgang
MREQ	Speicheranforderung, Ausgang
IORQ	Ein-/Ausgabeanforderung, Ausga

	/
$\overline{ ext{RD}}$	Leseanforderung, Ausgang
\overline{WR}	Schreibanforderung, Ausgang

RESH	Reiresnsignal, Ausgang
HALT	CPU im Software-Halt-Zustand, Ausgang
WAIT	Warteanforderung für die CPU, Eingang

	U	. ,
$\overline{\text{INT}}$	Interrupt an forder ung,	Eingang

NMI nicht maskiert	oare Interruptanforderung,	Eingang
--------------------	----------------------------	---------

RESET	Rücksetzen,	Ein	gang
BUSRQ	Busanforderu	ng,	Eingang

BUSAK	Busanforderungsbestätigung,	Ausgang
		2200000000

196

 $_{\mbox{\scriptsize Die}}$ $^{\mbox{\scriptsize CPU}}$ ist ein in CMOS-Technologie hergestellter Einchipmikroprozessor. Sie ermöglicht den Aufbau von Mikroprozessorsystemen hoher Leistungsfähigkeit.

polgende Varianten werden vom MME gefertigt

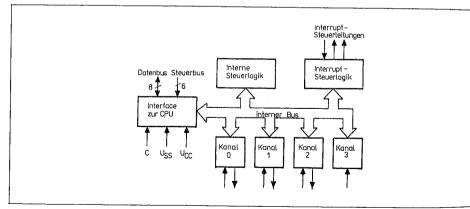
Typ	Taktfrequenz	Stromaufnahme (typisch)	Schlafzustand
U 84 C 00 DC 02	2,5 MHz	15 mA	möglich
U 84 C 00 DC 04	4,0 MHz	15 mA	möglich
U 84 C 00 DC 02-1	2,5 MHz	15 mA	nicht möglich

Eigenschaften

- Der Befehlssatz enthält 158 Befehle mit 16-, 8-, 4- und Einzelbit-Instruktionen sowie zusätzliche Adressierweisen (indizierte, relative und Bitadressierung),
- die minimale Befehlsausführzeit der Typen U 84 C 00 DC 02 und U 84 C 00 DC 02-1 beträgt 1,6 μs bei einer maximalen Taktfrequenz von 2,5 MHz, die minimale Befehlsausführzeit des U 84 C 00 DC 04 beträgt 1 μs bei einer maximalen
- die CPU enthält 21 interne Register und einen Befehlszähler,
- es existieren 3 schnelle Interruptbehandlungsarten und außerdem ein zusätzlicher, nicht maskierbarer Interrupt,
- 5 V Einphasentakt und eine Standard 5 V Gleichspannung,
- der Anschluß von dynamischen oder statischen Standardspeicherchips ist möglich,
- integrierte dynamische Refresh-Hardware,

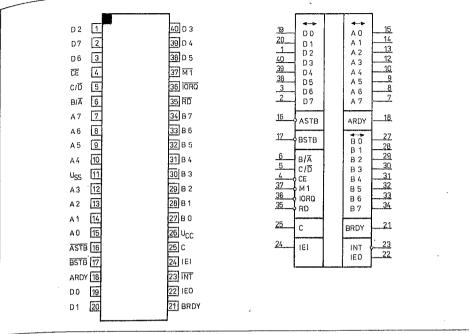
Taktfrequenz von 4 MHz,

- die Eingänge sind voll TTL-kompatibel, die Ausgänge können eine Standard-TTL-Last treiben,
- -die CPU ist in einen Schlafzustand (Standby) überführbar, bei dem die Stromaufnahme kleiner als 10 μA ist (außer U 84 C 00 DC 02-1).


Befehlsgruppen

- 8 Bit Ladebefehle
- Registertausch
- 8 Bit arithmetische und logische Befehle
- Rotations- und Schiebebefehle
- Ein- und Ausgabebefehle

- Rückkehrbefehle
- 16 Bit arithmetische Befehle
- 16 Bit Ladebefehle
- Blocktransport- und Suchbefehle
- Steuerbefehle
- Bitoperationen
- Rufbefehle
- Sprungbefehle


Aufbau des CPU-Registersatzes

Hauptregiste	rsatz	Alternativsa	tz	
Akkumulator A	Flags F	Akkumulator A'	Flags F'	A PART OF THE PART
В	С	B'	C'	Register zur
D	E	D'	E'	allgemeinen
Н	L	H'	L'	Verwendung
Interrupt Vektor I	Speiche Refresh		,	
Indexregister	IX			
Indexregister	IY			Spezial-
Kellerzeiger	$\mathbf{S}\mathrm{P}$			register
Programmzähler	PC			-

Übersichtsschaltplan der CPU

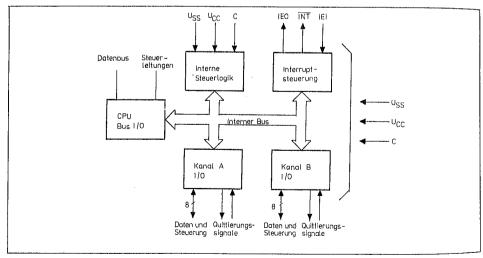
Schaltkreis für parallele Ein-/Ausgabe - PIO
* In Entwicklung *

Anschlußbelegung und Schaltzeichen

Typstandard: TGL 42649 Bauform: DIP-40, Plast (Bild 14)

Bezeichnung der Anschlüsse

$\overline{\mathrm{RD}}$	CPU-Leseanforderung, Eingang	$\overline{\text{INT}}$	Interruptanforderung, Ausgang
B/Ā	Kanalauswahl, Eingang	ASTB	Kanal-A-Strobe, Eingang
C/D	Umschaltung Steuerwort/	ARDY	Kanal-A-Quittung, Ausgang
	Datenwort, Eingang	IEI	Interruptfreigabe, Eingang
CE	Bausteinauswahl, Eingang	IEO	Interruptfreigabe, Ausgang
M1	CPU-Maschinenzyklus M1, Eingang	A0 bis A7	Ein-/Ausgänge Port A
TORQ	CPU-Ein-/Ausgabeanforderung,	B0 bis B7	Ein-/Ausgänge Port B
	Eingang	${ m D0}$ bis ${ m D7}$	8-Bit bidirektionaler Daten-
BSTB	Kanal-B-Strobe, Eingang		bus
BRDY	Kanal-B-Quittung, Ausgang	C	Systemtakt

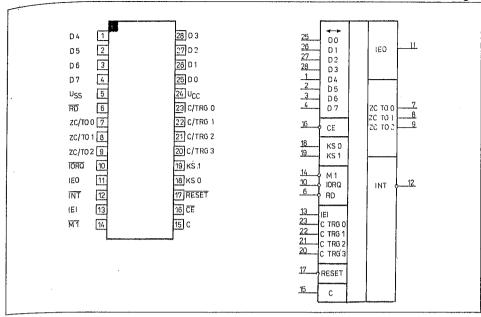

Der PIO ist ein in CMOS-Technologie hergestellter programmierbarer Ein-/Ausgabebaustein mit zwei TTL-kompatiblen Kanälen. Die PIO stellt die Verbindung zwischen der CPU und peripheren Geräten her, ohne daß zusätzliche Logik erforderlich ist.

Folgende Varianten werden vom MME gefertigt

Тур	Taktfrequenz	Stromaufnahme (typisch)	Schlafzustand
U 84 C 20 DC 02	2,5 MHz	2 mA	möglich
U 84 C 20 DC 04	4,0 MHz	2 mA	möglich
U 84 C 20 DC 02-1	2,5 MHz	2 mA	nicht möglich

Eigenschaften

- Interruptmöglichkeit im Quittungsbetrieb für schnelle Anforderungsbearbeitung.
- folgende Betriebsarten sind möglich:
- * Byte-Ausgabe (Betriebsart 0)
- * Byte-Eingabe (Betriebsart 1)
- * Byte-Ein-/Ausgabe (bidirektionaler Betrieb, nur für Port A möglich)/(Betriebsart n
- * Bit-Ein-/Ausgabe (Betriebsart 3),
- der Interruptbearbeitung kann den Bedingungen des peripheren Gerätes angepaßt programmiert werden,
- die Ein- und Ausgänge sind TTL-kompatibel,
- automatische Interruptvektorerzeugung und Prioritätskodierung durch Kaskadierung der Bausteine,
- die Ausgänge des Ports B sind für den direkten Anschluß von Darlington-Transistoren geeignet,
- die PIO ist in einen Schlafzustand überführbar, bei dem die Stromaufnahme kleiner als 10 μA wird (außer U 84 C 20 DC 02-1).



Übersichtsschaltplan der PIO

200

U 84 C 30 DC Schaltkre

Schaltkreis für Zähler- und Zeitgeberfunktion * In Entwicklung *

Anschlußbelegung und Schaltzeichen

Bauform: DIP-28, Plast (Bild 12) Typstandard: TGL 42234

Bezeichnung der Anschlüsse

IORQ	Ein-/Ausgabeanforderung, Eingang
IEI	Interruptfreigabe, Eingang
IEO	Interruptfreigabe, Ausgang
ĪNT	Interruptanforderung, Ausgang
$\overline{ ext{RD}}$	CPU-Leseanforderung, Eingang
M1	CPU-Maschinenzyklus, Eingang
C	Systemtakt, Eingang
RESET	Rücksetzeingang
C/TRG0 bis C/TRG3	Takt- bzw. Triggereingang für den jeweiligen Kanal
D0 bis D7	8 Bit Datenbus, Ein-/Ausgänge, Tristate
ZC/TO0 bis ZC/TO2	Nulldurchgang des Rückwärtszählers bzw. Zeitgeber-
	meldung
KS0, KS1	Kanalauswahl, Eingabe einer 2 Bit Adresse des vom
	Mikroprozessor angesprochenen Kanals

Der CTC ist ein in CMOS-Technologie hergestellter programmierbarer Zähler-/Zeitgeberbaußein, der über vier voneinander unabhängige, softwareprogrammierbare Zähler-/Zeitgeberskanäle verfügt.

Folgende Varianten werden vom MME gefertigt

Тур	Taktfrequenz	Stromaufnahme (typisch)	Schlafzustand
U 84 C 30 DC 02	2,5 MHz	3 mA	möglich
U 84 C 30 DC 04	4,0 MHz	3 mA	möglich
U 84 C 30 DC 02-1	2,5 MHz	3 mA	nicht möglich

Eigenschaften

- Alle Ein- und Ausgänge sind voll TTL-kompatibel,
- es wird nur eine 5 V Versorgungsspannung benötigt,
- es existieren vier voneinander unabhängige, softwareprogrammierbare 8 Bit Zähler/16 Bit Zeitgeberkanäle, jeder dieser Kanäle kann wahlweise als Zähler oder Zeitgeber verwendet werden,
- in der Betriebsart Zeitgeber sind Vorteiler durch 16 oder 256 für jeden Zeitgeberkanal möglich,
- es können Interrupts bei Erreichen von programmäßig festgelegten Zähler- oder Zeitgeberwerten programmiert werden,
- automatische Interruptvektorbereitstellung und Prioritätskodierung ohne zusätzlichen Schaltungsaufwand durch Kaskadierung der Bausteine,
- die Ausgänge (ZC/TO0 bis ZC/TO2) der drei herausgeführten Kanäle sind zum direkten Anschluß von Darlington-Transistoren geeignet,
- die maximale Zählfrequenz in der Betriebsart Zähler ist $\mathrm{f}_{\mathrm{C}}/2$,
- der CTC ist in einen Schlafzustand überführbar, bei dem die Stromaufnahme kleiner als $10~\mu A$ wird.

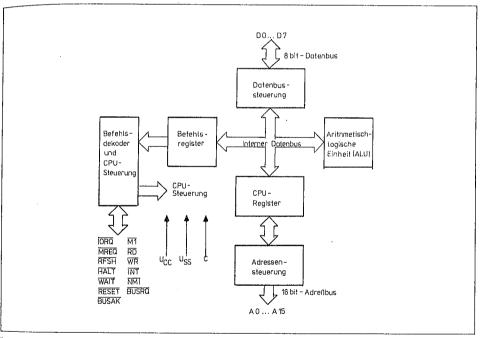
Der Zähler-/Zeitgeberbaustein enthält folgende Funktionseinheiten (siehe Übersichtsschaltplan):

- Interface zur CPU

Der CTC kann direkt über die interne Bus-Interface-Logik an die CPU angeschlossen werden.

- Interne Steuerlogik

202


Über eine interne Steuerlogik wird der Daten- und Steuerbus mit den vier Zähler-/Zeitgeberkanälen des CTC synchronisiert.

_ Interrupt-Steuerlogik

Die Interrupt-Steuerlogik behandelt die CPU-Interruptstrukturen entsprechend der festgelegten Priorität. Diese Priorität ist abhängig von der Stellung des CTC in der Prioritätskette. Jedem der vier Kanäle wird ein Interruptvektor zugeordnet, wobei der Kanal 0 die höchste Priorität besitzt.

4 Zähler-/Zeitgeberkanäle

Jede Kanaleinheit besteht aus einem Zeitkonstantenregister (8 Bit), einem Kanalsteuerregister (8 Bit), einem Rückwärtszähler (8 Bit), einem Vorteiler und einer eigenen Steuerlogik. Der Vorteiler (8 Bit) ist auf die Werte 16 oder 256 programmiert.

Übersichtsschaltplan des CTC

U 84 C 40 DC

Schaltkreis für serielle Ein-/Ausgabe - SIO * In Entwicklung

	 		* In Entwicklung
D1 1 D3 2 D5 3 D7 4 INT 5 IEI 6 IEO 7 M1 8 UCC 9 W/RDYA 10 SYNCA 11 RxDA 12 RxCA 13 TxCA 14 TxDA 15	40 D 0 39 D 2 38 D 3 7 D 6 36 I ORO 35 CE 34 B IA 33 C I D 32 RD 31 USS 30 WROYB 29 SYNCB 28 RXDB 27 RXTXCB 26 TXDB	13 RxCA 14 TxCA 18 CTSA 19 DCDA 28 RxDB	* In Entwicklung 00
RxCA 13 TxCA 14	28 R×DB 27 R×TxCB	CTSB 22 OCDB O DC Typstandard:	RTSB 24 DTRB 25 SYNCB 29 IEO 7 INT 5

k		
D1 1 D3 2 D5 3 D7 4 INT 5 IEI 6 IEO 7 M1 8 UCC 9 W/RDYA 10 SYNCA 11 RXDA 12 RXCA 13 TXCA 14 TXDA 15 DTRA 16 RTSA 17	40 D 0 39 D 2 38 D 4 37 D 6 36 IORG 36 IORG 36 IORG 37 C ID 32 R D 31 USS 30 WIRDYB 29 SYNCB 28 RxDB 27 RxCB 26 TxCB	35 CE
CTSA 18 DCOA 19 C 20	23] CTSB 22] DCDB 21] RESET	Typstandard: TGL 42644 Bauform: DIP-40, Plast (Bild 14)

Bezeichnung der Anschlüsse

 B/\bar{A}

С

DO bis D7	8 Bit bidirektionaler Datenbus
Œ	Bausteinauswahl, Eingang
RESET	Rücksetzen, Eingang
M1	CPU-Maschinenzyklus M1, Eingang
ĪORQ	CPU-Ein-/Ausgabeanforderung, Eingang
RD	CPU-Leseanforderung, Eingang
RXDA, RXDB	Empfangsdaten, Eingänge
RXCA, RXCB	Empfängertakte, Eingänge ¹⁾

TXCA, TXCB Sendertakte, Eingänge¹⁾ CTSA, CTSB Sendebereitschaft, Eingänge DCDA, DCDB Datenträgererkennung, Eingänge

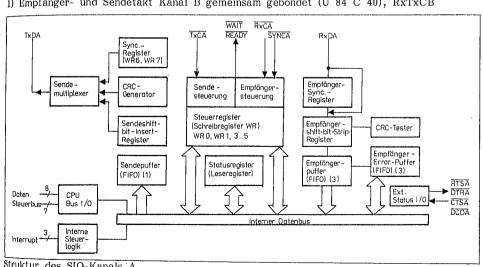
Kanalauswahl, Eingang

Umschaltung Steuerwort/Datenwort, Eingang C/D

Interruptfreigabe, Eingang ΙΕΙ IEO Interruptfreigabe, Ausgang ĪNT Interruptanforderung, Ausgang

TXDA, TXDB Sendedaten, Ausgänge

W/RDYA, W/RDYB WAIT/READY-Pin (CPU WAIT, DMA READY), Ausgänge


SYNCA, SYNCB Externsynchronisation, Ein-/Ausgänge

RTSA, RTSB Sendeanforderung, Ausgänge

Systemtakt

DTRA, DTRB Bereitschaft Datenterminal, Ausgänge

1) Empfänger- und Sendetakt Kanal B gemeinsam gebondet (U 84 C 40), RXTXCB

Struktur des SIO-Kanals A

Der SIO ist ein in CMOS-Technologie hergestellter, programmierbarer, zweikanaliger $_{\rm Bau}$ stein, der Daten in das für serielle Datenübertragung erforderliche Format umsetzt. $_{\rm Sie}$ kann asynchron, synchron und bitorientiert synchron arbeiten.

Folgende Varianten werden vom MME gefertigt

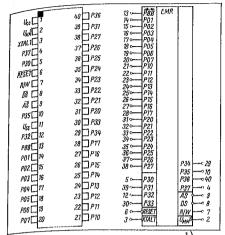
Тур	Taktfrequenz	Stromaufnahme (typisch)	Schlafzustand
U 84 C 40 DC 02	2,5 MHz	7 mA	möglich
U 84 C 40 DC 04	4,0 MHz	7 mA	möglich

Eigenschaften

- Vier unabhängige serielle Ports, zwei Sender- und Empfängerports,
- asynchrone oder synchrone Arbeitsweise,
- asynchrone Daten mit 5, 6, 7 oder 8 Datenbits, 1, 1 1/2 oder 2 Stoppbits und gerader, ungerader oder keiner Paritätserzeugung bzw. Paritätsprüfung,
- Breakerzeugung und -erkennung, Paritäts-, Überlauf- und Rahmenfehlererkennung,
- alle Ein- und Ausgänge voll TTL-kompatibel,
- Taktvarianten: x 1, x 16, x 32, x 64,
- Datenübertragungsraten: 0 bis 550 kBit/sec,
- 4 Eingänge/4 Ausgänge zur MODEM-Steuerung,
- volle Fähigkeit zur Arbeit nach HDLC einschließlich Verarbeitung des I-Feld-Restes.
- interne oder externe Zeichensynchronisation mit automatischer Einfügung von Synchronisationszeichen und Flags,
- Betriebszustand "Adreßerkennung" bei SDLC/HDLC,
- Betriebszustand "Synchronisationsbyteunterdrückung" mit mono- und bisynchroner Arbeitsweise,
- die hohen Übertragungsraten und die automatische CRC-Erzeugung gestatten die direkte Zusammenschaltung mit Floppy-Disk-Speichern doppelter Dichte, ohne daß direkter Speicherzugriff erforderlich ist,
- empfangene Daten und Fehlerregister sind vierfach, zu sendende zweifach gepuffert,
- leistungsfähige Interruptstruktur durch wahlweise festen oder variablen Interruptvektor,
- CRC-16- oder CRC-CCITT-(0 und -1)-Prüfpolynom,
- gültig empfangene Daten sind vor dem Überschreiben geschützt,
- 5 V Einphasentakt und eine einzige 5 V Gleichspannungsversorgung,
- Prioritätslogik durch Kaskadierung der Bausteine,
- die SIO kann in einen Schlafzustand überführt werden, in dem die Stromaufnahme kleiner als 10 μA wird.

Einchipmikrorechner

Die Einchipmikrorechnerschaltkreise ermöglichen auf kleinstem Raum ein große Anzahl von Funktionen, die mit herkömmlichen Mikrorechnersystemen nur durch die Verwendung mehrerer Bausteine realisiert werden können.


Einchipmikrorechner	Typstandard
UB 8820 M	TGL 42639
Einchipmikrorechner-Entwicklungsversion mit externem (2 k x 8) Bit	
ROM und internem (128 x 8) Bit RAM	
UB 8821 M	TGL 42639
Einchipmikrorechner-Entwicklungsversion mit externem (2 k x 8) Bit	
ROM und internem (128 x 8) Bit RAM, power down option	
UB 8830 D	TGL 38607
Einchipmikrorechner mit BOOTSTRAP-LADER und BASIC-INTERPRETER	
UB 8831 D	TGL 38607
Einchipmikrorechner mit BOOTSTRAP-LADER und BASIC-INTERPRETER,	
power down option	
UB 8840 M	TGL 42634
Einchipmikrorechner-Entwicklungsversion mit externem (4 k x 8) Bit	
ROM und internem (128 x 8) Bit RAM	
UB 8841 M	TGL 42634
Einchipmikrorechner-Entwicklungsversion mit externem (4 k x 8) Bit	
ROM und internem (128 x 8) Bit RAM, power down option	
UB 8860 D	TGL 37359
Einchipmikrorechner mit internem (128 x 8) Bit RAM, ROM-lose Version	
UB 8861 D	TGL 37359
Einchipmikrorechner mit internem (128 x 8) Bit RAM, ROM-lose Version,	
power down option	
U 8611 DC 08-XXX	TGL 43812
Einchipmikrorechner mit internem (4 k x 8) Bit ROM und internem	
(128 x 8) Bit RAM	
UL 8611 DC 08-XXX	TGL 43812
Einchipmikrorechner mit internem (4 k x 8) Bit ROM und internem	
(128 x 8) Bit RAM, power down option	
U 8611 DC 08/1	TGL 43812
Einchipmikrorechner mit internem (128 x 8) Bit RAM, ROM-lose Version	
UL 8611 DC 08/1	TGL 43812
Einchipmikrorechner mit internem (128 x 8) Bit RAM, ROM-lose Version,	
power down option	
	207

U 8611 DC/UL 8611 DC/UB 8830 D/UB 8831 D/U 8611 DC/1/UL 8611 DC/1/UB 8860 D/UB8861D

Eigenschaften

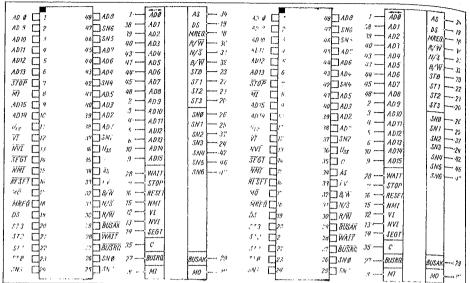
- 8 Bit Verarbeitungsbreite,
- 43 Befehlstypen,
- ROM-Kapazität: 2 kByte (UB 8830 D, UB 8831 D)
 - 4 kByte (U 8611 DC, UL 8611 DC)
- * der UB 8860 D/UB 8861 D ist ein Einchipmikrorechner, bei dem der interne 2 k-ROM nicht benutzbar ist,
 - ⁺ durch Pegel von +7,35 bis 8 V an RESET Sprung auf externe Programmspeicheradresse 0812 H,
 - + Port 0 und 1 werden für Adressen und Datenverkehr genutzt.
- * der U 8611 DC/1, UL 8611 DC/1 ist ein Einchipmikrorechner, bei dem der interne 4 k ROM nicht nutzbar ist.
- + durch Pegel von 7,35 bis 8 V an RESET Sprung auf externe Programmadresse 1012 H,
- + Port 0 und 1 werden für die Adressen- und Datenverkehr genutzt:
- RAM-KAPAZITÄT: 128 Byte (144 Register; davon 124 Mehrzweckregister, 4 Ein-/Ausgaberegister, 16 Status- und Steuerregister;
- 32 Ein-/Ausgabeleitungen;
- durch internen Zeitgeber getakteter UART (vollduplex);
- 2 programmierbare 8 Bit Zähler/Zeitgeber mit je einem programmierbaren 6 Bit Vorteiler;
- On-Chip-Oszillator (Anschlußvarianten UB 8830 D, UB 8860 D, U 8611 DC,
 U 8611 DC/1), externer Anschluß von Quarz möglich;
- 6 priorisierte, vektorisierte Interruptquellen;
- Möglichkeit der Adressierung von externen Speichern bis 124 kByte;
- Möglichkeit zum power-down-Betrieb (Anschlußvarianten UB 8831 D, UB 8861 D, UL 8611 DC, UL 8611 DC/1);
- TTL-Kompatibilität an allen Anschlüssen;
- mittlere Befehlsausführungszeit: ca. 2,2 μs;
- die Bitmusterbestellung erfolgt beim U 8611 DC/UL 8611 DC nach dem MME-Standard FS 457.21.;
- der UB 8830 D/UB 8831 D enthält ein Bitmuster für den Betrieb mit einem externen Speicher.

1JB 8820 M/UB 8821 M/UB 8840 M/UB 8841 M

Anschlußbelegung und Schaltzeichen 1)
Reuform: DIP-40, Plast (Bild 14)

C26 1	64 UCC	100 EMR	4022
100	FI XTAL 29	39 01	AI - 3r
P3 1 [2		38 > D2	AL - 5"
P27 🗆 3		370- 03	A3 2A
P2 6 🗀 4	ê1 P3 7	24° D4 23° D5	A 4 - 23
.e2 5 🗆 5	60 P3 0	220 06	A5 -30
P2 4 16	59 RESET	210- D7	A6 - 3'
123 🗖 /	58 R/W		47 -32
r2 2 8	57 DS	530-POO	AB33
P2 1 0 9	56 AS	52° P01	49 34
P2 0 10	55 1P3 5	50 P03	A10 35
, r v	54 7 73 2	490- P04	A11 - 35
/3 3 🔲 11		470-P05	
P3 4 12	53 PO 0	16 PO6	MDS
P1 7 🗆 13	52 PU 1	45~ P07	1 1
01 6 14	51 PO 2	20 P10	SCLK - 4.
P1 5 15	50 PO 3	19	SWC VS
01 4 16	49 FO 4	17 P13	3770
"1 3 🗆 17	48 Uss	16 ~ P14	IACK
01 2 18	47 PO 5	15 P15	
	46 706	14 ~ P16	
	<u> </u>	13 ° - 17 17 10 10 10 10 10 10 10 10 10 10 10 10 10	P34 - 5
*1 0 <u>2</u> 0	45 PO 7	2~~ P21	
£7 [21	··4 IACK	8 P22	135 55
D6 🔲 22	+3 SŸÑĈ	" ~ P23	P36
DS [23	+2 SCLK	ri ~ P24	1,00
04 24	41 MDS	5° P25 4° P26	P37 6'
A0 T 25	40 7 00	30- P27	
11 26	39 101	, <u> </u>	
12 1 27	38 7 02	F0 P30	15 16
		2 131	DS 5
43 = 28	JT DJ	54 P32	DS 3
A4 23	36 A 11	17:>→ P33	R/W 58
A5 🖂 30	35 A16	59 RESET	النا
A6 🖂 37	34 🗆 A 3	62 C-XTALT	XTAL2 63
A7 32	33 1 8	L	1

Anschlußbelegung und Schaltzeichen 2)
Bauform: QUIP-64, Plast (Bild 16)


Eigenschaften

- 8 Bit Verarbeitungsbreite, 43 Befehlstypen,
- RAM-Kapazität:
- * 128 Byte (144 Register; davon 124 Mehrzweckregister, 16 Status- und Steuerregister);
- 32 Ein- und Ausgabeleitungen,
- durch internen Zeitgeber getakteter UART (vollduplex),
- 2 programmierbare 8 Bit Zähler/Zeitgeber mit je einem 6 Bit Vorteiler,
- On-Chip-Oszillator (Anschlußvarianten UB 8820 M, UB 8840 M), externer Anschluß von Quarz möglich,
- 6 priorisierte und vektorisierte Interruptquellen,
- Möglichkeit zur Adressierung von externen Speichern bis 124 kByte,
- Möglichkeit zum power-down-Betrieb (Anschlußvarianten UB 8821 M, UB 8841 M),
- TTL-Kompatibilität an allen Anschlüssen,
- mittlere Befehlsausführungszeit: ca. 2,2 µs,
- Speicherkapazität 2 kByte (UB 8820 M, UB 8821 M) oder 4 kByte (UB 8840 M, UB 8841 M) extern direkt adressierbar/äquivalent für interne ROM deg U 8611 DC (4 kByte).
- entspricht Anschlußvariante UB 8831 D, UB 8861 D, UL 8611 DC, UL 8611 DC/l; Die Schaltkreise haben die Möglichkeit zum power-down-Betrieb, ein externer Taktgenerator ist an XTAL 1 anzuschlieen. Bei der Anschlußvariante UB 8830 D, UB 8860 D, U 8611 DC, U 8611 DC/l wird Anschluß 2 zu XTAL. Verwendet wird dazu der On-Chip-Oszillator bei Anschluß von Quarz an XTAL und XTAL 1.
- entspricht Anschlußvariante UB 8820 M, UB 8840 M; Dabei wird der On-Chip-Oszillator bei Anschluß an Quarz an XTAL 1 und XTAL 2 verwendet.

16 Bit Mikroprozessorsystem

UB 8001 C / UB 8002 D

16 Bit Mikroprozessoren

Bauform: DIP-48, Keramik (Bild 15) Typstandard: TGL 43019 (UB 8001 C)

Bauform: DIP-40, Plast (Bild 14)

Typstandard: TGL 43019 (UB 8002 D)

Eigenschaften

- 4 MHz Taktfrequenz,
- 8 Adressierungsarten,
- 8 Datentypen verarbeitbar,
- 110 verschiedene Grundbefehle k\u00f6nnen zu 414 Einzelbefehlen variiert werden.
- 2 Betriebsarten: Systemmodus und Normalmodus.
- 3 Interruptarten und 5 Traps,
- internes Refreshsteuerungssystem für dynamische Speicher,
- Einsatz von Peripherieschaltkreisen des UA 880-Systems (4 MHz) zur Hardwareunterstützung möglich,
- Adreßbus: UB 8001 C 23 Bit
 UB 8002 D 16 Bit,

- adressierbarer Speicherbereich:

UB 8001 C

8 MByte

UB 8002 D

64 kByte.

Der Schaltkreis wird in zwei Versionen angeboten:

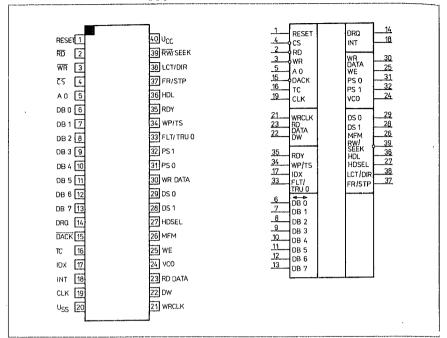

- * UB 8001 C als 48poliger segmentierter Mikroprozessor,
- * UB 8002 D als 40poliger nichtsegmentierter Mikroprozessor.

Der Hauptunterschied besteht im Adreßbereich und in der Art der Erzeugung der Adressen:

- der UB 8001 C kann direkt 8 MByte
 Speicher adressieren,
- der UB 8002 D adressiert direkt 64 kByte, dies geschieht linear.

UB 8010 C

MMU für 16 Bit Mikroprozessor

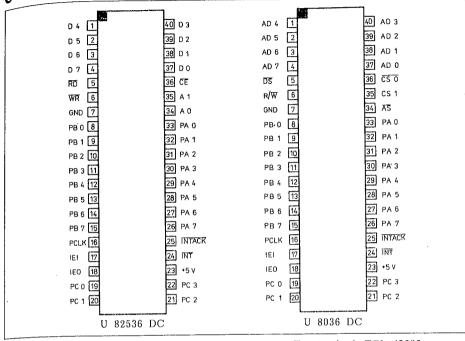

Anschlußbelegung und Schaltzeichen

Typstandard: TGL 43020 Bauform: DIP-48, Keramik (Bild 15)

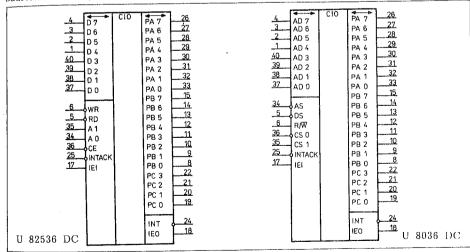
Eigenschaften

- Der UB 8010 C ist ein MMU-Schaltkreis (memory management unit), der einen 8 MByte großen Adreßraum der CPU UB 8001 C verwaltet,
- er verarbeitet 16 Bit breite Daten-/Steuersignale des UB 8001 C-Busses,
- der Baustein ermöglicht sowohl eine dynamische Speichersegmentverschiebung als auch die Festlegung bestimmter Speicherschutzfunktionen,
- die dynamische Speichersegmentverschiebung erlaubt dem Anwender eine von der physischen Adressierung unabhängige Softwareadressierung und ermöglicht eine flexible und effektive Unterstützung von Multiprogrammsystemen,
- der UB 8010 C benutzt Vektortabellen zur Umsetzung der 23 Bit breiten logischen Adresse am Adreßausgang der CPU UB 8001 C in die 24 Bit Adresse des Speichers,
- die 24 Speicherelemente lassen sich im Bereich von 256 bis 64 k in 256 Byte-Schritte variieren,
- die Speicherschutzfunktionen sichern die einzelnen Speichersegmente durch Beachtung festgelegter Zugriffseinschränkungen vor nichtautorisiertem oder unbeabsichtigtem Zugriff.

U 8272 D Floppy-Disk-Controller


Anschlußbelegung und Schaltzeichen

Bauform: DIP-40, Plast (Bild 14) Typstandard: TGL 43808


Der U 8272 D ist ein Steuerschaltkreis für Folienspeicher (Floppy Disk) zur Organisation des Datenaustausches zwischen der CPU und max. 4 Floppy-Disk-Laufwerken.

Eigenschaften

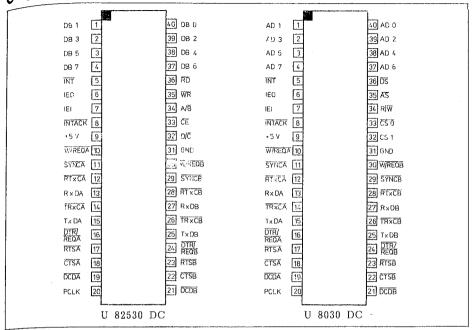
- Geeignet für Standard-Floppy (8'') und Mini-Floppy (5,25),
- programmierbare Aufzeichnungslänge von 128, 256 oder 1024 Byte/Sektor,
- Kompatibilität zum IBM-Einfach (FM) und Doppelformat (MFM),
- Mehrfachsektor- und Mehrfachspurübertragungsfähigkeit,
- Datentransport wahlweise (programmierbar) im DMA- oder NON-DMA-Modus,
- Daten- und Adressensuchfähigkeit,
- 15 einsatzspezifische Befehle,
- Erzeugung zahlreicher Steuersignale und Statusinformationen,
- Programmierung durch CPU,
- Taktfrequenz: 8 MHz/4 MHz,
- Betriebsspannung: + 5 V.

Typstandard: TGL 45235 Bauform: DIP-40, Plast (Bild 14) Typstandard: TGL 45235 Bauform: DIP-40, Plast (Bild 14)

Anschlußbelegung und Schaltzeichen

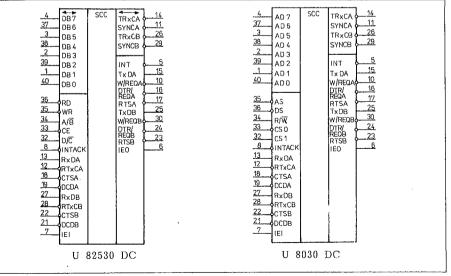
Der Zähler/Zeitgeber- und parallele Ein-/Ausgabebaustein (Counter/Timer and parallel I/O unit) ist ein universeller Peripherieschaltkreis. Er beinhaltet 3 Ein-/Ausgabeports und 3 Zähler/Zeitgeber. Seine Funktionen sind programmierbar und können so auf spezielle Anwendungen zugeschnitten werden.

Eigenschaften


- Es werden zwei Versionen (Bondvarianten) der CIO unterschieden:
- * der U 82536 DC mit CPU-Interface für den U 880 D und für ähnliche Prozessoren (8086, SU-Typ K 1810 WM 86),
- * der U 8036 DC mit Multiplexbus für den U 8000 und für ähnliche Prozessoren.
- alle internen Steuer- und Datenregister sind les- und schreibbar,
- Datenträger sind direkt adressierbar, Steuerregister nur beim U 8036 DC,
- beim U 82536 DC muß auf die Steuerregister mit einer Befehlsfolge zugegriffen werden,
- Vektorinterrupt inklusive Status (Ursache), Daisy chain (IEI, IEO) und Polling möglich,
- WAIT/REQUEST-Leitung ermöglicht schnelle DMA-Blockübertragungen in beiden Richtungen (vollduplex).

Periphere Eigenschaften

- Drei unabhängige 16 Bit Zähler/Zeitgeber-Kanäle (CT),
- bis zu vier externe Leitungen je CT-Kanal programmierbar: Zählerausgang, Zähler-, Trigger- und Gateeingang (Port B und C),
- drei Signalverläufe am Zähler/Zeitgeberausgang: monostabil (one shot), getaktet (pulsed) und Rechteckimpulse (square wave),
- CT 1 und CT 2 sind intern zusammenschaltbar (kaskadierbar),
- Zähler/Zeitgeber retriggerbar oder nicht retriggerbar,
- zwei unabhängige, bidirektionale, doppelt gepufferte 8 Bit-Ein-/Ausgabewort die einzeln programmierbar sind (Sie besitzen einen Impulsfänger und programmierbare open-drain-Ausgänge. Sie sind als Bitport oder handshake-getriebener Port programmierbar),
- ein 4-Bit-Spezialport, programmierbar als Port-, Handshake- oder als externe Zähler/Zeitgeber-(CT 3)-Leitungen, Bits einzeln änderbar,
- Port A und B doppelt gepuffert,
- Interlock-, Strobe-, Impuls- und three-wire-Handshake mit Deskew-Timer,
- flexible maskierbare Zeichenerkennungslogik auf Flanken, Zustände oder Änderungen einzelner Bits von Port A und B, programmierbar wie ein 16-Bit-Vektor-Interrupteontroller.
- eine Betriebsspannung von + 5 V 5 %,
- Taktfrequenz 4MHz.


U 82530 DC / U 8030 DC

Serial Communication Controller (SCC)

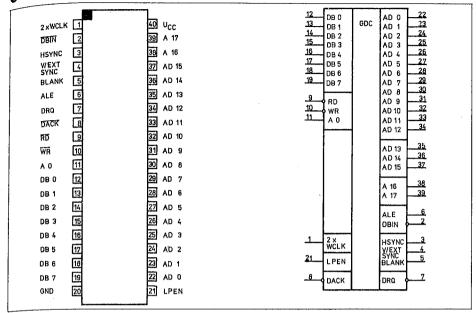
Typstandard: TGL 43812 Bauform: DIP-40, Plast (Bild 14)

Typstandard: TGL 43813 Bauform: DIP-40, Plast (Bild 14)

Der Serial Communication Controller (serielle Ein-/Ausgabesteuerung) ist ein program mierbarer peripherer Schaltkreis in n-Kanal-Silicon-Gate-Technologie. Er gewährleistet eine umfassende Unterstützung für die Bearbeitung einer Vielzahl serieller Kommunikationsprotokolle.

Die beiden Varianten unterscheiden sich im CPU-Interface:

- + der U 82530 DC ist für den U 880 und ähnliche Typen geeignet.
- + der U 8030 DC für den U 8000 und ähnliche Typen.


Eigenschaften

- Versorgungsspannung: 5 V + 5 %,
- max. Taktfrequenz: 4 MHz (6 MHz in Vorbereitung),
- 4 unabhängige serielle Ports: 2 Sender- und 2 Empfängerports,
- synchrone/asynchrone Datenraten,
- alle internen Steuer- und Datenregister sind les- und schreibbar,
- Datenregister sind generell direkt adressierbar, Steuerregister nur beim U 8030 DC.
- beim U 82530 DC muß auf die Steuerregister mit einer Befehlsfolge zugegriffen werden,
- Vektorinterrupt inklusive Status (Ursache), daisy-chain (IEI, IEO) und Polling möglich.
- der WAIT/REQUEST-Ausgang ermöglicht schnelle CPU/DMA-Blockübertragungen, die DTR/REQUEST-Leitung ermöglicht Übertragungen unter DMA-Steuerung in beiden Richtungen (vollduplex),
- Asynchronbetrieb:
 - * 5, 6, 7 oder 8 Bits/Zeichen
- * Taktvarianten: x 1, x 16, x 32 oder x 64,
- * 1, 1 1/2 oder 2 Stoppbits,
- * Erzeugung und Erkennen von Unterbrechungen (Break),
- * ungerade, gerade oder keine Parität,
- * Erkennung von Paritäts-, Überlaufoder Rahmenfehlern;
- byoteorientierter Synchronbetrieb,
- -SDLC/HDLC-Betrieb
- *Generierung und Testen von Abbruchfolgen (Abbort),
- * automatische Nulleinfügung und
- * automatisches Einfügen von SDLC-Flags in Sendesequenzen,
- * I-Feld-Residuen-Behandlung,
- * CRC-Generierung und -Test,
- * SDLC-Loop-Mode mit EOP-Erkennung; Schleifenan- und -abkopplung;

- * Adreßfelderkennung,
- NRZ-, NRZI oder FM-Kodierung/-Dekodierung,
- Baud-Rate-Generator (BRG) in jedem Kanal,
- Digital Phase Locked Loop (DPLL) für die Taktgewinnung, Quarzoszillator.

11 82720 D G

Graphic-Display-Controller (GDC)

Anschlußbelegung und Schaltzeichen

Typstandard: TGL 43808
Bauform: DIP-40, Plast (Bild 14)

Ein für Mikrorechneranwendungen angepaßter Controllerschaltkreis zur Steuerung von Rastergrafik- bzw. alphanumerischen Displays.

Der GDC wird dabei zwischen Bildwiederholspeicher und Systemmikroprozessor im Display angeordnet. Der GDC übernimmt die Verwaltung des Bildwiederholspeichers und die Erzeugung der Steuersignale für das Video-Interface.

Eigenschaften

- -Geeignet für hochauflösende Bildschirme, max. 1024 x 1024 Bildpunkte,
- der Bildwiederholspeicher kann in beliebiger Größe bis zu 4 MBit (256 kWorte x 16 Bit) aufgebaut werden,
- Ansteuerung von monochromen, S/W- und Farbdisplays möglich,
- Betriebsarten:
 - * Graphic Mode
 - * Alphanumerischer Mode
 - * Mixed Mode,
- in allen Betriebsarten ist Zooming, Panning und Windowing möglich,
- Darstellung alphanumerischer Zeichen, Punkte, Linien, Rechtecke und Kreisbögen,
- Lichtstifteingang,
- Taktfrequenz: 3,6 und 4 MHz
- eine Versorgungsspannung ⁺ 5 V.

Anschlußbelegung und Schaltzeichen

Typstandard: TGL 45903
Bauform: PLCC-68, Plast (Bild 32)

Bezeichnung der Anschlüsse

1	BHE	BYTE HIGH ENABLE, Ausgang (Low-aktiv)
4, 5	$\overline{\mathtt{S0}},\ \overline{\mathtt{S1}}$	BUS STATUS, Ausgang (Low-aktiv)
6	PEREQ	PROCESSOR EXTENSION OPERAND REQUEST (Ein-
· ·	PEACK	gang, High-aktiv) AND ACKNOWLEDGE (Ausgang,
		Low-aktiv)
7 bis 34	A0 bis A23	ADDRESS BUS, Ausgänge (High-aktiv)
29	RESET	SYSTEM RESET, Eingang (High-aktiv)
31	CLK	SYSTEM CLOCK, Eingang
36 bis 51	D0 bis D15	DATA BUS, Eingänge (Low-aktiv = Ausgänge)
53, 54	BUSY	PROCESSOR ENTENSION BUSY AND ERROR,
55, 51	ERROR	Eingänge (Low-aktiv)
57	INTR	INTERRUPT REQUEST, Eingang (High-aktiv)
218		

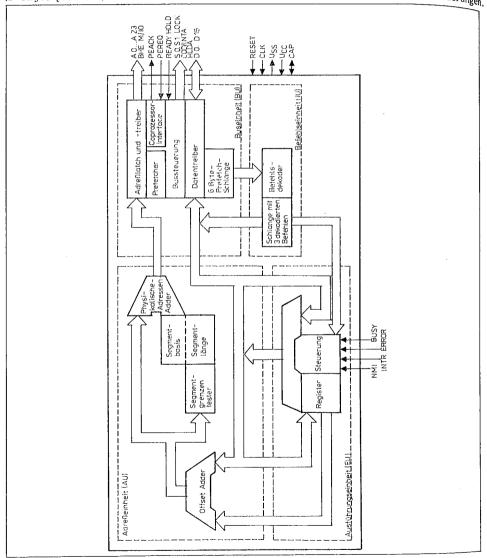
59	NMI	NON-MASKABLE INTERRUPT REQUEST: Eingung
υυ U		(High-aktiv)
63	$\overline{\mathtt{READY}}$	BUS READY, Eingang (Low aktiv)
64	HOLD	BUS HOLD REQUEST (Eingung, High aktiv) AND
0.7	HLDA	HOLD ACKNOWLEDGE (Ausgang, High aktiv)
66	COD/INTA	CODE/INTERRUPT ACKNOWLEDGE, Ausgang
67	M/IO	MEMORY I/O SELECT, Ausgang
68	LOCK	BUS LOCK, Ausgang (Low-aktiv)
₃₀ , 62	$^{\mathrm{U}}\mathrm{_{CC}}$	Betriebsspannung (+ 5 V)
9, 35, 60	USS	Masse (0·V)
52	CAP	SUBSTRAT FILTER CAPACITOR, Eingung

pie CPU U 80601 ist ein leistungsfähiger Mikroprozessor mit der Möglichkeit des Einsatzes in Multiuser- und Multitasksystemen. Abhängig von seinem Einsatz ist die Leistungsfähigkeit des U 80601 im Vergleich zur CPU KR 1810 WM 86 bis zu 6x größer, wobei der Prozessor softwaremäßig aufwärtskompatibel zur CPU KR 1810 WM 86 ist.

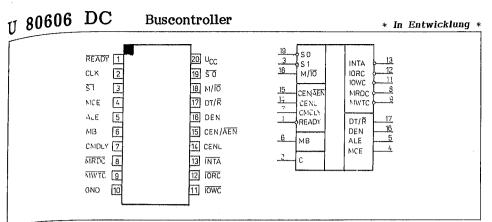
Kurzbeschreibung

Die CPU U 80601 ist ein moderner, leistungsfähigker Mikroprozessor mit der Möglichkeit des Einsatzes in Multiuser- und Multitasksystemen.

Der U 80601 ermöglicht zwei Betriebsarten, den direkten Adreß-Mode (Real-Mode) und den geschützten, virtuellen Adreß-Mode (Virtual-Protected- oder Protected-Mode). Beide Betriebsarten sind mit Hilfe des leistungsfähigen Befehlssatzes des KR 1810 WM 86 programmierbar.


Programme des Real-Mode nutzen einen direkt adressierbaren Adreßraum bis zu 1 MByte, während der U 80601 im Protected-Mode automatisch einen virtuellen Adreßraum bis zu 1 GByte pro Task, bestehend aus Blöcken von 16 MByte direktem Adreßraum, bereitstellt. Darüberhinaus ist im Protected-Mode ein Speicherschutz realisiert, der es z. B. ermöglicht, das Betriebssystem von Nutzerprogrammen zu trennen und verschiedene Tasks sowohl programm- als auch datenmäßig unterschiedlich privilegiert zu bearbeiten. Beide Befehlsarten benutzen den gleichen Grundbefehlssatz, gleiche Register und Adressierungsmodi.

Entsprechend dem Übersichtsschaltbild des U 80601 läßt sich der Schaltkreis in folgende Baugruppen unterteilen:


- Buseinheit (Bus Unit BU),
- · Befehlseinheit (Instruction Unit IU),
- Ausführungseinheit (Execution Unit EU),
- Adreßeinheit (Address Unit AU).

Verwendungszweck und wichtige Einsatzgebiete

Der U 80601 ist ein schneller 16 Bit Mikroprozessor, der für den Einsatz in leistungsfähigen Personalcomputern und automatischen Steuerungen entwickelt wurde. Er zeichnet sich durch eine hohe Arbeitsgeschwindigkeit (U 80601-1 = 16 MHz Taktfrequenz) bei erhöhtem Datendurchsatz (Pipelining Prefetching) und bei einem großen Adreßbereich (1 GByte pro Task) aus. Hierbei erfüllt der U 80601 internationale PC-Standardforderungen

Übersichtsschaltplan

Anschlußbelegung und Schaltzeichen

Bauform: DIP-20, Plast (Bild 8) Typstandard: TGL 45904

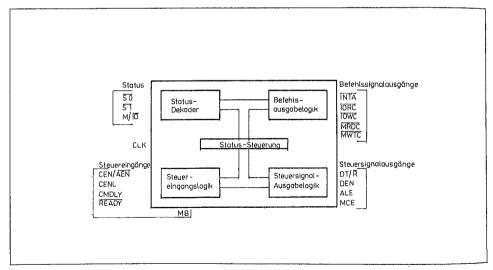
	. A 1.100	1,50001
Bezeichnung	der Anschlüsse	
2	CLK	CLOCK (Systemtakt), Eingang
3, 19	$\overline{S0}$, $\overline{S1}$	STATUS 0, STATUS 1 (Buszyklus-Statussignale, Eing.)
18	M/\overline{IO}	MEMORY/IO (Speicher/I/O-Auswahl), Eingang
6	MB	MULTIBUS MODE (Multibus-Mode-Auswahl), Eingang
14	CENL	COMMAND ENABLE LATCHED, Eingang
7	CMDLY	COMMAND DELAY (Befehlsverzögerung), Eingang
1	$\overline{ ext{READY}}$	READY, Eingang (Low-aktiv)
15	CEN/AEN	COMMAND ENABLE/ADDRESS ENABLE, Eingang
5	ALE	ADDRESS LATCH ENABLE, Ausgang
4	MCE	MASTER CASCADE ENABLE, Ausgang
16	DEN	DATA ENABLE, Ausgang
17	$\mathrm{DT}/\overline{\mathrm{R}}$	DATA TRANSMIT/RECEIVE, Ausgang
11 .	IOWC	I/O WRITE COMMAND, Ausgang
12	IORC	I/O READ COMMAND, Ausgang
9	$\overline{\text{MWTC}}$	MEMORY WRITE COMMAND, Ausgang
8	MRLC	MEMORY READ COMMAND, Ausgang
13	INTA	INTERRUPT ACKNOWLEDGE, Ausgang
20	U _{CC}	Betriebsspannung
10	GND	Bezugspotential

Der integrierte Schaltkreis U 80606 ist ein Buscontroller für das schnelle 16 Bit Mikroprozessorsystem U 80600.

Der Buscontroller stellt den angrenzenden Bussystemen die wichtigsten Befehls- und Steuersignale zur Verfügung und steigert damit die Leistungsfähigkeit der CPU U 80601 erheblich.

Beschreibung

Der U 80606 wird im U 80600-System zur Erzeugung der Adreßlatch-Steuersignale, zur Steuerung der Datenübertragung und zur Standard-Befehlsausgabe verwendet. Die Befehlsausgaben erfolgen zeitgesteuert und erfüllen alle Forderungen von MMS-16-Bus-(Multibus-) Systemen. Mittels fester Pinbeschaltung können beim U 80606 zwei Betriebsarten für d_{RS} jeweilige Buszeitverhalten eingestellt werden, für


- MMS-16-Bus-(Multibus-)kompatible Buszyklen und für
- schnelle lokale Buszyklen.

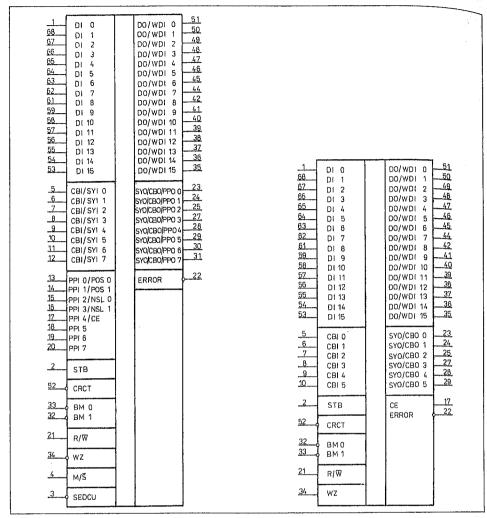
Der U 80606 verfügt über

- einen Takteingang (U 80601-Systemtakt),
- 8 Status- und Steuereingänge,
- 5 Befehlsausgänge und
- 4 Steuerausgänge.

Der U 80606 liefert an den Steuersignalausgängen 16 mA und an den Befehlsausgängen 32 mA Treiberstrom bei Low-Pegel. Für Speicher- und I/O-Baugruppen stehen jeweils getrennte Befehlsausgänge zur Verfügung. Der Datenbus wird von separaten Datenfreigabesignalen und von Signalen zur Festlegung der Übertragungsrichtung gesteuert.

Der U 80606 wird im 20poligen DIL-Plastgehäuse geliefert. Er benötigt eine Betriebsspannung von + 5 V.

Übersichtsschaltung


Schaltkreis für Fehlererkennung und -korrektur * In Entwicklung *

CRCT 52 33 BM 0 DI 15 53 32 BM 1 DI 14 54 31 SY0/CB0/PP0 7 DI 12 56 30 SY0/CB0/PP0 6 29 SYO/CBO/ PPO 5 28 SYO/CBO/PPO 4 27 SY0/CB0/PP0 3 DI 9 59 26 USS 25 SY0/CB0/PP02 DI 7 24 SY0/CB0/PP0 1 D+ 6 63 23 SYO/CBO/PPO 0 22 ERROR 64 D1 5 DI 4 65 21 R/W DI 3 66 20 PPI 7 DI 2 67 19 PPI 6 18 PPI 5 DI 1 PP10/P0S0 DI 0 STB SEDCU M/S CBI/SYI 0 CBI/SYI 2 CBI/SYI 3 CBI/SYI 4 CBI/SYI 5 CBI/SYI 7 CBI/SYI

Anschlußbelegung

Bauform: PLCC-68, Plast (Bild 32)

Der U 80608 ist ein Schaltkreis zur Fehlererkennung und -korrektur (Error Detection and Correction, EDC), der in einem System, das eine hohe Zuverlässigkeit des Speichers erfordert, einen fehlerkorrigierenden Code erzeugt und im Falle eines Fehlers die entsprechende Korrektur vornimmt.

