Stability and error guarantees for least squares approximation given noisy samples

Felix Bartel

Summer school "Analysis and Theoretical Numerics"

2nd of August 2022

Motivation: scattered data approximation

Given:

- $f \colon D \to \mathbb{C}$,
- points $x^1, \ldots, x^n \in D$ distributed w.r.t. $d\nu$,

• samples
$$\boldsymbol{y} = (\underbrace{f(x^1) + \varepsilon_1}_{y_1}, \dots, \underbrace{f(x^n) + \varepsilon_n}_{y_n})^{\mathsf{T}}$$

Given:

- $f: D \to \mathbb{C}$,
- points $x^1, \ldots, x^n \in D$ distributed w.r.t. $d\nu$,

• samples
$$\boldsymbol{y} = (\underbrace{f(x^1) + \varepsilon_1}_{y_1}, \dots, \underbrace{f(x^n) + \varepsilon_n}_{y_n})^{\mathsf{T}}$$

Goal: find approximation $g \colon D \to \mathbb{C}$ with

•
$$g \in V_m = \operatorname{span}\{\eta_0, \dots, \eta_{m-1}\}$$
, i.e., $g(x) = \sum_{k=0}^{m-1} \hat{a}_k \eta_k(x)$,

stable algorithm,

• small
$$L_2$$
-error, i.e., $\int_0^1 |f-g|^2 \,\mathrm{d}\mu$ small.

<u>61</u>

Motivation: domain adaptation

- source measure $d\nu$ and target measure $d\mu$ may differ, e.g.
 - train a self learning car
 - train a spam filter
 - diagnostic models trained on earlier diseases predicting data associated with new viruses

Motivation: domain adaptation

- source measure $d\nu$ and target measure $d\mu$ may differ, e.g.
 - train a self learning car
 - train a spam filter
 - diagnostic models trained on earlier diseases predicting data associated with new viruses

Radon-Nikodym theorem

Let $\bullet \mu$ and ν two σ -finite measures and

• ν be absolutely continuous w.r.t. μ .

Then there exists a measurable function $\varrho \colon D \to [0,\infty)$, s.t.

$$\nu(A) = \int_A \varrho \, \mathrm{d} \mu \quad \forall A \subset D \, .$$

Least squares in scattered data approximation

Ansatz: weighted least squares $g(x) = \sum_{k=0}^{m-1} \hat{g}_k \eta_k(x)$ with $m \le n$,

$$\hat{\boldsymbol{g}} = \operatorname*{arg\,min}_{\hat{\boldsymbol{a}}\in\mathbb{C}^m} \|\boldsymbol{L}\hat{\boldsymbol{a}}-\boldsymbol{y}\|_{\boldsymbol{W}}^2 = (\boldsymbol{L}^*\boldsymbol{W}\boldsymbol{L})^{-1}\boldsymbol{L}^*\boldsymbol{W}\boldsymbol{y}\,,$$

with

$$\boldsymbol{L} = \begin{bmatrix} \eta_0(x^1) & \dots & \eta_{m-1}(x^1) \\ \vdots & \ddots & \vdots \\ \eta_0(x^n) & \dots & \eta_{m-1}(x^n) \end{bmatrix} \in \mathbb{C}^{n \times m}, \quad \boldsymbol{W} = \begin{bmatrix} \frac{1}{\varrho(x^1)} & & \\ & \ddots & \\ & & \frac{1}{\varrho(x^n)} \end{bmatrix} \in [0,\infty)^{n \times n}$$

Q: Is weighted least squares stable?

$$A \leq \sigma_{\min}(\boldsymbol{W}^{1/2}\boldsymbol{L}) \leq \sigma_{\max}(\boldsymbol{W}^{1/2}\boldsymbol{L}) \leq B$$

Least squares in scattered data approximation

Theorem (Least squares is stable)

[Nagel, Schäfer, T. Ullrich 2021][Moeller, T. Ullrich 2021][B 2022]

