Fast Cross-validation in Harmonic Approximation

Felix Bartel, Ralf Hielscher, Daniel Potts

Chemnitz Symposium on Inverse Problems 2019

October 2, 2019

General problem

Setting:

- domain X
- function $f: X \to \mathbb{C}$
- node set $\mathcal{X} \subset X$

Task:

• from $ilde{m{f}}$ find $m{\hat{g}}=(\hat{g}_n)_{n\in\mathcal{I}}$ such that

$$\sum_{n\in\mathcal{I}}\hat{g}_n\varphi_n\approx f$$

• function values $\tilde{f}_x = f(x) + \varepsilon_x$, $x \in \mathcal{X}$

• functions
$$\varphi_n \colon X \to \mathbb{C}$$
, $n \in \mathcal{I}$

Tikhonov Regularization

Approach

We minimize the Tikhonov functional

$$J_{\lambda}\left(\hat{\boldsymbol{g}}\right) = \left\|\boldsymbol{F}\hat{\boldsymbol{g}} - \tilde{\boldsymbol{f}}\right\|_{\boldsymbol{W}}^{2} + \lambda \left\|\hat{\boldsymbol{g}}\right\|_{\hat{\boldsymbol{W}}}^{2}$$

• $\boldsymbol{F} = (\varphi_{n}(x))_{x \in \mathcal{X}, n \in \mathcal{I}}$
• $\boldsymbol{W} = \operatorname{diag}(w_{x})_{x \in \mathcal{X}}$
• $\boldsymbol{W} = \operatorname{diag}(\hat{w}_{n})_{n \in \mathcal{I}}$

Theorem

The unique minimizer of J_{λ} is given by

$$oldsymbol{\hat{g}}_{\lambda} = \left(oldsymbol{F}^{\mathsf{H}}oldsymbol{W}oldsymbol{F} + \lambdaoldsymbol{\hat{W}}
ight)^{-1}oldsymbol{F}^{\mathsf{H}}oldsymbol{W}oldsymbol{ ilde{f}}.$$

Basic concept of leave-one-out cross-validation

- (1) calculate the Tikhonov minimizer $\hat{g}_{-x,\lambda}$ from the function values \tilde{f}_y for $y \in \mathcal{X} \setminus \{x\}$
- **2** evaluate the residual of \hat{g}_{-x} in the node x

$$\left[oldsymbol{F}oldsymbol{\hat{g}}_{-x,\lambda}
ight]_x - ilde{f}_x$$

(3) calculate the mean value with respect to all nodes

$$CV(\lambda) \coloneqq \frac{1}{|\mathcal{X}|} \sum_{x \in \mathcal{X}} \left| [F\hat{g}_{-x,\lambda}]_x - \tilde{f}_x \right|^2$$

Cross-validation

Calculating the residual for full data, we obtain

$$oldsymbol{F} \hat{oldsymbol{g}}_{\lambda} - ilde{oldsymbol{f}} = oldsymbol{F} \left(oldsymbol{F}^{\mathsf{H}} oldsymbol{W} oldsymbol{F} + \lambda \hat{oldsymbol{W}}
ight)^{-1} oldsymbol{F} oldsymbol{W} ilde{oldsymbol{f}} - ilde{oldsymbol{f}} \ = oldsymbol{H}_{\lambda} oldsymbol{ ilde{f}} - oldsymbol{ ilde{f}}.$$

Theorem

[Golub, Heath, Whaba, 1979]

$$CV(\lambda) = \frac{1}{|\mathcal{X}|} \sum_{x \in \mathcal{X}} \frac{[\boldsymbol{H}_{\lambda} \boldsymbol{\tilde{f}} - \boldsymbol{\tilde{f}}]_x^2}{(1 - h_{x,x})^2}$$

with $h_{x,x}$ being the diagonal entries of H_{λ} .

Derivative of the Cross-validation Score

Theorem

$$\frac{\partial}{\partial\lambda}P(\lambda) = 2\sum_{x\in\mathcal{X}} \left(\frac{([\boldsymbol{H}_{\lambda}\boldsymbol{\tilde{f}}]_x - \tilde{f}_x)\frac{\partial}{\partial\lambda}[\boldsymbol{H}_{\lambda}\boldsymbol{\tilde{f}}]_x}{(1 - h_{x,x})^2} + \frac{([\boldsymbol{H}\boldsymbol{\tilde{f}}]_x - \tilde{f}_x)^2\frac{\partial}{\partial\lambda}h_{x,x}}{(1 - h_{x,x})^3} \right)$$

with

$$rac{\partial}{\partial\lambda} \boldsymbol{H}_{\lambda} \tilde{\boldsymbol{f}} = -\boldsymbol{F} \left(\boldsymbol{F}^{\mathsf{H}} \boldsymbol{W} \boldsymbol{F} + \lambda \hat{\boldsymbol{W}}
ight)^{-1} \hat{\boldsymbol{W}} \hat{\boldsymbol{g}}_{\lambda}.$$

