Sampling recovery from random partial quadrature nodes

Felix Bartel Lutz Kämmerer Daniel Potts Tino Ullrich Sigmundsburg Seminar on Analysis and Theoretical Numerics

1st of September 2021

Recovery of functions from RKHS

• Given:

- reproducing kernel Hilbert space $H(K) \hookrightarrow L_2$
- samples $(f(\boldsymbol{x}^1),\ldots,f(\boldsymbol{x}^n))^\mathsf{T}\in\mathbb{C}^n$ from $f\in\mathrm{H}(K)$

Recovery of functions from RKHS

• Given:

- reproducing kernel Hilbert space $H(K) \hookrightarrow L_2$
- samples $(f(\boldsymbol{x}^1), \dots, f(\boldsymbol{x}^n))^\mathsf{T} \in \mathbb{C}^n$ from $f \in \mathrm{H}(K)$

• Goal:

- recover every $f\in {\rm H}(K)$ from the samples in ${\boldsymbol X}=({\boldsymbol x}^1,\ldots,{\boldsymbol x}^n)$
- control worst-case error for sampling recovery operator $S_{\mathbf{X}} : \operatorname{H}(K) \to \operatorname{L}_2$

$$\sup_{\|f\|_{\mathbf{H}(K)} \le 1} \|f - S_{\mathbf{X}} f\|_{\mathbf{L}_2}$$

Reproducing kernel Hilbert space

- assume the finite trace condition $\int_D K({\boldsymbol x},{\boldsymbol x})\;\mathrm{d}\nu({\boldsymbol x})<\infty$
- embedding $\mathrm{Id}_{K,\nu} \colon \mathrm{H}(K) \to \mathrm{L}_2$ has the representation

$$\mathrm{Id}_{K,\nu}(f) = \sum_{k=1}^{\infty} \sigma_k \langle f, e_k \rangle_{\mathrm{H}(K)} \eta_k$$

with

- singular values $\sigma_1 \geq \sigma_2 \geq \cdots \geq 0$ of $\mathrm{Id}_{K,\nu}$
- right singular functions $\{e_1, e_2, \dots\}$ forming an ONS in H(K)
- left singular functions $\{\eta_1, \eta_2, \dots\}$ forming an ONS in L_2
- since $\mathrm{Id}_{K,\nu}$ is the identity on functions

$$e_k = \sigma_k \cdot \eta_k$$

Example: Sobolev spaces with mixed smoothness on \mathbb{T}^d

• for s>1/2 we define $\mathrm{H}^s_{\mathrm{mix}}(\mathbb{T}^d)=\{f\in\mathrm{L}_2:\|f\|_{\mathrm{H}^s_{\mathrm{mix}}}<\infty\}$ with

$$\langle f,g
angle_{\mathrm{H}^{s}_{\mathsf{mix}}} \coloneqq \sum_{\boldsymbol{j} \in \{0,s\}^{d}} \langle D^{(\boldsymbol{j})}f, D^{(\boldsymbol{j})}g
angle_{\mathrm{L}_{2}}$$

kernel:

$$\begin{split} K_s^1(x,y) &= \sum_{k \in \mathbb{Z}} \frac{\exp(2\pi i k(y-x))}{w_s(k)^2} \quad \text{with} \quad w_s(k) = (1 + (2\pi |k|)^{2s})^{1/2} \\ K_s^d(x,y) &= K_s^1(x_1,y_1) \otimes \dots \otimes K_s^1(x_d,y_d) \end{split}$$

• singular numbers: $\sigma_n = (1/w_s({m k}_n))_n$ (non-increasing rearrangement)

• singular functions: $e_n(\boldsymbol{x}) = \sigma_n \eta_n(\boldsymbol{x}) = \sigma_n \exp(2\pi \mathrm{i} \boldsymbol{k}_n \cdot \boldsymbol{x})$

B., Kämmerer, Potts, Ullrich

Example: Sobolev spaces with mixed smoothness on \mathbb{T}^d

- first η_1,\ldots,η_{m-1} are most important
- frequencies belong to hyperbolic cross

$$I_R^{hc} = \left\{ m{k} \in \mathbb{Z}^d : \prod_{j=1}^d (1 + (2\pi |k_j|)^{2s})^{1/2} \le R
ight\}$$

approximation

$$f(\boldsymbol{x}) \approx \sum_{\boldsymbol{k} \in I_R^{hc}} c_{\boldsymbol{k}} \exp(2\pi \mathrm{i} \boldsymbol{k} \cdot \boldsymbol{x})$$

