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Abstract. Given n samples of a function f : D → C in random points drawn with respect to a measure
ϱS we develop theoretical analysis of the L2(D, ϱT )-approximation error. For a parituclar choice of ϱS
depending on ϱT , it is known that the weighted least squares method from finite dimensional function
spaces Vm, dim(Vm) = m < ∞ has the same error as the best approximation in Vm up to a multiplicative
constant when given exact samples with logarithmic oversampling. If the source measure ϱS and the
target measure ϱT differ we are in the domain adaptation setting, a subfield of transfer learning. We
model the resulting deterioration of the error in our bounds.

Further, for noisy samples, our bounds describe the bias-variance trade off depending on the dimen-
sion m of the approximation space Vm. All results hold with high probability.

For demonstration, we consider functions defined on the d-dimensional cube given in unifom random
samples. We analyze polynomials, the half-period cosine, and a bounded orthonormal basis of the non-
periodic Sobolev space H2

mix. Overcoming numerical issues of this H2
mix basis, this gives a novel stable

approximation method with quadratic error decay. Numerical experiments indicate the applicability of
our results.
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1. Introduction

In this paper we study the reconstruction of complex-valued functions on a d-dimensional domain
D ⊂ Rd from possibly noisy function values

y = f + ε = (f(x1) + ε1, . . . , f(x
n) + εn)

T ,

which are sampled in random points x1, . . . ,xn ∈ D. We consider error bounds for the weighted least
squares method for individual functions, which is common in, e.g. partial differential equations [9]
or uncertainty quantification [22]. In this setting, the samples are drawn after the function is fixed
in contrast to worst-case or minmax-bounds, which hold for a class of functions and usually do not
include noise in the samples. For individual function approximation the majority of L2-error bounds
are stated in expectation, cf. [5, Thm. 1.1] for penalized least-squares, [10, Thm. 3] for plain least-
squares or, [21, Thm. 4.1], and [24, Thm. 6.1] for weighted least squares. Bounds, which hold with
high probability, are known for polynomial approximation, cf. [31, Thm. 3], wavelet approximation,
cf. [29, Thms. 3.20 & 3.21], or in a more general setting incuding noise in [11, Thm. 4.3] with the
coarser L∞-norm instead of the natural L2-norm in the estimate. Further, in [11, Thm. 4.1] an error
bound with the natural L2-norm estimate is presented in expectation with the same behaviour as we
will present with high probability. The contribution and novelty of this paper is twofold:

• We use concentration inequalities to show error bounds in the L2- and L∞-norm which hold
with high probability, including the noisy case. The behaviour of our bound is similar to
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[11, Thm. 4.1], which is stated in expectation. Approximating from an m-dimensional function
space we achieve the best error up to a multiplicative constant using logarithmic oversampling.
Note, there exists a distribution such that linear oversampling achieves the optimal error but
this is not constructive, cf. [14]. Including noise, our bounds reflect the typical bias-variance
trade off which one wants to balance to prevent over- or underfitting. The results enable to
give performance guarantees for model selection strategies like the balancing principle [37, 30]
or cross-validation [7, 6].

• For an application we have a look at approximation on the d-dimensional unit cube [0, 1]d when
samples are distributed uniform according to the Lebesgue measure. A result with focus on
polynomial approximation in the one-dimensional space is [31, Thm. 3] which is improved by
the general result [11, Thm. 2.1]. There, the aproximation error is estimated by the L∞-error
of the projection with high probability and to the more natural L2-error of the projection
in expectation. We obtain a bound by the L2-error of the projection which also holds with
high probability. A drawback of polynomials is the need for quadratic oversampling, which we
show for the Legendre polynomials but holds in general, cf. [31]. To circumvent this, we use
the eigenfunctions of the embedding Id: Hs → L2 from the Sobolev space Hs for s = 1, 2
which allow for logarithmic oversampling. The H1 basis, also known as half-period cosine,
was introduced in [25] and has become the standard in many applications and is researched
thouroughly, cf. [23, 53, 1, 2, 13, 46, 12, 27]. But also for functions in Sobolev spaces Hs of
higher smoothness their convergence is limited to be linear in theory (the rate 3/2 can be
observed in practice). This can be improved by using the H2 basis, examined theoretically in
[3, Section 3] to have quadratic convergence. So far it is not used as it is prone to numerical
errors and unusable for higher degree approximation. Here, we propose an approximation and
prove its accuracy which leads to a numerically stable way for approximating non-periodic
uniform data with quadratic convergence.

For a more detailed formulation we need some notation. Given an m-dimensional function space
Vm ⊂ L2, we define the best possible approximation (projection) to f : D → C in Vm and its error:

P (f, Vm, Lp) = argmin
g∈Vm

∥f − g∥Lp and e(f, Vm, Lp)Lq = ∥f − P (f, Vm, Lp)∥Lq

for p, q ∈ {2,∞}. Note, since Vm is finite-dimensional the minimum is actually attained. Following
[5, 10, 31, 11, 24, 29], we use weighted least squares Sm, defined in (3.1), as underlying approximation
method. Because of its linearity, the approximation error ∥f − Smy∥L2 splits as follows:

∥f − Smy∥2L2
= e(f, Vm, L2)

2
L2

+ ∥P (f, Vm, L2)− Smy∥2L2

≤ e(f, Vm, L2)
2
L2︸ ︷︷ ︸

truncation error

+2 ∥P (f, Vm, L2)− Smf∥2L2︸ ︷︷ ︸
discretization error

+2 ∥Smε∥2L2︸ ︷︷ ︸
noise error

.

For fixed number of points n, we have a look at the behaviour with respect to m, the dimension
of the approximation space Vm. The truncation error is the best possible benchmark and usually
has polynomial decay m−s for some rate s ≥ 1 depending on f and the choice of Vm. We show,
that the discretization error obeys the same decay as the truncation error. Thus, given logarithmic
oversampling, we obtain the best possible error up to a multiplicative constant in the noiseless case,
cf. Theorem 3.2.

Including noise, we show that we get an additional summand growing linear in m, cf. Theorems 1.1.
This resambles the well-known bias-variance trade off modeling the over- and undersmoothing effects
which one wants to balance, cf. [20, 37]. This linear behaviour in m is approved by [30, Thm. 4.9] (by
using the regularization gλ(σ) = 1/(λ+ σ) with λ = 0). An example of that behaviour for D = [0, 1]
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Figure 1.1. One-dimensional approximation on the unit-interval for three different
choices of m and the schematic behaviour of the L2-approximation error ∥f − Smy∥2L2

(solid line) split into the error for exact function values ∥f − Smf∥2L2
and the noise

error ∥Smε∥2L2
(dashed lines) with respect to m.

and ϱT = dx being the Lebesgue measure is depicted in Figure 4.1 where the detailed example is
found in Section 4. Our central theorem, complying this behaviour, looks as follows:

Theorem 1.1. Let f : D → C, x1, . . . ,xn, n ∈ N be points drawn according to a probability mea-
sure dϱS = 1/β dϱT and y = f + ε = (f(x1) + ε1, . . . , f(x

n) + εn)
T noisy function values where

ε = (ε1, . . . , εn)
T is a vector of independent complex-valued mean-zero random variables satisfying

E(|εi|2) ≤ σ2 and |εi| ≤ B for i = 1, . . . , n. Let further, t ≥ 0, Vm be an m-dimensional function space
with an L2(D, ϱT )-orthonormal basis η0, . . . , ηm−1 satisfying

10∥β(·)N(Vm, ·)∥∞(log(m) + t) ≤ n with N(Vm, ·) =
m−1∑
k=0

|ηk(·)|2 .

Then, for Sm the weighted least squares method defined in (3.1) with ωi = β(xi), we have with joint
probability exceeding 1− 3 exp(−t):

∥f − Smy∥2L2
≤ 14

(
e(f, Vm, L2)L2 +

√
t

n
e(f, Vm, L2)L∞

)2

+ 4∥β∥∞
(m
n

(
14B

√
tσ2 + σ2

)
+

128B2t

n

)
,

where L2 = L2(D, ϱT ) and L∞ = L∞(D, ϱT ).