• computing $\frac{\partial}{\partial \lambda} P(\lambda)$ has the same complexity as $P(\lambda)$

Theorem

For $X = \mathbb{T}^d$, exponential functions

$$\varphi_{\boldsymbol{n}} = \mathrm{e}^{2\pi\mathrm{i}\boldsymbol{n}\cdot\boldsymbol{x}},$$

nodes

$$\mathcal{X} = \left\{ rac{oldsymbol{m}}{N}: oldsymbol{m} \in \mathbb{Z}^d \cap \prod_{t=1}^d [0,N)
ight\}$$

and weights $w_x = 1/N^d$ the diagonal entries can be computed via

$$h_{\boldsymbol{x},\boldsymbol{x}} = w_{\boldsymbol{x}} \sum_{\boldsymbol{n}\in\mathcal{I}} \frac{1}{1+\lambda\hat{w}_{\boldsymbol{n}}}.$$

[Tasche, Weyrich, 1996]

Algorithm: Computation of the cross-validation score

Input:

• \mathcal{X} • $\mathbf{W} = \operatorname{diag}(w_x)_{x \in \mathcal{X}}$ • $\hat{\mathbf{W}}$ • $\tilde{\mathbf{f}} = (\tilde{f}_x)_{x \in \mathcal{X}}$ • λ Output:

•
$$CV(\lambda)$$

1 Compute
$$\hat{m{g}}\coloneqq \left(m{F}^{\mathsf{H}}m{W}m{F}+\lambdam{\hat{W}}
ight)^{-1}m{F}^{\mathsf{H}}m{W}m{ ilde{f}}$$

② Compute
$$oldsymbol{g}\coloneqqoldsymbol{H}_\lambda ilde{f}=F\hat{g}$$

3 Compute
$$h_{x,x} \coloneqq w_x \sum_{n \in \mathcal{I}} \frac{1}{1 + \lambda \hat{w}_n}$$
 for $x \in \mathcal{X}$

(4) Evaluate
$$CV(\lambda) \coloneqq \frac{1}{|\mathcal{X}|} \sum_{x \in \mathcal{X}} \frac{|g_x - \tilde{f}_x|^2}{(1 - h_{x,x})^2}$$

- 1024×1024 nodes
- 10 % Gaussian noise

 $L_{2}\text{-error } \|\hat{g}_{\lambda} - \hat{f}\|_{2} \text{ and } \\ \text{cross-validation score } CV(\lambda) \\ 10^{-2} \underbrace{10^{-2} \\ 10^{-2} \\ 10^{-5} \\ 10^{-4} \\ 10^{-3} \\ 10^{-3} \\ 10^{4.021} \\ 10^{4$

Theorem (Diagonal entries $h_{x,x}$ of the hat matrix) [B, Hielscher, Potts, 2019]

Let \mathcal{I} be an index set and \mathcal{X} , W form an exact quadrature rule for $e^{2\pi i \boldsymbol{n} \cdot \boldsymbol{x}}$ with $n \in D(I) = \{n_1 - n_2 : n_1, n_2 \in I\}.$ Then

$$h_{\boldsymbol{x},\boldsymbol{x}} = w_{\boldsymbol{x}} \sum_{\boldsymbol{n}\in\mathcal{I}} \frac{1}{1+\lambda\hat{w}_{\boldsymbol{n}}}.$$

Theorem (Diagonal entries $h_{x,x}$ of the hat matrix) [B, Hielscher, Potts, 2019]

Let \mathcal{I} be an index set and \mathcal{X} , W form an exact guadrature rule for $e^{2\pi i \boldsymbol{n} \cdot \boldsymbol{x}}$ with $n \in D(I) = \{n_1 - n_2 : n_1, n_2 \in I\}.$ Then

$$h_{\boldsymbol{x},\boldsymbol{x}} = w_{\boldsymbol{x}} \sum_{\boldsymbol{n}\in\mathcal{I}} \frac{1}{1+\lambda\hat{w}_{\boldsymbol{n}}}.$$

Proof:

Using quadrature, we have $F^{H}WF = I$ and thus

$$h_{\boldsymbol{x},\boldsymbol{x}} = \left(\boldsymbol{F} \left(\boldsymbol{F}^{\mathsf{H}} \boldsymbol{W} \boldsymbol{F} + \lambda \hat{\boldsymbol{W}} \right)^{-1} \boldsymbol{F}^{\mathsf{H}} \boldsymbol{W} \right)_{\boldsymbol{x},\boldsymbol{x}}$$
$$= \left(\boldsymbol{F} \operatorname{diag} \left(\frac{1}{1 + \lambda \hat{w}_{\boldsymbol{n}}} \right)_{\boldsymbol{n} \in \mathcal{I}} \boldsymbol{F}^{\mathsf{H}} \boldsymbol{W} \right)_{\boldsymbol{x},\boldsymbol{x}} = w_{\boldsymbol{x}} \sum_{\boldsymbol{n} \in \mathcal{I}} \frac{1}{1 + \lambda \hat{w}_{\boldsymbol{n}}}.$$

