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Finding a good regularization parameter for Tikhonov regularization prob-
lems is a though yet often asked question. One approach is to use leave-one-
out cross-validation scores to indicate the goodness of fit. This utilizes only
the noisy function values but, on the downside, comes with a high compu-
tational cost. In this paper we present a general approach to shift the main
computations from the function in question to the node distribution and,
making use of FFT and FFT-like algorithms, even reduce this cost tremen-
dously to the cost of the Tikhonov regularization problem itself. We apply
this technique in different settings on the torus, the unit interval, and the two-
dimensional sphere. Given that the sampling points satisfy a quadrature rule
our algorithm computes the cross-validations scores in floating-point preci-
sion. In the cases of arbitrarily scattered nodes we propose an approximating
algorithm with the same complexity. Numerical experiments indicate the
applicability of our algorithms.
Keywords and phrases: cross-validation, regularization, fast evaluation of
cross-validation score, discrete Fourier transforms, spherical Fourier trans-
form, NFFT
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1 Introduction

Estimating a good regularization parameter is a frequent problem in approximation,
statistics, and inverse problems. In this paper we restrict ourselves to the basic example
of approximating a function from discrete function values. To make the setting concrete
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we fix for a finite index set I a family of basis functions ϕn : X → C, n ∈ I on a domain
X ⊂ Rd. Given a finite set of nodes X ⊂ X and the corresponding Fourier matrix

F = FX ,I = (ϕn(x))x∈X ,n∈I ,

we consider the problem of recovering Fourier coefficients f̂ = (f̂n)n∈I ∈ C|I| from noisy
data

f = (fx)x∈X = F f̂ + ε ∈ C|X |,

where ε is zero mean Gaussian noise. More specifically, we look for minimizers of the
Tikhonov functional

Jλ

(
f̃
)

=
∥∥∥F f̃ − f∥∥∥2

W
+ λ

∥∥∥f̃∥∥∥2
Ŵ

(1.1)

and ask for the optimal regularization parameter λ > 0, where ‖f‖2W = fHWf and
‖f̂‖2

Ŵ
= f̂HŴ f̂ for the strictly positive diagonal weight matrices W ∈ R|X |×|X | and

Ŵ ∈ R|I|×|I| in space, respectively frequency domain.
Because of its importance to many practical problems there is a vast literature on many

different strategies to determine an optimal regularization parameter λ, e.g. [8, 6, 15, 38].
The idea of so called cross-validation methods is to divide the set of nodes into a subset
used to compute the approximation and a subset used for validating the goodness of
fit. This procedure might be repeated for different splittings and eventually results for
a fixed regularization parameter λ in a cross-validation score. By minimizing this score
an “optimal” regularization parameter is found. This approach was initially proposed by
Golub, Heath and Wahba [15] in the setting of smoothing splines and since then has been
applied to a wide range of parameter estimating problems.
In this paper we consider “leave-one-out” cross-validation, i.e., for fixed regularization

parameter λ and any node x ∈ X we compute the minimizer f̃λ,(x) of the functional (1.1)
restricted to the set of nodes X \ {x} and use

P (λ) =
∑
x∈X

∣∣∣[F f̃λ,(x)]
x
− fx

∣∣∣2
as cross-validation score. A drawback with a purly data-driven regularization method
like this is, that there is no guarantee for a good approximation of the solution of the
regularized problem as formulated in the Bakushinskĭı veto, [3]. Another difficulty of
this approach is its numerical complexity. Indeed, computing P (λ) for a single value of λ
requires solving the minimization problem (1.1) |X | times, which is too expensive for most
applications. For spline interpolation on the interval or in higher dimensional domains
different algorithms have been proposed to lower the computational costs. Those include
Monte Carlo approximations [9], matrix decomposition methods [50, 43] and Krylow
space methods [35].
For the specific setting of Fourier approximation on the torus Td at regular lattice

points a fast algorithm has been proposed by Tasche and Weyrich [45] which requires to
solve the minimization problem only once for each regularization parameter λ. The idea
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of this paper is to generalize the approach in [45] to arbitrary sampling nodes and other
domains like the unit interval or the two-dimensional sphere.
The paper is organized as follows. In the second chapter we introduce the necessary

notations and prove in Theorem 2.5 a representation of the cross-validation score that de-
pends only on one solution of (1.1), but includes the diagonal entries hx,x of the so called
hat matrix H = F (FHWF + λŴ )−1FHW . The efficient approximate computation of
those diagonal entries for different settings is subject to the remaining chapters.
Our essential requirement for the exact fast computation of the diagonal entries hx,x

is that the nodes X together with the weights W form an exact quadrature rule. This
requirement is satisfied for regular tensor product grids and rank-1 lattices on the d-
dimensional torus, Chebyshev nodes on the interval [−1, 1], and, e.g., Gauss Legendre
nodes on the two-dimensional unit sphere S2. The corresponding formulae for the diag-
onal entries hx,x are given in the Theorems 3.2, 4.2, and 5.1. Together with fast Fourier
algorithms on the torus [29, 27], for rank-1 lattices [24, 25], on the interval [11, 27], and
on the sphere [28, 27] this allows the efficient evaluation of the cross-validation score
P (λ) with a numerical complexity close to O(|I| + |X |). Numerical examples for all
these settings illustrate our findings.
In the case that no exact quadrature rule is known for the given interpolation nodes

we suggest approximating them by the volume of the corresponding Voronoi cells. Our
numerical tests in Section 3.4, 4.3, and 5.2 indicate a good approximation of the true
cross-validation score, which is much more expensive to compute. The Matlab code
of our algorithm as well as for all numerical experiments can be found on the GitHub
repository https://github.com/felixbartel/fcv.

2 Cross-validation

Lets start this section by reminding that the minimizer of the Tikhonov functional (1.1)
can be given explicitly.

Lemma 2.1. The unique Tikhonov minimizer of (1.1) is

f̃λ =
(
FHWF + λŴ

)−1
FHWf . (2.1)

Proof. We look for stationary points by calculating the roots of the gradient of Jλ

∇Jλ
(
f̃λ

)
= 2FHWFf̃λ − 2FHWf + 2λŴ f̃λ

!
= 0.

Because FHF is positive semidefinite, W , Ŵ , and λ are strictly positive we find that
FHWF + λŴ is positive definite. In particular it is invertible such that the stationary
point can be written as f̃λ = (FHWF +λŴ )−1FHWf . Using the positive definiteness
we see that f̃λ fulfills the required minimizing property.

Remark 2.2. Since for random nodes X and many important function systems the ma-
trix FHWF is invertible with probability one, see e.g. [4], we may relax the assumption
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on the frequency weights ŵn to be only non negative. Especially, the zero order frequency
weight is often set to zero to avoid penalizing constant functions.