The first line of the bound corresponds to the truncation error and discretization error, decaying in
m. Note, that the L∞-term with the prefactor n−1/2 behaves as the L2-term whenever β is bounded
from below, cf. Theorem 3.2. The second line is the error due to noise, increasing in m, cf. Figure 1.1.
The estimation of the noise error is using a Hanson-Wright concentration inequality, which can be found
using different assumptions. Thus, we can replace the noise model by general Bernstein conditions, cf.
Lemma 2.3, or sub-Gaussian noise, cf. [43]. This theorem extends to the L∞ case:

Theorem 1.2 (L∞-error bound with noise). Let the assumptions of Theorem 1.1 hold. Then, for Sm

the weighted least squares method defined in (3.1) with ωi = β(xi), we have with probability exceeding
1− 3 exp(−t):

∥f − Smy∥L∞ ≤
(
1 +

√
5N(Vm)

)(
e(f, Vm, L∞)L∞ +

√
t

n
e(f, Vm, L∞)L2

)
+ 2

√
∥β∥∞N(Vm)

√
m

n

(
14B

√
tσ2 + σ2

)
+

128B2t

n
.
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The bound is similar to [29, Thm. 3.21] in the wavelet setting but we use the best approximation
with respect to the more natural L∞ instead of L2. In addition to the error of the best approximation
we now have the additional factor N(Vm) due to using the norm estimate ∥g∥L∞ ≤

√
N(Vm)∥g∥L2

for functions g ∈ Vm. The same factor appears when approximating the worst-case error where it is
known to be necessary in various examples, e.g. [41, Sec. 7] or [47, Thm .1.1].

The sampling measure ϱS(E) :=
∫
E 1/β dϱT , induced by the probability distribution β, may differ

from the error measure ϱT , which is known as the change of measure and has applications in domain
adaptation, cf. [36]. We assume to know β exactly but it may be approximated as well, cf. [18]. Note,
β affects the maximal size of Vm in the assumption and the amplification of the noise in bound. There
are two extremal cases:

(i) Having β(x) = m/N(Vm,x), as it was done in [22, 34, 11, 24], we obtain the assumption

10∥β(·)N(Vm, ·)∥∞(log(m) + t) = 10m(log(m) + t) ≤ n ,

which allows for the biggest choice of m possible. But this spoils ∥β∥∞ in the error bound when
the Christoffel function attains small values.

(ii) For domains D with bounded measure, we may choose β(x) = ϱT (D), as it was done in [10, 11,
29]. As all weights ωi = ϱT (D), Sm becomes the plain least squares method. In this case, ∥β∥∞
is minimal and noise is amplified the least. But this choice spoils the assumption on the choice
of m when the Christoffel function N(Vm,x) attains big values. This effect is controllable, for
instance, when working with a bounded orthonormal system (BOS) (∥ηk∥∞ ≤ B for some B > 0
and all k). Then

N(Vm) ≤
m−1∑
k=0

∥ηk∥2∞ ≤ mB2

and the assumption on the size of Vm can be replaced by

10∥β(·)N(Vm, ·)∥∞(log(m) + t) ≤ 10ϱT (D)Bm(log(m) + t) ≤ n .

An interesting example, where these effects occur, is the approximation of functions on the unit
interval D = [0, 1] from samples given in uniformly random points.

• When using algebraic polynomials and the Lebesgue error measure dϱT = dx we have to
choose β ≡ 1 to obtain uniform random points. Orthogonalizing algebraic polynomials with
respect to the Lebesgue measure, we obtain ηk = Pk/∥Pk∥L2((0,1),dx) Legendre polynomials for

our approximation space Vm. Since ∥Pk∥2L2((0,1),dx)
= 2k + 1 and Pk(0) = 1, we have

N(Vm, 0) =

m−1∑
k=0

|Pk(0)|2

∥Pk∥2L2

=
m−1∑
k=0

(2k + 1) = m2 . (1.1)

Thus, this case falls into category (i) from above and spoils our choice of m ≤
√
n, i.e.,

quadratic oversampling as in [31].

• When using algebraic polynomials and the Chebyshev error measure dϱT = (1 − (2x −
1)2)−1/2 dx we have to choose β(x) = π

4 (1− (2x− 1)2)−1/2 to obtain uniform random points.
Orthogonalizing algebraic polynomials with respect to the Chebyshev measure, we obtain
Chebyshev polynomials ηk(x) = Tk(x) = cos(k arccos(2x − 1)) for our approximation space
Vm. These are a BOS, but the distribution β spoils both the assumption on m and the er-
ror bound, since β diverges at the border (this effect can be circumvented using a padding
technique at the border as we discuss in Section 4).
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• In Section 4.1 we construct orthogonal functions with respect to the Sobolev space inner
product

⟨f, g⟩Hs(0,1) = ⟨f, g⟩L2((0,1),dx) + ⟨f (s), g(s)⟩L2((0,1),dx) ,

for s = 1 and s = 2, which are orthogonal with respect to the L2((0, 1),dx) inner product as
well. For s = 1, these functions were originally introduced in [25] and for s = 2 in [3, Section
3], where also higher orders can be found.

We show that they form a BOS and, by (ii) above, this basis is then suitable for approximation
in uniform random points on D = [0, 1] using plain least squares and only logarithmic oversam-
pling. The H2 basis is prone to numerical errors. To overcome this, we propose a numerically
stable approximation and proof its accuracy.

As for the structure of this paper, we start with some tools from probability theory in Section 2. In
Section 3 we show error bounds for the weighted least squares method. The construction of the H1

and H2 basis mentioned above are found in Section 4 along with a comparison to the Legendre and
Chebyshev polynomials. To indicate the applicability of our error bounds and the proposed basis, we
conduct numerical experiments in one and five dimensions.

2. Tools from probabilty theory

For the later analysis we need concentration inequalities starting with Bernstein’s inequality, which is
found in the standard literature, cf. [45, Theorem 6.12] or [17, Corollary 7.31].

Theorem 2.1 (Bernstein). Let ξ1, . . . , ξn be independent real-valued mean-zero random variables sat-
isfying E(ξ2i ) ≤ σ2 and ∥ξi∥∞ ≤ B for i = 1, . . . , n and real numbers σ2 and B. Then

1

n

n∑
i=1

ξi ≤
2Bt

3n
+

√
2σ2t

n

with probability exceeding 1− exp(−t).

Bernstein’s inequality gives a concentration bound for the sum of independent random variables.
We need similar bounds for quadratic forms in random vectors, which are known as Hanson-Wright
inequalities. To formulate them, we need to introduce the spectral norm and the Frobenius norm of a
matrix A ∈ Cm×n

∥A∥2→2 =
√

λmax(A∗A) = σmax(A) and ∥A∥F =

√√√√ m∑
k=1

n∑
i=1

|ak,i|2 ,

where λmax and σmax denote the largest eigenvalues and singular values, respectively. The following
result is such an inequality with a Bernstein condition on the random variables and was shown in [4,
Theorem 3].

Theorem 2.2 (Hanson-Wright). Let ξ = (ξ1, . . . , ξn)
T be a vector of independent mean-zero random

variables such that for all integers p ≥ 1

E(|ξi|2p) ≤ p!B2p−2σ2
i /2 (2.1)

for real numbers B ≥ 0, σi ≥ 0, and all i = 1, . . . , n. Let further A ∈ Cn×n and m = E(ξ∗Aξ). Then
Dσ = diag(σ1, . . . , σn)

ξ∗Aξ −m ≤ 256B2∥ADσ∥2→2t+ 8
√
3B∥ADσ∥F

√
t

with probability exceeding 1− exp(−t).
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The following is a special case of the above Hanson-Wright inequality for Hermitian positive semi-
definite matrices and random variables with known variance E(|ξi|2) and a uniform bound ∥ξi∥∞.

Corollary 2.3. Let ξ = (ξ1, . . . , ξn)
T be a vector of independent complex-valued mean-zero random

variables satisfying E(|ξi|2) ≤ σ2 and ∥ξi∥∞ ≤ B for i = 1, . . . , n. Then for all A ∈ Cm×n

∥Aξ∥22 ≤ 128B2∥A∥22→2t+ (8
√
3B

√
tσ2 + σ2)∥A∥2F

with probability exceeding 1− exp(−t).

Proof. Since ∥Aξ∥22 = ξ∗A∗Aξ is a quadratic form we want to apply Theorem 2.2 on A∗A. For that

we check the moment condition (2.1) on ξ21 , . . . , ξ
2
n. For p = 1 it is fulfilled for constants B/

√
2 and

(
√
2σi)

2. For p ≥ 2, we have p! ≥ 2p−1 and obtain

E(|aiξi|2p) ≤ ∥ξi∥2p−2
∞ E(|ξi|2)

≤ (B)2p−2σ2

≤ p!
( B√

2

)2p−2 (
√
2σ)2

2
.

Therefore, Theorem 2.2 is applicable.
It is left to estimate the expected value. Since ξ1, . . . , ξn are independent and have bounded variance,
we obtain

E
(
∥Aξ∥22

)
=

m∑
k=1

n∑
i=1

n∑
j=1

ai,kaj,k E(ξiξj)

=
m∑
k=1

( n∑
i=1

∑
j ̸=i

ai,kaj,k E(ξiξj)
)
+

n∑
i=1

|ai,k|2E(|ξi|2)

≤ σ2∥A∥2F .

The following tool is a concentration bound on the maximal singular values of random matrices
which was shown in [51, Theorem 1.1].