Let • x^1, \ldots, x^n be distributed according to $d\nu = \rho d\mu$, • $V_m = \operatorname{span}\{\eta_0, \ldots, \eta_{m-1}\}$ an *m*-dimensional function space, t > 0 such that

$$5 \left\| \frac{\sum_{k=0}^{m-1} |\eta_k|^2}{\varrho} \right\|_{\infty} (\log(m) + t) \le n$$

• $W = \text{diag}(1/\rho(x^1), \dots, 1/\rho(x^n)).$ Then we have with probability $1 - \exp(-t)$ each

$$\frac{1}{2} \leq \sigma_{\min}^2(\tfrac{1}{\sqrt{n}} \boldsymbol{W}^{1/2} \boldsymbol{L}) \qquad \text{and} \qquad \sigma_{\max}^2(\tfrac{1}{\sqrt{n}} \boldsymbol{W}^{1/2} \boldsymbol{L}) \leq \frac{3}{2}\,.$$

Thus, we have fast convergence for iterative solvers like CG or LSQR.

Q: Can we bound the error?

$$P(f, V_m) = \underset{g \in V_m}{\arg\min} \|f - g\|_{L_2(D, \mu)}^2$$

Least squares in scattered data approximation

Theorem (Error bound without noise)

Let •
$$f: D \to \mathbb{C}, x^1, \dots, x^n, n \in \mathbb{N}$$
 be points drawn according $d\nu = \varrho d\mu$,
• $\boldsymbol{y} = (f(x^1), \dots, f(x^n))^\mathsf{T}$ function values,

• $t \geq 0$, V_m satisfying

$$6 \left\| \frac{\sum_k |\eta_k|^2}{\varrho} \right\|_{\infty} (\log(m) + t) \le n.$$

Then, for g the weighted least squares approximation, we have with probability exceeding $1 - 2 \exp(-t)$:

$$\|f - g\|_{L_2}^2 \le 8\left(1 + \sqrt{\frac{t\|\sum_k |\eta_k|^2\|_{\infty}}{n}}\right)^2 \|f - P(f, V_m)\|_{L_2}^2 . \quad \bigcup_{m \to \infty} \frac{\mathsf{p}_{q_m}}{m}$$

[B 2022]

Theorem (Error bound with noise)

Let • the assumptions from the theorem before hold,

- $\boldsymbol{y} = (f(x^1) + \varepsilon_1, \dots, f(x^n) + \varepsilon_n)^{\mathsf{T}}$ noisy function values,
- $\boldsymbol{\varepsilon} = (\varepsilon_1, \dots, \varepsilon_n)^{\mathsf{T}}$ mean-zero rv's with $\mathbb{E}(|\varepsilon_i|^2) \leq \sigma^2$ and $\|\boldsymbol{\varepsilon}\|_{\infty} \leq B$.

Then, for g the weighted least squares approximation, we have with probability exceeding $1-3\exp(-t)$:

$$\begin{split} \|f - g\|_{L_2}^2 &\leq 14 \left(1 + \sqrt{\frac{t\|\sum_k |\eta_k|^2\|_{\infty}}{n}} \right)^2 \|f - P(f, V_m)\|_{L_2}^2 \qquad \underbrace{\mathsf{p}}_{L_2} & \underbrace{$$

Theorem (continuation)

[B 2022]

 and

$$\|f - g\|_{L_{\infty}} \leq \left(2 + \sqrt{20} \left\|\sum_{k} |\eta_{k}|^{2}\right\|_{\infty}\right) \|f - P(f, V_{m}, L_{\infty})\|_{L_{\infty}} + \sqrt{\|2/\varrho\|_{\infty}} \left\|\sum_{k} |\eta_{k}|^{2}\right\|_{\infty}} \sqrt{\frac{m}{n} \left(14B\sqrt{t\sigma^{2}} + \sigma^{2}\right) + \frac{128B^{2}t}{n}}.$$

Q: How do the involved quantities behave?