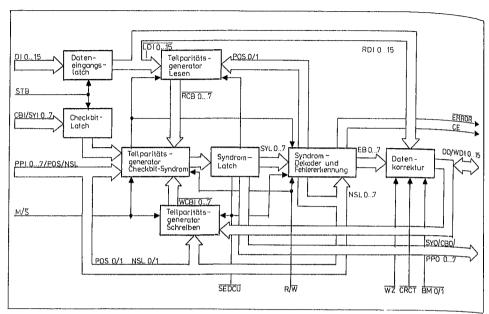
Schaltzeichen U 80608 und Schaltzeichen U 80608-2

Bezeichnung der Anschlüsse

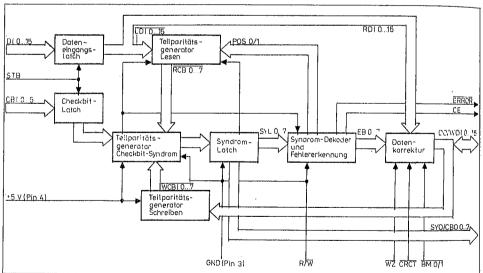
224

Descreming	401 1111001114000	
1	DIO bis DI15	DATA IN
53 bis 59		Eingänge für ein 16 Bit Datenwort vom RAM für
61 bis 68		Fehlererkennung und/oder -korrektur
5 bis 12	CBI/SYI0 bis	CHECK BITS IN/SYNDROME IN, Eingänge
	CBI/SYI7	
35 bis 42	DO/WDI0 bis	DATA OUT/WRITE DATA IN. Ein-/Ausgänge
44 bis 51	DO/WDI15	

$_{23}$ bis 31	SYO/CBO/PPO0 bis	SYNDROME OUT/CHECK BITS OUT/PARTIAL			
	SYO/CBO/PPO7	PARITY OUT, Ausgänge			
13, 14	PPI0/POS0	PARTIAL PARITY IN/POSITION, Eingänge			
101	PPI1/POS1				
₁₅ , 16	PPI2/NSL0	PARTIAL PARITY IN/NUMBER OF SLAVES, Eingänge			
10,	PPI3/NSL1				
17	PPI4/CE	PARTIAL PARITY IN/CORRECTABLE ERROR,			
14		Eingang/Ausgang			
18 bis 20	PPI5 bis PPI7	PARTIAL PARITY IN, Eingänge			
22.	ERROR	ERROR, Ausgang			
52	CRCT	CORRECT, Eingang			
2	STB STROBE, Eingang				
32, 33	$\overline{\mathrm{BM0}}$, $\overline{\mathrm{BM1}}$	BYTE MARKS, Eingang			
21	R/\overline{W} READ/WRITE, Eingang				
34	₩Z	WRITE ZERO, Eingang			
4	M/\overline{S}	MASTER/SLAVE, Eingang			
3	SEDCU	SINGLE EDC UNIT, Eingang			
60	$^{\mathrm{U}}\mathrm{_{CC}}$	Betriebsspannung + 5 V			
26	USS	Masse für Logik			
43	7.7				
ŀ					


Beschreibung

Der U 80608 ist ein sehr schneller Schaltkreis für die Fehlererkennung und -korrektur in statischen und dynamischen Speichersystemen, die hohe Zuverlässigkeit und Leistung erfordern. Jeder U 80608 kann 8 oder 16 Datenbits und bis zu 8 Prüfbits verarbeiten. Durch Kaskadierung von maximal 5 Schaltkreisen U 80608 können Datenworte bis zu 80 Bit Breite verarbeitet werden. Andere Möglichkeiten des U 80608 sind Speicherinitialisierung, Lokalisierung von Speicherfehlern und Byte-Schreiben (8 Bit).


Eigenschaften

- Erkennt und korrigiert alle 1 Bit Fehler,
- erkennt alle 2 Bit- und manche Mehr-Bit-Fehler,
- benötigt max. 52 ns für Fehlererkennung und max. 67 ns für Fehlerkorrektur (16 Bit System),
- besitzt Syndromausgänge für Fehlerlokalisierung,
- ermöglicht folgende Speicherzugriffsarten: * Speicherlesen mit/ohne Fehlerkorrektur
 - * Speicherschreiben
 - * Byte-Schreiben
 - * Lesen Ändern Schreiben

- getrennter Ein-/Ausgabebus, kein Systemtakt erforderlich,
- U 80608-2 ist nicht kaskadierbar, sein Timing entspricht den Erfordernissen von 16-Bit-CPUs.

Übersichtsschaltplan U 80608

Übersichtsschaltplan U 80608-2

_U 80610 DRAM-Controller * In Entwicklung * <u>38</u> AL 0 AO 0 AL BS BS AO AL 1 AO 1 40 33 AL 2 A0 2 41 AL 3 42 AL 4 44 AL 5 45 AL 6 32 31 30 29 28 27 AO 3 A0 4 AH 4 52 AH 5 53 A0 5 A0 6 46 47 32 AO 3 AL 7 AO 7 AH 6 54 AL 8 8 OA 48 49 50 AH 0 30 A0 5 AH 1 RAS 0 ан 8 AH 2 RAS 1 29 AO 6 51 АН З RAS 2 PDI <u>52</u> 53 AH 4 RAS 3 RFRO AH 5 54 CAS 0 AH 6 CLK CAS 1 1 AH 7 GND **AH 8** CAS 2 RDB CAS 3 RDA 62 63 24 RAS 2 WRB LEN WRA PEB PEA XA/ACKA хв/аскв PCTLA PCTLB 64 AACKA/WZ RDB ROA 65 WRA 66 PEA 67 PCTLA68 62 WRB AACKB/RW PEB **PCTLB** DBM 19 CAS 1 17 RESET **ESTB** 18 CAS 0 CLK MUX/PCK **PSEL** FWR PSEN WE RFRQ LOCK 10 CE 11 ERROR DBM ESTB BS 0

Anschlußbelegung und Schaltzeichen

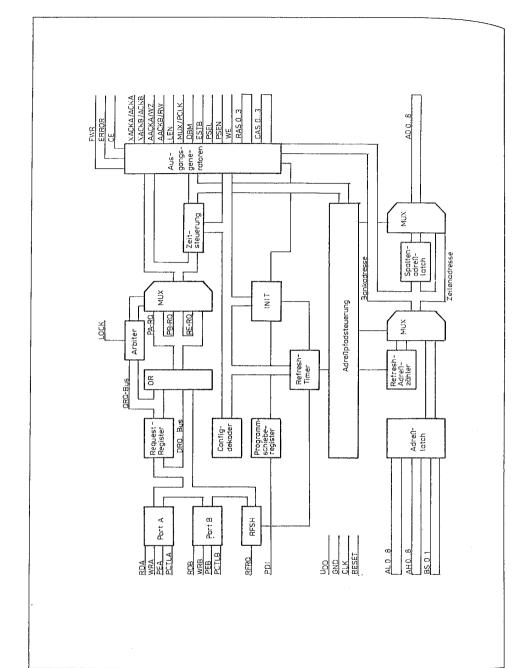
Typstandard: TGL 45906
Bauform: PLCC-68, (Bild 32)

Bezeichnung der Anschlüsse

1	LEN	LATCH ENABLE, Ausgang
2	XACKA/ACKA	TRANSFER ACKNOWLEDGE PORT A/ACKNOWLEDGE
		PORT A, Ausgang
3	XACKB/ACKB	TRANSFER ACKNOWLEDGE PORT B/ACKNOWLEDGE
		PORT B, Ausgang
4	AACKA/WZ	ADVANCED ACKNOWLEDGE PORT A/WRITE ZERO,
		Ausgang
5	AACKB/RW	ADVANCED ACKNOWLEDGE PORT B/READ/WRITE,
		Ausgang
6	$\overline{\mathrm{DBM}}$	DISABLE BYTE-MARKS, Ausgang
7	$\overline{\mathrm{ESTB}}$	ERROR STROBE, Ausgang

Der U 80610 ist ein programmierbarer DRAM-Controller für die Ansteuerung dynamischer Speicherschaltkreise. Er unterstützt den Anschluß von 16-, 64- und 256 kBit dRAMs und kann einen Adreßraum von max. 2 MByte bedienen.

8	LOCK	LOCK, Eingang
9	\mathtt{U}_{DD}	DRIVER POWER, Eingang
43	${\tt U}_{ m DD}^{ m DD}$	LOGIC POWER, Eingang
10	CE	CORRECTABLE ERROR, Eingung
11	ERROR	ERROR, Eingang
12	MUX/PCLK	MULTIPLEXER CONTROL/PROGRAMMING CLOCK.
		Ausgang
13	PSEL	PORT SELECT, Ausgang
14	PSEN	PORT SELECT ENABLE, Ausgang
15	WE	WRITE ENABLE, Ausgang
16	FWR	FULL WRITE, Eingang
17	RESET	RESET, Eingang
18	$\overline{\text{CAS0}}$	COLUMN ADDRESS STROBES, Ausgänge
bis	bis	
21	CAS3	
22	RAS0	ROW ADDRESS STROBES, Ausgänge
bis	bis	
25	RAS3	
26	GND	DRIVER GROUND, Eingang
60	GND	LOGIC GROUND, Eingang
35	AO0	ADDRESS OUTPUTS, Ausgänge
bis	bis	
27	AO8	
36,	BS0	BANK SELECT, Eingänge
37	BS1	
38	AL0	ADDRESS LOW, Eingänge
bis	bis	
47	AL8	
48	AH0	ADDRESS HIGH, Eingänge
bis	bis	
56	AH8	
57	PDI	PROGRAM DATA INPUT, Eingang
58	RFRQ	RFRQ, Eingang
59	CLK	CLOCK, Eingang
61	RDB	READ FOR PORT B, Eingang
62	$\overline{ ext{WRB}}$	WRITE FOR PORT B, Eingang


63	` PEB	PORT ENABLE FOR PORT B, Eingang
64	PCTLB	PORT CONTROL FOR PORT B, Eingang
65	$\overline{\text{RDA}}$	READ FOR PORT A, Eingang
66	$\overline{\mathtt{WRA}}$	WRITE FOR PORT A, Eingang
67	PEA	PORT ENABLE FOR PORT A, Eingang
68	PCTLA	PORT CONTROL FOR PORT A, Eingang

Beschreibung

Der U 80610 ist ein leistungsfähiger, systemorientierter Ansteuerschaltkreis für dRAMs bis zu einer Kapazität von 256 kBit. Er enthält die erforderliche Schaltung zur Gewährleistung eines konfliktfreien Zugriffs auf den Speicher. Ein Dual-Port-Interface ermöglicht dabei zwei getrennten Bussystemen den unabhängigen Zugriff auf die Daten im kontrollierten Adreßraum. Der DRC unterstützt ein unterschiedliches Verhalten im Mikroprozessor-Interface, er ist jedoch besonders für eine Ansteuerung durch K 1810 WM 86- oder U 80601-kompatible Prozessoren optimiert. Bei einem gemeinsamen Einsatz mit dem EDCU-Schaltkreis U 80608 wird der DRC im Korrektur-Mode (ECC) programmiert. Er liefert dann alle notwendigen Ansteuersignale zur Durchführung einer Speicherinitialisierung und transparenten Fehlerkorrektur. Der U 80610 trägt in solchen Applikationen zu einem einfachen Aufbau großer fehlerkontrollierter Speicher bei.

Eigenschaften

- Liefert alle zur Ansteuerung von 16 k, 64 k und 256 k dynamischen RAMs notwendigen Signale,
- bedient ohne externe Treiberstufen direkt einen Adreßraum bis zu 2 MByte,
- "Warn-up" zur Speichervorbereitung in allen Betriebsarten,
- 5 programmierbare Refreshbetriebsarten,
- unterstützt Einzel- und Dual-Port-Konfigurationen,
- realisiert auf jedem Port synchronen oder asynchronen Betrieb,
- anpaßbar an verschiedene Mikroprozessor-Interface-Bedingungen,
- automatische RAM-Initialisierung und transparente Fehlerkorrektur im ECC-Mode.

Übersichtsschaltplan

Anschlußbelegung und Schaltzeichen

Bauform: DIP-40, Plast (Bild 14) Typstandard: TGL 45236

Der Schaltkreis U 82067 DC 05 ist ein hochintegrierter Peripherie-Controller, der die effektive Ansteuerung von Winchesterlaufwerken ermöglicht. Der Schaltkreis setzt über seinen Prozessoranschluß 8 Bit Paralleldaten in einem NFN-kodierten seriellen Datenstrom mit einer Übertragungsrate von 5 MBit/Sekunde um.

Der Schaltkreis U 82062 DC 05 ist ein Peripherie-Controller, der den Informationsaustausch zwischen Prozessorsystem und Festplattenlaufwerken (Winchesterlaufwerke) steuert. Zusammen mit einer extern an den Schaltkreis anzuschließenden Taktseparatorschaltung mit einer PLL für Datenleseoperationen sowie die ebenfalls extern aufzubauende Schreibpräkompensationsschaltung realisiert der Winchester-Disk-Controller U 82062 DC 05 die international eingeführten Schnittstellenstandards ST506/ST412 (Seagate) oder SA 1000 (Shugart) für Festplattenlaufwerke.

Der Schaltkreis setzt beim Datenschreiben 8 Bit Datenworte vom Prozessorbus in einen MFM-kodierten seriellen Datenstrom zum Laufwerk um. Beim Datenlesen erfolgt eine Dekodierung des von der Festplatte gelesenen Daten-/Taktgemisches mit gleichzeitigen Serien-Parallel-Umsetzung der Daten.

Mit einem spezialisierten Bufferspeicherinterface unterstützt der Schaltkreis den Datenaustausch mit einem extern als RAM mit Zählereinrichtung oder als FIFO aufgebauten Sektorbufferspeicher, der in den meisten Anwendungsfällen auf Grund der hohen Daten. übertragungsrate von 1 Byte je 1,6 µs zwischen Schaltkreis und Prozessorsystem geschaltet werden muß.

Der Schaltkreis übernimmt mit seinem Laufwerkinterface die Steuerung von maximal Laufwerken und optimiert den erforderlichen Informationsaustausch. Darüber hinaus erzeugt bzw. verarbeitet er die Steuersignale, die zum Aufbau einer PLL und einer Schreibkompensationsschaltung notwendig sind.

Der Schaltkreis kann 6 High-Level-Befehle ausführen. Jeder Befehl wird dazu in der Befehlsvorbereitungsphase vom Prozessor in mehreren Byte-Übertragungen, die die gewünschte Operation spezifizieren, in den Schaltkreis geladen. Anschließend wird die Befehlsausführung automatisch gestartet.

Folgende Befehle können ausgeführt werden:

RESTORE

Rücksetzen des Lese-/Schreibkopfes auf Spur 0

SEEK

Suche einer vorgegebenen Spur

READ SEKTOR

Auslesen eines oder mehrerer Sektoren von der Festplatte und Ab-

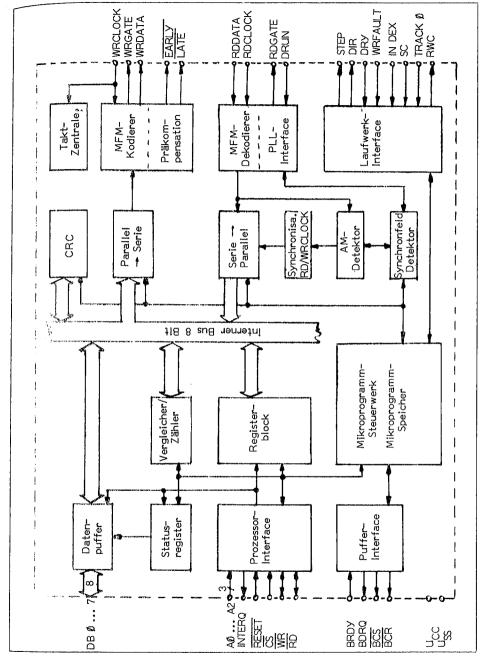
speichern der Daten im Bufferspeicher

WRITE SECTOR

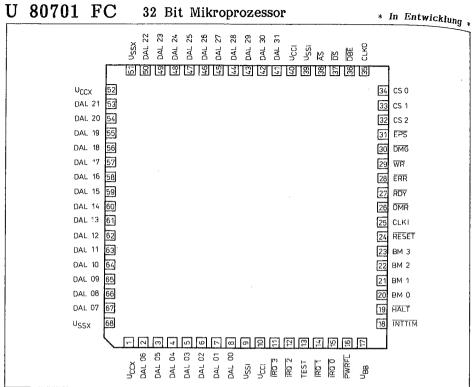
Beschreiben eines oder mehrerer Sektoren der Festplatte mit Daten

aus dem Bufferspeicher

WR FORMAT


Formatieren einer Spur mit Formatierinformation aus dem Buffer-

speicher und dem internen Registerblock


SCAN ID

Lesen eines Identifikationsfeldes und Aktualisierung der Register Der Schaltkreis besitzt folgende Programmierungsmöglichkeiten:

- Programmierung der Sektorlänge von 128, 256, 512 und 1024 Byts ist möglich,
- einfach- und Mehrfach-Sektorübertragungen bei den Befehlen RD SECTOR und WR SECTOR sind programmierbar,
- automatische Spursuche bei den Befehlen RD SECTOR, WR SECTOR und WR FORMAT,
- automatisches Testen des Identifikationsfeldes bei Laufwerkwechsel bei den Befehlen RD SECTOR, WR SECTOR, WR FORMAT und SEEK,
- Programmierung der Anzahl der Wiederholversuche (2 oder 10), die nach dem Erkennen eines unkorrekten Identifikationsfeldes bei den Befehlen RD SECTOR, WR SECTOR und SCANID ausgeführt werden sollen,
- außerdem besteht damit die Möglichkeit der Unterdrückung der normalerweise automatisch ablaufenden eingeschlossenen Suche.

Übersichtsschaltplan

Anschlußbelegung		Bauform: PLCC-68, (Bild 32)
Bezeichnung der A	Anschlüsse Eingang	Eingangstakt
CLKO	Ausgang	Taktausgabe der Normalfrequenz
RESET	Eingang	RESET des Schaltkreises
BM 0 BM 3	Ausgänge	Byte-Maske
DAL 00 DAL 3	1 Ein-/Ausgänge,	Daten-/Adreßbus
	Tristate	gemultiplexer, 32 Bit breiter
		Bus zur Adreß- u. Datenkommunikation
ĀS	Ausgang, Tristate	Adress strobe
$\overline{ ext{DS}}$	Ausgang, Tristate	Data strobe
DBE	Ausgang, Tristate	Data buffer enable
WR	Ausgang, Tristate	Write
EPS	Ausgang	External processor strobe
CS 0, CS 1	Ausgänge, Tristate	Bus cycle status
CS 2	Ein-/Ausgang, Tristate	Bus cycle status
$\overline{ ext{RDY}}$ 234	Eingang	Ready

ERR	Eingang	Error	•				
DMR	Eingang	DMA request					
ĎMG	Ausgang	DMA grant					
HALT	Eingang	Halt-Interrupt-	Anforderung				
INTTIM	Eingang	Timer-Interrup	t-Anforderung				
PWRFL	Eingang	Power-Fail-Inte	errupt-Anforderung	g			
IRQ 0 IRQ 3	Eingänge	Interrupt-Anfor	rderung für Standa	ard-IO- <u>I</u> n	ter	ruppts	
TEST	Eingang	Testeingang fü	r Bauelementehers	steller			
U _{CCX}	Betriebsspannung zur Versorgung der Pinlogik d. Daten-/Adreßbusses						
U _{SSX}	Bezugspotentia	l für U _{CCV}					
	Betriebsspannu						
n ^{CCI}	Schaltkreislogil	· .	8 DAL 00 7 DAL 01	CPU BM (_20	
11	Bezugspotentia		-6 DAL 02	BM 1		21	ĺ
U _{SSI}	Bulkspannung,	CCI	5 DAL 03 4 DAL 04	BM 3		23	
v_{BB}	intern generier	•t	DAL 05	WR DMG	ģ	2 <u>9</u> 30	ĺ
	mitern generier		67 DAL 07 66 DAL 08	EPS DS	ł	<u>31</u> 37	
			65 DAL 09	DBE	Ì	36	
			64 DAL 10 63 DAL 11	AS	i	38	
			62 DAL 12 61 DAL 13	:			
			60 DAL 14	ļ			ĺ
			59 DAL 15 58 DAL 16				
			57 DAL 17 56 DAL 18				
			55 DAL 19				
			53 DAL 21				
			50 DAL 22 49 DAL 23				
			48 DAL 24				
			46 DAL 26				
			45 DAL 27 44 DAL 28				
			43 DAL 29				
			41 DAL 30 41 DAL 31				
			28 ERR	ļ			
			27 RDY	CLK		35	
			25 CLKI	CLK	'	- Constant	
			24 RESET 19 HALT				
			18 NTTIM	cs o		34	
			15 IRQ 0	CS 1			
			14 IRO 1 12 IRO 2				
			11 IRQ 3	cs 2		_32	
			13TEST	"			

Der U 80701 FC ist ein in nSG-Technologie hergestellter 32 Bit Mikroprozessor. Er ermöglicht den Aufbau von Rechnern hoher Leistungsfähigkeit. Er ist für Mehrnutzer und Echtzeitanwendungen geeignet.

Der Schaltkreis U 80701 FC ist ein Mikroprozessor mit voller 32 Bit Architektur, d.h. er besitzt einen externen und internen 32 Bit Daten-/Adreßbus. Der Einsatz dieses Mikroprozessors zusammen mit den anderen Bausteinen des 32 Bit Mikroprozessorsystems mit hoher Verarbeitungsgeschwindigkeit (Taktfrequenz 40 MHz) erlaubt den Aufbau von Rechnern mit lokal und global vernetztem Datenaustausch.

Eigenschaften

- Volle 32 Bit Archikektur
- * Realisierung der RVS-Archikektur
- * externe und interne 32 Bit Datenbusse
- * externe und interne 32 Bit Adressbusse.
- hohe Verarbeitungsgeschwindigkeit:
- * Bei einer Taktfrequenz von 40 MHz wird eine Durchsatzrate von ca. 1 MIPS erreicht.
- * Die ALU liest innerhalb von 200 ns zwei Operanden, führt eine ALU- oder SHIFT-Operation aus und legt das Ergebnis in ein Register ab.
- großer Adreß-Raum
- * 16 MByte physikalischer Speicher
- * 4 GByte virtueller Speicher,
- integrierte Speicherverwaltungseinheit (MMU) und zwei Adressumsetzpuffer virtuellphysische Adressumsetzung in 25 ns bei Vorhandensein eines gültigen Eintrags im Puffer, einen 512 Byte seitenorientierten Schutzmechanismus sowie eine Verwaltung der Zugriffsrechte (Protection),
- realisierung von 175 verschiedenen Maschinenbefehlen, alle Befehle sind orthogonal in ihrer Struktur und lassen für jeden der maximal 6 Operanden alle der 21 verschiedenen Adressenmodi zu,
- die Abarbeitung der Maschinenbefehle erfolgt mikroprogrammgesteuert, das Mikroprogramm ist in einem 62,4 kByte ROM auf dem Chip gespeichert, zur Beschleunigung der Befehlsabarbeitung ist ein acht Byte tiefer prefetch-stack integriert,
- 15 softwarenmäßig programmierbare Interruptebenen (software interrupt levels) und ? Interrupteingänge (hardware interrupt inputs) werden unterstützt,
- Registersatz
- * 16; 32 Bit breite allgemeine Register
- * 20 Prozessor-bzw. interne Register,
- integrierter Bulkspannungsgenerator,
- Option für Co-Prozessor Anschluss (Floating Point Unit-FPU).

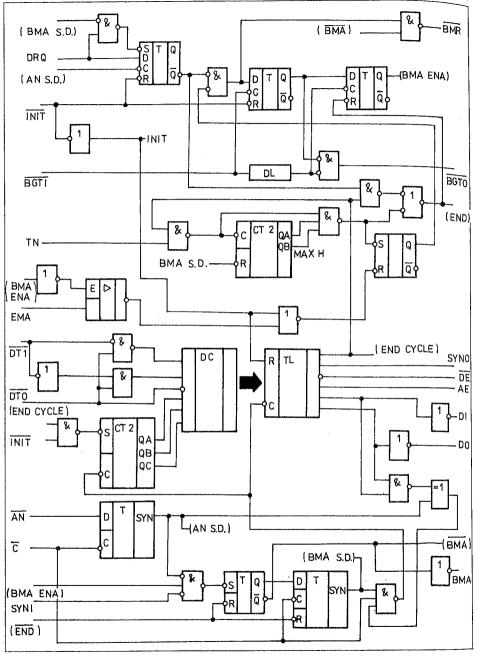
DS 8601 DC Ucc nRQ INIT DMA DTO DRQ 13 -∳BGTI DE DT 1 **BGTO** \overline{C} ото ΑE

DMA-Logik-Schaltkreis

ODT1 BMA D0 DS 8601 DC TN ΑE 16 ---AN nt 12 ---SYNI DE 18 SYN0 EMA 15 -AN BGT0 BGTI SYN0 EMA SYNI DI вмА DO BRQ М TINI C

Anschlußbelegung und Schaltzeichen

Bauform: DIP-20, Plast (Bild 8)

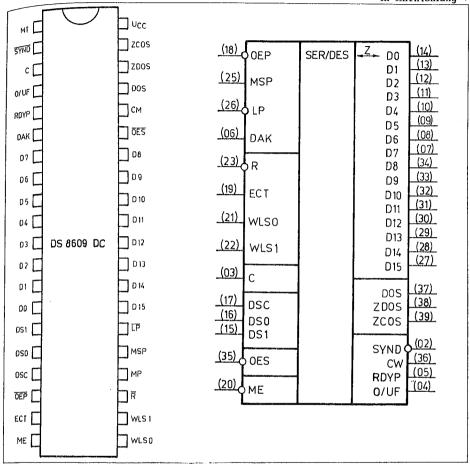

* In Entwicklung *

Rezeichnung der Anschlüsse

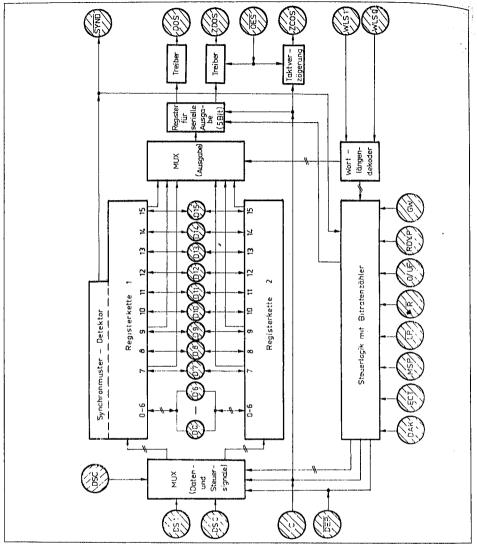
- DATA-Request (DMA-Anforderung)
- DATA-IN/OUT (Datenübertragung-Eingabe/Ausgabe)
- DATA-IN (Datenübertragung-Eingabe)
- Adress Enable (Adressfreigabe)
- DATA-OUT (Datenausgabe/Master)
- DATA-IN (Dateneingabe/Master)
- Transmit Synchronize (Synchronisation/Ausgabe)
- DMA-GRANT OUTPUT (Bus-Gewährung/Ausgang)
- Master (Bus-Herrschaft)
- 10 Masse

- Bus-Request (Eus-Anforderung)
- Receive Synchronize (Synchronisation/
- DMA-GRANT INPUT (Bus-Gewährung/ Eingang
- TIME-OUT
- REPLY (Antwort)
- COUNT FOUR (Übertragungsanzahl)
- CLOCK (Takt) 17
- DATA ENABLE (Datenfreigabe)
- INITIALIZE (Initialisierung)
- Betriebsspannung (U_{CC})

Der DMA-Schaltkreis DS 8601 DC ist für den Einsatz in DMA-organisierten Interfacegeräten vorgesehen. Dieser Schaltkreis liefert die Logik zur Ausführung der "Handshaking"-Operation bei Ausnutzung der Steuerung des Bussystems. Hat sich die "Busherrschaft" der DMA durchgesetzt, erzeugt der DS 8601 DC die erforderlichen Steuersignale zur Ausführung von DI-, DO- oder MULTIPLEX-Transfers entsprechend der Einstelltabelle. Der Schaltkreis besitzt einen Steuereingang TN (Anschluß 16), welcher einerseits beliebig viele Transfers und anderseits nur vier Transfers gestattet, um dann die "Busherrschaft" wieder abzugeben.


Übersichtsschaltplan

238


DS 8609 DC

Serien-Parallel/Parallel-Serien-Wandler-Schaltkreis

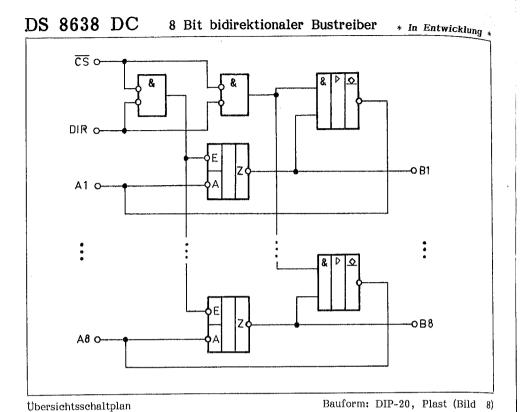
* In Entwicklung *

Anschlußbelegung und Schaltzeichen Bauform: DIP-40, Plast (Bild 14) Der DS 8609 DC ist ein spezieller Schaltkreis zur Realisierung eines Datenaustausches zwischen seriellem und parallelem Datenformat. Der Datenaustausch kann bis zu einer Grenzfrequenz von 28 MHz vorgenommen werden. Der Schaltkreis kann sowohl eine Serien-Parallel-Umsetzung, als auch eine Parallel-Serien-Umsetzung vornehmen. Er ist auf eine Wortlänge von 8,10 oder 16 Bit einstellbar. Der DS 8609 DC verfügt über eine automatische Synchronworterkennung, die es gestattet, ihn auf einen seriellen Datenstrom zu synchronisieren. Es stehen ein bidirektionales paralleles Tor (16 Bit) und zwei serielle Ausgänge sowie zwei serielle Eingänge zur Verfügung. Das parallele Tor und eines der seriellen Ausgangstore besitzen Tristate-Ausgänge, die über separate Enable-Signale angesteuert werden. Der zweite serielle Ausgang ist eine normale Totem-pole-Endstufe.

Übersichtsschaltplan

Bezeichnung der Anschlüsse

DCD.	ciciniang der imbermasse		
1	TTL-Masse	7 - 14	Parallele Daten-Ein-/Ausgabe
2	Synchronworterkennung	27 - 43	Parallele Daten-Ein-/Ausgabe
3	Takt	15, 16	Serielle Dateneingänge
4	Transfer-Fehler	17	Steuerung für serielle Dateneingabe
5	Parallel-Ein-/Ausgabe-Bereitschaft	18	Freigabe für die parallelen Ausgänge
$\frac{6}{240}$	Daten empfangen (Quittung für RDYP)	19	Zählerfreigabe


-0	Masse für interne Spannungsrefe-	26	Laden
20	renzen und ECL-/EFL-Stufen	35	Freigabe für serielle Ausgänge
21, 22	Wortlängenauswahl	36	Wortratentakt
23	Rücksetzen	37	Serieller Datenausgang
24	Masse für die Ausgangstreiber	38	Serielller Datenausgang
<i>µ</i> .	des parallelen Ausgangstores	39	Taktausgang
25	Betriebsart	48	Betriebsspannung

Grenzwerte

Grenzwert	Kurz- zeichen	min.	max.	Einheit
Betriebsspannung Eingangsspannung	n ^{CC}	0	7	V
D-Eingänge	U		5,5	v
übrige-Eingänge	บ		7	V
Ausgangsspannung im	UOZ		5,5	v
Tristate-Zustand				***
Verlustleistung T _a = 70°C	Ptot		3,0	W
Sperrschichttemperatur	Тj		150	°C

Betriebsbedingungen

Kennwert	Kurz- zeichen	min.	max.	Einheit
Betriebsspannung	u _{cc}	4,75	5,25	v
Ausgangsspannung High	U _{OH}		5,5	v
Ausgangsstrom High	-I _{OH}			
Ausgänge				
ZCOS, ZDOS, DOS	⁻I _{OH}		1,0	m A
D, O/UF, RDYP, CW	-I _{OH}		0,4	mA
Ausgangsstrom Low	IOL			
Ausgänge				
ZCOS, ZDOS, DOS	I_{OL}		8,0	m A
D,CW				
O/UF, RDYP	I _{OL}		4,0	mA
Taktfrequenz	fmax		28	MHz
Umgebungstemeratur	Ta		70	°C
				1

Bezeichnung der Anschlüsse

1 Richtungssteuerung DIR

2 bis 9 Datenein-/ausgänge A1 bis A8 (Open-collector)

10 Masse M

11 bis 18 Datenein-/ausgänge B8 bis B1 (Tristate)

19 Chip Select (Output Enable) $\overline{\text{CS}}$

20 Betriebsspannung

Der Schaltkreis DS 8638 DC enthält 8 Bustreiber, die einer asynchronen Zweiwege-Kommunikation zwischen Open-collector- und Tristate-Bussen dienen. Es werden Daten von einem A-Bus (Open-collector) zu einem B-Bus (Tristate) oder von einem B-Bus zu einem A-Bus in Abhängigkeit des Pegels am Richtungssteuereingang (DIR) übertragen. Der Enable-Eingang $\overline{\text{CS}}$ kann zum Trennen der beiden Busse voneinander benutzt werden. 242

(02) A1 (03) A2 (04) A3 (05) A4 (06) A5 (07) A6 (08) A7 (09) A8 (19) CS (01) DIR

Funktionstabelle

Steuereingänge		Operation
CS DIR		
L	L	B-Daten zum A-Bus
L	Н	Ā-Daten zum B-Bus
н х		Bus-Trennung
l	l	

H - High

L - Low

X - High oder Low

Schaltzeichen

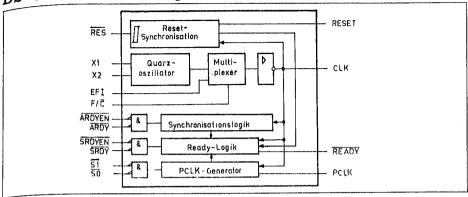
Grenzwerte

Grenzwert	Kurz- zeichen	min.	max.	Einheit
Betriebsspannung Eingangsspannung	U _{CC}	0	7	V
Steuereingänge	U		7	V
A-Eingänge	U		7	V
B-Eingänge	U		5,5	v
Verlustleistung	Ptot		1,6	W -
T _a = 70 °C Sperrschichttemperatur	T _i		150	°C

Betriebsbedingungen

Kennwert	Kurz- zeichen	min.	max.	Einheit
Betriebsspannung	U _{CC}	4,75	5,25	v
Eingangsspannung High	UIH	2,0		l v
Eingangsspannung Low	UIL		0,8	v
Ausgangsspannung High	UOH		5,5	V
A-Ausgänge				
Ausgangsstrom High	-I _{OH}		3	mA
Ausgangsstrom Low				
A-Ausgänge	I _{OL}		70	mA
B-Ausgänge	I _{OL}		24	mA
Umgebungstemperatur	Ta	0	70	°C

Ausgewählte Kennwerte ($T_8 = 0$ bis 70 °C)


Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einhei
Ausgangsspannung High	ОН	$U_{CC} = 4,75 \text{ V}$ $U_{IL} = 0.8 \text{ V}$ $U_{IH} = 2.0 \text{ V}$ $-I_{OH} = 3.0 \text{ mA}$	2,4			V
Ausgangsspannung Low		$U_{CC} = 4,75 \text{ V}$ $U_{IH} = 2,0 \text{ V}$ $U_{IL} = 0,8 \text{ V}$				
A-Ausgänge	UOL	$I_{OL} = 70 \text{ mA}$			0,7	V
B-Ausgänge	UOL	$I_{OL} = 25 \text{ mA}$			0,5	V
Ausgangsstrom High	I _{OH}	$U_{CC} = 4,75 \text{ V}$			100	μA
A-Ausgänge		$U_{OH} = 3.5 \text{ V}$				
Eingangsstrom High		$U_{\rm CC}$ = 5,25 V			-	
Steuereingänge	I _{IH}	$U_{IH} = 3.8 V$			0,05	mA
B-Eingänge	I_{IH}	$U_{IH} = 3.8 V$			0,05	mA
A-Eingänge	I _{IH}	$U_{IH} = 3.8 \text{ V}$			0,10	mA
Eingangsstrom Low		$U_{\rm CC} = 5,25 \text{ V}$				
Steuereingänge	-I _{IL}	$U_{IL} = 0 V$			0,36	mA
B-Eingänge	-I _{IL}	$U_{IL} = 0.4 V$			1,6	mA
A-Eingänge	-I _{IL}	$U_{IL} = 0.4 V$			0,05	mA
Ausgangsströme bei		$U_{\rm CC}$ = 5,25 V				
Tristate						
	I _{OZH}	$U_O = 2,7 V$			50	μA
	-I _{OZL}	$U_O = 0.4 V$			50	μA
Flußspannung der	-U _{IK}	$U_{CC} = 4,75 \text{ V}$			1,5	ν
Eingangsdiode		$-I_{IK} = 18 \text{ mA}$				
Ausgangskurzschluß- strom ¹⁾	^{-I} os	$U_{CC} = 5,25 \text{ V}$ $U_{O} = 2,25 \text{ V}$	5		70	mA
Stromaufnahme	ICCL	$U_{CC} = 5,25 \text{ V}$			230	mA
	I _{CCH}	_ =	[]		200	mA
	ICCZ				230	m A

¹⁾ Nicht mehr als einen Ausgang gleichzeitig kurzschließen, Dauer des Kurzschlusses ≤ 1 s

DS 80612 DC

Taktgenerator-Schaltkreis

* In Entwicklung *

Übersichtsschaltplan

Bauform: DIP-18, Plast (Bild 6)

Betriebsspannung

Beze	eichnung der Anschlüsse		
1	ASYNCHRON-READY (ARDY)	10	Sytemtakt (CLK)
2	SYNCHRON-READY (SRDY)	11	RESET-Eingang (RES)
3	SYNCHRON-READY-Freigabe (SRDYEN)	12	RESET-Ausgang (RESET)
4	READY	13	Peripherer Takt (PCLK)
- 5	Externer Frequenz-Eingang (EFI)	14	nicht belegt (n.c.)
6	Frequenz-/Quarz-Auswahl (F/ $ar{ ext{C}}$)	15	STATUS-Eingang ($\overline{\mathbf{S0}}$)
7	Quarzanschluß (X1)	16	STATUS-Eingang ($\overline{\mathbf{S1}}$)
8	Quarzanschluß (X2)	17	ASYCHRON-READY-Freigabe
9	Masse (M)		(ARDYEN)

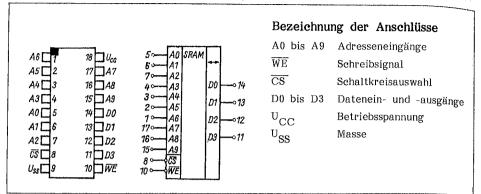
Der Schaltkreis DS 80612 DC erzeugt die Takt-, Ready- und Reset-Signale für 16 Bit Prozessoren und deren Hilfskomponenten. Hauptbestandteile des Schaltkreises sind der quarzgesteuerte Oszillator, der Taktgenerator mit MOS-kompatiblen Ausgangssignalen, die Ready-Synchronisation und die System-Reset-Generierung.

18

Grenzwerte

Grenzwert	Kurz- zeichen	min.	max.	Einheit
Spannung am An-	U _{CC}	0	7	V
schluß U _{CC}				
Eingangsspannung	U		5,5	v
Spannung an den Aus-	υ _O	-0,5	5,5	V
gängen	Ü			
Eingangsgleichstrom	-I _I		10	mA
Verlustleistung	Ptot		1,0	W

Statische Kennwerte $(T_n = 0 \text{ bis } 70 \text{ °C})$


Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Ausgangsspannung High Ausgänge RESET, PCLK Ausgang CLK Ausgangsspannung Low	^U OН	$U_{CC} = 4,75 \text{ V},$ $U_{IL} = 0,8 \text{ V},$ $U_{IH} = 2,0 \text{ V},$ $-I_{OH} = 1,0 \text{ mA}$ $-I_{OH} = 0,8 \text{ mA}$ $U_{CC} = 4,75 \text{ V},$ $U_{IH} = 2,0 \text{ V},$ $U_{IL} = 0,8 \text{ V},$	2,4			V
Ausgänge RESET, PCLK,	UOL	$I_{OL} = 5 \text{ mA}$			0,45	V .
Ausgang READY Flußspannung der Eingangsdiode ¹⁾	U _{OL}	$I_{OL} = 7 \text{ mA}$ $U_{CC} = 4,75 \text{ V}$ $-I_{IK} = 5 \text{ mA}$			0,45 1,0	V
Eingangsstrom High ¹⁾	I _{IH}	$U_{CC} = 5,25 \text{ V},$ $U_{IH} = 5,5 \text{ V}$			50	μА
Eingangsstrom Low ¹⁾	-I _{IL}	$U_{CC} = 5,25 \text{ V},$ $U_{IL} = 0,45 \text{ V}$			0,5	mA
Stromaufnahme	I_{CC}	$U_{CC} = 5,25 \text{ V}$			145	mA

1) alle Eingänge, außer X1 und X2 **Dynamische Kennwerte** $(U_{CC} = 5 \ V \pm 0.1 \ V, T_a = 25 \ ^{\circ}C - 5 \ K)$

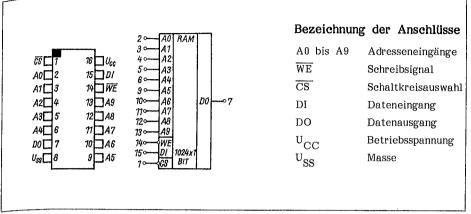
		C.				
Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Signalverzögerungszeiten EFI→CLK Ausgang CLK,	t _{PHL}	C _L = 150 pF			35	ns
Anstiegszeit Abfallzeit CLK→PCLK CLK→RESET CLK→READY	t _{TLH} t _{THL} t _{PLH} t _{PHL} t _{PHL} t _{PHL} t _{PHL} t _{PHL}	$\begin{array}{lll} {\rm C_L} &= 150~{\rm pF} \\ {\rm C_L} &= 150~{\rm pF} \\ {\rm R_L} &= 750~{\rm Ohm}, \\ {\rm C_L} &= 75~{\rm pF} \\ {\rm R_L} &= 750~{\rm Ohm}, \\ {\rm C_L} &= 75~{\rm pF} \\ {\rm R_L} &= 910~{\rm Ohm}, \\ \end{array}$	0 5 5 5 5		10 10 45 50 50	ns ns ns ns ns ns
	t _{PHL}	$C_L = 150 pF$	0		33	ns

Speicherschaltkreise

U 214 D Statischer (1 k x 4) Bit RAM

Anschlußbelegung und Schaltzeichen

Typstandard: TGL 42232 Bauform: DIP-18, Plast (Bild 6)


Eigenschaften

- NMOS-Technologie,
- alle Ein- und Ausgänge TTL-kompatibel,
- Reduzierung der Stromaufnahme im Ruhezustand auf 40 %,
- Tristate-Ausgänge.
- Der Übersichtsschaltplan besteht aus folgenden Teilschaltungen:
 - * Speichermatrix mit 64 Zeilen und 64 Spalten,
- * Adresseneingangsschaltungen für 10 Adressenleitungen,
- * Zeilendekoder (64), Spaltendekoder (16),
- * 4 bidirektionale Datenein/-ausgangsstufen mit Leseverstärker,
- * Chipauswahlsteuerung (Power-down-Steuerung),
- * Schreib-Lese-Steuerung,
- * Substratvorspannungsgenerator.

Ausgewählte Kennwerte

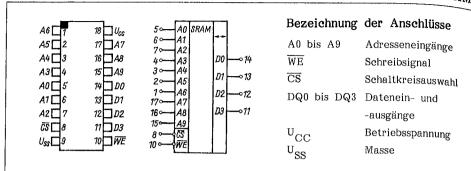
Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Betriebsspannung	U _{CC}		4,75		5,25	V
Adressenzugriffszeit	tAVDV	U 214 D 20			200	ns
	tAVDV	U 214 D 30			300	ns
	t _{AVDV}	U 214 D 45			450	ns
Stromaufnahme	I _{CCO}	U 214 D 20			120	m A
	ICCO	U 214 D 30			95	m A
	I _{CCO}	U 214 D 45			95	m A
Ruhestrom	ICCR				40	m A

U 215 D/U 215 D 1 Schneller statischer (1 k x 1) Bit RAM U 225 D/U 225 D 1 Schneller statischer (1 k x 1) Bit RAM

Anschlußbelegung und Schaltzeichen

Typstandard: TGL 38995

Bauform: DIP-16, Plast (Bild 4)


Eigenschaften

- NMOS-Technologie,
- open-drain-Ausgänge (U 215 D/U 215 D 1),
- Tristate-Ausgänge (U 225 D/U 225 D 1),
- alle Ein- und Ausgänge TTL-kompatibel.
- Der Übersichtsschaltplan besteht aus folgenden Teilschaltungen:
- * Speichermatrix mit 32 Zeilen und 32 Spalten,
- * Adresseneingangsschaltung für 10 Adressenleitungen,
- * Spaltendekoder mit Schreib-Lese-Verstärker, Zeilendekoder,
- * Ein-/Ausgabesteuerung,
- * Substratvorspannungserzeugung.

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Betriebsspannung	U _{CC}		4,75		5,25	V
Stromaufnahme	I _{CC}	$U_{\rm CC}$ = 5,25 V			100	mA
Zugriffszeit	t _{AA}	U 215 D/U 225 D			95	ns
	t _{AA}	U 215 D 1/			140	ns
	1171	U 225 D 1				

US 224 D/VL 224 D/ UL 224 D

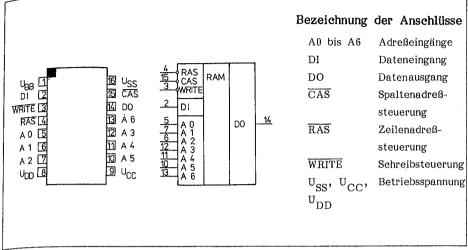
Statischer (1 k x 4) Bit CMOS RAM

Eigenschaften

Anschlußbelegung und Schaltzeichen

Typstandard: TGL 42233 Bauform: DIP-18, Plast (Bild 6)

- CMOS-Technologie,


- Adressenzwischenspeicherung,

- Tristate-Ausgänge.
- Der Übersichtsschaltplan besteht aus folgenden Teilschaltungen:
- * Speichermatrix mit 64 Zeilen und 64 Spalten,
- * Adreßeingangsschaltung (Adreßlatch) für 10 Adressen,
- * Spaltendekoder mit 4 Schreib-Lese-Verstärkern,
- * Zeilendekoder,
- * 4 bidirektionale Datenein-/-ausgänge, Taktsteuerung.

Ausgewählte Kennwerte

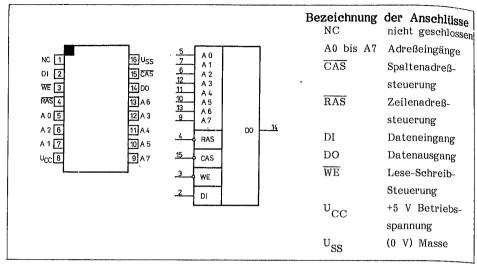
Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Betriebsspannung	U _{CC}		4,75		5,25	٧
Schlafspannung	UCCS		2			V
Betriebstemperatur	Ta	US 224 D 20;	0		70	°C
		UL 224 D 30				
	Тa	VL 224 D 20	-25		85	°C
CS -Zugriffszeit	t _{CLDV}	US 224 D 20;			200	ns
	J J J J	VL 224 D 20				
	tCLDV	UL 224 D 30			300	ns
Stromaufnahme	ICC	US 224 D 20;			3	m A
		VL 224 D 20				
	I_{CC}	UL 224 D 30			6	mA
Schlafstromaufnahme	ICCR	US 224 D 20			5	μA
	ICCR	VL 224 D 20;			50	μА
		UL 224 D 30				
	1 1		1 1			

11 256 D Dynamischer (16 k x 1) Bit RAM

Anschlußbelegung und Schaltzeichen

Typstandard: TGL 38690

Bauform: DIP-16, Plast (Bild 4)


Rigenschaften

- nSGT-Technologie,
- 3 unterschiedliche Betriebsspannungen.
- Betriebsarten:
 - * READ,
 - * WRITE,
 - * READ-MODIFY-WRITE,
- * RAS-ONLY-REFRESH.

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Betriebsspannungen	-U _{BB}		4,5		5,5	V
	U _{CC}		4,5	1	5,5	V
	$U_{ m DD}$		10,8		13,2	V
Stromaufnahme	I_{DD}			1	35	mA.
	I _{BB}			<u> </u>	200	μA
Zugriffszeit	tRAC			1	200	ns
	t _{CAC}				100	ns

U 2164 DC

Dynamischer (64 k x 1) Bit RAM

Typstandard: TGL 42234

Bauform: DIP-16, Plast (Bild 4)

Anschlußbelegung und Schaltzeichen

Eigenschaften

- NMOS-Technologie,
- Ein- und Ausgänge TTL-kompatibel,
- Datenausgang über das Signal CAS gesteuert,
- 128 Refreshzyklen, 2 ms Refreshzeit,
- Betriebsarten: * READ,
 - * WRITE,
 - * READ-MODIFY-WRITE,
 - * PRAGE-MODE,
 - * RAS-ONLY-REFRESH.

Ausgewählte Kennwerte

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Betriebsspannung	U _{CC}	U 2164 DC 15;	4,5		5,5	V
		U 2164 DC 20				1
	U _{CC}	U 2164 DC 25;	4,75		5,25	V
		U 2164 DC 20/1	ļ			
RAS-Zugriffszeit	t _{RLOV}	U 2164 DC 15			150	ns
	t _{RLOV}	U 2164 DC 20			200	ns
,	t _{RLOV}	U 2164 DC 25			250	ns
	tRLOV	U 2164 DC 20/1			200	ns

U 6264 DG Statischer Schreib-Lese-Speicher (SRAM)

NC 1 28 Ucc 9 0 <th>DQ 11 12 13 15 16 17 6 19 7</th>	DQ 11 12 13 15 16 17 6 19 7
--	-----------------------------

Anschlußbelegung und Schaltzeichen

Eigenschaften

- CMOS-Technologie,
- Speicherkapazität 65 563 Bit (8 k x 8 Bit),
- Betriebsspannung + 5 V + 10 %,
- gemeinsame bidirektionale Datenein-/-ausgänge,
- Tristate-Ausgangsstufen,
- Ein und Ausgänge TTL-kompatibel,
- pinkompatibel zum 64 k EPROM,
- Datenerhalt bis U_{CC} = 2 V (Schlafzustand).

Ausgewählte Kennwerte

Typstandard: TGL 42563
Bauform: DIP-28, Plast (Bild 12)

Bezeichnung der Anschlüsse

A0 bis A12 Adresseneingänge

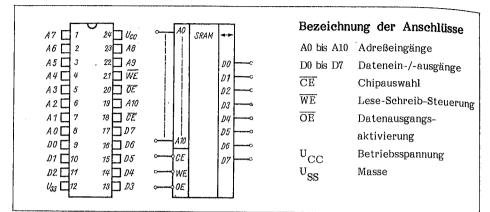
D0 bis D7 Datenausgänge

CE1, CE2 Chipaktivierung

WE Lese-Schreib-Steuerung

OE Datenausgangs-

Datenausgangsaktivierung


U_{SS} Bezugspotential

U_{DD} Betriebsspannung NC Nicht angeschlossen

Kennwerte	DG 05 Selektionstyp	DG 07 Grundtyp	DG 10 Anfallzeit
Zugriffszeit	55 ns	70 ns	100 ns
Zykluszeit	55 ns	70 ns	100 ns
Stromaufnahme bei minimaler Zykluszeit	200 mA	170 ns	120 ns
Betriebsspannung	UCC	= 4,5 bis 5,5 V	
Schlafstromaufnahme		S < 10 μA	
Ruhestromaufnahme		$R \leq 100 \ \mu A$	
Betriebstemperaturbereich	Ta	= -25 bis 85 °C	

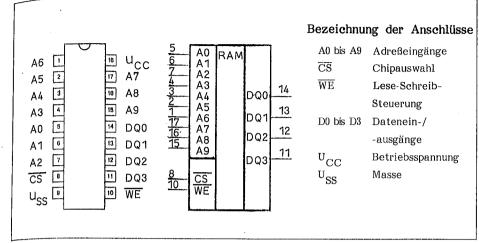
U 6516 DG / UL 6516 DG

Statischer (2 k x 8) Bit CMOS RAM

Anschlußbelegung und Schaltzeichen

Typstandard: TGL 43922 Bauform: DIP-24, Plast (Bild 10)

Eigenschaften


- CMOS-Technologie,
- geringer Leistungsverbrauch, äußerst geringe Ruheleistung,
- bidirektionale Datenein-/-ausgänge,
- 2 Enable-Signale,
- Tristate-Ausgangsstufen,
- Adreßlatch, damit nur getakteter Betrieb möglich ist,
- TTL-Kompatibilität aller Anschlüsse,
- Datenerhalt bis zu einer Betriebsspannung von $U_{\overline{CC}}$ = 2 V (Schlafzustand) nur bei UL 6516 DG,
- pinkompatibel zum EPROM-Typ U 2716 C.

Ausgewählte Kennwerte

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Betriebsspannung	UCC		4,75		5,25	V
Betriebstemperaturbereich	Ta		-25		85	°C
Zugriffszeit	t _{CLQV}	U 6516 DG 15;			150	. ns
		UL 6516 DG 15				
	t _{CLQV}	UL 6516 DG 25			250	ns
Schlafstromaufnahme	ICCS	UL 6516 DG 15;			6	μА
		UL 6516 DG 25				

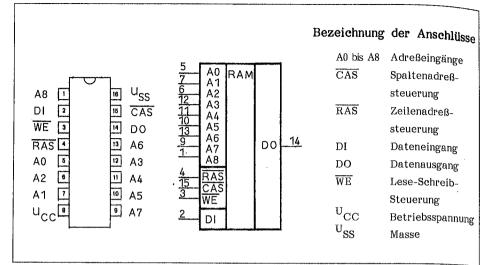
1J 4548 DC

Schneller statischer (1 k x 4) Bit CMOS RAM

Anschlußbelegung und Schaltzeichen

Typstandard: TGL 42562

Bauform: DIP-18, Plast Bild 6)


Eigenschaften

- CMOS-Technologie,
- gemeinsame (bidirektionale) Datenein-/-ausgänge,
- Tristate-Ausgangsstufen,
- Ein- und Ausgänge für den Typ U 6548 DC 35 TTL-kompatibel,
- Adressenzwischenspeicherung,
- Datenerhalt bis $U_{CC} = 2 V$,
- pinkompatibel zum U 224 D und U 214 D.

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Betriebsspannung	U _{CC}		4,5		5,5	V
Zugriffszeit	t _{CLQV}	U 6548 DC 20			20	ns
	t _{CLQV}	U 6548 DC 35			35	ns
Zykluszeit	tCLCL	U 6548 DC 20			30	ns
	t _{CLCL}	U 6548 DC 35			50	ns
Stromaufnahme bei 10 MHz	ICCO				20	mA
Ruhestromaufnahme	I_{CCR}				50	μA
Schlafstromaufnahme	I_{CCS}				10	μA
Betriebstemperaturberei c h	Ta		-25		85	°C

U 61256 DC

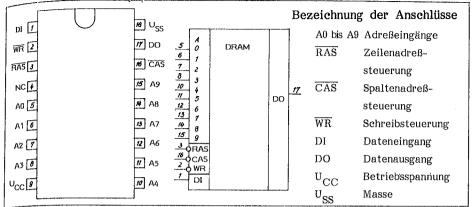
Dynamischer (256 k x 1) Bit CMOS RAM

Anschlußbelegung und Schaltzeichen

Typstandard: TGL 42561
Bauform: DIP-16, Plast (Bild 4)

Eigenschaften

- CMOS-Technologie,
- Tristate-Ausgangsstufen; Datenausgang durch CAS-Signal,
- Betriebsarten: Schreibzyklus, Lese-Schreib-Zyklus, Statischer Seitenzugriff (Lesen, Schreiben), Refreshzyklus, RAS- ONLY-REFRESH,
- 256 Refreshzyklen; Refreshzeiten 4 ms.