Lemma 2.4 (Matrix Chernoff). For a finite sequence A1, . . . ,An ∈ Cm×m of independent, Hermitian,
positive semi-definite random matrices satisfying λmax(Ai) ≤ R almost surely it holds

P
(
λmin

( n∑
i=1

Ai

)
≤ (1− t)µmin

)
≤ m exp

(
− µmin

R
(t+ (1− t) log(1− t))

)
≤ m exp

(
− µmint

2

2R

)
and

P
(
λmax

( n∑
i=1

Ai

)
≥ (1 + t)µmax

)
≤ m exp

(
− µmax

R
(−t+ (1 + t) log(1 + t))

)
≤ m exp

(
− µmaxt

2

3R

)
for t ∈ [0, 1] where µmin := λmin(

∑n
i=1E(Ai)) and µmax := λmax(

∑n
i=1E(Ai)).
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Proof. The first estimates are provided by [51, Theorem 1.1]. Based on the Taylor expansion

(1 + t) log(1 + t) = t+
∞∑
k=2

(−1)k

k(k − 1)
tk ,

which holds true for t ∈ [−1, 1], we further derive the inequalities

t+ (1− t) log(1− t) =
∞∑
k=2

1

k(k − 1)
tk ≥ t2

2

and −t+ (1 + t) log(1 + t) =
∞∑
k=2

(−1)k

k(k − 1)
tk ≥ t2

2
− t3

6
≥ t2

3

for the range t ∈ [0, 1].

3. Error bounds for least squares

In this section we develop L2- and L∞-error bounds for the least squares method. To this end we
introduce some notation and the method itself. Let η0, . . . , ηm−1 : D → C be an L2-orthonormal basis
of Vm,

N(Vm,x) =
m−1∑
k=0

|ηk(x)|2 and N(Vm) = sup
x∈D

N(Vm,x)

be the Christoffel function and its supremum. For our approximation method Sm we use the weighted
least squares approximation depending on η0, . . . , ηm−1 and x1, . . . ,xn:

(Smy)(x) =

m−1∑
k=0

ĝkηk(x) with ĝ = argmin
â∈Cm

∥Lâ− y∥2W ,

L =

η0(x
1) . . . ηm−1(x

1)
...

. . .
...

η0(x
n) . . . ηm−1(x

n)

 ∈ Cn×m, and W =

ω1

. . .

ωn

 ∈ [0,∞)n×n (3.1)

where ∥Lâ − y∥2W = (Lâ − y)∗W (Lâ − y). If all weights are equal we speak of plain least squares
approximation.

The coefficients ĝ of the approximation Smy are found by solving the normal equation

ĝ = (L∗WL)−1L∗Wy .

Doing this by the means of an iterative solver, the stability and the iteration count for a desired
precision are determined by the spectral properties of the above matrix, cf. [19, Theorem 3.1.1].

However, these are fully determined by the spectral properties of W 1/2L, since for a singular value
decomposition W 1/2L = UΣV ∗, we obtain

(L∗WL)−1L∗W 1/2 = V (Σ∗Σ)−1ΣU∗ . (3.2)

For f =
∑m−1

k=0 f̂kηk ∈ Vm, the singular values of W 1/2L relate the coefficients f̂ = (f̂0, . . . , f̂m−1)
T

with the samples f = (f(x1), . . . , f(xn))T = Lf̂ . Such connection is known as L2-Marcinkiewicz-
Zygmund inequality for Vm. It was established in [11, Thm. 2.1] that random points also fulfill this,
which is central in all theorems presented. This makes it applicable in a very general setting, cf. [33,
Theorem 2.3], [32, Theorem 5.1], [15, Lemma 2.1], or [8, Theorem 2.1].
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Lemma 3.1. Let t ≥ 0, n ∈ N, x1, . . . ,xn be points drawn according to a probability measure dϱS =
1/β dϱT . Let further, Vm be an m-dimensional function space with an orthonormal basis η0, . . . , ηm−1

in L2 with m satisfying

10∥β(·)N(Vm, ·)∥∞(log(m) + t) ≤ n

and L,W be as in (3.1) with ωi = β(xi). Then

n

2
∥ĝ∥22 ≤ ∥W 1/2Lĝ∥22 ≤

3n

2
∥ĝ∥22 for all ĝ ∈ Cm,

where each inequality holds with probability exceeding 1− exp(−t), repectively.

The proof ideas go back to [10, Thm. 1] and [11, Thm. 2.1] but for the sake of readability we state
it here as well.
Proof. The result is a direct consequence of Tropp’s result in Lemma 2.4. For a randomly chosen point
xi we define the random rank-one matrix Ai =

1
nβ(x

i)(yi ⊗ yi) with yi = (η0(x
i), . . . , ηm−1(x

i))T.
By construction, it holds

n∑
i=1

Ai = L∗WL

and by the orthogonality of ηk(
E(Ai)

)
k,l

=
1

n

∫
D
ηk(x)ηl(x)β(x)β

−1(x) dϱT (x) =
δk,l
n

,

which gives E
(∑n

i=1Ai

)
= Idm×m and, therefore, µmax = µmin = 1. Further, we have

λmax

( 1

n
β(xi)(yi ⊗ yi)

)
=

1

n
β(xi)∥yi∥22 ≤

1

n
∥β(·)N(Vm, ·)∥∞ .

Lemma 2.4 with t = 1/2 then gives the lower bound

P
(
λmin

( 1

n
L∗WL

)
≤ 1

2

)
≤ m exp

(
− n

10
∥β(·)N(Vm, ·)∥−1

∞

)
,

which is smaller than exp(−t) by the assumption on m.
The bound for the largest eigenvalue works analogue.

We now formulate a bound on the L2-error of the weighted least squares method for exact function
values. This result is heavily based on [29, Theorem 3.20] which extends to a more general setting.

Theorem 3.2 (L2-error bound without noise). Let f : D → C, x1, . . . ,xn, n ∈ N be points drawn
according to a probability measure dϱS = 1/β dϱT and y = (f(x1), . . . , f(xn))T exact function values.
Let further, t ≥ 0, Vm be an m-dimensional function space with an orthonormal basis η0, . . . , ηm−1

satisfying

10∥β(·)N(Vm, ·)∥∞(log(m) + t) ≤ n .

Then, for Sm the weighted least squares method defined in (3.1) with ωi = β(xi), we have with proba-
bility exceeding 1− 2 exp(−t):

∥f − Smy∥2L2
≤ 8

(
e(f, Vm, L2)L2 +

√
t

n
e(f, Vm, L2)L∞

)2

≤ 8
(
1 +

√
N(Vm)

∥β(·)N(Vm, ·)∥∞

)2
e(f, Vm, L2)

2
L2

.
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Proof. For abbreviation, we use e2 = e(f, Vm, L2)L2 and e∞ = e(f, Vm, L2)L∞ . Further, we define
the event

A :=
{
x1, . . . ,xn ∈ D :

n

2
≤ ∥W 1/2L∥22→2

}
(3.3)

which has probability P(A) ≥ 1 − exp(−t) by Lemma 3.1 and the assumption on Vm. We split the
approximation error

∥f − Smf∥2L2
= e22 + ∥P (f, Vm, L2)− Smf∥2L2

.

Due to the invariance of Sm to functions in Vm, we pull it in front and use compatibility of the operator
norm to obtain

∥f − Smf∥2L2
≤ e22 + ∥Sm∥22→2

n∑
i=1

β(xi)|(f − P (f, Vm, L2))(x
i)|2 .

By (3.2) and the event (3.3), we have ∥Sm∥22→2 = ∥W 1/2L∥−1
2→2 ≤ 2/n. Thus,

∥f − Smf∥2L2
≤ 3e22 +

2

n

n∑
i=1

∣∣∣|ωi(f − P (f, Vm, L2))(x
i)|2 − e22

∣∣∣ .
It remains to estimate the latter summand. We define

ξi = β(xi)
∣∣∣(f − Pmf)(xi)

∣∣∣2 − e22,

which is mean-zero since we sample with respect to the distribution ϱS . Further, we have

E(ξ2i ) = E
(
(β(x1))2|(f − Pmf)(xi)|4

)
− e42 ≤ ∥f − Pmf∥2L∞e22 − e42 ≤ e22(e2 + e∞)2 ,

and

∥ξi∥∞ ≤ sup
x∈D

∣∣∣β(x)|(f − Pmf)(x)|2 − e22

∣∣∣ ≤ e2∞ + e22 .

Thus, the conditions in order to apply Bernstein are fulfilled:

1

n

n∑
i=1

ξi ≤
2t

3n

(
e22 + e2∞

)
+

√
2t

n

(
e∞e2 + e22

)
≤

(2
3
+
√
2
)
e22 +

√
2t

n
e∞e2 +

2t

3n
e2∞ (3.4)

with probability 1− exp(−t), where t ≤ n was used in the last inequality. Thus,

∥f − Smf∥2L2
≤

(13
3

+ 2
√
2
)
e22 +

√
8t

n
e∞e2 +

4t

3n
e2∞

≤
(13
3

+ 2
√
2
)(

e2 +

√
t

n
e∞

)2
.

