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Abriss

Kohlenstoffnanoröhrchen zeigen je nach ihrer Struktur verschiedene Eigenschaften und
können elektrisch leitend oder halbleitend sein. Werden sie in elektronischen Schaltungen
als Nanodraht zwischen zwei Elektroden eingesetzt, treten sie nicht nur einzeln auf, son-
dern können dicht beieinander liegen. In der vorliegenden Arbeit wird untersucht, wel-
chen Einfluss auf die elektronische Struktur und die Transporteigenschaften zwei weni-
ge Ångström entfernt liegende Kohlenstoffnanoröhrchen haben. Am Beispielsystem, be-
stehend aus metallischen (4,1)-Kohlenstoffnanoröhrchen, werden Elektronendichten, Zu-
standsdichten, Transmissionsspektren und Stromspannungskennlinien berechnet und er-
läutert. Die Rechnungen werden mit der Software Atomistix ToolKit, welche die Dichte-
funktionaltheorie und den Formalismus der Nichtgleichgewichtsgreensfunktion verwen-
det, durchgeführt.
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Mathematische und physikalische
Konstanten

e = 2,718 281 828 459 045 . . . Eulersche Zahl

π = 3,141 592 653 589 793 . . . Kreiszahl

e = 1,602 176 46 · 10−19 C Elementarladung

ε0 = 8,854 187 817 · 10−12 A s
V m Elektrische Feldkonstante

h = 6,626 068 8 · 10−34 J s Plancksches Wirkungsquantum

h̄ = 1,054 571 60 · 10−34 J s Reduziertes Plancksches Wirkungsquantum

kB = 1,380 650 · 10−23 J
K Boltzmannkonstante

me = 9,109 381 9 · 10−31 kg Elektronenmasse
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1 Einleitung

Abb. 1.1: Schematische Darstellung eines
Kohlenstoffnanoröhrchenfeldef-
fekttransistors [1].

Kohlenstoffnanoröhrchen haben je nach ihrer Struk-
tur verschiedene Eigenschaften und können bei-
spielsweise bezüglich der elektrischen Leitfähigkeit
metallisch oder halbleitend sein. Daraus ergeben
sich vielfältige potentielle Anwendungsgebiete in
den immer weiter miniaturisierten elektronischen
Schaltungen. Metallische Kohlenstoffnanoröhrchen
können als Nanodraht fungieren und als dünner
Leiter zwischen zwei Elektroden zum Einsatz kom-
men. Halbleitende Kohlenstoffnanoröhrchen kön-
nen in Sensoren eingesetzt werden, da durch me-
chanische Belastung die Bandlücke und somit die

Leitfähigkeit beeinflusst wird. Feldeffekttransistoren mit Kohlenstoffnanoröhrchen konn-
ten bereits erfolgreich hergestellt werden. Abb. 1.1 zeigt schematisch ein solches System.

Abb. 1.2: Vereinfachter schematischer
Aufbau zweier mit
Kohlenstoffnanoröhrchen
verbundener Elektroden.

Aufgrund der geringen Abmessungen ist eine klas-
sische Beschreibung eines solchen Systems nicht
mehr möglich. Es zeigen sich quantenmechanische
Effekte, deren Auswirkungen schwer abzuschätzen
sind. Wie in Abb. 1.2 schematisch und stark verein-
facht dargestellt ist, können sich zwei Kohlenstoff-
nanoröhrchen, welche zwischen Elektroden plat-
ziert sind, bis auf wenige Ångström annähern und
eine Art „berührungsfreie Kreuzung“ bilden. Der
Stromfluss durch eines der beiden Kohlenstoffnano-
röhrchen ist somit durch die Anwesenheit des zwei-
ten beeinflusst.