As the leave-one-out cross-validation score depends on solving (2.1) for sets of nodes of
the form X \ {x} we introduce the following notations for omitting a single node x ∈ X .
For x ∈ X and f ∈ C|X | we denote by

f(x) = (fy)y∈X\{x} ∈ C|X |−1

the vector of function values f with one node x ∈ X omitted. Accordingly, we denote by

F(x) = (ϕn(y))y∈X\{x},n∈I ∈ C(|X |−1)×|I|

the Fourier matrix F with the row corresponding x ∈ X omitted and by

W(x) = (Wy,y′)y,y′∈X\{x} ∈ C(|X |−1)×(|X |−1)

the restriction of the spatial weight matrix W to the set of nodes X \ {x}. With these
notations the minimizer of the Tikhonov functional (1.1) reduced to the nodes X \ {x}
can be written as

f̃(x) =
(
FH
(x)W(x)F(x) + λŴ

)−1
FH
(x)W(x)f(x) ∈ C|I|. (2.2)

Definition 2.3. The ordinary cross-validation score for the Tikhonov functional (1.1)
is defined as

P (λ) =
∑
x∈X

∣∣∣[F f̃(x)]
x
− fx

∣∣∣2 (2.3)

where f̃(x) is defined by (2.2) and [F f̃(x)]x denotes the entry of F f̃(x) corresponding to
the node x ∈ X .

Interpreting (2.3), we are comparing the predicted or smoothened value [F f̃(x)]x with
the noisy data fx for each node. They intuitively differ more in the case of under- or
oversmoothing. So its minimum is a candidate for the smoothing parameter λ. Indeed,
probabilistic optimality results of the form

‖f − F f̃λ?‖22
infλ≥0 ‖f − F f̃λ‖22

→ 1

in probability for λ? being the minimum of the cross-validation score have been shown
for |X | → ∞ in [34] under the assumption of homogenious noise, i.e., εx has the same
variance for all x ∈ X . In Theorem 3.5 of [20], weights were incoporated and the condition
was generalized to the case where all

√
wxεx have a common variance for x ∈ X . These

optimality results are with respect to a LOSS function similar to the data-fitting term
in the Tikhonov functional (1.1). However, in our numerical experiments, we will have
a look at the unweighted L2-error as we use the weights wx for numerical purposes and
want to analyze how this disstorts the results. Unflattering is the fact that, for a single
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regularization parameter λ, the direct computation of the ordinary cross-validation score
requires to solve |X | times the normal equation (2.1).
Our first goal is to relate the solution of the reduced problem (2.2) to the solution of

the full problem (2.1). To this end we define the matrices

A = FHWF + λŴ ,

A(x) = FH
(x)W(x)F(x) + λŴ

(2.4)

which are decisive for the computation of f̃ and f̃(x), respectively, and show the following
relationship between their inverse, cf. [15].

Lemma 2.4. Let A and A(x) be defined as in (2.4) and

Fx,: = (ϕn(x))n∈I ∈ C1×|I|

denote the row of the matrix F which corresponds to the node x ∈ X . Then we have

A−1(x) = A−1 +
A−1wxF

H
x,:Fx,:A

−1

1− wxFx,:A−1FH
x,:

. (2.5)

Proof. The assertion of the lemma follows immediately by applying the Sherman-Morrison
formula to

A(x) = A− wxFH
x,:Fx,:.

Our next goal is to make the repetitive solving of the normal equation (2.2) in (2.3)
independent of the right-hand side f . To this end we define the so called hat matrix

H := FA−1FHW = F
(
FHWF + λŴ

)−1
FHW (2.6)

which when applied to a data vector f solves the normal equation (2.1) and evaluates the
resulting function at the nodes X . The next lemma is a generalization of [15, equation
2.2] and [49, equation 4.2.9], and shows that for the computation of (2.3), with given
diagonal entries hx,x of the hat matrix H, it is sufficient to solve the normal equation
(2.1) with respect to the data vector f only once.

Theorem 2.5. The ordinary cross-validation score (2.3) can be written as

P (λ) =
∑
x∈X

[Hf − f ]2x
(1− hx,x)2

(2.7)

with hx,x, x ∈ X being the diagonal entries of the hat matrix H defined in (2.6).
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Proof. Let b = FHWf . Then

f̃(x) = A−1(x)F
H
(x)W(x)f(x) = A−1(x)

(
b− FH

x,:wxfx

)
.

Next we apply Lemma 2.4 and observe that the denominator in (2.5) can be expressed
in terms of the diagonal entries hx,x of the hat matrix H:

f̃(x) = A−1(x)

(
b− FH

x,:wxfx

)
=

(
A−1 +

wxA
−1FH

x,:Fx,:A
−1

1− hx,x

)(
b− FH

x,:wxfx

)
= f̃ +

wxA
−1FH

x,:fx(hx,x − 1) + wxA
−1FH

x,:Fx,:f̃ − wxA−1FH
x,:hx,xfx

1− hx,x

= f̃ + wxA
−1FH

x,:

Fx,:f̃ − fx
1− hx,x

= f̃ + wxA
−1FH

x,:

[Hf − f ]x
1− hx,x

.

Multiplying with F from the left-hand side and subtracting fx results in[
F f̃(x)

]
x
− fx = Fx,:f̃(x) − fx

= Fx,:f̃ + wxFx,:A
−1FH

x,:

[Hf − f ]x
1− hx,x

− fx

=
[
F f̃
]
x

+ hx,x
[Hf − f ]x

1− hx,x
− [f ]x

= [Hf ]x +
[Hf − f ]x

1− hx,x
+ [f −Hf ]x − [f ]x

=
[Hf − f ]x

1− hx,x

and hence each summand in (2.3) is equal to the corresponding summand in (2.7).

Remark 2.6. According to Theorem 2.5 the ordinary cross-validation score is nothing
more than the weighted norm of the residue

r = F f̃ − f = Hf − f .

Although this means that the normal equation (2.1) has to be solved only once with respect
to the data vector f the most expensive part remains, namely the computation of the
diagonal entries

hx,x = wxFx,:A
−1FH

x,:

for x ∈ X , which again requires repetitive solving of the normal equation.
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Replacing the diagonal entries hx,x with their mean value

h =
1

|X |
∑
x∈X

hx,x =
1

|X |
traceH

we obtain the so called generalized cross-validation score, cf. [49, section 4.3].

Definition 2.7. The generalized cross-validation score is defined as

V (λ) =
∑
x∈X

[Hf − f ]2x
(1− h)2

=

(
|X | ‖Hf − f‖2
trace(I −H)

)2

.