Scenario 1

- domain D = [0, 1],
- source measure $u(x) = \frac{\mathrm{d}x}{\sqrt{1-(2x-1)^2}},$

• target measure
$$\mu(x) = rac{\mathrm{d}x}{\sqrt{1-(2x-1)^2}}$$
, and

•
$$V_m = \text{span}\{1, x, \dots, x^{m-1}\}.$$

Function approximation exemplified on [0, 1]

We have

• a = 1

•
$$\eta_k(x) = T_k(x) = \cos(k \arccos(2x - 1))$$
 Chebyshev polynomials,

•
$$\sum_{k=0}^{m-1} |\eta_k(x)|^2 = \frac{m}{2} + \frac{\cos((m-1)\arccos(2x-1))\sin(m\arccos(2x-1))}{2\sqrt{1-x^2}} \le m$$
, and

Theorem

[Trefethen 2018]

If $f, \ldots, f^{(s-1)}$ absolute continuous and $f^{(s)}$ of bounded variation V. Then

$$\|f - P(f, V_m)\|_{L_2([0,1], \frac{\mathrm{d}x}{\sqrt{1-(2x-1)^2}})} \le \frac{2V}{\pi\sqrt{(s-1)}(m-s-1)^{s+1/2}} \lesssim m^{-(s+1/2)}.$$

Corollary

Let the source and target measure be the Chebyshev measure and $V_m = \operatorname{span}\{1, x, \ldots, x^{m-1}\}$. Further, let the assumptions from the theorem before hold and $6m(\log(m) + t) \leq n$. Then

$$\|f - g\|_{L_2}^2 \le 20 \|f - P(f, V_m)\|_{L_2}^2 + 4 \left(\frac{m}{n} \left(14B\sqrt{t\sigma^2} + \sigma^2\right) + \frac{128B^2t}{n}\right) \,.$$

Scenario 2

в

- domain D = [0, 1],
- source measure $\nu(x) \equiv 1$,

• target measure
$$\mu(x)=\frac{\mathrm{d}x}{\sqrt{1-(2x-1)^2}},$$
 and

•
$$V_m = \text{span}\{1, x, \dots, x^{m-1}\}.$$

We have

•
$$\eta_k(x) = T_k(x) = \cos(k \arccos(2x - 1))$$
 Chebyshev polynomials,
• $\varrho(x) = \sqrt{1 - (2x - 1)^2}$,
• $\sum_{k=0}^{m-1} |\eta_k(x)|^2 = \frac{m}{2} + \frac{\cos((m-1)\arccos(2x-1))\sin(m\arccos(2x-1))}{2\sqrt{1-x^2}} \le m$.

Thus,

$$\|1/\varrho\|_{\infty} = \infty \quad \text{and} \quad \left\|\frac{\sum_{k=0}^{m-1} |\eta_k|^2}{\varrho}\right\|_{\infty} = \infty \,.$$

"Corollary"

Let the source measure be uniform and target measure be the Chebyshev measure and $V_m = \operatorname{span}\{1, x, \ldots, x^{m-1}\}$. Further, let the assumptions from the theorem before hold and $\infty \leq n$. Then

$$\|f - g\|_{L_2}^2 \le 14 \left(1 + \sqrt{\frac{tm}{n}}\right)^2 \|f - P(f, V_m)\|_{L_2}^2 + \infty.$$

Scenario 3

- domain D = [0, 1],
- source measure $\nu(x) \equiv 1$,
- target measure $\mu(x) \equiv 1$, and
- $V_m = \text{span}\{1, x, \dots, x^{m-1}\}.$

Function approximation exemplified on [0, 1]

We have

•
$$\eta_k(x) = P_k / \|P_k\|_{L_2} = \sqrt{\frac{2k+1}{2}} \frac{1}{2^k k!} \frac{\mathrm{d}^k}{\mathrm{d}x^k} (x^2 - 1)^k$$
 Legendre polynomials,

•
$$\varrho \equiv 1$$
,

•
$$\sum_{k=0}^{m-1} |\eta_k(0)|^2 = m^2$$
,

and

Theorem

[Wang 2021]

If $f, \ldots, f^{(s-1)}$ absolute continuous and $f^{(s)}$ of bounded variation V. Then

$$||f - P(f, V_m)||_{L_2([0,1], \mathrm{d}x)} \le \frac{V}{\sqrt{\pi(s+1/2)(m-1-s)^{s+1/2}}} \lesssim m^{-(s+1/2)}$$

