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Abstract

We proved convergence rates of linear sampling recovery by extended least squares methods
of functions in Bochner space satisfying some ℓ2-summability of their generalized polynomial
chaos expansion coefficients. As applications we derive convergence rates of linear collocation
approximation of solutions to parametric elliptic PDEs with random inputs, and of infinite
dimensional holomorphic functions. These convergence rates significantly improve the known
results.
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1 Introduction and main results

In computational uncertainty quantification, the problem of efficient approximation for parametric
and stochastic PDEs has been of great interest and achieved significant progress in recent years.
Depending on a particular setting, as usual, this problem is reduced to an approximation problem in
a Bochner space L2(U,X;µ) with an appropriate separable Hilbert spaceX, an infinite-dimensional
domain U and a probability measure µ on U where parametric solutions u(y), y ∈ U , to parametric
and stochastic PDEs, are treated as elements of L2(U,X;µ) and U the parametric domain. There
is a vast number of works on this topic to not mention all of them. We point out just some works
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[1, 2, 3, 5, 4, 7, 10, 11, 9, 8, 12, 14, 15, 16, 20, 21, 24, 25, 26, 27, 28, 19] which are directly related
to the problem setting in our paper.

The key condition which emerged as governing the convergence rates of numerical integra-
tion and interpolation methods for a parametric solution u(y) in L2(U,X;µ) is a sparsity of the
coefficients of its GPC expansion. The sparsity is quantified by ℓp-summability or weighted ℓ2-
summability of these coefficients which are appropriate for non-linear n-term approximation or
linear approximation, respectively. We are interested in the problem of collocation approximation
and its convergence rate based on a finite number of particular solvers u(y1), ..., u(yn). The prob-
lem of adaptive nonlinear collocation approximation was investigated in [10, 11, 1, 8, 9], and of
non-adaptive linear collocation approximation in [2, 14, 15, 16, 20, 24, 25, 26, 19, 27, 28]. The last
problem naturally leads to the problem of linear sampling recovery in a Bochner space L2(U,X;µ).
Let us formulate a setting of this problem which will cover the linear collocation approximation
problem for a wide class of parametric PDEs with random inputs as well as of infinite dimensional
holomorphic functions.

Let (U,Σ, µ) be a probability measure space with Σ being countably generated and let X
be a complex separable Hilbert space. Denote by L2(U,X;µ) the Bochner space of strongly µ-
measurable mappings v from U to X, equipped with the norm

∥v∥L2(U,X;µ) :=

(∫
U
∥v(y)∥2X dµ(y)

)1/2

.

Notice that because Σ is countably generated, L2(U,C;µ) is separable by [13, Prop. 3.4.5]. Hence
L2(U,X;µ) is a separable complex Hilbert space and, moreover, L2(U,X;µ) = L2(U,C;µ)⊗X.

Let (φs)s∈N be an orthonormal basis of L2(U,C;µ). Then a function v ∈ L2(U,X;µ) can be
represented by the expansion

v(y) =
∑
s∈N

vs φs(y), vs ∈ X, (1.1)

with the series convergence L2(U,X;µ), where

vs :=

∫
U
v(y)φs(y) dµ(y), s ∈ N.

Moreover, for every v ∈ L2(U,X;µ) represented by the series (1.1), Parseval’s identity holds

∥v∥2L2(U,X;µ) =
∑
s∈U

∥vs∥2X .

Assume that v is a function on U taking values in the separable complex Hilbert space X
and that v ∈ L2(U,X;µ). Given sample points y1, . . . ,yk ∈ U and h1, . . . , hk ∈ L2(U,C;µ), we
consider the approximate recovery of v from its values v(y1), . . . , v(yk) by the linear sampling
algorithm (operator) Sk defined as on U of the form

(Skv)(y) :=

k∑
i=1

v(yi)hi(y).
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For convenience, we assume that some of the sample points yi may coincide. The approximation
error is measured by ∥v−Skv∥L2(U,X;µ). Denote by SX

n the family of all linear sampling algorithms

SX
k in L2(U,X;µ) of the form (1.5) with k ≤ n. To study the optimality of linear sampling

algorithms from SX
n for a set F ⊂ L2(U,X;µ) and their convergence rates we use the (linear)

sampling n-width
ϱn(F,L2(U,X;µ)) := inf

SX
n ∈SX

n

sup
v∈F

∥v − SX
n v∥L2(U,X;µ).

Throughout the present paper, we fix (σs)s∈N, a non-decreasing sequence of positive numbers
such that σ−1 :=

(
σ−1
s

)
s∈N ∈ ℓ2(N). For given U and µ, denote by HX,σ the linear subspace in

L2(U,X;µ) of all v such that the norm

∥v∥HX,σ
:=

(∑
s∈N

(σs∥vs∥X)2
)1/2

<∞.

In particular, the space HC,σ is the linear subspace in L2(U,C;µ) equipped with its own inner
product

⟨f, g⟩HC,σ :=
∑
s∈N

σ2s⟨f, φs⟩L2(U,C;µ)⟨g, φs⟩L2(U,C;µ).

The space HC,σ is a reproducing kernel Hilbert space with the reproducing kernel

K(·,y) :=
∑
s∈N

σ−2
s φs(·)φs(y)

with the eigenfunctions (φs)s∈N and the eigenvalues
(
σ−1
s

)
s∈N. Moreover, K(x,y) satisfies the

finite trace assumption ∫
U
K(x,x)dµ(x) < ∞.

The aims of the present paper is to investigate the approximate recovery of functions in the
space HX,σ with σ−1 ∈ ℓq(N) for some 0 < q < 2 from a finite number of their sample values.
We would like to establish convergence rates of the sampling recovery by extensions of several
least squares methods which are different with respect to their constructiveness. Obtained results
will be applied to linear collocation approximation for parametric PDEs with log-normal or affine
inputs as well as for infinite dimensional holomorphic functions.