Ausgewählte Kennwerte

Kennwert	DC 08 Selekt	DC 10 ionstyp	DC 12 Grundtyp	DC15 Anfalltyp			
Zugriffszeit (RAS)	80 ns	100 ns	120 ns	150 ns			
Zugriffszeit (CAS)	25 ns	30 ns	35 ns	45 ns			
Adreßzugriffszeit	45 ns	55 ns	65 ns	80 ns			
Zykuszeit	160 ns	190 ns	220 ns	260 ns			
Betriebsspannung	$U_{\overline{CC}} = 4,5$ bis 5,5 V						
Betriebstemperaturbereich	T _a = 0 bis 70 °C						

U 61000 DC

Dynamischer CMOS RAM 1 MBit x 1

* In Entwicklung *

Anschlußbelegung und Schaltzeichen

semulperegung and benattzerenen

- Speicherorganisation:

Eigenschaften

1.048.576 x 1 Bit,

 hohe Arbeitsgeschwindigkeit, geringe Verlustleistung,

- TTL- und CMOS-Kompatibilität der Ein- und Ausgänge,

- Tristate-Ausgangsstufen,

- Betriebsspannung: 5 V ± 10 %,

Typstandard: MDS 108
Bauform: DIP-18, Plast (Bild 6)

- Betriebs- und Refresharten:

READ CYCLE,

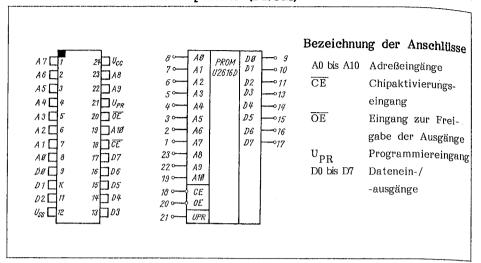
EARLY WRITE CYCLE,

READ-WRITE CYCLE,

FAST PAGE MODE CYCLE (READ und WRITE),

FAST PAGE READ-WRITE CYCLE,

RAS ONLY REFRESH CYCLE,


CAS BEFORE RAS REFRESH CYCLE,

HIDDEN REFRESH CYCLE (READ und WRITE),

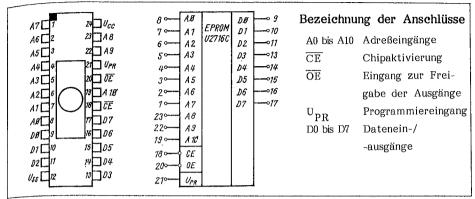
- 512 Refreshzyklen; Refreshzeit 8 ms, CAS BEFORE RAS COUNTER TEST CYCLE.

Ausgewahlte Kelinwerte	U 61000 DC 12 Grundtyp	U 61000 DC 10 Selektionstyp
· · · · · · · · · · · · · · · · · · ·	V E	
RAS-Zugriffszeit	120 ns	100 ns
CAS-Zugriffszeit	45 ns	35 ns
FPM-Zugriffszeit	60 ns	50 ns
Zykluszeit	220 ns	190 ns
FPM-Zykluszeit	70 ns	55 ns
Betriebsspannung		4,5 bis 5,5 V
Betriebsstrom	max. 50 mA	max. 60 mA
Ruhestrom bei CMOS-Pegel		max. 1 mA
bei TTL-Pegel		max. 2 mA
Betriebstemperaturbereich		0 bis 70 °C

U 2616 D (2 k x 8) Bit herstellerprogrammierter Festwertspeicher (PROM)

Anschlußbelegung und Schaltzeichen

Typstandard: TGL 43078 Bauform: DIP-24, Plast (Bild 10)


Eigenschaften

- Die Bestellung beim Hersteller erfolgt nach Werkstandard FS 457.38 des VEB Mikroelektronik Erfurt,
- pin- und funktionskompatibel zum U 2716 C,
- die Grenzwerte, statischen und dynamischen Kennwerte des U 2616 D entsprechen den Werten des U 2716 C gleicher Zugriffszeit im Lesebetrieb,
- alle Ein- und Ausgänge sind TTL-kompatibel,
- Tristate-Ausgänge,
- Reduzierung der Stromaufnahme im Standby-Modus auf ca. 25 %.

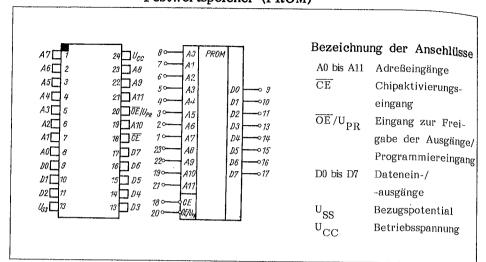
Ausgewählte Kennwerte

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Betriebsspannung Zugriffszeit	U _{CC} t _{AVDV}	U 2616 D 39 U 2616 D 45	4,75		5,25 390 450	V ns ns

U 2716 C Elektrisch programmierbarer, UV-löschbarer (2 k x 8) Bit Festwertspeicher (EPROM)

Anschlußbelegung und Schaltzeichen

Typstandard: TGL 43077


Bauform: DIP-24, Keramik (Bild 11)

Eigenschaften

- Alle Ein- und Ausgänge sind TTL-kompatibel,
- Tristate-Ausgänge, bidirektionale Datenpins,
- Reduzierung der Stromaufnahme im Standby-Modus auf ca. 25 %,
- zum Programmieren werden 50 ms-Impulse mit TTL-Pegel verwendet,
- byteweises Programmieren ist möglich,
- 24poliges DIL-Keramikgehäuse mit UV-durchlässigem Fenster.

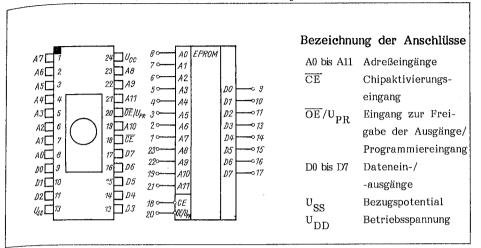
Kennwert	Kurz- zeichen	Meßbedingung	min. typ.	max.	Einheit
Betriebsspannung	U _{CC}		4,75	5,25	V
Programmierspannung im Nichtprogrammierzustand	UPRR		U _{CC} -0,6	U _{CC} +0,	6 V
Stromaufnahme	ICCOP	U 2716 C 39; U 2716 C 45		100	m A
	,I _{CCOP}	U 2716 C 35		120	mA
Stromaufnahme im	ICCR	U 2716 C 39;		25	m A
Ruhebetrieb	0010	U 2716 C 45			
	ICCR	U 2716 C 35		30	m A
Programmierspannung	UPR			25+1	V
Zugriffszeit	tAVDV	U 2716 C 35		350	ns
	tAVDV	U 2716 C 39		390	ns
	tAVDV	U 2716 C 45		450	ns

U 2632 DC (4 k x 8) Bit herstellerprogrammierter Festwertspeicher (PROM)

Anschlußbelegung und Schaltzeichen

Typstandard: TGL 43810 Bauform: DIP-24, Plast (Bild 10)

Eigenschaften


- Die Bestellung beim Hersteller erfolgt nach Werkstandard FS 457.38 des VEB Mikroelektronik Erfurt.
- pin- und funktionskompatibel zum U 2732 C,
- Tristate-Ausgänge,
- bidirektionale Datenpins,
- Reduzierung der Stromaufnahme im Standby-Modus auf ca. 20 %,
- die Grenzwerte, statischen und dynamischen Kennwerte des U 2732 DC 45 entsprechen den Werten des U 2732 C 45 im Lesebetrieb.

Ausgewählte Kennwerte

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Betriebsspannung Zugriffszeit Statische Stromaufnahme aktiv	U _{CC} t _{AVDV} I _{CC}	U 2632 DC 45	4,75		5,25 450 150	V ns mA
Statische Stromaufnahme im Ruhezustand	I _{CC}				30	mA

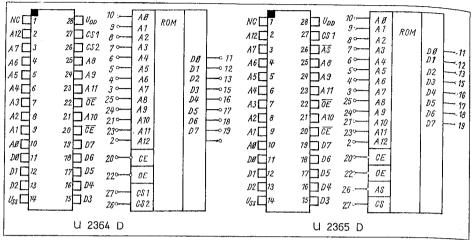
U 2732 CC

Elektrisch programmierbarer, UV-löschbarer (4 k x 8) Bit Festwertspeicher (EPROM)

Anschlußbelegung und Schaltzeichen

Typstandard: TGL 43809

Bauform: DIP-24, Keramik (Bild 11)


Eigenschaften

- Tristate-Ausgänge, bidirektionale Datenpins,
- im Standby-Modus ca. 80 % geringerer Betriebsstromverbrauch,
- Programmierimpulsdauer von 50 ms,
- byteweises Programmieren möglich,
- Programmierung direkt auf der Leiterplatte möglich,
- 24poliges DIL-Keramikgehäuse mit UV-durchlässigem Fenster.

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Betriebsspannung Statische Stromaufnahme aktiv Statische Stromaufnahme	U _{CC} I _{CC}		4,75		5,25 150 30	V mA mA
im Ruhestand Programmierspannung Adressenzugriffszeit	U _{PR} tAVDV tAVDV tAVDV	U 2732 CC 35 U 2732 CC 39 U 2732 CC 45			25 ±1 350 390 450	V ns ns ns

U 2364 D Maskenprogrammierter (8 k x 8) Bit Festwertspeicher

U 2365 D (ROM)

Anschlußbelegung und Schaltzeichen

Eigenschaften

- maskenprogrammierte Festwertspeicher,
- Speicherkapazität von 65 536 Bit,
- n-Kanal-Silicon-Gate-Technologie,
- Bestellung des Bitmusters nach FS 457.21,
- im Ruhezustand nur 30 % der Stromaufnahme,
- Lastfaktor: 2 TTL- oder 8 LS-TTL-Lasten.

Typstandard: TGL 43076

Bauform: DIP-28, Plast (Bild 12)

Bezeichnung der Anschlüsse

A0 bis A12 Adreßeingänge

D0 bis D7 Datenein-/-ausgänge

 $\mathbf{u}_{\mathbf{SS}}$ Bezugspotential U_{DD} Betriebsspannung

CE; CS 1; Chipaktivierungs-

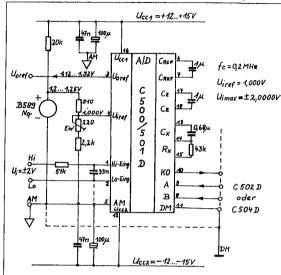
CS2eingänge \overline{OE} Datenausgang-

Freigabe

 $\overline{\mathrm{AS}}$ Adressenstrobe

NCNicht angeschlossen

Ausgewählte Kennwerte


Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Statische Stromaufnahme aktiv	I _{CC1}				140	mA
Statische Stromaufnahme stanby	I _{CC2}				40	mA
Verzögerungszeit	tAVDV	U 2364 D 45;			450	ns
Adressen zu D	","	U 2365 D 45				
	t _{AVDV}	U 2364 D 30;			300	ns
		U 2365 D 30		İ		

Schaltkreise für die industrielle Elektronik

Analog-/Digital-, Digital-/Analog-Wandler

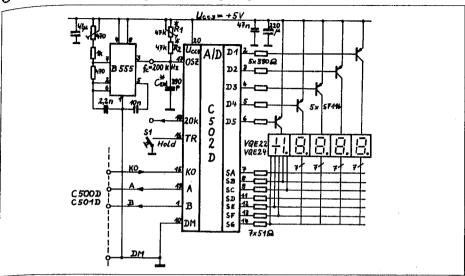
C 500 D/C 501 D

Analog- bzw. Digitalprozessor

Bezeichnung der Anschlüsse

		B
1	AXW	Analogeingang High
2	AXL	Analogeingang Low
3	U_{ReffO}	Referenzausgang
4	U_{ReffI}	Referenzeingang
5	AGND	Analogmasse
6	CH2	Referenzkapazität
7	CH1	Referenzkapazität
8	В	Steuereingang B
9	A	Steuereingang A
10	KO	Komparatorausgang
11	DGND	Digitalmasse
12	U_{CC-}	neg. Betriebsspannung
13	IO	Integratorausgang
14	ΙĪ	Integratoreingang
15	$\bar{\mathrm{Bo}}$	Treiberausgang
16	U_{CC^+}	pos. Betriebsspannung
17	C_{x1}	Nullpunktkapazität ~
18	$C_{\mathbf{c}2}$	Nullpunktkapazität
		_

Typstandard: TGL 43084 Bauform: DIP-18, Plast (Bild 6)

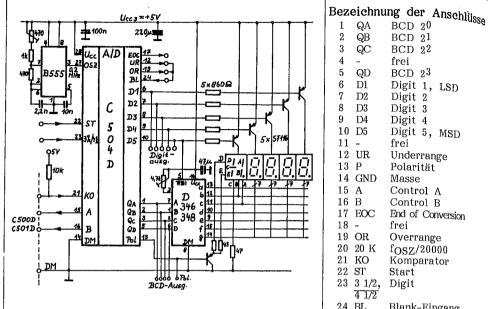

Applikationsbeispiel: C 500 D für 4 1/2-stelligen Betrieb

Die integrierten Schaltkreise C 500 D, C 501 D und C 502 D sind Bestandteile eines integrierten A/D-Umsetzersystems für den Aufbau eines hochwertigen Digitalvoltmeters. Der C 500 D ist ein Analogprozessor für den A/D-Umsetzer mit 14 Bit Genauigkeit (4 1/2 digit). Der C 501 D ist ein Analogprozessor, der Bestandteil eines A/D-Umsetzers mit einer Genauigkeit von 11 Bit (3 1/2 digit) ist.

Ausgewählte Kennwerte

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Betriebsspannung	U _{CC+}		11,4		15	V
	U _{CC-}		11,4		15	V
Stromaufnahme	I _{CC+}	$U_{CC} = 12 V$			20	mA
"full-scale"-Linearitäts-	Flin	C 500 D	-1			LSB
fehler	Flin	C 501 D	-5			LSB
Umpolfehler	FR	C 500 D			1	LSB
	FR	C 501 D			5	LSB
	F _{CM}	C 500 D			1	LSB
	F _{CM}	C 501 D			5	LSB
	1 0111		1	1	1	ı

 $_{C}$ 502 D Analog- bzw. Digitalprozessor



1					
* - L L		onsbeispiel: 4 1/2-stelliges An nung der Anschlüsse	zeigesystem		Typstandard: TGL 43058 Bauform: DIP-20, Plast (Bild 8)
1	В	Steuereingang	11	SD	Segment D
2	D1	Digit 1, LSD	12	SE	Segment E
3	D2	Digit 2	13	SF	Segment F
4	D3	Digit 3	14	sg	Segment G
5	D4	Digit 4	15	КО	Komparatoreingang
6	D5	Digit 5	16	TR	Trigger-Eingang
7	SA	Segment A	17	OSZ	Oszillatoreingang
3	SB	Segment B	18	2 OK	Ausgang
9	sc	Segment C	19	A	Steuerausgang A
10		Masse	20	$\boldsymbol{u}_{\mathrm{CC}}$	Betriebsspannung

Der C 502 D ist ein Digitalprozessor mit BCD-gemultiplexten 7-Segment-Ausgängen für max. 4 1/2 digit.

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Beriebsspannung	U _{CC}		4,75		5,25	V
Stromaufnahme	I_{CC}				110	mA
Low-Ausgangsstrom für Digittreiber	IOL		18			mA
Betriebstemperaturbereich	Ta		0		70	°C

C 504 D I2-L-Digitalprozessor für 14 Bit breite Ausgangsinformation

C 504 D mit 4 1/2-stelliger Anzeige und BCD-Ausgängen Typstandard: TGL 43268 Bauform: DIP-28, Plast (Bild 12)

frei QD BCD 23 Digit 1, LSD 6 D17 D2Digit 2 8 D3Digit 3 9 D4 Digit 4 Digit 5, MSD 10 D5 11 frei 12 UR Underrange 13 P Polarität 14 GND Masse 15 A Control A 16 B Control B End of Conversion 17 EOC 18 frei

QΒ

QC

19 OR

20 20 K

21 KO

22 ST

BCD 20

BCD 21

BCD 22

23 3 1/2, Digit 4 1/2 24 BL Blank-Eingang 25 frei

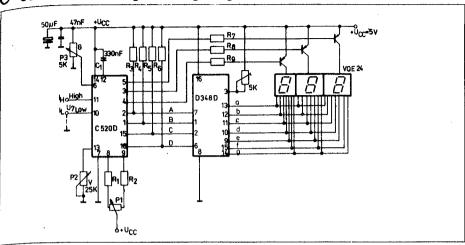
Start

Overrange

fOSZ/20000

Komparator

26 frei 27 OSZ Oszillator 28 U_{CC}


Betriebsspannung 7 - Masse 8 - Nullpunktabgleich

 $m I^2\text{-}L\text{-}Digital prozessor$ mit 3 1/2 und 4 1/2 digit Auflösung, Meßwertausgabe mit einer gemultiplexten Ausgabe des Meßwertes im BCD-Format, zusätzliche Steuer und Ausgabemöglichkeiten wie Digitumschaltung, Sperren der BCD- und Digitausgänge, Start, Vorzeichen, Über-/Unterlauf, End of Conversion, spezielle Auslegung zur Steuerung der Analogprozessoren C 500 D und C 501 D.

Ausgewählte Kennwerte

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Betriebsspannung	UCC		4,75		5,25	V
Stromaufnahme	I _{CC}				55	m A
Betriebstemperaturbereich	Ta		0	ļ	70	°C
Eingangsspannung der Logikeingänge	UI				5,5	ν
Ausgangsstrom L	IOL				10	mA
Ausgangsstrom L an P	I _{OL13}				20	mA

C 520 D 3-digit-Analog-/Digital-Wandler

Applikationsbeispiel: Einsatzschaltung des C 520 D in Verbindung mit LED-Anzeige-

Bezeichnung der Anschlüsse

1 - BCD-Datenausgang QB 2 - BCD-Datenausgang QA

3 - NSD-Digitausgang (folgendes Digit)

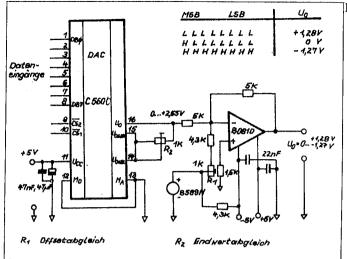
4 - MSD-Digitausgang (höchstwertiges Digit)

5 - LSD-Digitausgang (letztes Digit) 6 - Hold-Geschwindigkeitsumschaltung

Typstandard: TGL 38014 Bauform: DIP-16, Plast (Bild 4)

9 - Nullpunktabgleich 10 - Eingang "Low"

11 - Eingang "High" 12 - Integrationskondensator


13 - Endwertabgleich

14 - Betriebsspannung UCC

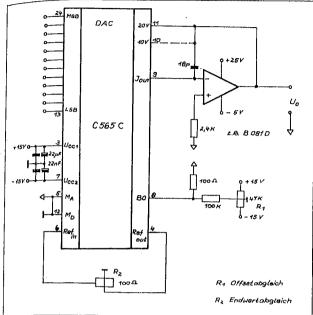
15 - BCD-Datenausgang QC 16 - BCD-Datenausgang QD

Analog-/Digital-Wandler nach dem Zweiflanken-Integrationsverfahren (Dual-Slope) für 3-stellige digitale Meßwertanzeigen, Einstellbarkeit der Umsetzrate von "hold" bis "schnell", TTL-angepaßt, integrationszeitabhängige Störspannungsunterdrückung, relative Unempfindlichkeit gegenüber Taktfrequenzschwankungen.

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Betriebsspannung	U _{CC}		4,5		5,5	V
Stromaufnahme	I _{CC}				20	mA
Meßeingangsspannung	U _{10/11}		-0,099		0,999	V
Linearitätsfehler	Flin			0,1 %+1 digit		
Geschwindigkeitsumschaltung	1					1
* Normal-Betrieb	U ₆		0		0,4	V
* Hold-Betrieb	U ₆		0,8		1,6	V
* High-Speed-Betrieb	U ₆		3,2		5,5	V

Applikationsbeispiel: 8 Bit D/A-Wandler mit bipolarer Ausgangsspannung

Typstandard: TGL 43792 Bauform: DIP-16, Plast (Bild 4) Bezeichnung der Anschlüsse


- 1 Dateneingang DB 0, LSB
- 2 Dateneingang DB 1
- Dateneingang DB 2
- Dateneingang DB 3
- Dateneingang DB 4
- Dateneingang DB 5
- Dateneingang DB 6
- Dateneingang DB 7, MSB
- Chip Select 2, CS 2
- 10 Chip Select 1, CS 1
- 11 Betriebsspannung U_{CC}
- 12 Digitalmasse MD
- 13 Analogmasse MA
- 14 Auswahleingang U_{OSEL}
- 15 Sense-Anschluß \mathbf{u}_{OSEN}
- 16 Spannungsausgang Force UO

Der C 560 C setzt einen 8 Bit breiten Digitalwert in eine analoge Ausgangsspannung mit einem max. Fehler von 0,4 % vom Endwert um. Der Ausgangsspannungsbereich ist mit dem Anschluß 14 (UOSEL) anschlußprogrammierbar. Das Zwischenspeichern der Eingangsdaten über CS 1, CS 2 und die Betriebsspannung von 5 V ermöglichen eine optimale D/A-Schnittstelle in 8 Bit Mikrorechnersystemen.

Ausgewählte Kennwerte

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Betriebsspannung	U _{CC}	2,5 V-Bereich	4,5		16,5	V
	UCC	10 V-Bereich	11,4		16,5	V
Stromaufnahme	I_{CC}				25	mA
Ausgangsstrom	IO				5	mA
Eingangsspannung Low	$ \tilde{v}_{_{\mathrm{IL}}} $				0,8	V
Eingangsspannung High	U _{IH}		2,0		5,5	V
Endwertausgangsspannung	UOFS	$U_{CC} = 5 \text{ V}$	2,25		2,5	V
	UOFS	$U_{CC} = 5 V$ $U_{CC} = 10 V$	9		10	V
Offsetfehler	Fo				<u>+</u> 1	LSB
Linearitätsfehler	F _L				0,5	LSB

C 565 C C 5650 C Digital-/Analog-Wandler, 12 Bit Genauigkeit Digital-/Analog-Wandler, 10 Bit Genauigkeit

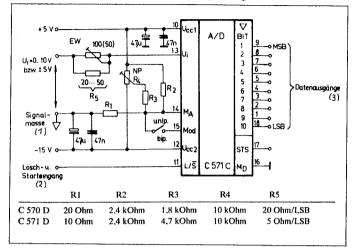
Applikationsbeispiel: 12 Bit Digital-/Analog-Wandler mit interner Referenz

Bezeichnung der Anschlüsse

- 1 nicht belegt
- nicht belegt
- positive Betriebsspannung (UCC1)
- Referenzspannung-Ausgang
- Referenzspannung -
- Referenzeingang
- negative Betriebsspannung (U_{CC2})
 - Bipolaroffset-Eingang
- Stromausgang DAU
- 10 Widerstand 10V-Bereich 11 - Widerstand 20V-Bereich
- 12 Masse
- 13 Bit 12 nur C 565 D
- 14 Bit 11 nur C 565 D
- 15 Bit 10
- 16 Bit 9
- 17 Bit 8
- 18 Bit 7
- 19 Bit 6
- 20 Bit 5
- 21 Bit 4 22 - Bit 3
- 23 Bit 2
- 24 Bit 1

Typstandard: TGL 43159

Bauform: DIP-24, Plast (Bild 10)


Digital-/Analog-Wandler mit einer Auflösung von 12 Bit (C 565 C) und 10 Bit (C 5650 C). interne temperaturkompensierte Z-Dioden-Referenzspannungserzeugung, Stromausgang. Gegenkopplungswiderstände für I/U-Wandlung mittels externem OPV vorhanden.

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
positive Betriebsspannung negative Betriebsspannung Stromaufnahme Linearitätsfehler U _{CC} = 11,4 V Ausgangsspannung für ungepufferten Betrieb des Wandlerausganges	$U_{\rm CC1}$ $U_{\rm CC2}$ $I_{\rm CC1}$ $^{-1}_{\rm CC2}$ $^{-1}_{\rm L}$ $^{-1}_{\rm L}$	C 565 C C 5650 C	11,4 -16,5 -0,75 -0,5		16,5 -11,4 5 25 0,75 0,5	V V mA mA LSB LSB

C 570 C C 571 C

8 Bit Analog-/Digital-Wandler

10 Bit Analog-/Digital-Wandler

Applikationsbeispiel: Einsatzschaltung des C 571 C mit Abgleichkomponenten

Typstandard: TGL 43269

Bauform: DIP-18, Plast (Bild 6)

Bezeichnung der Anschlüsse

- Ausgang Bit o1) - Ausgang Bit 8 - Ausgang Bit 7 - Ausgang Bit 6 - Ausgang Bit 5 - Ausgang Bit 4 - Ausgang Bit 3

- Ausgang Bit 2 - Ausgang Bit 1(MSR) 10 - UCC1

11 - Eingang Löschen/ Starten (L/S)

12 - UCC2

13 - Analogeingang

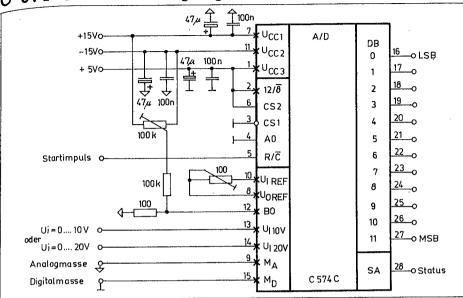
14 - Analogmasse 15 - Betriebsarten-

umschaltung

- Digitalmasse Mn 17 - STATUS-Ausgang

(STS)

18 - Ausgang Bit 10 (LSB)1)


1) nur C 570 C i.V.

Analog-/Digital-Wandler 8 Bit (C 570 C) und 10 Bit (C 571 C) nach dem sukzessiven Approximationsverfahren zur Umsetzung von Eingangsspannungen zwischen 0 und 10 V bzw. -5 und 5 V, Tristate-Datenausgänge, TTL-kompatibel, kurze Umsetzzeit.

Ausgewählte Kennwerte

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
positive Betriebsspannung	U _{CC1}		4,5		5,5	v
negative Betriebsspannung	$v_{\rm CC2}$		-13,5		-16,5	v
Stromaufnanme	I _{CC1}	U ₁₁ = L			10	mA
	-I _{CC2}				15	mA
Linearitätsfehler	$ \mathbf{F_L} $	C 570 C			0,5	LSB
	$ \mathbf{F}_{\mathbf{L}}^{-} $	C 571 C			1	LSB
Umsetzzeit	t _C	C 570 C	15		40	μs
	^t C	C 571 C	15		30	μs

C 574 C 12 Bit Analog-/Digital-Wandler

Applikationsbeispiel: Mikroprozessorgesteuerter A/D-Wandler für unipolare Eingansspan-Typstandard: TGL 43299 nungen (C 574 D/U 880 D)

Bezeichnung der Anschlüsse

11 negative Betriebsspannung -UCC2

Betriebsspannung für Logikteil UCC3

Eingang 12/8Eingang CS 1

Eingang A0

Eingang R/C

Eingang CS 2 Betriebsspannung für Referenz UCC1

Referenzspannungsausgang UOREF

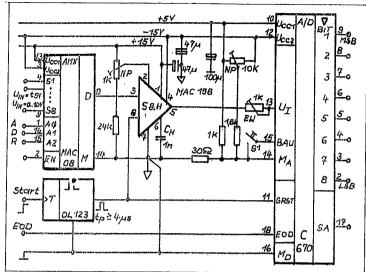
Analogmasse MA

Referenzspannungseingang UIREF

Eingang BO Eingang für 10 V Spannungsbereich UI 10 V

Eingang für 20 V Spannungsbereich UI 20 V

Bauform: DIP-24, Plast (Bild 10)


Digitalmasse MD Datenbit 0 (LSB) 16

17-Datenbit 1 - 10 26

27 Datenbit 11 (MSB) Ausgang Status SA 28

Der C 574 C kann ohne zusätzliche Treiber- und Peripheriebausteine mit 8 Bit oder 16 Bit Mikroprozessoren zusammengeschaltet werden. Dabei werden Lese- und Umsetzkommandos unmittelbar dem Steuerbus entnommen. Die Ausgangsdaten können entweder als ein 12 Bit. Wort oder zwei 8-Bit Bytes gelesen werden.

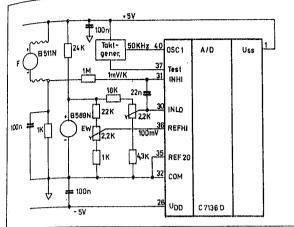
Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Linearitätsfehler	F _L				1	LSB
Umsetzzeit	t _C				40	μs
Nullpunktfehler (Bipolarbetrieb)	F _{ZP}				12	LSB
Fullscale-Fehler	F _{FS}			,	21	LSB

Applikationsbeispiel: Meßwerterfassung mit 8 Eingangskanälen

Typstandard: TGL 45135 Bauform: DIP-18, Plast (Bild 6) Bezeichnung der Anschlüsse

- 1 i. V. 2 Ausgang Bit 8 (LSB)
- Ausgang Bit 7
 Ausgang Bit 6
- 5 Ausgang Bit 5 6 Ausgang Bit 4
- Ausgang Bit 3
 Ausgang Bit 2
- 9 Ausgang Bit 1 (MSB)
- 10 UCC1 11 Eing. Löschen/
- Starten (GRST)

 12 UCC2
- 13 Analogeingang
- 14 Analogmasse 15 Betriebsarten-
- umschaltung (MC)


 16 Digitalmasse
- 17 Status-Ausgang (SA)
- 18 Enable-Eingang (EOD)

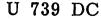
8 Bit Analog-/Digital-Wandler nach dem sukzessiven Approximationsverfahren zur Umsetzung von Eingangsspannungen zwischen 0 und 10 V bzw. -5 und 5 V, Tristate-Bit-Ausgänge, TTL-kompatibel, kurze Umsetzzeit, pinkompatibel zum C 570 C, wenn der Enable-Eingang auf die Digitalmasse gelegt wird.

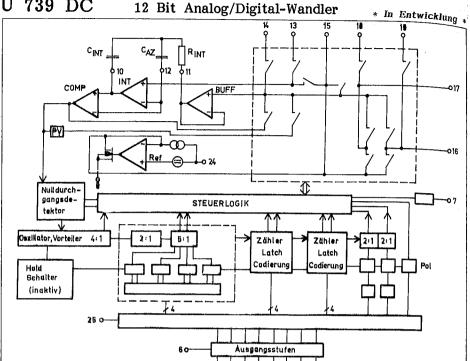
Ausgewählte Kennwerte

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
positive Betriebsspannung	U _{CC1}		4,5		5,5	ν
negative Betriebsspannung	U _{CC1}		13,5		16,5	v
Stromaufnahme	I _{CC1}	$U_{11} = L$			10	mA
	-I _{CC2}				18	mA
Nullpunktfehler	$ F_{ZP} $	C 670 C			2	LSB
	$ \mathbf{F}_{\mathbf{ZP}} $	C 670 Cn			1	LSB
Lineraritätsfehler	$ \mathbf{F}_{\mathbf{L}} $	C 670 C			1	LSB
·	F _L	C 670 Cn			0,5	LSB
Umsetzzeit	t _C		10	1	40	μs

C 7136 D 3 1/2-digit-CMOS-Analog-/Digital-Wandler

Applikationsbeispiel: Thermometerschaltung


Typstandard: TGL 43408


Bauform: DIP-40, Plast (Bild 14)

Beze	ichnung	der Ar	schlüsse
1	U_{SS}	21	BP
2	1 D	22	100 G
3	1 C	23	100 A
4	1 B	24	100 C
5	1 A	25·	10 G
6	1 F	26	\mathtt{U}_{DD}
7	1 G	27	CINT
8	1 E	28	BUFF
9	10 D	29	C A/Z
10	10 C	30	IN LO
11	10 B	31	IN HI
12	10 A	32	COMMON
13	10 F	33	C REF -
14	10 E	34	C REF +
15	100 D	35	REF LO
16	100 B	36	REF HI
17	100 F	37	TEST
18	100 E	38	OSC 3
19	1000 AE	39	OSC 2
20	POL	40	OSC 1

Vollständiger 3 1/2-digit-Analog-/Digital-Wandler nach dem Zweiflankenverfahren mit automatischem Nullpunktabgleich in CMOS-Technik. Der C 7136 D zeichnet sich insbesondere durch seine geringe Stromaufnahme, seine geringe Außenbeschaltung und den Betrieb aus nur einer Spannungsquelle aus. Der C 7136 D kann direkt eine Flüssigkeitsanzeige für Parallelansteuerung (z.B. FAR 09) treiben.

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Betriebsspannung	UCC		7,2		12	v
Stromaufnahme (Auto-Zero-Phase)	I_{CC}				200	μA
Linearitätsfehler	$ \mathbf{F_L} $				1	Digit
Segment- und Backplane- Ausgangsspannung	UO		2,5		7,5	v
Umpolfehler	$ F_{RO} $				1	Digit
Common-Spannung	-U _{COM}		2,6		3,4	v
TK der Common-Spannung					150	ppm/K
Taktfrequenz	fosz				50	kHz
Analogeingangsspannung	U _{I 35/36} ;		UCC		$^{ m U}_{ m SS}$	V
Verhältnismessung	U _{I 30/31}		999		1001	

Übersichtsschaltung

Bezeichnung der Anschlüsse

Bauform: DIP-28, Plast (Bild 12) Typstandard: TGL 45443

$1 \dots 5;$	2628 Datenausgang	12	Auto-Zero-Kapazität
6	Ausgangsaktivierung	13	Eingang Low

18 Referenzeingang Low

Abschluß der Umsetzg. 14 Eingang High

Referenzeingang High

Digitalmasse

Testeingang

neg. Betriebsspannung 16 Referenzkapazität neg. 24 pos. Betriebsspannung

15 Analogmasse

DO 0 1 2 3 4 5

21...23 Oszillatoranschluß

10 Integratorausgang

17 Referenzkapazität pos. 25 Adreßeingang

Der U 739 DC ist ein datenbuskompatibler integrierender 12 Bit CMOS-Analog/Digital-Wandler mit byteweiser Datenausgabe im gepackten BCD-Format. Die Datenübertragung wird vom Mikrorechner aus gesteuert (passives Verhalten des Wandlers). Zur Steuerung der Datenübertragung dienen die Eingänge "Ausgangsaktivierung" (OEL, Ausgang hochohmig oder aktiv) und der "Adreßeingang" (Low/High/Byte/Select) LHS. Der Abschluß einer Umsetzung und die Aktualisierung der Latchinhalte wird vom Ausgang "Abschluß der Umsetzung" (EOC) angezeigt, der zur Interruptaniorderung genutzt werden kann. Die Umsetzung erfolgt bei anliegender Betriebsspannung fortlaufend. 274

Funktionstabelle

ŌĒL	LHS	DO0	DO1	DO2	DO3	DO4	DO5	DO6	DO7
Н	х			hо	e h o h	mig			
L	L	A1	B1	C1	D1	A2	B2	C2	D2
L	Н	A3	В3	. C3	D3	A4	B4	B4	P

A, B, C, D

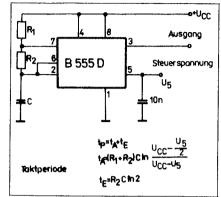
BCD-Kodierung (mit Stellenangabe)

Polarität (MSD, H bei positivem Ergebnis)

deangwerte

	Kurz- zeichen	min.	max.	Einheit
positive Betriebsspannung	U _{CC1}	0	6	V
negative Betriebsspannung	-U _{CC2}	0	9	V
Spannung an Pin 23	U ₂₃	0	$^{ m U}_{ m CC1}$	V
Spannung an Pin 1 bis 5	U ₁₋₅	0	U _{CC1}	V
Spannung an Pin 26 bis 28	U		001	
Spannung an Pin 7	U ₇ 1)	0	$^{\mathrm{U}}_{\mathrm{CC1}}$	V
Spannung an Pin 25	U ₂₅		001	
Spannung an Pin 6	U ₆			
Spannung an Pin 13	$\begin{bmatrix} U_{13}^{2} \\ U_{1}^{2} \end{bmatrix}$	$^{ m U}_{ m CC2}$	$^{\mathrm{U}}\mathrm{_{CC1}}$	V
Spannung an Pin 14	1 - 1/1 1	002		
Spannung an Pin 18	$\begin{bmatrix} U_{18}^{14} 2) \\ U_{18}^{2} \end{pmatrix}$			
Spannung an Pin 19	U ₁₉			
Strom Datenausgänge	IDOL	0	1	m A
	-I _{DOH}			
Strom des Ausganges	IEOCL	0	2	m A
Abschluß der Umsetzung	-I _{EOCH}			
Verlustleistung	P _{tot}		100	m W

1) Kurzschluß < 1 s


2) Überschreitung an INL, INH (13, 14) zulässig, wenn I_{13} , $I_{14} \stackrel{\leq}{=} 100~\mu A$

Kennwert	Kurz- zeichen	min.	max.	Einheit
Betriebsspannung	U _{CC1}	4,75	5,25	V
Umgebungstemperatur	T _a	0	+70	°C

Zeitgeber- und Zeitsteuerschaltkreise

B 555 D Zeitgeberschaltkreis

B 556 D Doppelzeitgeberschaltkreis

Applikationsbeispiel: Astabiler Multivibrator

Bauform:

B 555 D: DIP-8, Plast (Bild 2)

B 556 D: DIP-14, Plast (Bild 3)

Typstandard:

B 555 D: TGL 34160

B 556 D: TGL 42466

Bezeichnung der Anschlüsse

B 555 D

1 Masse

2 Triggereingang Komp. 1

Ausgang

4 Rücksetzeingang

i Kontrollspannung

6 Eingang des Schwellenwertschalters (Komp. 2)

7 Ausgang für Entladung

8 Betriebsspannung

B 556 D

1 Ausgang für Entladung 1. System

2 Eingang des Schwellenwertschalters 1. Swstem

3 Kontrollspannung 1. System

4 Rücksetzeingang 1. System

5 Ausgang 1. System

6 Triggereingang 1. System

7 Masse

8 Triggereingang 2. System

9 Ausgang 2. System

10 Rücksetzeingung 2. System

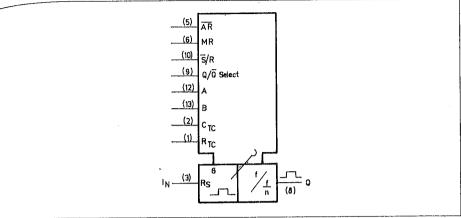
11 Kontrollspannung 2. System

12 Eingang des Schwellenwertschalters 2. System

13 Ausgang für Entladung 2. System

14 Betriebsspannung

Einfach- und Doppelzeitgeberschaltkreise für präzise Zeitverzögerungen im Bereich von Mikrosekunden bis Stunden, extern trigger- und rücksetzbar, Funktionsweise im astabilen oder monostabilen Betrieb sowie als Pegelumsetzer von TTL auf 15-V-CMOS möglich.


Ausgewählte Kennwerte

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Betriebsspannung	U _{CC}		4,5		16	V
Stromaufnahme	ICC	B 555 D			15	mA
	ICC	B 556 D			30	mA
Ausgangsstrom	I ₃ ; I _{5,9}		-200		200	mA
Schwellstrom	I ₆ ; I _{2,12}				0,25	μA
Triggerstrom	-I ₂ ; -I _{6,8}				2	mA
Entladeleckstrom	I ₇ ; I _{1,13}				100	nA

U 4541 DG

Programmierbarer CMOS Timerschaltkreis

* In Entwicklung *

Logiks Bezeic	ymbol ehnung der Anschlüsse		Typstandard: TGL 45134 Bauform: DIP-14, Plast (Bild 3)
1	Anschluß für Widerstand R _{TC}	9	Eingang für Auswahl Q/\overline{Q}
2	Anschluß für Kondensator C _{TC}	10	Betriebsartenauswahl (Mode)
3	Oszillatoreingang, Anschluß	11	nicht belegt
	für Widerstand ${ m R}_{ m S}$	12	Eingang zum Programmieren des
4	nicht belegt		Teilerverhältnisses n
5	Auto-RESET	13	Eingang zum Programmieren des
6	Master-RESET		Teilerverhältnisses n
7	Masse	14	Betriebsspannung

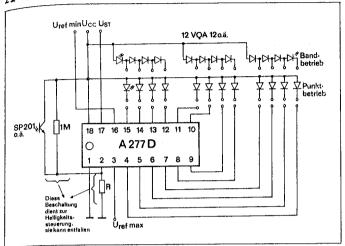
Ausgang
Der U 4541 DG ist ein in CMOS-Technologie gefertigter programmierbarer Zeitgeberschaltkreis, der sich durch eine geringe Stromaufnahme und einfache Programmierbarkeit auszeichnet. Er ist in der Lage, mit einer externen Beschaltung von zwei Widerständen und einem Kondensator eine Taktfrequenz im Bereich von 1 Hz bis mindestens 100 kHz zu erzeugen. Ein dem Oszillator nachgeschalteter Teiler teilt diese Frequenz wahlweise durch 2^8 , 2^{10} , 2^{13} oder 2^{16} , abhängig von der Programmierung der Adresseingänge. Die geteilte Oszillatorfrequenz ist am Ausgang verfügbar. Es besteht die Möglichkeit, den Timer als Teiler des Oszillatortaktes oder als Mono-Flop zu betreiben.

Es sind zwei RESET-Modi möglich: RESET bei Anlegen der Betriebsspannung und durch einen extern an das vorgesehene Pin anzulegenden Impuls. Mit Hilfe einer Ausgangssteuerung kann festgelegt werden, welchen Pegel der Ausgang bei einem RESET-Impuls annimmt. Im Mono-Flop-Betrieb sind damit Einschalt- bzw. Ausschaltverzögerungen realisierbar. Somit gestattet der U 4541 Verzögerungszeiten von 1,5 ms bis 9 Stunden, die durch Kaskadierung mehrerer U 4541 noch vergrößert werden können.

Programmiermöglichkeiten

Pin 12	Pin 13	Zahl der Teilerstufen	2 ⁿ
High	Low	8	256
Low	High	10	1024
Low	Low	13	8192
High	High	16	65536

Zustandstabelle


Pin	Low	High
5	Auto-RESET arbeitet	kein Auto-RESET möglich
6	Timer arbeitet	Master-RESET
9	Ausgang Low nach RESET	Ausgang High nach RESET
10	Mono-Flop-Betrieb	Teilerbetrieb

Ausgewählte Kennwerte

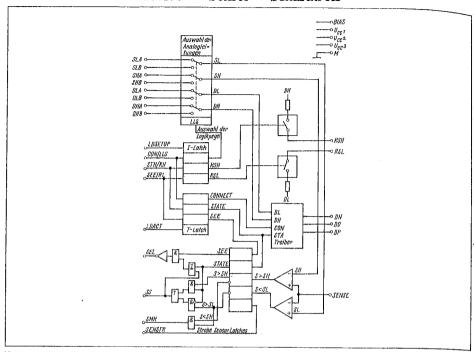
Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Betriebsspannung	$U_{ m DD}$		3		15	V
Betriebsspannung zur Ge-	U _{DD}		8,5			v
währleistung der Auto-						
RESET-Funktion						
Stromaufnahme	I _{DD}	U _{DD} = 5 V			20	μA
(Pin 5 = High)		$U_{\mathrm{DD}}^{\mathrm{DD}} = 10 \text{ V}$			40	μA
		$U_{\mathrm{DD}} = 15 \text{ V}$			80	μA
(Pin $5 = Low$)		$U_{\mathrm{DD}} = 5 \text{ V}$	1		200	μA
		$U_{\mathrm{DD}} = 10 \text{ V}$			250	μА
		$U_{\mathrm{DD}} = 15 \text{ V}$			500	μA
Verzögerungszeiten nach	t _{PLH}	$U_{\overline{DD}} = 5 \text{ V}$	ļ	3,5	Ì	μs
8 Teilerstufen	t _{PHL}	$U_{\mathrm{DD}} = 10 \text{ V}$		1,25	1	μs
		$U_{\mathrm{DD}} = 15 \text{ V}$		0,90		μs
Verzögerungszeit nach	t _{PLH}	$U_{\mathrm{DD}} = 5 \text{ V}$		6,00		μs
16 Teilerstufen	t _{PHL}	$U_{\mathrm{DD}} = 10 \text{ V}$		3,5		μs
		$U_{\overline{DD}} = 15 \text{ V}$		2,5		μs
Taktfrequenz	f_{e}	$U_{\mathrm{DD}} = 5 \text{ V}$		5		MHz
		$U_{\mathrm{DD}} = 10 \text{ V}$		11	i	$_{ m MHz}$
		$U_{\mathrm{DD}} = 15 \text{ V}$		14		MHz

Ansteuer- und Treiberschaltkreise

A 227 D LED-Ansteuerschaltkreis

Applikationsbeispiel: A 277 D für Punkt- und Bandbetrieb

erung, Arbeitsweise zwischen gleitend und abrupt einstellbar.


Typstandard: TGL 38011 Bauform: DIP-18, Plast (Bild 6)

Bezeichnung der Anschlüsse

- Masse Helligkeitssteuerung
- max. Referenz-
- spannung
- LED 12
- LED 11
- LED 10
- LED 9
- LED 8
- LED 6
- LED 5
- LED 4
- 13 LED 3
- 14 LED 2
- LED 1
- min. Referenz
 - spannung
- Steuerspannung
- Betriebsspannung \mathbf{u}_{CC}

LED-Ansteuerschaltkreis für Quasi-Analog-Anzeigen mit max. 12 LED, wahlweise im Punkt- oder Bandbetrieb je nach LED-Anschaltung, Kaskadierbarkeit, Helligkeitssteu-

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Betriebsspannung						
Bandbetrieb	U _{CC}		10,5		18	V
Punktbetrieb	UCC		5,5		18	V
Eingangsspannungen	U		0		6,2	V
LED-Strom gleitend bis abrupt	I _{LED}		0		20	m A
Eingangsströme	-I ₃ ; -I ₁₇ ;				2	μА
	-I ₁₆					
Stromaufnahme	I _{CC}				10	mA
Verlustleistung pro Treiber	P _V				350	m W

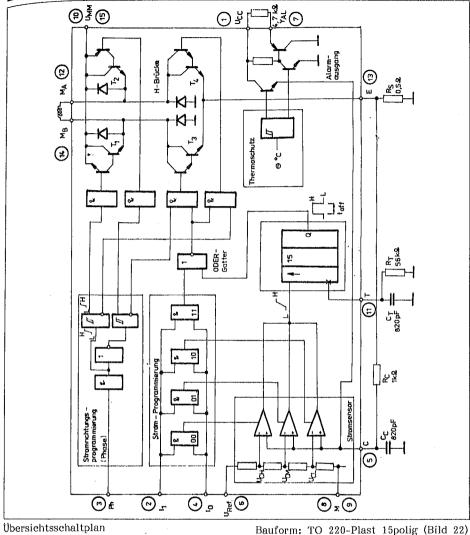
Übersichtsschaltplan

Typstandard: TGL

Bauform: DIP-28, Plast (Bild 12)

Der B 3040 DA ist in In-Circuit-Testern zur Prüfung von bestückten Leiterplatten hoher Komplexität vorgesehen.

Funktionsgruppen: * Analogeingänge für Treiber- und Sensorteil


- * Treiber
- * Sensor mit Auswertelogik
- * Steuerlatches

Ein- und Ausgänge sind TTL-kompatibel.

Ausgewählte Kennwerte

ph			1100	S C M CITI	ite itei	m.M.Ct.fe
Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Betriebsspannung	U _{CC1}		4,75		5,25	ν
	U _{CC2}		23,75		24,25	v
	-U _{CC3}		19,75		20,25	V
Analogeingangsspannung	U_{I}		-8		16	v
Ausgangsströme	I _{DN}		1,5			mA
	I_{DP}				1,5	mA
	I _{RSL} ; -I _{RS}	Н			10	mA
Betriebstemperaturbereich	Ta		10		70	°C

B 3718 VC Bipolarer Schrittmotor-Treiberschaltkreis

Bezeichnung der Anschlüsse

- Betriebsspannung (UCC)
- Strom-Programmiereingang (I1)
- Stromrichtungs-Programmier-eingang (Phase) (Ph)
- Strom-Programmiereingang (I₀)
- Komparatoreingang (C)
- Referenzeingang (URef)
- Alarmausgang (YA1)

- Masse (M)
- Masse (M)
- Motorversorgungsspannung (U_{MM}) 10
- Monoflopeingang (T) 11
- Motorwicklungsanschluß (MA) 12
- Stromsensorausgang (E) 13
- Motorwicklungsanschluß (MB) 14
- Motorversorgungsspannung (U_{MM}) 15

Der Schaltkreis B 3718 VC ist für die Steuerung einer Wicklung eines bipolaren Schrittmotors in Vollbrückenschaltung bestimmt. Die H-Brücke besteht aus zwei Push-Pull-Gegentaktendstufen mit je zwei integrierten Freilaufdioden gegen Masse und Motorversorgungsspannung.

Die Senkentransistoren werden stromgechoppert. Zwei Schaltkreise in Verbindung mit wenigen externen Bauelementen sind in der Lage, einen zweipoligen bipolaren Schrittmotor zu steuern.

Logische Zuordnung:

Ph	Н	Н	Н	Н	L	L	L	L
I ₀	Н	L	Н	L	Н	L	Н	L
\mathbf{I}_1	Н	Н	L	L	Н	Н	L	L
M _A		Q	uelle	•	/	Se	nke 1)	
M_{B}	/	Senl	∢e 1)			Quelle		
Quellentransistor T1	Х	X	X	X	*	*	*	*
Quellentransistor T2	*	*	*	*	X	Х	X	X
Senkentransistor T3	X	+	+	+	X	X	X	X
Senkentransistor T4	X	X	X	X	X	+	+	+

H .. hoher Spannungspegel (≥ 2 V)

X .. Transistor gesperrt

* .. Transistor leitend

L .. niedriger Spannungspegel

 $(\le 0.8 \text{ V})$

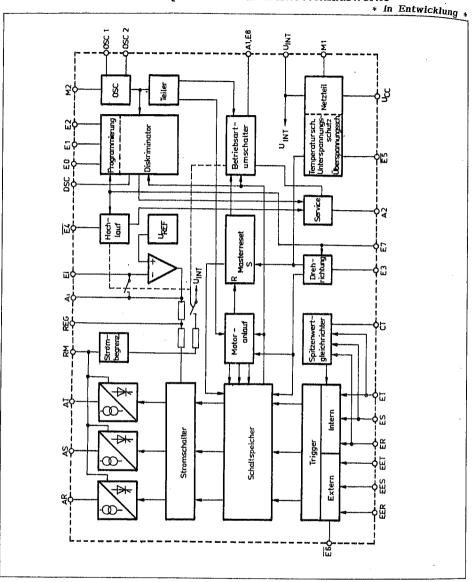
+ .. Transistor leitend, stromgechoppert

1).. während t_{off} hochohmig

/ .. Ausgang hochohmig

Der B 3718 VC besitzt LS-TTL-kompatible Steuereingänge. Er besteht aus der durch UND-Gatter gesteuerten H-Brücke mit integrierten Freilaufdioden, den Stufen Stromprogrammierung, Stromrichtungsprogrammierung, Stromsensor und Chopperung, dem ODER-Gatter und dem integrierten Thermoschutz mit Alarmausgang.

Die Stromprogrammierstufe gestattet bei vorgegebenem Stromsensorwiderstand $\mathbf{R}_{\mathbf{S}}$ eine Einstellung des Brückengleichstromes in folgenden Stufen.


10	I ₁	Brückengleichstrom	
Н	Н	kein Strom	
L	Н	kleiner Strom (U _{CL})	
н	L	mittlerer Strom (U _{CM})	
L .	L	max. Strom (U _{CH})	

Das Kurzschließen der Ausgänge ${\rm M_A}$ und ${\rm M_B}$ gegen Masse, Motorversorgungsspannung und untereinander ist unzulässig. Die Kühlfahne führt Massepotential. 282

Retriebsbedingungen

Kennwert	Kurz- zeichen	min.	max.	Einheit
Betriebsspannung Motor-Versorgungs-	U _{CC} U _{MM}	4,75 10	5,25 40	V V
spannung Eingangsspannung High Eingangsspannung Low Diodensperrspannung	$egin{array}{c} egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}$	2,0	0,8 42	V V
Ausgangsströme Anschlüsse M_A , M_B Ausgang E	I _{MA} ,I _{MB}	-1,2 -1,2	1,2	A A

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Stromaufnahme	I_{CC}				25	mA
Eingangsstrom High	IH				20	μA
Eingangsstrom Low	-I _{IL}	Eingang I ₀ ,I ₁			250	μA
	-I _{IL}	Eingang Ph			20	μA
Komparatoreingangsstrom	-I _{IC}				20	μA
Ausgangsrestströme	$ I_{MAR} $,				200	μΑ
	I _{MBR}				200	μA
Ausgangssättigungs-	Usat	$-I_{MA} = -I_{MB} = 1 A$			1,9	v
spannung	Usat	$I_{MA} = I_{MB} = 1 A$			1,6	l v
Diodenflußspannung	UF	$U_{Ph} = 0.4 \text{ V},$			1,8	l v
		$I_{MA} = 1 A$				
		$U_{Ph} = 2,4 \text{ V},$			1,8	v
		$I_{MB} = 1 A$				
		$U_{\rm Ph} = 0.4 \text{ V},$			2,0	l v
		$-I_{MA} = 1 A$				
		$U_{Ph}^{WA} = 2.4 \text{ V},$			2,0	v
		$-I_{MB} = 1 \text{ A}$,	
Referenzeingangsstrom	I _{URef}	U _{Ref} = 5 V	250		650	μΑ
Komparatorschaltwellen	UCL	nei	65		90	mV
	U _{CM}		230		270	mV
	UCH		390		440	mV

Übersichtsschaltplan

284

Bauform: DIP-20, Plast (Bild 8)

Der B 3925 DD ist ein monolithisch integrierter Motorprozessor mit Keramikresonator und internen Leistungstreibern. Er ist zur Ansteuerung und Regelung von Elektronikmotoren für den Einsatz in Diskettenlaufwerken mit zwei Drehzahlen geeignet.

Bezeichnung der Anschlüsse

1	Ausgang System S (AS) /	
	Triggereingang System S (ES)	

Ausgang System R (AR) / Triggereingang System R (ER)

3 Meßwiderstand (RM)

4 Masseanschluß 1 (M1)

5 Invertierender Integratoreingang (-EI)

6 Integratorausgang (AI)

7 STOP-Eingang (E5)

g Filteranschluß (REG)

9 Digitaler Fehlerausgang (DSC)

10 Serviceanschluß (A2)

11 Drehzahlprogrammierung (E0)

12 Drehzahlprogrammierung (E1)

13 Oszillator 1 (OSC1)

13 Oszillator 2 (OSC2)

15 Masseanschluß 2 (M2)

16 Siebkondensatoranschluß (CT)

17 nicht belegt

18 Betriebsspannung (UCC)

19 Interne Versorgungsspannung

(U_{INT})

20 Ausgang System T (AT) /
Triggereingang System T (ET)

Der Schaltkreis besteht aus folgenden Funktionsgruppen:

Netzteil:

Band-Gape-Referenz, 4,2 V Aufstockung,

Anlauf- und Stopp-Schaltung,

Unterbetriebsspannungsabschaltung (< 6 V),

Überbetriebsspannungsabschaltung $(>22\ V)$ und

Übertemperaturabschaltung (>125 $^{\rm o}$ C).

Regelverstärker:

Bezugswerterzeugung (ca. 2,1 V),

Diskriminatorstufe (DSC),

Integrator mit Hochohmeingang,

automatische Vorverstärkungsreduzierung im

Anlauf auf 0 dB,

Anlaufstromerzeugung,

Endstufenstrombegrenzung und

Motorstromabschaltung bei Ansprechen einer

Schutzschaltung.