By union bound we obtain the overall probability exceeding the sum of the probabilities of events
given by (3.3) and (3.4).
The second bound is attained as follows: For any g =

∑m
k=1⟨g, ηk⟩L2ηk ∈ Vm the Hölder-inequality

gives an estimate on the L∞-norm in terms of the L2-norm:

∥g∥L∞ =
∥∥∥ m∑

k=1

⟨g, ηk⟩L2ηk

∥∥∥
L∞

≤
∥∥∥
√√√√ m∑

k=1

|⟨g, ηk⟩L2 |2

√√√√ m∑
k=1

|ηk|2
∥∥∥
L∞

=
√
N(Vm)∥g∥L2 . (3.5)

9
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Using the assumption on Vm, we have√
t

n
e(f, Vm, L2)L∞ ≤

√
tN(Vm)

n
e(f, Vm, L2)L2

≤

√
t

10(log(m) + t)

N(Vm)

∥β(·)N(Vm, ·)∥∞
e(f, Vm, L2)L2

≤

√
N(Vm)

∥β(·)N(Vm, ·)∥∞
e(f, Vm, L2)L2 .

Provided N(Vm)/∥β(·)N(Vm, ·)∥∞ is finite, Theorem 3.2 says that the least squares approximation
from a finite-dimensional function space Vm and given the oversampling condition has the same error
as the L2-projection up to a multiplicative constant with high probability. This improves on [11,
Theorem 2.1] where the same bound was shown in expectation or bounded by the L∞-error with high
probability.

Next, we prove the central theorem which includes the noisy case.
Proof. [Proof of Theorem 1.1] We split the approximation error

∥f − Smy∥2L2
≤ e(f, Vm, L2)L2 + 2∥f − Smf∥2L2

+ 2∥Smε∥2L2

and bound the first two summands as in the proof of Theorem 3.2 with the events given by (3.3) and
(3.4). Note, the constant changes from 13/3 + 2

√
2 to 23/3 + 4

√
2 ≤ 14. Now, we focus on the third

summand. Applying Corollary 2.3 gives

∥Smε∥2L2
= ∥(L∗WL)−1L∗Wε∥22

≤ 128∥ε∥2∞∥(L∗WL)−1L∗W ∥22→2t+ (8
√
3∥ε∥∞

√
tσ2 + σ2)∥(L∗WL)−1L∗W ∥2F (3.6)

with probability 1− exp(−t). Since L∗WL ∈ Cm×m, the matrix (L∗WL)−1LW 1/2 has rank at most
m and, thus, we use ∥A∥2F ≤ rank(A)∥A∥22→2 to obtain

∥(L∗WL)−1L∗W ∥2F ≤ ∥β∥∞m∥(L∗WL)−1L∗W 1/2∥22→2 ≤ ∥β∥∞
2m

n
where the last inequality follows from (3.2) and event (3.3). Therefore,

∥Smε∥2L2
≤ ∥β∥∞

(
128∥ε∥2∞

2

n
t+ (8

√
3∥ε∥∞

√
tσ2 + σ2)

2m

n

)
.

By union bound we obtain the overall probability exceeding the sum of the probabilities of the events
given by (3.3), (3.4), and (3.6).

Next, we prove Theorem 1.2 bounding the approximation error of least squares in the L∞-norm.
Proof. [Proof of Theorem 1.2] For abbreviation, we use e2 = e(f, Vm, L∞)L2 and e∞ = e(f, Vm, L∞)L∞ .
Using (3.5) we reduce the L∞-case to the L2-case which we already covered. We split the approximation
error

∥f − Smy∥L∞ ≤ ∥f − P (f, Vm, L∞)∥L∞ + ∥P (f, Vm, L∞)− Smf∥L∞ + ∥Smε∥L∞

≤ e∞ +
√
N(Vm)∥P (f, Vm, L∞)− Smf∥L2 +

√
N(Vm)∥Smε∥L2 .

10
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Analogously to (3.4) we obtain

∥P (f, Vm, L∞)− Smf∥2L2
≤

(2
3
+
√
2
)
e2∞ +

√
2t

n
e∞e2 +

2t

3n
e22

≤
(2
3
+
√
2
)(

e∞ +

√
t

n
e2

)2
,

where the last inequality follows from t ≤ n. Thus,

∥f − Smy∥L∞ ≤
(
1 +

√
4 + 6

√
2

3
N(Vm)

)(
e∞ +

√
t

n
e2

)
+
√
N(Vm)∥Smε∥L2 .

Using the same bound as in Theorem 1.1 for ∥Smε∥L2 we obtain the assertion.

4. Application on the unit cube

In this section we are interested in approximating functions on the d-dimensional unit cube D =
[0, 1]d when sample points are drawn uniformly, i.e., with respect to the Lebesgue measure dx. The
deterministic equivalent to uniform sampling are equispaced points. When using these for polynomial
interpolation, Runge already knew in 1901, that higher degree polynomials lead to oscillatory behaviour
towards the border which spoil the approximation error. Even though, we do not interpolate, we will
observe similar behaviour using Legendre and Chebyshev polynomials. We propose alternative bases,
which are stable for large m = dim(Vm) as well.

Throughout this section we have L2 = L2((0, 1)
d, dx) unless stated otherwise.

We consider function spaces to know about the decay of the coefficients. Note, that for individual
functions they may decay faster in contrast to the worst-case setting. Literature for the worst-case
setting can be found in the papers [26] for random points with logarithmic oversampling, [33, 28] for
subsampled points with linear oversampling and a logarithmic gap in the error bound (this was made
constructive in [8]), and [16] for subsampled points with linear oversampling and sharp bounds.

4.1. Sobolev spaces on the unit interval

Let d = 1, D = [0, 1] be the unit interval equipped with the Lebesgue measure dx. In order to get hold
on appropriate finite-dimensional function spaces Vm for approximation, we have a look at Sobolev
spaces Hs = Hs(0, 1) with integer smoothness s ≥ 0. The inner product of these Hilbert spaces is
given by

⟨f, g⟩Hs = ⟨f, g⟩L2 + ⟨f (s), g(s)⟩L2 .

Since ∥f∥2L2
≤ ∥f∥2Hs = ⟨f, f⟩Hs , the embedding operator Id: Hs ↪→ L2 is compact. Thus, W =

Id∗ ◦ Id : Hs → Hs is compact and self-adjoint. Applying the spectral theorem gives for f ∈ Hs

W (f) =
∞∑
k=0

σk⟨f, ek⟩Hsek

where (σk)
∞
k=0 is the non-increasing rearrangement of the singular values of W and (ek)

∞
k=0 ⊂ Hs the

corresponding system of eigenfunctions forming an orthonormal basis in Hs. Since

⟨ek, el⟩L2 = ⟨Id(ek), Id(el)⟩L2 = ⟨W (ek), el⟩Hs = σ2
k⟨ek, el⟩Hs = σ2

kδk,l ,

11
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the functions ηk = σ−1
k ek form an orthonormal system in L2. Setting Vm = span{ηk}m−1

k=0 , we obtain
for Hs ∋ f =

∑∞
k=0⟨f, ek⟩Hsek

e(f, Vm, L2)
2
L2

=
∥∥∥ ∞∑
k=m

⟨f, ek⟩Hsek

∥∥∥2
L2

=
∞∑

k=m

∣∣∣⟨f, ek⟩Hsσk

∣∣∣2 ≤ ∥f∥2Hsσ2
m . (4.1)

Thus, the eigenfunctions corresponding to the largest singular values are a canonical candidate for
the approximation space Vm. To put this into concrete terms, in the next two theorems, we give the
singular values and eigenfunctions for H1 and H2.

Theorem 4.1. The operator W = Id∗ ◦ Id : H1 → H1 has singular values σ2
k = 1

1+π2k2
with corre-

sponding L2-normalized eigenfunctions

ηk(x) =

{
1 for k = 0√
2 cos(πkx) for k ≥ 1 .

Proof. For σ a singular value of W with corresponding eigenfunction η ∈ H1 and φ ∈ H1 a test
function, we have

⟨η, φ⟩L2 = ⟨Id(η), Id(φ)⟩L2 = ⟨W (η), φ⟩H1 = σ2⟨η, φ⟩H1 = σ2
(
⟨η, φ⟩L2 + ⟨η′, φ′⟩L2

)
.

Partial differentiation yields ⟨η′, φ′⟩L2 = η′(1)φ(1)− η′(0)φ(0)− ⟨η′′, φ⟩L2 . Thus〈1− σ2

σ2
η + η′′, φ

〉
L2

= η′(1)φ(1)− η′(0)φ(0) .