Let us briefly describe the main results of the present paper.

Let BX,σ be the unit ball in the space HX,σ. Given arbitrary sample points y1, . . . ,yk ∈ U
and h1, . . . , hk ∈ L2(U,C;µ), for the sampling algorithm SX

n in L2(U,X;µ) defined by (1.5), we
have

sup
v∈BX,σ

∥∥v − SX
n v
∥∥
L2(U,X;µ)

= sup
f∈BC,σ

∥∥∥f − SC
n f
∥∥∥
L2(U,C;µ)

,

and, hence,
ϱn(BX,σ, L2(U,X;µ)) = ϱn(BC,σ, L2(U,C;µ)), (1.2)
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which make available bounds on the sampling widths in the classical Lebesgue space L2(U,C;µ)
applicable to a general Bochner space L2(U,X;µ).

For 0 < q ≤ 2 and M,N > 0 and σ with
∥∥σ−1

∥∥
ℓq(N) ≤ N , denote

Bq
X,σ(M,N) :=

{
v ∈ HX,σ : ∥v∥HX,σ

≤M
}
.

From the equality (1.2) and an inequality between the sampling widths and Kolmogorov widths
proven in [18, Theorem 1] we derived that if 0 < q < 2, then

ϱn(B
q
X,σ(M,N), L2(U,X;µ)) ≪MNn−1/q. (1.3)

In particular, for Bochner space L2(D∞, X;µ) with infinite dimensional tensor-product probability,

ϱn(B
q
X,σ(M,N), L2(D∞, X;µ)) ≪MNn−1/q, (1.4)

where D∞ is R∞ or I∞ := [−1, 1]∞, µ infinite tensor-product Jacobi probability measure or
standard Gaussian measure, respectively. It is worth mentioning that the underlying sampling
algorithm performing the convergence rate in (1.3) and (1.4) is an extension to Bochner spaces of
a classical least squares approximation with a non-constructive subsampling used in [18]. Moreover,
this convergence rate is “quasi-optimal” the sense of the relation

MNn−1/q(log n)−ε ≪ sup
∥σ−1∥ℓq(N)≤N

ϱn(B
q
X,σ(M,N), L2(U,X;µ)) ≪ MNn−1/q

for any fixed ε > 1/q. Similar extensions of a pure classical least squares approximation and of
a classical least squares approximation with a special constructive subsampling give the bounds
MN(n/ log n)−1/q andMNn−1/q

√
log n, respectively. Thanks to this special constructive subsam-

pling, the cost of computation is significantly reduced for sufficiently large number of sample points
(for detail, see [6]).

Under a certain condition the weak parametric solution u(y) to a parametric elliptic PDE
equation with affine (D∞ = I∞) or log-normal (D∞ = I∞) random inputs, satisfies a weighted ℓ2-
summability of the energy norms of the Jacobi or Hermite GPC expansion coefficients, respectively,
in terms of the inclusion u(y) ∈ BV,σ(M) with

∥∥σ−1
∥∥
ℓq(N) ≤ N for some 0 < q < 2, M,N > 0

and positive sequence σ, where V := H1
0 (D) is the energy space and D is the spatial domain (see

Lemmata 3.1 and 3.2 below). This allows us to apply all the above results for abstract Bochner
spaces to parametric elliptic PDEs. For example, from (1.4) it follows that there exists a linear
sampling algorithm SV

n in L2(D∞, V ;µ) of the form

SV
n u(y) :=

n∑
i=1

u(yi)hi(y), (1.5)

such that
∥u− SV

n u∥L2(D∞,V ;µ) ≤ CMNn−1/q,

where C is a positive constant independent ofM,N, n and u. This means that the convergence rate
of linear collocation approximation of the parametric solution u(y) by the sampling algorithm SV

n
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isMNn−1/q which for givenM,N is in particular, significantly better that the known convergence
rate n−(1/q−1/2) of linear collocation approximation (cf. [2, 14, 15, 16, 20, 24, 25, 26, 19, 27, 28]).
The same improved convergence rate holds true for linear collocation approximation of infinite
dimensional holomorphic functions on R∞ (cf. [19, 27, 28]).

The rest of the paper is organized as follows. In Section 2, we investigate sampling recovery
in abstract Bochner spaces, in particular, with infinite dimensional measure. Here, we present
some least squares methods and their extensions to Bochner spaces. In Section 3 and 4 we apply
the results of Section 2 to linear collocation approximation for parametric elliptic PDE equation
with affine or log-normal random inputs, for infinite dimensional holomorphic functions on R∞,
respectively.

Notation As usual, N denotes the natural numbers, Z the integers, R the real numbers, C the
complex numbers, and N0 := {s ∈ Z : s ≥ 0}. We denote R∞ and I∞ := [−1, 1]∞ the sets of
all sequences y = (yj)j∈N with yj ∈ R and yj ∈ [−1, 1], respectively. Denote by F the set of all
sequences of non-negative integers s = (sj)j∈N such that their support supp(s) := {j ∈ N : sj > 0}
is a finite set. If a = (aj)j∈J is a set of positive numbers with any index set J , then we use
the notation a−1 := (a−1

j )j∈J . We use letter C to denote general positive constants which may
take different values. For the quantities An(f,k) and Bn(f,k) depending on n ∈ N, f ∈ W ,
k ∈ Zd, we write An(f,k) ≪ Bn(f,k), f ∈ W , k ∈ Zd (n ∈ N is specially dropped), if there
exists some constant C > 0 such that An(f,k) ≤ CBn(f,k) for all n ∈ N, f ∈ W , k ∈ Zd

(the notation An(f,k) ≫ Bn(f,k) has the obvious opposite meaning), and An(f,k) ≍ Bn(f,k) if
An(f,k) ≪ Bn(f,k) and Bn(f,k) ≪ An(f,k). Denote by |G| the cardinality of the set G.