Obviously, if all diagonal entries hx,x of H coincide we have P (λ) = V (λ).

Lemma 2.8. The diagonal elements hx,x of the hat matrix H satisfy

hx,x < 1

for all λ > 0 and x ∈ X .

Proof. Since FH
(x)W(x)F(x) is positive semidefinite and λŴ is strictly positive definite

we see that A(x) = FH
(x)W(x)F(x) + λŴ is invertible. On the other hand we know by

the Sherman-Morrison formula that A(x) = A − wxFH
x,:Fx,: is invertible if and only if

wxFx,:A
−1FH

x,: 6= 1 . Therefore

hx,x = wxFx,:A
−1FH

x,: 6= 1.

Since the minimizer f̃λ of (1.1) converges to the zero vector as λ→∞, we obtain for
f = ex and λ→∞

hx,x =
[
F f̃λ

]
x
→ 0.

Together with the fact that the diagonal entries hx,x depend continuously on λ this proves
the assertion.

2.1 Algorithm to compute the ordinary or generalized cross-validation
score

Concluding the previous statements we end up with a sheme to compute the cross-
validation scores.
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Algorithm 1: generic computation of the cross-validation scores
Input:
nodes X
spatial weights W = diag(wx)x∈X ∈ R|X |×|X |
Fourier weights Ŵ ∈ R|I|×|I|
function values f = (fx)x∈X
regularization parameter λ

Output:
ordinary cross-validation score P (λ)
generalized cross-validation score V (λ)

1. Compute f̃ := Hf = FA−1FHWf , where A is given in (2.4).

2. Compute hx,x := wxFx,:A
−1FH

x,: for x ∈ X and h :=
1

|X |
∑
x∈X

hx,x.

3. Evaluate P (λ) :=
∑
x∈X

|f̃x − fx|2

1− hx,x
and V (λ) :=

∑
x∈X

|f̃x − fx|2

1− h
.

Remark 2.9. For computing the Tikhonov-minimizer of (1.1) one can use the LSQR
method for numerical stability. This can be accomplished with the coefficient matrix

M =

(
W 1/2F√
λŴ 1/2

)
and the right-hand side

b =

(
W 1/2f

0

)
,

where 0 is a column vector containing |I| zeros. The resulting system of equations
(MHM)−1MHb, which the LSQR method solves, is equivalent to (2.1).

The computationally most expensive part of Algorithm 1 is the computation of the
values f̃ and hx,x for all x ∈ X . In the subsequent sections we discuss some specific
settings to speed up the process and propose an approximation of the ordinary and the
generalized cross-validation score in more general cases.

3 Cross-validation on the torus

In this section, we seek for fast algorithms to compute the cross-validation score on the
d-dimensional torus Td with respect to the Fourier basis {e2πin·x}n∈Zd in L2(Td). With
this setting the Fourier matrix F becomes

F = FX ,I =
(
e2πin·x

)
x∈X ,n∈I (3.1)

for a finite node set X ⊂ Td, a finite multi-index set I ⊂ Zd and n ·x the Euclidean inner
product. So I determines all possible frequencies and X the nodes of the transform. For
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the specific case of equispaced nodes X fast algorithms have been reported in [45]. In
fact, our approach in this section can be seen as a generalization of [45] to more general
sampling sets and leads to the same algorithm for equispaced data.
Our central goal is to find a simpler expression for the diagonal entries of the hat

matrix H = F (FHWF + λŴ )−1FHW that allows us to apply Theorem 2.5 efficiently.
The idea is to choose W such that FHWF has diagonal form because the inverse of
A = FHWF + λŴ could then be calculated entry-wise.

3.1 Exact Quadrature

The first approach is to use quadrature rules. Because they are not limited to the torus
we define them for general measure spaces so we can make use of them in subsequent
sections.

Definition 3.1. Let (M, µ) be a measure space and P ⊂ L1(M) a set of integrable
functions. We call a set of nodes X ⊂ M and a list of weights W = diag(wx)x∈X an
exact quadrature rule for P, if for all f ∈ P we have

QX ,W f :=
∑
x∈X

wxf(x) =

∫
M
f(x) dµ(x).

For the tours we obtain the following

Theorem 3.2. Let I ⊂ Zd be a finite multi-index set with Fourier weights Ŵ =
diag(ŵn)n∈I , X ⊂ Td a set of nodes with W their corresponding quadrature weights
such that (X ,W ) forms a quadrature rule which is exact for all trigonometric polyno-
mials e2πin· with frequencies n in the difference set D(I) := {n1 − n2 : n1,n2 ∈ I}.
Then
(i) the inverse of A, given in (2.4), where F is the Fourier matrix (3.1) on Td is

A−1 =
(
FHWF + λŴ

)−1
= diag

(
1

1 + λŵn

)
n∈I

,

(ii) the diagonal entry corresponding to the node x ∈ X of the hat matrix H =
FA−1FHW becomes

hx,x = wx

∑
n∈I

1

1 + λŵn
. (3.2)

Proof. Since the product of two exponential functions supported on the frequency set I
has only frequencies in D(I), where the quadrature nodes and weights are exact, we have[

FHWF
]
n1,n2

=
∑
x∈X

wxe2πin1xe2πin2x =

∫
Td

e2πin1xe2πin2x dx.

and, hence,
FHWF + λŴ = diag (1 + λŵn)n∈I .
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This implies (i). For (ii) we compute the diagonal entries of H as

hx,x = wx

∑
n∈I

1

1 + λŵn
e2πinxe−2πinx = wx

∑
n∈I

1

1 + λŵn
.

Corollary 3.3. With the prerequisites of Theorem 3.2 we can compute P (λ) and V (λ)
by Algorithm 1 in the same complexity as multiplying a vector with F or FH for a fixed
regularization parameter λ.

Remark 3.4. Theorem 3.2 requires (X ,W ) to form an exact quadrature rule which
directly alters the weighting of the data-fitting term in the underlying Tikhonov func-
tional (1.1). Preferebly, one wants to have the weight wx proportional to the level of
noise εx for every node x ∈ X , cf. [40]. In most of the following examples the weights as
well as the Gaussian noise are uniform, thus fulfulling this property.

Case studies for specific exact quadrature rules on the torus are discussed in the fol-
lowing two subsections.