Since this has to hold for all test functions φ ∈ H1, we obtain the differential equation

1− σ2

σ2
η = −η′′ with η(0)′ = η(1)′ = 0 .

The proposed functions are exactly the ones fulfilling this differential equation.

To our knowledge, the H1 basis above was originally introduced in [25] and was already considered
in [53, Lemma 4.1] with the same proof technique, in [23] as a modified Fourier expansion. It is further
used in [46] as a basis for multivariate approximation in the context of samples along tent-transformed
rank-1 lattices, and in [1, 2, 13, 12, 27]. The following H2 basis was already posed in [3, Section 3],
where higher-order Sobolev-spaces are found as well. The proof of the following theorem is found in
Appendix A.

Theorem 4.2. The operator W = Id∗ ◦ Id : H2 → H2 has singular values σ2
0 = 1 with corresponding

L2-normalized eigenfunctions

η0(x) = 1 and η1(x) = 2
√
3x−

√
3

and for k ≥ 2, σ2
k = 1

1+t4k
with tk > 0 the solutions of cosh(tk) cos(tk) = 1 (tk ≈ 2k−1

2 π, cf. Lemma A.1)

and

ηk(x) = cosh(tkx) + cos(tkx)−
cosh(tk)− cos(tk)

sinh(tk)− sin(tk)
(sinh(tkx) + sin(tkx)) .

Further, it holds

∥ηk∥∞ ≤


1 for k = 0√
3 for k = 1√
6 for k ≥ 2 .

12
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The singular values σk for H2 decay quadratic in contrast to linearly for H1. Thus, approximating
a twice differentiable function, m = dim(Vm) can be chosen smaller when using the H2 basis whilst
achieving the same truncation error e(f, Vm, L2)L2 . Furthermore, as noise enters with the factor m/n,
cf. Theorem 1.1, this helps prevent overfitting as well and leads to a smaller approximation error.

However, as cosh and sinh both grow exponentially, the representation of the H2 basis in Theo-
rem 4.2 is prone to cancellations and, therefore, numerical unstable. In the next theorem we pose an
approximation which is numerically stable.

Theorem 4.3. For 0 < t2 < t3 < . . . fulfilling cosh(tk) cos(tk) = 1, let ηk be as in Theorem 4.2.
Further, for n ≥ 2, let t̃k = π(2k − 1)/2 and

η̃k(x) =
√
2 cos

(
t̃kx+ π/4

)
+ 1[0,1/2](x) exp

(
− t̃kx

)
+ 1[1/2,1](x)(−1)k exp

(
− t̃k(1− x)

)
.

Then |ηk(x) − η̃k(x)| ≤ ε for k ≥ 2
π log(16/ε) + 1. In particular, the approximation η̃k is exact up to

machine precision ε = 10−16 for k ≥ 27.

For the proof see Appendix A. For the numerical experiments we use the exact representation from
Theorem 4.2 for m < 10 and the approximation from Theorem 4.3 for m ≥ 10.

4.2. Polynomial approximation on the unit interval

Next, we examine how the H1 and H2 bases compares to polynomial approximation when points
are distributed uniformly, i.e., Vm = Πm = span{1, x, . . . , xm−1} and ϱS(x) = 1/β(x)dϱT (x) = dx.
Polynomial approximation results often assume f ∈ Xs with

Xs := {f : [0, 1] → C : f, . . . , f (s−1) absolute continuous, f (s) ∈ BV ([0, 1])} ,

where BV ([0, 1]) are all functions with bounded variation. This assumtion is stronger than assuming
f ∈ Hs as the following remark shows.

Remark 4.4 (Xs ↪→ Hs+1/2−ε). For a rigorous investigation of the relation of Xs and Hs, we need
to define the Besov space Bs

p,q for p = 1, q = ∞, and integer smoothness s

Bs
1,∞ :=

{
f ∈ L1 : sup

h̸=0

∥∆2
hf

(s−1)∥L1

|h|
< ∞

}
with the finite difference (∆hf)(x) := f(x+ h)− f(x) and ∆2

h = ∆h ◦∆h, cf. [50, Section 1.2.5].

For f ∈ Xs the derivative f (s) is of bounded variation. Thus, also the finite difference ∆2
hf is of

bounded variation. In particular, f (s) ∈ L1 and, therefore, f ∈ Bs+1
1,∞. By [50, (2.3.2/23)], we further

have Bs+1
1,∞ ↪→ Bs+1−ε

1,1 for any ε > 0. Thus,

Xs ↪→ Bs+1
1,∞ ↪→ Bs+1−ε

1,1 ↪→ Hs+1/2−ε ,

where the third embedding follows from the Sobolev inequality, cf. [49, (2.7.1/1)], and the Sobolev
space for non-integer smoothness s consists of functions f such that ⟨f, ηk⟩ ≤ Ck−s for some constant
C < ∞.

Assuming f ∈ Xs, we have a look into approximating with Legendre- and Chebyshev polynomials:

• The canonical choice for the target measure is dϱT = dx and β ≡ 1 such that ϱS(x) =
1/β(x)dϱT (x) = dx. Orthogonalizing the first m− 1 monomials with respect to dϱT (x) = dx,
we obtain the Legendre polynomials Pk.

13
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For the error of the projection, assuming f ∈ Hs, the following was shown in [52, Theorem 3.5]:

e(f, Vm, L2)
2
L2

≤ 2V

π(s+ 1/2)(m− s)2s+1
, (4.2)

where V is the total variation of f (s). With this stronger assumption f ∈ Xs half an order is
gained by polynomial approximation in contrast to theHs bases. This is expected as we require
half an order of smoothness in L2 more, cf. Remark 4.4. (In the later numerical experiments,
we observe the gain of half an order for H1 and H2 as well.)

A drawback comes with the Christoffel function N(Vm, ·). Since N(Vm, 0) = m2, cf. (1.1), this
spoils the choice of m to quadratic oversampling:

10m2(log(m) + t) ≤ n ,

which is usual for polynomial approximation in uniform points, cf. [31].

• When using the Chebyshev measure dϱT (x) = (1− (2x− 1)2)−1/2 dx we have to compensate

with β(x) = (1 − (2x − 1)2)−1/2 to obtain uniform random samples as well. Orthogonalizing
the first m − 1 monomials with respect to the Chebyshev measure, we obtain the Chebyshev
polynomials Tk, which are a BOS.

As for the error, assuming f ∈ Xs, we use [48, Theorem 7.1] or [38, Theorem 6.16] to obtain
the same bound as for Legendre polynomials (4.2) but with respect to the L2((0, 1), (1− (2x−
1)2)−1/2dx) norm.

As ∥β∥∞ diverges at the border, this spoils the choice of the polynomial degree m and our
bound. Note, when we exclude some area around the border for sampling, it does not di-
verge and the resulting error can be controlled. This is called padding and was done in [39,
Section 4.1.2]

Thus, with polynomial approximation we assume half an order of smoothness more, cf. Remark 4.4,
which we also see in the approximation rate O(ms+1/2).

Remark 4.5. Note, when using the Chebyshev polynomials and samples with respect to the Cheby-
shev measure, we have β ≡ 1. Since the Chebyshev polynomials are a BOS, this does not spoil our
bounds.

Furthermore, using the Legendre polynomials (dϱT = dx) and samples with respect to the Cheby-

shev measure (β(x) = π(1− (2x− 1)2)1/2) works as well. To see this we use [42, Lemma 5.1]:√
1− (2x− 1)2|Pk(x)|2 ≤

2

π

(
2 +

1

k

)
for k ≥ 1. Thus, ∥β(·)N(Vm, ·)∥∞ and ∥β(·)∥∞ are bounded and do not spoil the choice of polynomial
degree m nor the error bound.

4.3. Numerics on the unit interval

To support our findings, we give a numerical example. As a test function we use

f(x) = Bcut
2 (x) with Bcut

2 (x) =

{
−x2 + 3/4 for x ∈ [0, 1/2]

x2/2− 3/2x+ 9/8 for x ∈ [1/2, 1]
(4.3)

which was already considered in [40, 35]. The function Bcut
2 is shown in Figure 1.1 and is a cutout of

the B-spline of order two. It and its first derivative are absolute continuous and the second derivative
is of bounded variation. Therefore f ∈ X3 and the polynomial approximation bounds from above are

14
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applicable. According to Remark 4.4 we further have f ∈ H5/2−ε for any ε > 0, i.e., there exists C ≥ 0
such that for k ≥ 0 it holds ⟨f, ηk⟩L2 ≤ Ck−5/2+ε. In particular, f ∈ H2 and (4.1) is applicable for
approximating with the H1 and H2 bases.