2 Sampling recovery in Bochner spaces

In this section, we show that the problem of linear sampling recovery of functions in the space HX,σ

for a general separable Hilbert space X can be reduced to the particular case of the reproducing
kernel Hilbert space HC,σ. This allows, in particular, to extend linear least squares sampling
algorithms in HC,σ to HX,σ with preserving the accuracy of approximation. Hence, we are able to
derive convergence rates of various extended linear least squares sampling algorithms for functions
in Bq

X,σ based on some recent results on inequality between sampling widths and Kolmogorov
widths of the unit ball BC,σ which are fulfilled by the relevant linear least squares sampling
algorithms.

2.1 Extension of least squares approximation to Bochner spaces

We will need the following auxiliary result. Let AX be a general linear operator in L2(U,X;µ)
defined for v ∈ L2(U,X;µ) by

v 7→
∑
k∈N

(∑
s∈N

ak,svs

)
φk,
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where (ak,s)(k,s)∈N2 is an infinite dimensional matrix.

Lemma 2.1 There holds the equality∥∥AX
∥∥
HX,σ→L2(U,X;µ)

=
∥∥AC∥∥

HC,σ→L2(U,C;µ)
.

Proof. For f ∈ HC,σ, we have

f =
∑
s∈N

fsφs with (σs|fs|)s∈N ∈ ℓ2,

and
∥ACf∥2L2(U,C;µ) ≤

∥∥AC∥∥2
HC,σ→L2(U,C;µ)

∥f∥2HC,σ .

The last inequality is equivalent to inequality

∑
k∈N

∣∣∣∣∣∑
s∈N

ak,sfs

∣∣∣∣∣
2

≤
∥∥AC∥∥2

HC,σ→L2(U,C;µ)

∑
s∈N

σ2s |fs|2 (2.1)

for all sequences (σs|fs|)s∈N ∈ ℓ2.

For v ∈ HX,σ, we have

v =
∑
s∈N

vsφs with (σs∥vs∥X)s∈N ∈ ℓ2,

and

∥AXv∥2L2(U,X;µ) =
∑
k∈N

∥∥∥∥∥∑
s∈N

ak,svs

∥∥∥∥∥
2

X

.

Let (ηj)j∈N be an orthonormal basis of X and

vs =
∑
j∈N

(vs)jηj .

Then,

AXv =
∑
k∈N

(∑
s∈N

∑
j∈N

ak,s(vs)jηj

)
φk.

Since (φkηj)k,j∈N is an orthonormal basis of L2(U,X;µ), by applying (2.1) to fs = (vs)j , we obtain

∥AXv∥2L2(U,X;µ) =
∑
j∈N

∑
k∈N

∣∣∣∣∣∑
s∈N

ak,s(vs)j

∣∣∣∣∣
2

≤
∥∥AC∥∥2

HC,σ→L2(U,C;µ)

∑
j∈N

∑
s∈N

σ2s |(vs)j |2

≤
∥∥AC∥∥2

HC,σ→L2(U,C;µ)

∑
s∈N

σ2s∥vs∥2X =
∥∥AC∥∥2

HC,σ→L2(U,C;µ)
∥v∥2HX,σ

.
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This proves the inequality ∥∥AX
∥∥
HX,σ→L2(U,X;µ)

≤
∥∥AC∥∥

HC,σ→L2(U,C;µ)
.

In order to prove the inverse inequality, let (fn)n∈N ⊂ HC,σ be a sequence such that ∥fn∥HC,σ = 1
and

lim
n→∞

∥∥ACfn
∥∥
L2(U,C;µ)

=
∥∥AC∥∥

HC,σ→L2(U,C;µ)
.

Define vn := fnη1. Then ∥vn∥HX,σ
= 1 and

∥∥AXvn
∥∥2
L2(U,X;µ)

=
∑
k∈N

∥∥∥∥∥∑
s∈N

ak,s⟨fn, φs⟩L2(U,C;µ)η1

∥∥∥∥∥
2

X

=
∑
k∈N

∣∣∣∣∣∑
s∈N

ak,s⟨fn, φs⟩L2(U,C;µ)

∣∣∣∣∣
2

=
∥∥ACfn

∥∥2
L2(U,C;µ)

→
∥∥AC∥∥

HC,σ→L2(U,C;µ)
as n→ ∞.

This proves the inequality ∥∥AX
∥∥
HX,σ→L2(U,X;µ)

≥
∥∥AC∥∥

HC,σ→L2(U,C;µ)
.

Theorem 2.1 Given arbitrary sample points y1, . . . ,yk ∈ U and functions h1, . . . , hk ∈
L2(U,C;µ), for the sampling algorithm SX

n in L2(U,X;µ) defined by (1.5), we have

sup
v∈BX,σ

∥∥v − SX
n v
∥∥
L2(U,X;µ)

= sup
f∈BC,σ

∥∥∥f − SC
n f
∥∥∥
L2(U,C;µ)

.

Proof. Denote by IX the identity operator in L2(U,X;µ). Let SX
n be an arbitrary sampling

operator in L2(U,X;µ) given for v ∈ L2(U,X;µ) by

SX
n f(y) :=

n∑
i=1

v(yi)hi(y).

Applying Lemma 2.1 with AX := IX − SX
n , we get∥∥IX − SX

n

∥∥
HX,σ→L2(U,X;µ)

=
∥∥∥IC − SC

n

∥∥∥
HC,σ→L2(U,C;µ)

.