Die Frage, auf die in diesem Praktikum eine Ant-
wort zu geben versucht wird, lautet daher: Welchen
Einfluss hat eine solche Kohlenstoffnanoröhrchen-
kreuzung auf die elektronische Struktur und die
Transporteigenschaften im Vergleich zu zwei einzel-
nen, nicht wechselwirkenden Kohlenstoffnanoröhr-
chen?
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2 Theoretische Grundlagen

2.1 Kohlenstoffnanoröhrchen

2.1.1 Struktur

~a1

~a2

~T

~C
zig-zag

armchair

Abb. 2.1: CNT-Einheitszelle als Ausschnitt der Graphen-Ebene [2]

Die geometrische Struktur eines Kohlenstoffnanoröhrchens (englisch: carbon nanotube, kurz:
CNT) lässt sich als aufgerollter Graphenausschnitt beschreiben, wie dies in Abb. 2.1 dar-
gestellt ist. Das periodische hexagonale Graphengitter mit zweiatomiger Basis wird durch
die Basisvektoren

~a1 =

(√
3

2
,

1
2

)
a , ~a2 =

(√
3

2
,−1

2

)
a (2.1)

aufgespannt, wobei a = 2,46 Å die Gitterkonstante bezeichnet. Der Kohlenstoff-Kohlen-
stoff-Abstand ergibt sich dann zu aCC = 1,42 Å. Ein CNT ist definiert durch den Chirali-
tätsvektor

~C = m~a1 + n~a2 (2.2)

und wird als (m ,n)-CNT bezeichnet. Für n = 0 spricht man vom Zick-Zack-CNT, für m = n
vom Sessel-CNT, da die Atome entlang des Vektors ~C eine Zick-Zack- bzw. Sesselform
besitzen. Für alle anderen Werte spricht man vom chiralen CNT. Das Gitter ergibt sich als
periodische Fortsetzung einer Einheitszelle. Wählt man diese rechtwinklig so ergibt sich
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der kürzeste zu ~C senkrechte Translationsvektor

~T =
2n +m

ggT(2m + n , 2n +m)
~a1 −

2m + n
ggT(2m + n , 2n +m)

~a2 (2.3)

Das Kohlenstoffnanoröhrchen entsteht schließlich durch Aufrollen der Einheitszelle paral-
lel zu ~C und Identifizierung der durch ~T gegebenen Ränder. Der Umfang u , die Länge l
und die Atomzahl N des CNT ist somit gegeben durch

u =
∣∣∣~C ∣∣∣ = √3

√
m2 + n2 +mnaCC , (2.4)

l =
∣∣∣~T ∣∣∣ = 3

√
m2 + n2 +mn

ggT(2m + n , 2n +m)
aCC , (2.5)

N = 2

∣∣∣~C × ~T
∣∣∣

|~a1 ×~a2|
= 4

m2 + n2 +mn
ggT(2m + n , 2n +m)

. (2.6)

Abb. 2.1 zeigt die Einheitszelle eines (4,2)-CNT in der Graphenebene. In Abb. 2.2 sind die
Einheitszellen der fünf (4,n)-CNT in senkrechter Projektion dargestellt. die grau schattier-
ten Atome liegen dabei im hinteren Bereich.

(a) (4,0)-
CNT

(b) (4,1)-CNT (c) (4,2)-CNT

(d) (4,3)-CNT (e) (4,4)-
CNT

Abb. 2.2: Einheitszellen des (4,n)-CNT.

2.1.2 Elektronische Eigenschaften des unendlichen CNT

Das Tight-Binding-Verfahren liefert für die Bandstruktur von Graphen folgenden Aus-
druck [3]:

E (kx , ky ) = ±γ

√
1 + 4 cos2

(
1
2
kya
)
+ 4 cos

(
1
2
kya
)

cos
(

1
2
kx
√

3a
)

. (2.7)
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Abb. 2.3: Bandstruktur von Graphen.