Cross-validation on the Torus \mathbb{T}^d

Example: Rank-1 lattices

[Kämmerer, Potts, Volkmer 2015]

•
$$\mathcal{X} = \Lambda(\boldsymbol{z}, M) = \left\{ \boldsymbol{x} = \frac{1}{M} (m\boldsymbol{z} \mod M\boldsymbol{1}) \in \mathbb{T}^d : m = 0, \dots, M - 1 \right\}$$

- Given \mathcal{I} , there exist algorithms that find \boldsymbol{z} and M such that $\boldsymbol{F}^{\mathsf{H}}\boldsymbol{W}\boldsymbol{F} = \boldsymbol{I}$ for $\boldsymbol{W} = \operatorname{diag}(1/M)_{\boldsymbol{x}\in\mathcal{X}}$.
- Multiplication with F can be carried out with the LFFT in $\mathcal{O}(|\mathcal{X}|\log|\mathcal{X}|)$.

•
$$f = \bigotimes_{j=1}^{7} B_2$$
 with 5% Gaussian noise
• $\hat{w}_n = \prod_{j=1}^{7} \max(|n_j|^2, 1)$

Index set

$$\mathcal{I}_{16}^{7,\mathrm{hc}}\coloneqq\left\{oldsymbol{n}\in\mathbb{Z}^7:\prod_{j=1}^7\max(1,|n_j|)\leq16
ight\}$$

• 1105193 rank-1 lattice nodes

Cross-validation on the Unit interval [-1,1]

- domain X = [-1, 1]
- Chebyshev polynomials

$$\varphi_n(x) = T_n(x) = \cos(\arccos x)$$

for $n=0,\ldots,N-1$

• scalar product

$$(f,g) = \int_{-1}^{1} \frac{f(x)\overline{g(x)}}{\sqrt{1-x^2}} \, \mathrm{d}x$$

Theorem

[B, Hielscher, Potts, 2019]

For exact quadrature we have ${m F}^{\sf H} {m W} {m F} = {
m diag}(\pi,\pi/2,\ldots,\pi/2)$ and

$$h_{x,x} = \frac{w_x}{2} \left(\frac{2}{\pi + \lambda \hat{w}_0} + \sum_{n=1}^{N-1} \frac{\cos(2n \arccos x) + 1}{\pi/2 + \lambda \hat{w}_n} \right)$$

Cross-validation on the Unit interval [-1,1]

Example: Chebyshev nodes

[B, Hielscher, Potts, 2019]

For $x_m = \cos \frac{(2m+1)\pi}{2N}$ and $w_m = \pi/N$ we have

$$h_{x_m, x_m} = \frac{w_m}{2} \left(\frac{\sqrt{N/2}}{\gamma(m)} \left[\mathbf{C}_{2N+1}^{\mathrm{I}} \mathbf{b} \right]_{2m+1} + \sum_{n=1}^{N-1} \frac{1}{\pi/2 + \lambda \hat{w}_n} \right)$$

with

$$\boldsymbol{b} = \left(\frac{2\sqrt{2}}{\pi + \lambda \hat{w}_0}, 0, \frac{1}{\pi/2 + \lambda \hat{w}_1}, 0, \dots, \frac{1}{\pi/2 + \lambda \hat{w}_{N-1}}, 0, 0\right)^{\mathsf{T}}$$

and

$$\gamma(n) = \begin{cases} 1/\sqrt{2} & n = 0\\ 1 & n = 1, \dots, N - 1. \end{cases}$$

- 128 Chebyshev nodes
- 5 % Gaussian noise

noisy data and reconstruction

F. Bartel, R. Hielscher, D. Potts

Cross-validation on the two-dimensional sphere \mathbb{S}^2

- domain $X = \mathbb{S}^2$
- spherical harmonics

$$\varphi_{n,k}(\theta,\varphi) = Y_{n,k}(\theta,\varphi) = \sqrt{\frac{2n+1}{4\pi}} P_{|k|}^n(\cos\theta) \mathrm{e}^{\mathrm{i}k\varphi}$$

for
$$n=0,\ldots,N$$
, $k=-n,\ldots,n$

Theorem

[B, Hielscher, Potts, 2019]