Least squares

 $\bullet \ \text{assume} \ n > m$

• seek for
$$\boldsymbol{c} = (c_1, \dots, c_{m-1})^{\mathsf{T}}$$
 solving

$$\begin{pmatrix} \eta_1(\boldsymbol{x}^1) & \cdots & \eta_{m-1}(\boldsymbol{x}^1) \\ \vdots & \ddots & \vdots \\ \eta_1(\boldsymbol{x}^n) & \cdots & \eta_{m-1}(\boldsymbol{x}^n) \end{pmatrix} \begin{pmatrix} c_1 \\ \vdots \\ c_{m-1} \end{pmatrix} = \begin{pmatrix} f(\boldsymbol{x}^1) \\ \vdots \\ f(\boldsymbol{x}^n) \end{pmatrix}$$

Least squares

• assume n > m

• seek for
$$\boldsymbol{c} = (c_1, \ldots, c_{m-1})^{\mathsf{T}}$$
 solving

$$\left\| \begin{pmatrix} \eta_1(\boldsymbol{x}^1) & \cdots & \eta_{m-1}(\boldsymbol{x}^1) \\ \vdots & \ddots & \vdots \\ \eta_1(\boldsymbol{x}^n) & \cdots & \eta_{m-1}(\boldsymbol{x}^n) \end{pmatrix} \begin{pmatrix} c_1 \\ \vdots \\ c_{m-1} \end{pmatrix} - \begin{pmatrix} f(\boldsymbol{x}^1) \\ \vdots \\ f(\boldsymbol{x}^n) \end{pmatrix} \right\|_{\boldsymbol{W}}^2 \to \min$$

for a weight matrix $oldsymbol{W} = \operatorname{diag}(\omega_1,\ldots,\omega_n)$

Least squares

• assume n > m

• seek for
$$\boldsymbol{c} = (c_1, \dots, c_{m-1})^{\mathsf{T}}$$
 solving

$$\left\|\underbrace{\begin{pmatrix} \eta_1(\boldsymbol{x}^1) & \cdots & \eta_{m-1}(\boldsymbol{x}^1) \\ \vdots & \ddots & \vdots \\ \eta_1(\boldsymbol{x}^n) & \cdots & \eta_{m-1}(\boldsymbol{x}^n) \end{pmatrix}}_{=:\boldsymbol{L}} \begin{pmatrix} c_1 \\ \vdots \\ c_{m-1} \end{pmatrix} - \underbrace{\begin{pmatrix} f(\boldsymbol{x}^1) \\ \vdots \\ f(\boldsymbol{x}^n) \end{pmatrix}}_{=:\boldsymbol{f}} \right\|_{\boldsymbol{W}}^2 \to \min$$

for a weight matrix $oldsymbol{W} = \operatorname{diag}(\omega_1,\ldots,\omega_n)$

• the solution is given by

$$c = (L^*WL)^{-1}L^*W \cdot f$$
 and $(S_{X,W}f)(x) = \sum_{k=1}^{m-1} c_k \eta_k(x)$

Deterministic nodes: rank-1 lattices

•
$$X = \Lambda(z, M)$$
 with $x^i = \frac{1}{M}(iz \mod M1)$ for $i = 0, \dots, M-1$

• [Kämmerer, Potts, Volkmer '15]:

- given I, there exist algorithms that find z and M such that L*WL = I
- multiplication with \boldsymbol{L} can be carried out with the LFFT in $\mathcal{O}(M \log M)$

Deterministic nodes: rank-1 lattices

•
$$X = \Lambda(z, M)$$
 with $x^i = \frac{1}{M}(iz \mod M1)$ for $i = 0, \dots, M-1$

• [Kämmerer, Potts, Volkmer '15]:

- given I, there exist algorithms that find z and M such that L*WL = I
- multiplication with L can be carried out with the LFFT in $\mathcal{O}(M \log M)$

[Byrenheid, Kämmerer, T. Ullrich, Volkmer '17]:

$$M^{-s/2} \lesssim \sup_{\|f\|_{\mathcal{H}(K)} \le 1} \|f - S_{\mathbf{X}, \mathbf{W}} f\|_{\mathcal{L}_2} \lesssim M^{-s/2} (\log M)^{\frac{d-2}{2}s + \frac{d-1}{2}}$$

Random nodes on \mathbb{T}^d

• $X = \{x^1, \dots, x^n\}$ drawn randomly i.i.d. w.r.t. Lebesgue measure such that

$$|I| \lesssim \frac{n}{\log n}$$

• no fast matrix-vector multiplication due to lack of structure

random nodes

[M. Ullrich, Krieg '19], [Kämmerer, T. Ullrich, Volkmer '19]:

$$\sup_{\|f\|_{\mathcal{H}(K)} \le 1} \|f - S_{\boldsymbol{X}, \boldsymbol{W}} f\|_{\mathcal{L}_2} \lesssim n^{-s} (\log n)^{(d-1)s+s}$$