Corollary

Let the source and target measure be uniform and $V_m = \text{span}\{1, x, \dots, x^{m-1}\}$. Further, let the assumptions from the theorem before hold and $6m^2 \log(m+t) \leq n$. Then

$$\|f - g\|_{L_2}^2 \le 20 \|f - P(f, V_m)\|_{L_2}^2 + 4 \left(\frac{m}{n} \left(14B\sqrt{t\sigma^2} + \sigma^2\right) + \frac{128B^2t}{n}\right) \,.$$

Function approximation exemplified on [0, 1]

Assumption: $f \in H^s$ Sobolev space with integer smoothness s, i.e.,

$$||f||_{H^s}^2 \coloneqq ||f||_{L_2([0,1],\mathrm{d}x)}^2 + ||f^{(s)}||_{L_2([0,1],\mathrm{d}x)}^2 < \infty.$$

17

Function approximation exemplified on [0,1]

Assumption: $f \in H^s$ Sobolev space with integer smoothness s, i.e.,

$$||f||_{H^s}^2 \coloneqq ||f||_{L_2([0,1],\mathrm{d}x)}^2 + ||f^{(s)}||_{L_2([0,1],\mathrm{d}x)}^2 < \infty.$$

Construction of V_m : For Id: $H^s \hookrightarrow L_2([0,1], dx)$ compute the eigenfunctions of $W = \mathrm{Id}^* \circ \mathrm{Id} : H^s \to H^s$:

$$W(f) = \sum_{k=0}^{\infty} \sigma_k \langle f, e_k \rangle_{H^s} e_k \,.$$

• e_k ONS in H^s , • $\eta_k = \sigma_k^{-1} e_k$ ONS in $L_2([0,1], \mathrm{d}x)$,

Error estimate

For
$$V_m = \operatorname{span}\{\eta_0, \dots, \eta_{m-1}\}$$
 and $f = \sum_{k=0}^{\infty} \langle f, e_k \rangle_{H^s} e_k \in H^s$ we have

$$\|f - P(V_m, f)\|_{L_2([0,1], \mathrm{d}x)}^2 = \sum_{k=m}^{\infty} |\langle f, e_k \rangle_{H^s}|^2 \underbrace{\|e_k\|_{L_2}^2}_{=\sigma_k^2} \le \sup_{k \ge m} \sigma_k^2 \|f\|_{H^s}^2.$$

Function approximation exemplified on [0,1]

Eigenfunctions for H^1

 $W = \mathrm{Id}^* \circ \mathrm{Id} : H^1 \to H^1$ has the following singular values and eigenfunctions:

$$\eta_k(x) = \begin{cases} 1 & \text{for } k = 0\\ \sqrt{2}\cos(\pi k x) & \text{for } k \ge 1 \end{cases} \quad \text{and} \quad \sigma_k^2 = \frac{1}{1 + \pi^2 k^2} \,.$$

Function approximation exemplified on $\left[0,1\right]$

Eigenfunctions for H^2

[Iserles, Nørsett 2008][Suryanarayana, Nuyens, Cools 2016][B 2022]

 $W = \mathrm{Id}^* \circ \mathrm{Id} : H^2 \to H^2$ has the following singular values and eigenfunctions: $\sigma_k^2 = \frac{1}{1+t_k^4}$ with $t_k > 0$ the solutions of $\cosh(t_k) \cos(t_k) = 1$ ($t_k \approx \frac{2k-1}{2}\pi$)

$$\eta_k(x) = \cosh(t_k x) + \cos(t_k x) - \frac{\cosh(t_k) - \cos(t_k)}{\sinh(t_k) - \sin(t_k)} (\sinh(t_k x) + \sin(t_k x)).$$

Function approximation exemplified on [0,1]

Eigenfunctions for H^2

[Iserles, Nørsett 2008][Suryanarayana, Nuyens, Cools 2016][B 2022]