Consequently, we obtain

sup
v∈BX,σ

∥∥v − SX
n v
∥∥
L2(U,X;µ)

= sup
f∈BC,σ

∥∥∥f − SC
n f
∥∥∥
L2(U,C;µ)

.

Let us construct an extension of a least squares approximation in L2(U,C;µ) to a space
L2(U,X;µ). For c, n,m ∈ N with cn ≥ m, let y1, . . . ,ycn ∈ U be points, ω1, . . . , ωcn ≥ 0 be
weights, and Vm = span{φs}ms=1 the subspace spanned by the functions φs corresponding to the m

7



smallest σs. The weighted least squares approximation SC
cnf = SC

cn(y1, . . . ,ycn, ω1, . . . , ωcn, Vm)f
of a function f : U → C is given by

SC
cnf = argming∈Vm

cn∑
i=1

ωi|f(yi)− g(yi)|2. (2.2)

The least squares approximation can be computed using the Moore-Penrose inverse, which gives
the solution of smallest error for over-determined systems where no exact solution can be expected.
In particular, for L = [φs(yi)]i=1,...,cn;s=1,...,m and W = diag(ω1, . . . , ωn) we have

SC
cnf =

m∑
s=1

ĝsφs with (ĝ1, . . . , ĝm)⊤ = (L∗WL)−1L∗W (f(y1), . . . , f(ycn))
⊤. (2.3)

Notice that SC
cn is a linear sampling algorithm of the form

SC
cnf =

cn∑
i=1

f(yi)hi(y). (2.4)

Hence we immediately obtain the extension of this least squares algorithm to the Bochner space
L2(U,X;µ) by replacing f ∈ L2(U,C;µ) with v ∈ L2(U,X;µ):

SX
cnv =

cn∑
i=1

v(yi)hi(y). (2.5)

As the least squares approximation is a linear operator, worst-case error bounds carry over from
the usual Lebesgue space L2(U,C;µ) to the Bochner space L2(U,X;µ).

The choice of points y1, . . . ,ycn, weights ω1, . . . , ωcn, and approximation space Vm is crucial for
the error of the least squares approximation. A lot of work has been done in the usual Lebesgue
space L2(U,C;µ) of which we present three choices with a trade-off between constructiveness and
tightness of the bound and transfer them to the Bochner space L2(U,X;µ).

Assumption 2.2 Let n ∈ N, n ≥ 90, c1 ≥ 1, c2 > 1 + 1
n , and c3 ≥ 3284. For m ∈ N let the

probability measure ν = ν(m) be defined by

dν(y) := ϱ(y)dµ(y) :=
1

2

(
1

m

m∑
s=1

|φs(y)|2 +
∑∞

s=m+1 |σ−1
s φs(y)|2∑∞

s=m+1 σ
−2
s

)
dµ(y).

(i) Let m := ⌊n/(20 log n)⌋. Let further y1, . . .yc1n ∈ U be points drawn i.i.d. with respect to ν
and ωi := (ϱ(yi))

−1.

(ii) Let m := n and ⌈20n log n⌉ points be drawn i.i.d. with respect to ν and subsampled using
[6, Algorithm 3] to c2n ≍ m points. Denote the resulting points by y1, . . . ,yc2n and ωi =

c2n
⌈20n logn⌉(ϱ(yi))

−1.

(iii) Let m := n and ⌈20n log n⌉ points be drawn i.i.d. with respect to ν. Let further y1, . . . ,yc3n

be the subset of points fulfilling [18, Theorem 1] with c3n ≍ m and ωi :=
c3n

⌈20n logn⌉(ϱ(yi))
−1.
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Let n ∈ N and E be a normed space and F a central symmetric compact set in E. Then the
Kolmogorov n-width of F is defined by

dn(F,E) := inf
Ln

sup
f∈F

inf
g∈Ln

∥f − g∥E ,

where the left-most infimum is taken over all subspaces Ln of dimension at most n in E.

We make use of the abbreviation ds := ds(BC,σ, L2(U,C;µ)). In our setting, we know ds = σ−1
s+1.

Theorem 2.3 For c, n,m ∈ N with cn ≥ m, let SX
cn be the extension (2.5) of the least squares

sampling algorithm SC
cn which is defined as in (2.2)–(2.4). There are universal constants c1, c2, c3 ∈

N such that for all n ∈ N we have the following.

(i) The points from Assumption 2.2(i) fulfill with high probability

sup
v∈BX,σ

∥∥v − SX
c1nv

∥∥
L2(U,X;µ)

≤

√√√√ log n

n

∑
s≥n/ logn

d2s.

(ii) The points from Assumption 2.2(ii) fulfill with high probability

sup
v∈BX,σ

∥∥v − SX
c2nv

∥∥
L2(U,X;µ)

≤
√

log n

n

∑
s≥n

d2s.

(iii) The points from Assumption 2.2(iii) fulfill with high probability

sup
v∈BX,σ

∥∥v − SX
c2nv

∥∥
L2(U,X;µ)

≤
√

1

n

∑
s≥n

d2s.

Proof. For the particular case when X = C, the claims (i)–(iii) in this theorem have been proven in
[23, Theorem 1] (see also [22, Corollary 5.6]), [6, Theorem 6.7] and [18, Theorem 1], respectively.
Hence, by using Theorem 2.1 we prove the theorem.