We sample f in 10 000 uniformly random points and add 0.1%M Gaussian noise to obtain y = f+ε,
where M = maxx∈[0,1] f(x) −minx∈[0,1] f(x) = 5/8. For Vm we consider the four choices from above:

The Chebyshev polynomials Vm = span{Tk}m−1
k=0 (dϱT (x) = (1− (2x− 1)2)−1/2 dx and β = π/2); the

Legendre polynomials Vm = span{Pk}m−1
k=0 (dϱT (x) = dx and β ≡ 1); the first m basis functions of H1

from Theorem 4.1, and the the first m basis functions of H2 from Theorems 4.2 and 4.3 (dϱT (x) = dx
and β ≡ 1 as well). For m = dim(Vm) up to 1 000 we do the following:

(i) Compute the minimal and maximal singular values of 1/
√
nW 1/2L, with W and L given in

(3.1).

(ii) We use least squares with 20 iterations to obtain the approximation Smy =
∑m−1

k=0 ĝkηk, defined
in (3.1).

(iii) We compute the L2-error by using Parseval’s equality:

∥f − Smy∥2L2
= ∥f∥2L2

−
m−1∑
k=0

|f̂k|2 +
m−1∑
k=0

|f̂k − ĝk|2 ,

where the coefficients f̂k = ⟨f, ηk⟩L2 are computed analyticaly.

(iv) We compute the split approximation error:

∥f − Smy∥2L2
≤ 2∥f − Smf∥2L2

+ 2∥Smε∥2L2
,

where we compute both quantities separately, again, using Parseval’s equality.

The results are depicted in Figure 4.1.

• The smallest singular values for the Chebyshev polynomials and the Legendre polynomials
decay rapidly for bigger m. This coincides with the violation of the assumtion in Lemma 3.1
for small m:

10∥β(·)N(Vm, ·)∥∞(log(m) + t) ≤ n,

where ∥β(·)N(Vm, ·)∥∞ is unbounded in the Chebyshev case and quadratic in the Legendre

case, cf. (1.1). In this experiment, form = 1000 the condition number σmax(W
1/2L)/σmin(W

1/2L)
exceeded 1029 for the algebraic polynomials and was below 14 for the Hs basis.

• The error for exact function values ∥f − Smf∥2L2
has decay 3/2 for H1 and 5/2 for the other

bases. This conforms with the theory for the polynomial bases. For the H1 and H2 bases the
theory predicted only decay rate 1 and 2, cf. Theorems 4.1, 4.2, and (4.1).

• For the noise error ∥Smε∥2L2
we observe linear growth in m = dim(Vm) as predicted in The-

orem 1.1. Furthermore, this error is bigger by a factor of around 40 in the Chebyshev case
compared to the others. The maximal weight ∥W ∥∞ in this case is around 40 as well. The
error due to noise in our bound has the factor ∥β∥∞ which can be replaced by ∥W ∥∞ to
sharpen the bound and explain this effect.

This numerical experiment and the earlier theoretical discussion shows, that the H1 and the H2

bases are suitable for approximating functions on the unit interval given in uniform random samples.
They are numerically stable in contrast to polynomial approximation with Chebyshev or Legendre. In
particular, the least squares matrix is well-conditioned and we can limit the iterations when using an
iterative solver, cf. [19, Theorem 3.1.1].
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Figure 4.1. One-dimensional experiment for different choices of Vm. Top row: minimal
and maximal singular value of 1/

√
nW 1/2L. Bottom row: the L2-approximation error

∥f −Smy∥2L2
(solid line) split into the error for exact function values ∥f −Smf∥2L2

and

the noise error ∥Smε∥2L2
(dashed lines) with respect to m.

4.4. Sobolev spaces with dominating mixed smoothness on the unit cube

The ideas from Subsection 4.1 can be extended to higher dimensions using the concept of dominating
mixed smoothness. We focus on the case of H1 and H2, but the same can be done for polynomials as
well, cf. [44, Section 8.5.1].

LetD = [0, 1]d be the d-dimensional unit cube equipped with the Lebesgue measure dx. The Sobolev
space with dominating mixed smoothness of integer degree s ≥ 0 is given by Hs

mix = Hs
mix(0, 1)

d =
Hs(0, 1)⊗ · · · ⊗Hs(0, 1). The inner product of these Hilbert spaces is given by

⟨f, g⟩Hs
mix

=
∑

j∈{0,s}d
⟨D(j)f,D(j)g⟩L2 .

With σk and ηk the singular values and eigenfunctions of Hs, the singular values and eigenfunctions
of W = Id∗ ◦ Id : Hs

mix → Hs
mix extend as follows:

σ2
k =

d∏
j=1

σ2
kj

and ηk(x) =
d∏

j=1

ηkj (xj) .

To obtain the eigenfunctions corresponding to the smallest singular values, we now work with multi-
indices k. The indices corresponding to the largest singular values lie on a, so called, hyperbolic cross

IR(H
s
mix) :=

{
k ∈ Nd :

d∏
j=1

σ2
kj

≥ R
}
.

For Vm = span{ηk : k ∈ IR(H
s
mix)} and f ∈ Hs

mix, we obtain by (4.1)

e(f, Vm, L2)L2 ≤ R∥f∥2Hs
mix

.
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IR(H
1
mix) with 254 frequencies

and R = 5.3 · 10−5

IR(H
2
mix) with 254 frequencies

and R = 8.3 · 10−8

Figure 4.2. Hyperbolic cross in three dimensions.

In Figure 4.2 we have equally sized index sets for H1
mix and H2

mix. Note, that R is smaller for H2
mix as

its singular values decay faster, cf. Theorems 4.1 and 4.2.

4.5. Numerics on the unit cube

For a numerical experiment we do the same as in the one-dimensional case but only consider the H2
mix

case. For our test function we tensorize the B-Spline cutout

f(x) =
d∏

j=1

Bcut
2 (xj)

where Bcut
2 was defined in (4.3). We increase the dimension to d = 5 and the number of sam-

ples to 1 000 000 and use Gaussian noise with variance σ2 ∈ {0.00, 0.01M, 0.03M} where M =
maxx∈[0,1]d f(x)−minx∈[0,1]d f(x) = 5/8.

Let Vm = span{ηk : k ∈ IR(H
2
mix)} of size m with ηk the tensorized H2

mix basis, cf. Theorems 4.2
and 4.3. Since the H2

mix basis is a BOS, we obtain

N(Vm)

m
≤ 6 .

With t = 6, we satisfy the assumptions of Theorem 1.1 for m ≤ 12 250 and obtain a probability
exceeding 0.99 for the error bound in Theorem 1.1. For m = dim(Vm) up to 10 000 we do the following:

(i) We use plain least squares with 20 iterations to obtain the approximation Smy =
∑m−1

k=0 ĝkηk,
defined in (3.1).

(ii) We compute the L2-error by using Parseval’s equality analog to the one-dimensional case.

(iii) We compute our bound: Applying Theorem 1.1 using (3.5), t = 6, and n = 1000 000, we obtain

∥f − Smy∥2L2
≤ 14

(
1 +

√
6N(Vm)

n

)2
e(f, Vm, L2)

2
L2

+
m

n

(
138B

√
σ2 + 4σ2

)
+ 0.0031B2

with probability exceeding 0.99 and all the remaining quantities known in our experiment.

The results are depicted in Figure 4.3.
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m
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m
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Figure 4.3. Five-dimensional experiment for H2
mix. The solid lines represent the L2-

error ∥f − Smy∥2L2
and the dashed lines the bound from Theorems 3.2 and 1.1.

• The bounds capture the error behaviour well. But it seems that there is room for improvement
in the constants, especially in the experiments with noise. Here, improving constants in the
Hanson-Wright inequality in Theorem 2.3 could be a starting point.

• Furthermor, this experiment shows, that the H2 basis is easily suitable for high-dimensional
approximation as well.
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Appendix A. Calculations for the H2(0, 1) basis

Proof. [Proof of the first part of Theorem 4.2] Analogously to Theorem 4.1, for σ a singular value of
W with corresponding eigenfunction η ∈ H2

mix, we obtain the following differential equation

1− σ2

σ2
η = η(4) with η(2)(0) = η(2)(1) = η(3)(0) = η(3)(1) = 0.

Now we distinguish three cases for the value of σ2:
First case. Let us assume σ2 = 1. The ansatz function becomes

η(x) = A+Bx+ Cx2 +Dx3.

