
Master Thesis

Fast Cross-validation
in Harmonic Approximation

Felix Bartel

Supervisors: Dr. Ralf Hielscher and Prof. Dr. Daniel Potts

June 12, 2019

Contents

1 Introduction 5

2 Cross-validation 7
2.1 Basic Concepts . 7
2.2 Algorithm to Compute the Cross-validation Scores 10
2.3 Derivative of the Cross-validation Scores 12

3 The Reproducing Kernel Hilbert Space 15
3.1 Basic Concepts . 15
3.2 Smoothing Approximation . 17
3.3 Connection to the Fourier setting . 18

4 Cross-validation on the torus 21
4.1 Exact Quadrature . 21
4.2 Equispaced Nodes . 23
4.3 Rank-1 Lattices . 24
4.4 Approximative quadrature . 25

5 Cross-validation on the unit interval 31
5.1 Exact Quadrature . 31
5.2 Chebyshev nodes . 32
5.3 Approximative Quadrature . 34

6 Cross-validation on the two-dimensional sphere 37
6.1 Exact Quadrature . 37
6.2 Approximative Quadrature . 39

7 Cross-validation on the rotation group 41
7.1 Exact Quadrature . 41
7.2 Approximative Quadrature . 43

8 Conclusion 45

Bibliography 45

3

1 Introduction

A central problem in approximation theory is the reconstruction of functions f : X → C
from noisy function values. That is, for a finite set of nodes X ⊂ X, we are given function
values

f = (f(x) + εx)x∈X ∈ C|X |

where we assume εx to be zero mean Gaussian noise. Considering a family of basis
functions

ϕn : X → C, n ∈ I

for an index set I, we are seeking Fourier coefficients ĝn, n ∈ I such that∑
n∈I

ĝnϕn

reconstructs the original function “reasonably well”. To put this in concrete terms we use
the common method of minimizing the Tikhonov functional

Jλ (ĝ) = ‖F ĝ − f‖2W + λ ‖ĝ‖2
Ŵ

(1.1)

for F = FX ,I = (ϕn(x))x∈X ,n∈I the Fourier matrix, ‖ · ‖W a weighted norm in space
domain, ‖ · ‖Ŵ a weighted norm in frequency domain with W = diag(wx)x∈X , wx > 0

and Ŵ = diag(wn)n∈I , wn > 0, and a regularization parameter λ > 0.
For a fixed λ we obtain a reconstruction by minimizing (1.1), which can be done by

solving a system of equations and will be recapped in the beginning of Chapter 2.
The term F ĝ is simply the evaluation of our approximation in the given nodes X and,

thus, the first term can be thought of as a data fitting term. The second term controls
the smoothing of the approximation by penalizing the Fourier coefficients. By using this
approach the degrees of freedom shrink from |I| of the Fourier coefficients ĝ to one of the
“optimal” λ. Choosing λ optimal means that the data fitting term and the smoothing
term in (1.1) are weighted properly with respect to the given problem. There are many
different strategies like the discrepancy principle or the L-curve method to do that but we
will focus on a cross-validation approach. In cross-validation the set of nodes is split into
one for computing an approximation and one for the validation. We are interested in the
special case of “leave-one-out” cross-validation, i.e., for a fixed regularization parameter
λ and any node x ∈ X we compute the optimal ĝλ,(x) of the functional (1.1) restricted
to the set of nodes X \ {x} and use

P (λ) =
∑
x∈X

∣∣∣(F ĝλ,(x))x − fx∣∣∣2

5

1 Introduction

as cross-validation score, where (F ĝλ,(x))x is the approximation and fx is the given
function value in the node x, respectively.
Originated is this approach in [15] from Golub, Heath and Whaba where splines were

used but it spread to many parameter estimating problems since then. The biggest crit-
icism is that we have to compute |X | Tikhonov minimizers, which is computationally
too expensive for most applications. There are several approaches to lower this compu-
tational cost. For instance in spline interpolation on the interval or higher-dimensional
domains Monte Carlo approximations [8], matrix decomposition methods [54, 46] and
Krylov space methods [34] have been used. For the specific setting of Fourier approxima-
tion on the torus Td at regular lattice points a fast algorithm has been proposed by Tasche
and Weyrich [48] which requires to solve the minimization problem only once for each
regularization parameter λ. The idea of this thesis is to generalize the approach in [48] to
arbitrary sampling nodes and other domains like the unit interval or the two-dimensional
sphere.
The thesis is based on our paper [3] and is organized as follows. The second chap-

ter deals with the details of the cross-validation score and proves in Theorem 2.4 a
reformulation which allows to separate the computation of the cross-validation score
into the calculation of one Tikhonov minimizer of (1.1) and |X | function-independent
values hx,x. These values hx,x are the diagonal entries of the so called hat matrix
H = F (FHWF+λŴ)−1FHW and their efficient (approximate) computation is subject
to the Chapters 4–7.
In between, Chapter 3 illuminates the given approximation problem from the view of

reproducing kernel Hilbert spaces and provides a different interpretation on the weights
Ŵ in frequency domain.
Chapters 4–7 deal with the fast computation of the diagonal entries hx,x in the cases of

the d-dimensional torus Td, the unit interval [−1, 1], the two-dimensional sphere S2, and
the rotation group SO(3). They are divided into one case where quadrature nodes and
weights are given and we obtain with Theorems 4.2, 5.2, 6.1, and 7.1 the corresponding
formulae for the diagonal entries hx,x. This requirement is satisfied for regular tensor
product grids and rank-1 lattices on the d-dimensional torus, Chebyshev nodes on the
unit interval [−1, 1], e.g., Gauss Legendre nodes on the two-dimensional unit sphere S2,
and Gauss quadrature rules on the rotation group SO(3).
In the case that no quadrature nodes and weights are given we suggest approximating

them by the volume of the corresponding Voronoi cells and carry out the same computa-
tions. Our numerical tests in Sections 4.4, 5.3, 6.2, and 7.2 indicate a good approximation
of the true cross-validation score, which is much more expensive to compute.
Together with fast Fourier algorithms on the torus [29, 27], for rank-1 lattices [24, 25],

on the interval [10, 27], on the sphere [28, 27], and the rotation group [43] this allows the
efficient evaluation of the cross-validation score P (λ) with a numerical complexity close
to O(|I|+ |X |). Numerical examples for all these settings illustrate our findings.
The Matlab code of our algorithm as well as for all numerical experiments can be

found on the GitHub repository https://github.com/felixbartel/fcv.

6

2 Cross-validation

2.1 Basic Concepts

Let us start this chapter by reminding that the minimizer of the Tikhonov functional
(1.1) can be given explicitly.

Lemma 2.1. The unique Tikhonov minimizer of (1.1) is

ĝλ =
(
FHWF + λŴ

)−1
FHWf . (2.1)

Proof. We look for stationary points by calculating the roots of the gradient of Jλ

∇Jλ (ĝλ) = 2FHWFĝλ − 2FHWf + 2λŴ ĝλ
!

= 0.

Because FHF is positive semidefinite, W , Ŵ , and λ are strictly positive we find that
FHWF + λŴ is positive definite. In particular it is invertible such that the stationary
point can be written as ĝλ = (FHWF +λŴ)−1FHWf . Using the positive definiteness
we see that ĝλ fulfills the required minimizing property.

As the leave-one-out cross-validation score depends on solving (2.1) for sets of nodes of
the form X \ {x} we introduce the following notations for omitting a single node x ∈ X .
For x ∈ X and f ∈ C|X | we denote by

f(x) = (fy)y∈X\{x} ∈ C|X |−1

the vector of function values f with one node x ∈ X omitted. Accordingly, we denote by

F(x) = (ϕn(y))y∈X\{x},n∈I ∈ C(|X |−1)×|I|

the Fourier matrix F with the row corresponding to x ∈ X omitted and by

W(x) = (Wy,y′)y,y′∈X\{x} ∈ C(|X |−1)×(|X |−1)

the restriction of the spatial weight matrix W to the set of nodes X \ {x}. With these
notations the minimizer of the Tikhonov functional (1.1) reduced to the nodes X \ {x}
can be written as

ĝ(x) =
(
FH
(x)W(x)F(x) + λŴ

)−1
FH
(x)W(x)f(x) ∈ C|I|. (2.2)

7

2 Cross-validation

Definition 2.2. The ordinary cross-validation score for the Tikhonov functional (1.1)
is defined as

P (λ) =
∑
x∈X

∣∣∣(F ĝ(x))x − fx∣∣∣2 (2.3)

where ĝ(x) is defined by (2.2) and (F ĝ(x))x denotes the entry of F ĝ(x) corresponding to
the node x ∈ X .

Interpreting (2.3), we are comparing the predicted or smoothened value (F ĝ(x))x with
the noisy data fx for each node. They intuitively differ more in the case of under- or
oversmoothing. So its minimum is a candidate for the smoothing parameter λ. Unflat-
tering is the fact that, for a single regularization parameter λ, the direct computation of
the ordinary cross-validation score requires to solve |X | times the normal equation (2.1).

Our first goal is to relate the solution of the reduced problem (2.2) to the solution of
the full problem (2.1). To this end we define the matrices

A = FHWF + λŴ ,

A(x) = FH
(x)W(x)F(x) + λŴ

(2.4)

which are decisive for the computation of ĝ and ĝ(x), respectively, and show the following
relationship between their inverse, cf. [15].

Lemma 2.3. Let A and A(x) be defined as in (2.4) and

Fx,: = (ϕn(x))n∈I ∈ C1×|I|

denote the row of the matrix F which corresponds to the node x ∈ X . Then we have

A−1(x) = A−1 +
A−1wxF

H
x,:Fx,:A

−1

1− wxFx,:A−1FH
x,:

. (2.5)

Proof. The assertion of the lemma follows immediately by applying the Sherman-Morrison
formula to

A(x) = A− wxFH
x,:Fx,:.

Our next goal is to make the repetitive solving of the normal equation (2.2) in (2.3)
independent of the right-hand side f . To this end we define the so called hat matrix

H := FA−1FHW = F
(
FHWF + λŴ

)−1
FHW (2.6)

which when applied to a data vector f solves the normal equation (2.1) and evaluates the
resulting function in the nodes X . The next lemma is a generalization of [15, equation
2.2] and [53, equation 4.2.9], and shows that for the computation of (2.3), with given
diagonal entries hx,x of the hat matrix H, it is sufficient to solve the normal equation
(2.1) with respect to the data vector f only once.

8

2.1 Basic Concepts

Theorem 2.4. The ordinary cross-validation score (2.3) can be written as

P (λ) =
∑
x∈X

(Hf − f)2x
(1− hx,x)2

(2.7)

with hx,x, x ∈ X being the diagonal entries of the hat matrix H defined in (2.6).

Proof. Let b = FHWf . Then

ĝ(x) = A−1(x)F
H
(x)W(x)f(x) = A−1(x)

(
b− FH

x,:wxfx

)
.

Next we apply Lemma 2.3 and observe that the denominator in (2.5) can be expressed
in terms of the diagonal entries hx,x of the hat matrix H:

ĝ(x) = A−1(x)

(
b− FH

x,:wxfx

)
=

(
A−1 +

wxA
−1FH

x,:Fx,:A
−1

1− hx,x

)(
b− FH

x,:wxfx

)
= ĝ +

wxA
−1FH

x,:fx(hx,x − 1) + wxA
−1FH

x,:Fx,:ĝ − wxA−1FH
x,:hx,xfx

1− hx,x

= ĝ + wxA
−1FH

x,:

Fx,:ĝ − fx
1− hx,x

= ĝ + wxA
−1FH

x,:

(Hf − f)x
1− hx,x

.