Dabei ist γ das Übergangsintegral nächster Nach-
barn. Die Bandstruktur ist in Abb. 2.3 abge-
bildet. Die Bänder des CNT ergeben sich auf-
grund der Periodizität in Richtung ~C nähe-
rungsweise (die Krümmung wurde nicht beach-
tet) als senkrechte Schnitte durch die Bandstruk-
tur von Graphen. Die Zustandsdichte ist auf-
grund der effektiven Eindimensionalität abschnitts-
weise proportional zu E−1/2 und weist die typi-
schen Van-Hove-Singularitäten an den Bandkan-
ten auf. Die Transmission im CNT ist propor-
tional zur Anzahl der Bänder, da sich Elektro-
nen in Graphen ballistisch fortbewegen. Daher be-
steht das Transmissionsspektrum aus Stufen, deren
Höhe ganzzahlige Werte annimmt. Bandstruktur,
Zustandsdichte und Transmissionsspektrum sind
am Beispiel des (4,1)-CNT in Abb. 2.4 darge-
stellt.

kz

E

D TΓ Z

Abb. 2.4: Bandstruktur, Zustandsdichte und Transmissionsspektrum am Beispiel des (4,1)-CNT.

2.2 Dichtefunktionaltheorie

Grundlage der Dichtefunktionaltheorie (kurz: DFT) [4] ist die quantenmechanische Beschrei-
bung des Systems. Die Grundgleichung, die es zu lösen gilt, ist die zeitunabhängige Schrö-
dingergleichung

Ĥ ψ = Eψ , (2.8)

welche die Eigenenergien E und die Eigenzustände ψ liefert. Für ein einzelnes Elektron im
Potential vs (~r) statischer Atomrümpfe (Born-Oppenheimer-Näherung) ist ψ = ψ (~r) und
Ĥs der Einteilchen-Hamiltonoperator

Ĥs = T̂s + V̂s = −
h̄2

2me
∆ + vs (~r) . (2.9)
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Für ein Vielteilchenproblem mit N Elektronen und NA Atomrümpfen ist ψ = ψ (~r1, . . . ,~rN )
eine Funktion von 3N Elektron-Koordinaten {~ri} und für den Hamiltonoperator Ĥ mit
ausschließlich Coulomb-Wechselwirkung gilt

Ĥ = T̂ + V̂ + Û

= − h̄2

2me

N

∑
i=1

∆i +
N

∑
i=1

NA

∑
µ=1

−eQµ

4πε0

∣∣∣~ri − ~Rµ

∣∣∣ +
N

∑
i=1

N

∑
j=i+1

e2

4πε0 |~ri − ~rj |
, (2.10)

wobei T̂ , V̂ und Û die Operatoren der kinetischen Energie, des Potentials und Elektron-
Elektron-Wechselwirkung sind und

{
Rµ

}
die Koordinaten der Atomrümpfe bezeichnen.

Aus den Lösungen ψ der Schrödingergleichung lassen sich die Observablen

O =
〈
ψ
∣∣ Ô ∣∣ψ〉 (2.11)

insbesondere die Elektronendichte

n (~r) = N
∫

R3N−3

ψ∗ (~r ,~r2, . . . ,~rN )ψ (~r ,~r2, . . . ,~rN )d3~r2 . . . d3~rN (2.12)

berechnen. Diese hängt nur von 3 Koordinaten ab und stellt im Gegensatz zu den 3N Ko-
ordinaten der Eigenzustände eine starke Verminderung der Dimensionalität dar, wodurch
bei numerischer Behandlung ein wesentlich geringerer Speicherbedarf benötigt wird. Al-
lerdings geht damit im Allgemeinen auch eine starke Reduzierung der Informationen ein-
her.

Die Gesamtzahl der Elektronen im System lässt sich als Funktional

N = N [n ] =
∫

R3

n (~r)d3~r (2.13)

darstellen. Welche weiteren Observablen sich als Funktional der Elektronendichte darstel-
len lassen, liefert das Hohenberg-Kohn-Theorem [5].

2.2.1 Hohenberg-Kohn-Theorem

Satz: Sei die Grundzustandselektronendichte n0 nicht entartetet. Dann gilt:

(i) Der Gundzustand ist ein Funktional der Grundzustandselektronendichte.

ψ0 (~r1, . . . ,~rN ) = ψ [n0] (2.14)

Insbesondere folgt: jede Observable des Grundzustandes ist ein Funktional der
Grundzustandselektronendichte.

O0 = O [n0] =
〈
ψ [n0]

∣∣ Ô ∣∣ψ [n0]
〉

(2.15)

(ii) Die Grundzustandselektronendichte minimiert die Energie.

