

# TECHNISCHE UNIVERSITÄT CHEMNITZ

Constructive subsampling of finite frames with applications in optimal function recovery

F. Bartel, M. Schäfer, and T. Ullrich

## What if...

• b > 1

**given:** • an  $L_2$ -Marcinkiewicz-Zygmund inequality for V, i.e., points  $\boldsymbol{x}^1, \ldots, \boldsymbol{x}^M$  and weights  $\omega_1, \ldots, \omega_M$  satisfying

$$A \|f\|_{L_2}^2 \le \sum_{i=1}^M \omega_i |f(\boldsymbol{x}^i)|^2 \le B \|f\|_{L_2}^2 \quad \forall f \in V \,,$$

(MZ)

## Least squares

For a function space V, points  $\mathbf{X}_n = (\mathbf{x}^i)_{i \in J}$ , and weights  $w_m$ , we define the **least squares** approximation

$$S_{V,w_m}^{\boldsymbol{X}_n} f = \underset{g \in V}{\operatorname{arg\,min}} \sum_{i \in J} w_m(\boldsymbol{x}^i) |g(\boldsymbol{x}^i) - f(\boldsymbol{x}^i)|^2.$$

# Equivalent formulation

Let  $\eta_0, \ldots, \eta_{m-1}$  be an ONB of a function space V and



we find:  $J \subset [M]$ ,  $|J| \leq \lceil bm \rceil$  with  $A' \|f\|_{L_2}^2 \leq \sum |f(\boldsymbol{x}^i)| \quad \forall f \in V.$ 



#### Theorem (function recovery) [1, 3]

Let H(K) be a RKHS,  $\sup_{\boldsymbol{x}\in D} K(\boldsymbol{x}, \boldsymbol{x}) < \infty$ , Id:  $H(K) \hookrightarrow L_2(D, \nu)$  compact with singular values  $\sigma_1 \geq \sigma_2 \geq \cdots \geq 0$  and  $1 + \frac{m}{10} \leq b \leq 2$ . Then there is a function space  $V \subset H(K)$  and a point set  $X_n$  with  $|X_n| \leq \lceil bm \rceil$  with

$$\sup_{\|f\|_{H(K)} \le 1} \|f - S_{V,w_m}^{\boldsymbol{X}_n} f\|_{L_2(D,\nu)}^2$$

$$\le C \frac{\log(m/p)}{(b-1)^3} \Big(\sigma_{m+1}^2 + \frac{7}{m} \sum_{k=m+1}^{\infty} \sigma_k^2 \Big)$$

with probability exceeding  $1 - \frac{3}{2}p$ .

Then we have the following equivalence:

 $(MZ) \Leftrightarrow A \leq \sigma_{\min}^2(L) \leq \sigma_{\max}^2(L) \leq B$  $\Leftrightarrow \boldsymbol{y}^1, \ldots, \boldsymbol{y}^M$  frame, i.e.,

$$A \| \boldsymbol{a} \|_2^2 \leq \sum_{i=1}^M |\langle \boldsymbol{a}, \boldsymbol{y}^i \rangle|^2 \leq B \| \boldsymbol{a} \|_2^2 \quad \forall \boldsymbol{a} \in \mathbb{C}^m.$$

 $\Rightarrow$  The problem of subsampling  $L_2$ -MZ inequalities is equivalent to subsampling of frames.

Theorem (existence) Theorem (constructive unweighted Theorem (weighted construction) [1] [2] subsampling) Let  $y^1, \ldots, y^M \in \mathbb{C}^m$  frame with  $\|y^i\|_2^2 \leq \frac{m}{M}$ Let  $y^1, \ldots, y^M \in \mathbb{C}^m$  form a 1-tight frame and and  $b > \frac{1642}{A}$ . Then there exists  $J \subset [M]$ , b > 1. Then the BSS algorithm computes Let  $y^1, \ldots, y^M \in \mathbb{C}^m$  with  $m \in \mathbb{N}_{>10}$ . Further, take  $b \ge 1 + \frac{10}{m}$  and assume  $M \ge \lceil bm \rceil$ . By  $J \subset [M]$  with  $|J| \leq \lceil bm \rceil$  and  $s_i \geq 0$ , s.t.  $|J| \leq bm$ , with applying BSS to  $ilde{m{y}}^1,\ldots, ilde{m{y}}^M$ , we obtain indices

 $\mathbf{O}$ 

 $12\|\boldsymbol{a}\|_{2}^{2} \leq \frac{1}{m} \sum_{i \in I} |\langle \boldsymbol{a}, \boldsymbol{y}^{i} \rangle|^{2} \leq 1642 \frac{B}{A} \|\boldsymbol{a}\|_{2}^{2}$ 

### for all $a \in \mathbb{C}^m$ .

- The desired subframe exists! ( : : )
- The approach is non-constructive as it is based on the Kadison-Singer theorem equivalent to the Feichtinger conjecture.
- The oversampling factor b cannot be choosen close to one.

 $\|\boldsymbol{a}\|_{2}^{2} \leq \sum_{i \in J} s_{i} |\langle \boldsymbol{a}, \boldsymbol{y}^{i} \rangle|^{2} \leq \frac{(\sqrt{b}+1)^{2}}{(\sqrt{b}-1)^{2}} \|\boldsymbol{a}\|_{2}^{2}$ for all  $a \in \mathbb{C}^m$ .

- ( : : )The approach is constructive. Starting with an empty frame, elements are carefully added whilst watching the bounds.
- It only works for 1-tight frames.  $( \vdots )$
- $(\vdots)$ We introduce further weights  $s_i$ .

 $J' \subset [M]$  with  $|J'| \leq \lceil bm \rceil$  such that



for all  $a \in \mathbb{C}^m$ .

(::)Constructive unweighted subframe as desired.

## Subsampling of a Fourier matrix

# m = 256

frequencies I

# sparse grid

M = 256 (b = 1)

- Fourier matrix Y = $[\exp(2\pi i \langle \boldsymbol{k}, \boldsymbol{x} \rangle)]_{\boldsymbol{k} \in I, \boldsymbol{x} \in \boldsymbol{X}}$ 
  - Sparse grids are exact for the dyadic hyperbolic cross with oversampling b = 1,





Subsampling of a wavelet matrix

initial points

• Wavelet matrix Ywith the Chui-Wang wavelets  $\varphi_{\boldsymbol{j},\boldsymbol{k}}$ 

[3]

- X: 2400 randomly drawn points





- vertible submatrix.
  - comparison: subsam-

- [1] N. Nagel, M. Schäfer, and T. Ullrich. A new upper bound for sampling numbers. *Found*. Comp. Math., 2021.
- [2] J. D. Batson, D. A. Spielman, and N. Srivastava. Twice-Ramanujan sparsifiers. SIAM J. Comput., 2012.
- [3] F. Bartel, M. Schäfer, and T. Ullrich. Constructive subsampling of finite frames with applications in optimal function recovery. arXiv preprint, 2022.

#### Felix Bartel, Martin Schäfer, and Tino Ullrich

{felix.bartel, martin.schaefer, tino.ullrich}@mathematik.tu-chemnitz.de https://tu-chemnitz.de

#### Software

https://github.com/felixbartel/BSSsubsampling.jl