Weaver subsampled random nodes

- $X = \{x^1, \dots, x^n\}$ drawn randomly i.i.d. w.r.t. Lebesgue measure such that $|I| \le n/(10r \log n)$
- there exist $m{X}' = \{m{x}^{i_1}, \dots, m{x}^{i_{n'}}\} \subset m{X}$ subsampled nodes suitable for reconstruction with

$$n \in \mathcal{O}(|I|)$$

• no fast matrix-vector multiplication due to lack of structure

[Nagel, Schäfer, T. Ullrich '21]:

$$\sup_{\|f\|_{\mathcal{H}(K)} \le 1} \|f - S_{\boldsymbol{X}, \boldsymbol{W}} f\|_{\mathcal{L}_2} \lesssim n^{-s} (\log n)^{(d-1)s + 1/2}$$

subsampled random nodes

We want to combine both advantages:

• structure for fast algorithms

• awesome rates

Approach (motivated by [Kunis, Rauhut '08])

- **()** X_M : good deterministic set of M nodes
- **2** X: randomly subsample n nodes from X_M such that

$$|I| \lesssim \frac{n}{\log n}$$

X': Weaver subsample n' nodes from X such that

$$n' \in \mathcal{O}(|I|)$$

• nodes X_M and weights $\omega_1, \ldots, \omega_M$ fulfill a L_2 Marcinkiewicz-Zygmund inequality iff

$$c_{\mathrm{MZ}} \|f\|_{\mathrm{L}_{2}}^{2} \leq \sum_{i=1}^{M} \omega_{i} |f(\boldsymbol{x}^{i})|^{2} \leq C_{\mathrm{MZ}} \|f\|_{\mathrm{L}_{2}}^{2}$$

for
$$f \in \operatorname{span}\{\eta_1, \ldots, \eta_{m-1}\}$$
.

• the full system matrix is well-conditioned

$$\operatorname{spec}(\boldsymbol{W}^{1/2}\boldsymbol{L}_{\boldsymbol{X}_M}) \in [\sqrt{c_{\mathsf{MZ}}}, \sqrt{C_{\mathsf{MZ}}}]$$

Starting node set

 MZ-inequalities are widly available: [Mhaskar, Narcowich, Ward '01], [Keiner, Kunis, Potts '07], [Filbir, Mhaskar '11], [Müller-Gronbach, Novak, Ritter '12], [Temlyakov '18], [Gröchenig '20], [Hielscher, Jahn, Ullrich '21], ...

Starting node set

 MZ-inequalities are widly available: [Mhaskar, Narcowich, Ward '01], [Keiner, Kunis, Potts '07], [Filbir, Mhaskar '11], [Müller-Gronbach, Novak, Ritter '12], [Temlyakov '18], [Gröchenig '20], [Hielscher, Jahn, Ullrich '21], ...

Lemma

The MZ-inequality for $c_{\rm MZ}=C_{\rm MZ}$ is equivalent to the exact integration

$$\sum_{i=1}^{M} \omega_i g(\boldsymbol{x}^i) \overline{h(\boldsymbol{x}^i)} = \int_D g(\boldsymbol{x}) \overline{h(\boldsymbol{x})} \, \mathrm{d}\nu(\boldsymbol{x})$$

for $g, h \in \operatorname{span}\{\eta_1, \ldots, \eta_{m-1}\}.$

• exact integration is widly available: [Nuyens, Cools '06], [Kämmerer, Potts, Volkmer '15], [Trefethen '19], ...

Fast algorithm

- big node set $oldsymbol{X}_M = \{oldsymbol{x}^1, \dots, oldsymbol{x}^M\}$ with $\mathcal{O}(M\log M)$ algorithm
- small node set $oldsymbol{X} = \{oldsymbol{x}^{j_1}, \dots, oldsymbol{x}^{j_n}\}$
- we may use the algorithm for the big node set

$$\boldsymbol{L}_{\boldsymbol{X}} = \boldsymbol{P}\boldsymbol{L}_{\boldsymbol{X}_{M}} \quad \text{where} \quad \boldsymbol{P} = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 & 0 & 0 \\ 0 & 0 & 1 & \dots & 0 & 0 & 0 \\ \vdots & & & \vdots & & \vdots & \\ 0 & 0 & 0 & \dots & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ \vdots \\ n \\ j_{1} & j_{2} & j_{n} \end{pmatrix}$$