3.2 Equispaced Nodes

The simplest example of quadrature on the torus Td is Gauss quadrature which consists
of Nd equispaced nodes

X =

{
m

N
∈ Td : m ∈ Zd ∩

d∏
t=1

[0, N)

}

with uniform weights wx = N−d. The resulting quadrature formula is exact for all
trigonometric polynomials supported on I2N := Zd ∩

∏d
t=1[−N,N) = D(IN ). Thus we

can apply Theorem 3.2 for X and I = IN . The corresponding Fourier matrix F = FX ,IN
describes the ordinary discrete Fourier transform for which the matrix-vector product can
be computed in O(Nd logN) with the fast Fourier transform.
For d = 1, 2 our algorithm coincides with the algorithm proposed in [45] with the only

difference that the authors evaluated the data fitting term in the frequency domain and
used specific Fourier weights wn = n4 as regularization term.
In order to illustrate our approach we chose as the test function f the peaks function

from Matlab, which is a sum of translated and scaled Gaussian bells. We evaluated
this function on a grid of 1024 × 1024 equispaced nodes X and corrupted the data by
10% Gaussian noise εx, i.e., we set

fx = f(x) + εx

for all x ∈ X as depicted in Figure 3.1, (a).
As regularization term we fixed isotropic Sobolev weights ŵn = 1 + ‖n‖s2 for n ∈
IN and s = 3 in Fourier space, which correspond to a function with 3 derivatives in
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(a) noisy input data and
reconstruction

10−5 10−4 10−3

10−2.5

10−2

λ

‖f̃λ − f̂‖2
P (λ)

104.021

104.023

(b) approximation error ‖f̃λ − f̂‖2 (black) and
cross-validation scores (orange)

Figure 3.1: Approximation from two-dimensional equispaced data: Comparison of the
ordinary cross-validation score P (λ) and the approximation error.

L2(Td). Varying the regularization parameter λ ∈ [2−18, 2−8] we computed the Tikhonov
minimizers f̃λ according to (2.1). We then applied Parseval to the original f̂ and f̃λ
which is a byproduct from Algorithm 1 to compute the L2(Td)-approximation errors as a
function of the regularization parameter λ. The resulting curve is depicted in Figure 3.1,
(b). Note that according to (3.2) all diagonal entries of the hat matrix are equal and,
hence, the ordinary cross-validation score coincides with the generalized cross-validation
score. The reconstruction f̃λ with respect to the minimizer of the cross-validation score
P (λ) is depicted in Figure 3.1, (a).
In Figure 3.1, (b) the actual L2(Td)-approximation error is compared to the cross-

validation score P (λ) computed according to Algorithm 1 with use of the fast Fourier
transform. We observe that the minimizers of both functionals coincide surprisingly well.
For this numerical experiment the average running time for the evaluation of P (λ) for a
single value of λ was 0.06 seconds with the fast algorithm and more than 14 hours for a
direct implementation of (2.3).

3.3 Rank-1 Lattices

The approximation of high-dimensional multivariate periodic functions by trigonometric
polynomials using particular finite index sets I in frequency domain is possible using
special index sets [46, 10] on the domain X . The most efficient method uses samples
along rank-1 lattices and is based on a simple univariate FFT [26]. Rank-1 lattices are
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defined by

X = Λ(z,M) :=

{
x =

1

M
(mz mod M1) ∈ Td : m = 0, . . . ,M − 1

}
where M1 = (M, . . . ,M)T ∈ Zd. They are fully characterized by the generating vector
z ∈ Zd and the lattice size M . There exist algorithms which, given a frequency index set
I and M , compute a generating vector z such that FHWF equals the identity matrix
forW = diag(1/M)x∈X , cf. [26, 24, 39]. The advantage of rank-1 lattices is the variable
index set I instead of the tensor-product approach like in Section 3.2. So depending
on the function we can adapt to different decay properties of the Fourier coefficients.
Furthermore there exist fast algorithms which evaluate the matrix-vector product with
F or FH in O(M logM + d|I|) using only one one-dimensional fast Fourier transform.
To exemplify these ideas we looked at a sample function consisting of a tensor product

of L2(Td)-normed B-splines of order two in seven dimensions, i.e., d = 7,

f(x) =
d∏
j=1

B2(xj), B2(x) = 2
√

3
(
X[0,0.5)x+ X[0.5,1)(1− x)

)
where XA denotes the indicator function. The Fourier coefficients of f are

f̂n =
d∏
j=1


√

3/4 : nj = 0√
3/4

(
sin(njπ/2)
njπ/2

)2
cos(njπ) : otherwise.

Therefore the Fourier coefficients decay like O(
∏d
j=1 n

−2
j ) and a candidate for an index

set I would be a d-dimensional hyperbolic cross

Id,hcN :=

n ∈ Zd :
d∏
j=1

max(1, |nj |) ≤ N

 .

In particular we used a radius of N = 16, a reconstructing rank-1 lattice X from
[26, table 6.2] with M = 1 105 193 nodes and set the weights in Fourier space to ŵn =∏d
j=1 max(|nj |2, 1).
Applying Algorithm 1 to fx = f(x)+ε, x ∈ X , where ε denotes 5% Gaussian noise we

computed the cross-validation scores P (λ) = V (λ) for λ ∈ [2−9, 20]. Again both scores
coincide since the diagonal entries (3.2) of the hat matrix are multiples of the constant
weights wx in spatial domain. For the multiplications with F and FH we made use of
fast rank-1 lattices Fourier transforms. A comparison of the actual L2(Td)-approximation
error with the cross-validation score is plotted in Figure 3.2. We observe that the optimal
λ with respect to the L2(Td)-error and the λ chosen by cross-validation are very close in
this example.
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Figure 3.2: Approximation in T7 from data at a rank-1 lattice: Comparison of the ordi-
nary cross-validation score P (λ) with the approximation error.

3.4 Approximative quadrature

In the case of scattered data approximation exact quadrature rules are typically not
available. In principle, one can compute exact quadrature rules by determining the
weighs W = diag(wx)x∈X as a solution of the linear system

FH
X ,D(I)w =

(
e2πix·n

)H
x∈X ,n∈D(I)w = e0,

where e0 is the vector which only contains zeros, except in the 0-th position where it
is equal to one. These weights can be guaranteed to be non negative under certain
conditions on the frequency index set I and the mesh norm

δX := max
y∈M

min
x∈X
|y − x|

of the nodes X , cf. [12]. However, those conditions strongly restrict the polynomial
degree and do not guaranty the quadrature weights to be non-oscillating. This may be
problematic, since the weights directly alter the problem (1.1) we want to solve.
Our idea is to replace the exact quadrature weights W by approximative weights

derived from the Voronoi tessellation of the node set X .

Definition 3.5. Let M be a Riemannian manifold with a distance function dist(·, ·).
For a set of nodes X ⊂M we define the Voronoi cell Vx corresponding to x ∈ X by

Vx :=
{
y ∈M : dist(x,y) ≤ dist(x′,y), ∀x′ ∈ X

}
.

The Voronoi weight wx is the area of the Voronoi cell Vx

wx :=

∫
M
XVx(y) dy =

∫
Vx

dy.