Multiplying with F from the left-hand side and subtracting fx results in(
F ĝ(x)

)
x
− fx = Fx,:ĝ(x) − fx

= Fx,:ĝ + wxFx,:A
−1FH

x,:

(Hf − f)x
1− hx,x

− fx

= (F ĝ)x + hx,x
(Hf − f)x

1− hx,x
− (f)x

= (Hf)x +
(Hf − f)x

1− hx,x
+ (f −Hf)x − (f)x

=
(Hf − f)x

1− hx,x

and hence each summand in (2.3) is equal to the corresponding summand in (2.7).

Remark 2.5. According to Theorem 2.4 the ordinary cross-validation score is nothing
more than the weighted norm of the residue

r = F ĝ − f = Hf − f .

9

2 Cross-validation

Although this means that the normal equation (2.1) has to be solved only once with respect
to the data vector f the most expensive part remains, namely the computation of the
diagonal entries

hx,x = wxFx,:A
−1FH

x,:

for x ∈ X , which again requires repetitive solving of the normal equation.

Replacing the diagonal entries hx,x with their mean value

h =
1

|X |
∑
x∈X

hx,x =
1

|X |
traceH

we obtain the so called generalized cross-validation score, cf. [53, section 4.3].

Definition 2.6. The generalized cross-validation score is defined as

V (λ) =
∑
x∈X

(Hf − f)2x
(1− h)2

=

(
|X | ‖Hf − f‖2
trace(I −H)

)2

.

Obviously, if all diagonal entries hx,x of H coincide we have P (λ) = V (λ).

Lemma 2.7. The diagonal elements hx,x of the hat matrix H satisfy

hx,x < 1

for all λ > 0 and x ∈ X .

Proof. Since FH
(x)W(x)F(x) is positive semidefinite and λŴ is strictly positive definite we

see thatA(x) = FH
(x)W(x)F(x)+λŴ is invertible. Furthermore, we know by the Sherman-

Morrison formula that A(x) = A−wxFH
x,:Fx,: is invertible if and only if wxFx,:A−1FH

x,: 6=
1. Therefore

hx,x = wxFx,:A
−1FH

x,: 6= 1.

Since the minimizer ĝλ of (1.1) converges to the zero vector as λ→∞, we obtain for
f = ex and λ→∞

hx,x = (F ĝλ)x → 0.

Together with the fact that the diagonal entries hx,x depend continuously on λ this proves
the assertion.

2.2 Algorithm to Compute the Cross-validation Scores

Concluding the previous statements we end up with a sheme to compute the cross-
validation scores.

10

2.2 Algorithm to Compute the Cross-validation Scores

Algorithm 1: generic computation of the cross-validation scores
Input:
nodes X
spatial weights W = diag(wx)x∈X ∈ R|X |×|X |
Fourier weights Ŵ ∈ R|I|×|I|
function values f = (fx)x∈X
regularization parameter λ

Output:
ordinary cross-validation score P (λ)
generalized cross-validation score V (λ)

1. Compute ĝ := A−1FHWf , where A is given in (2.4).
2. Compute g := Hf = F ĝ

3. Compute hx,x := wxFx,:A
−1FH

x,: for x ∈ X and h :=
1

|X |
∑
x∈X

hx,x.

4. Evaluate P (λ) :=
∑
x∈X

|f̃x − fx|2

(1− hx,x)2
and V (λ) :=

∑
x∈X

|f̃x − fx|2

(1− h)2
.

Lemma 2.8. For computing the Tikhonov-minimizer of (1.1) one can use the LSQR
method for numerical stability. This can be accomplished with the coefficient matrix

M =

(
W 1/2F√
λŴ 1/2

)
and the right-hand side

b =

(
W 1/2f

0

)
,

where 0 is a column vector containing |I| zeros. The resulting system of equations(
MHM

)
ĝ = MHb,

which the LSQR method solves, is equivalent to (2.1).

Proof. With basic linear algebra we obtain(
MHM

)
ĝ = MHb

⇔
((
FHW 1/2

√
λŴ 1/2

)(W 1/2F√
λŴ 1/2

))
ĝ =

(
FHW 1/2

√
λŴ 1/2

)(W 1/2f
0

)
⇔

(
FHWF + λŴ

)
ĝ = FHWf .

11

2 Cross-validation

The computationally most expensive part of Algorithm 1 is the computation of the
values g and hx,x for all x ∈ X . In the subsequent chapters we discuss some specific
settings to speed up that process and propose an approximation of the ordinary and the
generalized cross-validation score in more general cases.

2.3 Derivative of the Cross-validation Scores

In the end, we want to minimize the cross-validation scores. Therefore it is reasonable
to seek for an efficient way to compute the derivative with respect to λ.

Theorem 2.9. Let λ be fixed and f ∈ C|X | function values. Then the derivative of the
cross-validation score evaluates to

∂

∂λ
P (λ) = 2

∑
x∈X

(
((Hf)x − fx)(∂

∂λ(Hf)x)

(1− hx,x)2
+

((Hf)x − fx)2(∂
∂λhx,x)

(1− hx,x)3

)

with
∂

∂λ
Hf = −F

(
FHWF + λŴ

)−1
Ŵ ĝ.

Proof. We simply have to use the quotient rule to the ordinary cross-validation score
after applying Theorem 2.4

P (λ) =
∑
x∈X

(
(Hf)x − fx

1− hx,x

)2

and use
ĝ =

(
FHWF + λŴ

)−1
FHWf

to obtain ∂
∂λHf .

Remark 2.10. (i) Similar to Lemma 2.8 we can perform the computation of ∂
∂λHf

from Theorem 2.9 efficient and numerically more stable by usingM from Lemma 2.8
and

c =

(
0

1√
λ
Ŵ 1/2ĝ,

)
where 0 is a vector containing |X | zeros and

ĝ =
(
FHWF + λŴ

)−1
FHWf ,

which is a byproduct of Algorithm 1. Now we can apply the LSQR method with the
coefficient matrix M and the right-hand side c. Multiplying the result with −F we
obtain ∂

∂λHf .
(ii) Given ∂

∂λhx,x, the computational effort to compute P (λ) and ∂
∂λP (λ) approximately

doubles compared to computing P (λ) alone.

12

2.3 Derivative of the Cross-validation Scores

(iii) Replacing hx,x and ∂
∂λhx,x with their respective mean value we can compute ∂

∂λV (λ)
by the same calculations.

To efficiently apply Theorem 2.9 we further need the derivative of the diagonal entries
∂
∂λhx,x. But their computation will be postponed to the specific settings in Chapters 4–7.

13

3 The Reproducing Kernel Hilbert Space

This chapter combines key facts from [55, 38, 40] and serves as an interlude to get a second
perception of the given Tikhonov problem (1.1). We introduce reproducing kernel Hilbert
spaces and give some thoughts on approximating within these.

3.1 Basic Concepts

Motivated by the fact that we act on point evaluations the definition of a reproducing
kernel Hilbert space seems very natural.

Definition 3.1. Let H be a Hilbert space of complex-valued functions with domain X.
We call H reproducing kernel Hilbert space, if the point evaluation operator

Ex : H → C, f 7→ f(x)

is continuous for all x ∈ X.

Remark 3.2. Applying the Riesz representation theorem to the point evaluation operator
of a reproducing kernel Hilbert space we obtain the unique existence of a ϕx ∈ H such
that

f(x) = Ex(f) = (f, ϕx)H

with (·, ·)H being the inner product of H . Because ϕx is an element of H itself, we can
write by the same argument

ϕx(y) = Ey(ϕx) = (ϕx, ϕy)H =: K(x, y). (3.1)

Definition 3.3. (i) The kernel function K(·, ·) : X ×X → C in (3.1) is called repro-
ducing kernel of the Hilbert space H .

(ii) A kernel function K is called positive definite or strictly positive definite if for
every finite choice X ⊂ X of nodes and cx ∈ C, x ∈ X∑

x∈X

∑
y∈X

cxcyK(x, y) ≥ 0 or
∑
x∈X

∑
y∈X

cxcyK(x, y) > 0

holds, respectively.

Remark 3.4. The following properties characterize a reproducing kernel and validate its
naming
(i) K(x, y) = K(y, x) for all x, y ∈ X,
(ii) K(·, x) ∈H for all x ∈ X and

15

3 The Reproducing Kernel Hilbert Space

(iii) (reproducing property) (f,K(·, x))H = f(x) for all x ∈ X and f ∈H .

Remark 3.5 (Uniqueness of the reproducing kernel). Assume H has two reproducing
kernels K1 and K2. Then

(f,K1(·, x)−K2(·, x))H = f(x)− f(x) = 0

for all f ∈H and x ∈ X. In particular this holds for f = K1(·, x)−K2(·, x) such that

‖K1(·, x)−K2(·, x)‖H = 0

for all x ∈ X. That is, K1 = K2.

So every reproducing kernel Hilbert space has its own unique reproducing kernel. We
are also interested in the reverse statement which is covered with the following theorem.

Theorem 3.6 (Moore-Aronszajn). Let X be a set and K : X×X → C a positive definite
kernel function, then there exists an unique reproducing kernel Hilbert space of functions
on X such that K is its reproducing kernel.

Proof. 1. Let H0 := span{K(·, x) : x ∈ X}, X ,Y ⊂ X two finite subsets, and

(f, g)H0 =

∑
x∈X

cxK(·, x),
∑
y∈Y

dyK(·, y)


H0

:=
∑
x∈X

∑
y∈Y

cxdyK(x, y). (3.2)

At first we need to show that (3.2) is indeed a valid inner product on H0. For the
well-definedness of (·, ·)H0 on H0 we have to show that if f =

∑N
n=1 αnK(·, xn) is the

zero function, then (f, g)H0 = 0 for all g ∈H0. Since H0 is spanned by K(·, y) for y ∈ X
it is sufficient to show (f,K(·, y))H0 = 0 for all y ∈ X which holds by

(f,K(·, y))H0 =
∑
x∈X

αnK(x, y) = f(y) = 0.

The symmetry and the bilinearity follow immidiately from the definition and as K is a
positive definite kernel function we have that (f, f)H0 =

∑N
n=1

∑N
m=1 αnαmK(xn,xm) ≥

0. Equality occurs if and only if f ≡ 0, since
’⇒’:

0 = (f, f)H0(K(·, x),K(·, x))H0 ≥ (f,K(·, x))2H0
= f(x)2,

where the inequality follows from the Cauchy-Schwarz inequality and
’⇐’:

(f, f)H0 = (0 · f, f)H0 = 0 · (f, f)H0 = 0.

Therefore (·, ·)H0 is a valid inner product.
2. By taking equivalence classes of Cauchy sequences we complete H0 to get H . We

must show that every element of H is a function on X. For this let {fn}n∈N ⊂ H0 be

16

3.2 Smoothing Approximation

the Cauchy sequence that converges to f ∈ H . By the Cauchy-Schwarz inequality we
achieve

|fn(x)− fm(x)| = |(fn − fm,K(·, x))H0 | ≤ ‖fn − fm‖H0

√
K(x, x).

Hence the sequence is pointwise Cauchy. We may define f(x) = limn→∞ fn(x) and obtain

(f,K(·, x))H = lim
n→∞

(fn,K(·, x))H0 = lim
n→∞

fn(x) = f(x).