Fast algorithm

- big node set $oldsymbol{X}_M = \{oldsymbol{x}^1, \dots, oldsymbol{x}^M\}$ with $\mathcal{O}(M\log M)$ algorithm
- small node set $oldsymbol{X} = \{oldsymbol{x}^{j_1}, \dots, oldsymbol{x}^{j_n}\}$
- we may use the algorithm for the big node set

$$\boldsymbol{L}_{\boldsymbol{X}} = \boldsymbol{P} \boldsymbol{L}_{\boldsymbol{X}_{M}} \quad \text{where} \quad \boldsymbol{P} = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 & 0 & 0 \\ 0 & 0 & 1 & \dots & 0 & 0 & 0 \\ \vdots & & & \vdots & & \vdots & \\ 0 & 0 & 0 & \dots & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ \vdots \\ n \\ j_{1} & j_{2} & j_{n} \end{pmatrix}$$

- with $|I| \sim n/\log n$ and $M \sim |I|^2$ we obtain the same complexity as for naive matrix-vector multiplication

$$\mathcal{O}(|I| \cdot n) = \mathcal{O}(M \log M)$$

Example: fast algorithm for rank-1 lattice

- d=2, \boldsymbol{X}_M Fibonacci lattice
- hyperbolic cross frequencies

I	M	n	store matrix	column-wise	$1d \ \mathbf{FFT}$
6089	196418	67729	$17+0.176\mathrm{s}$	$16\mathrm{s}$	$0.047\mathrm{s}$
			7 GB		
13581	832040	162991	$99+1.377\mathrm{s}$	$93\mathrm{s}$	$0.119\mathrm{s}$
			$35\mathrm{GB}$		
29977	3524578	385579	$490+10\mathrm{s}$	$480\mathrm{s}$	$0.744\mathrm{s}$
			$185\mathrm{GB}$		

Assumptions 1 of 2

Let

- $\operatorname{H}(K)$ RKHS with $\sup_{{\boldsymbol x}\in D} K({\boldsymbol x},{\boldsymbol x}) < \infty$,
- $I \subset I_M$ frequency index sets,
- X_M nodes and W weights fulfilling an L₂-Marcinkiewicz-Zygmund inequality with constants c_{MZ} and C_{MZ} for $V = \text{span}\{\eta_k\}_{k \in I_M}$,
- *n* smallest such that

$$|I| \leq \frac{c_{\rm MZ} n}{30 C_{\rm MZ} r \log n},$$

Central theorem

Assumptions 2 of 2

X = (xⁱ)_{i∈J}, |J| = n nodes drawn i.i.d. from X_M w.r.t. the discrete density weights ρ_i = ω_iρ(xⁱ) for 1 ≤ i ≤ M with

- uses spectral properties of the embedding
- $\varrho({m x}^i)$ neglectable for BOS
- discrete version of [M. Ullrich, Krieg '19], [Kämmerer, T. Ullrich, Volkmer '19]

Theorem

Given the assumptions we have with probability larger than $1-5n^{1-r}$

$$\begin{split} \sup_{\|f\|_{\mathcal{H}(K)} \leq 1} \left\| f - S_{\boldsymbol{X}, \tilde{\boldsymbol{W}}}^{I} f \right\|_{2}^{2} &\leq \frac{6C_{\mathsf{MZ}}}{c_{\mathsf{MZ}}} \left(\sup_{k \notin I} \sigma_{k}^{2} + \frac{1}{|I|} \sum_{k \in I_{M} \setminus I} \sigma_{k}^{2} \right. \\ &+ \frac{1}{|I|} \sup_{\|f\|_{\mathcal{H}(K)} \leq 1} \|f - P_{I_{M}} f\|_{\infty}^{2} + \sup_{\|f\|_{\mathcal{H}(K)} \leq 1} \left\| f - S_{\boldsymbol{X}_{M}, \boldsymbol{W}}^{I_{M}} f \right\|_{\mathcal{L}_{2}}^{2} \right). \end{split}$$

Theorem

Given the same assumptions but with

 $n' \in \mathcal{O}(|I|)$

we have the existence of $oldsymbol{X}' = \{oldsymbol{x}^{i_1}, \dots, oldsymbol{x}^{i_{n'}}\}$ such that

$$\begin{split} \sup_{\|f\|_{\mathrm{H}(K)} \leq 1} \left\| f - S_{\boldsymbol{X}', \tilde{\boldsymbol{W}}}^{I} f \right\|_{2}^{2} &\lesssim \log |I| \left(\sup_{k \notin I} \sigma_{k}^{2} + \frac{1}{|I|} \sum_{k \in I_{M} \setminus I} \sigma_{k}^{2} \right. \\ &+ \frac{1}{|I|} \sup_{\|f\|_{\mathrm{H}(K)} \leq 1} \|f - P_{I_{M}} f\|_{\infty}^{2} + \sup_{\|f\|_{\mathrm{H}(K)} \leq 1} \left\| f - S_{\boldsymbol{X}_{M}, \boldsymbol{W}}^{I} f \right\|_{\mathrm{L}_{2}}^{2} \end{split}$$