To emphasize the choice of the Voronoi weights as approximative quadrature weights
we make a rough error estimate for the approximated quadrature using the Voronoi
weights.
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Theorem 3.6. Let f : M → C be Lipschitz continuous with the Lipschitz constant L.
Let further X be a set of nodes with mesh norm

δX := max
y∈M

min
x∈X

dist(y,x)

and Voronoi weights wx. Then∣∣∣∣∣∑
x∈X

wxf(x)−
∫
M
f(y) dy

∣∣∣∣∣ ≤ LδX
∫
M

dy.

Proof. Since the disjoint union of all Voronoi cells Vx isM itself we can decompose the
integral as follows∫

M
f(y) dy =

∑
x∈X

∫
Vx

f(y) dy =
∑
x∈X

(
wxf(x) +

∫
Vx

f(y)− f(x) dy

)
.

Noting that the maximal distance of x to any other node of the corresponding Voronoi cell
Vx cannot exceed δX , we use the Lipschitz continuity to estimate the leftover integrand∣∣∣∣∣∑

x∈X
wxf(x)−

∫
M
f(y) dy

∣∣∣∣∣ =

∣∣∣∣∣∑
x∈X

∫
Vx

f(y)− f(x) dy

∣∣∣∣∣ ≤ LδX
∫
M

dy.

Remark 3.7. (i) Theorem 3.6 states that the error of the quadrature formula gets
small for smooth functions in the sense of a small Lipschitz constant and for small
mesh norms, like for approximately equidistributed nodes.

(ii) Deterministic and probabilistic error estimates are available from [19] and [4], re-
spectively.

(iii) The Voronoi decomposition is dual to the Delaunay triangulation and thus can be
computed in O(|X | log |X |) for the Euclidean distance in dist(·, ·).

Given that the error of the Voronoi quadrature is small we obtain approximately

FHWF =

[∑
x∈X

wxe2πin1xe2πin2x

]
n1,n2∈I

≈
[∫

Td
e2πin1xe−2πin2x dx

]
n1,n2∈I

= I ∈ CI×I

where I denotes the identity matrix. Inserting this into the definition of the hat matrix
H we have formally

H = F
(
FHWF + λŴ

)−1
FHW ≈ F

(
I + λŴ

)−1
FHW =: H̃. (3.3)

14



Analogously to Theorem 3.2 we obtain for the diagonal entries h̃x,x of the approximated
hat matrix H̃,

h̃x,x = wx

∑
n∈I

1

1 + λŵn
.

Together with Theorem 2.5 and Definition 2.7 this motivates the following definition of
approximated cross-validation scores.

Definition 3.8. The approximated cross-validation score P̃ (λ) and the approximated
generalized cross-validation score Ṽ (λ) are defined by

P̃ (λ) =
∑
x∈X

[Hf − f ]2x

(1− h̃x,x)2
and Ṽ (λ) =

∑
x∈X

[Hf − f ]2x

(1− h̃)2
,

where h̃ = 1
|X |
∑

x∈X h̃x,x.

Remark 3.9. Algorithm 1 is easily modified to compute the approximated scores by re-
placing all occurrences of hx,x by h̃x,x. The computationally most expensive part remains
the computation of the Tikhonov minimizer f̃ = Hf = F (FHWF + λŴ )−1FHWf .
Making use of the NFFT [29, 27] the matrix-vector multiplications with F and FH can
be performed with O(|I| log |I|+ |X |) numerical operations.

In the remainder of this sections we illustrate that the approximated cross-validation
scores can be computed drastically faster while providing a good approximation to the
minimizer of the actual cross-validation score. To this end we considered scattered sam-
pling points on the one-dimensional torus T as well as on the two-dimensional torus T2.
In order generate sufficiently nonuniform sampling points we drew random samples with
respect to the uniform distribution on [0, 1] and [0, 1]2 and squared them. This leads
to sampling sets that are more dense towards the point 0 and the edges 0 × [0, 1] and
[0, 1]× 0.
In the one-dimensional example we used |X | = 128 sampling points and the index

set I1d64 = {−32, . . . , 31}. In the two-dimensional example we chose |X | = 8192 and
I2d64 = I1d64 × I1d64 . In both cases this corresponds to an oversampling factor of two. As
in Subsection 3.2 we chose as a test function the Matlab peaks function with fixed
second argument zero in the one-dimensional case. Finally, we added 5% Gaussian noise
as depicted in Figure 3.3, (a) and Figure 3.4, (a).
As in both cases the weights wx are far from uniform we may expect some difference

between the ordinary cross-validation score P (λ) and the generalized cross-validation
score V (λ). This can be observed in the one-dimensional example, cf. Figure 3.3. In
the two-dimensional example both functionals coincide surprisingly well, cf. Figure 3.4.
Furthermore, the weights are completely uncorrelated to the homogeneous noise level
and, thus, contradict with Remark 3.4.
Judging the approximation of the exact cross-validation scores P (λ) and V (λ) by the

approximated scores P̃ (λ) and Ṽ (λ) we observe that for small regularization parameters
λ the score P̃ (λ) contains several peaks for both examples. These peaks occur because
we overestimate the diagonal entries hx,x such that they attain values around one and
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Ṽ (λ)

‖f̃λ − f̂‖2

(b) approximation error ‖f̃λ − f̂‖2 (black) and
cross-validation scores (orange)

Figure 3.3: Approximation from nonequispaced data: Comparison of the ordinary cross-
validation score P (λ) and the generalized cross-validation score V (λ) with
their approximations P̃ (λ) and Ṽ (λ) and the approximation error.
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Figure 3.4: Approximation from two-dimensional nonequispaced data: Comparison of
the ordinary cross-validation score P (λ) and the generalized cross-validation
score V (λ) with their approximations P̃ (λ) and Ṽ (λ) and the approximation
error.
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summands of the ordinary cross-validation score (2.7) diverge. In contrast Lemma 2.8
says that these diagonal entries are always smaller than one. Nevertheless, the minimizer
of all four functionals P, P̃ , V, Ṽ are very close together for the two-dimensional example
while for the one-dimensional example the minimizer of P and P̃ are closer to the L2(Td)-
optimal regularization parameter compared to the minimizer of V and Ṽ . A natural idea
to avoid the oscillatory regions of the functional P̃ would be to use the minimizer of Ṽ
as initial guess for minimizing P̃ .

The central reason for preferring the functional P̃ and Ṽ over the functionals P , V
is that they are faster to compute. Indeed, if we fix the number of iterations for com-
puting the Tikhonov minimizer, P (λ) and V (λ) can be acquired in O(|I||X | log |I| +
|X |2) numerical operations for a single regularization parameter λ, which compares to
O(|I| log |I| + |X |) numerical operations for the evaluation of P̃ and Ṽ . In our toy ex-
ample the computation of P and V took approximately 1.61 for the one-dimensional
and 1278 seconds for the two-dimensional case, while the computation of P̃ and Ṽ was
performed within 0.02 and 0.16 seconds averaged over all tested λ.