Thus, H is a reproducing kernel Hilbert space on X and K its reproducing kernel.
3. Since H0 is dense in H , H is the unique reproducing kernel Hilbert space con-

taining H0. And considering K(·, x) ∈H for all x ∈ X, it is clear that any reproducing
kernel Hilbert space with reproducing kernel K must contain H0. Therefore we have
shown uniqueness.

Remark 3.7. The proof of Theorem 3.6 shows on the one hand the existence of a cor-
responding reproducing kernel Hilbert space and on the other hand gives a construction
scheme for the reproducing kernel Hilbert space which is called native space.

3.2 Smoothing Approximation

In this section we give a brief introduction into the specialties of the approximation within
reproducing kernel Hilbert spaces. Given the problem of finding a function f ∈ H to
approximate given, potentionally noisy function values f(x) in nodes x ∈ X we could try
to minimize the Tikhonov functional

Jλ (g) =
∑
x∈X

wx |g(x)− f(x)|2 + λ ‖g‖2H (3.3)

for g ∈ H and W = diag(wx)x∈X , wx > 0 for all x ∈ X . The first term is called
discrepancy, which measures how well the values are fitted, and the second term is a
smoothing term.

Theorem 3.8. The minimum g of the Tikhonov functional in (3.3) satisfies

g =
∑
x∈X

cxK(·, x) (3.4)

for suitable cx ∈ C, x ∈ X .
Proof. At first we define the subspace HK := span{K(·, x)}x∈X . Each f ∈ H can be
decomposed into a component along and one perpendicular to HK : g = gK + gK⊥ .
With this decomposition and the use of the reproducing kernel we can reformulate the
Tikhonov functional (3.3) as follows

Jλ (g) =
∑
x∈X
|(gK ,K(·, x))H + (gK⊥ ,K(·, x))H︸ ︷︷ ︸

=0

− f(x)|2 + λ ‖gK + gK⊥‖
2
H

≥
∑
x∈X
|gK(x)− f(x)|2 + λ ‖gK‖2H = Jλ (gK) .

Thus the minimum µλ must belong to the subspace HK .

17

3 The Reproducing Kernel Hilbert Space

Using Theorem 3.8 we see that g depends only on c = (cx)x∈X . Thus we can reformu-
late (3.3) as follows

Jλ(c) = ‖Kc− f‖2W + λ‖c‖2K
with ‖c‖2K = cHKc, ‖f‖2W = fHWf , and K = (K(x, y))x,y∈X .

Lemma 3.9. Let K be a strictly positive definite kernel. Then the unique Tikhonov
minimizer of (3.3) is given by

c = (WK + λI)−1Wf .

Proof. We look for stationary points by calculating the roots of the gradient of Jλ

∇Jλ(c) = 2KWKc− 2KWf + 2λKc
!

= 0

Because K is stricly positive definite, and therefore K is positive definite, we obtain

(WK + λI)c
!

= Wf .

Since additionally W and λ are strictly postive WK + λI is positive definite. In par-
ticular it is invertible such that we achieve the proposed formula and using the positive
definitness the stated unique minimization property holds.

3.3 Connection to the Fourier setting

Let H be a separable Hilbert space of functions over X, then we can consider an or-
thonormal set of basis functions ϕn : X → C, n ∈ I for a countable index set I. Using
this basis we can express every f ∈H like

f =
∑
n∈I

f̂nϕn

for f̂n = (f, ϕn)H , n ∈ I. The above sum converges in the Hilbert space itself but
pointwise convergence is not given a priori. This is where the reproducing kernel Hilbert
spaces come into play with the property of a continuous point evaluation. The following
theorem gives an equivalent characterization of reproducing kernel Hilbert spaces in terms
of the basis functions.

Theorem 3.10. Let H be a separable Hilbert space of functions over X with an or-
thonormal basis {ϕn}n∈I .
(i) Then H is a reproducing kernel Hilbert space if and only if∑

n∈I
ϕn(x)ϕn(y)

converges for all x, y ∈ X .

18

3.3 Connection to the Fourier setting

(ii) If one of the two equivalent conditions in (i) holds the corresponding kernel has the
form

K(x, y) =
∑
n∈I

ϕn(x)ϕn(y). (3.5)

Proof. In order to prove (i) we first assume that H is a reproducing kernel Hilbert space
with reproducing kernel K. Since K(·, x) ∈ H we can apply the reproducing property
to its Fourier expansion

K(·, x) =
∑
n∈I

(K(·, x), ϕn)Hϕn =
∑
n∈I

(ϕn,K(·, x))Hϕn =
∑
n∈I

ϕn(x)ϕn

Due to the continuity of the point evaluation operator in a reproducing kernel Hilbert
space, the left-hand side is finite for all arguments y ∈ X . Therefore the right-hand sum
converges for all x, y ∈ X . Note that this also proves (ii).

To see that H is a reproducing kernel Hilbert space from the pointwise convergence
of
∑

n∈I ϕn(x)ϕn(y) we have∑
n∈I
|ϕn(x)|2 =

∑
n∈I

ϕn(x)ϕn(x) <∞.

In combination with

|Ex(f)|2 = |f(x)|2 ≤

(∑
n∈I

∣∣∣f̂n∣∣∣2)(∑
n∈I
|ϕn(x)|2

)
=

(∑
n∈I
|ϕn(x)|2

)
‖f‖2H

this shows the continuity of the evaluation operator. Thus H is a reproducing kernel
Hilbert space by Definition 3.1.

To obtain a connection between the coefficients cx in (3.4) and the Fourier coefficients
f̂n we state the followong lemma.

Lemma 3.11. For a finite set of nodes X and f =
∑

x∈X cxK(·, x) ∈ H we addi-
tionally have the representation f =

∑
n∈I f̂nϕn. One can switch between these two

representaitons by the following relation between cx and f̂n

f̂n =
∑
y∈X

cyϕn(y).

Proof. Using the kernel representation in Fourier space (3.5) we achieve

f(x) =
∑
y∈X

cyK(x, y) =
∑
y∈X

cy
∑
n∈I

ϕn(x)ϕn(y) =
∑
n∈I

∑
y∈X

cyϕn(y)


︸ ︷︷ ︸

=f̂n

ϕn(x).

19

3 The Reproducing Kernel Hilbert Space

Remark 3.12. Let the index set I be finite and K a positive definite kernel. Then we
can set up F = (ϕn(x))x∈X ,n∈I . Function evaluations can now be expressed in terms of
matrices from the kernel setting as well as for the Fourier setting, i.e., Kc = F f̂ . Using
that ‖f‖H = ‖f̂‖2 we may write the Tikhonov functional (3.3) in the Fourier setting

J
(
f̂
)

=
∥∥∥F f̂ − f∥∥∥2

W
+ λ

∥∥∥f̂∥∥∥2
2

Remark 3.13. By introducing a weight matrix Ŵ in frequency domain and substituting

F → FŴ−1/2 and f̂ → Ŵ 1/2f̂

we extract weights from the Fourier matrix F into a weight matrix Ŵ and end up with
the same functional as in Chapter 2.

Therefore we have an additional interpretation of the weights Ŵ in frequency domain,
namely the form of the kernel we are approximating with in the given nodes.

20

4 Cross-validation on the torus

In this chapter, we seek for fast algorithms to compute the cross-validation score on
the d-dimensional torus Td with respect to the Fourier basis functions {e2πin·x}n∈Zd in
L2(Td). With this setting the Fourier matrix F becomes

F = FX ,I =
(
e2πin·x

)
x∈X ,n∈I (4.1)

for a finite node set X ⊂ Td, a finite multi-index set I ⊂ Zd and n ·x the Euclidean inner
product. So I determines all possible frequencies and X the nodes of the transform. For
the specific case of equispaced nodes X fast algorithms have been reported in [48] and
[14]. In fact, our approach in this section can be seen as a generalization of [48] to more
general sampling sets and leads to the same algorithm for equispaced data.
Our central goal is to find a simpler expression for the diagonal entries of the hat

matrix H = F (FHWF + λŴ)−1FHW that allows us to apply Theorem 2.4 efficiently.
The idea is to chooseW such that FHWF attains diagonal form because the inverse of
A = FHWF + λŴ could then be calculated entry-wise.

4.1 Exact Quadrature

The first approach is to use quadrature rules. Because they are not limited to the torus
we define them for general measure spaces so we can make use of them in subsequent
sections.

Definition 4.1. Let (M, µ) be a measure space and P ⊂ L1(M) a set of integrable
functions. We call a set of nodes X ⊂ M and a list of weights W = diag(wx)x∈X an
exact quadrature rule for P, if for all f ∈ P we have

QX ,W f :=
∑
x∈X

wxf(x) =

∫
M
f(x) dµ(x).

For the tours we obtain the following

Theorem 4.2. Let I ⊂ Zd be a finite multi-index set with Fourier weights Ŵ =
diag(ŵn)n∈I , X ⊂ Td a set of nodes with W their corresponding quadrature weights
such that (X ,W) forms a quadrature rule which is exact for all trigonometric polynomi-
als e2πin· with frequencies n in the difference index set D(I) := {n1 − n2 : n1,n2 ∈ I}.
Then
(i) the inverse of A, given in (2.4), where F is the Fourier matrix (4.1) on Td is

A−1 =
(
FHWF + λŴ

)−1
= diag

(
1

1 + λŵn

)
n∈I

,

21

4 Cross-validation on the torus

(ii) the diagonal entry corresponding to the node x ∈ X of the hat matrix H =
FA−1FHW becomes

hx,x = wx

∑
n∈I

1

1 + λŵn
. (4.2)

Proof. Since the product of two exponential functions supported on the frequency set I
has only frequencies in D(I), where the quadrature nodes and weights are exact, we have(

FHWF
)
n1,n2

=
∑
x∈X

wxe2πin1xe2πin2x =

∫
Td

e2πin1xe2πin2x dx.

and, hence,
FHWF + λŴ = diag (1 + λŵn)n∈I .

This implies (i). For (ii) we compute the diagonal entries of H as

hx,x = wx

∑
n∈I

1

1 + λŵn
e2πinxe−2πinx = wx

∑
n∈I

1

1 + λŵn
.

Corollary 4.3. Given the prerequisites of Theorem 4.2
(i) we can compute P (λ) and V (λ) by Algorithm 1 in the same complexity as multiply-

ing a vector with F and FH,
(ii) additionally, we can compute ∂

∂λP (λ) and ∂
∂λV (λ) with the cost of one further mul-

tiplication with F
for a fixed regularization parameter λ.

Proof. (i) follows immediately from Theorem 4.2 (ii). With the same argument the
derivative of the diagonal elements evaluates to

∂

∂λ
hx,x = −wx

∑
n∈I

ŵn

(1 + λŵn)2
.

Using FHWF = I we obtain

∂

∂λ
Hf = −F diag

(
1

1 + λŵn

)
Ŵ ĝ,

where ĝ is a byproduct of Algorithm 1. Finally, we can use Theorem 2.9 and Remark 2.10
to compute ∂

∂λP (λ) and ∂
∂λV (λ).

Case studies for specific exact quadrature rules on the torus are discussed in the fol-
lowing two sections.