Endstufenkomplex:

Stromschalter zur Umschaltung der drei Endstufen,

3 strombegrenzte Treiberstufen,

3 Endstufen und

3 Abkommutierungsstufen mit Hochpässen und

Thyristornachbildung.

Triggerkomplex:

3 identische Triggerstufen zur Ermittlung des

optimalen Kommutierungspunktes,

3 Schmitt-Trigger mit C-Umladung zur Störunter-

drückung und Drehstromgleichrichter.

Digitalkomplex:

Betriebsartenumschalter, Anlaufregister, Schaltspeicher

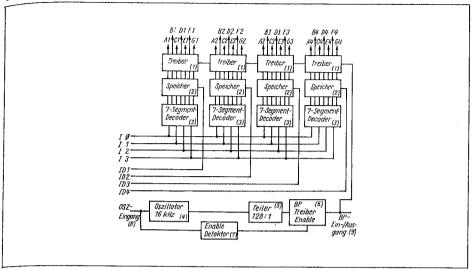
Anlaufteiler, Zähldiskriminator, Drehrichtungsschalter.

Drehzahlschalter und Drehzahlmatrix sowie

Hochlaufschalter.

Servicekomplex:

Grenzwerte


Kennzeichnung des drehzahlgeregelten Motorlaufes,

Ausgabe der Drehzahlfrequenz und

Ausgabe der Gleichlaufqualität.

Grenzwert	Kurz- zeichen	min.	max.	Einheit
Betriebsspannung	U _{CC}	0	22	V
Spannung der Ausgangs-	UAR,	0	36	v
stufen	U _{AS} ,			Ì
	UAT			
und Triggereingänge	U _{ER} ,	0	36	v
	U _{ES} ,			
	UET			
Spannung an den An-	UEE	0	5,5	v
schlüssen EER, EES,	Lie			
EET,				
CT	UCT	0	U _{CC}	v
Spannung an den	UE	0	5,5	ν
Anschlüssen E5, E6, E7,	L		·	
E0, E1, E2, E3, E4				
A2	U _{A2}	0	U _{CC}	v
REG	UREG	0	4,0	v
Dauerendstufenstrom	I _{AR} ,	0	600	mA
	I _{AS} ,			
	I _{AT} ,	· ·		
Spitzenendstufenstrom	I _{AR} ,	0	800	mA
(t < 4 s)	I _{AS} ,			
	IAT			
Integratorausgangsstrom	IAI	-10	10	mA
Strom des Betriebs-	I _{A1}	-1	1	mA
artenumschalters	Al	2		''''
Sperrschichttemperatur	T _j		150	°c
Umgebungstemperatur-	T _a	-10	70	$^{\circ}_{\rm C}$
bereich	a l			
Gesamtverlustleistung	P _{tot}		750	mW.

111, 7211 D/UP 7211 D LCD-Ansteuerschaltkreis

Übersichtschaltplan

Typstandard: UL 7211 D: TGL 42635

UP 7211 D: TGL 42638

Bauform: DIP-40, Plast (Bild 14)

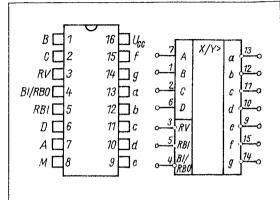
Die Schaltkreise ermöglichen die Aufbereitung von BCD-Eingangsinformationen für die Ansteuerung einer 7-Segment-LCD-Anzeige mit 4 Stellen. Die Schaltkreise unterscheiden sich hinsichtlich der Dateneingabe:

UL 7211 D - Die 4 Bit Dateninformation (IO bis I3) und die Digitinformation (codiert auf 2 Bit) werden in Abhänigkeit von 2 ODER-verknüpften Chip-Select-Eingängen in Zwischenspeicher übernommen. Einschreiben in den Speicher mit $CS1 = CS2 = U_{II_2}$; Dekodierung und Übernahme in den Ausgangsspeicher mit der Anstiegsflanke $\mathbf{U}_{\mathrm{IL}}\text{---}\mathbf{U}_{\mathrm{IH}}$ von CS 1 oder CS 2.

UP 7211 D - Das zu jeweiligen BCD-Eingangsinformation an IO bis 13 gehörende Digit wird über U_I = H am entsprechenden Digitauswahleingang ID1 bis ID4 selektiert.

Im Schaltkreis sind integriert:

- Oszillator und Teiler
- BCD-zu-7-Segment-Dekoder


- Anzeigespeicher

- Segmenttreiber
- Backplane-Treiber-Eingang
- Eingangslatch und 2-zu-4-Dekoder (nur UL 7211 D)

D 345 D/D 346 D/E 345 D/E 346 D

D 347 D/D 348 D/E 347 D/E 348 D

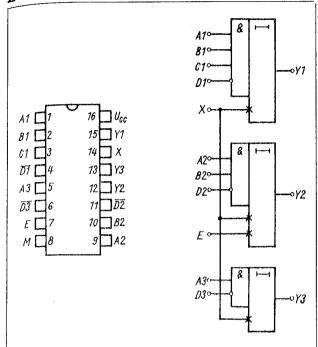
BCD-zu-7-Segment-Dekoder/Treiber

Anschlußbelegung und Schaltzeichen

Typstandard: TGL 42075

Bauform: DIP-16, Plast (Bild 4)

Bezeichnung der Anschlüsse


- Eingang "B"
- Eingang "C"
- nicht belegt bei D/E 345 D. D/E 347 D, Ausgangsstromsteuerung bei D/E 346 D, D/E 348 D
- Eingang BI; Ausgang RBO
- Eingang RBI Eingang "D"
- Eingang "A"
- Masse
- Ausgang "e"
- Ausgang "d" Ausgang "c"
- Ausgang "b"
- Ausgang "a"
- Ausgang "g"
- Ausgang "f"
- U_{CC} Betriebsspannung

Integrierte BCD-zu-7-Segment-Dekoder/Treiber in I²L-Technik mit Konstantstrom-Ausgangsstufen. Die Eingangsstufen sind TTL-, LS-TTL- und CMOS-kompatibel. Die Ausgangsstufen sind als Konstantstromsenken ausgelegt, die beim D/E 345 D und D/E 347 D intern fest eingestellt, beim D/E 346 D und D/E 348 D extern über einen Widerstand bzw. Einstellregler linear von 0 bis 40 mA einstellbar sind.

Ausgewählte Kennwerte

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Betriebsspannung E-Typen	UCC		4,75		6	V
D-Typen	UCC	,	4,5		5,5	V
Stromaufnahme	I_{CC}	D/E 345 D; D/E 347 D			8	mA
	I_{CC}	D/E 346 D; D/E 348 D			25	mA
Ausgangsstrom						
$U_{CC} = 5 \text{ V; } U_{Oon} = 4 \text{ V}$	I _{Oon}	D/E 345 D; D/E 347 D	8		14	mA
$U_{CC} = U_3 = 4,75 \text{ V}$	I _{Oon}	D/E 346 D; D/E 348 D	40			mA
Betriebstemperaturbereich	00					!
D-Typen	Ta		0		70	°C
E-Typen	T _a		-25		85	°C

D 410 D 3 Treiber, kurzschlußfest

Bezeichnung der Anschlüsse

A,B,C - nicht negierende Eingänge

> - negierende Eingänge

- Anschluß für externen Kondensator zur Einstellung der Signalverzögerungszeit der 2. UND-Funktion

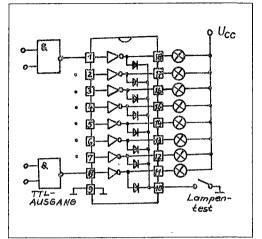
Ausgänge

- Anschluß zum Einstellen der H-Ausgangsspannung

Masse

Typstandard: TGL 37512 Bauform: DIP-16, Plast (Bild 4)

Anschlußbelegung und Übersichtsschaltplan


- Kurzschlußfester Treiberschaltkreis
- 3 AND-Gatter mit 2, 3 und 4 Eingängen, wobei je ein Eingang invertierend wirkt.

Logische Funktion: $Y1 = A1 \times B1 \times C1 \times \overline{D1}$ $Y2 = A2 \times B2 \times \overline{D2}$

 $Y3 = A3 \times \overline{D3}$

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Betriebsspannung	U _{CC}		14		32	V
Eingangsspannung an	UIL		-0,15		5	V
A, B, C, D	U _{IH}		7,5		44	V
Ausgangslastfaktor	NO				10	
Kurzschlußstrom	-I _{OSH}				18	mA

D 4803 DC 8 Bit Treiberschaltkreis

Applikationsbeispiel: Glühlampentreiber

Typstandard: TGL 45250

Bauform: DIP-18, Plast (Bild 6)

Der 8 Bit Treiberschaltkreis D 4803 DC ist ein Darlington-Array mit offenen Kollektorausgängen und integrierten Freilaufdioden für induktive Lasten; Eingänge sind TTL- oder 5 V CMOS-kompatibel; die Ausgänge haben einen hohen Kollektorstrom (bis 500 mA) und hohe Spannungsfestigkeit (50 V).

Ausgewählte Kennwerte

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Ausgangsspannung	UY		0		50	V
Ausgangsstrom	I		0		400	m A
	I _{YM}	≤ 0.5 ; t _{on} ≤ 10 ms			500	mA
Verlustleistung je Treiber	PX				700	m W
Gesamtverlustleistung	P _{tot}		1		1,7	W
Verzögerungszeit	t _{PLH} ;			İ	1000	ns
	t _{PHL}					
Betriebstemperaturbereich	Ta		0		70	°C

Übersichtsschaltplan

Bauform: TO 220-Plast 15polig (Bild 22)

Der Schaltkreis D 6221 VC ist ein bipolarer monolithischer 4fach-Treiberschaltkreis zur Ansteuerung induktiver oder ohmscher Lasten, insbesondere zur Steuerung des Stromes in Druckmagnetspulen eines Nadeldruckkopfes. Mit 6 Schaltkreisen kann die Nadelauswahl eines 24-Nadeldruckkopfes realisiert werden. Die npn-Darlington-Ausgänge mit offenem Kollektor und integrierten schnellen Freilaufdioden sind zum Schalten induktiver Lasten für Ströme bis 1,5 A und Spannungen bis 46 V ausgelegt. Die Substratdioden dürfen mit max. 360 mA belastet werden. Für die Eingangslogik beträgt die Betriebsspannung 4,5 V bis 5,5 V. Die Steuereingänge sind TTL-kompatibel. Ein gemeinsamer Enable-Eingang erlaubt das gleichzeitige Sperren aller vier Ausgänge. Zum Zweck logischer Verknüpfungen darf bei Einhaltung des zulässigen Ausgangsstromes pro Treiber eine beliebige Anzahl von Ein- und Ausgängen jeweils parallel geschaltet werden. Ein Kurzschluß der Ausgänge ist unzulässig. Das 15polige Multiwattgehäuse erlaubt eine Verlustleistung von 30 W. Die Kühlfahne liegt auf Massepotential.

Bezeichnung der Anschlüsse

1	Ausgang Treiber 2 (Y2)	9	Enable-Eingang (EN)
2	Freilaufdioden Treiber 1	. 10	nicht belegt
	und 2 (D1, D2)	11	Eingang Treiber 3 (13)
3	Ausgang Treiber 1 (Y1)	12	Eingang Treiber 4 (I4)
4	Eingang Treiber 1 (I1)	13	Ausgang Treiber 4 (Y4)
5	Eingang Treiber 2 (I2)	14	Freilaufdioden Treiber 3
6	nicht belegt		und 4 (D3, D4)
7	Betriebsspannung (U $_{ m CC}$)	15	Ausgang Treiber 3 (Y3)
8	Masse (M)		

Funktionstabelle

Enable	Eingang	Ausgang
Н	H	ON
Н	L	OFF
L	X	OFF

H ... High-Pegel

L ... Low-Pegel

X ... Pegel beliebig (H oder L)

Grenzwerte

Grenzwert	Kurz- zeichen	min.	max.	Einheit
Eingangsstrom	-I _ĭ		16	mA
Ausgangsspannung	UY		50	v
Betriebsspannung	n _{CC}	0	7	V
Eingangsspannung	U	-0,15 ¹⁾	U _{CC} 1,3 ²⁾ 1,8 ³⁾	v
Ausgangsstrom je Treiber	$I_{\mathbf{Y}}$		1,32)	A
	I_{Y}^{1}		1,8 ³⁾	A
Ausgangsspitzenstrom je	I_{YM}^{I}		2,5	A
Treiber $t_{on} \le 10 \text{ ms},$ $T_{V} \le 1 \%$	1 141			
Diodenflußstrom je Diode	$1_{ m F}$	0	1,8	Α
Diodensperrspannung	U _R	0	50	V
Ausgangssubstratstrom,	-I sub		360	mA
gesamt	Sub			
Verlustleistung je	P_{T}	0	3,25	W
Treiber 5)	1			
Verlustleistung je Diode ⁵⁾	P_{D}	0	3,6	W

Grenzwert	Kurz- zeichen	min.	max.	Einheit
Gesamtverlustleistung T _C ≤ 60 °C ⁶⁾	Ptot	0	30	·W
Innerer Wärmewiderstand Sperrschicht-Gehäuse	R _{thje}	0	3	K/W
wärmewiderstand Sperrschicht-Umgebung	R _{thja}		40	K/W
Sperrschichttemperatur	T _j		150	°C

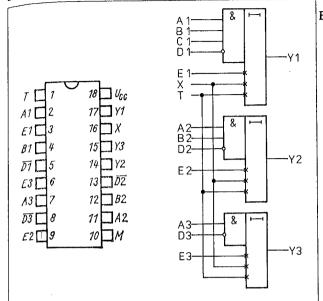
¹⁾ Eine Unterschreitung dieses Wertes ist zulässig, wenn der Eingangsstrom - ${\rm I}_{\rm I}$ auf max. 16 mA begrenzt wird

- 2) Mehr als 2 Treiber sind gleichzeitig leitend
- 3) Höchstens 2 Treiber (Treiber 1 und 4, 2 und 4, 1 und 3 oder 2 und 3) sind gleichzeitig leitend
- 4) Tastverhältnis $T_V = t_{on} : t_{off} = 0.01$
- 5) Statische Dauerverlustleistung
- 6) $T_{\mathbf{C}}$... Gehäusetemperatur

Betriebsbedingungen

Kennwert	Kurz- zeichen	min.	max.	Einheit
Ausgangsspannung	UY		46	V
Betriebsspannung	UCC	4,5	5,5	V
Eingangsspannung High	UIH	2,0		V
Eingangsspannung Low	v_{IL}		0,8	V
Ausgangsstrom je Treiber	IY		1,11)	A
	IY		1,52)	A
Diodenflußstrom	$I_{ m F}$	0	1,5	A
Diodensperrspannung	$\overline{v}_{\mathrm{R}}$	0	46	V
Ausgangssubstratstrom	-I _{sub}		300	mA
Verlustleistung je Treiber ³	$^{1}P_{T}$	0	2,4	w
	$P_{\mathrm{D}}^{^{1}}$	0	2,7	W
Betriebstemperaturbereich	Ta	0	70	°C

¹⁾ Mehr als 2 Treiber sind gleichzeitig leitend


²⁾ Höchstens 2 Treiber (Treiber 1 und 4, 2 und 4, 1 und 3 oder 2 und 3) sind gleichzeitig leitend

³⁾ Statische Dauerverlustleistung

Ausgewählte Kennwerte (U $_{\mathrm{CC}}$ = 5 V, $_{\mathrm{a}}$ = 25 °C - 5 K)

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Eingangsstrom High	+I _{IH}	U _{IH} = 2,4 V, Y und D offen			10	μА
Eingangsstrom Low	$^{-1}$ IL	U _{IL} = 0,4 V, Y und D offen			20	μА
Ausgangssättigungs-		(jeweils nur 1				
spannung		Treiber leitend)				
		$U_{CC} = 4.5 \text{ V},$				
		U _{IH} = 2 V, D offen				
	UYsat	$I_{\mathbf{Y}} = 0.6 \text{ A}$			1,3	V
	UYsat	$I_{Y} = 1.0 A$			1,5	ν
	U _{Ysat}	$I_{Y} = 1,5 A$			1,7	V
Ausgangsreststrom	I_{YR}	$U_{IL} = 0.8 \text{ V},$			1	mA
		$U_Y = U_D = 50 \text{ V},$				
		$U_{EN} = 2 V$				
Diodenflußspannung		(jeweils nur 1				
		Diode leitend)				
		$U_{IL} = 0.4 \text{ V},$				
		$U_{D} = 0 V,$				
	$^{\mathrm{U}}\mathrm{_{F}}$	$I_{\mathbf{Y}} = 1,0 \text{ A}$			1,6	V
× .	U _F	$I_{Y} = 1,5 A$			1,8	V
Diodensperrstrom	$^{\rm I}{}_{\rm R}$	(jeweils nur 1			100	μA
		Diode)		1		
		$U_{IL} = 0.4 \text{ V},$				
		$U_{Y} = 0 V,$				
~.		$U_D = 50 \text{ V}$				
Stromaufnahme	$^{\rm I}$ CC	$U_{IL} = 0.4 \text{ V},$	ŀ		20	mA
		$U_{IH} = 2,4 \text{ V}$	1			
		Y und D offen				

Treiber, kurzschlußfest, Tristate-Ausgänge E 412 D

Anschlußbelegung und Übersichtsschaltplan

Bauform: DIP-18, Plast (Bild 6) Typstandard: TGL 39000

Bezeichnung der Anschlüsse 1, 4 Oszillator 2, 3 Frequenzkorrektur 10 Lampentreiberausgang 3 11 Stabilisierte Spannung 12 Start/Stop 13 Sperre für Verdopplung 14 Einstellung Kompara-

Kurzschlußfester Treiberschaltkreis mit 3 AND-Gattern, Störunterdrückung und Tristate-Ausgängen. $Y1 = A1 \times B1 \times \overline{D1}$ Logische Funktion:

 $Y2 = A2 \times B2 \times \overline{D2}$

Lampentreiberausgang 1 C für Schwingunter-

Lampentreiberausgang 2

Relaistreiberausgang

drückung

torschwelle 15 Eingang Verstärker für Lampenkontrolle 16 Betriebsspannung U_{CC}

Masse

 $Y3 = A3 \times \overline{D3}$

H an T = Tristate

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Betriebsspannung	U _{CC}		14		32	V
Spannung an X	UX		0		30	V
Eingangsspannung an	U _{IL}		-0,15		5	V
A, B, C, D	UIH		7,5		44	V
Eingangsspannung an T	UITL		-0,15		0,8	V
	UITH		2,0		5,5	V
Ausgangslastfaktor	NO				20	
Kurzschlußstrom	-I _{OSH}				22	m A

E 435 E

Kurzschlußfester Leistungstreiber mit offenem Emitterausgang

Bezeichnung der Anschlüsse

- 1 Eingang E1
- 2 Eingang E2
- 3 Eingang E3
- 4 Ausgang-Kurzschluß-bzw. Überlastungsanzeige Y2
- 5 Eingang E4
- 6 Masse M
- 7 Anschluß für Kondensator des Taktgenerators C
- 8 Ausgang Taktgenerator T
- 10 Anschluß für Schwingungsunterdrückung N
- 11 Ausgang Leistungstreiber Y
- 12 Betriebsspannung U_{CC}

Übersichtsschaltplan

Typstandard: TGL 37019

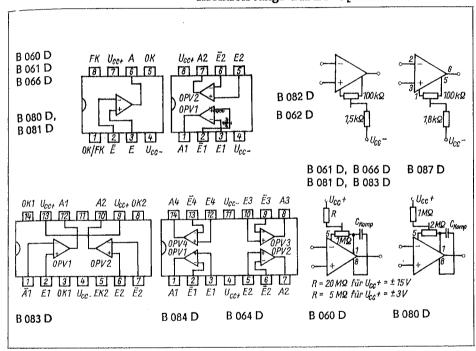
Bauform: DIP-12, Plast mit Kühlkörperanschluß (Bild 17)

Kurzschlußfester Leistungstreiber mit offenem Emitterausgang (Last zwischen Y1 und Masse). Im Kurzschlußfall wird der Laststrom automatisch abgeschaltet und periodisch mit Hilfe eines eingebauten Taktgenerators überprüft, ob der Kurzschluß noch besteht. Der Schaltkreis besitzt 4 Eingänge mit Schmitt-Trigger-Charakteristik, die ODER-verknüpft sind.

Ausgewählte Kennwerte

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Betriebsspannung	U _{CC}		11,4		32	V
Stromaufnahme	I _{CC}				12	mA
Eingangsspannung	UIEL	Y1 = L	0		6	V
	U _{IEH}	Y1 = H	8,5		32	V
Ausgangsstrom Y1	-I _{OHY1}				450	mA
(für Glühlampen)	-I _{OHY1}				190	m A
Ausgangsstrom Y2	-I _{OHY2}	•			12	mA
	I		4		i .	1

Operationsverstärker


B 060 D bis B 066 D

B 060 SD bis B 066 SD

B 060 SG bis B 066 SG

B 080 D bis B 084 D

Kleinleistungs-BIFET-Operationsverstärker

Anschlußbelegung und Einsatzschaltung

Typstandard: TGL 39490

Bauform B 060 D, B 061 D, B 062 D, B 066 D,

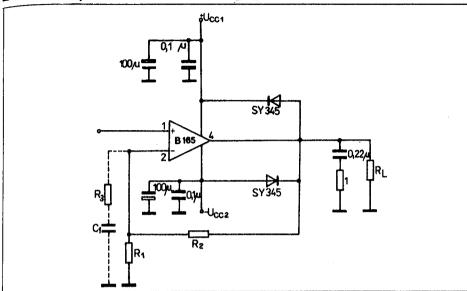
B 080 D, B 081 D, B 082 D:

DIP-8, Plast (Bild 2)

Bauform B 064 D, B 083 D, B 084 D:

DIP-14, Plast (Bild 4)

Bauform B 060 SD/SG bis B 066 SD/SG:


SO-8 (Bild 27)

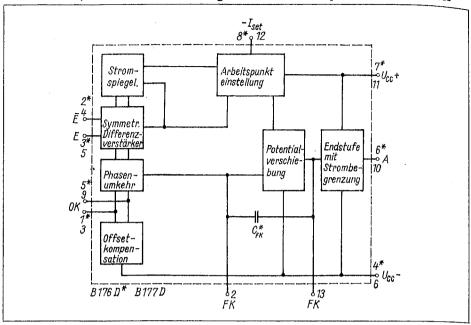
BIFET-Operationsverstärker mit Sperrschicht-Feldeffekttransistoren in der Eingangsstufe, hohem Eingangswiderstand (10^{12} Ohm), kleinen Offset- und sehr kleinen Basisströmen, Kurzschlußsicherheit bei Einhaltung der maximalen Verlustleistung, Latch-up-geschützt, intern frequenzkompensiert (außer B 060 D, B 080 D), extern offsetabgleichbar (außer B 062 D, B 064 D, B 082 D, B 084 D), Stromaufnahme bei B 066 D extern steuerbar.

Ausgewählte Kennwerte

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Betriebsspannung	UCC		<u>+</u> 5		+ 18	V
Stromaufnahme je Ver- stärker	I _{CC}	В 060 D В 066 D			250	μA
Stromaufnahme jeVer- stärker	I _{CC}	В 080 Д В 084 Д			2,8	mA
Eingangsoffsetspannung	U _{IO}	D - Тур			15	mV
	UIO	Dm, Dt - Typ			6	mγ
	UIO	Dp - Typ			3	mV
Eingangsoffsetstrom	I ₁₀	D - Typ			5	nA
В 060 D В 066 D	I ₁₀	Dm-, Dp- Typ			3	nA
	I ₁₀	Dt - Typ			10	nA
Eingangsoffsetstrom	I ₁₀	D - Typ			200	рA
B 080 D B 084 D	I ₁₀	Dm-, Dp-, Dt- Typ			100	pА
Differenzeingangsspannung	U _{ID}		-30		30	V
Gleichtakteingangsspann.	U _{IC}		-U _{CC2} +4		$\rm U_{CC1}^{-4}$	V
Gleichtaktunterdrückung	CMR	D - Typ	70		201	dΒ
	CMR	Dm-, Dp-, Dt-Typ	80			dB

B 165 H, V 3,5 A-Leistungsoperationsverstärker

Applikationsbeispiel: Leistungsoperationsverstärker Typstandard: TGL 42578


Bauform B 165 H: TO-220 5 H (Bild 19)

Bauform B 165 V: TO-220 5 V (Bild 20)

Tabbettainee Tellity of to						
Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Betriebsspannung	-U _{CC2} ;		6 .		18	V
Eingangsspannung	$U_{1/3}, U_{2/3}$		0 .		U _{5/3}	
Differenzeingangsspannung	Δ U _T				30	v
Ausgangsspitzenstrom	$\hat{\mathbf{I}}_{\mathbf{C}}$				3,5	A
Verlustleistung	P _{tot}				20	w
Betriebstemperaturbereich	Ta		-25		70	°C
Offene Spannungsverstär- kung	A _u		76			dВ
Brummspannungs- unterdrückung	a _{Br}		40		,	dB
Gleichtaktunterdrückung	CMR		56			dВ

B 176 D/B 177 D

Programmierbarer Operationsverstärker

Übersichtsschaltplan

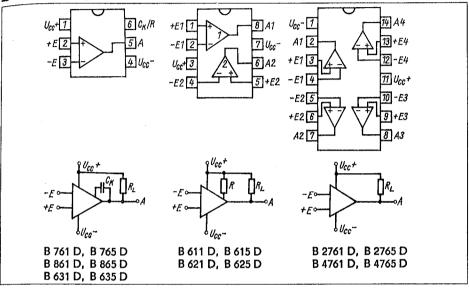
Typstandard: TGL 38979

Bauform B 176 D: DIP-8, Plast (Bild 2) Bauform B 177 D: DIP-14, Plast (Bild 3)

Programmierbarer Operationsverstärker mit hoher Verstärkung, kleinen Offsetströmen, großem Eingangswiderstand und großer Ausgangsamplitude, Programmierbarkeit des Eingangsoffsetstromes, des Eingangsbiasstromes, des Eingangswiderstandes, der Stromaufnahme sowie der Slew-Rate mittels Steuerstrom, B 177 D extern frequenzkompensierbar, Ausgawählta Kannwarta

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Betriebsspannung	UCC	-	+ 3		+ 18	V
Stromaufnahme	I_{CC}	I _{set} = 1,5 μA		,	25	μA
Eingangsoffsetspannung	U _{IO}				6	mV
Eingangsoffsetstrom	IIO	$I_{\text{set}} = 1.5 \mu\text{A}$			6	nA
Differenzeingangsspannung	$ \overline{v}_{\mathrm{ID}} $	I_{set} = 1,5 μ A $ U_{\text{ID}} \leq 2 U_{\text{CC}} $			30	V
Gleichtakteingangs- spannung	U _I	$ n^{I} \leq n^{CC} $			15	Ņ
Gleichtaktunterdrückung	CMR		70		-	dB
Offene Spannungsver- verstärkung	A _{uoff}		88			dB

B 611 D /B 615 D /B 621 D


B 625 D /B 631 D /B 635 D

B 761 D /B 765 D/B 861 D/B 865 D

B 2761 D/B 2765 D/B 2765 S

B 4761 D/B 4765 D

Operationsverstärker

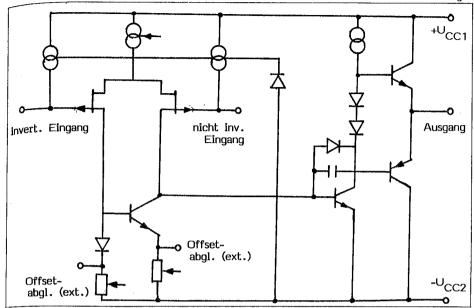
Anschlußbelegung und Einsatzschaltung

Typstandard: TGL 38925

Universell einsetzbare OPV mit hoher Verstärkung, kleinen Offsetgrößen, hohem Eingangswiderstand, großem Betriebsspannungs- und Aussteuerbereich, hohem Ausgangsstrom, open-collector-Ausgängen.

Ausgewählte Kennwerte

Temperaturi 0 bis 70 °C	bereich -25 bis 85 °C	Eingang	Ausgang	Frequenz- kompensation	Bemerkung
B 761 D,SC	B 765 D,SG	einfach	Darlington	extern	einfache OPV
B 861 D,SC	B 865 D,SG	einfach	Darlington	extern	einfache OPV
B 611 D	B 615 D	Darlington	TTL	ohne	einfache OPV
B 621 D,SC	B 625 D,SG	einfach	TTL	ohne	einfache OPV
B 631 D	B 635 D	Darlington	Darlington	extern	einfache OPV
B 2761 D,SC	B 2765 D,SG	einfach	Darlington	intern	doppelte OPV
B 4761 D	B 4765 D	einfach	Darlington	intern	vierfache OPV


offene Spannungsverstärkung $A_{\mathrm{Hoff}} > 75~\mathrm{dB}$

Тур	Art	Betriebs-spanning (V)	Strom- auf- nahme (mA)	Eing offset- spann. (mV)	Eing offset- strom (nA)	Diff eing spann. (V)	Gleich- takt- eing spann. (V)	Gleich- takt- unter- drück.	Ausg strom (mA)	Gleich- Ausg Betriebs- Bauform takt- strom temp drück. bereich (GB) (mA) (°C)	Bauform	
B 611 D	einf.	<u>-2</u> <u>+</u> 15	1,5	+15	+25	+13	+13	09	02	020	1 (DIP-6), 27	27 (SO-8)
B 615 D	einf.		1,5	+15	+25	+13	+13	09	02	-2585	1 (DIP-6), 27	(80-8)
B 621 D,SC	einf.		2,5	-7,5	+300	+15	+13	09	02	020	1 (DIP-6), 27	(80-8)
B 625 D,SG	einf.		2,5	5,7+	+300	+15	+13	09	70	-2585	1 (DIP-6), 27	(80-8)
B 631 D	einf.	-2715	2,5	+15	+25	+13	+13	09	02	020	1 (DIP-6), 27	(80-8)
B 635 D	einf.	-2715	2,5	+15	+25	+13	+13	09	20	-2585	1 (DIP-6), 27	27 (SO-8)
B 761 D,SC	einf.	41,5418	2,5	9-1	+300	+18	+12	65	20	00	1 (DIP-6), 27	27 (SO-8)
B 765 D,SG	einf.	+1,5+18	2,5	9-1	+300	+18	+12	65	0.2	-2585	1 (DIP-6), 27	27 (SO-8)
B 861 D,SC	einf.	41,5+10	1,5	+10	+300	+10	∞ + I	09	70	00	1 (DIP-6), 27	27 (SO-8)
B 865 D,SG	einf.	+1,5+10	1,5	+10	+300	+10	& +1	09	20	-2585	1 (DIP-6), 27 (SO-8)	(SO-8)
B 2761 D,SC	•ďďop	+2+15	1,5	9-1	+300	+15	+12	65	02	00	2 (DIP-8), 27 (SO-8)	(SO-8)
B 2765 D,SG	dobb.	-2	1,5	9+1	+300	+15	+12	65	7.0	-2585	2 (DIP-8), 27	27 (SO-8)
B 4761 D	vierf.	+2+15	ಣ	9-1	+300	+15	+12	65	02	00	4 (DIP-14)	
В 4765 D	vierf.	-215	က	9-1	+300	+15	+12	65	02	-2585	4 (DIP-14)	

B 411 DD

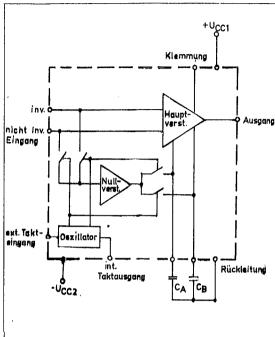
Präzisions-BIFET-Operationsverstärker

* In Entwicklung *

Übersichtsschaltplan

Bezeichnung der Anschlüsse

Typstandard: TGL 45656 Bauform: DIP-8, Plast (Bild 2)


nicht belegt

1	Offsetabgleich	5	Offsetabgleich
2	invertierender Eingang	6	Ausgang
3	nichtinvertierender Eingang	7	positive Betriebsspannung U_{CC1}

negative Betriebsspannung U_{CC2} 8 Der B 411 DD ist ein integrierter Operationsverstärker in bipolarer Technik mit Sperrschichtfeldeffekttransistoren in der Eingangsstufe. Der Arbeitsstrom der Differenzeingangsstufe und die Eingangsoffsetspannung werden auf dem Chip auf geringe Drift und minimale Offsetspannung abgeglichen. Die Temperaturabhängigkeit des Eingangsbiasstromes wird weitgehend intern kompensiert. Der B 411 DD ist mit dem B 081 D und dem B 061 D voll Pin-kompatibel. Die Offsetspannung ist extern abgleichbar. Die Type ist intern für eine Verstärkung von 1 kompensiert.

Eigenschaften

- hoher Eingangswiderstand,
- geringe Eingangskapazität,
- geringe Offsetdrift,
- weitgehend temperaturunabhängige Bias- und Offsetströme,
- großer Bereich für die Differenz- und Gleichtaktunterdrückung,
- Latch-up-Freiheit.

Bezeichnung der Anschlüsse

- Anschluß Kondensator $C_{EXT\ B}$
- Anschluß Kondensator CEXT A
- NC (Abschirmung) 3
- invertierender Eingang
- nichtinvertierender Eingang
- NC (Abschirmung)
- negative Betriebsspannung U_{CC2}
- Rückleitung-Kondensatoren
- Ausgangsklemmung
- Ausgang
- positive Betriebsspannung
 - $\mathbf{U}_{\mathrm{CC1}}$
- 12 interner Taktausgang
- 13 externer Taktausgang
- 14 Umschaltung INT/EXT

Bauform:

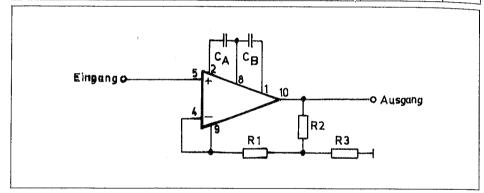
DIP-14, Plast (Bild 3)

Übersichtsschaltplan

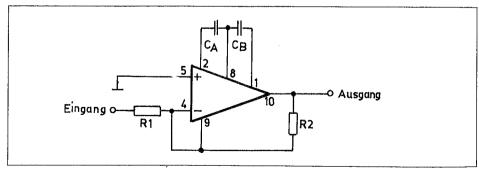
Der U 7650 DD erreicht seine extrem niedrige Offsetspannung durch den Vergleich der Spannungen am invertierenden und nichtinvertierenden Eingang über einen Null- Verstärker. In zwei extern anzuschließenden Kondensatoren wird die Korrekturspannung gespeichert. Eine Klemmschaltung im Rückkopplungsnetzwerk reduziert die Verstärkung des Hauptverstärkers bevor der maximale Ausgangspegel erreicht wird.

Der U 7650 DD ist intern für eine Verstärkung von 1 kompensiert.

Grenzwerte


Kennwert	Kurz- zeichen	min.	max.	Einheit
positive Betriebsspannung	U _{CC1}	0	9	V
negative Betriebsspannung	-U _{CC2}	0	9	V
Takteingangsspannung	U _{Ieh}		UCCI	Ý
Gleichtakteingangs-	U _{IC}	$^{-\mathrm{U}}_{\mathrm{CC2}}$	U _{CC1} . U _{CC1} +0,3	V
spannung				1
Lagertemperatur	Tstg	-55	150	°C
Sperrschichttemperatur	Tj		125	°C

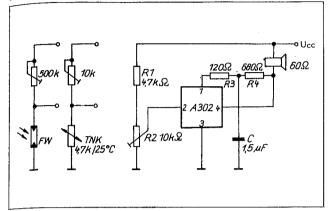
Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
positive Betriebsspannung	U _{CC1}		5		18	v
negative Betriebsspannung	-U _{CC2}		5	ľ	18	V
Gleichtakteingangs-	UIC		-(U _{CC2}		$U_{\rm CC1}^{-2}$	V
_{spannung} Betriebstemperaturbereich	m		+4)		70	°C
	Ta		-10		70	_
Ausgangsstrom	$^{\mathrm{I}}\mathrm{o}$	>			20	mA
Stromaufnahme	I _{CC}	$ m R_{L} \stackrel{\geq}{=} 100~KOhm$		1,8	2,8	mA
Eingangsoffsetstrom	I _{IO} 1)			5	50	рA
Eingangsbiasstrom	I _{IB} 1)			40	400	pА
offene Spannungs-	A Uoff	$U_{O} = + 10 \text{ V}$	100	115		dΒ
verstärkung		$R_G = 10 \text{ KOhm}$				
Gleichtaktunterdrückung	CMR ¹⁾		86	110		đВ
		$R_G = 10 \text{ KOhm}$				
Betriebsspannungs-	svr ¹⁾	$\Delta U_{\rm CC}^{=20}$ V	86	110		dB
unterdrückung		$R_G = 10 \text{ KOhm}$				
Eingangsoffsetspannung	U _{IO} 2)	$R_{G} = 10 \text{ KOhm}$		160	500	μ۷
max. Ausgangsspannungs-	U _{OSS} 2)	$R_{L} = 10 \text{ KOhm}$	24	27		ν
bereich		$R_{L} = 2 \text{ KOhm}$	20	23,5		V
offene Spannungsver-	A (2) Uoff	$U_O = \frac{1}{2} 10 \text{ V}$	100	115		dB
stärkung	0011	$R_{L} = 10 \text{ KOhm}$				
Gleichtaktunterdrückung	CMR	$U_{I} = 10 \text{ V}$	86	110		dB
		$R_G = 10 \text{ KOhm}$				
Betriebsspannungs-	SVR	$U_{CC} = \frac{+}{8} \times V \text{ bzw}.$	86	110		dB
unterdrückung		$U_{CC} = \frac{1}{2} 18 \text{ V}$				
		$R_G = 10 \text{ KOhm}$				
Transitfrequenz	f ₁		2	2,5		MHz


¹⁾ gultig bei $U_{CC} = \frac{+}{-} 15 \text{ V}, T_{a} = -10 \text{ bis } 70 \text{ °C}$ 2) gultig bei $U_{CC} = \frac{+}{-} 15 \text{ V}, T_{a} = 25 \text{ °C} \frac{+}{-} 5 \text{ K}$

Ausgewählte Kennwerte

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
positive Betriebsspannung	U _{CC1}		2,5		8	V
negative Betriebsspannung	-U _{CC2}		2,5		8	V
Umgebungstemperatur	Ta		-10		70	°C
Eingangsoffsetspannung	UIO		!	5	20	μγ
Ausgangsspannungsbereich	Uoss		+ 4,7			v
offene Spannungs-	AUoff		110	140		dB
verstärkung	0011					
Gleichtaktunterdrückung	CMR		110	130		dB
Betriebsspannungs-	SVR		110	130		dB
unterdrückung						
Stromaufnahme ohne Last	I _{CC}			1,4	2,0	m A
Taktfrequenz (intern)	f _{ch}			200		Hz
	(11		1 1			

Applikationsschaltung: invertierender Verstärker



 ${\bf Applikations schaltung:}\ nicht invertierender\ Verst\"{a}rker$

306

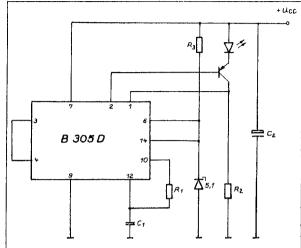
Sensor- und Initiatorschaltkreise

A 302 D Schwellspannungsschaltkreis

Bezeichnung der Anschlüsse

- 1 Betriebsspannung
- 2 Eingang
- 3 Masse
- 4 Ausgang

Applikationsbeispiel: Tongenerator/akustischer Signalgeber mit A 302 D


Typstandard: TGL 32537

Bauform: DIP-4, Plast (Bild 115)

Elektrischer Schalter mit betriebsspannungsproportionaler Schwellenspannung, hochohmigem Eingang, Relaisausgang, Betriebsspannungs-Verpolungsschutz, zur Verwendung für die Verschlußzeitsteuerung elektronischer Kameras sowie beliebige Generator- und Initiatorfunktionen.

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Betriebsspannung Stromaufnahme Betriebstemperaturbereich Ausgangslaststrom Lastinduktivität Schaltverzögerungszeit Flankensteilheit	$\begin{array}{c} \mathbf{U}_{\mathrm{CC}} \\ \mathbf{I}_{\mathrm{CC}} \\ \mathbf{T}_{\mathrm{a}} \\ \mathbf{I}_{\mathrm{OL}} \\ \mathbf{L}_{\mathrm{L}} \\ \mathbf{t}_{\mathrm{V1}} \\ \mathbf{t}_{\mathrm{r}}; \ \mathbf{t}_{\mathrm{f}} \end{array}$		2,3 2,7 -10		6,3 5 55 60 2 1,3 45	V mA °C mA H µs

B 303 D/B 304 D/B 305 D/B 306 D Initiatorschaltkreis B 303 SF/B 304 SF/B 305 SF/B 306 SF

Applikationsbeispiel: Fotoelektrische Sender Typstandard: TGL 42467

Bauform B 303 D, B 304 D, B 305 D: DIP-14, Plast (Bild 3)

Bauform B 303 SF, B 304 SF, B 305 SF: SO-14 (Bild 28)

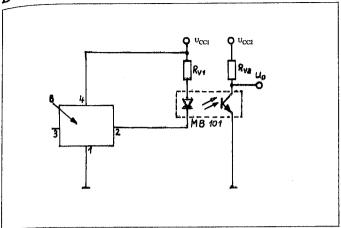
Bauform B 306 D: DIP-8, Plast (Bild 2) Bauform B 306 SF: SO-8 (Bild 27)

Bezeichnung der Anschlüsse B 303 D, B 304 D, B 305 D

- 1 Emitter Einzeltransistor E_{T1} 2 Kollektor Einzeltransistor K_{T1}
- 3 Verstärkereingang E₁
- 4 Verstärkerausgang A₁
- 5 Verstärkerausgang A2
- 6 Ausgang Endstufe Q
- 7 Einstellbare Schaltabstandshysterese H bei B 303 D, B 304 D Betriebsspannung U_{CC} bei B 305 D
- 8 Programmiereingang Ep
- 9 Masse M
- 10 Ausgang Endstufe Q
- 11 Betriebsspannung U_{CC} bei B 303 D, B 304 D Anschluß LED bei B 305 D
- 12 Anschluß Integrationskondensator C
- 13 Ausgang stabilisierte Spannung A₁₁
- 14 Basis Einzeltransistor BT1

B 306 D

- 1 Verstärkereingang E₁
- 2 Verstärkerausgang A₁
- 3 Verstärkerausgang A₂
- 4 Ausgang Endstufe Q
- 5 Masse M
- 6 Ausgang Endstufe Q +
- 7 Betriebsspannung UCC
- 8 Anschluß Integrationskondensator C


Initiatorschaltkreise zur Realisierung von induktiven fotoelektrischen und kapazitiven Initiatoren mit automatischer Ausgangskurzschlußstrombegrenzung bei 130 mA; Tristate-Programmiereingang bei B 303 D, B 304 D, B 305 D für die möglichen Zustände: Grundhysterese, 10fache bzw. stufenlos einstellbare Hysterese (stufenlos bei B 303 D, B 304 D); Ausgänge intern mit Freilaufdioden für induktive Last beschaltet (außer B 303 D); LED-Schaltzustandsanzeige bei B 305 D.

Ausgewählte Kennwerte

Ausgewählte Kennwerte						
Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Betriebsspannung B 303 D	UCC	B 304 D,B 306 D	4,75		30	ν
	UCC	B 305 D	9		30	V V
Verlustleistung je Einzel- transistor T1	P _{VT1}	B 303 D, B 304 D, B 305 D			300	mW
Ausgangsstrom	I _{OL}				70	mA

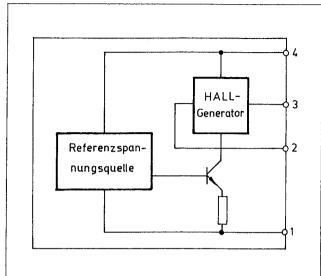
B 451 G/B 452 G/B 453 G

Halltastenschaltkreise

Bezeichnung der Anschlüsse

- 1 Masse
- 2 Ausgang
- 3 Freigabeeingang
- 4 Betriebsspannung
 UCC

Applikationsbeispiel: Schalten eines Optokopplers


Typstandard: TGL 38658

Bauform: SIL-4, Plastflachgehäuse (Bild 25)

Magnetisch betätigte kontaktlose Schalter mit zwei statischen gleichphasigen Ausgängen auf Basis "Hall-Effekt".

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Betriebsspannung	U _{CC}	B 451 G	4,75		27	V
	UCC	B 452 G	4,75		18	v
	UCC	B 453 G	4,75	1	5,25	v
Stromaufnahme	I _{CC}	$B \leq 75 \text{ mT}$			6	mA
$U_{CC} = 5 \text{ V}$	I _{CC}	$B \leq 5 \text{ mT}$			3	mA
Einschaltinduktion	BE				75	mT
Ausschaltinduktion	BA	B 451 G/B 452 G	10	1		mT
$U_{CC} = 5 \text{ V}$	1			1		
$U_{CC} = 5 \text{ V}$ $U_{CC} = 27 \text{ V}$	BA	B 451 G	5			mT
$U_{CC} = 15 \text{ V}$	BA	B 452 G	5			mT
$U_{CC} = 5 \text{ V}$	BA	B 453 G	5	1	ļ	mT
Hysterese	ם		4		24	mT
Ausgangsstrom	IOL				30	mA

B 460 G Analog-Hallschaltkreise

Bezeichnung der Anschlüsse

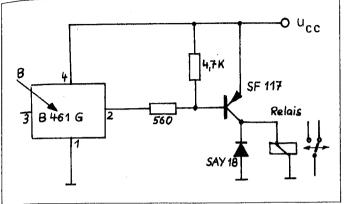
1 Masse

2/3 HALL-Ausgangsspannung

l Betriebsspannung

Applikationsbeispiel: Instrumentationsverstärker mit B 084 D

Typstandard: TGL 26713


Bauform: SIL-4, Plastflachgehäuse (Bild 25)

Integrierter Hall-Generator mit intern geregeltem Steuerstrom, der eine dem angelegten Magnetfeld proportionale Ausgangsspannung liefert. Nullpunkt und Verstärkung müssen durch externe Verstärkerbeschaltung eingestellt werden.

Ausgewählte Kennwerte

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Betriebsspannung	U _{CC}	•	4,75		18	V
Stromaufnahme	I _{CC}	B = 0 mT			3,5	mA
Hall-Offsetspannung	Uoo	B = 0 mT	-6		6	mV
Hall-Spannung	U _O	B = 100 mT,	12		16,2	m۷
		$\rm R_{L}$ = 100 kOhm				
Steilheit	U _O	B < 100 mT	0,1			$\frac{mV}{mT}$
Linearitätsfehler	$ E_L $				3	%

B 461 G/B 462 G Halltastenschaltkreise

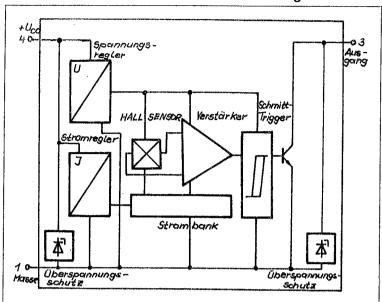
Bezeichnung der Anschlüsse

- 1 Masse
- 2 Ausgang
- 3 Freigabeeingang
- 4 Betriebsspannung

 U_{CC}

Applikationsbeispiel: Schalten eines pnp-Transistors

Typstandard: TGL 38658


Bauform: SIL-4, Plastflachgehäuse (Bild 25)

Kontaktlose magnetische Schalter auf Basis "Halleffekt", mit Freigabeeingang und "opencollector-Ausgang"; zur Hauptverwendung als prellfreier, nichtrastender Schalter in der "Halltaste" sowie universell für beliebige durch ein Magnetfeld auszulösende Schaltfunktionen einsetzbar.

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Betriebsspannung	u _{CC}	B 461 G	4,75		5,25	V
	UCC	B 462 G	4,75		18	v
Stromaufnahme	I_{CC}				5	mA
Ausgangsstrom	I_{OL}				16	mA
Betriebstemperaturbereich	Ta		0		70	°C
Einschaltinduktion	BE				80	mT
Ausschaltinduktion	BA		3			mТ
magnetische Hysterese	В		4			mТ
Ausgangsspannung	U _O	B 461 G	-0,5		7	v
	υ _O	B 462 G	-0,5		18	V
Verzögerungszeit	t _{PLH}				4	μs
	t _{PHL}				3	μs

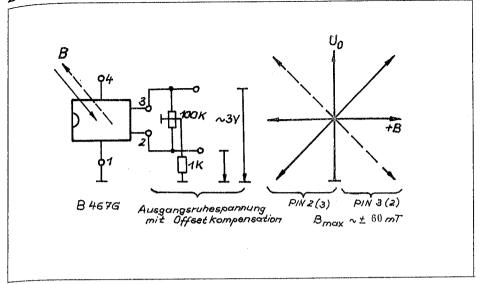
B 466 GA

Hall-IS für Kfz-Zündanlagen

Bezeichnung der Anschlüsse

- 1 Masse
- 2 nicht angeschlossen
- 3 Ausgang
- 4 Betriebsspannungsanschluß

Übersichtsschaltplan


Bauform: SIL-4, Plastflachgehäuse (Bild 25)

Kontaktloser magnetischer Schalter für ein Magnetfeld mit wechselnder Polarität mit integrierter Regel- und Schutzschaltung sowie interner Hysterese für prellfreies Schalten. Haupteinsatzgebiet als Hall-Zündgeber für Ottomotoren, aber auch für industrielle Elektronik.

Ausgewählte Kennwerte

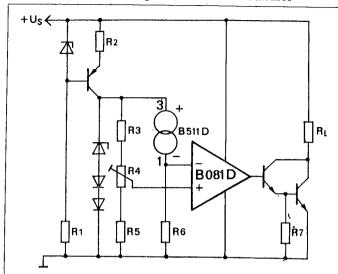
Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Betriebsspannung	UCC		4,5		12	V
Betriebstemperaturbereich	Ta		-25		130	°C
Stromaufnahme	I _{CC}	$B \geq 3 mT$			14	mA
Einschaltinduktion	BE				30	mT
Ausschaltinduktion	BA		-30			mT
magnetische Hysterese	BH		4		20	mТ
Ausgangsspannung	UOL	$\mathrm{B_{E}}~\geq30~\mathrm{mT}$			0,4	v
		$I_{OL} = 16 \text{ mA}$			٠	
Verzögerungszeit	t _{PLH}	tor man			2	μs
	t _{PHL}				1	μs

B 467 G Linearer Hall-Schaltkreis

Applikationsbeispiel: B 467 G mit typischer Beschaltung und Ausgangskennlinie Bauform: SIL-4, Plastflachgehäuse (Bild 25)

Bezeichnung der Anschlüsse

Masse


2/3 Ausgang

4 Betriebsspannung

Der B 467 G ist ein Hall-Schaltkreis mit magnetfeldproportionaler Ausgangsspannung mit hoher mechanischer Auflösung (Änderungen bis zu 1 μ m). Er benötigt am Ort seiner Positionierung keine äußere elektrische Beschaltung.

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Betriebsspannung	U _{CC}		4,5		12	V
Stromaufnahme	IO				3	mA
Ausgangsspannung	U _O		6		28	V
Wandlungssteilheit	s	$ B \leq 60 \text{ mT}$			10	mV mT
			1			

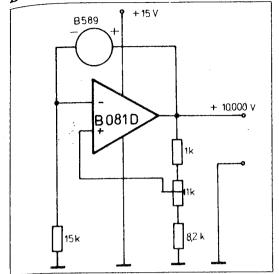
B 511 N Temperatur-Strom-Wandler

Bezeichnung der Anschlüsse

- 1 Ausgang (-)
- 2 nicht belegt
- 3 Betriebsspannung (+)

Applikationsbeispiel: Thermostatregelung mit B 511 D und B 081 D

Typstandard: TGL 42935


Bauform SOT-54, mittlerer Anschluß ist entfernt (Bild 23)

Temperatursensor, bestehend aus hochohmiger Konstantstromquelle mit meßtemperaturproportionalem Ausgangsstrom; geringerer Aufwand externer Beschaltung, z.B. Einsparung von Linearitätsschaltungen bzw. Präzisionsverstärkern.

Ausgewählte Kennwerte

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Betriebsspannung	UCC		4		30	V
Betriebstemperaturbereich	Ta		-55		125	°C
Toleranz des Nennwertes	IT - IT _{ref}	B 511 N 1	-60,6		-28,7	μA
des Temperaturstromes	IT - IT _{ref}	B 511 N 2	-31,3		-2	μΑ
$I_{ m ref}$ bei 25 °C = 298,2 μA	IT - IT _{ref}	B 511 N 3	2		30,8	μA
	IT - IT _{ref}	B 511 N 4	28,2		60,8	μΑ
	IT - IT _{ref}	B 511 Nm	-3		3	μA

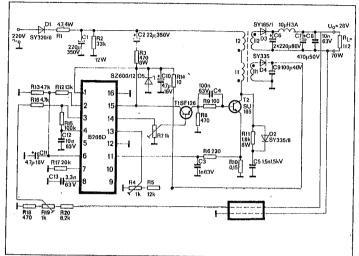
B 589 N 1,23 V-Referenzspannungsquelle

Bezeichnung der Anschlüsse

- 1 Eingang/Ausgang (+)
- 2 nicht belegt
- 3 Masse (-)

Applikationsbeispiel: 10 V Referenzspannungserzeuger

Typstandard: TGL 42934


Bauform: SOT-54, mittlerer Anschluß ist entfernt (Bild 23)

Temperaturkompensierte Zweipol-Bandgap-Referenzspannungsquelle, die eine typische 1,235 V-Spannung für Eingangsströme zwischen 50 μA und 5 mA erzeugt. Die niedrige Ausgangsimpedanz ermöglicht die Ausnutzung der max. Genauigkeit ohne externe Komponenten.

Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
ICC		0,05		5	mA
		-25		70	°C
	$I_{CC} = 0.5 A$	1,2		1,25	V
U _O		0		10	mV
$\frac{\Delta U_{O}}{U_{O}}$					
	$I_{CC} = 0.5 \text{ mA},$	0		100 10	
		0		50 10	ь к
	$T \geq 40 \text{ K}$	0		25 10	-6 К
		0		10 10	6 К
	zeichen I _{CC} T _a U _O	zeichen Meisbedingung $\begin{bmatrix} I_{CC} \\ T_a \\ U_O \end{bmatrix}$ $\begin{bmatrix} U_O \\ \frac{\Delta U_O}{U_O T} \end{bmatrix}$ $\begin{bmatrix} I_{CC} = 0.5 \text{ mA}, \\ T_a = 25 \text{ °C}, \end{bmatrix}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Schaltkreise der Stromversorgungstechnik

B 260 D Ansteuerschaltkreis für Schaltnetzteile

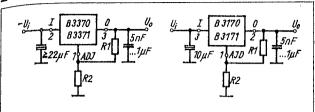
Applikationsbeispiel: Sperrwandlernetzteil 70 W

Typstandard: TGL 37514

Bauform: DIP-16, Plast (Bild 4)

Bezeichnung der Anschlüsse

- Betriebsspannung UCC Stabilisierte
- Stabilisierte Spannung
- 3 Regelverstärkereingang
- 4 Verstärkerausgang/ Modulatoreingang 1
- 5 Überstromschutz/ Modulatoreingang 2
- 6 V_{Tmax}-Einstellung/ Modulatoreingang 3
- 7 R des Sägezahngenerators
- 8 C des Sägezahngenerators
- 9 Synchronisationseingang des Sägezahngenerators
- 10 Ein/Aus-Fernbedienung
- 11 Strombegrenzung
- 12 Masse
- 13 Überspannungsschutz
- 14 Ausgang (Emitter)
- 15 Ausgang (Kollektor)
- 16 Vorwärtsregelung


Ansteuerschaltkreis für geregelte Sperrwandler- und Durchflußwandlerschaltnetzteile, Regelung der Ausgangsspannung durch Pulslagenmodulation mit konstanter Frequenz, Spannungs- oder Stromspeisung, TTL-kompatible Steuereingänge.