 $W = \mathrm{Id}^* \circ \mathrm{Id} : H^2 \to H^2$ has the following singular values and eigenfunctions: $\sigma_k^2 = \frac{1}{1+t_k^4}$ with $t_k > 0$ the solutions of $\cosh(t_k) \cos(t_k) = 1$ ($t_k \approx \frac{2k-1}{2}\pi$)

$$\eta_k(x) = \cosh(t_k x) + \cos(t_k x) - \frac{\cosh(t_k) - \cos(t_k)}{\sinh(t_k) - \sin(t_k)} (\sinh(t_k x) + \sin(t_k x)).$$

Theorem: Numerically stable approximation

For $k\geq 2$ let $\tilde{t}_k=\pi(2k-1)/2$ and

$$\tilde{\eta}_k(x) = \sqrt{2} \cos\left(\tilde{t}_k x + \frac{\pi}{4}\right) + \mathbb{1}_{[0,\frac{1}{2}]}(x) \exp\left(-\tilde{t}_k x\right) \\ + \mathbb{1}_{[\frac{1}{2},1]}(x)(-1)^k \exp\left(-\tilde{t}_k(1-x)\right) \,.$$

Then $|\eta_k(x) - \tilde{\eta}_k(x)| \le \varepsilon$ for $k \ge \frac{2}{\pi} \log(16/\varepsilon) + 1$.

19

[B 2022]

Corollary

Let the source and target measure be uniform and V_m the first eigenfunctions of W. Further, let the assumptions from the theorem before hold and $36m\log(m+t) \leq n$. Then

$$\|f - g\|_{L_2}^2 \le 56 \|f - P(f, V_m)\|_{L_2}^2 + 4 \left(\frac{m}{n} \left(14B\sqrt{t\sigma^2} + \sigma^2\right) + \frac{128B^2t}{n}\right) \,.$$

basis	assumptions	$ f - P(f, V_m) _{L_2}$
Legendre	$f, \ldots, f^{(s-1)}$ absolute continuous,	$\mathcal{O}(m^{-(s+1/2)})$
Chebyshev	$f^{(s)}$ bounded variation	$\mathcal{O}(m^{-(s+1/2)})$
H^1 -basis	$f\in H^1$	$\mathcal{O}(m^{-1})$
H^2 -basis	$f\in H^2$	$\mathcal{O}(m^{-2})$

Note, for $f,\ldots,f^{(s-1)}$ absolute continuous, $f^{(s)}$ bounded variation we have $f\in H^{s+1/2-\varepsilon}.$

Least squares in scattered data approximation

Extremal singular values of $oldsymbol{W}^{1/2}oldsymbol{L}$ for uniformly distributed points, i.e., $\mathrm{d}
u=\mathrm{d}x$

Chebyshev	Legendre	H^1 -basis	H^2 -basis
$\varrho = \sqrt{1 - (2x - 1)^2}$	$\varrho \equiv 1$	$\varrho \equiv 1$	$\varrho \equiv 1$
$\left\ \frac{\sum_k \eta_k ^2}{\varrho}\right\ _{\infty} \log(m)$	$\left\ \frac{\sum_{k} \eta_{k} ^{2}}{\varrho}\right\ _{\infty} \log(m)$	$\left\ \frac{\sum_{k} \eta_{k} ^{2}}{\varrho}\right\ _{\infty} \log(m)$	$\left\ \frac{\sum_{k} \eta_{k} ^{2}}{\varrho} \right\ _{\infty} \log(m)$
$=\infty$	$=m^2\log(m)\stackrel{.}{\lesssim}n$	$= 2m\log(m)\stackrel{.}{\lesssim} n$	$= 6m \log(m) \stackrel{.}{\lesssim} n$
10^{2} 10^{0} 10^{-2}	10^{2} 10^{0} 10^{-2}	10^{2}	10^2
$10^1 10^2 10^3$	$10^1 \ 10^2 \ 10^3$	$10^1 \ 10^2 \ 10^3$	$10^1 \ 10^2 \ 10^3$
m	m	m	m

Least squares in scattered data approximation

Extremal singular values of $oldsymbol{W}^{1/2}oldsymbol{L}$ for Chebyshev distributed points, i.e.,