For exact quadrature we have

$$h_{\boldsymbol{x},\boldsymbol{x}} = \frac{w_{\boldsymbol{x}}}{4\pi} \sum_{n=0}^{N} \frac{2n+1}{1+\lambda \hat{w}_n}.$$

- 21 000 nearly equidistributed nodes
- 5 % Gaussian noise

Cross-validation on the rotation group SO(3)

- domain $X = SO(3) = \{ \boldsymbol{R} \in \mathbb{R}^{3 \times 3} : \boldsymbol{R}^{\mathsf{T}} \boldsymbol{R} = \boldsymbol{I}, \det \boldsymbol{R} = 1 \}$
- Wigner-D functions

$$\varphi_n^{kk'}(\boldsymbol{R}) = D_n^{kk'}(\boldsymbol{R}) = \int_{\mathbb{S}^2} Y_n^k(\boldsymbol{R}\boldsymbol{\xi}) \overline{Y_n^{k'}(\boldsymbol{\xi})} \, \mathrm{d}\boldsymbol{\xi}$$

for
$$n=0,\ldots,N$$
 and $k,k'=-n,\ldots,n$

Theorem

[B, Hielscher, Potts, 2019]

For exact quadrature we have

$$h_{\boldsymbol{x},\boldsymbol{x}} = w_{\boldsymbol{x}} \sum_{n=0}^{N} \frac{2n+1}{\frac{8\pi^2}{2n+1} + \lambda \hat{w}_n}.$$

Scattered nodes

Idea: use approximative quadrature weights

Definition

Voronoi cell $V_{oldsymbol{x}}$ corresponding to $oldsymbol{x} \in \mathcal{X} \subset \mathbb{T}^d$ is

$$V_{\boldsymbol{x}} \coloneqq \left\{ \boldsymbol{y} \in \mathcal{M} : \operatorname{dist}(\boldsymbol{x}, \boldsymbol{y}) \leq \operatorname{dist}(\boldsymbol{x'}, \boldsymbol{y}), \ \forall \boldsymbol{x'} \in \mathcal{X} \right\}.$$

The Voronoi weight w_x is the area of the Voronoi cell V_x .

Nodes without Exact Quadrature

By this approximative quadrature we obtain

 $F^{\mathsf{H}}WFpprox I$

which motivates

Definition

The approximated cross-validation score $\tilde{CV}(\lambda)$ is defined by

$$\tilde{CV}(\lambda) = \frac{1}{|\mathcal{X}|} \sum_{\boldsymbol{x} \in \mathcal{X}} \frac{[\boldsymbol{H}\tilde{\boldsymbol{f}} - \tilde{\boldsymbol{f}}]_{\boldsymbol{x}}^2}{(1 - \tilde{h}_{\boldsymbol{x},\boldsymbol{x}})^2}$$

for

$$\tilde{h}_{\boldsymbol{x},\boldsymbol{x}} = w_{\boldsymbol{x}} \sum_{\boldsymbol{n}\in\mathcal{I}} \frac{1}{1+\lambda\hat{w}_{\boldsymbol{n}}} \approx h_{x,x}.$$

F. Bartel, R. Hielscher, D. Potts

- $8\,192$ uniformly scattered nodes
- 5 % Gaussian noise

 $L_{2}\text{-error } \|\hat{g}_{\lambda} - \hat{f}\|_{2} \text{ and } \\ \text{cross-validation score } CV(\lambda) \\ 10^{-1.6} \\ 10^{-1.8} \\ 10^{-2} \\ 10^{-3} \\ 10^{-3} \\ 10^{-2} \\ \lambda \\ \end{pmatrix}$

- 8192 scattered nodes
- 5 % Gaussian noise

Lemma

[B, Hielscher, Potts, 2019]

The diagonal entries $h_{x,x}$ of the hat matrix $oldsymbol{H}_\lambda$ satisfy

 $h_{x,x} < 1$

for all $\lambda > 0$ and $x \in \mathcal{X}$.

Lemma

[B, Hielscher, Potts, 2019]

The diagonal entries $h_{x,x}$ of the hat matrix $oldsymbol{H}_\lambda$ satisfy

$$h_{x,x} < 1$$

for all $\lambda > 0$ and $x \in \mathcal{X}$.

Lemma

[B, Hielscher, Potts, 2019]

The diagonal entries $h_{x,x}$ of the hat matrix $oldsymbol{H}_\lambda$ satisfy

$$h_{x,x} < 1$$

for all $\lambda > 0$ and $x \in \mathcal{X}$.

$$\tilde{CV}(\lambda) = \frac{1}{|\mathcal{X}|} \sum_{x \in \mathcal{X}} \frac{[\boldsymbol{H}_{\lambda} \boldsymbol{\tilde{f}} - \boldsymbol{\tilde{f}}]_x^2}{(1 - \tilde{h}_{x,x})^2}$$