22

4.2 Equispaced Nodes

4.2 Equispaced Nodes

The simplest example of quadrature on the torus Td is Gauss quadrature which consists
of Nd equispaced nodes

X =

{
m

N
∈ Td : m ∈ Zd ∩

d∏
t=1

[0, N)

}

with uniform weights wx = N−d. The resulting quadrature formula is exact for all
trigonometric polynomials supported on I2N := Zd ∩

∏d
t=1[−N,N) = D(IN). Thus we

can apply Theorem 4.2 for X and I = IN . The corresponding Fourier matrix F = FX ,IN
describes the ordinary discrete Fourier transform for which the matrix-vector product can
be computed in O(Nd logN) with the fast Fourier transform.
For d = 1, 2 our algorithm coincides with the algorithm proposed in [48] with the only

difference that the authors evaluated the data fitting term in the frequency domain and
used specific Fourier weights wn = n4 as regularization term.
Another related approach is covered in [14] where the penalty term consists of finite

differences of second order in time domain. In contrast to computing the diagonal ele-
ments of the hat matrix H they used an eigenvalue decomposition to compute the trace
of the hat matrix for the generalized cross-validation score.
In order to illustrate our approach we chose as the test function f the peaks function

from Matlab, which is a sum of translated and scaled Gaussian bells. We evaluated
this function on a grid of 1024 × 1024 equispaced nodes X and corrupted the data by
10% Gaussian noise εx, i.e., we set

fx = f(x) + εx

for all x ∈ X as depicted in Figure 4.1 (a).
As regularization term we fixed isotropic Sobolev weights ŵn = 1 + ‖n‖s2 for n ∈
IN and s = 3 in Fourier space, which correspond to a function with 3 derivatives in
L2(Td). Varying the regularization parameter λ ∈ [2−18, 2−8] we computed the Tikhonov
minimizers ĝλ according to (2.1) and the cross-validation score. We then applied Parseval
to the original f̂ and ĝλ which is a byproduct from Algorithm 1 to compute the L2(Td)-
approximation errors as a function of the regularization parameter λ. The resulting
curve is depicted in Figure 4.1 (b). Note that according to (4.2) all diagonal entries of
the hat matrix are equal and, hence, the ordinary cross-validation score coincides with the
generalized cross-validation score. The reconstruction gλ with respect to the minimizer
of the cross-validation score P (λ) is depicted in Figure 4.1 (a).
In Figure 4.1 (b) the actual L2(Td)-approximation error is compared to the cross-

validation score P (λ) computed according to Algorithm 1 with use of the fast Fourier
transform. We observe that the minimizers of both functionals coincide surprisingly well.
For this numerical experiment the average running time for the evaluation of P (λ) for a
single value of λ was 0.06 seconds with the fast algorithm and more than 14 hours for a
direct implementation of (2.3).

23

4 Cross-validation on the torus

(a) noisy input data and
reconstruction

10−5 10−4 10−3

10−2.5

10−2

λ

‖f̂̃ λ − f̂‖2
P (λ)

104.021

104.023

(b) approximation error ‖ĝλ − f̂‖2 (black) and
cross-validation scores (orange)

Figure 4.1: Approximation from two-dimensional equispaced data: Comparison of the
ordinary cross-validation score P (λ) and the approximation error.

4.3 Rank-1 Lattices

The approximation of high-dimensional multivariate periodic functions by trigonometric
polynomials using particular finite index sets I in frequency domain is possible using
special index sets [49, 9] on the domain X . The most efficient method uses samples along
rank-1 lattices and is based on a simple univariate FFT [26]. Rank-1 lattices are defined
by

X = Λ(z,M) :=

{
x =

1

M
(mz mod M1) ∈ Td : m = 0, . . . ,M − 1

}
where M1 = (M, . . . ,M)T ∈ Zd. They are fully characterized by the generating vector
z ∈ Zd and the lattice size M . There exist algorithms which, given a frequency index set
I and M , compute a generating vector z such that FHWF equals the identity matrix
forW = diag(1/M)x∈X , cf. [26, 24, 42]. The advantage of rank-1 lattices is the variable
index set I instead of the tensor-product approach like in Section 4.2. So depending
on the function we can adapt to different decay properties of the Fourier coefficients.
Furthermore there exist fast algorithms which evaluate the matrix-vector product with
F or FH in O(M logM + d|I|) using only one one-dimensional fast Fourier transform.
To exemplify these ideas we looked at a sample function consisting of a tensor product

of L2(Td)-normed B-splines of order two in seven dimensions, i.e., d = 7,

f =
d⊗
j=1

B2, B2(x) = 2
√

3
(
X[0,0.5)(x) + X[0.5,1)(1− x)

)

24

4.4 Approximative quadrature

10−2 10−1

10−0.77

10−0.82

λ

‖f̂̃ λ − f̂‖2
P (λ)

108.3367

108.3372

Figure 4.2: Approximation in T7 from data at a rank-1 lattice: Comparison of the cross-
validation score P (λ) with the approximation error.

where XA denotes the indicator function. The Fourier coefficients of f are

f̂n =

d∏
j=1


√

3/4 if nj = 0,√
3/4

(
sin(njπ/2)
njπ/2

)2
cos(njπ) otherwise.

Therefore the Fourier coefficients decay like O(
∏d
j=1 n

−2
j) and a candidate for an index

set I would be a d-dimensional hyperbolic cross

Id,hcN :=

n ∈ Zd :
d∏
j=1

max(1, |nj |) ≤ N

 .

In particular we used a radius of N = 16, a reconstructing rank-1 lattice X from
[26, Table 6.2] with M = 1 105 193 nodes and set the weights in Fourier space to ŵn =∏d
j=1 max(|nj |2, 1).
Applying Algorithm 1 to fx = f(x)+ε, x ∈ X , where ε denotes 5% Gaussian noise we

computed the cross-validation scores P (λ) = V (λ) for λ ∈ [2−9, 20]. Again both scores
coincide since the diagonal entries (4.2) of the hat matrix are multiples of the constant
weights wx in spatial domain. For the multiplications with F and FH we made use of
fast rank-1 lattices Fourier transforms. A comparison of the actual L2(Td)-approximation
error with the cross-validation score is plotted in Figure 4.2. We observe that the optimal
λ with respect to the L2(Td)-error and the λ chosen by cross-validation are very close in
this example.

4.4 Approximative quadrature

In the case of scattered data approximation exact quadrature rules are typically not
available. In principle, one can compute exact quadrature rules by determining the

25

4 Cross-validation on the torus

weighs W = diag(wx)x∈X as a solution of the linear system

FH
X ,D(I)w =

(
e2πix·n

)H
x∈X ,n∈D(I)w = e0,

where e0 is the vector which only contains zeros, except in the 0-th position where
it is equal to one. These weights can be guaranteed to be non-negative under certain
conditions on the frequency index set I and the mesh norm

δX := max
y∈M

min
x∈X
|y − x|

of the nodes X , cf. [11]. However, those conditions strongly restrict the polynomial
degree and do not guaranty the quadrature weights to be non-oscillating. This may be
problematic, since the weights directly alter the problem (1.1) we want to solve.
Our idea is to replace the exact quadrature weights W by approximative weights

derived from the Voronoi tessellation of the node set X .

Definition 4.4. Let M be a Riemannian manifold with a distance function dist(·, ·).
For a set of nodes X ⊂M we define the Voronoi cell Vx corresponding to x ∈ X by

Vx :=
{
y ∈M : dist(x,y) ≤ dist(x′,y), ∀x′ ∈ X

}
.

The Voronoi weight wx is the area of the Voronoi cell Vx

wx :=

∫
M
XVx(y) dy =

∫
Vx

dy.

To emphasize the choice of the Voronoi weights as approximative quadrature weights
we make a rough error estimate for the approximated quadrature using the Voronoi
weights.

Theorem 4.5. Let f : M → C be Lipschitz continuous with the Lipschitz constant L.
Let further X be a set of nodes with mesh norm

δX := max
y∈M

min
x∈X

dist(y,x)

and Voronoi weights wx. Then∣∣∣∣∣∑
x∈X

wxf(x)−
∫
M
f(y) dy

∣∣∣∣∣ ≤ LδX
∫
M

dy.

Proof. Since the disjoint union of all Voronoi cells Vx isM itself we can decompose the
integral as follows∫

M
f(y) dy =

∑
x∈X

∫
Vx

f(y) dy =
∑
x∈X

(
wxf(x) +

∫
Vx

f(y)− f(x) dy

)
.

26

4.4 Approximative quadrature

Noting that the maximal distance of x to any other node of the corresponding Voronoi cell
Vx cannot exceed δX , we use the Lipschitz continuity to estimate the leftover integrand∣∣∣∣∣∑

x∈X
wxf(x)−

∫
M
f(y) dy

∣∣∣∣∣ =

∣∣∣∣∣∑
x∈X

∫
Vx

f(y)− f(x) dy

∣∣∣∣∣ ≤ LδX
∫
M

dy.

Remark 4.6. (i) Theorem 4.5 states that the error of the quadrature formula gets
small for smooth functions in the sense of a small Lipschitz constant and for small
mesh norms, like for approximately equidistributed nodes.

(ii) Deterministic and probabilistic error estimates are available from [20] and [4], re-
spectively.

(iii) The Voronoi decomposition is dual to the Delaunay triangulation and thus can be
computed in O(|X | log |X |) for the Euclidean distance in dist(·, ·).

Given that the error of the Voronoi quadrature is small we obtain approximately

FHWF =

(∑
x∈X

wxe2πin1xe2πin2x

)
n1,]2∈I

≈
(∫

Td

e2πin1xe−2πin2x dx

)
n1,n2∈I

= I ∈ CI×I

where I denotes the identity matrix. Inserting this into the definition of the hat matrix
H we have formally

H = F
(
FHWF + λŴ

)−1
FHW ≈ F

(
I + λŴ

)−1
FHW =: H̃. (4.3)

Analogously to Theorem 4.2 we obtain for the diagonal entries h̃x,x of the approximated
hat matrix H̃,

h̃x,x = wx

∑
n∈I

1

1 + λŵn
.

Together with Theorem 2.4 and Definition 2.6 this motivates the following definition of
approximated cross-validation scores.

Definition 4.7. The approximated cross-validation score P̃ (λ) and the approximated
generalized cross-validation score Ṽ (λ) are defined by

P̃ (λ) =
∑
x∈X

(Hf − f)2x

(1− h̃x,x)2
and Ṽ (λ) =

∑
x∈X

(Hf − f)2x

(1− h̃)2
,

where h̃ = 1
|X |
∑

x∈X h̃x,x.

27

4 Cross-validation on the torus

0 0.2 0.4 0.6 0.8 1

0

0.5

1

x

f = F f̂ + ε

F f̂̃ λ

(a) noisy input data f = F f̂ + ε and
reconstruction F ĝλ with λ set to
the minimizer of P̃ (λ)

10−4 10−3 10−2

100.2850

100.2851

λ

10−0.35

10−0.45

P (λ)

P̃ (λ)

V (λ)

Ṽ (λ)

‖f̂̃ λ − f̂‖2

(b) approximation error ‖ĝλ − f̂‖2 (black) and
cross-validation scores (orange)

Figure 4.3: Approximation from nonequispaced data: Comparison of the ordinary cross-
validation score P (λ) and the generalized cross-validation score V (λ) with
their approximations P̃ (λ) and Ṽ (λ) and the approximation error.

Remark 4.8. (i) Algorithm 1 is easily modified to compute the approximated scores
by replacing all occurrences of hx,x by h̃x,x. The computationally most expensive
part remains the computation of the Tikhonov minimizer g = Hf = F (FHWF +
λŴ)−1FHWf . Making use of the NFFT [29, 27] the matrix-vector multiplications
with F and FH can be performed with O(|I| log |I|+ |X |) numerical operations.

(ii) As in Corollary 4.3 (ii), we can compute ∂
∂λ P̃ (λ) and ∂

∂λ Ṽ (λ) using Theorem 2.9
but have to solve one additional system of equations.