Regarding the constructiveness of the linear sampling algorithms in Theorem 2.3, the bound
Theorem 2.3(i) is the most coarse bound, but the points construction requires only a random draw,
which is computationally inexpensive. The sharper bound in Theorem 2.3(ii) uses an additional
constructive subsampling step. This was implemented and numerically tested in [6] for up to 1000
basis functions. For larger problem sizes the current algorithm is to slow as its runtime is cubic in
the number of basis functions. The sharpest bound in Theorem 2.3(iii) is a pure existence result.
So, up to now, the only way to obtain this point set is to brute-force every combination, which is
computational infeasible.
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2.2 Convergence rates

Theorem 2.4 There holds the equality

ϱn(BX,σ, L2(U,X;µ)) = ϱn(BC,σ, L2(U,C;µ)).

Proof. Since the correspondence between SX
n and SC

n is one-to-one, we use Theorem 2.1 to show

inf
SX
n ∈SX

n

sup
v∈BX,σ

∥∥v − SX
n v
∥∥
L2(U,X;µ)

= inf
SC
n∈SC

n

sup
f∈BC,σ

∥∥∥f − SC
n f
∥∥∥
L2(U,C;µ)

,

which proves the corollary.

Lemma 2.2 Let 0 < q ≤ 2. We have

dn(B
q
C,σ(M,N), L2(U,C;µ)) ≤ 21/qMNn−1/q ∀n ∈ N. (2.6)

Proof. For ξ > 0, we introduce the set

Λ(ξ) :=
{
s ∈ N : σqs ≤ ξ

}
.

For a function f ∈ Bq
C,σ(M,N) represented by the series (1.1), we define the truncation

SΛ(ξ)f :=
∑

s∈Λ(ξ)

fsφs. (2.7)

Applying the Parseval’s identity, noting (2.7), we obtain

∥f − SΛ(ξ)f∥2L2(U,C;µ) ≤
∑

σs>ξ1/q

|fs|2 =
∑

σs>ξ1/q

(σs|fs|)2σ−2
s

≤ ξ−2/q
∑
s∈N

(σs|fs|)2 ≤ M2ξ−2/q.

The function SΛ(ξ)f belongs to the linear subspace L(ξ) := span{φs : s ∈ Λ(ξ)} in L2(U,C;µ) of
dimension |Λ(ξ)|. We have

|Λ(ξ)| ≤
∑

ξσ−q
s ≥1

1 ≤ N qξ.

For a given n ∈ N, choose ξn satisfying the inequalities N qξn ≤ n < 2N qξn. With this choice we
derive the upper bound in (2.6):

dn(B
q
C,σ(M,N), L2(U,C;µ)) ≤ ∥f − SΛ(ξn)f∥L2(U,C;µ) ≤ Mξ−1/q

n ≤ 21/qMNn−1/q.
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Theorem 2.5 Let 0 < q < 2 and M,N > 0. For c, n,m ∈ N with cn ≥ m, let SX
cn be the

extension (2.5) of the least squares sampling algorithm SC
cn which is defined as in (2.2)–(2.4).

There are universal constants c1, c2, c3 ∈ N such that for all n ∈ N we have the following.

(i) The points from Assumption 2.2(i) fulfill with high probability

sup
v∈Bq

X,σ(M,N)

∥∥v − SX
c1nv

∥∥
L2(U,X;µ)

≪MN
( n

log n

)−1/q
;

(ii) The points from Assumption 2.2(ii) fulfill with high probability

sup
v∈Bq

X,σ(M,N)

∥∥v − SX
c2nv

∥∥
L2(U,X;µ)

≪MNn−1/q
√
log n;

(iii) The points from Assumption 2.2(iii) fulfill with high probability

ϱn(B
q
X,σ(M,N), L2(U,X;µ)) ≪ sup

v∈Bq
X,σ(M,N)

∥∥v − SX
c3nv

∥∥
L2(U,X;µ)

≪MNn−1/q.

Proof. From the definitions one can see that

sup
v∈Bq

X,σ(M,N)

∥∥v − SX
cnv
∥∥
L2(U,X;µ)

=MN sup
v∈Bq

X,σ(1,1)

∥∥v − SX
cnv
∥∥
L2(U,X;µ)

.

Hence, the claims (i)–(iii) in this theorem are derived from the claims (i)–(iii) in Theorem 2.3,
respectively, and the asymptotical equivalence

≤
√

1

m

∑
k≥m

k−2/q ≍ m−1/q, m ∈ N.

Notice that the convergence rate in Theorem 2.5(iii) is “quasi-optimal” the sense of the relation

MNn−1/q(log n)−ε ≪ sup
∥σ−1∥ℓq(N)≤N

ϱn(B
q
X,σ(M,N), L2(U,X;µ)) ≪ MNn−1/q (2.8)

for any fixed ε > 1/q. The upper bound in (2.8) follows from the fact that the bound in Theorem
2.5(iii) is independent of the sequence σ. To prove the lower bound, one can take σ = (σs)s∈N
with σs = s1/q(log(s+ 1))ε, and prove that σ−1 ∈ ℓq(N) and that by Theorem 2.4,

ϱn(B
q
X,σ(M,N), L2(U,X;µ)) = ϱn(B

q
C,σ(M,N), L2(U,C;µ))

≥ dn(B
q
C,σ(M,N), L2(U,C;µ)) ≍MNn−1/q(log n)−ε.

Next, we apply Theorem 2.5 to Bochner spaces with infinite tensor-product probability mea-
sure relevant to the applications to solutions to parametric PDEs with random inputs and to
holomorphic functions in Sections 3 and 4, respectively.

11



For given a, b > −1, let νa,b be the Jacobi probability measure on I := [−1, 1] with the density

δa,b(y) := ca,b(1− y)a(1 + y)b, ca,b :=
Γ(a+ b+ 2)

2a+b+1Γ(a+ 1)Γ(b+ 1)
.

Let (Jk)k∈N0 be the sequence of Jacobi polynomials on I := [−1, 1] normalized with respect to the
Jacobi probability measure νa,b, i.e.,∫

I
|Jk(y)|2dνa,b(y) =

∫
I
|Jk(y)|2δa,b(y)dy = 1, k ∈ N0.