From the conditions η(2)(0) = η(3)(0) = 0 we obtain D = C = 0. The two remaining degrees of free-
dom are restricted by demanding L2(0, 1)-orthonormality. By simple calculus we obtain the proposed
eigenfunctions η0 and η1.
Second case. Lets assume (1 − σ2)/σ2 > 0 ⇔ σ2 < 1. Introducing t := 4

√
(1− σ2)/σ2, we use the

ansatz

η(x) = A cos(tx) +B sin(tx) + C cosh(tx) +D sinh(tx).
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The conditions η(2)(0) = η(3)(0) = 0 transform to A = C and B = D, respectively. The conditions

η(2)(1) = η(3)(1) = 0 can be put into a system of equations:[
cosh(t)− cos(t) sinh(t)− sin(t)
sinh(t) + sin(t) cosh(t)− cos(t)

] [
A
B

]
= 0

or, by using cosh2(t)− sinh2(t) = cos2(t) + sin2(t) = 1, equivalently[
cosh(t)− cos(t) sinh(t)− sin(t)

0 1− cosh(t) cos(t)

] [
A
B

]
= 0.

For non-trivial solutions we need non-regularity of that matrix which transforms to the condition
cosh(t) cos(t) = 1. With the leftover degree of freedom we choose

A = C = 1 and B = D = −cosh(t)− cos(t)

sinh(t)− sin(t)
and obtain ηk for k ≥ 2 as proposed in the theorem.
For the L2-norm we obtain∫ 1

0
|ηn|2 dx =

∫ 1

0
(cosh(tx) + cos(tx))2 dx+B2

∫ 1

0
(sinh(tx) + sin(tx))2 dx

+ 2B

∫ 1

0
(cosh(tx) + cos(tx))(sinh(tx) + sin(tx)) dx

= 1 +
sin(2t) + sinh(2t) + 4 cos(t) sinh(t) + 4 sin(t) cosh(t)

4t

+B2− sin(2t) + sinh(2t)− 4 cos(t) sinh(t) + 4 sin(t) cosh(t)

4t
+ 2B

(sin(t) + sinh(t))2

2t

= 1 +
1 +B2

4t
(sinh(2t) + 4 sin(t) cosh(t)) +

1−B2

4t
(sin(2t) + 4 cos(t) sinh(t))

+B
(sin(t) + sinh(t))2

t

= 1 +
1 +B2

2t
cosh(t)(sinh(t) + 2 sin(t)) +

1−B2

2t
cos(t)(sin(t) + 2 sinh(t))

+B
(sin(t) + sinh(t))2

t
.

Using cos(t) cosh(t) = 1, we obtain

1 +B2 = 2
sinh(t)

sinh(t)− sin(t)
and 1−B2 = −2

sin(t)

sinh(t)− sin(t)
. (A.1)

Thus, ∫ 1

0
|ηn|2 dx = 1 +

1

t(sinh(t)− sin(t))

[
sinh(t) cosh(t)(sinh(t) + 2 sin(t))

− sin(t) cos(t)(sin(t) + 2 sinh(t))− (cosh(t)− cos(t))(sin(t) + sinh(t))2

]

= 1 +
cos(t) sinh2(t)− cosh(t) sin2(t)

t(sinh(t)− sin(t))

= 1 +
cos(t) cosh2(t)− cos(t)− cosh(t) + cosh(t) cos2(t)

t(sinh(t)− sin(t))

where cos2(t)+sin2(t) = cosh2(t)− sinh2(t) = 1 was used in the last equality. Using cosh(t) cos(t) = 1,
the latter summand evaluates to zero and we have proven the L2-normality.
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x

y

π/2 3π/2 5π/2

Figure A.1. cos(t) and 1/ cosh(t)

Third case. Assume σ2 > 1. Set t := 4
√

(σ2 − 1)/(σ2). The ansatz becomes

η(x) = A cosh(tx) cos(tx) +B cosh(tx) sin(tx)

+ C sinh(tx) cos(tx) +D sinh(tx) sin(tx).

The conditions η(2)(0) = η(3)(0) = 0 transform to D = 0 and B = C. The two remaining degrees of

freedom are fixed by the conditions η(2)(1) = η(3)(1) = 0 which, in matrix form, look as follows[
− sinh(t) sin(t) sinh(t) cos(t)− cosh(t) sin(t)

− sinh(t) cos(t)− cosh(t) sin(t) −2 sinh(t) sin(t)

] [
A
B

]
=

[
0
0

]
.

For a non-trivial solution we need that matrix to be non-regular. To achieve that we have a look at
the roots of its determinant:

2 sinh2(t) sin2(t) + sinh2(t) cos2(t)− cosh2(t) sin2(t)
!
= 0.

Using sin2(t) + cos2(t) = cosh2(t)− sinh2(t) = 1 we have

sinh2(t)− sin2(t) =
1

2
cosh(2t) +

1

2
cos(2t)− 1

!
= 0

which is only fulfilled for t = 0, or equivalently, σ2 = 1. Hence, there are no eigenvalues bigger than 1.

Lemma A.1. For 0 < t2 < t3 < . . . fulfilling cosh(tk) cos(tk) = 1 and t̃k = 2k−1
2 π, we have

3

2
π < t2 and

∣∣∣t̃k − tk

∣∣∣ ≤ ε

for k ≥ 1
π log(π/ε). In particular |t̃k − tk| ≤ π exp(−2π) for all k ≥ 2.

Proof.
Since 0 < 1/ cosh(t) < 1 for t > 0 and the oscillating behaviour of cos(t), as depicted in Figure A.1,
we obtain

tk ∈


(
2k−1
2 π, 2k2 π

)
for k even(

2k−2
2 π, 2k−1

2 π
)

for k odd .

In particular, 3
2π < t2. Furthermore, for even k and t ∈

(
2k−1
2 π, 2k2 π

)
we have

1

cosh(t)
≤ 2 exp(−t) ≤ 2 exp

(
− 2k − 1

2
π
)

and cos(t) ≥
t− 2k−1

2 π

π/2
.

The function bounds intersect for a value larger than tk, which we use to refine the interval:

tk ∈
(
t̃k, t̃k + π exp

(
− 2k − 1

2
π
))

.
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Similarly, for odd k and t ∈
(
2k−2
2 π, 2k−1

2 π
)
we obtain

tk ∈
(
t̃k − π exp

(
− 2k − 2

2
π
)
, t̃k

)
.

Thus, for k ≥ 2 we have
∣∣∣t̃k − tk

∣∣∣ ≤ π exp(−(k − 1)π), which is smaller than ε for

k ≥ log(π/ε)

π
+ 1 ≥ log(π/ε)

π
.

Lemma A.2. For 0 < t2 < t3 < . . . fulfilling cosh(tk) cos(tk) = 1, we have that ηtk defined by

ηItk(x) = cosh(tkx)−
cosh(tk)− cos(tk)

sinh(tk)− sin(tk)
sinh(tkx) (A.2)

is convex and non-negative for all even k and monotone for all odd k.

Proof. Step 1. We distinguish for different values of B = B(t) := (cosh(t)−cos(t))/(sinh(t)−sin(t)).
For B < 1 we have

ηIt (x) = cosh(tx)−B sinh(tx) ≥ cosh(tx)− sinh(tx) ≥ 0

and by the same argument (ηIt (x))
(2) = t2ηIt (x) ≥ 0 for all x ≥ 0. Thus, ηIt (x) is convex and non-

negative.
For B > 1 we obtain

(ηIt )
′ = t(sinh(tx)−B cosh(tx)) ≤ t(sinh(tx)− cosh(tx)) ≤ 0

for all x ≥ 0. Thus, ηIt is monotone.
Step 2. It is left to show for which k’s B(tk) attains a value smaller or bigger than one:

B(tk) ≶ 1 ⇔ cosh(tk)− cos(tk) ≶ sinh(tk)− sin(tk)

⇔ exp(−tk)−
√
2 cos(tk + π/4) ≶ 0.

We will show that exp(−tk)−
√
2 cos(tk + π/4) has the same sign as (−1)k+1 and, thus, are finished.

We do this by estimating their difference by a quantity smaller than one. With t̃k = 2k−1
2 π we obtain

|exp(−tk)−
√
2 cos(tk + π/4)− (−1)k+1|

= |exp(−tk)−
√
2 cos(tk + π/4) +

√
2 cos(t̃k + π/4)|.

Using that cos is Lipschitz-continuous with constant 1 and Lemma A.1 we estimate the above by

|exp(−tk)−
√
2 cos(tk + π/4)− (−1)k+1| ≤ |exp(−tk)|+

√
2|tk − t̃k|

≤ exp(−3/2π) +
√
2π exp

(
− 2π

)
,

which is certainly smaller than one.

Lemma A.3. For 0 < t2 < t3 < . . . fulfilling cosh(tk) cos(tk) = 1, we have that ηItk defined in (A.2)
is even with respect to the axis x = 1/2 for all even k and vice versa.