In the remainder of this sections we illustrate that the approximated cross-validation
scores can be computed drastically faster while providing a good approximation to the
minimizer of the actual cross-validation score. To this end we considered scattered sam-
pling points on the one-dimensional torus T as well as on the two-dimensional torus T2.
In order generate sufficiently nonuniform sampling points we drew random samples with
respect to the uniform distribution on [0, 1] and [0, 1]2 and squared them. This leads
to sampling sets that are more dense towards the point 0 and the edges 0 × [0, 1] and
[0, 1]× 0.
In the one-dimensional example we used |X | = 128 sampling points and the index

set I1d64 = {−32, . . . , 31}. In the two-dimensional example we chose |X | = 8192 and
I2d64 = I1d64 × I1d64 . In both cases this corresponds to an oversampling factor of two. As
in Section 4.2 we chose as a test function the Matlab peaks function with fixed second
argument zero in the one-dimensional case. Finally, we added 5% Gaussian noise as
depicted in Figure 4.3 (a) and Figure 4.4 (a).
As in both cases the weights wx are far from uniform, we may expect a big difference

between the ordinary cross-validation score P (λ) and the generalized cross-validation
score V (λ). This can be observed in the one-dimensional example, cf. Figure 4.3. In the

28

4.4 Approximative quadrature

(a) noisy input data and
reconstruction

10−3 10−2

10−1.8

10−1.7

λ

101.32

101.34

101.36

P (λ)

P̃ (λ)

V (λ)

Ṽ (λ)

‖f̂̃ λ − f̂‖2

(b) approximation error ‖ĝλ − f̂‖2 (black) and
cross-validation scores (orange)

Figure 4.4: Approximation from two-dimensional nonequispaced data: Comparison of
the ordinary cross-validation score P (λ) and the generalized cross-validation
score V (λ) with their approximations P̃ (λ) and Ṽ (λ) and the approximation
error.

two-dimensional example both functionals coincide surprisingly well, cf. Figure 4.4.
Judging the approximation of the exact cross-validation scores P (λ) and V (λ) by the

approximated scores P̃ (λ) and Ṽ (λ) we observe that for small regularization parameters
λ the score P̃ (λ) contains several peaks for both examples. These peaks occur because
we overestimate the diagonal entries hx,x such that they attain values around one and
summands of the ordinary cross-validation score (2.7) diverge. In contrast Lemma 2.7
says that these diagonal entries are always smaller than one. Nevertheless, the minimizer
of all four functionals P, P̃ , V, Ṽ are very close together for the two-dimensional example
while for the one-dimensional example the minimizer of P and P̃ are closer to the L2(Td)-
optimal regularization parameter compared to the minimizer of V and Ṽ . A natural idea
to avoid the oscillatory regions of the functional P̃ would be to use the minimizer of Ṽ
as initial guess for minimizing P̃ .
The central reason for preferring the functional P̃ and Ṽ over the functionals P , V

is that they are faster to compute. Indeed, if we fix the number of iterations for com-
puting the Tikhonov minimizer, P (λ) and V (λ) can be acquired in O(|I||X | log |I| +
|X |2) numerical operations for a single regularization parameter λ, which compares to
O(|I| log |I| + |X |) numerical operations for the evaluation of P̃ and Ṽ . In our toy
example the computation of P (λ) and V (λ) took approximately 1.61 seconds for the
one-dimensional and 1278 seconds for the two-dimensional case, while the computation
of P̃ (λ) and Ṽ (λ) was performed within 0.02 and 0.16 seconds averaged over all tested
λ.

29

5 Cross-validation on the unit interval

In this chapter, we consider the cross-validation scores for nonperiodic functions on the
unit interval [−1, 1] with respect to the Chebyshev polynomials

Tn(x) = cos(n arccosx) n = 0, . . . , N − 1

up to polynomial degree N ∈ N. In this setting the Fourier matrix becomes

F = (Tn(x))x∈X ,n=0,...,N−1

for a set of nodes X .

5.1 Exact Quadrature

Similarly as for functions on the torus we consider the case of exact quadrature first.
Therefore we remind that the Chebyshev polynomials are orthogonal with respect to the
inner product

(f, g) =

∫ 1

−1

f(x)g(x)√
1− x2

dx

and are normalized such that

(Tn1 , Tn2) =


π if n1 = n2 = 0,

π/2 if n1 = n2 6= 0,

0 if n1 6= n2.

Assuming that the nodes X and weights W form a quadrature rule that is exact up
to polynomial degree 2N − 2 the diagonal entries of the hat matrix H can be given
explicitly using the following theorem.

Theorem 5.1. Let the nodes X and the weights W = diag(wx)x∈X form a quadrature
rule which is exact up to polynomial degree 2N − 2 and let Ŵ = diag(ŵ0, . . . , ŵN−1)
be the weights in frequency domain. Then the diagonal entries hx,x of the hat matrix
H = F (FHWF + λŴ)−1FW corresponding to the nodes x ∈ X satisfy

hx,x =
wx
2

(
N−1∑
n=1

1

π/2 + λŵn
cos(2n arccosx) +

N−1∑
n=1

1

π/2 + λŵn
+

2

π + λŵ0

)
.

31

5 Cross-validation on the unit interval

Proof. Similar to Theorem 4.2 we obtain FHWF+λŴ = diag(π+λŵ0, π/2+λŵ1, . . . , π/2+
λŵN−1). Putting this into the formula for the diagonal elements of the hat matrix we
find

hx,x = wx

(
N−1∑
n=1

1

π/2 + λŵn
cos2(n arccosx) +

1

π + λŵ0

)
.

In combination with the addition theorem cos(2x) = 2 cos2 x−1 this proves the assertion.

5.2 Chebyshev nodes

The most basic examples of an exact quadrature formula on the interval is probably
quadrature at Chebyshev nodes. In order to restate Theorem 5.1 for this case we require
the discrete cosine transforms from first up to third kind

CI
N+1 :=

√
2

N

(
γN (n)γN (m) cos

(nmπ
N

))N
n,m=0

,

CII
N :=

√
2

N

(
γN (n) cos

(
n(2m+ 1)π

2N

))N−1
n,m=0

, CIII
N :=

(
CII
N

)T
with γ(0) = γ(N) :=

√
2/2 and γ(n) := 1 for n = 1, . . . , N − 1. The corresponding

matrix-vector products can be calculated using O(N logN) arithmetic operations, cf. [42,
Chapter 6].
Using the fact that CIII

N is orthonormal, cf. [42, Sec. 3.5], we acquire

I = CII
NC

III
N =

(
γN (n) cos

(
n(2m+ 1)π

2N

))N−1
n,m=0

2

N

(
γN (n) cos

(
n(2m+ 1)π

2N

))N−1
m,n=0

.

If we multiply with diag(
√
π,
√
π/2, . . . ,

√
π/2) from both sides we obtain

diag(π, π/2, . . . , π/2) =

(
cos

(
n(2m+ 1)π

2N

))N−1
n,m=0

π

N

(
cos

(
n(2m+ 1)π

2N

))N−1
m,n=0

.

Putting this into the form FHWF we see that the Chebyshev nodes of first kind

xm = cos

(
(2m+ 1)π

2N

)
, m = 0, . . . , N − 1

and the uniform weights wx = π/N form a quadrature rule which is exact up to degree
2N − 2.
For these specific nodes Theorem 5.1 simplifies to:

Theorem 5.2. Let X = {x1, . . . , xm} be the Chebyshev nodes of first kind and wxm =
π/N . Then the diagonal entries hxm,xm of the hat matrix (2.6) can be written as

hxm,xm =
wxm

2

(√
N/2

γ2N (m)

(
CI

2N+1b
)
2m+1

+
N−1∑
n=1

1

π/2 + λŵn

)
, m = 0, . . . , N − 1

32

5.2 Chebyshev nodes

with

b = (b0, . . . , b2N)T =

(
2
√

2

π + λŵ0
, 0,

1

π/2 + λŵ1
, 0, . . . ,

1

π/2 + λŵN−1
, 0, 0

)T

.

Proof. According to Theorem 5.1 we have

hxm,xm =
wxm

2

(
N−1∑
n=1

1

π/2 + λŵn
cos

(
n(2m+ 1)π

N

)
+
N−1∑
n=1

1

π/2 + λŵn
+

2

π + λŵ0

)
.

Using the coefficients b the first sum can be expressed with twice the frequency

hxm,xm =
wxm

2

(
1

γ2N (m)

2N∑
n=0

bnγ2N (n)γ2N (m) cos

(
n(2m+ 1)π

2N

)
+

N−1∑
n=1

1

π/2 + λŵn

)
,

which is the cosine transform of first kind.

Corollary 5.3. Given Chebyshev nodes of first kind
(i) The ordinary cross-validation score P (λ) and the generalized cross-validation score

V (λ) can be computed in O(N logN) using Algorithm 1 for fixed λ.
(ii) The derivative of the diagonal elements evaluates to

∂

∂λ
hxm,xm =

wxm
2

(√
N/2

γ2N (m)

(
CI

2N+1

∂

∂λ
b

)
2m+1

−
N−1∑
n=1

ŵn
(π/2 + λŵn)2

)

for m = 0, . . . , N − 1 with

∂

∂λ
b = −

(
ŵ02
√

2

(π + λŵ0)2
, 0,

ŵ1

(π/2 + λŵ1)2
, 0, . . . ,

ŵN−1
(π/2 + λŵN−1)2

, 0, 0

)T

.

(iii) Additionally, we can compute ∂
∂λP (λ) and ∂

∂λV (λ) with the cost of two further
discrete cosine transforms.

Proof. Because multiplying with F and FH can be done using the fast discrete cosine
transform, we see that applying the hat matrix can be done in O(N logN). Theorem 5.2
allows us to compute the diagonal entries of the hat matrix in O(N logN) which proves
(i). (ii) can be derived by standard calculus.
To obtain (iii) we use Theorem 2.9 and the given quadrature to derive

∂

∂λ
Hf = −F diag

(
1

π + λŵ0
,

1

π/2 + λŵ1
, . . . ,

1

π/2 + λŵN−1

)
Ŵ ĝ.

Because ĝ is a byproduct from Algorithm 1 we can calculate ∂
∂λHf using one further

cosine transform. Using this and (ii) in Remark 2.10 we obtain the assertion.

33

5 Cross-validation on the unit interval

−1 −0.5 0 0.5 1

0

0.5

1

x

f = F f̂ + ε

F f̂̃ λ

(a) noisy input data f = F f̂ + ε and
reconstruction f̃λ with λ set to the
minimizer of P (λ)

10−5 10−4

10−1.2

10−1.1

λ

10−0.3

10−0.2

P (λ)

V (λ)

‖F f̂̃ λ − f‖L2

(b) L2([−1, 1], (1−x2)−1/2) approximation error
(black) and cross-validation scores (orange)

Figure 5.1: Approximation on the unit interval from data at Chebyshev nodes: Compar-
ison of the ordinary cross-validation score P (λ) and the generalized cross-
validation score V (λ) with the approximation error.

To emphasize our results numerically we chose the peaks sample function f from
Matlab and fixed the second argument to zero. We evaluated f in N = 128 Chebyshev
nodes and added 5% Gaussian noise as one can see in Figure 5.1 (a). To choose Ŵ we
made use of the following statement from [51, Theorem 7.1] which relates the smoothness
of f to the decay of the Chebyshev coefficients a: If for ν ≥ 0 the derivatives up to f (ν−1)

are absolute continuous and f (ν) has bounded variation V then |ak| ≤ 2V/(π(k−ν)ν+1).
Because in general we do not know anything about the smoothness of the function f we
chose ŵn = n3 as weights which corresponds to a function with one absolute continuous
derivative. We used Algorithm 1 to calculate the ordinary cross-validation score P (λ)
and the generalized cross-validation score V (λ) for λ ∈ [2−16, 2−11] and plotted the
regularization for the λ with the smallest corresponding ordinary cross-validation score
as one can see in Figure 5.1 (b).
We observe that the ordinary cross-validation score and the generalized cross-validation

score differ only slightly and their minima are close to the L2([−1, 1], (1−x2)−1/2) optimal
λ.