Ausgewählte Kennwerte

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Betriebsspannung	U _{CC}	bei Spannungsspeisung	10,2		18	V
Stromaufnahme	I_{CC}				13	mA
Betriebsspannung	UCC	bei Stromsp. 30 mA	20		30	v
interne Referenzspannung	U _{3,4}		3,42		4,02	v
Stabilisierte Spannung	$U_2^{3,4}$		8		9,2	v
Tastverhältnis	v _T		0,3		0,7	V
Verlustleistung	Ptot				0,9	w
Betriebstemperaturbereich	T _a		-25		85	°C

B 3170 V/B 3171 V B 3370 V/B 3371 V

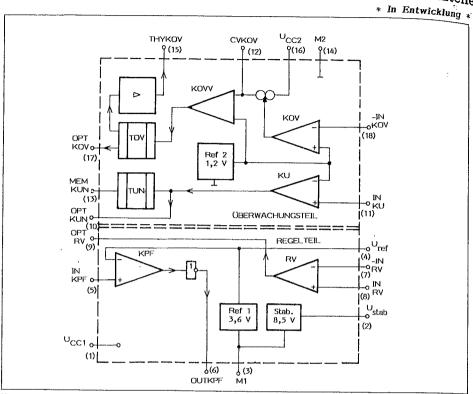
Positivspannungsregler Negativspannungsregler

Einsatzschaltungen B 3170 V, B 3370 V Typstandard: TGL 39704

Rauform:

TO-220 (Bild 22)

Bezeichnung der Anschlüsse


- B 3170 V/B 3171 V
- 1 Einstellanschluß, Uadi
- 2 Ausgang UO
- 3 Eingang U_I
- B 3370 V/B 3371 V
- 1 Einstellanschluß, Uadi
- 2 Eingang Ur
- 3 Ausgang Uo

ginstellbare Floating-Spannungsregler bis 1,5 A für Ein-/Ausgangsspannungsdifferenzen von 3 bis 60 V bzw. -3 bis -50 V, einer minimalen Ausgangsspannung von typ. 1,2 V, Übertemperatur-, Kurzschluß- sowie SOAR-Schutz.

		B 3170 V B 3171 V Positivregler	B 3370 V B 3371 V Negativregler
Eingangsspannungs- ausregelung	u _{ou}	25 mV 35 mV	-25 mV -25 mV
Lastausregelung	U _{OI}	30 mV	30 mV
Einstellstrom	I _{adj}	-100 μA	100 μΑ
Referenzspannung	-Uref	1,25 V	-1,25 V
Brummspannungs- unterdrückung	SVR	60 dB	50 dB

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Eingangs-/Ausgangs-	UD	В 3170 V	3		40	v
spannungsdifferenz	U _D	B 3171 V	3		60	V
	u _D	B 3370 V	-3		-40	V
	u _D	B 3371 V	-3		-50	V
Ausgangskurzschlußstrom	-I _{os}		1,6		3	A
Verlustleistung	P _{tot}	T _c = 90 °C			15	w
 Sperrschichttemperatur	T,				150	°C
Innerer Wärmewiderstand	R _{thje}				4	K/W

B 2600 DG Regel- und Überwachungsschaltkreis für Schaltnetzteile

Übersichtsschaltplan

Bauform: DIP-18, Plast (Bild 6)

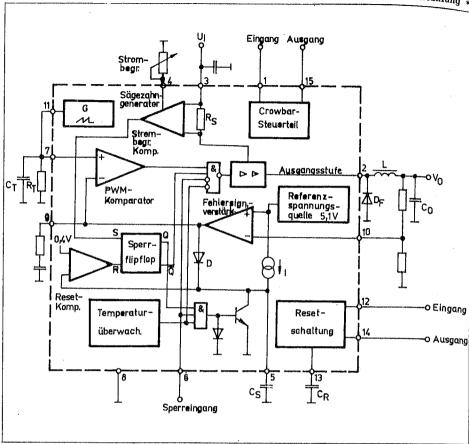
Bezeichnung der Anschlüsse

- 1 Betriebsspannung Regelteil 2 Stabilisierte Spannung
- 3 Masse Regelteil
- 4 Referenzspannung
- 5 Eingang Komparator Powerfail
- 7 Invert. Eingang Regelverstärker 16 Betriebsspannung Überw.-Teil

- 10 Ausgang Optokoppler Komparator Unterspannung
- 11 Nichtinvert. Eingang Komparator Unterspannung
- Verzög. Kondensator Komparator Überspannung
- 13 Speicher Unterspannung
- 14 Masse Überwachungsteil/Substrat
- 6 Ausgang Komparator Powerfail 15 Ausgang Thyristor-Gate Komparator Überspannung
- 8 Nichtinvert. Eingang Regelverst. 17 Ausgang Optokoppler Komparator Überspannung
- 9 Ausgang Optokoppler Regelverst. 18 Invert. Eingang Komparator Überspannung

ner B 2600 DG ist ein Ansteuerschaltkreis, der für den Einsatz im Sekundärkreis von Schaltnetzteilen vorgesehen ist. Er enthält einen Regelteil zur Ansteuerung des Pulsbreitenmodulators sowie einen Überwachungsteil, um einer Zerstörung oder Fehlfunktion der vom Schaltnetzteil zu versorgenden Elektronik vorzubeugen.

Der Schaltkreis enthält die Regelkreiselemente


- . Regelverstärker,
- Referenzspannung
- Optokoppler-Ansteuerung,
- Netzfehler-Erkennung (Power-fail),

sowie die Überwachungsfunktionen

- _ Unterspannungsschutz,
- Unterspannungssignalisierung bzw. Speicherung,
- Überspannungsschutz mit oder ohne Verzögerung,
- Überspannungssignalisierung,
- Sicherungsauslösung eines externen Thyristors (Crowbar-Triggerstufe).

Die integrierte Schaltung ist für eine Betriebsspannung bis 35 V und einem maximalen Thyristor-Gatestrom von 200 mA ausgelegt.

Kennwert	Kurz- zeichen	min.	max.	Einheit
Spannungen	U _{CC1}	10	35	V
	U _{CC2}	4,5	35	V
	$[U_6, U_{10}]$	-0,3	35	V .
Massepotentialdifferenz	U ₁₃ , U ₁₇	-0,3	5	V
Betriebstemperaturbereich	T _a	-25	85	°C
Stromaufnahme	I _{CC1}		7,5	mΛ
Stromaufnahme	I _{CC2}		23	mΛ
Stab. Spannung	Ustab.	8,1	8,9	V
Temperaturkoeffizient der	TK _{Uref}			
Referenzspannung	orer			
B 2600 DGa			$2 \cdot 10^{-4}$ $4 \cdot 10^{-4}$	1/K
B 2600 DGb			4 · 10 ⁻⁴	1/K

Übersichtsschaltplan

Bezeichnung der Anschlüsse

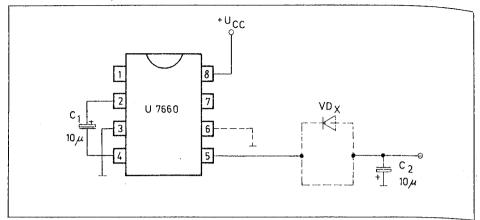
- Eingang der Überspannungsüberwachung
- Ausgang
- Versorgungsspannungs-Eingang
- Einstellung der Strombegrenzung
- Soft-Start-Kondensator-Anschluß
- Sperreingang (INHIBIT)
- Invertierender Eingang der PWM

Nichtinvertierender Eingang PWM und Ausgang Fehlerverstärker

Typstandard: TGL 45577

Bauform: TO-220, 15polig (Bild 22)

- 10 Regeleingang des Fehlerverstärkers
- 11 Oszillator
- Eingang RESET-Schaltung
- Verzögerung für RESET
- 14 Ausgang RESET-Schaltung
- 15 Ausgang der Spannungsüberwachung


ner Schaltkreis B 2960 VG ist ein DC-DC-Abwärtsregler. Er arbeitet in Verbindung mit einer Speicherdrossel, einem Ladekondensator und einer Freilaufdiode als Schaltregler. gin Leistungstransistor für einen Ausgangsstrom bis zu 4 A ist im Schaltkreis integriert. Rei einem Ausgangsspannungsbereich bis 40 V sind damit Ausgangsleistungen bis zu 160 W erreichbar.

Rin bevorzugtes Anwendungsgebiet ist die Stromversorgung für periphere Geräte der Rechentechnik. Neben den üblichen Zusatzfunktionen wie Überspannungsüberwachung, Chiptemperaturüberwachung und extern einstellbare Strombegrenzung sind speziell für die Rechentechnik nutzbare Funktionen integriert wie RESET-Signalerzeugung bei Spannungseinbrüchen, Stand-by-Betrieb durch INHIBIT-Funktion, Synchronisation der Schaltfrequenz und weiches Einschalten mittels Soft-Start-Schaltung.

Kennwert	Kurz- zeichen	min.	max.	Einheit
Eingangsspannung	U _{3/8}	9	46	V
Eingangsspannung INHIBIT	U _{6/8}	-0,3	5,5	V
Erreichbare Ausgangs-	UO	40		V
gleichspannung				
Erreichbarer Laststrom	IO	4		A
Erreichbarer Ausgangs-	-I _{2m}	4,5		A
spitzenstrom				

U 7660 DC/U 7660 DG

DC-DG-Wandler-Schaltkreis

Applikationsbeispiel: Einfacher Spannungsinverter

Typstandard: TGL 45025

Bauform U 7660 DC: DIP-8, Plast (Bild 2) Bauform U 7660 DG: SO-8 (Bild 27)

Bezeichnung der Anschlüsse

1 nicht belegt

pos. Anschluß des Kondensators C₁

3 Masse

4 neg. Anschluß des Kondensators $C_{_{\rm I}}$

5 Ausgang

6 LV

7 Oszillatoreingang

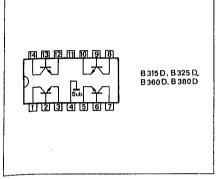
8 Betriebsspannung U_{CC}

Bei einer Beschaltung von nur 2 Kondensatoren kann über einen Eingangsspannungsbereich von 2 V bis 10 V die Eingangsspannung verdoppelt oder invertiert werden.

Ausgewählte Kennwerte

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Setriebsspannung Verlustleistung Stromaufnahme Ausgangswiderstand O = 20 mA; U _{CC} = 5 V Leistungswirkungsgrad Spannungswirkungsgrad	U _{CC} P _{tot} I _{CC} R _O R _O n _p	$U_{CC} = 5 \text{ V}$ $G-Typ$ $C-Typ$ $I_{O} = 20 \text{ mA},$ $U_{CC} = 5 \text{ V}$ $R_{L} = 00,$ $U_{CC} = 5 \text{ V}$	87		10,5 300 500 90 100	V mW µA Ohm Ohm %

Transistorarrays


B 315 D/B 315 E/B 315 K

B 325 D/B 325 E/B 325 K

B 360 D/B 360 E/B 360 K

B 380 D/B 380 E/B 380 K

4 npn-Transistorarrays

Anschlußbelegung B 315 D bis B 380 D

Bauform: DIP-14, Plast (Bild 3)

B315 E,B315 K B325 E,B325 K B360 E,B360 K B380 E,B380 K

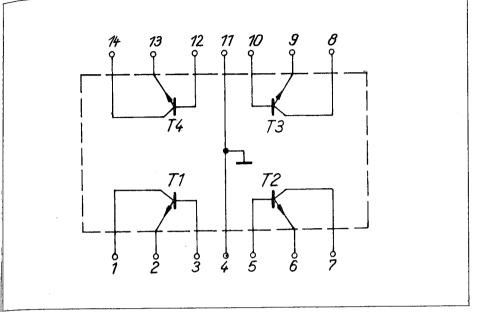
Anschlußbelegung B 315 E, K bis

В 380 Е, К

Bauform: DIP-14, Plast (Bild 3)

Transistorarrays mit 4 Silizium-npn-Transistoren, Gehäusevariante E mit Kühlsteg, K mit Kühlkörper; bei E und K Emitter T_3 mit Substrat verbunden.

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
I _B -Verhältnis für alle Transistorpaare für Grup- pen b e	I _{BTn} I _{BTk}		0,8		1,25	
Gleichstromverstärkung (50 mA/3V) für Gruppen b e	h _{21E}		28		560	


Ausgewählte Kennwerte

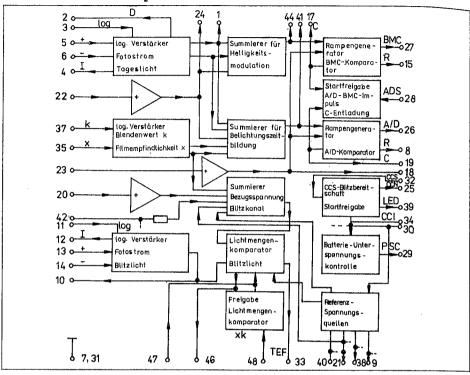
Parameter		В 315	В 325	В 360	В 380	B 340 B 341	В 342	Einheit
Kollektor- Basis-	U _{CBO} ≤	20	30	90	100	20	20	V
Spannung			ı					
Kollektor-	U _{CEO} ≤	15	25	60	80	15	15	v
Emitter-								
Spannung								
Emitter-	U _{EBO} ≤	5	5	5	5	5	5	ν
Basis-	LDO					,		
Spannung								
Kollektor-	$^{ m U}_{ m CEsat} \leq$	0,5	0,5	0,5	0,5	0,5	0,5	ν
Emitter-	0.25%							
Sättigungs-								
spannung								
Kollektor-	I _C ≤	500	500	500	500	10	30	mA
strom								
Basisstrom	I _B ≤	250	250	250	250	5	5	mA
Übergangs-	$f_T =$		135 .	230		210	210	MHz
frequenz		(je	nach h ₂	1E ^{-Grupg}	oe)			

Thermische und Leistungsparameter

Тур	Sperrschicht- temperatur	Betriebs- temperatur- bereich	Gesamt- wärme- widerstand	Verlust- leistung
	T _{jmax}	Ta	R _{thja}	P _{tot}
В 3 D	150	-25 85	105	1,3
В 3 Е	150 ·	-25 85	75	1,8
В 3 К	150	-25 85	37	4,0
B 340 D	125	-25 85	120	0,4
B 342 D	150	-25 85	170	0,4

в 340 D/B 341 D/B 342 D

Anschlußbelegung B 340 D/B 341 D/B 342 D


Bauform: DIP-14, Plast (Bild 3)

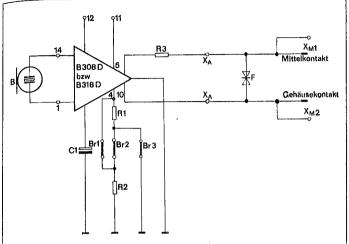
Transistorarrys mit 4 Silizium-npn-Transistoren.

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Differenz der U _{BE} für alle Transistorpaare	U _{BET1/T2}	B 340 D, B 341 D	0,5		5	v
Gleichstromverstärkung (1 mA/5 V) für Gruppen c e	h _{21E(T1)}		56		560	
h _{21E} -Verhältnis für alle Transistorpaare	h _{21E(x)} h _{21E(y)}		0,8		1,25	
Rauschfaktor	F	в 341 D			6	dB

Schaltkreise für spezielle Anwendungen

A 321 G Komplexer Kamera-Schaltkreis

Übersichtschaltplan


In elektronisch gesteuerten Kameras werden folgende Funktionen realisiert:

- Umwandlung der Eingabegrößen Objektleuchtdichte, Filmempfindlichkeit und Blendenwert in eine der Belichtungszeit proportionale Impulsdauer \mathbf{t}_{26} ,
- Helligkeitssteuerung des LED-Displays,
- Gewinnung des Blitzlöschimpulses aus den Eingabegrößen,
- Unterspannungskontrolle,
- Blitzbereitschaftsanzeige,
- Bereitstellung temperaturstabiler und -proportionaler Referenzspannungen.

Ausgewählte Kennwerte

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Betriebsspannung	U ₃₀		3,6		6,8	ν
Stromaufnahme	I ₃₀				21	mA

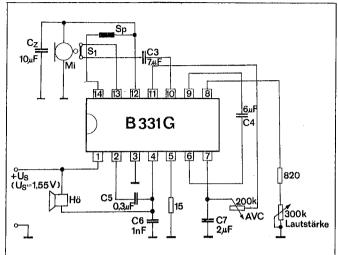
B 308 D B 318 D Ungeregelter Mikrofonverstärker für Piezosprechkapseln Geregelter Mikrofonverstärker für Piezosprechkapseln

Bezeichnung der Anschlüsse

- 1 Eingang 1
- 2 nicht belegt
- 3 Abblockung
- 4 Verstärkungseinstellung (B 308 D) Abblockung der Regelschleife (B 318 D)
- 5 Ausgang 1
- 6 nicht belegt
- 7 interne Verbindung
- 8 nicht belegt
- 9 nicht belegt
- 10 Ausgang 2
- 11 nicht belegt
- 12 interne Verbindung (Substrat)
- 13 nicht belegt
- 14 Eingang 2

Applikationsbeispiel: Piezosprechkapselverstärkung

Typstandard: TGL 37513


Bauform: DIP-14, Plast (Bild 3)

Ungeregelter (B 308 D) und geregelter (B 318 D) NF-Verstärker für Fernsprechmikrofone mit piezoelektrischem Wandler:

- Doppel-Endstufen-Ausgang zur polaritätsunabhängigen Anschaltung des Verstärkers an die Teilnehmeranschlußleitung,
- Rufspannungsschutz,
- Anschluß zur externen Verstärkereinstellung beim B 308 D,
- Leitungsstromabhängige Verstärkerregelung beim B 318 D.

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Betriebsspannung	U _{CC}	$I_{CC} = 35 \text{ mA}$			8,5	v
Speisestrom	I_{CC}		10		100	m A
Spannungsverstärkung	A _u	B 308 D1	30,3		39,7	dB
	Au	B 308 D2	28		42	dB
	A _u	B 318 D1	32,3		39,7	dB
	A _u	B 318 D2	28		42	dB
Psoplometrisch bewertete	U _n		1		0,5	mV
Ausgangsrauschspannung	n			İ	ŕ	

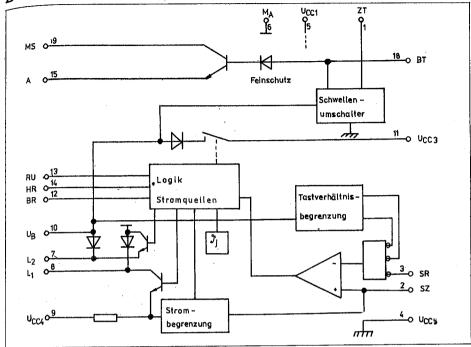
B 331 G Hörhilfeverstärker mit Dynamikkompression

Applikationsbeispiel: Hörhilfeschaltung mit B 331 G

Typstandard: HWF-S 754.97

Bauform: (Bild 26)

Bezeichnung der Anschlüsse


- 1 Betriebsspannung
- 2 ALC-Eingang
- 3 Masse
- 4 Ausgang Endverstärker
- 5 Gegenkopplung Endverstärker
- 6 Eingang Endverstärker
- 7 Regelzeitkonstante ALC
- 8 Regelung Mikrofonverstärker
- 9 Ausgang Mikrofonverstärker
- 10 Eingang Mikrofonverstärker
- 11 Regelumfang ALC
- 12 Stabilisierte Spannung 13 Ausgang Hörspulen-
- verstärker
- 14 Eingang Hörspulenverstärker

Hörhilfeschaltkreis mit Hörspulenverstärker, einstellbarer Dynamikkompression, regelbarem Mikrofonverstärker und A-Endstufe, vorrangig für hochwertige Hinterohr-Hörgeräte kleinen Volumens und Hörbrillen.

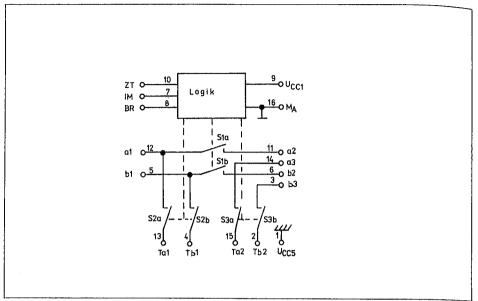
Ausgewählte Kennwerte

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Betriebsspannung	U ₁		1		9	V
Stromaufnahme	I ₁				1	m A
Stromaufnahme der End-	I ₄		1,4		2,3	mA
stufe	-				1	
Spannungsverstärkung						
Endvorverstärker	A _{uME}		58		68	₫B
Hörspulenverstärker	A _{uH}		18		22	dB
Klirrfaktor	k	$P_{O} = 0.5 \text{ mW}$			6	%
Regelbereich des	ΔA _{uM}	O	34			dB
Mikrofonverstärkers	anı					
Ausgangsleistung	PO		0,5		·	mW

R 384 D Spannungsversorgungsschaltkreis

Übersichtschaltplan

Bauform: DIP-20, Plast (Bild 8)


Der B 384 D enthält die Leistungstransistoren, Dioden sowie den Pulsdauermodulator für den Schaltregler innerhalb des Komplexes für Teilnehmeranschlußschaltungen. Der Schaltkreis enthält weiterhin eine Schwellenspannung für den externen Feinschutz.

Aufgaben des Schaltreglers:

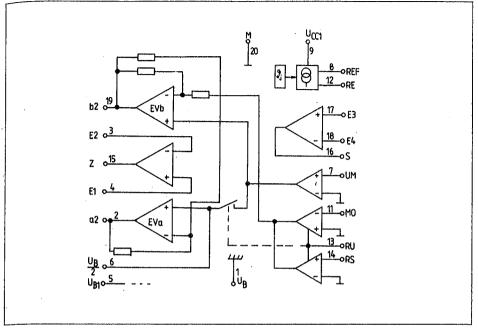
- die negative systemeigene Betriebsspannung \mathbf{U}_{B} im Gesprächszustand der Leitungsstränge (a., b-Ader) anzupassen.
- die Betriebsspannung von - \mathbf{U}_{B} = 90 V für die Rufspannungserzeugung bereitzustellen.

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Betriebsspannung	U _{CC1}		4,75		5,25	V
January C	-U _{CC3}		22,8		29	V
	-U _{CC4}		54		72	V
	-U _{CC5}		89,5		95	V

B 385 D Testschaltkreis

Übersichtsschaltplan

Typstandard: TGL 43789


Bauform: DIP-16, Plast (Bild 4)

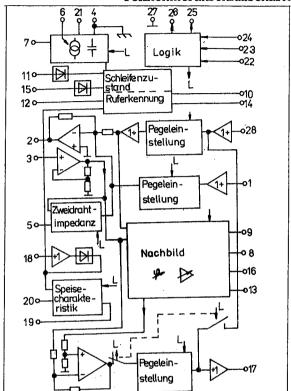
Der Testschaltkreis für Teilnehmeranschlußschaltungen B 385 D enthält 3 bidirektional zu betreibende Schalterpaare mit der zugehörigen TTL-kompatiblen Ansteuerlogik. Die Thyristorschalter sind mit einem niedrigen Durchlaßwiderstand für Ströme bis zu 70 mA und Sperrspannungen bis zu 91 V konzipiert. S2 hat eine spezielle Kompensationsschaltung zur Minimierung der Meßfehler.

Ausgewählte Kennwerte

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Betriebsspannung	U _{CC1}		4,75 91		5,25 95	V V

B 386 D Speiseschaltkreis

Übersichtsschaltplan


Bauform: DIP-20, Plast (Bild 8)

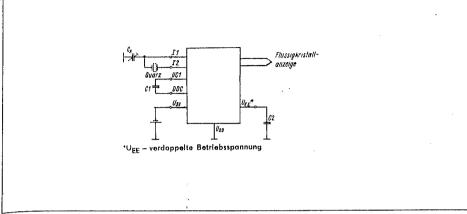
Der B 386 D enthält den Leistungsverstärker für die a- und b- Ader, die Rufansteuerung, den NF-Vorverstärker, den Abtaster für a- und b-Ader und den Umpolverstärker.

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Betriebsspannung	U _{CC1}		4,75		5,25	V
	-U _B		15		92	V
Verstärkung	A _{MO-a3b3}	$U_{MO} = 150 \text{ V}$	4,7		7,4	dB
Rufspannung	uab		56,5			dB
Klirrfaktor	k _{a3} , k _{b3}	$-U_B = 30 \text{ V}$			3,6	%
	k _{a3} , k _{b3}	$-U_B = 90 \text{ V}$	} ;		27 -	%
Brummspannungsunter- drückung	$\mathrm{SVR}_{\mathrm{U}_{\mathrm{CC1}}}$		18			đΒ

B 3870 D

Analog-Prozessorschaltkreis für Teilnehmeranschlußschaltungen

Ubersichtsschaltung
Typstandard: TGL 43791
Bauform: DIP-28, Plast (Bild 12)


Der B 3870 D realisiert die Funktion NF-Verstärkung in Empfangsrichtung, Eintastung der Gebürenimpulse, NF-Verstärkung in Senderichtung, Gabelverstärkung mit Nachbild, Speisewiderstandscharakteristik (Konstantstrom, Widerstandsspeisung), Innenwiderstandseinstellung (Zweidrahtimpedanz), Spannungskomparator für Schaltregler, digitale Schnittstelle, Schleifenzustands- und Ruferkennung. Im digitalen Schaltungsteil werden die Steuersignale für die programmierbaren Analogfunktionen Zweidrahtimpedanz, Verstärker-Sendeeinrichtung, Verstärkung-Empfangsrichtung, Gebürenimpulspegel, Speisecharakteristik, Nachbild, Analog-Schleife gewonnen.

Ausgewählte Kennwerte

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Betriebsspannung	U _{CC1} ,		4,75		5,25	V

U 131 G

Schaltkreis für 32-kHz-LCD-Wecker

Typische Einsatzschaltung

Bauform: (Bild 31)

Uhrenschaltkreis für Quarzwecker und -schaltuhren, mit digitaler Flüssigkristallanzeige (LCD) bei 2 Phasen Multiplexbetrieb.

Anzeige

6-stelliges Display mit Zusatzsymbol, 24-Stundenanzeige

Bedienung

6 Tasten

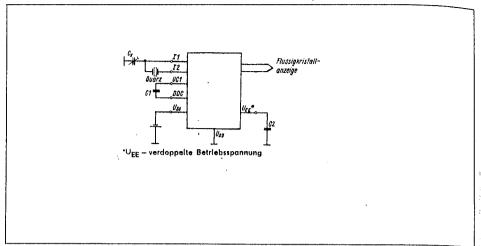
4 Schaltereingänge

externe Bau-

Quarz, Trimmer, zwei Kondensatoren

elemente

Schaltausgänge


W1, WR, Summerausgang

3 Betriebsarten

- 1. eine Weckzeit programmierbar
- 2. zwei Weckzeiten programmierbar
- 3. drei Weckzeiten programmierbar

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Quarzfrequenz Betriebsspannung	f _o -U _{SS}		1,8		32,768 1,2	kHz V

U 1311 D Schaltkreis für Schaltuhren, 32 kHz

Typische Einsatzschaltung

Bauform: (Bild 31)

Der Schaltuhrenschaltkreis dient zur Ansteuerung von Radioschaltuhren, Sperrzeitschaltern und ähnlichen Geräten mit digitaler Anzeige durch LCD bei 2-Phasen Multiplexbetrieb.

Anzeige

6-stelliges Display mit Zusatzsymbol, 24-Stundenanzeige

Bedienung

fünf Tasten

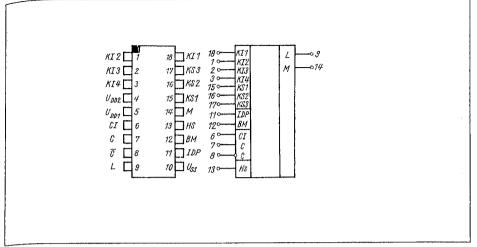
externe Bau-

Quarz, Trimmer, zwei Kondensatoren

elemente

Schaltausgänge

SA mit Einschaltzeit S 21 und Ausschaltzeit S 22


TI mit Tagesimpuls (0.00.00)

Ausgewählte Kennwerte

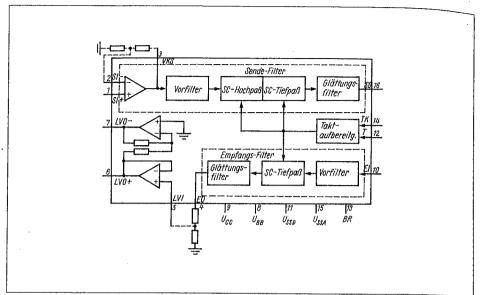
Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Quarzfrequenz Betriebsspannung	f _o -Uss		1,8		32,768 1,2	kHz V

U 713 D/U 713 PF

Telefon-Tastwahl-Schaltkreis

Anschlußbelegung und Schaltzeichen

Bauform U 713 D: DIP-18, Plast (Bild 6)


Bauform U 713 PF: PLCC 24

Der U 713 D dient zum Aufbau eines vollelektronischen Tastwahlblockes, der nach dem Impulswahlverfahren arbeitet und in alle Fernsprechendgeräte eingebaut werden kann. Im U 713 D sind folgende Grundfunktionen integriert:

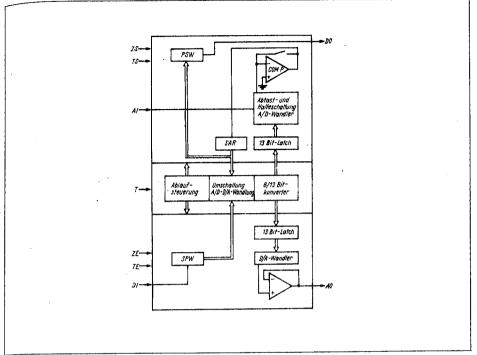
- Nummerneingabe,
- Schema der nsi- und nsa-Kontakte im geforderten Zeitschema,
- Einstellung der Länge der Zwischenwahlpause,
- Einstellung des Tastverhältnisses des nsi-Ausganges (LINE),
- Zwischenspeicherung für max. 22 Ziffern einschließlich Wahlunterbrechung,
- Wahlunterbrechung (Access-Pause),
- Wahlwiederholung (Redial-Funktion).

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Betriebsspannung Stromaufnahme	$\begin{matrix} \textbf{U}_{\text{DD1}},\\ \textbf{U}_{\text{DD2}}\\ \textbf{I}_{\text{DD1}},\\ \textbf{I}_{\text{DD2}}\end{matrix}$		2,5		5,3 250	V μA

U 1001 C PCM-Filter IS

Übersichtsschaltplan

Bauform: DIP-16, Plast (Bild 4);


CMOS-Filterschaltkreis, der speziell für die Filterung des für die PCM-Codec-Anwen, dung vorgesehenen Sprachbandes konstruiert ist. Er enthält sowohl Sende- als auch $\rm Em_{\tau}$ pfangsfilter und ist kompatibel mit allen CCITT-Spezifikationen.

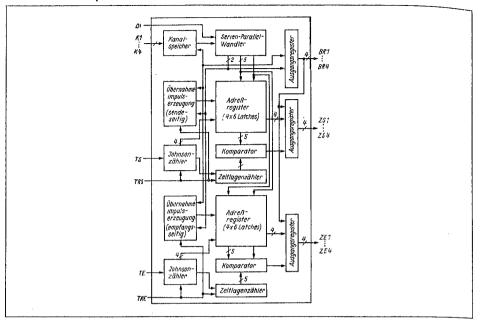
- TTL- und CMOS-kompatible Eingänge,
- keine externen Glättungsfilter,
- direkte Zusammenschaltung mit den Schaltkreisen U 1011 C und U 1021 C/D.

Ausgewählte Kennwerte

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Betriebsspannung	U _{CC+}		4,75		5,25	V
	U _{CC-}		5,25		-4,75	V
Taktfrequenz an T	f _M ,				2048	kHz
	$\int_{1}^{1} M_{2}$				1536	kHz
Stromaufnahme an U _{CC}	I_{CC}^2				9,1	mA
Stromaufnahme an UBB	-I _{BB}				9,1	mA

U 1011 C PCM-Codec-Schaltkreis

Übersichtsschaltplan


Bauform: DIP-16, Plast (Bild 4)

PCM-Codec (Pulse Code Modulation Code Decoder) mit A-Kompandierungs-Code (A-Law) und mit folgenden Eigenschaften:

- kompatibel mit allen CCITT-Spezifikationen,
- Bit-Inversion der geraden Bits,
- synchrone und asynchrone Operation,
- integrierte Abtast- und Haltefunktion,
- Kapazitätsnetzwerte für A/D- und D/A-Wandlung,
- minimale externe Beschaltung,
- Ein- und Ausgänge TTL-kompatibel,
- serielle Datenein- und -ausgangsraten von 64 kBit⁻¹ bis 2,1 MBit⁻¹ bei 8 kHz Abtastrate,
- direkte Zusammenschaltung mit dem U 1001 C und dem U 1021 C/D.

U 1021 C/D

Zeitsteuerschaltkreis

Übersichtsschaltplan

Bauform: DIP-16, Plast (Bild 4)

Spezieller programmierbarer digitaler Steuerschaltkreis in CMOS-Technologie, welcher das Ein- und Auslesen der digitalen Informationen an Codec (U 1011 C) und Filter (U 1001 C) steuert. Er ist in der Lage, 4 Teilnehmer (4 Kanäle) in jeweils Sende- bzw. Empfangsrichtung, entsprechend dem PCM 30-Grundsystem, in 1 von 32 möglichen Zeitlagen anzusteuern. Die Zeitlageimpulse synchronisieren die angeschlossenen Kanäle bezüglich der gesendeten bzw. empfangenen PCM-Daten.

- TTL- und CMOS-kompatible Eingänge,
- synchroner oder asynchroner Betrieb (bzgl. Sende- und Empfangsrichtung),
- Programmierung erfolgt mittels übergeordneter Kanaltakte durch serielles 8 Bit Datenwort.

Ausgewählte Kennwerte

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Betriebsspannung	UCC		4,75		5,25	V
Grundtakt an TE, TS	C				2048	Hz
Frequenz Synchronimpuls TRE, TRS	F				8	kHz

บ 1600

CMOS-Standardzellensystem

systembeschreibung

 $_{\rm Das}$ VLSI-Standardzellen-Entwurfssystem ist ein durchgängiges Entwurfssystem für die $_{\rm Ent}$ wicklung digitaler, sychron-getakteter Schaltkreise in der Technologie CSGT4. Es besteht aus den Komponenten:

- _ Standardzellenkatalog,
- Festblockgeneratoren für RAM, ROM und PLA,
- CAD-System zur Layouterzeugung auf Blockniveau,
- Anwenderhandbuch.

Chipgrößen

Für das Standardzellensystem U 1600 sind folgende standardisierte Chipgrößen vorgesehen:

Chipgröße (mm²)	mögliche Pinzahl
8,86 x 8,86	68, 124
7,42 x 7,42	68, 124
6,88 x 6,88	68, 124
5,98 x 5,98	44, 84
5,26 x 5,26	28, 44, 52, 84
4,18 x 4,18	28, 44, 52

Abhängig von der Größe der verwendeten Festblöcke können bis zu 100.000 Transistoren pro Chip realisiert werden, wobei folgende Packungsdichten erreicht werden:

Logik: ca. 1.000 Transistoren/mm²
ROM: ca. 20.000 Transistoren/mm²
RAM: ca. 12.000 Transistoren/mm²

Standardzellenkatalog

Für das Standardzellensystem U 1600 wurden sämtliche im Vorgängersystem U 1500/1520 angebotenen Standardzellen übernommen. Zusätzlich wurden spezielle Flipflops entwickelt, die eine Testung des Standardzellen-Schaltkreises nach dem LSSD-Prinzip ermöglichen. Für alle Standardzellen werden im Katalog die Funktionsbeschreibung, Logikgleichung, Anschlußbelegung, statische und dynamische Parameter sowie Gatteräquivalent angegeben.

Der Standardzellenkatalog enthält:

Logik-Standardzellen

- Inverter, teilweise mit erhöhter Treiberleistung
- Grundgatter (NAND, NOR, EXOR ...)
- Kombinatorische Verknüpfungen (ANDNOR, ORNAND ...)
- Halbadder, Volladder

Treiber-Transmissionsgate-Standardzellen

- Treiber mit variabler Treiberleistung
- Einfach-Transmissionsgate mit Tristate-Verhalten
- Doppel-Transmissionsgate

Flipflop-Standardzellen

- D-Master-Slave-Flipflops, asynchron
- D-Master-Slave-Flipflops, synchron (LSSD-fähig)
- JK-Master-Slave-Flipflops, synchron (LSSD-fähig)
- Taktzustandsgesteuerte D-Flipflops (Latch), asynchron
- RS-Flipflops, asynchron

Interface-Standardzellen

- Eingangsstufen, CMOS-kompatibel
- Eingangsstufen, TLL-kompatibel
- Eingangsstufen mit Schmitt-Trigger-Verhalten
- Ausgangsstufen mit Two- bzw. Tristate-Verhalten
- bidirektionale Stufen

Systeminterne Zellen

Software-Makros (MSI-Schaltkreis-Funktionen)

Festblockgeneratoren für RAM-, ROM- und PLA-Erzeugung

- wahlfreie Konfiguration möglich (Wortbreiten, Speichertiefe)
- maximale Blockgrößen:
 - ROM 128 KBit (maskenprogrammierbar)
 - RAM 16 KBit
 - PLA 16000 Programmierpunkte

Entwurfssystem

nas Standardzellen-Entwurfssystem "ENSIC" ist durch folgende Merkmåle definiert:

- geschlossenes, dialogfähiges Programmsystem
- Eingabegrößen sind:
- 1. Logikbeschreibung durch "NBS 84"
- 2. Standardzellenkatalog
- 3. Bondinselbelegung
- 4. Festblockart und -größe
- 5. Eingangsfolgen für Logiksimulation
- Einbindung des Programmes "KOSIM" zur Absichts- und Bestätigungssimulation
- _ Einbindung des Programmes "MIPRE" zur PLA-Erzeugung und Optimierung
- Prüfung des NBS-Textes, automatische Parametergenerierung
- Partitionierung, Plazierung, Trassierung
- "Erzeugung der Testfolgen wahlweise:
- 1. für Strukturtest (LSSD-Prinzip)
- 2. Funktionaltest
- Erzeugung der GS für Datenträgerausgabe.

Gehäuse

Schaltkreise U 1600 sind derzeit in folgendem Gehäusesortiment lieferbar:

- QFP68 nach neuem Standard: Bauform C7L TGL 26713/04

Standardausführung mit Z-Pins

oder Bauform C6L TGL 26713/04

Sonderausführung mit geraden Pins

- QFP124 nach neuem Standard: Bauform C7N TGL 26713/04

bzw: Bauform C6N TGL 26713/04

(Sonderausführung)

In Vorbereitung befinden sich folgende Gehäusebauformen:

QFP28 neu: C7G (Sonderausführung C6G) TGL 26713/04

QFP44 neu: C7H (Sonderausführung C6H) TGL 26713

QFP52) bisher in der DDR

QFP84) nicht standardisiert.

Für jedes Gehäuse sind die Betriebsspannungs- und Massepins bereits festgelegt (für QFP124 je 4 Pins). Weiterhin werden 8 weitere Anschlüsse für die Testung (LSSD) des

Standardzellen-Schaltkreises benötigt. Damit sind maximal 108 Pins anwendungsspezifisch verfügbar.

Vorläufige technische Daten

Die Anwendung einer leistungsfähigen 1,5 µm-CMOS-Technologie ermöglicht günstige statische und dynamische Parameter:

- Betriebsbedingungen

Betriebsspannung:

+ 5 V ⁺ 5 %

Low-Eingangsspannung:

-0.3 bis + 0.8 V

High-Eingangsspannung:

+ 2,4 bis $U_{CC} + 0,3$ V

Ausgewählte Kennwerte

Low-Ausgangsspannung:

max. 0,4 V (bei $I_{O} = 5 \text{ mA}$)

High-Ausgangsspannung:

min. 2,4 V (bei $I_{O} = -1 \text{ mA}$)

Ruhestromaufnahme:

< 400 uA

Max. garantierte

Taktfrequenz:

25 MHz

Gatterverzögerung:

< 1.6 ns

Die Betriebsstromaufnahme ist vom jeweiligen Anwendungsfall abhängig.

Technische Auskünfte erteilt:

VEB Forschungszentrum

Mikroelektronik Dresden

Grenzstr. 28

Dresden

8080

11 5300 CMOS-Gate-Array-System

systembeschreibung

Schaltkreisentwurfssystem für höchstintegrierte digitale anwendungsspezifische Schaltbreise (ASIC) nach dem Gate-Array-Prinzip, d. h. einheitlicher Schaltungsuntergrund (Gatter-, Flip-Flop-, SRAM- sowie Interface-Zellen) und anwendungsspezifische "Verdrahtung" mittels 3 Ebenen in der CSGT4.

Bestandteile des Systems sind:

- 2 Master (U 5301 und U 5302)
- _ Makrozellenkatatog
- durchgängiges Entwurfssystem "Archimedes"
- Organisationsprojekt

Masterbeschreibung

Der Master U 5301 (sog. "Logikmaster) enthält ca. 40.000 Transistoren, davon

- 3.840 Gatteräquivalente für Kombinatorik
- 360 anwendungsspezifische konfigurierbare Master-Slave-Flip-Flops

Der Master U 5302 (sog. "Logikmaster mit SRAM") enthält ca. 70.000 Transistoren, d. h. 5.260 Gatteräquivalente und 4 KBit-SRAM, davon

- 2.640 Gatteräquivalente für Kombinatorik
- 200 anwendungsspezifische konfigurierbare Master-Slave-Flip-Flops
- 8 SRAM-Blöcke zu je 64 x 9 Bit (blockweise Kaskadierung zur Erhöhung von Wortbreite und Speichertiefe möglich).

Makrozellenkatalog

Es wurden sämtliche, im Vorgängersystem U 5200 angebotenen, logischen Hardware-Makrofunktionen (Gattermakros) auf das System U 5300 umgesetzt. Für alle Makros wird im Katalog eine Funktionsbeschreibung, die Anschlußbelegung, der Aufrufname sowie das dynamische Verhalten angegeben.

Der Makrozellenkatalog enthält:

Logik-Makros

- 4 Inverter mit internen Treibern
- 16 Grundgatter (Mehrfach-NAND und -NOR, dgl. mit Inverter, EXOR, XAND, Impli-
- 28 komplexe Gatter (Verknüpfungen von Mehrfach-NAND und -NOR, zuzüglich Inverter usw.)

- Halbadder, Volladder
- 10 Dekoder, Multiplexer und Demultiplexer

Flip-Flop-Makros

- D-Master-Slave-Flip-Flops
- JK-Master-Slave-Flip-Flops

Interface-Makros

- Eingangsstufen, wahlweise mit oder ohne D-Master-Slave-Flip-Flop am Eingang
- Ausgangsstufen, wahlweise tristate oder open-collector
- bidirektionale Stufen

Entwurfssystem

Der Entwurf des U 5300-Schaltkreises erfolgt mit dem interaktiven durchgängigen Entwurfssystem "Archimedes" in der Reihenfolge:

- Erstellung des Logikplanes und Umsetzung in die NBS
- NBS-Eingabe
- Logiksimulation
- automatische Platzierung und Trassierung
- dynamische Simulation
- automatische Erzeugung des LSSD-Meßprogrammes
- GS-Datenerzeugung

Taktsystem

Das Gate-Array-System U 5300 arbeitet mit vollsynchroner Logik, wobei dem jeweiligen U 5300-Schaltkreis bis zu 2 Takte zugeführt werden können. Die Zuordnung der Flip-Flop-Zellen kann (in Abhängigkeit vom konkreten Einsatzfall) wahlfrei zu einem der beiden Takte erfolgen; der SRAM ist an einen bestimmten Takt gebunden, der Zugriff erfolgt ebenfalls taktsynchron innerhalb einer vollen Taktperiode.

Gehäuse

Die Verkappung der U 5300-Schaltkreise erfolgt generell in 124polige QFP-Gehäuse (Bauform C7N, TGL 26713/04). Anwendungsspezifisch nutzbar sind:

- für den Master U 5301 bis zu 108 Pins und
- für den Master U 5302 bis zu 104 Pins.

Die Bauform C7N mit Z-Pins ist Standardausführung. Als Sonderausführung auf spezielle Bestellung ist die Bauform C6N mit geraden Pins lieferbar. 344

Vorläufige technische Daten

Die Anwendung einer leistungsfähigen 1,5 $\mu m\text{-}CMOS\text{-}Technologie}$ ermöglicht günstige statische und dynamische Parameter:

Betriebsspannung: + 5 V + 5 %

L-Eingangsspannung: - 0,3 bis + 0,8 V

- H-Eingangsspannung: + 2,4 bis $U_{CC} + 0,3$ V

_ L-Ausgangsspannung: $< 0.4 \text{ V (bei I}_{O} = 5 \text{ mA)}$

_ H-Ausgangsspannung: > 2,4 V (bei $I_O = -1$ mA)

. Ruhestromaufnahme: $< 200 \mu A$

- Treiberfähigkeit: 3 TTL-Lasten pro Ausgangsstufe

maximale garantierte 40 MHz (für Master U 5301)
Taktfrequenz: 30 MHz (für Master U 5302)

- Gatterverzögerung: < 1,6 ns

Die Betriebsstromaufnahme ist anwendungsspezifisch.

Technische Auskünfte erteilt:

VEB Forschungszentrum Mikroelektronik Dresden Grenzstraße 28 Dresden 8080

U 32C20 FC Digitaler Signalprozessor

16 Bit CMOS Mikroprozessor für die digitale Signalverarbeitung und für allgemeine A_{n-1} wendungen. Durch internen Speicher für Daten und Programm Eigenschaften ähnlich Einchip-Mikrorechner. 4 Grundrechenarten wird hardwaremäßig implementiert.

Prozessor - Hauptkennwerte

- Daten- un	Befehlswortbreite:	16	В	it
-------------	--------------------	----	---	----

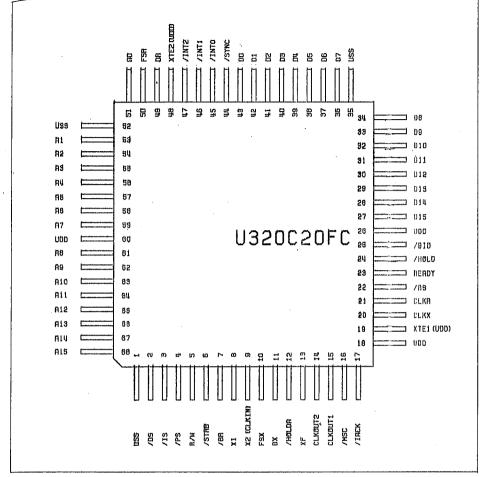
- Befehlssatz:	109	Befehle
- Befehlwiederholung:	256	mal

- Befehle zur Unterstützung von Gleitkommaoperationen

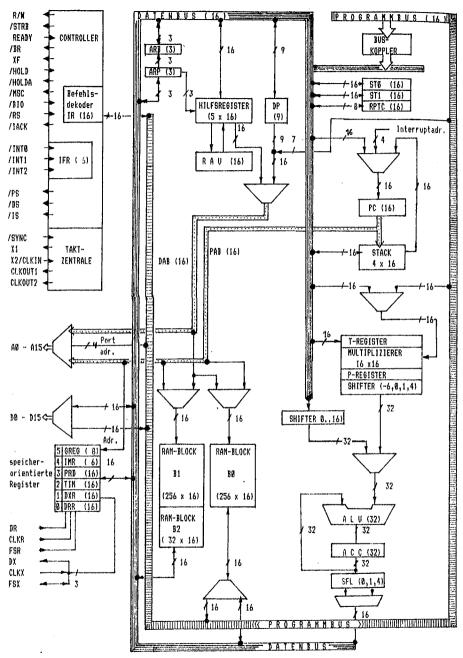
Ausgewählte Kennwerte

Betriebsspannung: $U_{CC} = 5 V + 5 \%$

Leistungsaufnahme: $P_{tot typ} = 0.5 W$ bei Quarztaktirequenz 20 MHz


Ein- und Ausgänge: TTL-kompatibel

- Befehlszykluszeit: 200 ns


- Oszillatorfrequenz: 6,7 ... 20,4 MHz

- Blocktransportrate: bis 5 Mio Worte pro Sekunde (5MIPS)

- Umgebungstemperatur: $T_{\theta} = 0 \dots 70 \text{ C}$

Anschlußbelegung

Übersichtsschaltplan

Gehäuse: QFP 68, Keramik, Anschlüsse in Z-Form

Bauform: CFl TGL 26713/04

Optoelektronik

Typ	Grenz	Grenzwerte				Kennwerte bei	$T_{a} = 25$	သ့		
	Sperr- spannung	Fluß- strom	Fluß- spannung		Wellenlänge Emission	max. Lichtstärke	e	Abstrahl-winkel	Lichtfarbe Bauform	Bauforn
	Ů Rmax (V)	Fmax (mA)	$\hat{\mathbf{U}}_{\mathrm{Fmax}}$ (v)	bei I _F (mA)	Ap. (nm)	$^{ m I}_{ m V}$ (mcd)	bei I _F (mA)			
5 mm Dur	5 mm Durchmesser 1)									
VQA 10	2	30	2,6	10	635 ± 10	0,6 4,5	10	09	TSN-rot	33
VQA 13	2	30	1,8	20	980 + 30	0,4 3,0	20	09	rot	33
VQA 13-1	ഹ	30	1,8	20	08 + 099	$0,4 \dots 3,0$	20	09	rot	33
VQA 23	c,	30	2,6	10	560 ± 10	0,6 4,5	10	09	grün	33
VQA 33	22	30	2,8	20	590 + 10	0,6 4,5	20	09	gelb	33
VQA 16	co	30	2,6	10	635 ± 10	3,0 10	10	25	TSN-rot	34
VQA 26	ıç	30	2,6	10	560 ± 10	3,0 23	10	25	grün	34
VQA 36	S	30	2,6	10	590 ± 10	$3,0 \dots 10$	10	25	gelb	34
VQA 46	2	30	2,6	10	610 ± 10	3,0 10	10	25	orange	34
VQA 102	4	30	2,8	20	650 ± 10	34 172	20	20	hyperrot	34
VQA 202	2	30	2,8	20	560 + 10	34 172	20	20	grün	34
Zweifarbdioden	oden	,								
VQA 60	īČ	30	2,6	10	635 + 10/560 + 10	0,8 3,0	10	09	TSN-rot/ grün	35
VQA 70	ശ	30	2,6	10	635 + 10/590 + 10	0,6 2,0	10	09	TSN-rot/ gelb	35
VQA 80	ഹ	30	2,6	10	560 + 10/ $590 + 10$	0,6 2,0	10	09	grün/ gelb	35

Lichtemitterdioden

מו בווק אבו וב	21					ಪ)		
Sperr- spannung	Fluß- strom	Fluß- spannung		Wellenlänge Emission	max. Lichtstä	e	Abstrahl- winkel	Lichtfarbe Bauform	Bauform
Ú Rmax (V)	I _{Fmax} (mA)	UFmax (v)	bei I _F (mA)		${ m I}_{ m V}$ (mcd)	bei I _F (mA)			
mm Durchmesser									
	30	2,6	10	635 ± 10	$0,4 \dots 2,0$	10	7.0	TSN-rot	36
	30	2,6	10	560 + 10	1,3510	10	70	grün	36
	30	2,6	10	590 + 10	0,4 2,0	10	0.2	gelb	36
	30	2,6	10	610 + 10	0,4 3,0	10	0.2	orange	36
	30	2,8	20	635 ± 10	0,4 2,0	20	100	TSN-rot	37
	30	2,8	20	560 + 10	$0,4 \dots 2,0$	20	100	grün	37
	30	2,8	20	590 ± 10	$0,4 \dots 2,0$	20	100	gelb	37
	40	1,8	20	660 + 10	$0,4 \dots 1,35$	20	100	rot	38
	30	2,6	10	560 + 10	$0,4 \dots 3,0$	10	100	grün	38
	30	2,8	20	590 + 10	$0,4 \dots 3,0$	20	100	gelb	38
	30	2,8	20	635 + 10	$0,4 \dots 2,0$	20	100	TSN-rot	39
	30	2,8	20	560 + 10	$0,4 \dots 2,0$	20	100	grün	39
	30	2,8	20	590 + 10	$0,4 \dots 2,0$	20	100	gelb	39
	30	2,8	20	635 + 10	$0,4 \dots 2,0$	20	100	TSN-rot	40
	30	2,8	20	560 ± 10	0,4 $2,0$	20	100	grün	40
	30	2,8	20	590 + 10	$0,4 \dots 2,0$	20	100	gelb	40
	30	2.8	20	610 + 10	0 4 9 0	06	100	020000	07

Lichtemitterdioden

Typ	Grenz	Grenzwerte				Kennwerte bei $T_{\rm a}$ = 25 °C	$T_{a} = 25$	ာ့		
	Sperr- spannung	Fluß- strom	Fluß- spannung		Wellenlänge Emission	max. Lichtstärke	e)	Abstrahl- winkel	Lichtfarbe Bauform	Bauform
	URmax (V)	I _{Fmax} (mA)	UFmax (v)	bei I _F (mA)	Ap (nm)	$^{ m I}_{ m V}$ (med)	bei I _F (mA)	Θ _e (Grad)		
VQA 101	5	30	2,8	20	635 ± 10	0,4 2,0	20	100	TSN-rot	41
VQA 201	ıcı	30	2,8	20	560 + 10	$0,4 \dots 2,0$	20	100	grün	41
VQA 301	ro	30	2,8	20	590 + 10	$0,4 \dots 2,0$	20	100	gelb	41
VQA 103	വ	30	2,8	20	635 ± 10	$0,4 \dots 2,0$	20	100	TSN-rot	42
VQA 203	ശ	30	2,8	20	560 + 10	$0,4 \dots 2,0$	20	100	grün	42
VQA 303	5	30	2,8	20	590 + 10	0,4 2,0	20	100	gelb	42

Die Lieferung aller LED erfolgt nach Lichtstärkegruppen sortiert. In einer Verpackungseinheit streut die Lichtstärke der einzelnen Dioden max. um den Faktor 2. Die Kennzeichnung erfolgt nur auf der Verpackung.

Bei Zweifarb-LED beträgt die Lichtstärke Ivmin: Ivmax innerhalb einer LED < 3 (Verhältnisgruppe 1 bzw. < 6 (Verhältnisgruppe 2).