4 Cross-validation on the unit interval

In this section, we consider the cross-validation scores for nonperiodic functions on the
unit interval [−1, 1] with respect to the Chebyshev polynomials

Tn(x) = cos(n arccosx) n = 0, . . . , N − 1

up to polynomial degree N ∈ N. In this setting the Fourier matrix becomes

F = [Tn(x)]x∈X ,n=0,...,N−1

for a set of nodes X .

4.1 Exact Quadrature

Similarly as for functions on the torus we consider the case of exact quadrature first.
Therefore we remind that the Chebyshev polynomials are orthogonal with respect to the
inner product

(f, g) =

∫ 1

−1

f(x)g(x)√
1− x2

dx

and are normalized such that

(Tn1 , Tn2) =


π : n1 = n2 = 0,

π/2 : n1 = n2 6= 0,

0 : n1 6= n2.

Assuming that the nodes X and weightsW form a quadrature rule that is exact up to
polynomial degree 2N−2 the diagonal entries of the hat matrixH can be given expicitly
using the following theorem.
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Theorem 4.1. Let the nodes X and the weights W = diag(wx)x∈X form a quadrature
rule which is exact up to polynomial degree 2N − 2 and let Ŵ = diag(ŵ0, . . . , ŵN−1)
be the weights in frequency domain. Then the diagonal entries hx,x of the hat matrix
H = F (FHWF + λŴ )−1FW corresponding to the nodes x ∈ X satisfy

hx,x =
wx
2

(
N−1∑
n=1

1

π/2 + λŵn
cos(2n arccosx) +

N−1∑
n=1

1

π/2 + λŵn
+

2

π + λŵ0

)
.

Proof. Similar to Theorem 3.2 we obtain FHWF+λŴ = diag(π+λŵ0, π/2+λŵ1, . . . , π/2+
λŵN−1). Putting this into the formula for the diagonal elements of the hat matrix obtain

hx,x = wx

(
N−1∑
n=1

1

π/2 + λŵn
cos2(n arccosx) +

1

π + λŵ0

)
.

In combination with the addition theorem cos(2x) = 2 cos2 x−1 this proves the assertion.

4.2 Chebyshev nodes

The most basic examples of an exact quadrature formula on the interval is probably
quadrature at Chebyshev nodes. In order to restate Theorem 4.1 for this case we require
the discrete cosine transforms from first up to third kind

CI
N+1 :=

√
2

N

[
γN (n)γN (m) cos

(nmπ
N

)]N
n,m=0

,

CII
N :=

√
2

N

[
γN (n) cos

(
n(2m+ 1)π

2N

)]N−1
n,m=0

, CIII
N :=

(
CII
N

)T
with γ(0) = γ(N) :=

√
2/2 and γ(n) := 1 for n = 1, . . . , N − 1. The corresponding

matrix-vector products can be calculated using O(N logN) arithmetic operations, cf. [39,
Chapter 6].
Using the fact that CIII

N is orthonormal, cf. [39, Sec. 3.5], we acquire

I = CII
NC

III
N =

[
γN (n) cos

(
n(2m+ 1)π

2N

)]N−1
n,m=0

2

N

[
γN (n) cos

(
n(2m+ 1)π

2N

)]N−1
m,n=0

.

If we multiply with diag(
√
π,
√
π/2, . . . ,

√
π/2) from both sides we obtain

diag(π, π/2, . . . , π/2) =

[
cos

(
n(2m+ 1)π

2N

)]N−1
n,m=0

π

N

[
cos

(
n(2m+ 1)π

2N

)]N−1
m,n=0

.

Putting this into the form FHWF we see that the Chebyshev nodes of first kind

xm = cos

(
(2m+ 1)π

2N

)
, m = 0, . . . , N − 1
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and the uniform weights wx = π/N form a quadrature rule which is exact up to degree
2N − 2.
For these specific nodes Theorem 4.1 simplifies to:

Theorem 4.2. Let X = {x1, . . . , xm} be the Chebyshev nodes of first kind and wxm =
π/N . Then the diagonal entries hxm,xm of the hat matrix (2.6) can be written as

hxm,xm =
wxm

2

( √
N/2

γ2N (m)

[
CI

2N+1b
]
2m+1

+
N−1∑
n=1

1

π/2 + λŵn

)
, m = 0, . . . , N − 1

with

b = (b0, . . . , b2N )T =

(
2
√

2

π + λŵ0
, 0,

1

π/2 + λŵ1
, 0, . . . ,

1

π/2 + λŵN−1
, 0, 0

)T

.

Proof. According to Theorem 4.1 we have

hxm,xm =
wxm

2

(
N−1∑
n=1

1

π/2 + λŵn
cos

(
n(2m+ 1)π

N

)
+

N−1∑
n=1

1

π/2 + λŵn
+

2

π + λŵ0

)
.

Using the coefficients b the first sum can be expressed with twice the frequency

hxm,xm =
wxm

2

(
1

γ2N (m)

2N∑
n=0

bnγ2N (n)γ2N (m) cos

(
n(2m+ 1)π

2N

)
+
N−1∑
n=1

1

π/2 + λŵn

)
,

which is the cosine transform of first kind.

Corollary 4.3. For fixed λ the ordinary cross-validation score P (λ) and the generalized
cross-validation score V (λ) on the unit intervall for Chebyshev nodes of first kind can be
computed in O(N logN) using Algorithm 1.

Proof. Because multiplying with F and FH can be done using the fast discrete cosine
transform, we see that applying the hat matrix can be done in O(N logN) and Theo-
rem 4.2 allows us to compute the diagonal entries of the hat matrix in O(N logN).

To emphasize our results numerically we chose the peaks sample function f from
Matlab and fixed the second argument to zero. We evaluated f in N = 128 Chebyshev
nodes and added 5% Gaussian noise as one can see in Figure 4.1, (a). To choose Ŵ we
made use of the following statement from [48, Theorem 7.1] which relates the smoothness
of f to the decay of the Chebyshev coefficients a: If for ν ≥ 0 the derivatives up to f (ν−1)

are absolute continuous and f (ν) has bounded variation V then |ak| ≤ 2V/(π(k−ν)ν+1).
Because in general we do not know anything about the smoothness of the function f we
chose ŵn = n3 as weights which corresponds to a function with one absolute continuous
derivative. We used Algorithm 1 to calculate the ordinary cross-validation score P (λ)
and the generalized cross-validation score V (λ) for λ ∈ [2−16, 2−11] and plotted the
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Figure 4.1: Approximation on the unit interval from data at Chebyshev nodes: Compar-
ison of the ordinary cross-validation score P (λ) and the generalized cross-
validation score V (λ) with the approximation error.

regularization for the λ with the smallest corresponding ordinary cross-validation score
as one can see in Figure 4.1, (b).
We observe that the ordinary cross-validation score and the generalized cross-validation

score differ only slightly and their minima are close to the L2([−1, 1], (1−x2)−1/2) optimal
λ.