5.3 Approximative Quadrature

In this section, we consider arbitrary, ordered nodes xm ∈ X ⊂ [−1, 1], m = 0, . . . ,M .
The corresponding cosine transforms can be computed using the nonequispaced discrete
cosine transform, cf. [10], inO(N logN+|X |) whereN is the bandwidth. As in Section 4.4
we determine approximate quadrature weights wxm for m = 0, . . . ,M that allow us to
efficiently estimate the diagonal entries of the hat matrix H. Since we consider the unit
interval with the non-uniform weight function (1−x2)−

1
2 it is not a good idea to compute

34

5.3 Approximative Quadrature

Voronoi weights directly. Instead, we consider the corresponding periodic approximation
problem on the unit circle with constant weight by substituting ym = arccosxm ∈ [0, π]
and use Voronoi weights with respect to ym, i.e.,

wxm =


y0+y1

2 , m = 0,
ym+1−ym−1

2 , m = 1, . . . ,M − 1,

π − yM−1+yM
2 , m = M.

(5.1)

Remark 5.4. Let xm be the Chebyshev nodes of first kind. Then the quadrature weights
(5.1) coincide with the exact quadrature weights from Section 5.1.

Analogously to Section 4.4 we use the approxmiated hat matrix H̃ from (4.3) for ease
of computation.

Remark 5.5. (i) Using Theorem 5.1 the diagonal entries can be calculated efficiently
with one nonequispaced discrete cosine transform.
With the given tools we can modify Algorithm 1 to compute P̃ (λ) and Ṽ (λ) from
Definition 4.7 in O(N logN + |X |) arithmetic operations given a fixed number of
iterations to compute the Tikhonov minimizer.

(ii) Similar to Corollary 5.3 (ii), we can calculate ∂
∂λhx,x from Theorem 5.1 with one

cosine transform. Now we can compute ∂
∂λ P̃ (λ) and ∂

∂λ Ṽ (λ) using Theorem 2.9
and Remark 2.10 but have to solve one additional system of equations.

To exemplify our results we chose 128 uniformly distributed nodes on the unit interval
which we perturbed by 5% Gaussian noise. Note that uniformly distributed nodes are
far from optimal in the setting of polynomial interpolation on the interval. As in case
of exact quadrature we set the bandwidth equal to the number of nodes, i.e., N = |X |.
As the Voronoi weights resemble quadrature weights the choice of the bandwidth N is
critical because in the case of |X | < N one can not expect to get an exact quadrature
formula. As test function we used again the Matlab peaks function with fixed second
argument. Then we computed P (λ), P̃ (λ), V (λ), and Ṽ (λ) for λ ∈ [2−18, 2−11]. The
results can be seen in Figure 5.2.
We observe that all cross-validation scores follow the shape of the L2([−1, 1], (1 −

x2)−1/2)-error and their minima are close to the optimal λ. Again, P̃ (λ) is affected by
oscillations for small λ which are caused by diagonal entries hxm,xm close to 1. The
computation of the exact P (λ) and V (λ) averaged over all λ takes 4.07 seconds whereas
the approximated P̃ (λ) and Ṽ (λ) outperform this with 0.04 seconds.

35

5 Cross-validation on the unit interval

−1 −0.5 0 0.5 1

0

0.5

1

x

f = F f̂ + ε

F f̂̃ λ

(a) noisy input data f = F f̂ + ε and
reconstruction F ĝλ with λ set to
the minimizer of P̃ (λ)

10−4.5 10−4 10−3.5

10−1.26

10−1.15

λ

10−0.35

10−0.45

P (λ)

P̃ (λ)

V (λ)

Ṽ (λ)

‖F f̂̃ λ − f‖L2

(b) L2([−1, 1], (1−x2)−1/2) approximation error
(black) and cross-validation scores (orange)

Figure 5.2: Approximation from nonequispaced data: Comparison of the ordinary cross-
validation score P (λ) and the generalized cross-validation score V (λ) with
their approximations P̃ (λ) and Ṽ (λ) and the approximation error.

36

6 Cross-validation on the
two-dimensional sphere

Approximation on the two-dimensional sphere S2 := {x ∈ R3 : ‖x‖2 = 1} has been sub-
ject of mathematical research for a long time. The base for approximation from scattered
data is formed by positive quadrature rules, Marcinkiewicz-Zygmund inequalities which
are investigated in the papers [57, 36, 33, 6], and by bounds for best approximations
[47, 56, 21]. Based on these results the relationship between the mesh norm, the separa-
tion distance of the sampling points, and optimal approximation rates has been analyzed
in the papers [12, 31, 28, 50]. Approximation from noisy data has been considered in [1]
and a priori and a posteriori estimates of the approximation error with respect to the
regularization parameter have been proven in [41].
Following the approach of the previous sections we again consider the weighted Tikhonov

functional (1.1). The analogue of the exponential functions become the spherical har-
monics {Yn,k}n=0,...,∞,k=−n,...,n, cf. [13, 2, 37, 7], which we assume to be normalized such
that they form an orthonormal basis in L2(S2). For nodes X ⊂ S2 and a maximum
polynomial degree N ∈ N the Fourier matrix F becomes

F = (Yn,k(x))x∈X ;n=0,...,N,k=−n,...,n.

As for the weight matrix Ŵ in Fourier space we consider isotropic weights Ŵ =
diag(ŵn,k)h=0,...,N, k=−n,...,n that depend only the polynomial degree, i.e., ŵn,k = ŵn.

6.1 Exact Quadrature

There are several approaches for exact quadrature on the two-dimensional sphere. The
most direct approach is to consider tensor products of Gauss quadrature rules on the
circle and the unit interval [−1, 1], cf. [42, Section 9.6]. A relaxation of this idea is
to choose the points equally spaced at fixed latitudinal circles which also allows for an
explicit computation of the quadrature weights, cf. [45].
A second approach is to choose the quadrature nodes approximately uniform and de-

termine the quadrature weights by solving a linear system of equations. Given that
the quadrature nodes are sufficiently well separated and the oversampling factor is suffi-
ciently high, the resulting quadrature weights can guarantied to be non-negative, cf. [36].
The computation of these quadrature weights can be implemented efficiently using fast
spherical Fourier techniques, cf. [32, 30, 27].
A third approach, called Chebyshev quadrature, consists of fixing the weights to be

constant and seeking quadrature nodes with a high degree of exactness. The resulting

37

6 Cross-validation on the two-dimensional sphere

nodes are known as spherical t-designs. Efficient algorithms for their computation are
described in [19] with the resulting spherical designs being available in [16]. Finally,
one can try to compute both quadrature nodes and weights in an optimization scheme,
cf. [17].
For this section it is sufficient that the nodes X and the weights W = diag(wx)x∈X

form an exact quadrature rule of degree 2N , i.e., FHWF = I. Under this assumption
the diagonal entries of the hat matrix

H = F
(
FHWF + λŴ

)−1
FHW

can by computed efficiently as it is stated in the following theorem.

Theorem 6.1. Let the nodes X and the weights W form a quadrature formula QX ,W
that is exact for all spherical harmonics up to polynomial degree 2N . Then the diagonal
entry corresponding to x ∈ X of H satisfies

hx,x =
wx

4π

N∑
n=0

2n+ 1

1 + λŵn
.

Proof. Since FHWF = I we obtain analogously to the proof of Theorem 4.2

H = F diag

(
1

1 + λŵ0
, . . . ,

1

1 + λŵN

)
FHW .

Looking into the diagonal entry corresponding to x and using the addition theorem of
spherical harmonics, cf. [37, Theorem 5.11], we obtain the formula

hx,x = wx

N∑
n=0

1

1 + λŵn

n∑
k=−n

Yn,k(x)Yn,k(x) =
wx

4π

N∑
n=0

2n+ 1

1 + λŵn
.

Corollary 6.2. (i) For fixed λ the ordinary cross-validation score P (λ) and the gener-
alized cross-validation score V (λ) on the two-dimensional sphere, given quadrature
nodes and weights, can be computed in O(N2 logN + |X |) using Algorithm 1.

(ii) From
∂

∂λ
hx,x = −wx

4π

N∑
n=0

2n+ 1

(1 + λŵn)2

in combination with Theorem 2.9 and Remark 2.10 we see that we can compute
∂
∂λP (λ) and ∂

∂λV (λ) with one further multiplication with F

Proof. Due to Theorem 6.1 we can compute hx,x in linear time. Using equation (6.1)
applying the hat matrix has the same computational cost as one multiplication with F
and one with FH. Using the nonequispaced fast spherical Fourier transform (NFSFT,
cf. [32]) this can be done in O(N2 logN + |X |).

38

6.2 Approximative Quadrature

(a) noisy input data and
reconstruction

10−11 10−10 10−9 10−8

10−1

10−1.2

λ

‖f̂̃ λ − f̂‖2
P (λ)

102.33

102.35

(b) approximation error ‖ĝλ − f̂‖2 (black) and
cross-validation scores (orange)

Figure 6.1: Approximation from equispaced data on the two-dimensional sphere: Com-
parison of the cross-validation score P (λ) and the approximation error.

In order to illustrate Theorem 6.1 we consider a quadrature rule consisting of 21 000
approximately equidistributed nodes and equal weights wx = 4π/21 000 that is exact
up to polynomial degree 2N = 200, as reported in [16]. Since by Theorem 6.1 the
diagonal entries hx,x of the hat matrix are multiples of the constant spatial weights wx

the ordinary cross-validation score and the generalized cross-validation score coincide for
this setting. For weights in frequency domain we have chosen ŵn = (2n+ 1)2s for s = 3
which corresponds to a function with 3 derivatives in L2(S2).
The test function consists of a sum of quadratic B-splines to which we added an error

of 5% Gaussian noise for each node as one can see in Figure 6.1 (a). This function was
suggested in [23]. We calculated V (λ) and P (λ) for λ ∈ [2−38, 2−25] using Algorithm 1
with the help of the Matlab toolbox MTEX, cf. [22]. Furthermore we calculated the
L2(S2)-error using Parseval from the original f̂ and ĝ which is a byproduct of Algorithm 1.
As it is illustrated in the Figure 6.1 (b) the minimum of the cross-validation score is

very close to the minimum of the approximation error.