0

Lichtstärkegruppe

0,6 0,9

 I_{Vmin} (med)

N 21

Infrarotemitterdioden Si-Sensorzelle mit eingeschlossenem Glasfilter

מבופ	ensorz	TOTTE	mit	-CI	MB.	COU	****				<u> </u>		
Bau-	form		43	43	43	38	38	44	44	44	45	45	_,
	i FRM	(mA)	200	200	200	100	100	200	200	200	200	200	. 25 °C
	Abfall- zeit bei 	$^{\mathrm{t}}_{\mathrm{f}}$	2	\ \ 2	\ \ 2	\ \ \	\ \ 2	\ \ 2	2	\ \ \	\ \ \ \ \	2	= -40
	Anstiegs- Abfall zeit zeit	${\rm t}_{\rm r}^{\rm t}$ (μs)		\ \	\ \ \	\ \ 2	\ \ 2	\ \ 2	∀	7	∨ I	\ \ 2	4) T _a
ပ္စ	$\begin{array}{c c} \text{Anst} \\ \text{bei } I_{\overline{F}} \end{array}$	(mA)	20	20	20	20	20	20	20	20	20	50	
$T_a = 25$	Strahlungs- leistung b	∯e (mW)	> 0,4	7,0 <	≥ 1,0	0,71 1,80	1,12	1,6 3,5	2,3 4,0	2,6	2,4 5,4	3,6	= -40 85 °C
Kennwerte bei	ion	۵۸0,5 (nm)	7.5	7.5	75	75	22	7.5	42	75	75	75	3) T _a =
K	Wellenlänge max. Emiss	مر (mu)	940	940	940	940	940	940	940	940	940	940	m
	Fluß- spannung	U F	∠ 1,5	< 1,5	< 1,5	< 1,5	< 1,5	< 1,5	< 1,5	<u>< 1,5</u>	< 1,5	< 1,5	. 100 °C
werte	Fluß- nicht periodi- strom scher Spitzen- sperrstrom	$\frac{1}{FSM^{1}}$:	$^{1,5^3)}$	1,53)	2,54)	2,54)	2,54)	2,54)	$^{2,5^{4)}}$	2) T _a = -65
Grenzwerte	Fluß- strom	I _f (mA)	< 100	≤ 100		50	200 >	< 100	< 100	< 100	< 100	≤ 100	
	Sperr- spannung	UR (V)				<u>.</u>	43)					23)	< 10 ps
Typ			VQ 120 A	В	Ö	VQ 121 A	В	VQ 123 A	B	0	VQ 125 A	В	1) bei t _p < 10 µs

Glasfilt
eingeschlossenem
mit
Si-Sensorzelle

Bau-	form		25	
	$^{ m R}_{ m L}$	(Ohm)	> 100	
	bei A	(mu)	.400	700
	spektrale Empfindl. bei Sa	(srl)	0,3	0,1
	Wellenlänge max. Empfindl. Asmax	(mu)	555	
Kennwerte bei $T_a = 25$ °C	Ausgangs- widerstand R ₀	(Ohm)	$\frac{>}{>}$ 10 ⁷ 15 . 10 ¹⁰	
rte bei T	bei ${f R}_{ m L}$	(Ohm)	> 10 ⁷	
Kennwe	Ausgangs- spannung bei R _L U ₀	(mV)	440	
	bei E _V	(LX)	103	
	Kurzschluß- strom I _R	ж (hд)	3 .	
Typ			SP 105	353

Si-Fotodioden

Typ		Grenz	Grenzwerte			K	Kennwerte bei	oei T ₈ = 25 °C	2 °C		Bauform
	Sperr-	Sperr-	Betriebs- temperatur	Sperrstrom	rom	Gesamt- kanazität	ied:	Empfind-	je G	Wellen-	
	e Mari	IR.	- L	$^{\mathrm{I}_{\mathbf{R}^{1}}}$	$^{\mathrm{I_{R}}^{2)}}$	Ctot	Ctot R		, ,	A max	
	(3)	(mA)	(ఎం)	(рд)	(рд)	(pF)	(V)	(A/W)	(mm)	(mu)	~~~~~
SP 101	25	-	-40 70	0,1	20	<u><</u> 40	20	0,3	500	820	46
							, , ,	0,6	820		46
							•	0,45	006		46
SP 102	25	0,1	-40 70	0,004	1,6	10	20	0,3	200	820	47
								9,0	820		47
								0,45	006		47
SP 103	25	ന	-40 70	0,15	20	< 100	20	0,3	200	820	46
								9,0	820		46
								0,45	006		46
SP 106	25		-25 85			< 35	10	0,5	850	006	22

Gehäuse Bemerkungen	rom	Betriebsspannung U B	spektrale Empfindlich- Impuls- Ba keit bei $U_R = 10 \text{ V}$ anstiegszeit $S_A p = 850 \text{ nm}$ t_r	Impuls- anstiegszeit tr (70)	Bauform
SP 114 TO 39-Sockel mit Planglasfenster Avalance-Fotodiode	(nA) (typ.)	140 300	(A/W) (typ.)	(ns) 200 (typ.)	48

Posit	ionse	Positionsempfindliche Fotodioden				
Typ		Gehäuse Bemerkungen	Dunkelsperrstrom bei $E=0$ lx $U_R=20$ V	Anstiegs-, Abfall- zeit bei U _R = 20 V $^{1}_{\Lambda}$ = 850 nm	aktive Fläche	Bauforn
			(nA)	(su)	(mm²)	
SP 116	116	Kunststoffgehäuse transparent Differenzfotodiode	0,1	40	$2 \times 1,74$	51
SP 117	117	Kunststoffgehäuse transparent Quadrantenfotodiode	0,1	40	4 x 1,04	53
SP 119	119	Metallwanne mit Planglaskappe Vollflächenfotodiode	200	$5 \cdot 10^3$	100	52
SP 121	121	Metallwanne mit Planglaskappe Streifenfotodiode	200	$60 \cdot 10^3$	64,2	54
SP 123	123	TO 39-Sockel mit Glaskappe Kreis-Kreisringdetektor	0,3	40	2 x 0,283	55
SP 124	124	Kunststoffgehäuse transparent Kreis-Kreisringdetektor	0,1	40	2 x 3,14	56

Positionsempfindliche Fotodioden

49 63

61

50

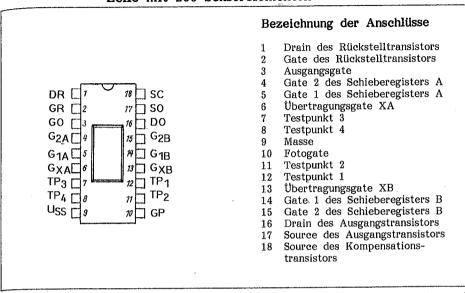
Bau-form

Anstiegs- und Abfallzeit t; t _f 2) (µs)	<pre>< 10 C,D < 10 E E C </pre>		É,F < 10 G,H ≤ 20
spektraler Empfindlichkeits- bereich ^S (nm)	800 ··· 900 800 ··· 900	800 900	800 900
Betriebsstrom $I_{\rm C}^{1,1}$ (mA)	-65 125 0,25 3,2 -40 85 0,63 ≥ 2,5	1,0 > 4,0	1,6 ≥ 6,3
Betriebs- temperatur- bereich T (°C)	-65 125 -40 85	-40 85	-40 85
Emitter- Kollektor- Spannung U _{EC} (V)	<i>t</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> > <i>x</i> >	<i>L</i> > 1	\ \
Kollektor- Emitter- Spannung U _{CE} (V)	< 50 < 50	<u><</u> 50	< 50
Verlust- leistung P tot (mW)	50^{3} 100^{4}	100^{4}	100 ⁴⁾
Typ	SP 211 SP 212 ⁵⁾	SP 213	SP 215

1) bei $U_{CE} = 5 \text{ V}$; $E_{V} = 1$ 2) bei $U_{B} = 35 \text{ V}$; $I_{C} = 8$ 3) $T_{A} = -65 \dots 25 \text{ °C}$ 4) $T_{B} = -40 \dots 25 \text{ °C}$ 5) abweichende Gruppen

	Optoelektronische Koppler	k								
Gren	2	Grenzwerte bei Ta	$i_{a} = 25$ °C	သွ	Kop	Koppelelement	ıt			Ban-
Sperr- spannung		Fluß- strom	Verlust- leistung	Empfänger	Kollektor- Sperr- Emitter- spannu Spanning	Sperr- spannung	Sperr- Prüf- Über- spannung isolations- tragungs- spanning faktor	Über- tragungs- faktor	Anstiegs- und Ab- fallzeit	form
U _R (V)		I _F (mA)	P _{tot} (mW)		UCE (V)	U (S)	U IO (kV)	(%)	$^{\mathrm{t_{r}};\ \mathrm{t_{f}}}_{\mathrm{(\mu s)}}$	
	├	09	200	Fototransistor	35		2,8	40 480	10	58
		09	200	Fototransistor ohne Basisanschluß	2.0		4,4	40 480	10	28
		09	200	Fototransistor	0.2		4,4	40 480	10	51
		09	200	Fototransistor ohne Basisanschluß	02		5,3	40 480	10	58
		09	200	Fototransistor	0.2		5,3	40 480	10	28
		09	200	Fototransistor	06		5,3	40 320	10	28
		100	200	Fototransistor	35		10	20 200	10	59
		50		Fotodiode		20	2,8		0,25	28
		30	150	Fotodiode			2,8		0,15/0,1	09
		20	110	Fototransistor	15				25	61
		20	100	Fototransistor	16			> 4	10	62
1) Ersatz für MB 104/6	9	07	2) Ersatz f	2) Ersatz für MB 104/4	3) Ersatz für MB 105/6	für MB 1	9/50	4) Ersat	4) Ersatz für MB 105/4	105/4

Lici			nzeigen									
	Bau-	iorm	64	65	65	64	65	65	99	99	29	29
	Farbe Bau-		rot	rot	rot	grün	grün	grün	grün	grün	rot	rot
	gemeins.	Fiekurode	herausge- führte Anoden u. Katoden	Katode	Anode	herausge- führte Anoden u. Katoden	Katode	Anode			Katode	Anode
= 25 °C	Anzeigenart		1 digit +	1 digit, 7 Segment	1 digit, 7 Segment	1 digit <u>+</u>	1 digit, 7 Segment	1 digit, 7 Segment	16 Segment Katode	16 Segment	1 1/2 digit, 7 Segment	1 1/2 digit, Anode 7 Segment
1) bei Ta	Ziffern-	h (mm)	17,9	19,6	19,6	17,9	19,6	19,6	12,7	12,7	12,7	12,7
erte 1		bei $I_{\rm F}$ h (mA) (mm)	10	10	10	10	10	10	10	10	20	20
Kennwerte	tärke	д —	1170	1170	1170	1170	1170	1170	1170	1170	780	150 780
	Lichtstärke	$I_{ m V}^{ m I}$	230 .	230 .	230	230	230	230	150	150	150	150
	Bunuu	$\begin{array}{c c} U_{Fmax} & \mathrm{bei} & \mathrm{I_F} \\ \mathrm{(V)} & \mathrm{(mA)} & \mathrm{(\mu cd)} \end{array}$	10	10	10	10	10	10	10	10	20	20
	Flußspa	UFmax (V)	2,6	2,6	2,6	2,6	2,6	2,6	2,6	2,6	2,8	2,8
te 1)	Per. Spitzen- Flußspannung	IFRM 3) (mA)	150	150	150	150	150	150	120	120	200	200
Grenzwerte	Fluß- strom	I _F (mA)	20	20	20	20	20	20	17,5	17,5	30	30
Gr	Sperr- spannung	$\stackrel{\circ}{\mathrm{U_R}}$ 2) $\stackrel{\circ}{\mathrm{U}}$ (V)	4.	4	4	9	9	9	9	9	ശ	ည
Typ			VQB 16	VQB 17	VQB 18	VQB 26	VQB 27	VQB 28	VQB 200	VQB 201	VQE 11	VQE 12

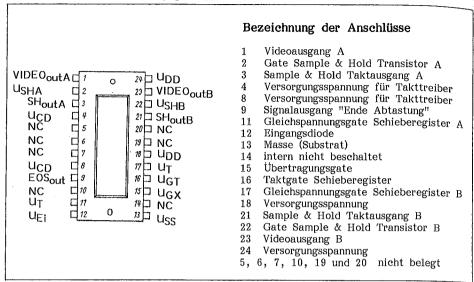

Sperr- Fluß- Fer Spitzen- Flußspannung strom durchlaßstrom (MA) Lichtstärke Dei IF Nöhe Anzeigenart höhe Anzeigenart gemeins. Farber läcktrode spannung strom durchlaßstrom (MA) Dei IF Nöhe Anzeigenart höhe Flektrode spannung strom (MA) Flektrode spannung strom (MA) Per IF Nohe Per IF Nöhe Per II Nöhe <t< th=""><th>Typ</th><th>Ğ</th><th>Grenzwerte</th><th>te 1)</th><th></th><th></th><th></th><th>Kennw</th><th>erte 1)</th><th>Kennwerte 1 bei $_{\rm T_{\rm a}}$ = 25 °C</th><th>= 25 °C</th><th></th><th></th><th></th></t<>	Typ	Ğ	Grenzwerte	te 1)				Kennw	erte 1)	Kennwerte 1 bei $_{\rm T_{\rm a}}$ = 25 °C	= 25 °C			
IFAM TERM Weil IF IV bei IF h		Sperr-	Fluß-	Per. Spitzen-	Flußspar		Lichts	tärke		Ziffern- höhe	1	gemeins. Elektrode	Farbe	Bau- form
5 30 200 2,8 20 150 780 20 12,7 2 digit, T Segment T		UR 2)	I _F (mA)	IFRM 3) (mA)	U _{Fmax} (v)	bei I _F (mA)	$I_{\rm V}^{\rm I}$ (µcd)		bei I _F (mA)	h (mm)				
5 30 200 2,8 20 150 780 20 12,7 2 digit, 7 Segment 7 Segment 7 Segment 7 Segment 7 Segment 7 Segment 7 Segment 7 Segment 7 Segment 7 Segment 7 Segment 7 Segment 7 Segment 7 Segment 7 Segment 7 Segment 7 Segment 7 Segment 7 Segment 8 Segment 7 Segment 8 Segment 7	VQE 13	īC	30	200	2,8	20	150	780	20	12,7	2 digit, 7 Segment	Katode	rot	89
6 20 150 2,6 10 230 1170 10 12,7 1 1/2 digit, Katode grün 5 20 150 2,6 10 230 1170 10 12,7 1 1/2 digit, Katode grün 6 20 150 2,6 10 230 1170 10 12,7 2 digit, Katode grün 6 20 150 2,6 10 230 1170 10 12,7 2 digit, Anode grün 7 Segment 7 Segment 8 4 Anode grün 7 Segment 7 Segment 8 4 Anode 8 8 7 1	VQE 14	កេ	30	200	2,8	20	150	780	20	12,7	2 digit, 7 Segment	Anode	rot	89
6 20 150 2,6 10 230 1170 10 12,7 1 1/2 digit, Anode grün 6 20 150 2,6 10 230 1170 10 12,7 2 digit, Ratode grün 6 20 150 2,6 10 230 1170 10 12,7 2 digit, Anode grün 6 20 150 2,6 10 230 1170 10 12,7 2 digit, Anode grün	VQE 21	9	20	150	2,6	10		1170	10	12,7	1 1/2 digit, 7 Segment	Katode	grün	29
6 20 150 2,6 10 230 1170 10 12,7 2 digit, Katode grün 6 20 150 2,6 10 230 1170 10 12,7 2 digit, Anode grün	VQE 22	9	20	150	2,6	10		1170	10	12,7	1 1/2 digit, 7 Segment	Anode	grün	29
6 20 150 2,6 10 230 1170 10 12,7 2 digit, Anode grün 7 Segment	/QE 23	9	20	150	2,6	10	230	1170	10	12,7	2 digit, 7 Segment	Katode	grün	68
	VQE 24	9	20	150	2,6	10	230 .	1170		12,7	2 digit, 7 Segment	Anode	grün	89

Lichtemitteranzeigen

359

	23	10 G,	2		$^{ m Z}_{ m 13}$ $^{ m B}_{ m b}$	2 14 B ₁	15 F ₁	16 A ₁	17 G,	18 H,	-	10 V	11 S	12 R	13 D	14 U	15 P	16 C	17 N	18 gemeinsame Anode
	VQE 13, VQE 23	1 C,	2 E.	3 D ₁	4 gK ₁	5 gK,	6 D,	7 E ₂	⁷ ບິ 8	9 H,	VQB 201	1 B	2 A	3 M	4 K	5 H	5	T 2	8 ਜ	о
		0 G,	1 A,	.2 F.	3 B,	14 A ₁	15 E ₁	16 C ₁	$17 ext{ D}_1$	18 nicht belegt		10 V	1 S	12 R	13 D	14 U	15 P	16 C	17 N	18 gemeinsame Katode
	VQE 12, VQE 22	1 nicht belegt	2 F ₁	3 B ₁ 1	4 gA ₁ .						VQB 200	1 B 1	2 A 1	3 M	4 K	5 H	6 G	7 T	8 石	9 E
Anschlüsse		$10 G_2$	$^{-}$ 11 $^{-}$ A ₂	$12 ext{ F}_2$	13 2	14 A ₁	15 E ₁	16 C ₁	$^{-}$ 17 $^{-}$ D ₁	18 nicht belegt	capien J	10 G2 198 H7	A2 24	F2 45	h	B1 44	ر در	16 A1 72 F2	4	18 H 10 62
Bezeichnung der Anschlüsse	VQE 11, VQE 21	1 nicht belegt	2 F ₁	3 B	4 gK ₁	5 gK_2	6 D ₂	7 E ₂	8 C ₂		VQE 24		2 $^{\rm E}_{ m I}$	3 $^{\mathrm{D}_1}$	4 gA_1	$5 ext{ gA}_2$	6 D ₂	7 $^{\rm E}_2$	8 C ₂	9 H ₂

L 110 C Monolithische, selbstabtastende, lichtempfindliche Zeile mit 256 Sensorelementen

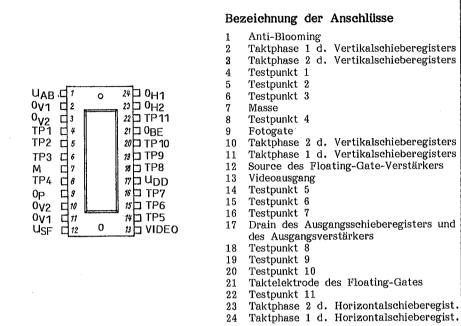

Typstandard: TGL 38679

Bauform: DIP-18, Plast (Bild 6)

Sie ist für die optische Erkennungsysteme bestimmt. Zusätzlich zu der Zeile enthält der L 100 C-Chip 2 Ladungsübertragungsgates, zwei 2-Phasen-Analogschieberegister, eine Ladungsdetektorstufe und eine Kompensationsstufe.

Ausgewählte Kennwerte

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Betriebsspannungen	${\tt U}_{ m DD}$		14,5		15,5	v
	UDR		14,5		15,5	v
Spannung im Ausgangs-	v_{GO}		6		8	v
gate des Schieberegisters	uo			-		
Sättigungsausgangsspannung	U _{sat}				200	mV
Hellsignaldifferenz	PRUN		1		12	mV
Dynamikbereich	DR		330			
Dunkelsignaldifferenz	DSNU				4	mV mV
Empfindlichkeit	s				0,4 V	μJ ⁻¹ cm²
Rückstelltaktfrequenz	f _{GR}				10	MHz


Typstandard, TGL 55108

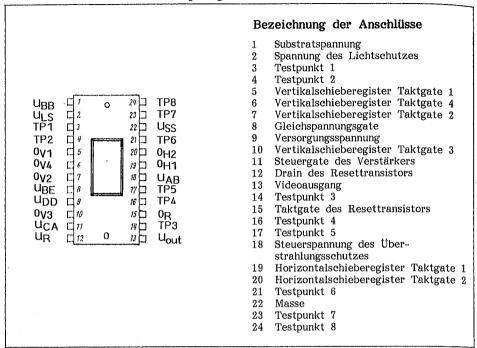
Bauform: DIP-24, Plast (Bild 10)

Monolithische, selbstabtastende, lichtempfindliche Zeile mit 1024 Sensorelementen. Neben den 1024 Sensorelementen weist die LKZ L 133 C ein Übertragungsgate, Schieberegister, Übertragungsdetektoren und Ausgangsverstärker mit Sample- und Holdstufen, Takttreiberschaltung, Dunkel- und Hellreferenzschaltung auf.

Ausgewählte Kennwerte

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Betriebsspannungen	${\tt U}_{ m DD}$		13,5		14,5	V
	v_{CD}		13,5		14,5	ν
Spannung für Schiebe-	UT		5,5		6,5	V
register	-					
Sättigungsausgangsspannung	u _{sat}			ĺ	2	V -
Hellsignaldifferenz	PRNU				240	m V
Dynamikbereich	DR	•	500		ļ	
Dunkelsignaldifferenz	DSNU				20	$\frac{\text{mV}}{\text{ms}}$
Empfindlichkeit	s				3 УµЈ	$^{ ext{-}1}$ cm $^{ ext{2}}$
Bildpunktausgabefrequenz	f DATma	x			20	MHz

Typstandard: TGL 42101


Bauform: DIP-24, Plast (Bild 10)

Organisation nach dem Zwischenspaltenübertragungsprinzip, spaltenweiser Überstrahlungsschutz, Halbbildauslesung, integrierter Ausgangsverstärker

Ausgewählte Kennwerte

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Betriebsspannungen	${\tt u}_{ m DD}$		13		20	V
	U _{AB}		8		1,6	v
	USF		5		14	v
 Sättigungsausgangsspannung	1 .		100			mV
Hellsignalschwankung	PRNU				20	%
Dynamikbereich	DR		100			
Dunkelsignalschwankung	DSNU				20	%
Empfindlichkeit	s		0,5]	1,8 V	μJ ⁻¹ cm²
horizontale Transport-	f _{GH}				7,2	MHz
Taktfrequenz						

L 220 C CCD-Bildempfänger mit 512 x 576 Bildpunkten

Typstandard: TGL 45741

Bauform: DIP-24, Plast (Bild 10)

Organisation nach dem Zwischenspaltenübertragungsprinzip, TV-kompatibel nach CCIR, "2/3"-Sensorfläche, Halbbildauslesung, spaltenweiser Überstrahlungsschutz, Dunkelstromreferenzsignal, integriertes 64 µs-Verzögerungsregister, Schaltkreis U 2200 PC zur Ansteuerung und Signalverarbeitung

Ausgewählte Kennwerte

Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
UDD		14,5		15,5	V
TI		11,5		12,5	V
				200	mV
DSG				0,1	$\frac{\text{mV}}{\text{ms}}$
s	•	1.		Vμ	1 2
zo			;	1 .	kOhm
ft				10	MHz
	zeichen UDD UAB Usat DSG	zeichen Meßbedingung UDD UAB Usat DSG S	Teichen Mesbedingung Min.	Teichen Melsbedingung Min. typ.	Zeichen Meßbedingung min. typ. max. U _{DD}

Flachbandanzeigen

Alphanumerische Anzeige

Alphanu	merisch
Bauform	75
Zeilenstrom ^I IZmax (mA)	500
Eingangsspannung U _I (V)	-0,8 +5,5
Betriebsspannung U _{CC} (V)	rot 4,75 5,25 -0,8 +5,5
Farbe	rot
Ziffernhöhe h (mm)	7,5
Bemerkung	VQC 10 4-stellige 5 x 7 Punkt- matrix mit integriertem Spaltentreiber-IC
Typ	/QC 10
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Transistoren

typ355

Kleinleistungstransistoren für allgemeine und NF-Anwendungen form Bau-776 776 776 (kHz) (MHz)*

der selektiert nach

..1120

112.

SCE 239*

Kleinleistungstransistoren für allgemeine und NF-Anwendungen

		Grenz	Grenzwerte (T	$(T_a = 2)$	= 25°C)						Kennwerte						
Typ	Struk- tur	Ptot (mW)	U _{CBO}	Ptot UCBO UCEO (mW) (V)	I _C	$A) \begin{vmatrix} h_{21E} \text{ bei } I_{C;} \\ (mA) \end{vmatrix} (V)$	IC; (mA)	UCE (V)	$f_{\mathrm{T}}^{\mathrm{f}}$ bei $I_{\mathrm{C}}^{\mathrm{C}}$ (MHz)	I _C (mA)	U _{CEsat} bei I _C F bei I (mV) (mA) (dB)	I _C (mA)	F bei	(X)	2	f (kHz) (MHz)*	Bau- form
SCE 307*	dud	150	50	45	100	56560	2	9	> 100	10	85 340	100	∞	9	0,2		78
SCE 308*	dud	150	30	25	100	56560	23	9	> 100	10	85 340	100	∞	9	0,5	H	82
SCE 309*	dud	150	30	25	100	56560	63	9	> 100	10	85 340	100	4	9	0,2	0,0315	78
SCE 535*	ngn		75	45	1000	1000 40250	150	2	20	20	200	200					79
SCF 537*	uďu		.09	09	1000	1000 40250	150	2	50	50	200	200					62
SCE 539*	udu		100	80	100	40250	150	2	20	50	200	200					62
SCE 536*	dud		45	45	100	40250	150	2	20	50	200	200					62
SCE 538*	đuđ		09	09	1000	1000 40250	150	2	20	50	200	200					62
SCE 540*	dud		100	80	1000	1000 40250	150	2	20	20	200	200					62
* selektiert nach der Stromverstärkung	t nach	der S	tromve	rstärku	Bu							_					

I_C (mA)

U_{CE};

F be (dB)

UCEsat (mV)

 $m f_{T}$ bei (MHz)

 $\begin{vmatrix} ^{\rm I}{\rm C}; & ^{\rm U}{\rm CE} \\ |^{\rm (mA)} & ^{\rm (V)} \end{vmatrix}$

I_C (mA)

U_{CEO}

UCBO

P_{tot} (mW)

Struk-tur

= 25°C)

Grenzwerte (T_a

bei $^{
m h}_{21E}$ 2,5 2,5 2,5 2,5 10

10 10 10 10 100

typ90 typ90 typ90 typ90

100 100 100 100 100

20 30 60 80 20

20 30 60 80 30

300

dud dud dud

300 200

ndu

237*

typ145

100

100

200

100

200

239*

SC

100

250

307*

sc

100

30

250

dud

SC

100

dud

100

100

bei

880 880 880 880 880 881 881 788 881 788 882 882 882 883

Bau-form

		ļ																			
ဂ ဂ ၈ <u>*</u> ့်ငှ	(pF)											0,6	0,35	0,45	0,6	0,35	0,5				
444	(MHz)									100	100	0,2	100	200	0,2	100	200				
ျှ	(mA)									0,2	0,2		-	67	_	-	23				
U _{CE} ;	3									9	9	10	10	10	10	10	10				
bei	(dB)									7,3	7,5	2	4	2,9	rc	4	2,9				
$^{\mathrm{I}}$	(mA)	-150	-150	-150	-150	150	150	150	150	10	10							30	30	30	30
U _{CEsat} bei	(mV)	< -0,5	< -0,5	< -0,5	< -0,5	< 0,5	≤ 0.5	< 0,5	< 0,5	< 0,3	< 0,3								1	-	
$^{\mathrm{I}}_{\mathrm{C}}$		-10	-10	-10	-10	10	10	10	10	10	10		Н	2	н	-	2	15	15	15	10
f_{T} bei	(MHz)	09 <	09 <	09 <	09 <	→ 09 ~	09 <	09 ~	09 <	> 300	> 300	200	740^{2}	096	390	750^{2}	910	09	09	09	90
UCE	3	-2	-2	-2	-2	2	2	2	2	_		10	10	10	10	10	10	10	10	10	10
j	(mA)	-50	-50	-50	-50	50	50	20	20	10	10	Н	Н	7		_	2	30	30	30	30
h _{21E} bei		28560	28560	28560	28280	181120	181120	181120	181120	181120	181120	> 40	> 28	> 37	> 40	> 28	> 37	> 25	> 25	> 25	> 50
ر.	(mA)	-500	-500	-500	-500	200	500	500	200	200	200	25	25	25	25	25	25	100	100	100	30
UCEO	(V)	-20	-30	09-	08-	20	30	09	80	12	20	25	25	25	25	25	25	160	250	300	250
UCBO	(X)	-20	-30	09-	-80	33	99	100	120	20	40	40	40	40	40	40	40	160	250	300	250
P tot	(mm)	9,0	9,0	9,0	9,0	9,0	9,0	9,0	9,0	0,3	0,3	0,20	0,20	0,20	0,15	0,15	0,15	9	 	9	2
Struk-		dud	dud	dud	đuđ	udu	udu	udu	udu	udu	udu	udu	udu	udu	udu	udu	udu	udu	udu	udu	udu
Typ		SF 116*	SF 117*	SF 118*	SF 119*	SF 126*	SF 127*	SF 128*	SF 129*	SF 136*	SF 137*	SF 225	SF 235	SF 245	SFE 225	SFE 235	SFE 245	SF 357	SF 358	SF 359	SF 369
	Struk- Ptot UCBO UCBO IC h21E bei IC; UCE fT bei IC UCEsat bei IC F bei UCE;	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Struk- Ptot UCBO UCBO IC h21E bei IC; UCE fT bei IC CEsat bei IC F bei UCE; UCE fT bei IC CEsat bei IC F bei UCE; UCE fT bei IC CEsat bei IC F bei UCE; UCE fT bei IC CEsat bei IC F bei UCE; UCE fT bei IC CEsat bei IC F bei UCE; UCE fT bei IC CEsat bei IC F bei UCE; UCE fT bei IC CEsat bei IC F bei UCE; UCE fT bei IC CEsat bei IC F bei IC CEsat bei IC F bei IC CEsat bei IC F bei IC CEsat bei IC F bei IC CEsat bei IC F bei IC CEsat bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F bei IC F b	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Struk- Ptot (MCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCBO) (UCB	Struk- bath Ptot UCBO UCBO IC h21E bath IC, bath IC, bath IC IC	Struk- bet turn Ftot UCBO UCBO IC h21E bet leg IC, leg IC, leg IC, leg IC, leg IC, leg IC, leg IC, leg IC, leg IC, leg IC, leg IC, leg IC, leg IC, leg IC, leg IC, leg IC, leg IC, leg IC, leg IC, leg IC, leg IC, leg IC, leg IC, leg IC, leg IC, leg IC, leg IC, leg IC, leg IC, leg IC, leg IC, leg IC, leg IC, leg IC, leg IC, leg IC, leg IC, leg IC, leg IC, leg IC, leg IC, leg IC, leg IC, leg IC, leg IC, leg IC, leg IC, leg IC, leg IC, leg IC, leg IC, leg IC, leg IC, leg IC, leg IC, leg IC, leg IC, leg IC, leg IC, leg IC, leg IC, leg IC, leg IC, leg IC, leg IC, leg IC, leg IC, leg IC, leg IC, leg IC, leg IC, leg IC, leg IC, leg IC, leg IC, leg <th< td=""><td>Struk- bot turn Ptot (mA) UCBO (VCBO) LC h21E bot (mA) UCBO (mA) LC LC</td><td>Struk- lot Pot lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lo</td><td>Strukt Ptot UCBO UCBO IC h21E Dei IC IC MAD IC MAD IC MAD IC MAD IC MAD IC MAD IC IC<!--</td--><td></td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>Strukt, Lux Ford UCBO UCBO</td><td>struk-lur. Ptot UCBO UCBO</td><td>struk- both tur. Total beam of the control of the control of tur. Fort tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total</td><td>tur. (mM) (V) (M) (M)<</td><td>tur. Pote in tur. Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C}</td><td>tur. total C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CD</td></td></th<>	Struk- bot turn Ptot (mA) UCBO (VCBO) LC h21E bot (mA) UCBO (mA) LC LC	Struk- lot Pot lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lot UCBO lux- lo	Strukt Ptot UCBO UCBO IC h21E Dei IC IC MAD IC MAD IC MAD IC MAD IC MAD IC MAD IC IC </td <td></td> <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td> <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td> <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td> <td>Strukt, Lux Ford UCBO UCBO</td> <td>struk-lur. Ptot UCBO UCBO</td> <td>struk- both tur. Total beam of the control of the control of tur. Fort tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total</td> <td>tur. (mM) (V) (M) (M)<</td> <td>tur. Pote in tur. Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C}</td> <td>tur. total C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CD</td>		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Strukt, Lux Ford UCBO UCBO	struk-lur. Ptot UCBO UCBO	struk- both tur. Total beam of the control of the control of tur. Fort tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total beam of tur. Total	tur. (mM) (V) (M) (M)<	tur. Pote in tur. Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C} Loc Book L_{C}	tur. total C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CDO} C_{CD

		Grenz	Grenzwerte	(T _a =	25°C)						Kennwerte						-	
Тур	Struk- tur	Ptot	CE	UCEO	_ပ	h _{21E} bei	اً۔ اِنْ	UCE	f _T bei	1 C	UCEsat bei	J.	F bei	UCE;	J.	4-4	ပ ပ စု*နှံ	Bau-
		(m M)	(V)	(V)	(mA)		(mA)	3	(MHz) (mA)		(mV)	(mA) (dB)	(gp)	3	(mA)	(MHz)	(pF)	III.IOT
SF 816*	đuđ	0,73	-20	-20	-500	-500 18560	50	2	09 <	10	< 0,5	150					-	109
SF 817*	đuđ	0,73	-30	-30	-500	-500 18560	50	2	09 <	10	< 0,5	150						109
SF 818*	dud	0,73	09-	09-	-500	-500 18560	20	2	09 <	10	< 0,5	150						109
SF 819*	dud	0,73	-80	-80	-500	-500 18560	50	2	09 <	10	< 0,5	150	•					109
SF 826*	uđu	0,73	33	20	500	18560	20	2	09 <	10	< 0,5	150						109
SF 827*	udu	0,73	99	30	500	18560	50	2	09 <	10	< 0,5	150			•			109
SF 828*	udu	0,73	100	09	500	18560	50	2	> 09 <	10	< 0,5	150						109
SF 829*	udu	0,73	120	80	500	18560	50	2	09 <	10	< 0,5	150	····				***********	109
$SFE 250^{1}$	uďu	0,05	∞	5	2,5	> 20		-	>1200		175	-	3,8	·		500	0,45	82
SFE 292 ^{L)}	uďu	0,2	20	15	25	> 25	14	10	2000	14	,- <u>-</u> ,		2,4	10	2	200	2,0	82
SFE 517 ^{L)}	ngu		40	25	150	> 25	20	2	1200	150	0,5	100	6,5	15	09	800	1,9	78
SFE 569 ^L	udu		250	250	20	> 50	25	10	09	10	9,0	30			-		0,1√	78
SFE 570 ¹⁾	dud	p==1	-250	-250	-50	> 50	-25	-20	09 <	-10	-0,8	-30					9,1√	82
																	1	1

Kleinleistungstransistoren für HF-/ZF-/Video-Anwendungen

Typ				a	20 07						D ISMIIISMI							
	Struk- tur	- Ptot	UCB(UCEO	ျှ	h _{21E} bei		$v_{\rm CE}$	$\left _{ m f_T} ight _{ m l}$	$^{\rm I}$	U _{CEsat} bei	$_{ m I}^{ m c}$	ton;	toff b	ei I _C ;	toff bei Ic; IB1; -IB2	-IB2	Bau-
		(mM)	(V)	(3)	(mA)		(mA)	(3)	(MHz)	(mA)	(mV)	(mA)	(su)	(su)	(mA) (mA)		(mA)	5
SS 106*	uđu	300	25	15	200	18560	10	1	200	10	0,5	10	40	75	10	m	1,5	92
SS 108*	udu	300	40	15	200	18560	10		300	10	0,5	10	40	75	10	က	1,5	92
SS 109*	udu	300	20	15	200	18280	100	0,7	200	10	0,5	100	40	75	10	က	1,5	92
SS 200	udu	150	02	702)	30	> 32	10	က	typ128	2	9,0							22
SS 201	udu	150	100	1002)	30	> 32	10	က	typ128	2	9,0	П						22
SS 202	udu	150	120	1202)	30	> 32	10	က	typ128	2	9,0	7						22
SS 216*	udu	200	20	15	100	28280	30	0,5	350		0,45	30	100	200	1.0	က	1,5	22
SS 218*	udu	200	20	15	100	28280	30	0,5	350		0,45	30	35	09	10	က	1,5	22
. SS 219*	udu	200	20	15	100	28280	30	0,5	350		0,45	30	35	30	10	က	1,5	22
SSE 200	udu	150	20	702)	30	> 32	10	က	typ128	2	9,0	15						82
SSE 201	uďu	150	100	$ 100^{2} $	30	> 32	10	က	typ128	ري د	9,0	15						28
SSE 202	udu	150	120	$ 120^2$	30	> 32	10	က	typ128	5	9,0	15	, ,,				-	82
SSE 216*	uďu	150	20	15	100	56280	30	0,5	160		0,45	30	> 35	> 30	10	62	1,5	82
SSE 219*	uďu	150	20	15	100	56280	30	0,5	160	2	0,45	30	35	30	10	က	1,5	28
SSE 550 ¹⁾	udu	1000	,09	45,7	200	> 2000	200	10			1,3	200	400	1500	200	0,5		28
SSE 551 ¹⁾	udu	1000	80	(209	200	> 2000	200	10			1,3	200	400	1500	200	0,5		28
$SSE 552^{1)}$	uđu	1000	90	80^{2}	200	> 2000	200	10			1,3	200	400	1500	500	0,5		28
$SSE 560^{1}$	đưd	1000	09-	-45 ²)	-500	> 2000	-500	-10			-1,3	-500	400	1500	-500	-0,5		82
SSE 561 ¹⁾	đuđ	1000	-80	(209-	-500	> 2000	-500	-10			-1,3	-50 <u>0</u>	400	1500	-500	-0,5		82
SSE 562 ¹⁾	dud	1000	06-	-80,27	-500	> 2000	-500	-10			-1,3	-500	400	1500	-500	-0,5		78

NF-Leistungstransistoren

Tr - Torongon anomalon ell	mesara.	Torger																
		Gren	Grenzwerte	(T _a =	25°C)	_					1	Kennwerte					-	
Typ	Struk- tur	P tot	$^{\mathrm{U}_{\mathrm{CBO}}}$	$^{\mathrm{U}_{\mathrm{CBO}}}$		T.	h _{21E} bei IC; UCE	Ic; U	CE	4 <u>1</u> 2	UCEsat	U _{CEsat} ;U _{BEsat} bei I _C ;	i I _C ;	$^{\mathrm{I}}{}_{\mathrm{B}}$	CBO bei	i UCB	Rthje	Bau- form
		(M)	3	(3)	(A)	Ô		(mA) (V)		(MHz)	Ξ	(3)	(A)	(A)	CER (mA)	(3	(K/W)	
SD 335*	udu	12,5	45	45	1,5	150	40250 0,15	0,15	2	7.5	0,5	0,93	0,5	0,05	0,0001	30	10	
SD 337*	uďu	12,5	09	09	1,5 150		40250 0,15	0,15	7	22	0,5	0,93	6,0	0,05	0,0001	30	10	-, .
SD 339*	udu	12,5	80	80	1,5 150		40250 0,15	0,15	2	75	0,5	0,93	0,5	0,05	0,0001	30	10	
SD 336*	dud	12,5	45	45	1,5	1,5 150	40250 0,15	0,15	2	22	0,5	0,93	0,5	0,05	0,0001	30	10	
SD 338*	ďuď	12,5	09	09	1,5	1,5 150	40250 0,15	0,15	2	22	0,5	0,93	0,5	0,05	0,0001	30	10	
SD 340*	dud	12,5	80	80	1,5	150	40250 0,15	0,15	2	22	0,5	0,93	0,5	0,05	0,0001	30	10	82
SD 345	udu	20	45	45	က	150	40250 0,5	0,5	7	09		1,5	7	0,2	0,001	30	6,25	
SD 347	udu	20	09	09	က	150	40250 0,5	0,5	2	09		1,5	,87	0,2	0,001	30	6,25	
SD 349	udu	20	80	80	က	150	40250 0,5	0,5	2	09		1,5	7	0,2	0,001	30	6,25	
SD 346	dud		45	45	က	150	40250 0,5	0,5	2	0.9		1,5	2	0,2	0,001	30	6,25	
SD 348	dud	20	09	09	က	150	40250 0,5	0,5	2	09		1,5	2	0,2	0,001	30	6,25	
SD 350	ďuď		80	08	က	150	40250 0,5	0,5	2	09		1,5	2	0,2	0,001	30	6,25	
* selektiert nach Stromverstärkung	rt nach	Stroi	nverstå	irkung														

Si-npn-Darlington-Leistungsschalttransistoren

:	Grenzwerte	o				Kennwe	rte bei	Kennwerte bei $T_i = 25$ °C	ပ							Rail-
	Ptot UCBO U	O UCEO	Γ _O	$^{\rm I_{CM}}$	T.	UCEO IC ICM Tj UCEsat UBsat max	U _{Bsat} max	bei I _C ; I _B t _f bei I _C ; I _B	IB	t _f bei	I _C ;	-B	-U _{CE} bei -I _C Rthjc forn	ei -I _C max	Rthje	form
(W,	(3)	<u>S</u>	(A)	(A)	<u>ي</u>	(A) (°C) (V) (V)	3		(A)	(A) (B) (B) (A)	(A)	(F)	3	(A)	(A) (K/W)	
SU 111 120 450	0 450	400	10	15	175	10 15 175 1,8 2,5	2,5	12	0,14	7 0,14 2,3 7 0,14	2	0,14	က	2	1,25	83

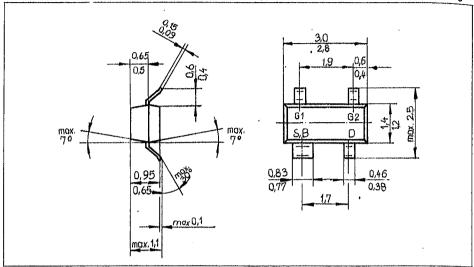
i-npn-Darlington-Leistungsschalttransistoren im Plastgehäuse

Bau-	Rthje	(A) (K/W)	7 1,2 84		
	-U _{CE} bei -I _C		co.	က	67
	$U_{CEsat}U_{BEsat}^{DEsat}U_{C}^{bei}$ $I_{C}^{:}$ I_{B} $I_{f}^{:}$ bei $I_{C}^{:}$ $ I_{B} $ max max	(A) (B) (B) (A) (A)	7 0,14	7 0,14	10 0.14
	t be	(srl)	2,3	2,3	
ွင့	I B	(A)	0,14 2,3	0,14 2,3	10 0,14 2,5
T. = 25	bei I _C ;	(A)	7	2	10
Kennwerte bei T _j = 25 °C	UBEsat max		2,5	2,5	2.5
Kennwe	UCEsat max	3	1,8	1,8	
	T_{j}	(Ç	175	175	175
	$^{ m I}_{ m CM}$	(A) (A) (C)	12 15	15	12 15
	1	(A)	12	12	12
	Ptot UCBO UCEO IC ICM Tj	(V)	350	400	400
Grenzwerte	UCBO UCEY	(X)	400	450	450
Gren	P _{tot}	(W)	125	125	125
Ę	٠ را		SU 310 125	SU 311 125	SU 312 125

Si-npn-Leistungsschalttransistoren im Metallgehäuse

Bau-	form							83						
	R _{thje} max	(K/W)	1,6	2,5	1,25	1,25	1,17	1,17	1,17	1,0	1,0		1,17	1,17
	$^{-1}$ B	(A)	1,8	1,6	2,5	2,5	1,0	1,6	2,5	2,0	1,6		1,5	1,0
	$^{\mathrm{I}}_{\mathrm{B}};$	(A)	1,8	8,0	2,5	2,5	0,5	8,0	1,25	2,0	1,6		1,5	1,0
	bei I _C ;	(A)	4,5	2,0	8,0	8,0	5,0	8,0	10,0	10,0	8,0		15,0	10,0
	t _f b	(srl)	1,0	1,0	1,0	1,0	1,0	8,0	2,0	8,0	8,0	- 	8,0	8,0
၁့	$^{\mathrm{I}_{\mathrm{B}}}$	(A)	2,0	1,0	2,5	2,5	0,5	8,0	1,25	2,0	1,6		1,5	1,0
25	t bei I _C ;	(A)	4,5	2,0	8,0	8,0	5,0	8,0	10,0	10,0	8,0		15,0	10,0
Kennwerte bei T _j =	CEsat UBEsat	3	1,5	1,5	2,2	2,2	2,0	2,0	2,0	1,6	1,6		2,0	2,0
Kennwe	U _{CEsat} max	(3)	5,0	5,0	3,3	3,3	1,5	1,6	1,5	1,5	1,5		1,2	0,9
	T.	(00)	115	115	150	150	200	200	200	200	200	200	200	200
	$^{ m I}_{ m CM}$	(A)	7,5	3,0	15	15	20	20	25	30	30	30	25	20
	ာ	(A)	5,0	2,5	10	10	15	15	20	15	15	25	20	15
	UCEO	3	700	200	325	400	125	200	250	400	450	06	125	250
Grenzwerte	UCEX UCFR*	(3)	1500*	1500*	800	1000	160	250	300	850	1000	120	160	300
Grenz	Ptot	(M)	12,5	10	100	100	150	150	150	175	175	150	150	150
£	٠ را		SU 160	SU 161	SU 167	SU 169	SU 186	SU 187	SU 188	SU 189	SU 190	SU 191	SU 192	SU 193

Si-npn-Leistungsschalttransistoren im Plastgehäuse


Ę.	Gren	Grenzwerte					Kennwe	rte bei	Kennwerte bei $T_j = 25^{\circ}$	ာ့ ၁						Bau-
۲. ۲.	Ptot	$v_{\rm CEX}$	UCEO	$^{ m I_{c}}$	$_{\rm CM}$	$T_{\mathbf{j}}$	UCEsat	UBEsat	bei I _C ;	IB	t _f bei	i I _C ;	l _B ;	-IB	Rthje	form
	(W)	(X)	(3)	(A)	(A)	(00)	(V)	(V)	(A)	(A)	(srl)	(A)	(A)	(A)	max (K/W)	
SU 377	85	009	300	9	∞	175	1,5	1,3	2,5	0,5	8,0	2,5	0,5	1,0	1,76	85
SU 378	82	200	400	9	∞	175	1,5	1,3	2,5	0,5	8,0	2,5	0,5	1,0	1,76	85
SU 379	85	800	400	9	∞	175	1,0	1,1	1,0	0,2	8,0	1,0	0,2	0,4	1,76	85
SU 380	85	850	400	9	∞	175	1,5	1,3	2,5	0,5	8,0	2,5	0,5	1,0	1,76	85
SU 382	120	850	400	ග	15	175	1,5	1,6	2		8,0	c		+1	1,2	84
SU 383	120	1000	450	6	15	175	1,5	1,6	2		8,0	2	П	-	1,2	84
SU 384	120	1000	450	6	15	175	1,5	1,6	2	1,6	8,0	22	-	-	1,2	84
		_	_		_			_		_			_	_		

Si-npn-Darlington-Leistungsschalttransistoren im Modulgehäuse

			1						
Bau-	form				86	8			
	Rthjc	(K/W)	0,5	0,5	0,5	0,31	0,31	0,31	
	ei -I _C	(A)	30	30	30	09	60	09	
	t _f bei I _C ; I _B -U _{CE} bei -I _C max		1,8	1,8	1,8	1,8	1,8	1,8	
	$ \mathbf{I_B} $	(A)	1	Н	Н	н	1	Н	
	i Ic;	(A) (A)	30	30	30	09	09	09	
	t be		က	ന	ಣ	က	က	က	
ပွ	P.	(A)	1	П	Н	н	Н	-	
$T_j = 25$	bei I _C ;	(A) (A)	30	30	30	09	09	09	
Kennwerte bei $T_{\rm j}$ = 25 °C	UBEsat max	3	2,5	2,5	2,5	3,0	3,0	3,0	
Kennwe	UCEsat UBEsat bei IC; IB	3	2,0	2,0	2,0	2,5	2,5	2,5	
	T,	(O _o)	150	150	150	150	150	150	
	$^{ m I}_{ m CM}$	(A) (A)	09	09	09	120	120	120	
	$^{\mathrm{I}}$	(A)	30	30	30	09	09	09	
	UCEO IC ICM Tj	(V)	009	200	800	400	800	800	
Grenzwerte	Ptot UCBO	(V)	750	006	1000	009	006	1000	
Gren	Ptot	(W)	250	250	250	400	400	400	
£	Ç.	,	SU 508 250	SU 509	SU 510	SU 518	SU 519	SU 520	

SME 992 SME 994 SME 996

N-Kanal-MOS-Feldeffekttransistoren-Tetroden * In Entwicklung *

Maßbild mit Anschlußbelegung

 $R_{thja} \leq 0.46 \text{ K/mW}^{1)}$ Wärmewiderstände:

N-Kanal-MOS-Feldeffektransistoren-Tetroden vom Verarmungstyp (depletion) mit inte-SME 992 für UKW-Anwendungen grierten Schutzdioden

SME 994 für VHF-Anwendungen

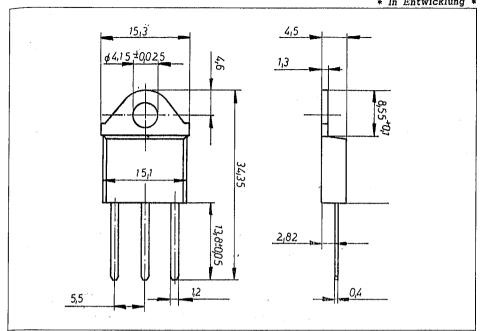
Grenzwerte (gültig für den Betriebstemperaturbereich)

SME 996 für UHF-Anwendungen

	SME 992	SME 994	SME 996	Einheit
U _{DS}	20	20	20	V
IDAV	40	30	30	m A
⁺ I _{G1S}	10	10	10	m A
- I _{G2S}	10	10	10	mA
$\begin{vmatrix} P_{tot} \\ (T_a \leq 60 \text{ °C})^1 \end{vmatrix}$	200	200	200	mW
Tc	150	150	150	°C
Tstg	-55 bis 125	-55 bis 125	-55 bis 125	°C

1) Transistor auf Keramiksubstrat 8 x 10 x 0,6 mm⁸

Statische Kennwerte ($T_a = 25$ °C)


	SME 992	SME 994	SME 996	Einheit
⁺ I _{G1SS}	≤ 50	≤ 50	≤ 50	nA
$(- U_{G1S} = 5 V,$				
$U_{G2S} = U_{DS} = 0 \text{ V}$				
$^{\pm}$ $^{\mathrm{I}}_{\mathrm{G2SS}}$	≤ ₅₀	≦ 50	≤ 50	nA
$(^{+}_{-} U_{G2S} = 5 V,$				
$U_{G1S} = U_{DS} = 0 \text{ V}$		≦ 50		nA
I _{DSS}				
$(U_{DS} = 10 \text{ V},$	1 bis 25			mA
$U_{G2S} = 4 \text{ V}$				
$(U_{DS} = 15 \text{ V},$		2 bis 20	2 bis 20	mA
$U_{G2S} = 4 \text{ V}$				
^{-U} G1S(OFF)				
$(U_{DS} = 10 \text{ V},$	$\leqq 1,3$			v
$I_D = 20 \mu A$				
$U_{G2S} = 4 \text{ V}$				
$(U_{DS} = 15 \text{ V},$		$\leq 2,5$	$\leq 2,5$	v
$I_D = 20 \mu A$				
$U_{G2S} = 4 \text{ V}$				
^{-U} G2S(OFF)				
$(U_{DS} = 10 \text{ V},$	$\leq 1,1$			v
$I_{\rm D} = 20 \ \mu A$,				
$U_{G1S} = 0 \text{ V}$				
$U_{\rm DS} = 15 \text{ V},$		$\leq 2,0$	$\leq 2,0$	v
$_{\rm D} = 20 \ \mu {\rm A}$				
$U_{G1S} = 0 \text{ V}$				

Dynamische Kennwerte (T_g = 25 °C)

	SME 992	SME 994	SME 996	Einheit
$ Y_{21S} $ $(U_{DS} = 10 \text{ V},$ $U_{G2S} = 4 \text{ V},$ $I_{D} = 15 \text{ mA},$ $f = 1 \text{ KHz})$	≥ 20			mS

	SME 992	SME 994	SME 996	Einheit
Y _{21S}				
,		≧ 15	≧ 15	mS
$(U_{DS} = 15 \text{ V},$				11
$U_{G2S} = 4 \text{ V},$				
I _D = 10 mA, f = 1 KHz)				
G _p		≧ 20		dB
$(U_{DS} = 15 \text{ V},$. 20		db
$U_{G2S} = 4 V,$				
$I_D = 10 \text{ mA},$				
f = 200 MHz,				
$G_g = 2 \text{ mS},$				
$G_1 = 0.5 \text{ mS}$			≧ 15	dB
$(U_{DS} = 15 \text{ V},$			= 15	db db
$U_{G2S} = 4 V,$				
$I_D = 10 \text{ mA},$				
f = 800 MHz,				
$G_g = 2 \text{ mS},$	·			
$G_1 = 1 \text{ mS}$				
F				dB
$ (U_{DS} = 10 \text{ V},$	$\leq 2,5$			
$U_{G2S} = 4 V,$				
$I_D = 15 \text{ mA},$				
f = 200 MHz,				,
$G_g = 2 \text{ mS}$				
$(U_{DS} = 15 \text{ V},$		$\leq 2,8$		dB
$U_{G2S} = 4 V,$				
$I_D = 10 \text{ mA},$				
f = 200 MHz,				
$G_{gr} = 2 \text{ mS}$				
$(U_{DS} = 15 \text{ V},$			$\leq 3,9$	dB
$U_{G2S} = 4 V,$	7			
$I_D = 10 \text{ mA}$				
f = 800 MHz,				
$G_g = 2 \text{ mS}$			1	

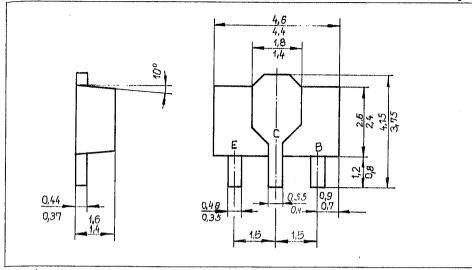
SU 391, SU 392, SU 393 Si-npn-Leistungsschalttransisitoren * In Entwicklung *

Maßbild

Masse: max. 4 g

Si-npn-Leistungsschalttransistoren für Schaltregler, Wechselrichter, Gleichspannungswandler

Kennwert	Kurz- zeichen	Meßbedingung	Тур	min.	max.	Einheit
Kollektor-Emitter-	UCEV	$U_{BE} = -2 \text{ V}$	SU 391		125	ν
Spannung	02,	$I_B = 0 A$	SU 392		160	v
		2	SU 393		300	v
	UCEO		SU 391		90	v
	OLO.	•	SU 392		125	v -
1			SU 393		250	ν
Kollektor-Emitter-Sätti-	UCEsat		SU 391		1,2	v
gungsspannung	CLSat		SU 392		1,2	v
			SU 393		0,9	v


Kennwert	Kurz- zeichen	Meßbedingung	Тур	min.	max.	Einheit
Kollektorstrom	I _{Csat}	$t_p \leq 2 \text{ ms}$	SU 391		20	A
	Osat	$\delta \leq 0,1$	SU 392		15	A
			SU 393		10	A
	T_{CM}		SU 391		30	A
	01.1		SU 392		25	A
			SU 393		20	A
Basisstrom	$I_{ m B}$		SU 391		8	A
			SU 392		6	A
			SU 393		4	A
Gesamtverlustleistung	P _{tot}	$T_{\rm C} \stackrel{\leq}{=} +25 {\rm ^{\circ}C}$			150	W
Sperrschichttemperatur	Тj				+175	°C

Ausgewählte Kennwerte $(T_J = 25 \text{ °C} \pm 5 \text{ K})$

	<u> </u>				-				
Kennwert	Kurz- zeichen	Mε	gb	edingung	Ту	p	min.	max.	Einheit
Kollektor-Emitter-Durch-	U _{(BR)CEC}	I_{B}	=	0 A	su	391	90		V
bruch-Spannung			=	0,1 A	SU	392	125		v
			<	1 ms, Einzel-	SU	393	250		V
		impu	ls						
Emitter-Basis-Durch-	U _{(BR)EBO}	I_C	=	0 A			7		V
bruch-Spannung] ` ′	I_{E}	=	10 mA					
Kollektor-Emitter-Rest-	ICEV	\mathbf{u}_{CE}	=	UCEV				1	m A
strom		U_{BE}							
Kollektor-Emitter-Sätti-	UCEsat	I_{B}		2 A	SU	391		1,2	V
gungs-Spannung			=	1,5 A	SU	392		1,2	V .
			=	1 A	SU	393		0,9	V
			=	I _{Csat}					
				1 ms, Einzel-		Ì			
		impu	ls						
Speicherzeit	t _s	I_B	=	2 A	SU	391		2,0	μs
		I_{B}	=	1,5 A	SU	392	:		
		I_{B}	=	1 A	su	393			
Abfallzeit	t	I_{B}	=	2 A	SU	391	,	-0,8	μs
		I_{B}	=	1,5 A	su	392			
		IB	=	1 A	su	393			

SCE 535 bis 540

Silizium-Epitaxie-Planar-NF-Transistoren * In Entwicklung *

Maßbild mit Anschlußbelegung

Wärmewiderstände:
$$R_{thja} \leq 125 \text{ K/W}^{1}$$

$$R_{thje} \leq 10 \text{ K/W}$$

SCE 535/537/539-npn-, SCE 536/538/540-pnp- Silizium-Epitaxie-Planar-NF-Transistoren für allgemeine Anwendungen in der Hybrid- und Aufsetztechnik

Grenzwerte (gültig für den Betriebstemperaturbereich)

	SCE 535/536	SCE 537/538	SCE 539/540	Einheit
U _{CBO}	45	60	100	V
UCEO	45	60	80	v
U _{EBO}	5	5	5	У.
$ I_C $	1	1	1	A
$ I_{CM} $	1,5	1,5	1,5	A
$ I_{\mathbf{B}} $	0,2	0,2	0,2	A
Ptot	1	1	1	W
$(T_a = 25 \text{ °C})^{1)}$				
Γį	150	150	150	°C
r'a	-55 bis 125	-55 bis 125	-55 bis 125	°C
	_1	1		i

¹⁾ Transistor auf Keramiksubstrat 0,7 cm dick, 2,5 cm² Fläche

	SCE 535/536	SCE 537/538	SCE 539/540	Einheit
U _{(BR)CBO} (I _C = 1 mA)	45	60	. 100	V
U _{(BR)CEO} (I _C = 50 mA)	45	60	80	V
U _{(BR)EBO} (I _E = 10 μA)	5	5	5	V
I _{CBO}	≦ 100	≦ 100	≦ 100	nA
$ U_{CB} = 30 \text{ V}$ $ U_{CEsat} $ $ I_{C} = 500 \text{ mA}$	≦ 500	≤ 500	.º ≦ 500	mV
$\begin{aligned} & \mathbf{I}_{\mathbf{B}} = 50 \text{ mA}) \\ & \mathbf{U}_{\mathbf{BEsat}} \\ & (\mathbf{I}_{\mathbf{C}} = 500 \text{ mA}, \end{aligned}$	≤ 1,3	≦ 1,3	≦ 1,3	V
1.6.				