E0 = E [n0] = min
n

E [n ] = min
n

min
ψ→n

〈
ψ
∣∣ Ĥ ∣∣ψ〉 (2.16)
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(iii) Die Beiträge der kinetischen Energie, des Potentials und der Wechselwirkungs-
energie zur Gesamtenergie sind Funktionale der Elektronendichte.

E [n ] = T [n ] +V [n ] +U [n ] (2.17)

Für das potentielle Energiefunktional gilt bei gegebenem Potential v (~r)

V [n ] =
∫

R3

n (~r) v (~r)d3~r . (2.18)

Eine zentrale Aussage ist die Äquivalenz von Eigenzustand und Grundzustandselektro-
nendichte. Dies besagt, dass bei der Berechnung von n0 aus ψ0 keinerlei Informationen
verloren gehen, d.h. ψ0 aus n0 wiederum berechnet werden kann. Das Hohenberg-Kohn-
Theorem liefert somit einen effektiven Ansatz zur Berechnung der Observablen von Viel-
teilchensystemen, ohne die Eigenzustände an sich berechnen zu müssen.

2.2.2 Thomas-Fermi-Näherung

Dem Hohenberg-Kohn-Theorem zu folge existiert zwar eine exakte Darstellung der Ener-
giefunktionale, diese sind allerdings nicht explizit bekannt. Eine einfache Approximation
stellt die Thomas-Fermi-Näherung dar. Dabei wird das Wechselwirkungsenergiefunktional
durch die elektrostatische Feldenergie der Ladungsverteilung (Hartree-Energie) genähert.

U [n ] ≈ UH [n ] =
q2

2

∫
R6

n (~r) n (~r ′)
4πε0 |~r −~r ′|

d3~rd3~r ′ (2.19)

Des Weiteren wird das kinetische Energiefunktional als Integral über die kinetische Ener-
giedichte eines homogenen, nicht wechselwirkenden (d.h. Einelektronen-) Systems genä-
hert.

T [n ] ≈ TTF [n ] =
∫

R3

thoms (n (~r))d3~r mit thoms (n (~r)) =
3h̄2 (3π2)2/3

10me
n5/3 (2.20)

2.2.3 Erweiterungen

Allgemein lässt sich der Anteil der kinetischen Energie in einen nicht wechselwirkenden
(Einteilchen-) Term und einen wechselwirkenden Term aufspalten.

T [n ] = Ts [n ] +Txc [n ] (2.21)

In lokaler Dichtenäherung (englisch: local-density approximation, kurz: LDA) ist der nicht
wechselwirkende Term gleich dem der Thomas-Fermi-Näherung. In einer erweiterten Gra-
dientennäherung (englisch: gradient-expansion approximation, kurz: GEA) wird dieser durch
einen Korrekturterm (Weizsäckerterm) ergänzt.

TLDA
s [n ] = TTF [n ] , (2.22)

TGEA
s [n ] = TLDA

s [n ] +
h̄2

8me

∫
R3

|∇n (~r)|2

n (~r)
d3~r (2.23)
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Beim Wechselwirkungsfunktional spaltet man ebenfalls den Austausch-Korrelationsterm
ab. Der wechselwirkungsfreie Teil entspricht dabei der Hartree-Energie.

U [n ] = UH [n ] +Uxc [n ] (2.24)

Für das potentielle Energiefunktional lässt sich folgende Beziehung zeigen:

V [n ] =
∫

R3

n (~r) (vs (~r)− vH (~r)− vxc (~r))d3~r , (2.25)

vH (~r) = q2
∫

R3

n (~r ′)
4πε0 |~r −~r ′|

d3~r ′ . (2.26)

Dabei ist vH das Hartree-Potential und vxc das Austausch-Korrelationspotential. Sämtliche
wechselwirkenden Terme fasst man zur Austausch-Korrelationsenergie zusammen.