Let γ be the standard Gaussian probability measure on R with the density

g(y) :=
1√
2π
e−y2/2.

Let (Hk)k∈N0 be the sequence of Hermite polynomials on R normalized with respect to the measure
γ, i.e., ∫

R
|Hk(y)|2dγ(y) =

∫
I
|Hk(y)|2g(y)dy = 1, k ∈ N0.

Throughout this section, we use the joint notation: D denotes either I or R; D∞ either I∞ or
R∞;

µ :=

{
νa,b if D = I,
γ if D = R;

φk :=

{
Jk−1 if D = I,
Hk−1 if D = R.

We next recall a concept of probability measure µ(y) on D∞ as the infinite tensor product of the
measures µ(yi):

µ(y) :=
⊗
j∈N

µ(yj), y = (yj)j∈N ∈ D∞.

(In the case D∞ = R∞ the sigma algebra for γ(y) is generated by the set of cylinders A :=
∏

j∈NAj ,
where Aj ⊂ R are univariate γ-measurable sets and only a finite number of Ai are different from
R. For such a set A, we have γ(A) =

∏
j∈N γ(Aj)).

Let X be a separable Hilbert space. Then a function v ∈ L2(D∞, X;µ) can be represented by
the generalized polynomial chaos (GPC) expansion

v(y) =
∑
s∈F

vs φs(y), vs ∈ X, (2.9)

with

φs(y) =
⊗
j∈N

φsj (yj), vs :=

∫
D∞

v(y)φs(y) dµ(y), s ∈ F.

Here F is the set of all sequences of non-negative integers s = (sj)j∈N such that their support
supp(s) := {j ∈ N : sj > 0} is a finite set. Notice that (φs)s∈F is an orthonormal basis of

12



L2(D∞,C;µ). Moreover, for every v ∈ L2(U,X;µ) represented by the series (1.1), Parseval’s
identity holds

∥v∥2L2(U,X;µ) =
∑
s∈F

∥vs∥2X .

Let 0 < q ≤ 2 and M,N > 0. For a set σ = (σs)s∈F ∈ ℓq(N) of positive numbers such that∥∥σ−1
∥∥
ℓq(N) ≤ N , denote by Bq

X,σ(M,N) the set of all functions v ∈ L2(D∞, X;µ)) represented by

the series (2.9) such that (∑
s∈F

(σs∥vs∥X)2

)1/2

≤M.

Notice that if v ∈ Bq
X(M,N), the series (2.9) converges absolutely and unconditionally in

L2(U,X;µ) to v (see [17, Lemma 3.1] for the case D∞ = R∞, the case D∞ = I∞ can be proven by
the same arguments).

Theorem 2.5 for the space L2(D∞, X;µ) is read as

Theorem 2.6 Let 0 < q < 2 and M,N > 0. For c, n,m ∈ N with cn ≥ m, let SX
cn be the

extension (2.5) of the least squares sampling algorithm SC
cn which is defined as in (2.2)–(2.4).

There are universal constants c1, c2, c3 ∈ N such that for all n ∈ N we have the following.

(i) The points from Assumption 2.2(i) fulfill with high probability

sup
v∈Bq

X,σ(M,N)

∥∥v − SX
c1nv

∥∥
L2(D∞,X;µ)

≪MN
( n

log n

)−1/q
;

(ii) The points from Assumption 2.2(ii) fulfill with high probability

sup
v∈Bq

X,σ(M,N)

∥∥v − SX
c2nv

∥∥
L2(D∞,X;µ)

≪MNn−1/q
√

log n;

(iii) The points from Assumption 2.2(iii) fulfill with high probability

ϱn(B
q
X,σ(M,N), L2(D∞, X;µ)) ≪ sup

v∈Bq
X,σ(M,N)

∥∥v − SX
c3nv

∥∥
L2(D∞,X;µ)

≪MNn−1/q.

3 Applications to parametric elliptic PDEs with random inputs

3.1 Introducing remarks

One of basic problems in Uncertainty Quantification is approximation for parametric and stochastic
PDEs. Since the number of parametric variables may be very large or even infinite, they are treated
as high-dimensional or infinite-dimensional approximation problems. As a model we consider
parametric divergence-form elliptic PDEs with random inputs.

13



Let D ⊂ Rd be a bounded Lipschitz domain. Consider the diffusion elliptic equation

−div(a∇u) = f in D, u|∂D = 0, (3.1)

for a given fixed right-hand side f and a spatially variable scalar diffusion coefficient a. Denote
by V := H1

0 (D) the energy space and H−1(D) the dual space of V . Assume that f ∈ H−1(D) (in
what follows this preliminary assumption always holds without mention). If a ∈ L∞(D) satisfies
the ellipticity assumption

0 < amin ≤ a ≤ amax <∞,

by the well-known Lax-Milgram lemma, there exists a unique solution u ∈ V to the equation (3.1)
in the weak form ∫

D
a∇u · ∇v dx = ⟨f, v⟩, ∀v ∈ V.

PDEs with parametric and stochastic inputs are a common model used in science and engineering.
Depending on the nature of the modeled object, the parameters involved in them may be either
deterministic or random. Random nature reflects the uncertainty in various parameters presented
in the physical phenomenon modeled by the equation. For the equation (3.1), we consider the
diffusion coefficients having a parametric form a = a(y), where y = (yj)j∈N is a sequence of real-
valued parameters ranging in the set U∞ which is either R∞ or I∞. Denote by u(y) the solution
to the parametric diffusion elliptic equation

−div(a(y)∇u(y)) = f in D, u(y)|∂D = 0.