 $\mathrm{d}\nu = \frac{\mathrm{d}x}{\sqrt{1 - (2x - 1)^2}}$ Chebyshev H^1 -basis H^2 -basis Legendre $\varrho = \frac{1}{\sqrt{1 - (2x - 1)^2}} \qquad \left| \begin{array}{c} \varrho = \frac{1}{\sqrt{1 - (2x - 1)^2}} \\ \end{array} \right| \qquad \left| \begin{array}{c} \varrho = \frac{1}{\sqrt{1 - (2x - 1)^2}} \\ \end{array} \right|$ $\rho \equiv 1$
$$\begin{split} \left\| \frac{\sum_{k} |\eta_{k}|^{2}}{\varrho} \right\|_{\infty} \log(m) & \left\| \frac{\sum_{k} |\eta_{k}|^{2}}{\varrho} \right\|_{\infty} \log(m) & \left\| \frac{\sum_{k} |\eta_{k}|^{2}}{\varrho} \right\|_{\infty} \log(m) & \left\| \frac{\sum_{k} |\eta_{k}|^{2}}{\varrho} \right\|_{\infty} \log(m) \\ = 2m \log(m) \stackrel{!}{\underset{\sim}{\lesssim}} n & = 2m \log(m) \stackrel{!}{\underset{\sim}{\lesssim}} n & = 2m \log(m) \stackrel{!}{\underset{\sim}{\lesssim}} n & = 6m \log(m) \stackrel{!}{\underset{\sim}{\lesssim}} n \end{split}$$
 10^2 10^{2} 10^{2} 10^{2} 10^{0} 10^{0} 10^{0} 10^{0} 10^{-2} 10^{-2} 10^{-2} 10^{-2} $10^1 \ 10^2 \ 10^3$ $10^1 \ 10^2 \ 10^3$ $10^1 \ 10^2 \ 10^3$ $10^1 \ 10^2 \ 10^3$ mmmm

Numerical experiment

- $f \in H^{5/2-\varepsilon}$ quadratic B-spline
- $x^1, \ldots, x^n \ 10\,000$ uniformly distributed points

Numerical experiment

- $f \in H^{5/2-\varepsilon}$ quadratic B-spline
- $x^1, \ldots, x^n \ 10\ 000$ uniformly distributed points
- 0.1% Gaussian noise in ${m arepsilon}$

Extension to higher dimensions

Definition

Sobolev spaces with dominating mixed smoothness on the unit cube $H^s_{\min}(0,1)^d = H^s(0,1) \otimes \cdots \otimes H^s(0,1)$ with scalar product

$$\langle f, g \rangle_{H^s_{\min}(0,1)^d} = \sum_{j \in \{0,s\}^d} \langle D^{(j)} f, D^{(j)} g \rangle_{L_2}.$$

Extension to higher dimensions

Definition

Sobolev spaces with dominating mixed smoothness on the unit cube $H^s_{\min}(0,1)^d = H^s(0,1) \otimes \cdots \otimes H^s(0,1)$ with scalar product

$$\langle f, g \rangle_{H^s_{\min}(0,1)^d} = \sum_{j \in \{0,s\}^d} \langle D^{(j)} f, D^{(j)} g \rangle_{L_2}.$$

The singular values and eigenfunctions generalize naturally:

$$\sigma_{m k}^2 = \prod_{j=1}^d \sigma_{k_j}^2 \quad ext{and} \quad \eta_{m k}(m x) = \prod_{j=1}^d \eta_{k_j}(x_j) \,.$$

hyperbolic cross for d = 3

Extension to higher dimensions

Numerical experiment with the H^2 basis

- $d=5,\;f\in H^{5/2-arepsilon}_{\mathrm{mix}}(0,1)^5$ quadratic B-spline
- $x^1, \ldots, x^n \ 1 \ 000 \ 000$ uniformly distributed points

www.tu-chemnitz.de/~febar

Conclusion and Outlook

1 Function approximation via weighted least squares for domain adaptation

- Stability guarantees
- Error bounds with exact function values
- Error bounds for noisy function values
- **2** Exemplified the bounds on [0,1] in various settings
 - ${\ensuremath{\,\bullet\,}}$ found a stable approximation for the H^2 basis

Q: How to choose the polynomial degree m when noise is involved?