Tc [n ] +Uxc [n ] +Vxc [n ] = Exc [n ] = Ex [n ] + Ec [n ] (2.27)

Für die Austauschenergie gilt

Ex [n ] ≈ ELDA
x [n ] = −3q2

4

(
3
π

)1/3 ∫
R3

n (~r)4/3 d3~r , (2.28)

Ex [n ] ≈ EGEA
x [n ] = ELDA

x [n ]− 10q2

432π (3π2)1/3

∫
R3

|∇n (~r)|2

n (~r)4/3 d3~r (2.29)

Die Korrelationsenergie Ec [n ] ist nicht explizit bekannt, kann aber mit umfangreichen
Vielteilchen-Quanten-Monte-Carlo-Simulationen berechnet werden.

2.2.4 Kohn-Sham-Gleichungen

Basis der Berechnung ist weiterhin die Schrödinger-Gleichung, welche 3N -dimensionale
Eigenfunktionen liefert und in dieser Form nicht handhabbar ist. Die Kohn-Sham-Gleichun-
gen [6] liefern einen berechenbaren Ansatz, bei dem das ursprüngliche Problem in ein ef-
fektiv eindimensionales Problem überführt wird.

Die Minimierung des Energiefunktionals lässt sich schreiben als

0 =
δE [n ]
δn (~r)

=
δTs [n ]
δn (~r)

+
δV [n ]
δn (~r)

+
δUH [n ]
δn (~r)

+
δExc [n ]
δn (~r)

=
δTs [n ]
δn (~r)

+ v (~r) + vH (~r) + vxc (~r) . (2.30)

Für ein nicht wechselwirkendes System liefert die Minimierung

0 =
δEs [n ]
δn (~r)

=
δTs [n ]
δn (~r)

+
δVs [n ]
δn (~r)

=
δTs [n ]
δn (~r)

+ vs (~r) (2.31)

die Elektronendichte des nicht wechselwirkenden Systems ns (~r).
Aus der Forderung n (~r) = ns (~r) ergibt sich somit

vs (~r) = v (~r) + vH (~r) + vxc (~r) . (2.32)
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Mithilfe dessen lässt sich das ursprüngliche Problem in eine Einteilchen-Schrödingerglei-
chung überführen.

Ĥsφ =

[
− h̄2

2me
∆ + vs (~r)

]
φ = Esφ (2.33)

Die Elektronendichte ist dann durch die Besetzung der einzelnen Orbitale φi gegeben.

n (~r) = ns (~r) =
N

∑
i=1

fi |φi (~r)|2 (2.34)

fi bezeichnet dabei die Besetzungswahrscheinlichkeit des i-ten Orbitals.

Die Berechnung von n geschieht über eine Selbskonsistenzrechnung, die folgenden verein-
facht dargestellten Algorithmus aufweist:

1. Starte mit einem n(0) (~r).

2. Überführe v (k) (~r) in v (k)
s (~r).

3. Löse Ĥ
(k)

s φ(k) = E (k)
s φ(k).

4. Berechne n(k+1) (~r) aus der Besetzung der Orbitale φ
(k)
i .

5. Falls ‖n(k+1) (~r) − n(k) (~r) ‖ eine gegebene Genauigkeit unterschreitet, beende den
Algorithmus, ansonsten gehe zu 2. und wiederholde den Algorithmus mit n(k+1) (~r).

2.3 Landauer-Büttiker-Formel

Die Strom-Spannungs-Kennlinie I (U ) kann aus dem Transmissionsspektrum T (E , U )
mit Hilfe der Landauer-Büttiker-Formel [7]

I (U ) =
2e
h

∞∫
−∞

T (E , U )
[
f
(
E − e

2
U
)
− f

(
E +

e
2
U
)]

dE . (2.35)

berechnet werden. Dabei ist

f (E ) =
1

1 + e
E−EF

kBT

(2.36)

die Fermi-Dirac-Verteilung der Spin- 1
2 -Teilchen bei der Temperatur T und der Fermiener-

gie EF . Das Transmissionsspektrum T (E , U ) gibt bei einer anliegenden Spannung U in
Abhängigkeit der Energie die Summe der Transmissionswahrscheinlichkeiten durch das
Gesamtsystem aller Transportkanäle (Bänder der Dispersionsrelation) an. Da sich bei ei-
ner Spannung U 6= 0 das System nicht im Gleichgewicht befindet, ist eine weitere Theorie
nötig, die der Nichtgleichgewichtsgreensfunktion, auf deren Darstellung im folgenden jedoch
verzichtet wird.
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3 Software