4.3 Approximative Quadrature

In this section, we consider arbitrary, ordered nodes xm ∈ X ⊂ [−1, 1], m = 0, . . . ,M .
The corresponding cosine transforms can be computed using the nonequispaced discrete
cosine transform, cf. [11], inO(N logN+|X |) whereN is the bandwidth. As in Section 3.4
we determine approximate quadrature weights wxm for m = 0, . . . ,M that allow us to
efficiently estimate the diagonal entries of the hat matrix H. Since we consider the unit
interval with the non-uniform weight function (1−x2)−

1
2 it is not a good idea to compute

Voronoi weights directly. Instead, we consider the corresponding periodic approximation
problem on the unit circle with constant weight by substituting ym = arccosxm ∈ [0, π]
and use Voronoi weights with respect to ym, i.e.,

wxm =


y0+y1

2 , m = 0,
ym+1−ym−1

2 , m = 1, . . . ,M − 1,

π − yM−1+yM
2 , m = M.

(4.1)

Remark 4.4. Let xm be the Chebyshev nodes of first kind. Then the quadrature weights
(4.1) coincide with the exact quadrature weights from Section 4.1.

Analogously to Section 3.4 we use the approxmiated hat matrix H̃ from (3.3) for ease
of computation.
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Figure 4.2: Approximation from nonequispaced data: Comparison of the ordinary cross-
validation score P (λ) and the generalized cross-validation score V (λ) with
their approximations P̃ (λ) and Ṽ (λ) and the approximation error.

Remark 4.5. Using Theorem 4.1 the diagonal entries can be calculated efficiently with
one nonequispaced discrete cosine transform.
With the given tools we can modify Algorithm 1 to compute P̃ (λ) and Ṽ (λ) from

Definition 3.8 in O(N logN+|X |) arithmetic operations given a fixed number of iterations
to compute the Tikhonov minimizer.

To exemplify our results we chose 128 uniformly distributed nodes on the unit interval
which we perturbed by 5% Gaussian noise. Note that uniformly distributed nodes are
far from optimal in the setting of polynomial interpolation on the interval. As in case
of exact quadrature we set the bandwith equal to the number of nodes, i.e., N = |X |.
As the Voronoi weights resamble quadrature weights the choice of the bandwidth N is
critical because in the case of |X | < N one can not expect to get an exact quadrature
formula. As test function we used again the Matlab peaks function with fixed second
argument. Then we computed P (λ), P̃ (λ), V (λ), and Ṽ (λ) for λ ∈ [2−18, 2−11]. The
results can be seen in Figure 4.2.
We observe that all cross-validation scores follow the shape of the L2([−1, 1], (1 −

x2)−1/2)-error and their minima are close to the optimal λ. Again, P̃ (λ) is affected by
oscillations for small λ which are caused by diagonal entries hxm,xm close to 1. The
computation of the exact P (λ) and V (λ) averaged over all λ takes 4.07 seconds whereas
the approximated P̃ (λ) and Ṽ (λ) outperform this with 0.04 seconds.

5 Cross-validation on the two-dimensional sphere

Approximation on the two-dimensional sphere S2 := {x ∈ R3 : ‖x‖2 = 1} has been sub-
ject of mathematical research for a long time. The base for approximation from scattered
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data is formed by positive quadrature rules, Marcinkiewicz-Zygmund inequalities which
are investigated in the papers [52, 36, 33, 5], and by bounds for best approximations
[44, 51, 21]. Based on these result the relationship between the mesh norm, the separa-
tion distance of the sampling points, and optimal approximation rates has been analyzed
in the papers [13, 31, 28, 47]. Approximation from noisy data has been considered in [1]
and a priori and a posteriori estimates of the approximation error with respect to the
regularization parameter have been proven in [38].
Following the approach of the previous sections we again consider the weighted Tikhonov

functional (1.1). The analogue of the exponential functions become the spherical har-
monics {Yn,k}n=0,...,∞,k=−n,...,n, cf. [14, 2, 37, 7], which we assume to be normalized such
that they form an orthonormal basis in L2(S2). For nodes X ⊂ S2 and a maximum
polynomial degree N ∈ N the Fourier matrix F becomes

F = [Yn,k(x)]x∈X ;n=0,...,N,k=−n,...,n.

As for the weight matrix Ŵ in Fourier space we consider isotropic weights Ŵ =
diag(ŵn,k)h=0,...,N, k=−n,...,n that depend only the polynomial degree, i.e., ŵn,k = ŵn.

5.1 Exact Quadrature

There are several approaches to exact quadrature on the two-dimensional sphere. The
most direct approach is to consider tensor products of Gauss quadrature rules on the
circle and the unit interval [−1, 1], cf. [39, Section 9.6]. A relaxation of this idea is
to choose the points equally spaced at fixed latitudinal circles which also allows for an
explicit computation of the quadrature weights, cf. [42].
A second approach is to choose the quadrature nodes approximately uniform and de-

termine the quadrature weights by solving a linear system of equations. Given that
the quadrature nodes are sufficiently well separated and the oversampling factor is suffi-
ciently high, the resulting quadrature weights can guarantied to be nonnegative, cf. [36].
The computation of these quadrature weights can be implemented efficiently using fast
spherical Fourier techniques, cf. [32, 30, 27].
A third approach, called Chebyshev quadrature, consists of fixing the weights to be

constant and seeking quadrature nodes with a high degree of exactness. The resulting
nodes are known as spherical t-designs. Efficient algorithms for their computation are
described in [18] with the resulting spherical designs being available at [16]. Finally,
one can try to compute both quadrature nodes and weights in an optimization schema,
cf. [17].
For this section it is sufficient that the nodes X and the weights W = diag(wx)x∈X

form an exact quadrature rule of degree 2N , i.e., FHWF = I. Under this assumption
the diagonal entries of the hat matrix

H = F
(
FHWF + λŴ

)−1
FHW

can by computed efficiently as it is stated in the following theorem.
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Theorem 5.1. Let the nodes X and the weights W form a quadrature formula QX ,W
that is exact for all spherical harmonics up to polynomial degree 2N then the diagonal
entry corresponding to x of H satisfies

hx,x =
wx

4π

N∑
n=0

2n+ 1

1 + λŵn
.