Proof. Step 1. We will show that ηItk has any symmetry around x = 1/2. We shift the function and
split it into an odd and an even part. For B = B(t) = (cosh(t)− cos(t))/(sinh(t)− sin(h)), we obtain

ηIt (x+ 1/2) = cosh(tx+ t/2)−B sinh(tx+ t/2)

= (cosh(t/2)−B sinh(t/2))︸ ︷︷ ︸
=:α

cosh(tx) + (sinh(t/2)−B cosh(t/2))︸ ︷︷ ︸
=:β

sinh(tx).
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Multiplying the two factors α and β in front of cosh(tx) and sinh(tx), we obtain

α · β = −B cosh2(t/2)−B sinh2(t/2) + (1 +B2) cosh(t/2) sinh(t/2)

= −B
cosh(t)− 1

2
−B

cosh(t) + 1

2
+ (1 +B2)

sinh(t)

2

= −B cosh(t) + (1 +B2)
sinh(t)

2
.

Using (A.1), cosh(t) cos(t) = 1, and 1 = cosh2(t)− sinh2(t) this evaluates to

α · β = − cosh2(t)− 1

sinh(t)− sin(t)
+

sinh2(t)

sinh(t)− sin(t)
= 0 .

And since we are not dealing with the zero function either α or β is zero. Thus, x 7→ ηIt (x+1/2) obeys
a symmetry.
Step 2. It remains to specify the kind of symmetry. By Lemma A.2 we have that ηIt is convex for
even k. Since a convex non-constant function cannot be odd it has to be even. Also by Lemma A.2
we have that ηIt is monotone for odd k. Since a monotone non-zero function cannot be even it has to
be odd.

Proof. [Proof of the second part of Theorem 4.2] The cases k ∈ {0, 1} are clear. For k ≥ 2 we split
the function into ηIt defined in (A.2) and

ηIIt (x) = cos(tx)− cosh(t)− cos(t)

sinh(t)− sin(t)
sin(tx).

We will show that each of these is bounded by 1.01
√
2 and, thus, obtain the assertion.

Step 1. In order to bound ηItk we firstly have a look at the boundary points x ∈ {0, 1}. With Lemma A.3
we obtain

ηItk(0) =
∣∣∣ηItk(1)∣∣∣ = 1. (A.3)

By Lemma A.2 ηItk is either non-negative and convex or monotone and, thus, cannot exceed its values
on the boundary.
Step 2. In order to bound ηIIt we define

B :=
cosh(t)− cos(t)

sinh(t)− sin(t)
and ϑ = arg(1 +Bi).

Next, we use the exponential definition of sine and cosine and the polar representation of complex
numbers to obtain

ηIIt (x) = cos(tx)−B sin(tx)

=
exp(itx) + exp(−itx)

2
+Bi

exp(itx)− exp(−itx)

2

=
(1 +Bi) exp(itx) + (1−Bi) exp(−itx)

2

=
√

1 +B2
exp(i(tx+ ϑ)) + exp(−i(tx+ ϑ))

2

=
√
1 +B2 cos(tx+ ϑ)

Thus, by (A.1)

|ηIIt (x)| ≤
√

1 +B2 =

√
2

1− sin(t)/ sinh(t)
≤

√
2

1− 1/ sinh(t)
(A.4)
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From Lemma A.1 we use t ≥ 3/2π in combination with the monotonicity in (A.4) we have |ηIIt (x)| ≤
1.01

√
2.

Lemma A.4. For t ≥ max{2 log(4/ε), 3/2π} we have for x ∈ [0, 1/2]∣∣∣(1− cosh(t)− cos(t)

sinh(t)− sin(t)

)
sinh(tx)

∣∣∣ ≤ ε .

Proof. We use cosh(t)− sinh(t) = exp(−t) and cos(t)− sin(t) =
√
2 cos(t+ π/4) to estimate∣∣∣(1− cosh(t)− cos(t)

sinh(t)− sin(t)

)
sinh(tx)

∣∣∣ = |
√
2 cos(t+ π/4)− exp(−t)|

∣∣∣ sinh(tx)

sinh(t)− sin(t)

∣∣∣.
Since x ≤ 1/2, sinh strictly monotone growing, and t ≥ 3/2π by Lemma A.1, we further estimate∣∣∣(1− cosh(t)− cos(t)

sinh(t)− sin(t)

)
sinh(tx)

∣∣∣ ≤ 2
∣∣∣ sinh(t/2)

sinh(t)− sin(t)

∣∣∣
= 2

∣∣∣ 1

2 cosh(t/2)

1

1− sin(t)/ sinh(t)

∣∣∣
Using 1− sin(t)/ sinh(t) > 1/2 for t > 3/2π, we obtain∣∣∣(1− cosh(t)− cos(t)

sinh(t)− sin(t)

)
sinh(tx)

∣∣∣ ≤ 2

cosh(t/2)
≤ 4

exp(t/2)
,

which is smaller than ε for t ≥ 2 log(4/ε).

Lemma A.5. For 0 < t2 < t3 < . . . fulfilling cosh(tk) cos(tk) = 1, we have∣∣∣ηIItk (x)−√
2 cos(tkx+ π/4)

∣∣∣ ≤ ε for x ∈ [0, 1]

and
∣∣∣ηItk(x)− exp(−tx)

∣∣∣ ≤ ε for x ∈ [0, 1/2]

for k ≥ 2
π log(4/ε) + 1.

Proof. Step 1. For the first inequality we use√
2 cos(tx+ π/4) = cos(tx)− sin(tx)

to obtain ∣∣∣ηIIt −
√
2 cos(tx+ π/4)

∣∣∣ = ∣∣∣(1− cosh(t)− cos(t)

sinh(t)− sin(t)

)
sin(tx)

∣∣∣
which is smaller than ε for t > max{2 log(4/ε), 3/2π} by Lemma A.4.
The second inequality follows analogously from exp(−tx) = cosh(tx)− sinh(tx) and Lemma A.4.
Step 2. It is left to show the condition t ≥ max{2 log(4/ε), 3/2π} from Step 1. By Lemma A.1 we
have tk ≥ 3/2π. Further, by assumption, we have

k ≥ 2

π
log

(4
ε

)
+ 1 ≥ 2

π
log

(4
ε

)
+ exp(−2π) +

1

2
Thus,

2 log
(4
ε

)
≤ 2k − 1

2
π − π exp(−2π) ≤ tk

where the last inequality follows from Lemma A.1.
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Proof. [Proof of Theorem 4.3] Because of the symmetry shown in Lemma A.3 we assume without
loss of generality x ∈ [0, 1/2]. Then

|ηn(x)− η̃n(x)| ≤
∣∣∣ηIn(x)− exp(−tkx)

∣∣∣+ ∣∣∣ηIIn (x)−
√
2 cos(tkx+ π/4)

∣∣∣
+
∣∣∣ exp(−tkx)− exp(−t̃kx)

∣∣∣+ ∣∣∣√2 cos(tkx+ π/4)−
√
2 cos(t̃kx+ π/4)

∣∣∣.
By Lemma A.5, the first two summands are each smaller than ε/4 each for n > 2

π log(16/ε) + 1. We
estimate the two latter summands as follows.
Since cos is Lipschitz continuous with constant one we have∣∣∣√2 cos(tkx+ π/4)−

√
2 cos

(
t̃kx+

π

4

)∣∣∣ ≤ ∣∣∣√2
(
tk − t̃k

)∣∣∣
which, by Lemma A.1 is smaller than ε/4 for k > 1

π log(4π/(
√
2ε)).

Since exp is Lipschitz continuous with constant 1 on (−∞, 0), we have∣∣∣ exp(−tkx)− exp(−t̃kx)
∣∣∣ ≤ ∣∣∣tk − t̃k

∣∣∣
which, by Lemma A.1 is smaller than ε/4 for k > 1

π log(16/ε).
Overall, we obtain |ηn(x)− η̃n(x)| < 4 ε

4 = ε for

k > max
{ 2

π
log(16/ε) + 1,

1

π
log(4π/(

√
2ε)),

1

π
log(16/ε)

}
=

2

π
log(16/ε) + 1 .
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[33] N. Nagel, M. Schäfer, and T. Ullrich. A new upper bound for sampling numbers. Found. Comp.
Math., April 2021.

[34] A. Narayan, J. D. Jakeman, and T. Zhou. A Christoffel function weighted least squares algorithm
for collocation approximations. Math. Comp., 86(306):1913–1947, 2017.

[35] R. Nasdala and D. Potts. A note on transformed Fourier systems for the approximation of non-
periodic signals. In Monte Carlo and quasi-Monte Carlo methods, volume 387 of Springer Proc.
Math. Stat., pages 253–271. Springer, Cham, [2022] ©2022.

[36] S. J. Pan and Q. Yang. A survey on transfer learning. IEEE Transactions on Knowledge and
Data Engineering, 22(10):1345–1359, 2010.

[37] S. V. Pereverzyev and S. Lu. Regularization Theory for Ill-Posed Problems. Selected Topics.
DeGruyter, Berlin, Boston, 2013.

[38] G. Plonka, D. Potts, G. Steidl, and M. Tasche. Numerical Fourier analysis. Applied and Numerical
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