≦ 1

> 25

40 bis 100

63 bis 160

100 bis 250

 ≤ 1

> 25

40 bis 100

63 bis 160

100 bis 250

 ≤ 1

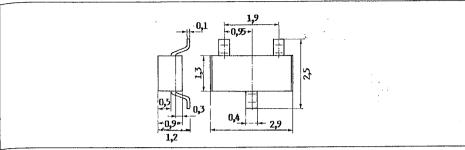
> 25

40 bis 100

63 bis 160

100 bis 250

1) impulsmäßige Messung, $t_p = 300 \mu s$, $t_p/T = 0.01$


ν

Dynamische Kennwerte $(T_8 = 25 \text{ }^{\circ}\text{C})$

	- u			
*.	SCE 535/536	SCE 537/538	SCE 539/540	Einheit
f_{T} (U _{CE} = 10 V, I _C = 50 mA, f = 20 MHz)	> 50	> 50	> 50	MHz

SFE 250 Si-NPN-Transistor für UHF

* In Entwicklung *

Maßbild mit Anschlußbelegung

Gehäuse: SOT-23

Silizium-NPN-Planar-Epitaxial-Transistor für UHF- und Breitband-Kleinsignalverstärker bei extrem niedrigem Leistungsbedarf.

Grenzwerte

Grenzwert	Kurz- zeichen	min.	max.	Einheit
Kollektor-Basis-Spannung	U _{CBO}		. 8	v
Kollektor-Emitter-Sperr- spannung	UCEO		5	V
Emitter-Basis-Spannung	U _{EBO}		2	V
Kollektorstrom, Mittel- wert	I _{CAV}		2,5	mΑ
Gesamtverlustleistung	P _{tot}		50	m W
bei T _{amb} ≤ 125 °C - auf Keramiksubstrat	tot			
8 mm x 10 mm x				
0,7 mm		· :		1
Sperrschichttemperatur	T _i		150	°C
Betriebstemperaturbereich	Tstg	-55	125	°C
 Wärmewiderstände				
zwischen Lötflächen				
und Umgebung				
- auf Keramiksubstrat	R _{thja}		450	K/W
8 mm x 10 mm x				
0,7 mm				

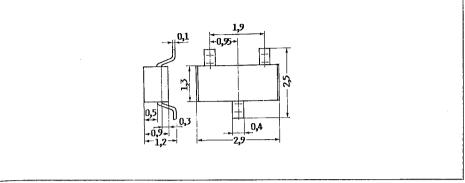
 $|I_{B}| = 50 \text{ mA})^{1}$ $|U_{BE}|$ $(|U_{CE}| = 2 \text{ V},$

 $|I_{\rm C}| = 500 \text{ mA})^{1}$

 $|I_{C}| = 2 V,$ $|I_{C}| = 5 \text{ mA}^{1}$

 $|(|U_{CE}| = 2 \text{ V}, |I_{C}| = 150 \text{ mA})^{1})$

 $|I_{C}| = 2 V,$ $|I_{C}| = 500 \text{ mA}^{1}$


Gruppe A

Gruppe B

Gruppe C

h_{21E}

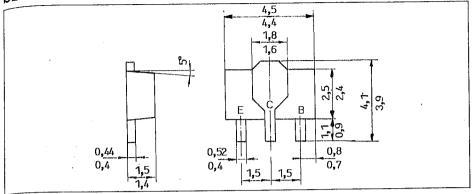
SFE	292	Si-NPN-HF-Transistor

Maßbild mit Anschlußbelegung

Gehäuse: SOT-23

Silizium-NPN-Planar-Epitaxial-HF-Transistor für Breitbandverstärker

Grenzwert	Kurz- zeichen	min.	max.	Einheit
Kollektor-Basis-Spannung	U _{CBO}		20	V
Kollektor-Emitter-	UCEO		15	V
Sperrspannung				
Emitter-Basis-Spannung	UEBO		2	V
Kollektorstrom	I _C		25	mA
Gesamtverlustleistung	Ptot		200	mW
bei T _{amb} ≤ 60 °C				
- auf Keramiksubstrat				
8 mm x 10 mm x				ŀ
0,7 mm				
Sperrschichttemperatur	T		150	°C
Betriebstemperaturbereich	T _{stg}	-55	125	°C
Wärmewiderstände				
zwischen Lötflächen				
und Umgebung				1
- auf Keramiksubstrat	R _{thja}		450	K/W
8 mm x 10 mm x				
0,7 mm				


Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Kollektor-Reststrom	ІСВО	$I_{E} = 0$ $U_{CB} = 5 \text{ V}$			50	nA
Kollektor-Emitter-	UCEsat	I _C = 10 μA			200	mγ
Restspannung		$I_{B} = 1 \mu A$				
	UCEsat	$I_{C} = 1 \text{ mA}$:	175	mγ
n .	**	$I_{B} = 100 \mu A$				
Basisspannung	U _{BEsat}	$I_{C} = 10 \mu A$			750	mγ
	17	$I_{B} = 1 \mu A$ $I_{C} = 1 mA$	1		900	n. 37
	UBEsat	$I_{\text{C}} = 1 \text{ mA}$ $I_{\text{B}} = 100 \mu\text{A}$			900	mν
Transit-Frequenz	\mathbf{f}_{T}	$I_{C} = 1 \text{ mA}$	1,2			GHz
•	T	$U_{CE} = 1 V$				
		$f_{M} = 500 \text{ MHz}$				
Kollektorkapazität	c_{c}	$U_{CB} = 0.5 \text{ V}$			0,6	pF
		$I_{E} = 0$				
		f = 1 MHz				
Emitterkapazität	C_{E}	$U_{EB} = 0$			0,5	pF
		$I_C = 0$				
		f = 1 MHz				
Rückwirkkapazität	-C _{12e}	$U_{CE} = 1 V$:	0,45	pF
		$I_{C} = 1 \text{ mA}$ $f = 1 \text{ MHz}$				
Gleichstromverstärkung	h		20			
dielenstromverstarkung	h _{FE}	$U_{CE} = 1 V$ $I_{C} = 1 mA$	20			
Leistungsverstärkung		$U_{CE} = 1 V$				
		$I_{C} = 1 \text{ mA}$				
	V _p opt	f = 200 MHz		25		dB
	V p opt	f = 500 MHz		18	!	dB
	v _{p opt}	f = 800 MHz		12		dB
Rauschzahl	P OPT	$U_{CE} = 1 V$				
		$Z_g = Z_g \text{ opt}$				
		f = 500 MHz				
	F	$I_{C} = 1 \text{ mA}$		3,8		dВ
	F	$I_{\text{C}} = 100 \ \mu\text{A}$		5,5		dB

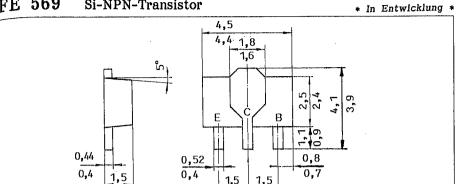
Ausgewählte Kennwerte ($T_{amb} = 25$ °C)

Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
I_{CBO}	I _E = 0 U = 10 V			50	nA
$\mathbf{f_{T}}$.	$I_{C} = 14 \text{ mA}$		5		GHz
c_{c}	f_{M} = 500 MHz U_{CB} = 10 V I_{E} = 0		0,75		pF
$C_{\mathbf{E}}$	$I = 1 \text{ MHz}$ $U_{EB} = 0.5 \text{ V}$ $I_{C} = 0$		0,8		pF
-C _{12e}	$f = 1 \text{ MHz}$ $U_{CE} = 10 \text{ V}$ $I_{C} = 2 \text{ mA}$ $f = 1 \text{ MHz}$		0,7		pF
h _{FE}	$U_{CE} = 10 \text{ V}$	25			
V _{p opt}	$U_{CE} = 10 \text{ V}$ $I_{C} = 14 \text{ mA}$		18		dB
F	$U_{CE} = 10 \text{ V}$ $I_{C} = 2 \text{ mA}$		2,4		dB
	zeichen I_{CBO} f_{T} C_{C} C_{E} $-C_{12e}$ h_{FE} $V_{p} opt$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

SFE 517 Si-NPN-HF-Transistor

* In Entwicklung *

Maßbild mit Anschlußbelegung


Gehäuse: SOT-89

Silizium-NPN-Planar-Epitaxial-HF-Transistor für Breitenband- und Antennenverstärker

Grenzwert	Kurz- zeichen	min.	max.	Einheit
Kollektor-Basis-Spannung	U _{CBO}		40	V
Kollektor-Emitter- Sperrspannung	UCEO		25	V
Emitter-Basis-Spannung	$U_{ m EBO}$		2	V
Kollektorstrom, Mittel- wert	ICAV		150 、	mA
	P _{tot}		1	w
bei T _{amb} ≤ 25 °C - auf Keramiksubstrat 0,7 mm dick 2,5 cm ² Fläche	tot			
Sperrschichttemperatur	T.		150	°C
Betriebstemperaturbereich	T _{stg}	-55	125	°C
Wärmewiderstände				
zwischen Sperrschicht				
und Umgebung	n n		125	K/W
- auf Keramiksubstrat 0,7 mm dick	R _{thja}			
2,5 cm² Fläche				

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Kollektor-Reststrom	I _{CBO}	$I_{E} = 0$ $U_{CB} = 20 \text{ V}$			20	μА
Kollektor-Emitter- Restspannung	UCEsat	$I_{C} = 100 \text{ mA}$			0,5	V
Transit-Frequenz	$\left \mathbf{f}_{\mathrm{T}} \right $	$\begin{bmatrix} I_{B} &= 10 \text{ mA} \\ I_{C} &= 150 \text{ mA} \\ U_{CE} &= 15 \text{ V} \end{bmatrix}$		1,2		GHz
Kollektorkapazität	C _C	f_{M} = 500 MHz U_{CB} = 15 V I_{E} = 0			4,0	рF
Rückwirkungskapazität	-C _{12e}	$f = 1 \text{ MHz}$ $U_{\text{CE}} = 15 \text{ V}$ $I_{\text{C}} = 10 \text{ mA}$		1,9		pF
Gleichstromverstärkung	h _{FE}	$f = 1 \text{ MHz}$ $U_{CE} = 5 \text{ V}$ $I_{C} = 50 \text{ mA}$	25			
Leistungsverstärkung		$U_{CE} = 15 \text{ V}$				
	V _p opt	$I_{C} = 60 \text{ mA}$ $f = 200 \text{ MHz}$ $f = 800 \text{ MHz}$		16 6,5		dB dB

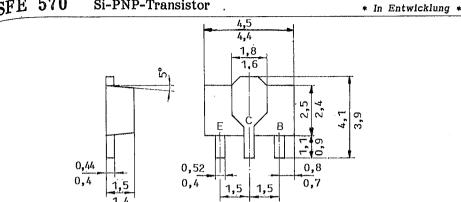
SFE 569 Si-NPN-Transistor

Maßbild mit Anschlußbelegung

Gehäuse: SOT-89

Sjlizium-NPN-Epitaxial-Planar-Transistoren für Anwendungen in der Hybrid- und Aufsetztechnik.

Mit Komplementärtypen SFE 570 anwendbar in den Video-B-Endstufen.


Grenzwert	Kurz- zeichen	min.	max.	Einheit
Kollektor-Basis-Spannung Kollektor-Emitter- Spannung	U _{CBO}		250 250	V
Emitter-Basis-Spannung Kollektorstrom Kollektorspitzenstrom Gesamtverlustleistung bei T _{amb} ≤ 25 °C - auf Keramiksubstrat 0,7 mm dick 2,5 cm² Fläche	U _{EBO} I _C I _{CM} Ptot		5 50 100 1	W mA
Sperrschichttemperatur Betriebstemperaturbereich	T _j T _{stg}	-55	150 125	°C

Grenzwert	Kurz- zeichen	min.	max.	Einheit
Wärmewiderstände zwischen Sperrschicht und Umgebung				
- auf Keramiksubstrat 0,7 mm dick 2,5 cm² Fläche	R _{thja}		125	K/W
zwischen Sperrschicht und Kollektor	R _{thje}		25	K/W

Ausgewählte Kennwerte ($T_{amb} = 25$ °C)

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Kollektor-Basis-Reststrom	СВО	$I_{E} = 0$ $U_{CB} = 200 \text{ V}$			50	nA
Kollektor-Emitter- Restspannung	U _{CEsat}	$I_{C} = 30 \text{ mA}$ $I_{B} = 5 \text{ mA}$			0,6	V
Gleichstromverstärkung	h _{FE}	$U_{CE} = 20 \text{ V}$ $I_{C} = 25 \text{ mA}$	50			
Transit-Frequenz	${ m f}_{ m T}$	$U_{CE} = 10 \text{ V}$ $I_{C} = 10 \text{ mA}$	60			MHz
Rückwirkungskapazität	C _{12e}	$f_{M} = 20 \text{ MHz}$ $U_{CE} = 30 \text{ V}$ $I_{C} = 0$ $f = 1 \text{ MHz}$			1,6	pF

SFE 570 Si-PNP-Transistor

Maßbild mit Anschlußbelegung

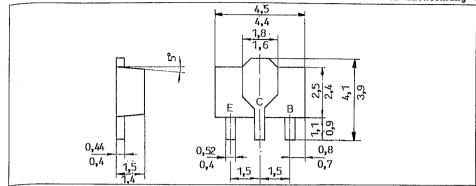
Gehäuse: SOT-89

Silizium-PNP-Epitaxial-Planar-Transistor für Anwendungen in der Hybrid- und Aufsetzttechnik.

Mit Komplementärtypen SFE 569 anwendbar in Video-B-Endstufen.

Grenzwert	Kurz- zeichen	min.	max.	Einheit
Kollektor-Basis-Spannung Kollektor-Emitter- Spannung	-U _{CEO}		250 250 5	V V
Emitter-Basis-Spannung Kollektorstrom Kollektorspitzenstrom Gesamtverlustleistung bei T	-U _{EBO} -I _C -I _{CM} P _{tot}		5 50 100 1	mA mA W
2,5 cm² Fläche Sperrschichttemperatur Betriebstemperaturbereich	${ m T_{j}} { m T_{stg}}$	-55	150 125	°C

Grenzwert	Kurz- zeichen	min.	max.	Einheit
Wärmewiderstände Zwischen Sperrschicht und Umgebung			,	
- auf Keramiksubstrat 0,7 mm dick	R _{thja}		125	K/W
2,5 cm² Fläche Zwischen Sperrschicht und Kollektor	R _{thje}		25	K/W


Ausgewählte Kennwerte ($T_{amb} = 25$ °C)

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Kollektor-Basis-Reststrom	-Ісво	$I_{E} = 0$ $-U_{CB} = 200 \text{ V}$			50	nA
Kollektor-Emitter-	-U _{CEsat}				0,8	ν
Restspannung		$-I_B = 5 \text{ mA}$				
Gleichstromverstärkung	h _{FE}	-U _{CE} = 20 V	50			
		$-I_C = 25 \text{ mA}$				ŀ
Transit-Frequenz	f_{T}	$-U_{CE}^{-10}$ V	60			MHz
		$-I_C = 10 \text{ mA}$				
		$f_{M} = 20 \text{ MHz}$				
Rückwirkungskapazität	C_{12e}	$-\overline{\mathrm{U}}_{\mathrm{CE}}^{-}$ = 30 V			1,6	pF
	120	$I_C = 0$				
		f = 1 MHz				

SSE 550/551/552 si-N

Si-NPN-Transistor

* In Entwicklung *

Maßbild mit Anschlußbelegung

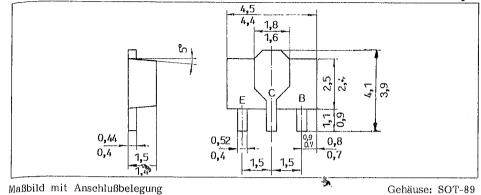
Gehäuse: SOT-89

 ${\tt Silizium-NPN-Planar-Darlington-Transistoren}$ für Anwendungen in der Hybrid- und Aufsetztechnik

Grenzwert	Kurz- zeichen	min.	max.	Einheit
Kollektor-Basis-Spannung	U _{CBO}		60 ¹⁾	V
			80 ²⁾	V
			903)	· V
Kollektor-Emitter-	UCER		45 ¹⁾	v
Spannung	CER		60 ²⁾	ν
			803)	v
Emitter-Basis-Spannung	UEBO		5	v
Kollektorstrom	I _C		0,5	A
Kollektorspitzenstrom	I _{CM}		1,5	A
Basisstrom	I _B		100	mA
Gesamtverlustleistung	P _{tot}		1	w
bei T _{amb} ≤ 25 °C	101			
- auf Keramiksubstrat			,	
0,7 mm dick				
2,5 cm² Fläche				
Sperrschichttemperatur	T _i		150	°C
Betriebstemperaturbereich	T _{stg}	-55	125	°C

¹⁾ SSE 550; 2) SSE 551; 3) SSE 552

Grenzwert	Kurz- zeichen	min.	max.	Einheit
Wärmewiderstände zwischen Sperrschicht und Umgebung		•		
- auf Keramiksubstrat 0,7 mm dick 2,5 cm² Fläche	R _{thja}		125	K/W
zwischen Sperrschicht und Kollektor	R _{thje}		10	K/W


Ausgewählte Kennwerte ($T_{amb} = 25$ °C)

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Kollektor-Emitter	l _{CES}	$U_{BE} = 0$		·	10	μА
Reststrom		$U_{CE} = U_{CERmax}$:		:	
Emitter-Reststrom	I _{EBO}	1 _C = 0			10	μА
Kollektor-Emitter-	U _{CEsat}	$U_{EB} = 4 V$ $I_{C} = 0.5 A$			1,3	V
Restspannung		$I_{B} = 0.5 \text{ mA}$	•			
Basisspannung	U _{BEsat}	$I_{C} = 0,5 A$			1,9	V
		$I_{B} = 0.5 \text{ mA}$:			
Gleichstromverstärkung]	$U_{CE} = 10 \text{ V}$			1	
	${\rm h_{FE}}$	$I_{C} = 0,15 \text{ A}$	1000			
	${\sf h}_{ m FE}$	$I_{C} = 0.5 A$	2000			
Schaltzeiten	tein	$I_{\rm CX} = 0.5 \text{ A}$		0,4		μs
		$I_{BX} = 0.5 \text{ mA}$				
÷ .	taus	$I_{CX} = 0.5 A$		1,5		μs
		$I_{BX} = 0.5 \text{ mA}$				

SSE 560/561/562

Si-PNP-Transistor

* In Entwicklung *

Silizium-PNP-Planar-Darlington-Transistoren für Anwendungen in der Hybrid- und Aufsetztechnik

Grenzwert	Kurz- zeichen	min.	max.	Einheit
Kollektor-Basis-Spannung	-UСВО		60 ¹⁾ 80 ²⁾	V V
			903)	v
Kollektor-Emitter-	-U _{CER}		45 ¹⁾	V
Spannung			60 ²⁾	ν,
			80 ³⁾	ν .
Emitter-Basis-Spannung	-U _{EBO}		5	. V
Kollektorstrom	-I _C		0,5	A
Kollektorspitzenstrom	-I _{CM}		1,5	A
Basisstrom	-I _B		100	mA
Gesamtverlustleistung	Ptot		1	W
bei T _{amb} ≤ 25 °C				
- auf Keramiksubstrat			:	
0,7 mm dick				
2,5 cm² Fläche				
Sperrschichttemperatur	T _j		150	°C
Betriebstemperaturbereich	Tstg	-55	125	°C

¹⁾ SSE 560; 2) SSE 561; 3) SSE 562

Grenzwert	Kurz- zeichen	min.	max.	Einheit
Wärmewiderstände zwischen Sperrschicht				
und Umgebung - auf Keramiksubstrat 0,7 mm dick	R _{thja}		125	K/W
2,5 cm² Fläche zwischen Sperrschicht und Kollektor	R _{thje}		10	K/W

Ausgewählte Kennwerte ($T_{amb} = 25$ °C)

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Kollektor-Emitter-	-I _{CES}	$U_{BE} = 0$			10	μΑ
Reststrom		-U _{CE} = -U _{CERmax}				
Emitter-Reststrom	-I _{EBO}	$I_{C} = 0$ $-U_{EB} = 4 \text{ V}$			10	μA
Kollektor-Emitter-	-U _{CEsat}				1,3	V
Restspannung		$-I_B = 0.5 \text{ mA}$				
Basisspannung	-U _{BEsat}	$-I_{C} = 0.5 \text{ A}$			1,9	V
	1	$-I_B = 0.5 \text{ mA}$				
Gleichstromverstärkung		$-U_{CE}^{-10}$ V				
	h _{FE}	$-I_{\rm C} = 0.15 \text{ A}$	1000			
	h _{FE}	$-I_{C} = 0,5 A$	2000			
Schaltzeiten		$-I_{\text{CX}} = 0.5 \text{ A}$		0,4		μs
		$-I_{BX} = 0.5 \text{ mA}$				
	taus	$-I_{\text{CX}} = 0.5 \text{ A}$		1,5		μs
		$-I_{BX} = 0.5 \text{ mA}$				

VFE 15-18/VFE 15-20/VFE 15-23 VFE 15-27/VFE 15-32/VFE 15-37

* In Entwicklung *

1,78±0,15

0,5±0,1

0,15±0,05

Maßbild mit Anschlußbelegung und Chiplayout

Gehäuse: TO-120

GaAs - Fet's

Gallium - Arsenid - Feld - Effekt - Transistoren mit Arbeitsfrequenzen bis 12 GHz im Metall-Keramik-Gehäuse TO 120 und VF 15 X als Chipvariante.

Grenzwert	Kurz- zeichen	min.	max.	Einheit
VFE-Typen				
Drainstrom	I^{D}		100	mA
Drain-Source-Spannung	U _{DS}		5	V
Gate-Source-Spannung	U _{GS}	- 5	0,5	V
Verlustleistung	P _{tot}		350	mW
Kanaltemperatur	T_{Ch}		150	· °C
VF 15 X				
Drainstrom	I_{D}		100	mA
Drain-Source-Spannung	$\overline{\mathrm{u}}_{\mathrm{DS}}$		5	V
Gate-Source-Spannung	U _{GS}	-5	0,5	V
Verlustleistung	P _{tot}		_	
Kanaltemperatur	T _{Ch}		150	°C

Statische Kennwerte

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Gate-Source-Abschnür- spannung Steilheit	U _{GSoff}	$U_{DS} = 4 \text{ V}$ $I_{DS} = 1 \text{ mA}$ $U_{DS} = 3,5 \text{ V}$ $I_{DS} = 15 \text{ mA}$	-4 20		-0,3	V mS

Dynamische Kennwerte

(bei U_{DS} = 3,5 V, I_{DS} = 15 mA, f = 12 GHz, T_a = 25 °C)

Тур	F	in dB	G _a i	n dB
	min.	max.	min.	max.
VFE 15-18		1,8	9,0	
VFE 15-20		2,0	8,5	
VFE 15-23		2,3	8,0	
VFE 15-27		2,7	7,0	
VFE 15-32		3,2	6,5	
VFE 15-37		3,7	6,2	
VF 15 X		3,7	6,2	

VF 15 X - Chipvariante

 Chipabmessungen:	Länge		470	+	10	μm
	Breite		370	+	10	μm
	Dicke		150	+	20	μm
Bondinselgröße:	Source	>	120	x	60	μm
	Gate	>	60	X	60	μm
	Drain	>	60	v	60	um

- Schichtaufbau der Bondinsel Ti/Pt/Au
- Schichtdicke ca. 500 nm

Dioden

Gleichrichter

Grenzwerte (Γ_{j}	orto (
	2	$T_{j} = 25^{\circ}C$					%	Kennwerte (T _j	= 25	25°C)		Roll
	UR	URRM	Į.	1FRM	o_1	U _F bei	I _F	I _{Rmax} bei	U R	C_totmax t	t	form
(mm)	3	(3)	(mA)	(mA)	(mA)	(3)	(mA)	(рд)	3	(pF)	(ns)	
430	50	7.5	300	009	200	< 1	200	0,1	50	41)	42)	88,87
430	30	35	300	009	200	< 1	200	0,1	30	41)	42)	88,87
								2	35			
300	50	09	175	350	115	< 1	100	0,1	20	31)	2 ₂)	88,87
		•						5	09		,	
300	25	35	115	225	75	1 >	30	0,07	25	41)	22)	88,87
								2	35			
300	15	20	75	150	50	< 1	10	0,05	15	41)	42)	88,87
,,,								ວ	20		•	
1504)		30	30	09		< 0,81	ന	0,04	25	83)	652)	88,89
						> 0,5	0,1			,	,	
	25	30	50	100		1 >	15	0,04	25	83	652)	88,89
	15	20	20	40		< 0,84	က	0,06	15	83)	$^{10^2)}$	88,89
						> 0,5	0,1			,	•	
1504)		20	30	09		< 1 < 1	10	90,0	15	81)	$^{10^2)}$	88,89
	50	75	300	009	200	< 1	200	0,1	20	41)	42)	88
1004)	25	30	30	09		< 0,81	က	0,04	25	83)	65	06
						> 0,5	0,1					
	20		100			< 1,2	100	0,1	20		6	90
1004)		08	100			< 1,2	100	0,5	80	83)	10007)	90

eim Schalten von $I_F=10$ mA auf $U_R=6~\mathrm{V}$ bei $I_S=5$) speziell für Rechentechnik, hohe Stabilität der 2) beim Schalten von I_F °C 5) speziell für Reche 1) U_R : 3) U_R

Silizium-Z-Dioden

Silizium-Z-Dioden

Bau-	form	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						91	,									91						
	U _R bei I _R	(mA)	,					-										1						
	UR b	(X)		Н	2	3,5	ro	7	10	10	12	14	1.7	1	Н	H	2	2	3,5	3,5	2	2	7	2
	i IF	(mA)						20										50						
	$U_{ m F}$ bei	(3)						1,1	•									1,1						
g = 25°C)	TKUZ	$(\% \text{ K}^{-1})$	-0,260,23	-0,03 +0,06	-0,01 +0,07	+0,02 +0,07	+0,05 +0,08	+0,06 +0,09	+0,07 +0,09	+0,08 +0,095	+0,08 +0,1	+0,08 +0,1	+0,08 +0,1	-0,05 +0,03	-0,03 +0,05	-0,02 +0,06	-0,01 +0,07	+0,02 +0,07	+0,03 +0,07	+0,04 +0,08	+0,05 +0,085	+0,05 +0,09	+0,06 +0,09	+0.07 +0.09
Kennwerte (T _a	rZmax	(Ohm)	80	65	10		17	30	40	55	06	100	100	75	09	35	∞	2	7	10	15	20	20	25
7	U_Z bei $I_Z = 5$ mA	(v)	0,65 0,85	5,0 6,3	6,0 7,5	7,3 9,3	8,8 11,0	10,7 13,4	13,0 16,5	16,0 20,0	19,6 24,4	24,1 30,0	29,6 26,5	4,8 5,4	5,2 6,0	5,8 6,6	6,4 7,2	7,0 7,9	7,7 8,7	8,5 9,6	9,4 10,6	10,4 11,6	11,4 12,8	12,5 14,0
	Ptot	(mm)						200										200						-
T.	787		SZX 18/1	9,5/	8,9/	/8,2	/10	/12	/15	/18	/22	/27	/33	SZX 19/5,1	/5,6	7,6,5	8,9/	77,5	/8,2	/9,1	/10	/11	/12	/13

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(ш	M % : : : : : : : : : : : : : : : : : :	(V) (V) (V) (V) (V) (V) (V) (V) (V) (V)	(mA) (mA) 50	U _R bei I _R (V) (mA 10 10 10 10 10	i I _R (mA)	form
19/15 (mW) (V) 19/15 13,8 15,5 /18 15,2 17,0 /20 500 18,8 21,0 22 20,8 23,0 /24 22,8 23,0 /27 22,8 23,0 /30 28,0 23,0 /31 28,0 32,0 /32 28,0 35,0 /33 31,0 35,0 /5,1 4,8 5,4 /5,6 5,2 6,0 /6,8 2501) 6,4 7,2 /7,5 6,4 7,2		% : : : : : : : : : : : : : : : : : : :	(V)	(mA)	(V) 10 10 10	(mA)	
19/15 13,8 15,5 /16 15,2 17,0 /18 16,8 19,0 /20 500 18,8 21,0 22 20,8 23,0 /24 22,8 25,6 /27 25,1 28,9 /30 28,0 32,0 /33 31,0 35,0 21/1 4,8 5,4 /5,6 5,2 6,0 /6,8 250 ¹ /6,8 250 ¹ /7,5 6,4 7,2			1,1	20	10 10 10 10		
/16 /18 /18 /18 /20 /20 /22 /24 /24 /27 /27 /27 /30 /27 /31 /31 /5,1 /6,8 /7,5 /18 /18 /18 /10 /18 /18 /18 /18 /18 /18 /18 /18 /18 /18			1,1	50	10	_	
/18		: : : : : :	1,1	20	10		
/20 500 18,8 21,0 22 20,8 23,0 /24 22,8 25,6 /27 25,1 28,9 /30 28,0 32,0 /33 31,0 35,0 21/1 0,73 0,83 /5,1 4,8 5,4 /5,6 5,2 6,6 /6,8 250 ¹ 5,8 6,6 /6,8 250 ¹ 6,4 7,2 /7,5 7,0 7,2	······································	: : : : :	1,1	20	10		
22 2. 20,8 23,0 /24 22,8 25,6 /27 25,1 28,9 /30 28,0 32,0 /33 31,0 35,0 21/1 0,73 0,83 /5,1 4,8 5,4 /5,6 5,2 6,0 /6,2 5,2 6,6 /6,8 250 ¹) 6,4 7,2 /7,5 7,0 7,2		: : : :				r-H	91
/24 22,8 25,6 /27 25,1 28,9 /30 28,0 32,0 /33 31,0 35,0 21/1 0,73 0,83 /5,1 4,8 5,4 /5,6 5,2 6,0 /6,2 5,0 5,2 6,6 /6,8 250 ¹⁾ 6,4 7,2		: : :			12		
/27 /30 /30 /33 21/1 21/1 /5,1 /6,2 /6,2 /7,5 /7,5 /7,5		: :			12		
/30 /33 31,0 32,0 21/1 (5,1) 0,73 0,83 /5,6 4,8 5,4 /6,2 5,2 6,0 /6,8 250 ¹) 6,4 7,2 /7,5 7,0 7,9		:			14		, .
733 31,0 35,0 21/1 0,73 0,83 /5,1 4,8 5,4 /5,6 5,2 6,0 /6,2 5,8 6,6 /6,8 250 ¹⁾ 6,4 7,2 /7,5 7,0 7,9					14		•
1 $4,8$ $5,4$ $5,2$ $6,0$ 2 250^{1} $6,4$ $7,2$ 5 $7,0$ $7,9$		+0,08 +0,1			1.7		
4,8 5,4 5,2 6,0 5,8 6,6 6,4 7,2 7,0 7,9		-0,220,18					
5,2 6,0 5,8 6,6 250 ¹⁾ 6,4 7,2 7,0 7,9		-0,05 +0,03			8,0		,
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		-0,02+0,05					
250 ¹⁾ 6,4 7,2 7,0 7,0		-0,01 +0,06					
7,0		0,00 +0,07	1,1	50	2	Н	88
)+	+0,02 +0,07			7		
/8,2 7,7 8,7 7)+	+0,03 +0,07			3,5		
/9,1 8,5 9,6 10		+0,04 +0,08			3,5	*****	
/10 9,4 10,6 15	15 +(+0,05 +0,08			5		
/11 10,4 11,6 20	50 +(+0,05 +0,08			2		
/12 11,412,8 20		+0,06 +0,09			2		

Kennwerte ($T_a = 25^{\circ}C$) TK_{UZ} U_F bei I_F U_R bei I_R (Ohm) (% K^{-1}) (V) (mA) (V) (mA) 25 +0,065 +0,09 1,0 7 10 30 +0,07 +0,09 1,0 50 10 1 55 +0,07 +0,09 10 10 1 10 55 +0,07 +0,09 12 12 12 80 +0,07 +0,095 12 12 12
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
+0,09 +0,09 +0,09 +0,09 +0,09 +0,09
+0,09 +0,09 +0,09 +0,09 +0,095
+0,09 1,0 50 +0,09 +0,09 +0,095
+0,09
+0,09
+0,09
+0,095

Silizium-Z-Dioden

	Grenz	Grenzwerte (T	r _g = 45°C)	0	Kennwerte (T; =	= 25°C)			
Typ	Ptot	$Z_{\rm I}$	1 _Z 2)	TKUZ	nZ	rdZmax bei	Z_{I}	Rthjemax R.L.	Bauform
	(W)	(mA)	(mA)	(10 ⁻⁴ /K)	(V)	(Ohm)	(mA)	tnjamax (Ohm)	
SZ 600/0,75 ¹⁾		1000	3000	. 1	0,65 0,85	1,5	100		
/5,1		185	1450	-	4,8 5,4	വ	100		
/5,6		165	1330	+2	5,2 6,0	2	100		
/6,2		150	1210	د +	5,8 6,6	2	100		
8,9/		139	1100	÷	6,4 7,2	2	100		
77,5		126	1010	+4	6,2 0,7	2	100		
/8,2		113	910	÷	8,8 7,7	2	100		
/9,1	1	104	830	9+	8,5 9,6	4	50	∞	92
/10	85)	94	750	9+	9,4 10,6	4	20	100*	
/11		98	069	2+	10,4 11,6	7	50		
/12		82	630	2+	11,4 12,7	7	50		
/13		1.2	570	L+	12,4 14,1	11	20		
/15		63	200	2+	13,8 15,7	11	50		
/16		28	470	2+	$15,2 \dots 17,1$	1.5	25		
/18		52	420	2+	16,8 19,1	15	25		
/20		47	380	%	18,8 21,2	15	25		-
/22		43	350	8	20,8 23,3	15	25		

Si-Gleichrichterdioden

Si-Gleichrichterdioden	rerdioden									
Ę		Grenzwerte	rte				Kennwerte	4)		t.
ď	URRM	I _{F(AV)}	IFSM	T,	U _{Fmax} bei	F	Rmax bei	i UR	R _{this} *	Bautorm
	(V)	(A)	(A)	(O ₀)	(V)	(A)	(mA)	(v)	unje (K/W)	
SY 360/0,5	50									
/1	100									
/2	200									
/3	300	,	6		-			; E		
/4	400	11)	403)	150	1,2		0,3	U,' X U	95*	93
9/	009							n n n		
8/	800									
/10	1000									
/13	1300									
/16	1600									
SY 351/0,5	20									
/1	100									
/2	200									
/3	300	1						; c		
, /4	400	1,61)	803)	150	1,2	က	0,2	U, 1 X	*09	96
9/	009							n r m		
8/	800									
/10	1000									
/12	1200									
/14	1400									
/16	16.00									

¹⁾ in Flußrichtung gepolte Diode 2) mit Kühlblech 200 x 200 x 3 mm $^{\rm s}$

Si-Gleichrichterdioden

	(A) (A) (B) (B) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C	<u></u>	T _j	U _r 5) bei	1	4),	1 '	*	bautorm
	0	(A)	(00)	rmax	, [r.	Rmax ber	n OR	thja R	
				(V)	(A)	(mA)	(V)	tnje (K/W)	
									
	00	2804)	175	1,4	40	က	URRM	1,8	26
		······································							
	1400								
/16 1600	- 00								
SY 192/0,5 50									
/1 100									
/2 200									
/4 400									
009 9									
008 8/	$\frac{42^{2}}{}$	4504)	175	1,4	.06	2	URRM	1,0	94
/10 1000	0(
/14 1400	00								
/16 1600	00								

Si-Gleichrichterdioden

	I _{FSM}	•			20 10 11 11 11 11 11 11 11 11 11 11 11 11			ŗ
(V) 50 100 200 400 600 800 1000	(A)	Ţ.	U _{Fmax} bei ⁵⁾ I _F	i ⁵⁾ I _F	I _{Rmax} be	bei U _R	Rthja R	Bautorm
5 50 100 200 400 600 800 11000		(၁.)	(%)	(A)	(mA)	(3)	thje (K/W)	
100 200 400 600 800 1000								
200 400 600 800 1000								
400 600 800 1000								
600 800 1000 1200								
800 1000 1200								
	800	175	1,5	06	2	URRM	1,0	94
						TATATAT		
_								
/14 1400								
/16 1600							,	
SY 170/1 100				1,0	4,			
/2 200				1,0	က			
/3 300	,			1,2		- 10-01-1		
/4 400 25 ²)	3004)	150	20	1,2	-	URRM	1,2	92
/5 500				1,2	П			
009 9/				1,2	,I			
002 2/				1,2	Н			

Ę		Grenzwerte	rte				Kennwerte	o)		د د
C.	URRM	I _{F(AV)}	IFSM	T,	U _{Fmax} bei ⁵⁾ I _F	5) _{IF}	I _{Rmax} bei U _R	ei UR	Rthja R	Bautorm
	(v)	(A)	(A)	(ac)	(V)	(A)	(mA)	3	tnje (K/W)	
SY 171/1	100				1,0		4			
/2	200				1,0		က			
/3	300				1,2		-			
/4	400	25 ²⁾	300^{4})	150	1,2	20	H	URRM	1,2	95
/5	200				1,2			1111111		
9/	009				1,2		₩			
2/	002				1,2		Н			

Schnelle Si-Gleichrichterdioden

Schnelle Si-Gleichrichterdioden	Gleichricht	terdioden									
Ė		Grenzwerte	rte				Kennwerte				Bau-
d v 1	URRM	$I_{F(AV)}$	IFSM	(— ,⊢~	UFmax bei ⁵⁾ I	$^{(5)}_{ m I_F}$	I _{Rmax} bei	$U_{\mathbf{R}}$	R _{thja} * R _{this}	trmax	form
:	(v)	(A)	(A)	(oc)	3	(A)	(mA)	(3)	trije (K/W)	(sri)	
SY 330/1	100	0,51									
/2	200	0,50			÷						
/4	400	0,46									
9/	009	0,43					(+	1	
8/	800	0,41	203)	160	2,4	П	$0,15^{3}$	$0,70_{ m RRM}$	95	0,256)	93
/10	1000	0,39									
/12	1200	0,37									
/15	1500	0,34									
/18	1800	0,32									
/20	2000	0,30									
SY 345/0,5	20	1,10									
/1	100	1,10									
/2	200	1,05	-				•		÷	(9-0 0 2.2	•
/4	400	0,92	454)	160	1,2		0,34)	0,7URRM	95*	K:0,25	93
9/	009	0,84								`	
8/	800	0,78									
/10	1000	0,73									••
SY 356/0,5	20	1,63					-				
/1	100	1,61	3				•		1	(200	•••
/2	200	1,59	804)	150	1,2	က	$0,5^{4}$	0,7URRM	.09	K:0,3	96
/3	300	1,51			٠						
4	400	1,43									
										,	

Schnelle Si-Gleichrichterdioden

								aro	ueı	•									
-Ban-				96					0.0						6	۲ ۲			
	trmax	(srl)	Ē	K:0,3"	r 2				(2.5)	÷					(2,57)	2			
	Rthja*1) R	"thje (K/W)		* 09					0	2,4					·	0 6 4			
Ð	ei U _R	(3)		0,7URBW					Ε	CRRM					F	CRRM			
Kennwerte	Igmax bei	(mA)		6,54)					, ₄)	•				£4)	>			
	$_{^{5})_{ m I_F}}$	(A)		က					9.0	2					06	0			
	$^{ m U_{Fmax}^{bei}^{5})_{ m I_F}}$	(X)		1,2				-	1 4	* *				•••		r •	-		
	$\mathrm{T_{j}}$	(o.c)		150					, G) }					150	9			
rte	^I FSM	(A)	i i	804)					9904))					9904)	2			
Grenzwerte	I _{F(AV)}	(A)	1,381)	1,231)	$1,17^{1}$				152)) }					9,52)	9			
	URRM	(3)	009	800	1000	20	100	200	400	009	800	1000	20	100	200	400	009	800	1000
,	۲. د د د د د د د د د د د د د د د د د د د		SY 356/6	8/	01/	SY 196/0,5	/1	/2	/4	9/	8/	/10	SY 197/0,5	/1	/2	/4	9/	8/	/10

TAN.		Grenzwerte	rte				Kennwerte	a)			Ban-
٠ بر	URRM	F(AV) FSM	^I FSM	T,	U _{Fmax} bei ⁵⁾ I _F	i ⁵⁾ I _F	Rmax ^b bei UR		$\frac{R_{thja}^{*1}}{R}$ $\frac{t}{rrmax}$	trrmax	form
	(V)	(A)	(A)	(၁.)	(v)	(A)	(mA)	(X)	thje (K/W)	(srl)	
SY 198/0,5	50										
/1	100										
/2	200										
/4	400			,							
9/	009	40^{1}	200	150	1,5	20	64)	U	$1,0 0,3^{7}$	0.37)	94
8/	800							RRM	•		· ·
/10	1000							*			

Schnelle Si-Gleichrichterdioden

								-					
Reinform					26					26			
	Rthje	(K/W)			1,6					1,6			
ə	i U _R	(V)			URRM					URRM	-		
Kennwerte	Rmax bei UR	(mA)		-	304)	····				200^{2}			
	ei I _F	(A)			30	-				25			
	U _{Fmax} bei I _F	(3)	$^{0,6^4)}$	64	0,64)	$0,68^{4}$	$0,68^{4}$	$0,68^{4}$	1	$ 0,47^2 \rangle$			
	T _j	(°C)			175					150			
erte	I _{FSM}	(A)		(2005				•	4003)			
Grenzwerte	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	(A)			30					24			
	URRM	3	30	40	20	09	02	80	30	35	40	45	
Ę	dy t	-	SY 525/0,3	/0,4	/0,5	9,0/	7,0/	8'0/	SY 526/0,3	/0,35	/0,4 40	/0,45 45	

Schnelle Si-Gleichrichterdioden mit hohem Wirkungsgrad

Schnelle Si-Gleichrichterdioden mit hohem Wirkungsgrad	leichricht	erdioden 1	mit hohem	Wirkungs	grad						
Ę		Grenzwerte	rte				Kennwerte	u u			Bau-
٦ ٢	URRM	$I_{F(AV)}^{1)}$	IFSM	T_{j}	U _{Fmax} bei I _F		Rmax bei U	ei U _R	Rthje	trmax	form
	(v)	(A)	(A)	(၁.)	(3)	(A)	(mA)	(%)	(K/W)	(srl)	
SY 710/0,5	50										
/11	100	2	802)	150	0,85	ro	9,0	0,7UBBW	2,7	35	86
/1,5	150		-					TATOTAT			
/2	200										
SY 715/0,5	90										
/1	100	12	2002)	150	0,85	10	1,3	0,7UBBW	2,0	35	98
/1,5	150							INTU			
. /2	200										
SY 625/0,5	20										
/1	100	28	3203)	150	0,85	20	ಣ	UBBW	1,0	50	26
71,5	150							1417171			
/2	200		·								

Gleichrichterdiodenmodule

		2								
Ę		Grenzwerte	a)		i		Kennwerte	е		Douform
1 yp	URRM	$I_{F(AV)}^{2)}$	$^{ m I}_{ m FSM}$	Ţ.	U _{Fmax} ⁴⁾ bei I _F	ei I _F	IRmax	$^{3)}_{ m bei}$ UR	Rthje max	
	(v)	(A)	(A)	(°C)	(V)	(A)	(mA)	(V)	(K/W)	
MDD 16/1	100									
7.5	200									
/4	400									
9/	009	16	400	150	1,55	20	ıc	0,7URRM	1,6	98
8/	800									
/10	1000					•				•
/12	1200									
MDD 25/1	100									
/2	200									
/4	400									
9/	009	25	200	150	1,49	80	ເດ	0,7URRM	1,4	. 98
8/	800									
/10	1000									
/12	1200									
MDD 40/1	100									
/2	200									
/4	400									
9/	009	40	800	150	1,42	125	S.	0,7URRM	6,0	86
8/	800									
/10	1000									
/12	1200									

Silizium-Gleichrichter in Freiflächenbauart

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	212	וונוכווופו	TICITIACI	4		Platten-		Finban-	Rolven-	Bodzon
Dei I _{GN} (Stück) (mm²) 17 1 100 x 100 30 2 100 x 100 36 2 100 x 125 36 4 100 x 125 36 2 100 x 125 36 4 100 x 250 112 4 100 x 250 118 4 100 x 375 10 2 58 x 58 0 17 2 100 x 100 30 4 100 x 125 36 4 100 x 125 56 8 100 x 125 56 8 4 100 x 125 56 8 100 x 125 57 8 4 100 x 125 58 4 100 x 250 112 100 x 250 12 100 x 250 13 8 100 x 250 14 100 x 250 16 84 100 x 250 16 85 100 x 250 17 12 100 x 250 18 100 x 250 18 100 x 250 18 100 x 250	Kennwerte (T _a =	11	-40 bis 40°C)			zahl	Plattengröße	länge	zahl	durch-
(A) (Stück) (mm²) 17	UAN		$^{\mathrm{U}_{\mathrm{GN}}}$	pei.	$^{ m I_{GN}}$	Ħ		IJ	n B	messer d _B
17 1 100 x 100 30 2 100 x 125 36 1 100 x 125 56 4 100 x 125 56 2 100 x 250 84 2 100 x 250 112 4 100 x 250 168 4 100 x 250 10 x 375 10 x 100 x 250 30 4 100 x 125 36 2 100 x 125 56 8 100 x 125 56 8 100 x 125 84 10 x 250 112 10 x 250 84 4 100 x 250 168 10 x 250 168 10 x 250 168 10 x 250 168 10 x 250 168 10 x 250 10 x 375	(V)		(V)		(A)	(Stück)	(mm ²)	(mm)	(Stück)	(mm)
36 2 100 x 125 36 4 100 x 125 56 4 100 x 250 56 2 100 x 250 84 6 100 x 125 84 6 100 x 125 112 4 100 x 250 168 4 100 x 375 10 x 100 30 4 100 x 125 36 4 100 x 125 36 4 100 x 125 36 4 100 x 125 36 4 100 x 125 36 4 100 x 250 84 12 100 x 250 84 100 x 250 84 100 x 250 84 100 x 250 100 x 250 112 8 100 x 250 128 8 375 139 8 375 140 x 250 150 x 250 168 8 375 170 x 250 180 x 250 190 x 250 190 x 250 100 x 250 100 x 250 100 x 250 100 x 250 100 x 250 100 x 250 100 x 250 100 x 250 100 x 250 100 x 250 100 x 250 100 x 250 100 x 250 100 x 250	40; 80		17; 35;		17	1	100 x 100	52		8
36 2 100 x 125 36 4 100 x 250 56 2 100 x 250 84 6 100 x 125 84 2 100 x 250 112 4 100 x 375 168 4 100 x 250 30 4 100 x 100 36 4 100 x 125 36 4 100 x 125 56 8 100 x 125 84 12 100 x 125 84 100 x 250 112 100 x 250 168 100 x 250 168 100 x 250 168 100 x 250 168 100 x 250 168 100 x 250 168 100 x 250 168 100 x 250	125; 250		55; 110		30	2	100 x 100	65		∞
36 1 100 x 250 56 4 100 x 125 56 2 100 x 250 84 6 100 x 125 84 2 100 x 250 112 4 100 x 250 16 2 58 x 58 10 2 58 x 58 30 4 100 x 100 36 4 100 x 100 36 4 100 x 125 56 8 100 x 125 84 12 100 x 125 84 100 x 250 112 100 x 250 168 100 x 250 168 8 100 x 250 168 100 x 250	· · · · · · · · · · · · · · · · · · ·				36	2	×	65	; (∞
56 4 100 x 125 56 2 100 x 250 84 2 100 x 250 84 2 100 x 375 112 4 100 x 375 10 2 58 x 58 10 2 58 x 58 30 4 100 x 100 36 4 100 x 100 36 2 100 x 125 56 8 100 x 125 84 12 100 x 250 112 100 x 250 168 100 x 250 168 100 x 250 168 100 x 250					36		100 x 250	53	5	∞
56 2 100 x 250 84 6 100 x 125 84 2 100 x 375 112 4 100 x 250 168 4 100 x 375 10 2 58 x 58 30 4 100 x 100 36 4 100 x 100 36 4 100 x 125 56 8 100 x 125 84 12 100 x 125 84 12 100 x 125 84 4 100 x 250 112 100 x 250 168 12 100 x 250 168 12 100 x 250 168 100 x 250 168 8 100 x 250					99	4	×	06	Н	∞
84 6 100 x 125 84 2 100 x 375 112 4 100 x 250 168 4 100 x 375 10 2 58 x 58 17 2 100 x 100 30 4 100 x 125 36 4 100 x 125 56 8 100 x 125 84 12 100 x 125 84 4 100 x 250 112 100 x 250 168 12 100 x 250 168 12 100 x 250 168 8 100 x 250 168 8 100 x 250					56	3	×	99	2	∞
84 2 100 x 375 112 4 100 x 250 168 4 100 x 375 10 2 58 x 58 17 2 100 x 100 30 4 100 x 105 36 4 100 x 125 56 8 100 x 250 84 12 100 x 250 112 100 x 250 168 100 x 250 168 8 100 x 250 168 8 100 x 250 168 8 100 x 250					84	9	×	116	Н	,∞
112 4 100 x 250 168 4 100 x 375 10 2 58 x 58 17 2 100 x 100 30 4 100 x 125 36 2 100 x 125 56 8 100 x 250 84 12 100 x 250 112 100 x 250 168 100 x 250 168 8 100 x 250 168 8 100 x 250 168 8 100 x 250					84	2	þ4	29	က	90
168 4 100 x 375 10 2 58 x 58 30 4 100 x 100 36 4 100 x 125 36 2 100 x 250 56 8 100 x 250 84 12 100 x 250 84 4 100 x 250 112 8 100 x 250 168 100 x 250 168 8 100 x 250 168 100 x 250 168 8 100 x 250	· · · · ·			+	112	4	×	91	7	∞
10 2 58 x 58 . 17 2 100 x 100 30 4 100 x 125 36 2 100 x 125 56 8 100 x 125 56 4 100 x 250 84 12 100 x 250 84 4 100 x 250 112 8 100 x 250 168 12 100 x 250 168 8 100 x 250 168 8 100 x 250					168	4	×	92	က	∞
. 17 2 100 x 100 30 4 100 x 125 36 2 100 x 250 56 8 100 x 125 56 4 100 x 250 84 12 100 x 25 112 100 x 375 168 12 100 x 25 168 12 100 x 25 168 8 100 x 25	40; 80;		35; 70;		10	2	M	2.2	Н	∞
4 100 x 100 4 100 x 125 2 100 x 250 8 100 x 125 4 100 x 250 12 100 x 125 4 100 x 250 8 100 x 250 12 100 x 250 8 100 x 250 8 100 x 375 8 100 x 375	125; 250		110; 220	,	17	2		65	Н	∞
4 100 x 125 2 100 x 250 8 100 x 125 4 100 x 250 12 100 x 125 4 100 x 250 8 100 x 250 8 100 x 250 8 100 x 250 8 100 x 250					30	4	×	06	Н	∞
2 100 x 250 8 100 x 125 4 100 x 250 12 100 x 125 4 100 x 375 8 100 x 250 12 100 x 250 8 100 x 375 8 100 x 375					36	4	×	06	Н	∞
8 100 x 125 4 100 x 250 12 100 x 125 4 100 x 375 8 100 x 250 12 100 x 250 8 100 x 375 8 100 x 375					36	2	×	99	2	∞
4 100 x 250 12 100 x 125 4 100 x 375 8 100 x 250 12 100 x 250 8 100 x 375					56	∞	×	141	 1	∞
12 100 x 125 4 100 x 375 8 100 x 250 12 100 x 250 8 100 x 375					56	4	×	91	2	∞
4 100 x 375 8 100 x 250 12 100 x 250 8 100 x 375					84	12	×	192	П	8
8 100 x 250 12 100 x 250 8 100 x 375					84	4	×	92	က	∞
12 100 x 250 8 100 x 375					112	∞	×	142	2	∞
8 100 x 375					168	12	×	193	2	∞
)					168	∞	100 x 375	143	က	∞