Proof. Since FHWF = I we obtain analogously to the proof of Theorem 3.2

H = F diag

(
1

1 + λŵ0
, . . . ,

1

1 + λŵN

)
FHW .

Looking into the diagonal entry corresponding to x and using the addition theorem of
spherical harmonics, cf. [37, Theorem 5.11], we obtain the formula

hx,x = wx

N∑
n=0

1

1 + λŵn

n∑
k=−n

Yn,k(x)Yn,k(x) =
wx

4π

N∑
n=0

2n+ 1

1 + λŵn
.

Corollary 5.2. For fixed λ the ordinary cross-validation score P (λ) and the generalized
cross-validation score V (λ) on the two-dimensional sphere given quadrature nodes and
weights can be computed in O(N2 logN + |X |) using Algorithm 1.

Proof. Due to Theorem 5.1 we can compute hx,x in linear time. Using equation (5.1)
applying the hat matrix has the same computational cost as one multiplication with F
and one with FH. Using the nonequispaced fast spherical Fourier transform (NFSFT,
cf. [32]) this can be done in O(N2 logN + |X |).

In order to illustrate Theorem 5.1 we consider a quadrature rule consisting of 21 000
approximately equidistributed nodes and equal weights wx = 4π/21 000 that is exact up
to polynomial degree 2N = 200, as reported in [16]. Since by Theorem 5.1 the diagonal
entries hx,x of the hat matrix are constant multiples of the constant spatial weights wx

the ordinary cross-validation score and the generalized cross-validation score coincide for
this setting. For weights in frequency domain we have chosen ŵn = (2n)2s for s = 3
which corresponds to a function with 3 derivatives in L2(S2).

The test function consists of a sum of quadratic B-splines to which we added an error
of 5% Gaussian noise for each node as one can see in Figure 5.1, (a). This function was
suggested in [23]. We calculated V (λ) and P (λ) for λ ∈ [2−38, 2−25] using Algorithm 1
with the help of the Matlab toolbox MTEX, cf. [22]. Furthermore we calculated the
L2(S2)-error using Parseval from the original f̂ and f̃ which are a byproduct of Algo-
rithm 1.
As it is illustrated in the Figure 5.1, (b) the minimum of the cross-validation score is

very close to the minimum of the approximation error.
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(a) noisy input data and
reconstruction
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P (λ)
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(b) approximation error ‖f̃λ − f̂‖2 (black) and
cross-validation scores (orange)

Figure 5.1: Approximation from two-dimensional equispaced data: Comparison of the
cross-validation score P (λ) and the approximation error.

5.2 Approximative quadrature

In the case function values are provided at nodes not forming a suitable quadrature rule
we follow the previous ideas of Section 3.4 and 4.3 and use the approximated hat matrix
H̃ from (3.3) instead ofH itself. This way we acquire P̃ (λ) and Ṽ (λ) as in Definition 3.8.
In place of quadrature weights we use a spherical Voronoi decomposition, cf. [41].
The only changes to Algorithm 1 are the prior computation of the Voronoi weights

and the necessity of solving a linear system of equations for computing the Tikhonov
minimizer f̃ . This system of linear equation was solved with a conjugate gradient method,
as implemented in the Matlab lsqr command, limited to 20 iterations.
In order to illustrate the efficiency of approximative quadrature weights for estimating

the cross-validation score we consider the same test function and Ŵ as in Example 5.1
and apply Algorithm 1 with polynomial degree N = 30 to |X | = 2(N + 1)2 = 1922
random nodes, which corresponds to an oversampling factor of two. Figure 5.2 compares
the different cross-validation scores P (λ), V (λ), P̃ (λ) and Ṽ (λ) for λ ∈ [2−38, 2−25]. The
interval has been choosen by hand in such a way that it reflects the characteristic features
of the functionals. All scores have their minimum close to the minimum of the of the
actual approximation error. On the downside, we again observe several peaks in the
approximated ordinary cross-validation score for small values of λ. So it is important to
start the minimization process with a large λ. We also want to note that the computation
of the exact P (λ) and V (λ) took 227 seconds averaged over all λ in contrast to 0.12
seconds for the approximated P̃ (λ) and Ṽ (λ).
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(a) noisy input data and
reconstruction
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Figure 5.2: Approximation from two-dimensional random nodes: Comparison of the or-
dinary cross-validation score P (λ) and the generalized cross-validation score
V (λ) with their approximations P̃ (λ) and Ṽ (λ) and the approximation error.

6 Conclusion

In this paper we presented a fast algorithm for the computation of the leave-one-out cross-
validation score P (λ) for the Tikhonov regularizer (1.1). While many approximations
of the cross-validation score do not consider every node separately, but fewer and larger
validation sets, c.f. [6], we considered the full leave-one-out cros-validation score. In
contrast to other approaches we did not restrict ourselves to spline interpolation on
the interval at equispaced nodes, but considered more general domains and samplings.
The key points of Algorithm 1 are explicit formulas for the diagonal elements hx,x of
the hat matrix H which we were able to derive in the Theorems 3.2, 4.2, and 5.1, for
approximation on the torus, the interval, and the two-dimensional sphere, respectively.
Generalizations to other domains, e.g., the rotation group SO(3), are possible following
the framework presented in this paper. For all these domains FFT-like algorithms can
be applied to achieve quasilinear complexity with respect to the number of nodes for the
computation of the Tikhonov minimizer as well as for the leave-one-out cross-validation
score.
The efficiency of our approach has been illustrated in several numerical experiments

with respect to the different domains. For the nodes we distinguished two settings.
For nodes belonging to a quadrature rule, like equispaced nodes or rank-1 lattices on
the torus, our Algorithm 1 computes the cross-validation score P (λ) with floating point
precision, cf. Corollaries 3.3, 4.3, and 5.2. For arbitrary nodes we accomplished in Re-
marks 3.9, 4.5 and Corollary 5.2 a good approximation using Voronoi weights in place
of the quadrature weights. The numerical experiments confirm our theoretical results.
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In all test scenarios our algorithm was several orders of magnitude faster then the direct
reference implementation.
In some cases the approximated leave-one-out cross-validation score P̃ (λ) suffered from

peaks for λ smaller than the optimal one, cf. Subsection 3.4. Anyway, in our test cases
we had no problems finding the global minimum by initializing the line search algorithm
with a sufficiently large λ and thus avoiding the oscillatory region.
All relevant Matlab code, including the algorithm for the fast computation of the

leave-out-one cross-validation score, its minimizer and all numerical examples of this
paper can be found on the GitHub repository https://github.com/felixbartel/fcv.
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