The resulting solution operator maps y ∈ U∞ to u(y) ∈ V . The objective is to achieve a numerical
approximation of this complex map by a small number of parameters with a guaranteed error in
a given norm.

In the present paper, we consider both the lognormal case when U∞ = R∞ and the diffusion
coefficient a is of the form

a(y) = exp(b(y)), with b(y) =

∞∑
j=1

yjψj , (3.2)

and yj are i.i.d. standard Gaussian random variables, and the affine case when U∞ = I∞ and the
diffusion coefficient a is of the form

a(y) = ā+
∞∑
j=1

yjψj , (3.3)

and yj are i.i.d. standard Jacobi random variables. Here ā ∈ L∞(D) and ψj ∈ L∞(D) for both
the cases.

An approach to studying summability that takes into account the support properties has been
recently proposed in [5] for the affine parametric case, in [4] for the log-normal, parametric case, and
in [3] for extension of both cases to higher-order Sobolev norms of the corresponding generalized
PC expansion coefficients. This approach leads to significant improvements on the results on ℓp-
summability and weighted ℓ2-summability of GPC expansion coefficients, and therefore, on best
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n-term semi-discrete and fully discrete approximations when the component functions ψj have
limited overlap, such as splines, finite elements or compactly supported wavelet bases. In this
section, we will employ the results of the previous section to receive convergence rates of sampling
recovery of solutions to parametric elliptic PDEs with random inputs, which are derived results
on weighted ℓ2-summability in [5, 3].

3.2 Convergence rates

We present first some known weighted ℓ2-summability results for solutions of parametric elliptic
PDEs with random inputs. For the log-normal case, the following lemma combines [4, Theorems
3.3 and 4.2] and [15, Lemma 5.3].

Lemma 3.1 Let 0 < q < ∞ and (ρj)j∈N be a sequence of positive numbers such that (ρ−1
j )j∈N

belongs to ℓq(N). Assume further that∥∥∥∥∥∥
∑
j∈N

ρj |ψj |

∥∥∥∥∥∥
L∞(D)

<∞ .

Then we have that for any η ∈ N,(∑
s∈F

(σs∥vs∥V )2
)1/2

≤M <∞ with
∥∥σ−1

∥∥
ℓq(N) ≤ N <∞,

where with |s′|∞ := supj∈N s
′
j we denote

σ2s :=
∑

|s′|∞≤η

(
s

s′

)∏
j∈N

ρ
2s′j
j . (3.4)

For the affine case, the following lemma has been proven in [5].

Lemma 3.2 Let ess inf ā > 0. Let 0 < q <∞ and (ρj)j∈N be a sequence of positive numbers such
that (ρ−1

j )j∈N belongs to ℓq(N). Assume further that∥∥∥∥
∑

j∈N ρj |ψj |
ā

∥∥∥∥
L∞(D)

< 1.

Then we have that(∑
s∈F

(σs∥vs∥V )2
)1/2

≤M <∞ with
∥∥σ−1

∥∥
ℓq(N) ≤ N <∞, (3.5)

where
σs :=

∏
j∈N

ca,bsj ρ
sj
j .
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By applying Theorem 2.6, from Lemmata 3.1 and 3.2 we obtain

Theorem 3.1 Let the assumptions of Lemma 3.1 or of Lemma 3.2 with 0 < q < 2 hold for
the log-normal case (3.2) (D∞ = R∞) or for the affine case (3.3) (D∞ = I∞), respectively. For
c, n,m ∈ N with cn ≥ m, let SX

cn be the extension (2.5) of the least squares sampling algorithm SC
cn

which is defined as in (2.2)–(2.4). There are universal constants c1, c2, c3 ∈ N such that for all
n ∈ N we have the following.

(i) The points from Assumption 2.2(i) fulfill with high probability∥∥u− SV
c1nu

∥∥
L2(D∞,V ;µ)

≤ CMN
( n

log n

)−1/q
;

(ii) The points from Assumption 2.2(ii) fulfill with high probability∥∥u− SV
c2nu

∥∥
L2(D∞,V ;µ)

≤ CMNn−1/q
√
log n;

(iii) The points from Assumption 2.2(iii) fulfill with high probability∥∥u− SV
c3nu

∥∥
L2(D∞,V ;µ)

≤ CMNn−1/q.

The constants C in the above inequalities are independent of of M,N, n and u.

In the affine case (3.3), the convergence rate (n/ log n)−1/q with respect to the number n of
sampling points has been received in [8] for an adaptive least squares approximation based on an
ℓq-summability of the Legendre GPC expansion coefficients of the parametric solution, and on an
adaptive choice of sequence of finite dimensional approximation spaces, which is different from the
linear least squares approximation in Theorem 3.1(i). Notice also that the result in Theorem 3.1(i)
for the affine case could be also proven by a linear modification of the technique used in [8], based
on the weighted ℓ2-summability (3.5).

4 Applications to holomorphic functions

Using real-variable arguments as, e.g., in [4, 3], establishing sparsity of parametric solutions in
Sobolev spaces in D of higher smoothness seems to require more involved technical and notational
developments, according to [3, 19]. As observed in [12, 19], one advantage of establishing sparsity
of Hermite GPC expansion coefficients via holomorphy rather than by successive differentiation is
that it allows to derive, in a unified way, summability bounds for the coefficients of Hermite GPC
expansion whose size is measured in Sobolev scales in the domain D.

We recall the concept of “(b, ξ, ε,X)-holomorphic functions” which has been introduced in [19].
For m ∈ N and a positive sequence ϱ = (ϱj)

m
j=1, we put

S(ϱ) := {z ∈ Cm : |Imzj | < ϱj ∀j} and B(ϱ) := {z ∈ Cm : |zj | < ϱj ∀j}.
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Let X be a complex separable Hilbert space, b = (bj)j∈N a positive sequence, and ξ > 0, ε > 0.
For m ∈ N we say that a positive sequence ϱ = (ϱj)

m
j=1 is (b, ξ)-admissible if

m∑
j=1

bjϱj ≤ ξ .