Silizium-Gleichrichter in Freiflächenbauart

r1	messer d _B	(mm)	8	∞	∞	∞	∞	∞	œ	∞	∞	∞	∞	∞	∞	∞	∞	∞	∞	∞	∞
Bolzen- zahl	nB	(Stück)	2	က	က	က	H	₩		⊷1	2	Н	2	က	2	73	က	က	က	က	ო
Einbau- länge	П	(mm)	244	194	245	307	88	82	116	116	62	192	117	118	193	270	194	271	347	424	200
Plattengröße		(mm²)	100 x 250	100 x 375	100 x 375	100×375	58 x 58	100 x 100	100 x 100	100 x 125	100 x 250	100 x 125	100×250	100×375	100×250	100×250	100×375	100×375	100×375	100×375	100 x 375
Platten- zahl	ч	(Stück)	16	12	16	24	က	က	9	9	က	12	9	9	12	18	12	18	24	30	36
	i $^{I_{ m GN}}$	(A)	225	250	335	200	. 15	25	42	50	50	80	80	120	160	240	240	360	480	009	720
$= -40 \text{ bis } 40^{\circ}\text{C}$	${ m U}_{ m GN}$ bei	(V)	35; 70;	110; 220			50; 100;	165; 335													
Kennwerte (T	$_{ m AN}$	(v)	40; 80;	125; 250			40; 80;	125; 250	\ \\												
chal-	ung						В														

ttensortiment für Selengleichrichter in Freiflächenbauart

Plattenoröße	og C	Elektrische Kennwerte	werte		max.	A 754-50 A	Dolgongobi	Bolzen-
)	Nennanschluß- spannung	Nenngleichstrom W-Reihe X-E	strom X-Reihe	Plattenzahl	DDStallo	DOIZEIIZAIII	messer
		U _{AN} (v)	$I_{\rm GN}^{ m 2)}$	$^{\rm I_{GN}}_{\rm GA}$	n _{max} (Stück)	a (mm)	ⁿ B (Stück)	d _B
16,6 x 1	16,6	20; 25; 30 ¹⁾	1	0,13	32	2,5	-	4
20 x 2	25		0,5	ı	28	5,5	п	4
20 x 2	25		ı	0,3	28	3,4	1	4
25 x 3	33		$0.85^{1)}$	0,5	28	5,5	П	വ
33 x 3	33		H, H	$0,85^{1}$	24	5,5	Т	ıc
33 x 5	50		1,6	1,0	24	5,5	П	c
50 x 5	50	-	$^{2,5^{1}}$	1	36	2	Н	∞
20 x 5	50		ı	1,6	40	5,5	1	∞
9 x 09	62		3,0	$^{2,5^{1)}}$	36	2	1	∞
20 x 8	83		3,75	3,0	36	2		8
50 x 1	100		5,0	$4,2^{1)}$	30	12	1	8
71 x 1	100		7,0	5,0	30	12	1	8
100 x 1	100		0,6	$^{7,0^{1}}$	30	12		∞.
100 x 1	100		10	í	24	15	Н	8
100 x 2	200	-	18	15^{1}	24	15	2	8
100 x 3	300		27	20^{1})	24	15	က	8
100 x 3	300		30	í	24	18	က	∞
100 x 4	400		36	27^{1}	24	15	4	00
100 x 5	500		45	$36^{1)}$	24	15	rc	80

Plattensortiment für Selengleichrichter in Freiflächenbauart

in gleicher Stufung bis

107, b=33

1000

25 30 20 25 30

25 C 750/500 30 C 750/500 20 C 1000/650 25 C 1000/650 30 C 1000/650

 \circ

띠

Selenklammergleichrichter

hrichter	ı			Selens	tabgleichr	Selenstabgleichrichter im HP-Rohr	hr	
Kenn	werte (T _a	Kennwerte ($T_a = -40$ bis 40° C)				Kennwerte ($T_a = -40 \text{ bis } 40^{\circ}\text{C}$)	= -40 bis 40°C)	
Nennansc spannung UAN (V)	Nennanschluß- spannung UAN (V)	Durchlaß- gleichstrom ^I GN (mA)	Bauform	Typ	0.	Nennanschluß- spannung UAN (V)	Nenngleich- strom I _G (mA)	Bauform
2	20	200	106	E 12,	E 12,5 C 5	12,5	5	
- 5	. 25	500	106	E 25	C 5	25	ഹ	,
د ه	30	500	106	E 37,	37,5 C 5	37,5	വ	
2	20	750	107, b=20			in gleicher	in gleicher Stufung bis	
	. 22	750	107, b=20	E 150	E 1500 C 5	1500	വ	108
	30	750	107, b=20	E 12,	E 12,5 C 10	12,5	10	
- 5	20	1000	107, b=33	E 25	C 10	25	10	
	25	1000	107, b=33	E 37,	E 37,5 C 10	37,5	10	

500/300 500/300 750/500

 \circ \circ

25 30 20

C 500/300

Selenklammergleichrichter

	4
	mm
	2
	mm²;
_	2000
	Kühlblech
	mit

Sele	enklei	instgle	eici	ric	eht	er														
	Bauform		100	100	101	101	103	103	104	105	102	104	105	102	103	101	103	102	103	102
-40 bis 40°C)	Nenngleich- strom	I _{GN} (mA)	09	09	0.2	20	40	40	25	120	400	25	120	400	200	200	80	250	80	250
Kennwerte (T _a =	Nennanschluß- spannung	U _{AN} (V)	10	12,5	30	37	40	50	20	20	20	25	25	25	20	25	40	40	50	50
	Typ		V:10 C 60	V-12,5 C 60	V :30 ·C 70	V 37 C 70	V:40 C 40	V:50 :C 40	B 20 C 25	B 20 C 120	B 20 C 400	B-25 C 25	B 25 C 120	B 25 C 400	B 20 C 200	B 25 C 200	B 40 C 80	B 40 C 250	B:50 C 80	B:50 C 250
	Bauform		100	100	101	102	101	101	102	103	103	100	100	101	101	103	103			

Selenkleinstgleichrichter

-40 bis 40°C)

В

Kennwerte (Ta

Nenngleich-strom

Nennanschluß-spannung

Typ

I_{GN} (mA)

100 200

50 50 60

70 70 125

75

40 40 120 120

125 100

E 50 C 100
E 50 C 200
E 60 C 70
E 75 C 70
E 80 C 125
E 100 C 40
E 125 C 40
M 20 C 120
M 25 C 120
M 50 C 140
M 75 C 140
M 75 C 140
M 100 C 80

20 25 60

140 80 80

140

22

420

Selenhochspannungsstabgleichrichter in Kunststoffrahmen E 35000 C 15

Bauform: 110

Kennwerte bei $T_{n} = -40 \dots 40 \, {}^{\circ}\text{C}$

Nennanschluß $U_{AN} = 3500 \text{ V}$ Sperrspannung $U_{PR} = 14600 \text{ V}$ Durchlaßgleichstrom $I_{G} = 15 \text{ mA}$

Selen-Blitzschutzdiode BD 1

Bauform: 113

Kennwerte bei $T_{_{\it Pl}}$ = -25 ... 55 °C

Selenschaltdioden D 06 A

Bauform: 111

Kennwerte

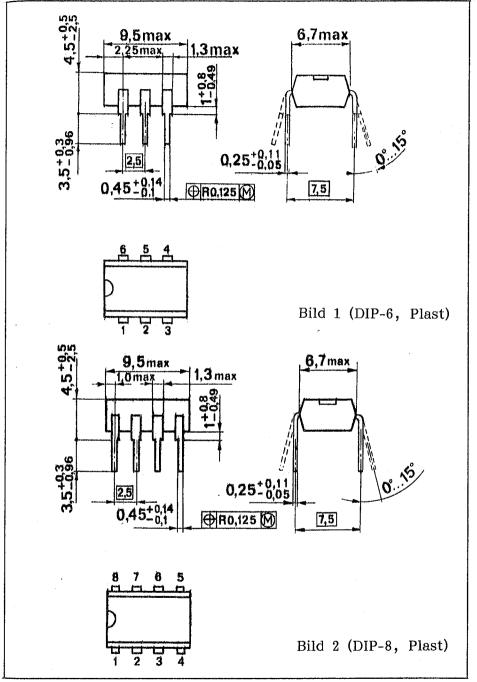
1) bei Gruppenmontage von mehr als 4 Dioden

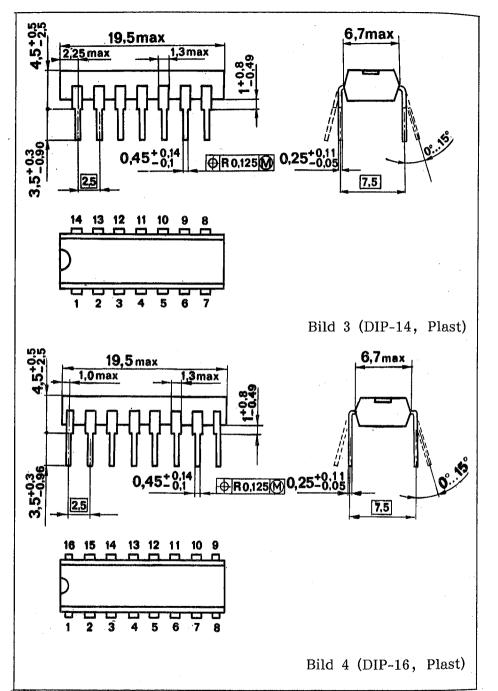
Selenamplitudenbegrenzer KG 73

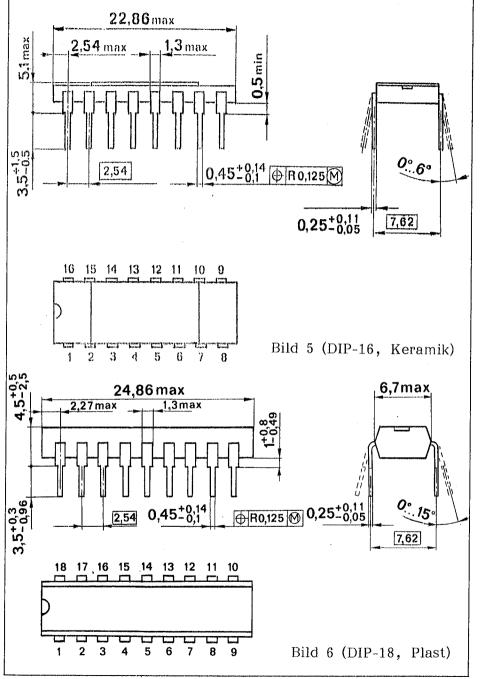
Bauform: 112

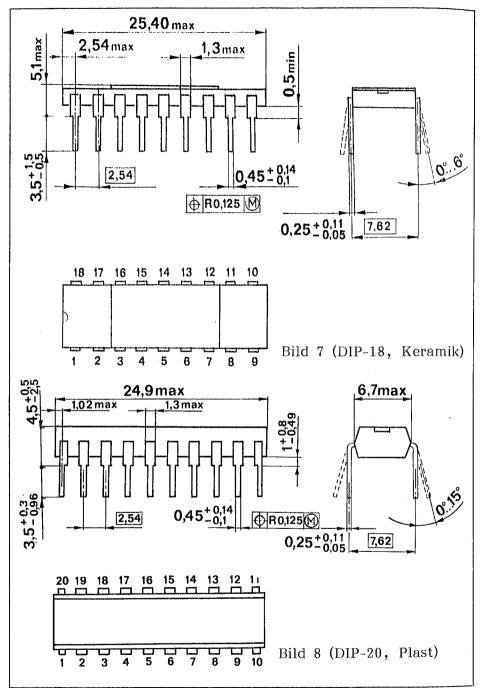
Pegel der Eingangsspannung (bezogen auf 0,775 V)

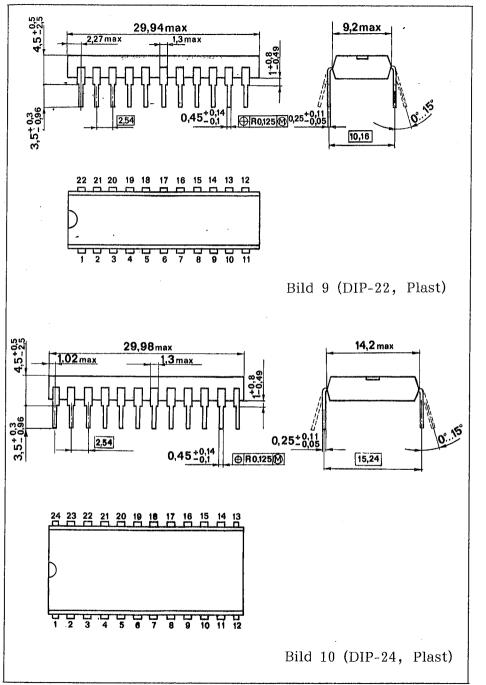
17 -9 0 +9 +17 +26

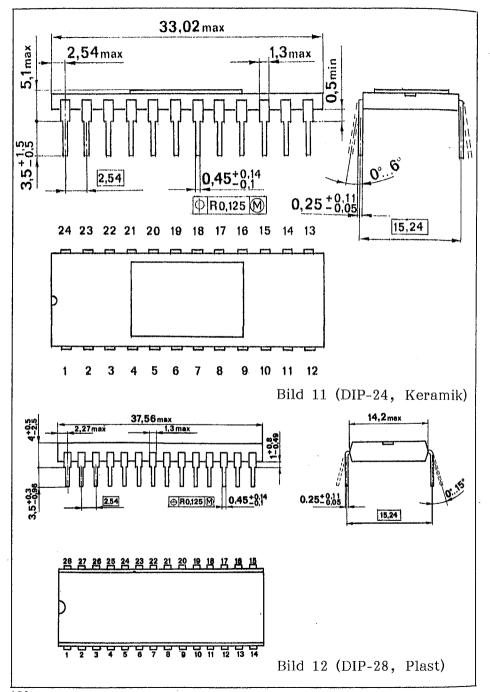

Eingangsdämpfung bei 800 Hz

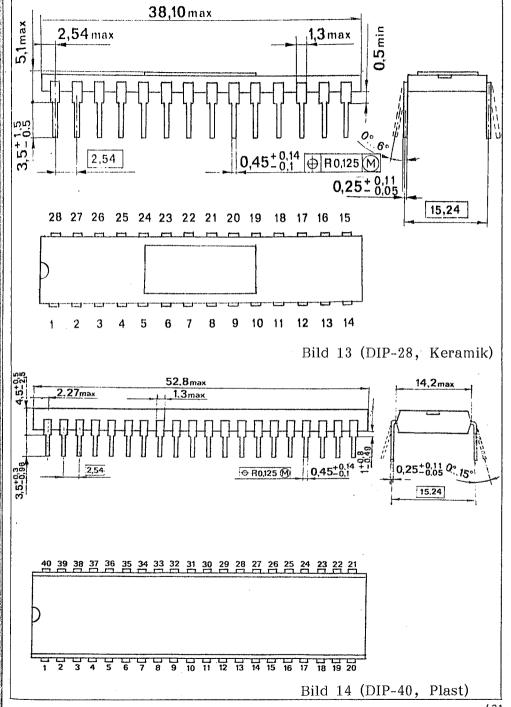

<0,5 <0,5 ≤ 3 >5 >10 >15 d

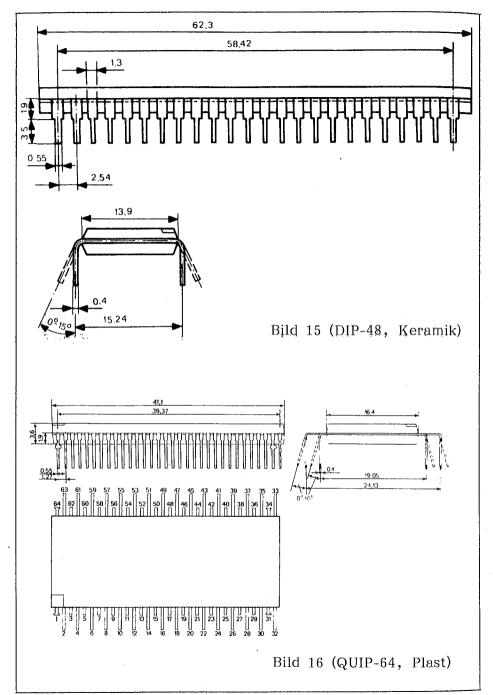

Si-Einphasen-Gleichrichterbrücke

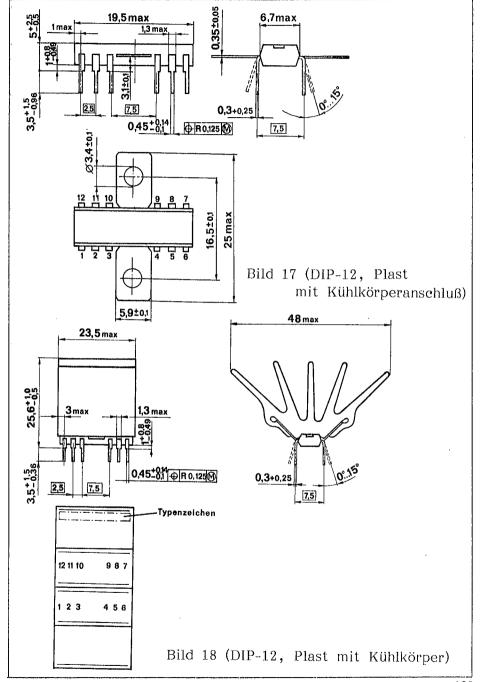

Ę.		Grenzwerte	arte				Kennwerte	e e		ŗ
135	URRM Id		$^{1}_{ m FSM}$	T,	U _{Fmax} ³⁾ bei I _F	oei I _F	Rmax bei UR	ei U _R	Rthje max	Daulorin :
	(V)	(A)	(A)	(၁.)	(V)	(A)	(mA)	(V)	(K/W)	
B 20/15-20	50									
B 40/35-20	100									
B 80/70-20	200	20	250	125	$^{1,2}^{4)}$	10	က	URRW	2,1	66
B 125/110-20	300							141111		
B 250/220-20	009								-	
1) $T_c = 55^{\circ}C$; = 55°C	3) T _i =	25°C 4)	2) $T_i = 55^{\circ}C$ 3) $T_i = 25^{\circ}C$ 4) je Diode 5) $T_i = 125^{\circ}C$	5) $T_i = 12\xi$	3°C			

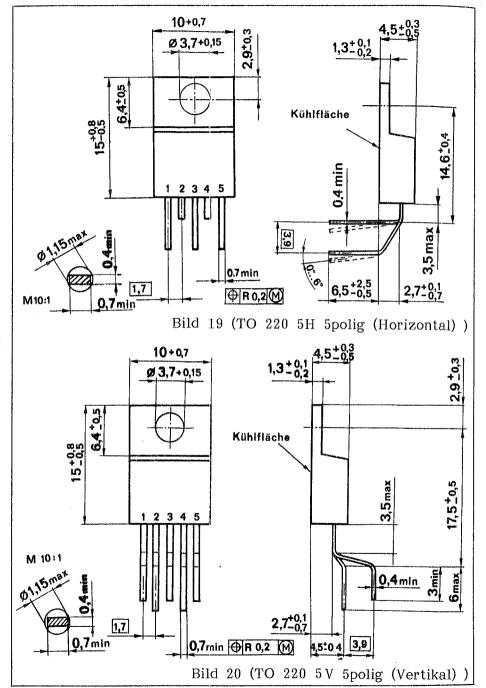

Bauformen

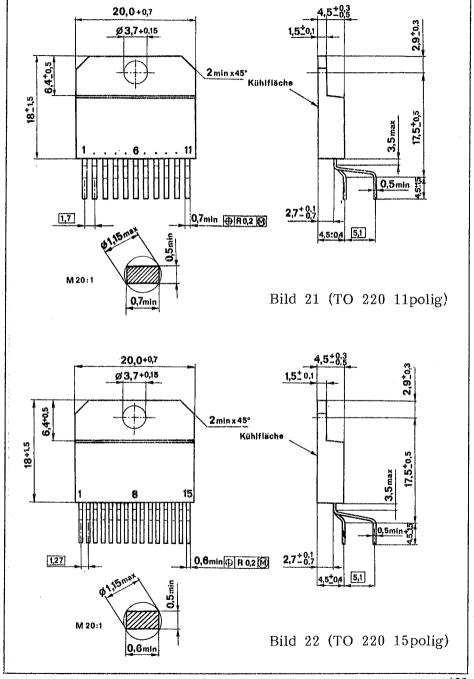


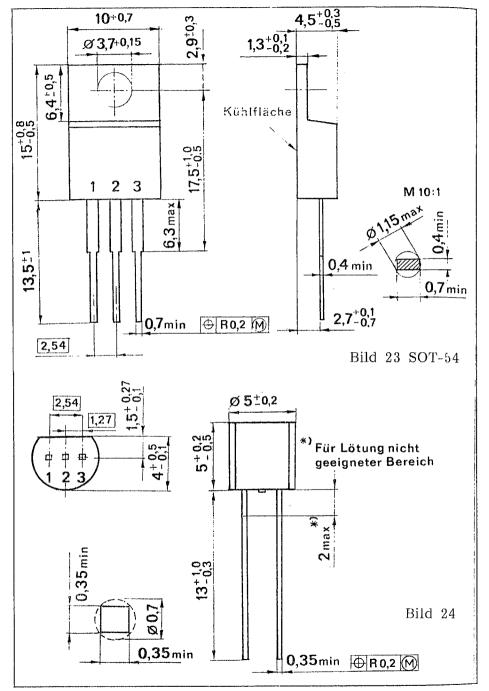


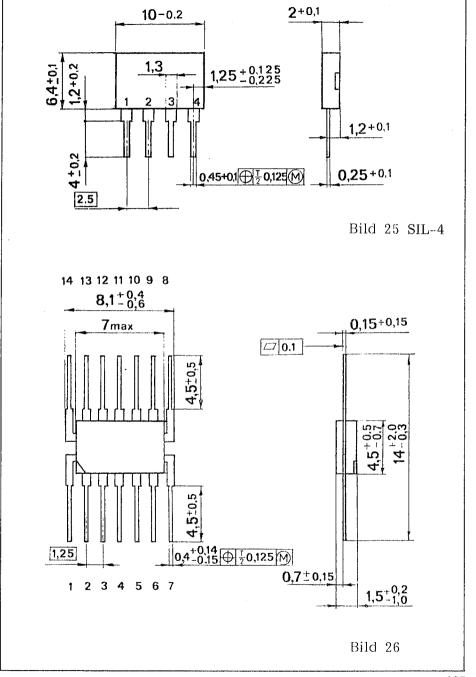


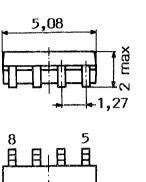


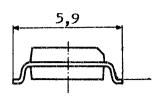


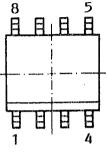
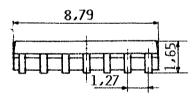
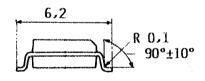
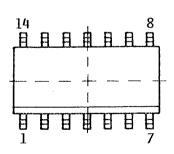


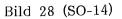


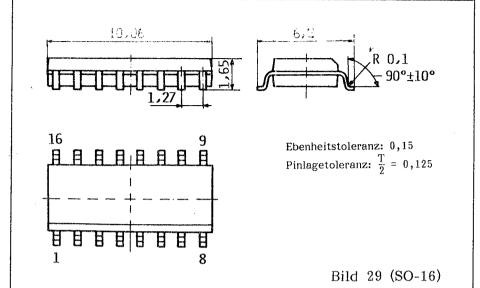


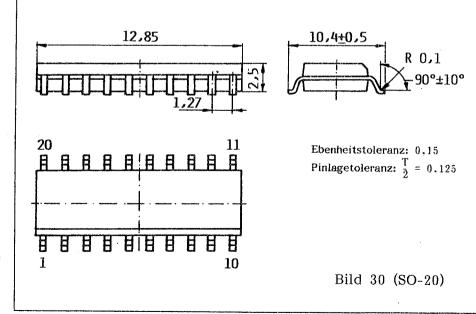


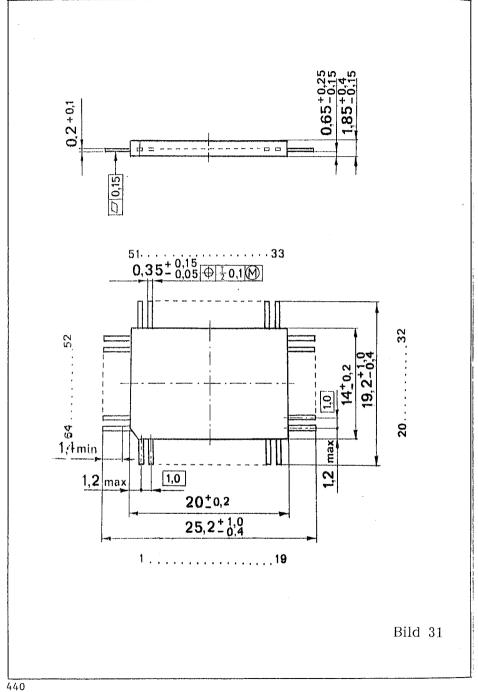


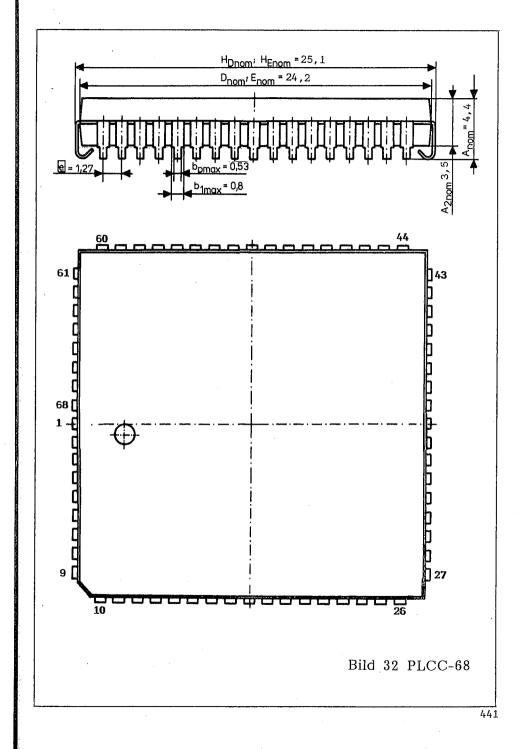





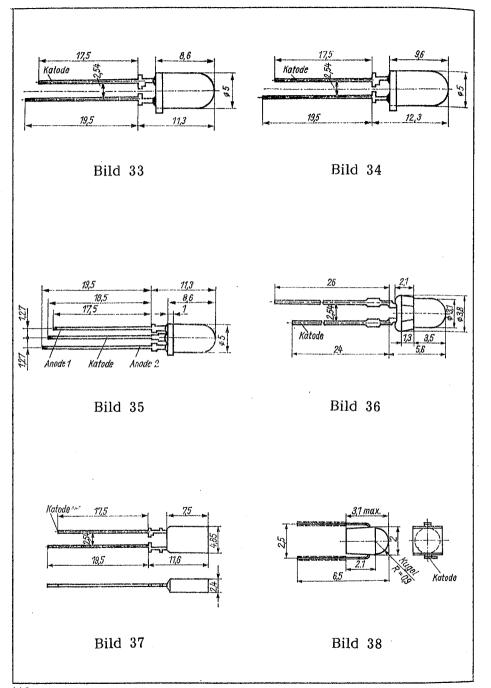

Bild 27 (SO-8)

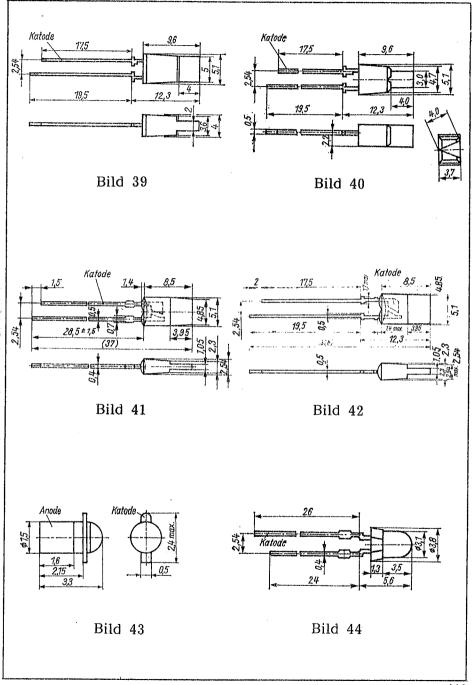


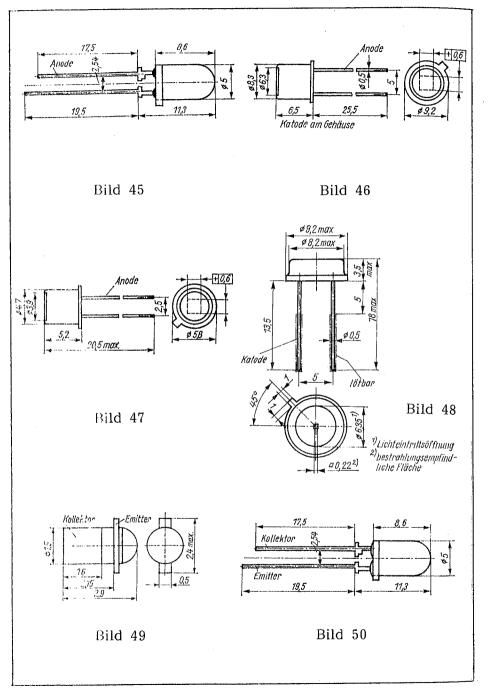


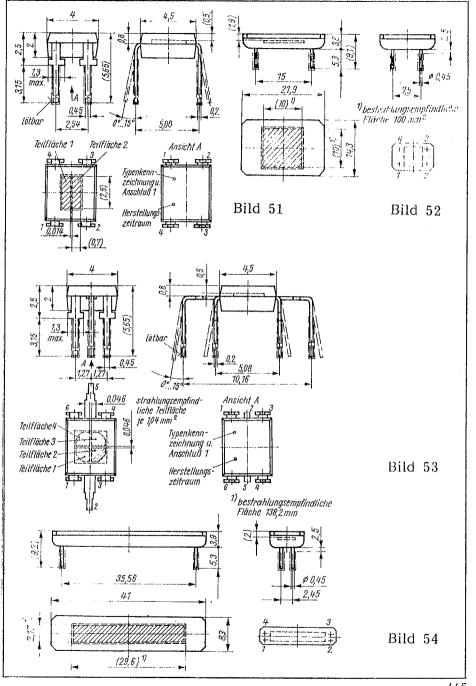


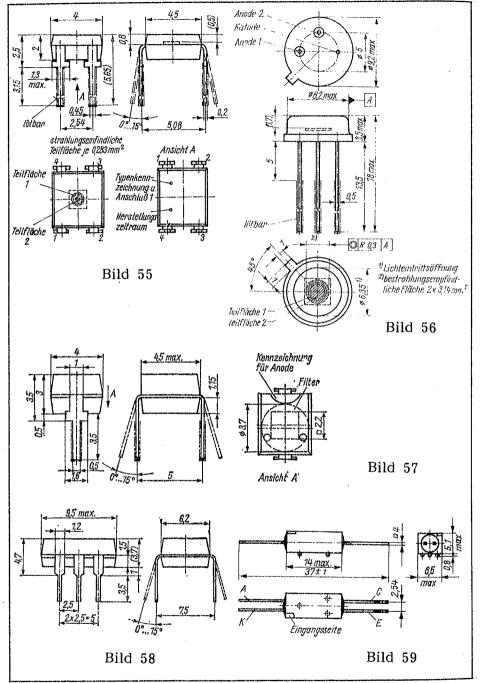

Ebenneitstoleranz: 0.15Piniagetoleranz: $\frac{T}{2} = 0.125$











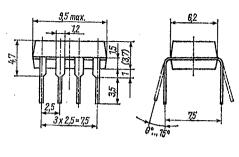


Bild 60

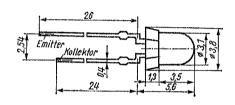
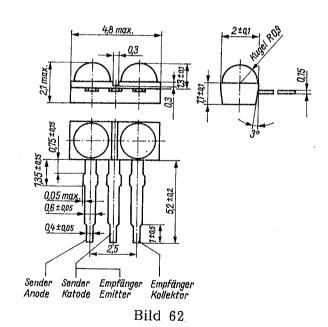
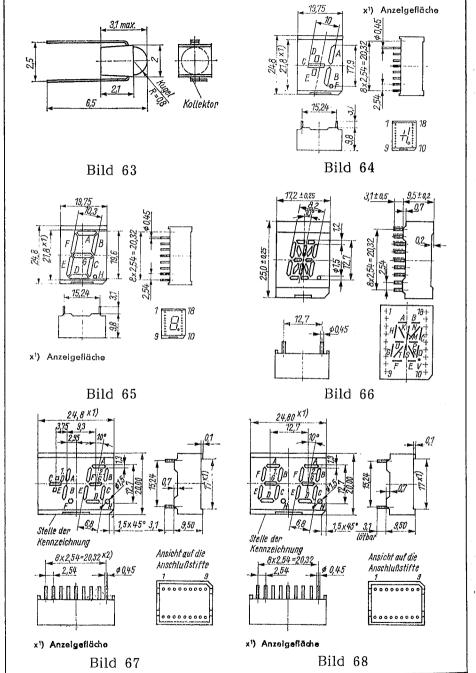




Bild 61

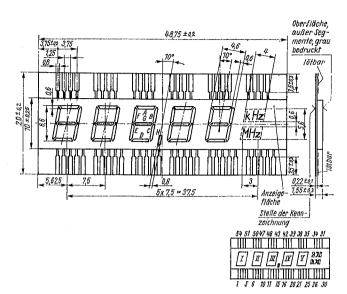
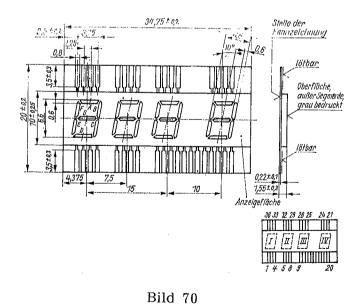
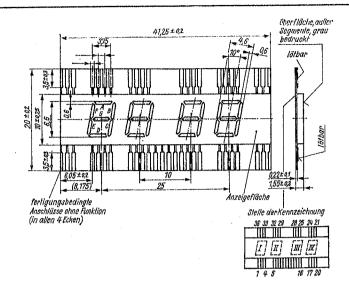
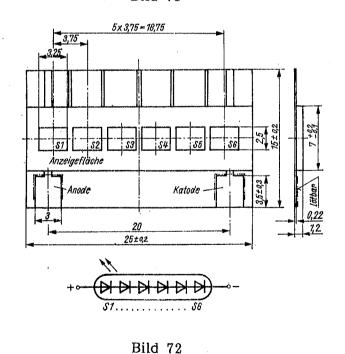
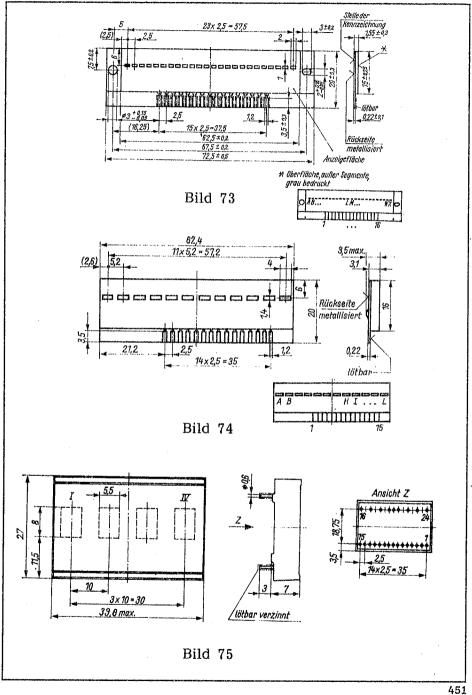
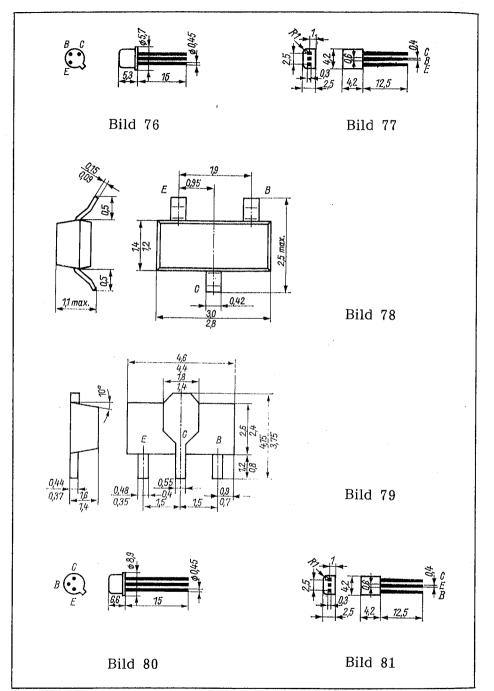
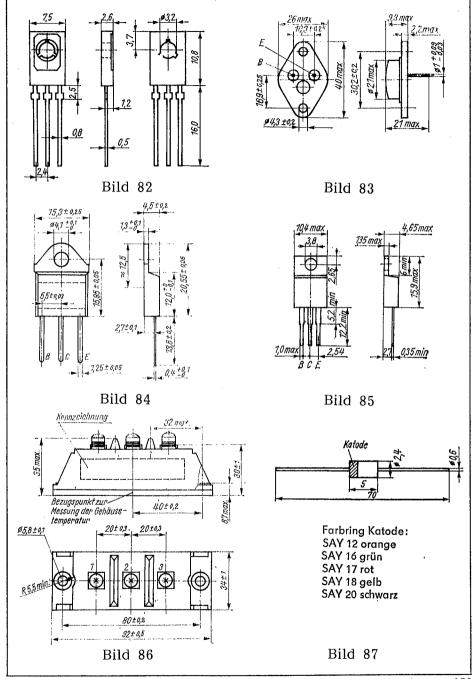
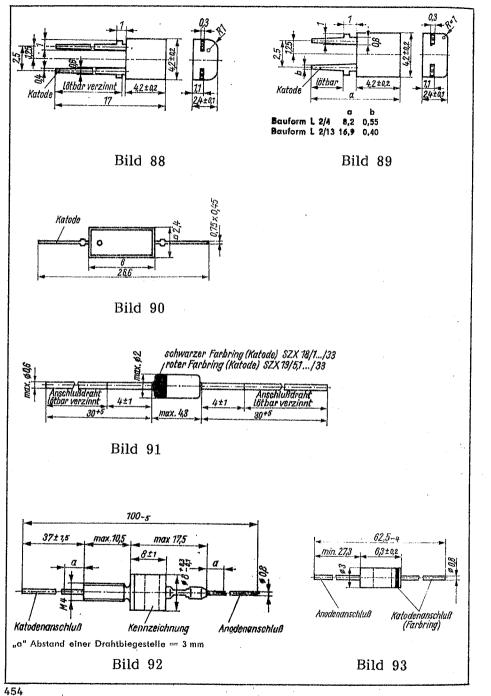
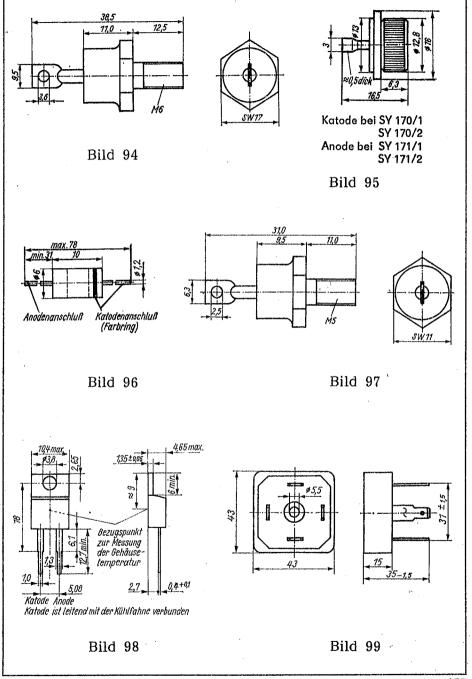
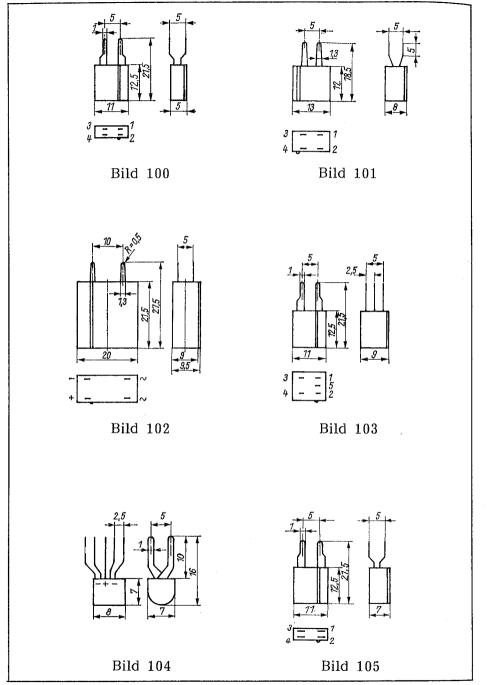



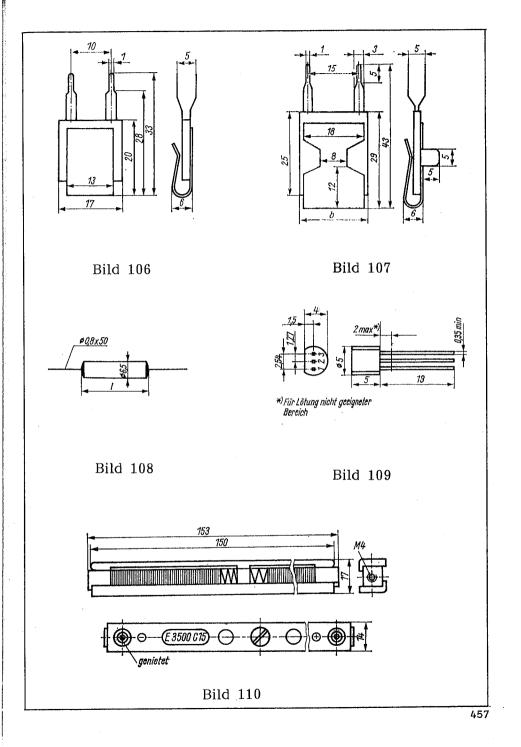
Bild 69


Bild 71







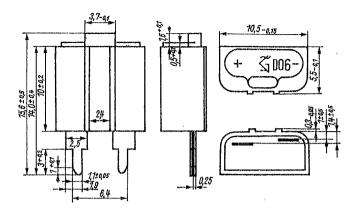


Bild 111

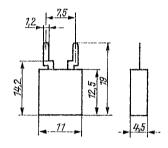


Bild 112

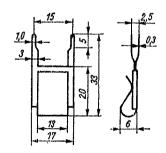


Bild 113

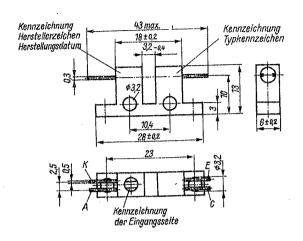


Bild 114

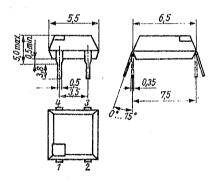


Bild 115

			•	•
T L	7 4 ~	erzei	Ann	
Inno	116:11			.~
1111111111	$\mathbf{L} \mathbf{L} \mathbf{S} \mathbf{V}$			

				HCT-Schaltkreis
Тур	Seite	Тур	Seite	U 74 HCT 00 D
Schaltkreise für die Konsu	mgüterelektronik	U 1159 DC	70	U 74 HCT 02 D
	4	U 192 D	72	U 74 HCT 03 E
A 202 D	6	Logikbaureihen		U 74 HCT 04 D
A 210 E,K	8	CMOS-Schaltkreise	74	U 74 HCT 08 D
A 211 D	10	V 4001 D	76	U 74 HCT 20 D
A 225 D	12	V 4007 D	77	U 74 HCT 21 D
A 244 D	14	V 4011 D	78	U 74 HCT 32 D
A 273 D	16	V 4012 D	79	U 74 HCT 74 D
A 274 D	18	V 4013 D	80	U 74 HCT 86 D
A 281 D	20	V 4015 D	81	U 74 HCT 138
A 283 D	22	V 4017 D	82	U 74 HCT 175
A 290 D	24	V 4017 D	83	U 74 HCT 192
A 1524 D		V 4023 D	84	U 74 HCT 193
A 1818 D	26	V 4023 D V 4027 D	85	U 74 HCT 241
A 2000 V/A 2005 V	28	V 4028 D	86	U 74 HCT 242
A 2030 H/V	30 32	V 4029 D	87	U 74 HCT 243
A 4100 D	34	V 4030 D	88	U 74 HCT 245
A 4510 D	36	V 4034 D	89	U 74 HCT 253
A 4511 D	38	V 4034 D V 4035 D	91	U 74 HCT 257
A 223 D/A 224 D	40	V 4042 D	92	U 74 HCT 373
A 241 D	42	V 4044 D	93	U 74 HCT 374
A 255 D	44	V 4044 D V 4046 D	94	U 74 HCT 533
A 1670 VD	46	V 4048 D	96	U 74 HCT 534
A 2014 DC	48	V 4050 D	97	Low-Power-Scho
A 3048 DC	50	V 4051 D	98	Schaltkreise
A 3501 D	50 52	V 4066 D	99	DL 000 D, DL
A 3510 D	5 <i>2</i> 54	V 4000 D V 4093 D	100	DL 002 D, DL
A 3520 D		V 4098 D	101	DL 003 D, DL
A 4555 D	56 58	V 40098 D V 40511 D	102	DL 004 D, DL
A 4565 D	58	V 40311 D V 4520 D	103	DL 005 DC
A 4580 D	60		104	.DL 008 D, DL
U 804 D	62	V 4531 D	105	DL 010 D, DL
U 806 D	64	V 4538 D	106	DL 011 D
U 807 DC	66	V 4585 D	107	DL 014 D
U 1056 D	68	HCT-Schaltkreise	101	DL 016 DC
100			ki	

Тур	Seite	Тур	Seite
HCT-Schaltkreise	107	DL 020 D, DL 020 DG	145
U 74 HCT 00 DK	109	DL 021 D	146
U 74 HCT 02 DK	110	DL 026 D	147
U 74 HCT 03 DK	111	DL 030 D, DL 030 DG	148
U 74 HCT 04 DK	112	DL 032 D	149
U 74 HCT 08 DK	113	DL 037 D	150
U 74 HCT 20 DK	114	DL 038 D	151
U 74 HCT 21 DK	115	DL 040 D	152
U 74 HCT 32 DK	116	DL 051 D	153
U 74 HCT 74 DK	117	DL 074 D	154
U 74 HCT 86 DK	118	DL 083 D	155
U 74 HCT 138 DK	119	DL 086 D	156
U 74 HCT 175 DK	120	DL 090 D	157
U 74 HCT 192 DK	121	DL 093 D	158
U 74 HCT 193 DK	122	DL 112 D	159
U 74 HCT 241 DK	123	DL 123 D	160
U 74 HCT 242 DK	124	DL 132 D	161
U 74 HCT 243 DK	125	DL 155 D	162
U 74 HCT 245 DK	126	DL 164 D	163
U 74 HCT 253 DK	127	DL 175 D	164
U 74 HCT 257 DK	128	DL 192 D	1.65
U 74 HCT 373 DK	129	DL 193 D	166
U 74 HCT 374 DK	130	DL 194 D	167
U 74 HCT 533 DK	131	DL 251 D	168
U 74 HCT 534 DK	132	DL 253 D	169
Low-Power-Schottky-TTL-		DL 257 D	170
Schaltkreise	133	DL 259 D	171
DL 000 D, DL 000 DG	135	DL 295 D	172
DL 002 D, DL 002 DG	136	DL 299 D	173
DL 003 D, DL 003 DG	137	DL 374 D	174
DL 004 D, DL 004 DG	138	DL 540 D	175
DL 005 DC	139	DL 541 D	176
DL 008 D, DL 008 DG	140	DL 2631 D	177
DL 010 D, DL 010 DG	141	DL 2632 D	178
DL 011 D	142	DL 8121 D	179
DL 014 D	143	DL 8127 D	180
DL 016 DC	144	DL 8640 DC	181
			461

						_	a
Тур	Seite	Тур	Seite	Тур	Seite	Тур	Seite
DL 8641 DC	182	U 80610	227	C 670 C, C 670 Cn	272	Sensor- und Initiatorschaltkreise	307
DL 75113 DC	183	U 82062 DC 05	231	C 7136 D	273	A 302 D	307
Schottky-TTL-Interface-Schaltkreise	184	U 80701 FC	234	U 739 DC	274	B 303 D, B 304 D	308
DS 140 DC	184	DS 8601 DC	237	Zeitgeber- und Zeitsteuerschalt-		B 305 D, B 306 D	308
DS 157 DC	185	DS 8609 DC	239	kreise	276	B 303 SF, B 304 SF	308
DS 2510 DC	186	DS 8638 DC	242	B 555 D, B 556 D	276	B 305 SF, B 306 SF	308
DS 2610 DC	187	DS 80612 DC	245	U 4541 DG	277	B 451 G, B 452 G, B 453 G	309
DS 8205 D	188	Canink annahal4lmaiga		Ansteuer- und Treiberschaltkreise	279	B 460 G	310
DS 8212 D	189	Speicherschaltkreise	1	A 227 D	279	B 461 G, B 462 G	311
DS 8216 D	190	U 214 D	248	B 3040 DA	280	B 466 GA	312
DS 8282 D, DS 8283 D	191	U 215 D, U 215 D 1	249	B 3718 VC	281	B 467 G	313
DS 8286 D, DS 8287 D	192	U 225 D, U 225 D 1	249	B 3925 DD	284	B 511 N	314
		US 224 D, VL 224 D, UL 224 D	250	UL 7211 D, UP 7211 D	287	B 589 N	315
Mikrorechnerschaltkreise		U 256 D	251	D 345 D, D 346 D	288	Schaltkreise der Stromversorgungs	
U 880	194	U 2164 DC	252	D 347 D, D 348 D	288	technik	316
U 84 C 00	195	U 6264 DG	253	E 345 D, E 346 D	288	B 260 D	316
U 84 C 00 DC	196	U 6516 DG, UL 6516 DG	254	E 347 D, E 348 D	288	B 3170 V, B 3171 V	317
U 84 C 20 DC	199	U 4548 DC	255	D 410 D	289	B 3370 V, B 3371 V	317
U 84 C 30 DC	201	U 61256 DC	256	D 4803 DC	290	B 2600 DG	318
U 84 C 40 DC	204 -	U 61000 DC	257	D 6221 VC	291	B 2960 VG	320
Einchipmikrorechner	207	U 2616 D	258	E 412 D	295	U 7660 DC, U 7660 DG	322
U 8611 DC, UL 8611 DC,		U 2716 C	259	E 435 E	296	Transistorarrays	323
UB 8830 D, UB 8831 D,		U 2632 DC	260	Operationsverstärker	297	B 315 D, B 315 E, B 315 K	323
U 8611 DC/1, UL 8611 DC/1,		U 2732 CC	261	B 060 D bis B 066 D	297	B 325 D, B 325 E, B 325 K	323
UB 8860 D, UB 8861 D	208	U 2364 D, U 2365 D	262	B 060 SD bis B 066 SD	297	B 360 D, B 360 E, B 360 K	323
UB 8820 M, UB 8821 M,				B 060 SG bis B 066 SG	297	B 380 D, B 380 E, B 380 K	323
UB 8840 M, UB 8841 M	209	Schaltkreise für die industrielle Elektronik		B 080 D bis B 084 D	297	B 340 D, B 341 D, B 342 D	325
16 Bit Mikroprozessorsystem	210	Analog-/Digital-, Digital-/Analog-		В 165 Н, V	299	Schaltkreise für spezielle Anwen-	_
UB 8001 C, UB 8002 D	210	Wandler	. 264	B 176 D, B 177 D	300	dungen	326
UB 8010 C	211	C 500 D, C 501 D	264	B 611 D, B 615 D, B 621 D	301	A 321 G	326
U 8272 D	212	C 502 D	265	B 625 D, B 631 D, B 635 D	301	B 308 D, B 318 D	327
U 82536 DC, U 8036 DC	213	C 504 D	266	B 761 D, B 765 D	301	B 331 G	328
U 82530 DC, U 8030 DC	215	C 520 D	267	B 861 D, B 865 D	301	B 384 D	329
U 82720 D	217	C 560 C	268	B 2761 D, B 2765 D, B 2765 S	301	B 385 D	330
U 80601	218	C 565 C, C 5650 C	269	B 4761 D, B 4765 D	301	B 386 D	331
U 80606 DC	221	C 570 C, C 571 C	270	B 411 DD	303	B 3870 D	332
U 80608	223	C 574 C	271	U 7650 DD	304	U 131 G	333
462		•					463

Тур	Seite	Тур	Seite
U 1311 D	334	Si-npn-Darlington-Leistungsschalt-	
U 713 D, U 713 PF	335	transistoren im Modulgehäuse	377
U 1001 C	336	SME 992, SME 994, SME 996	378
U 1011 C	337	SU 391, SU 392, SU 393	381
U 1021 C/D	338	SCE 535 bis 540	383
U 1600	339	SFE 250	385
U 5300	343	SFE 292	387
U 32C20 FC	346	SFE 517	389
		SFE 569	391
Optoelektronik		SFE 570	393
Lichtemitterdioden	350	SSE 550/551/552	395
Infrarotemitterdioden	353	SSE 560/561/562	397
Si-Sensorzelle mit eingeschlossenen	า	VFE 15-18, VFE 15-20, VFE 15-23	399
Glasfilter	353	VFE 15-27, VFE 15-32, VFE 15-37	399
Si-Fotodioden	354	VF 15 X	400
Positionsempfindliche Fotodioden	355	Dioden Gleichrichter	
Si-Fototransistoren	356	Si-Schaltdioden	402
Optoelektronische Koppler	357	Silizium-Z-Dioden	403
Lichtemitteranzeigen	358		406
L 110 C	361	Si-Leistungs-Z-Dioden Si-Gleichrichterdioden	407
L 133 C	362		411
L 211 C	363	Schnelle Si-Gleichrichterdioden	411
L 220 C	364	Schottky- und Epitaxial-Leistungs-	414
Flachbandanzeigen	365	gleichrichterdioden	415
Alphanumerische Anzeige	366	Schnelle Si-Gleichrichterdioden	416
Transistoren		Gleichrichterdiodenmodule	410
		Silizium-Gleichrichter in Frei-	417
Kleinleistungstransistoren für allge		flächenbauart	41.
meine und NF-Anwendungen	368	Plattensortiment für Selengleich-	419
Kleinleistungstransistoren für	0.70	richter in Freiflächenbauart	420
HF-/ZF-/Video-Anwendungen	370	Selenkleinstgleichrichter	421
Kleinleistungstransistoren für		Selenklammergleichrichter	421
Schaltanwendungen	372	Selenstabgleichrichter im HP-Rohr	422
NF-Leistungstransistoren	373	Selenstabsgleichrichter	422
Si-npn-Darlington-Leistungs-		Selen-Blitzschutzdiode	422
schalttransistoren	374	Selenschaltdioden	$\frac{422}{422}$
Si-npn-Leistungsschalttransistoren		Selenamplitudenbegrenzer	422
Si-npn-Leistungsschalttransistoren 464	376	Si-Einphasen-Gleichrichter	423

info-verlag electronic

Mikroelektronik Gesamtübersicht

Mikroelektronik Gesamtübersicht