Theorem on \mathbb{T}^d for $\mathrm{H}^s_{\mathsf{mix}}$

Theorem

Let

- $I \subset I_M$ frequency index sets,
- $oldsymbol{X}_M$ and $oldsymbol{W}$ exact for trigonomatric polynomials supported on $\mathcal{D}(I_M)$
- n smallest such that $|I| \leq \frac{n}{30r \log n}$,
- $oldsymbol{X} = \{oldsymbol{x}^1, \dots, oldsymbol{x}^n\}$ drawn w.r.t. the discrete density weights $oldsymbol{W}$.

Then we have with probability larger than $1-5n^{-r}$

$$\begin{split} \sup_{\|f\|_{\mathbf{H}^{s}_{\mathsf{mix}}} \leq 1} \left\| f - S^{I}_{\boldsymbol{X},\tilde{\boldsymbol{W}}} f \right\|_{2}^{2} \leq \sup_{\boldsymbol{k} \notin I} \frac{5}{w(\boldsymbol{k})^{2}} + \frac{6}{|I|} \sum_{\boldsymbol{k} \notin I} \frac{1}{w(\boldsymbol{k})^{2}} \\ &+ 4 \sup_{\|f\|_{\mathbf{H}(K)} \leq 1} \left\| f - S^{I}_{\boldsymbol{X}_{M},\boldsymbol{W}} f \right\|_{\mathbf{L}_{2}}^{2}. \end{split}$$

Numerics on $\mathbb{T}^{d'}$

- d=2, \boldsymbol{X}_M Fibonacci lattice
- hyperbolic cross frequencies

The two-dimensional sphere \mathbb{S}^2

- domain: $D = \mathbb{S}^2 = \{ \boldsymbol{\xi} \in \mathbb{R}^3 : \| \boldsymbol{\xi} \|_2 = 1 \}$
- basis functions for the spherical harmonics

$$Y_{k,\ell}(\theta,\varphi) = \sqrt{\frac{2k+1}{4\pi}} P_{|\ell|}^k(\cos\theta) \exp(i\ell\varphi)$$

for $k = 0, 1, \ldots$ and $-k \le \ell \le k$

Theorem on \mathbb{S}^2

Theorem

Let

- $m \leq m_M$ polynomial degrees
- $oldsymbol{X}_M$ and $oldsymbol{W}$ exact for polynomials upto degre $2m_M$
- n smallest such that $(m+1)^2 \leq \frac{n}{30r\log n}$
- $\boldsymbol{X} = \{ \boldsymbol{\xi}^1, \dots, \boldsymbol{\xi}^n \}$ drawn w.r.t. the discrete density weights \boldsymbol{W} .

Then we have with probability larger than $1-5n^{-r} \,$

$$\begin{split} \sup_{\|f\|_{\mathrm{H}^{s}_{\mathsf{mix}}} \leq 1} \left\| f - S^{I}_{\boldsymbol{X},\tilde{\boldsymbol{W}}} f \right\|_{2}^{2} \leq \sup_{\boldsymbol{k} \notin I} \frac{5}{w(\boldsymbol{k})^{2}} + \frac{6}{(m+1)^{2}} \sum_{\boldsymbol{k} \notin I} \frac{2k+1}{4\pi w(\boldsymbol{k})^{2}} \\ &+ 4 \sup_{\|f\|_{\mathrm{H}(K)} \leq 1} \left\| f - S^{I}_{\boldsymbol{X}_{M},\boldsymbol{W}} f \right\|_{\mathrm{L}^{2}}^{2}. \end{split}$$

Example: quadrature nodes on \mathbb{S}^2

- ullet X tensor product of equispaced nodes and Chebyshev nodes
- W Chebyshev weights

- exact upto polynomial degree m with $n=2m(m+2) \ {\rm nodes}$
- 2*d* FFT for matrix-vector product

• $oldsymbol{X}_M$ tensor product of equispaced nodes and Chebyshev nodes

orange: subsampled tensor product grid

- we proposed a two step subsampling procedure
 - making it possible to utilize fast algorithms \checkmark
 - $\bullet\,$ achieving the optimal convergence rates known so far $\checkmark\,$