A function v ∈ L2(R∞, X; γ) is called (b, ξ, ε,X)-holomorphic if

(i) for every m ∈ N there exists vm : Rm → X, which, for every (b, ξ)-admissible ϱ, admits a
holomorphic extension (denoted again by vm) from S(ϱ) → X; furthermore, for all m < m′

vm(y1, . . . , ym) = vm′(y1, . . . , ym, 0, . . . , 0) ∀(yj)mj=1 ∈ Rm,

(ii) for every m ∈ N there exists φm : Rm → R+ such that ∥φm∥L2(Rm;γ) ≤ ε and

sup
ρ is (b, ξ)-adm.

sup
z∈B(ϱ)

∥vm(y + z)∥X ≤ φm(y) ∀y ∈ Rm,

(iii) with ṽm : R∞ → X defined by ṽm(y) := vm(y1, . . . , ym) for y ∈ R∞ it holds

lim
m→∞

∥v − ṽm∥L2(X) = 0.

We notice some important examples of (b, ξ, ε,X)-holomorphic functions which are solutions
to parametric PDEs equations and which were studied in [19].

Formally, replacing y = (yj)j∈N ∈ R∞ in the coefficient a(y) in (3.2) by z = (zj)j∈N =
(yj + iξj)j∈N ∈ C∞, the real part of a(z) is

R[a(z)] = exp

(∑
j∈N

yjψj(x)

)
cos

(∑
j∈N

ξjψj(x)

)
.

We find that R[a(z)] > 0 if ∥∥∥∥∑
j∈N

ξjψj

∥∥∥∥
L∞(D)

<
π

2
.

This observation motivates the study of the analytic continuation of the solution map y 7→ u(y)
to z 7→ u(z) for complex parameters z = (zj)j∈N where each zj lies in the strip

Sj(ρ) := {zj ∈ C : |Imzj | < ρj}

and where ρj > 0 and ρ = (ρj)j∈N is any sequence of positive numbers such that∥∥∥∥∥∑
j∈N

ρj |ψj |

∥∥∥∥∥
L∞(D)

<
π

2
.

For further detail of this continuation we refer to [19, Proposition 3.8].
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In general, let b(y) be defined as in (3.2) and V a holomorphic map from an open set in L∞(D)
to X. Then function compositions of the type

v(y) = V(exp(b(y)))

are (b, ξ, ε,X)-holomorphic under certain conditions [19, Proposition 4.11]. This allows us to
apply weighted ℓ2-summability for collocation approximation of solutions v(y) = V(exp(b(y))) as
(b, ξ, ε,X)-holomorphic functions on various function spaces X, to a wide range of parametric
and stochastic PDEs with log-normal inputs. Such function spaces X are high-order regularity
spaces Hs(D) and corner-weighted Sobolev (Kondrat’ev) spaces Ks

κ(D) (s ≥ 1) for the parametric
elliptic PDEs (3.1) with log-normal inputs (3.2); spaces of solutions to linear parabolic PDEs with
log-normal inputs (3.2); spaces of solutions to linear elastics equations with lognormal modulus of
elasticity; spaces of solutions to Maxwell equations with lognormal permittivity. For detail, see
[19].

The following key result on weighted ℓ2-summability of (b, ξ, ε,X)-holomorphic functions has
been proven in [19, Corollary 4.9].

Lemma 4.1 Let v be (b, ξ, ε,X)-holomorphic for some b ∈ ℓp(N) with 0 < p < 1. Let η ∈ N and
let the sequence ρ = (ρj)j∈N be defined by

ρj := bp−1
j

ξ

4
√
η!

∥b∥ℓp(N) .

Assume that b is a decreasing sequence and that bp−1
j

ξ
4
√
η!
∥b∥ℓp(N) > 1 for all j ∈ N. Then there

exist a constant M and an increasing sequence σ = (σs)s∈F of positive numbers such that(∑
s∈F

(σs∥vs∥X)2

)1/2

≤M <∞, with
∥∥σ−1

∥∥
ℓq(N) ≤ N <∞,

where q := p/(1 − p), σ := (σs)s∈F given by (3.4), and M := εCb,ξ with some positive constant
Cb,ξ.

By applying Theorem 2.6, from Lemma 4.1 we obtain

Theorem 4.1 Let v be (b, ξ, ε,X)-holomorphic for some b ∈ ℓp(N) with 0 < p < 2/3. Assume

that b is a decreasing sequence and that bp−1
j

ξ
4
√
η!
∥b∥ℓp(N) > 1 for all j ∈ N. For c, n,m ∈ N with

cn ≥ m, let SX
cn be the extension (2.5) of the least squares sampling algorithm SC

cn which is defined
as in (2.2)–(2.4). There are universal constants c1, c2, c3 ∈ N such that for all n ∈ N we have the
following.

(i) The points from Assumption 2.2(i) fulfill with high probability

∥∥v − SX
c1nv

∥∥
L2(R∞,Xµ)

≤ CMN
( n

log n

)−1/q
;
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(ii) The points from Assumption 2.2(ii) fulfill with high probability∥∥v − SX
c2nv

∥∥
L2(R∞,X;µ)

≤ CMNn−1/q
√

log n;

(iii) The points from Assumption 2.2(iii) fulfill with high probability∥∥v − SX
c3nv

∥∥
L2(R∞,X;µ)

≤ CMNn−1/q.

The constants C in the above inequalities are independent of of M,N, n and v.
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