6.2 Approximative Quadrature

In the case function values are provided at nodes not forming a suitable quadrature rule
we follow the previous ideas of Section 4.4 and 5.3 and use the approximated hat matrix
H̃ from (4.3) instead ofH itself. This way we acquire P̃ (λ) and Ṽ (λ) as in Definition 4.7.
In place of quadrature weights we use a spherical Voronoi decomposition, cf. [44].
The only changes to Algorithm 1 are the prior computation of the Voronoi weights

and the necessity of solving a linear system of equations for computing the Tikhonov

39

6 Cross-validation on the two-dimensional sphere

(a) noisy input data and
reconstruction

10−10 10−9 10−8

10−1.1

10−1

λ

100.75

100.8

P (λ)

P̃ (λ)

V (λ)

Ṽ (λ)

‖f̂̃ λ − f̂‖2

(b) approximation error ‖ĝλ − f̂‖2 (black) and
cross-validation scores (orange)

Figure 6.2: Approximation from random nodes on the two-dimensional sphere: Compar-
ison of the ordinary cross-validation score P (λ) and the generalized cross-
validation score V (λ) with their approximations P̃ (λ) and Ṽ (λ) and the ap-
proximation error.

minimizer ĝ. Again, we can compute ∂
∂λ P̃ (λ) and ∂

∂λ Ṽ (λ) similar to Remark 4.8.
In order to illustrate the efficiency of approximative quadrature weights for estimating

the cross-validation score we consider the same test function and Ŵ as in the previous ex-
ample and apply Algorithm 1 with polynomial degree N = 30 to |X | = 2(N+1)2 = 1922
random nodes, which corresponds to an oversampling factor of two. Figure 6.2 compares
the different cross-validation scores P (λ), V (λ), P̃ (λ), and Ṽ (λ) for λ ∈ [2−38, 2−25].
All scores have their minimum close to the minimum of the of the actual approximation
error. On the downside, we again observe several peaks in the approximated ordinary
cross-validation score for small values of λ. So it is important to start the minimiza-
tion process with a large λ. We also want to note that the computation of the exact
P (λ) and V (λ) took 227 seconds averaged over all λ in contrast to 0.12 seconds for the
approximated P̃ (λ) and Ṽ (λ).

40

7 Cross-validation on the rotation group

Now we look into cross-validation on the rotation group SO(3), where approximating
functions plays an important role with applications in crystallographic texture analysis,
chemical physics, molecular biology, and robotics, cf. [39, 5, 35].
The Fourier basis functions in this setting are the Wigner-D functions Dkk′

n for n ∈ N0

and k, k′ = −n, . . . , n, which are orthogonal and normalized such that∥∥∥Dkk′
n

∥∥∥2
L2(SO(3))

=
8π2

2n+ 1
,

cf. [52, Section 4.10, equation (5)], where ‖ · ‖L2(SO(3)) is the L2-norm on the rotation
group. The corresponding truncated Fourier matrix F becomes

F =
(
Dkk′
n (x)

)
x∈X ;n=0,...,N,k,k′=−n,...,n

for some maximal polynomial degree N . We consider weights in Fourier space which
only depend on the polynomial degree n, namely Ŵ = diag(ŵkk

′
n)x∈X ;n=0,...,N,k,k′=−n,...,n

with ŵkk′n = ŵn.

7.1 Exact Quadrature

Following the structure of the previous chapters we deal with the case of exact quadrature
first. One can derive such quadrature rules by considering a parametrization for the tensor
product of S2 × S1 and use the quadrature rules from these, cf. [18].
We will assume that the nodes X and the weightsW = diag(wx)x∈X form a quadrature

rule with exactness up to degree 2N , i.e., FHWF = diag(8π2/(2n+1))n=0,...,N,k,k′=−n,...,n.
The diagonal entries of the hat matrix

H = F
(
FHWF + λŴ

)−1
FHW

can now be computed efficiently using the following theorem.

Theorem 7.1. Let X and W form a quadrature formula QX ,W that is exact for all
Wigner-D functions up to polynomial degree 2N . Then the diagonal entry corresponding
to x of H satisfies

hx,x = wx

N∑
n=0

2n+ 1
8π2

2n+1 + λŵn
.

41

7 Cross-validation on the rotation group

Proof. Like in the previous chapters we can use the exact quadrature to obtain

H = F
(
FHWF + λŴ

)−1
FHW = F diag

(
1

8π2

2·0+1 + λŵ0

, . . . ,
1

8π2

2N+1 + λŵN

)
FHW .

Now we apply a special case of the addition theorem, cf. [52, Section 4.7, equation (4)],
for Wigner-D functions to obtain

n∑
k′′=−n

Dkk′′
n (x)Dk′k′′

n (x) = Dkk′
n (0) = δk,k′ .

Ultimately, we can write the diagonal entries as follows

hx,x = wx

N∑
n=0

1
8π2

2n+1 + λŵn

n∑
k=−n

n∑
k′=−n

Dn
k,k′(x)Dn

k,k′(x)

= wx

N∑
n=0

2n+ 1
8π2

2n+1 + λŵn
.

Corollary 7.2. (i) Fixing λ, we can compute the ordinary cross-validation score P (λ)
and the generalized cross-validation score V (λ) within O(M+N3 log2N) numerical
operations on the rotation group SO(3) using Algorithm 1.

(ii) Similar to Corollary 4.3 we can compute ∂
∂λP (λ) and ∂

∂λV (λ) by one further mul-
tiplication with F

Proof. Using Theorem 7.1 we can compute the diagonal entries hx,x and their derivatives
in linear time and using the nonequispaced fast SO(3) Fourier transform, cf. [43], the
multiplication with F and FH can be done in O(M +N3 log2N).

To illustrate our approach numerically we chose M = 5 880 approximately equidis-
tributed nodes with quadrature weights 8π2/M , which form an exact quadrature rule
up to polynomial degree N = 23. Due to Theorem 7.1 the diagonal entries of H are
multiples of the spatial weights wx which has the equality of ordinary and generalized
cross-validation score as a consequence. We chose ŵn = (n + 1/2)2s for s = 3 which
corresponds to a function with three derivatives in L2(SO(3)).

The test function is an orientation density function of the data set for the mineral
olivine from mtex, cf. [22]. We calculated P (λ) and V (λ) for λ ∈ [2−18, 2−15] using
Algorithm 1 and the L2(SO(3))-error using Parseval from f̂ and ĝ.

We can see in Figure 7.1 that the cross-validation score is close to the approximation
error.

42

7.2 Approximative Quadrature

10−5.4 10−5.2 10−5 10−4.8 10−4.6

10−0.14

10−0.11

λ

‖f̂̃ λ − f̂‖2
P (λ)

104.41

104.42

Figure 7.1: Approximation in SO(3) given a quadrature rule: Comparison of the ordinary
cross-validation score P (λ) with the approximation error.

7.2 Approximative Quadrature

If no exact quadrature rule is given we can use the approximated hat matrix H̃ form (4.3)
instead orH. Using Voronoi weights inW we obtain P̃ (λ) and Ṽ (λ) as in Definition 4.7
in a fast manner.
We have to change Algorithm 1 to calculate the Voronoi weights before and calculate

the Tikhonov minimizer ĝ by solving a linear system of equations.

Remark 7.3. (i) Algorithm 1 can be used to compute the approximated cross-validation
scores. The computationally most expensive part remains the computation of the
Tikhonov minimizer g = Hf = F (FHWF + λŴ)−1FHWf . Using an iterative
method with a fixed number of iterations and making use of the nonequispaced fast
SO(3) Fourier transform, this can be done in O(M +N3 log2N).

(ii) As in Corollary 4.3 (ii), we can compute ∂
∂λ P̃ (λ) and ∂

∂λ Ṽ (λ) using Theorem 2.9
and Remark 2.10, but have to solve one additional system of equations.

For a numerical experiment we used |X | = 46 852 random nodes on SO(3) and poly-
nomial degree N = 25 to get an oversampling factor of two. As sample function we used
the same as in the quadrature case and perturbed the function values with 5% Gaussian
noise. The weights in frequency domain Ŵ are chosen as before: ŵn = (n + 1/2)2s for
s = 3.
Figure 6.2 compares the approximated cross-validation scores P̃ (λ) and Ṽ (λ) for λ ∈

[2−22, 2−20]. Again, we observe a similar behavior of the different cross-validation scores
to the L2(SO(3))-approximation error. Surprisingly we do not get the peaks in the
ordinary cross-validation score as in the other chapters.
We only calculated the approximated scores which took 9.25 seconds per λ. The

observed factor equal to the number of nodes |X | observed in the previous chapters
would lead to 120 hours per λ for the exact cross-validation scores which is why we
omitted their computation.

43

7 Cross-validation on the rotation group

10−6.6 10−6.4 10−6.2

10−0.2

10−0.18

λ

104.92

104.93

P̃ (λ)

Ṽ (λ)

‖f̂̃ λ − f̂‖2

Figure 7.2: Approximation in SO(3) without a given quadrature rule: Comparison of the
ordinary cross-validation score P (λ) with the approximation error.

44

8 Conclusion

In this thesis we presented a fast algorithm for the computation of the leave-one-out
cross-validation score P (λ) and its derivative ∂

∂λP (λ) for the Tikhonov regularizer (1.1).
In contrast to other approaches we did not restrict ourselves to spline interpolation on
the interval at equispaced nodes but considered more general domains and samplings.
The key points of Algorithm 1 are explicit formulas for the diagonal elements hx,x of
the hat matrix H which we were able to derive in the Theorems 4.2, 5.2, 6.1, and
7.1 for approximation on the torus, the interval, the two-dimensional sphere, and the
rotation group, respectively. Generalizations to other domains are possible following the
framework presented in this thesis. For all these domains FFT-like algorithms can be
applied to achieve quasilinear complexity with respect to the number of nodes for the
computation of the Tikhonov minimizer as well as for the leave-one-out cross-validation
score.
The efficiency of our approach has been illustrated in several numerical experiments

with respect to the different domains. For the nodes we distinguished two settings. For
nodes belonging to a quadrature rule, like equispaced nodes or rank-1 lattices on the torus,
our Algorithm 1 computes the cross-validation score P (λ) with floating point precision,
cf. Corollaries 4.3, 5.3, 6.2, and 7.2. For arbitrary nodes we accomplished in Remarks 4.8,
5.5, Corollary 6.2, and Remark 7.3 a good approximation using Voronoi weights in place
of the quadrature weights. The numerical experiments confirm our theoretical results.
In all test scenarios our algorithm was several orders of magnitude faster then the direct
reference implementation.
In some cases the approximated leave-one-out cross-validation score P̃ (λ) suffered from

peaks for λ smaller than the optimal one, cf. Section 4.4. Anyway, in our test cases we
had no problems finding the global minimum by initializing the line search algorithm
with a sufficiently large λ and thus avoiding the oscillatory region.
All relevant Matlab code, including the algorithm for the fast computation of the

leave-out-one cross-validation score, its minimizer and all numerical examples of this
thesis can be found on the GitHub repository https://github.com/felixbartel/fcv.

45

Bibliography

[1] C. An, X. Chen, I. H. Sloan, and R. S. Womersley. Regularized least squares approxi-
mations on the sphere using spherical designs. SIAM J. Numer. Anal., 50:1513–1534,
2012.

[2] K. Atkinson and W. Han. Spherical Harmonics and Approximations on the Unit
Sphere: An Introduction, volume 2044 of Lecture Notes in Mathematics. Springer,
Heidelberg, 2012.

[3] F. Bartel, R. Hielscher, and D. Potts. Fast Cross-validation in Harmonic Approxi-
mation. arXiv e-prints 1903.10206, 2019.

[4] R. F. Bass and K. Gröchenig. Random sampling of multivariate trigonometric poly-
nomials. SIAM J. Math. Anal., 36:773–795, 2004.

[5] S. Bernstein and H. Schaeben. A one-dimensional Radon transform on SO(3) and
its application to texture goniometry. Math. Methods Appl. Sci., 28(11):1269–1289,
2005.

[6] A. Böttcher, S. Kunis, and D. Potts. Probabilistic spherical Marcinkiewicz-Zygmund
inequalities. J. Approx. Theory, 157:113–126, 2009.

[7] F. Dai and Y. Xu. Approximation Theory and Harmonic Analysis on Spheres and
Balls. Springer Monographs in Mathematics. Springer, New York, 2013.

[8] L. N. Deshpande and D. Girard. Fast computation of cross-validated robust splines
and other non-linear smoothing splines. Curves and Surfaces, pages 143–148, 1991.

[9] D. Dung, V. N. Temlyakov, and T. Ullrich. Hyperbolic Cross Approximation. Ad-
vanced Courses in Mathematics. CRM Barcelona. Birkhäuser/Springer, 2018.

[10] M. Fenn and D. Potts. Fast summation based on fast trigonometric transforms at
nonequispaced nodes. Numer. Linear Algebra Appl., 12:161–169, 2005.

[11] F. Filbir and H. Mhaskar. Marcinkiewicz-Zygmund measures on manifolds. J.
Complexity, 27:568–598, 2011.

[12] F. Filbir and W. Themistoclakis. Polynomial approximation on the sphere using
scattered data. Math. Nachr., 281:650–668, 2008.

[13] W. Freeden, T. Gervens, and M. Schreiner. Constructive Approximation on the
Sphere. Oxford University Press, Oxford, 1998.

47

Bibliography

[14] D. Garcia. Robust smoothing of gridded data in one and higher dimensions with
missing values. Comput. Statist. Data Anal., 54(4):1167–1178, 2010.

[15] G. H. Golub, M. Heath, and G. Wahba. Generalized cross-validation as a method
for choosing a good ridge parameter. Technometrics, 21(2):215–223, 1979.

[16] M. Gräf. Numerical spherical designs on S2.
http://www.tu-chemnitz.de/~potts/workgroup/graef/quadrature, 2010.

[17] M. Gräf. Efficient Algorithms for the Computation of Optimal Quadrature Points
on Riemannian Manifolds. Dissertation. Universitätsverlag Chemnitz, 2013.

[18] M. Gräf and D. Potts. Sampling sets and quadrature formulae on the rotation group.
Numer. Funct. Anal. Optim., 30:665–688, 2009.

[19] M. Gräf and D. Potts. On the computation of spherical designs by a new optimization
approach based on fast spherical Fourier transforms. Numer. Math., 119:699–724,
2011.

[20] K. Gröchenig. Reconstruction algorithms in irregular sampling. Math. Comput.,
59:181–194, 1992.

[21] K. Hesse and I. H. Sloan. Hyperinterpolation on the sphere. In N. K. Govil, H. N.
Mhaskar, R. N. Mohapatra, Z. Nashed, and J. Szabados, editors, Frontiers in In-
terpolation and Approximation, Pure and Applied Mathematics. Taylor & Francis
Books, Boca Raton, Florida, 2006.

[22] R. Hielscher. MTEX 5.1 - A matlab toolbox for crystallographic texture analysis.
http://mtex-toolbox.github.io/.

[23] R. Hielscher and M. Quellmalz. Optimal mollifiers for spherical deconvolution. In-
verse Problems, 31(8):085001, 2015.

[24] L. Kämmerer. High Dimensional Fast Fourier Transform Based on Rank-1 Lattice
Sampling. Dissertation. Universitätsverlag Chemnitz, 2014.

[25] L. Kämmerer. LFFT, Matlab R© toolbox for the lattice and generated set based
FFT. http://www.tu-chemnitz.de/~lkae/lfft, 2014.

[26] L. Kämmerer, D. Potts, and T. Volkmer. Approximation of multivariate periodic
functions by trigonometric polynomials based on rank-1 lattice sampling. J. Com-
plexity, 31:543–576, 2015.

[27] J. Keiner, S. Kunis, and D. Potts. NFFT 3.5, C subroutine library. http://
www.tu-chemnitz.de/~potts/nfft. Contributors: F. Bartel, M. Fenn, T. Görner,
M. Kircheis, T. Knopp, M. Quellmalz, M. Schmischke, T. Volkmer, A. Vollrath.

[28] J. Keiner, S. Kunis, and D. Potts. Efficient reconstruction of functions on the sphere
from scattered data. J. Fourier Anal. Appl., 13:435–458, 2007.

48

http://www.tu-chemnitz.de/~lkae/lfft
http://www.tu-chemnitz.de/~potts/nfft
http://www.tu-chemnitz.de/~potts/nfft

Bibliography

[29] J. Keiner, S. Kunis, and D. Potts. Using NFFT3 - a software library for various
nonequispaced fast Fourier transforms. ACM Trans. Math. Software, 36:Article 19,
1–30, 2009.

[30] J. Keiner and D. Potts. Fast evaluation of quadrature formulae on the sphere. Math.
Comput., 77:397–419, 2008.

[31] S. Kunis. A note on stability results for scattered data interpolation on Euclidean
spheres. Adv. Comput. Math., 30:303–314, 2009.

[32] S. Kunis and D. Potts. Fast spherical Fourier algorithms. J. Comput. Appl. Math.,
161:75–98, 2003.

[33] Q. T. Le Gia and H. N. Mhaskar. Quadrature formulas and localized linear polyno-
mial operators on the sphere. SIAM J. Numer. Anal., 2007. accepted.

[34] M. A. Lukas, F. R. de Hoog, and R. S. Anderssen. Efficient algorithms for robust
generalized cross-validation spline smoothing. J. Comput. Appl. Math., 235:102–107,
2010.

[35] A. Makadia, L. Sorgi, and K. Daniilidis. Rotation estimation from spherical images.
In Proceedings of the 17th International Conference on Pattern Recognition, 2004.
ICPR 2004., volume 3, pages 590–593 Vol.3, Aug 2004.

[36] H. N. Mhaskar, F. J. Narcowich, and J. D. Ward. Spherical Marcinkiewicz-Zygmund
inequalities and positive quadrature. Math. Comput., 70:1113–1130, 2001. Corri-
gendum on the positivity of the quadrature weights in 71:453–454, 2002.

[37] V. Michel. Lectures on Constructive Approximation: Fourier, Spline, and Wavelet
Methods on the Real Line, the Sphere, and the Ball. Birkhäuser, New York, 2013.

[38] F. J. Narcowich, R. Schaback, and J. D. Ward. Approximation in sobolev spaces by
kernel expansions. J. Approx. Theory, 114:70–83, 2002.

[39] V. P. Palamodov. Reconstruction from a sampling of circle integrals in SO(3).
Inverse Problems, 26(9):095008, 2010.

[40] V. I. Paulsen and M. Raghupathi. An introduction to the theory of reproducing
kernel Hilbert spaces, volume 152 of Cambridge Studies in Advanced Mathematics.
Cambridge University Press, Cambridge, 2016.

[41] S. Pereverzyev, I. Sloan, and P. Tkachenko. Parameter choice strategies for least-
squares approximation of noisy smooth functions on the sphere. SIAM J. Numer.
Anal., 53:820–835, 2015.

[42] G. Plonka, D. Potts, G. Steidl, and M. Tasche. Numerical Fourier Analysis. Applied
and Numerical Harmonic Analysis. Birkhäuser, 2018.

49

Bibliography

[43] D. Potts, J. Prestin, and A. Vollrath. A fast algorithm for nonequispaced Fourier
transforms on the rotation group. Numer. Algorithms, 52:355–384, 2009.

[44] R. J. Renka. Algorithm 772: Stripack: Delaunay triangulation and voronoi dia-
gram on the surface of a sphere. ACM Trans. Math. Softw., 23:416–434, 1997. For
accompanying software, see http://www.acm.org/pubs/calgo.

[45] D. Rosca. Spherical quadrature formulas with equally spaced nodes on latitudinal
circles. Electron. Trans. Numer. Anal., 35:148–163, 2009.

[46] R. B. Sidje, A. B. Williams, and K. Burrage. Fast generalized cross validation using
Krylov subspace methods. Numer Algor, 47:109–131, 2008.

[47] I. Sloan and R. Womersley. The uniform error of hyperinterpolation on the sphere.
In W. Haußmann, K. Jetter, and M. Reimer, editors, Advances in Multivariate
Approximation, volume 107 of Mathematical Research, pages 289–306. Wiley VCH,
Berlin, 1999.

[48] M. Tasche and N. Weyrich. Smoothing inversion of Fourier series using generalized
cross-validation. Results Math., 29(1-2):183–195, 1996.

[49] V. N. Temlyakov. Approximation of periodic functions. Computational Mathematics
and Analysis Series. Nova Science Publishers Inc., Commack, NY, 1993.

[50] W. Themistoclakis and M. V. Barel. Uniform approximation on the sphere by least
squares polynomials. Numer. Alg., accepted, 2019.

[51] L. N. Trefethen. Approximation theory and approximation practice. Society for
Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2013.

[52] D. Varshalovich, A. Moskalev, and V. Khersonskii. Quantum Theory of Angular
Momentum. World Scientific Publishing, Singapore, 1988.

[53] G. Wahba. Spline Models for Observational Data. Springer, SIAM, 1990.

[54] H. L. Weinert. Efficient computation for Whittaker-Henderson smoothing. Comp.
Stat. & Data Analysis, 52:959–974, 2007.

[55] H. Wendland. Scattered Data Approximation. Cambridge Monographs on Applied
and Computational Mathematics. Cambridge University Press, Cambridge, 2005.

[56] R. S. Womersley and I. H. Sloan. How good can polynomial interpolation on the
sphere be? Adv. Comput. Math., 14:195–226, 2001.

[57] Y. Xu and E. W. Cheney. Strictly positive definite functions on spheres. Proc.
Amer. Math. Soc., 116:977–981, 1992.

50

Studentenservice – Zentrales Prüfungsamt
Selbstständigkeitserklärung

Name:

Vorname:

geb. am:

Matr.-Nr.:

Bitte beachten:

1. Bitte binden Sie dieses Blatt am Ende Ihrer Arbeit ein.

Selbstständigkeitserklärung*

Ich erkläre gegenüber der Technischen Universität Chemnitz, dass ich die vorliegende
selbstständig und ohne Benutzung anderer als der angegebenen Quellen und Hilfsmittel angefertigt habe.

Die vorliegende Arbeit ist frei von Plagiaten. Alle Ausführungen, die wörtlich oder inhaltlich aus anderen Schriften entnommen
sind, habe ich als solche kenntlich gemacht.

Diese Arbeit wurde in gleicher oder ähnlicher Form noch nicht als Prüfungsleistung eingereicht und ist auch noch nicht
veröffentlicht.

Datum: ……………………………………. Unterschrift: ………………………………………………………………………

 d
* Statement of Authorship

I hereby certify to the Technische Universität Chemnitz that this thesis is all my own work and uses no external material other
than that acknowledged in the text.

This work contains no plagiarism and all sentences or passages directly quoted from other people’s work or including content
derived from such work have been specifically credited to the authors and sources.

This paper has neither been submitted in the same or a similar form to any other examiner nor for the award of any other
degree, nor has it previously been published.

	Introduction
	Cross-validation
	Basic Concepts
	Algorithm to Compute the Cross-validation Scores
	Derivative of the Cross-validation Scores

	The Reproducing Kernel Hilbert Space
	Basic Concepts
	Smoothing Approximation
	Connection to the Fourier setting

	Cross-validation on the torus
	Exact Quadrature
	Equispaced Nodes
	Rank-1 Lattices
	Approximative quadrature

	Cross-validation on the unit interval
	Exact Quadrature
	Chebyshev nodes
	Approximative Quadrature

	Cross-validation on the two-dimensional sphere
	Exact Quadrature
	Approximative Quadrature

	Cross-validation on the rotation group
	Exact Quadrature
	Approximative Quadrature

	Conclusion
	Bibliography