Sämtliche Dichtefunktionaltheorierechnungen wurden mittels ATOMISTIX TOOLKIT 12.2.0
durchgeführt [8, 9]. Dabei wurden die in Tab. 3.1, 3.2, 3.3, 3.4, 3.5 und 3.6 aufgeführten Pa-
rameter verwendet.

Tab. 3.1: Parameter für die Geometrieoptimierung mit Atomistix ToolKit.

Rechner Brenner
maximale Kraft 0,01 eV

Å
Spannungen vorhanden nein
maximale Schrittzahl 200
maximale Schrittlänge 0,5 Å
Einschränkungen keine Optimierung der Elektrodenkopie sowie einer

anschließenden Einheitszelle

Tab. 3.2: Parameter für die DFT-Rechnungen mit Atomistix ToolKit.

Rechner DFT: LCAOCalculator
Basissatz LDABasis.SingleZetaPolarized
Austausch-Korrelationsfunktional Lokale-Dichte-Näherung: LDA.PZ
Elektronentemperatur 300 K
Gitternetzabstände(1) 150 Ry(2)

k-Punkt-Rasterung (1,1,100)
Poisson-Gleichungslöser FFT(3) mit periodischen Randbedingungen
der Elektroden in alle Richtungen
Poisson-Gleichungslöser zweidimensionale FFT(3) mit periodischen
der Zentralregion Randbedingungen in alle Richtungen
Initialisierungselektronendichte Superposition der Dichte der neutralen Atome
der Zentralregion
Übergangslänge zwischen 7 Å
Elektrode und Zentralregion
Elektrodenspannungen beidseitig 0 V
(1) in Energieeinheiten. Längeneinheit λ = c

√
h̄2E
2me

(2) 1 Ry = 1Rydberg ≈ 13,6 eV = Bindungsenergie des 1s-Zustandes im Wasserstoffatom
(3) schnelle Fouriertransformation

Tab. 3.3: Zusätzliche Parameter für die Berechnung der Elektronendichte mittels DFT (Parameter siehe
Tab. 3.2) mit Atomistix ToolKit.

Spin Spin.Sum
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Tab. 3.4: Zusätzliche Parameter für die Berechnung der Zustandsdichte und des 0 V-Transmissionsspektrums
mittels DFT (Parameter siehe Tab. 3.2) mit Atomistix ToolKit.

Energien Intervall [−1, 5; 1, 5] eV in Abständen von 0,01 eV
k-Punkte äquidistantes Gitter: MonkhorstPackGrid(1,1)
Nullpunktenergie Fermienergie
Energieinkrement 1 · 10−6 eV
Selbstenergierechner KrylovSelfEnergy()

Tab. 3.5: Zusätzliche Parameter für die Berechnung der spannungsabhängigen Transmissionsspektren mittels
DFT (Parameter siehe Tab. 3.2) mit Atomistix ToolKit.

Energien Intervall [−1, 5; 1, 5] eV in Abständen von 0,01 eV
k-Punkte äquidistantes Gitter: MonkhorstPackGrid(1,1)
Nullpunktenergie Fermienergie
Energieinkrement 1 · 10−5 eV
Selbstenergierechner KrylovSelfEnergy()
angelegte Spannungsdifferenz Intervall [0, 0.9]V in Abständen von 0,1 V

Tab. 3.6: Parameter für die Berechnung von Bandstruktur, Zustandsdichte und Transmissionsspektrum des
unendlichen CNT mittels DFT mit Atomistix ToolKit.

Rechner DFT: LCAOCalculator
Basissatz GGABasis.DoubleZetaDoublePolarized
Austausch-Korrelationsfunktional Verallgemeinerte-Gradienten-Näherung: GGA.PBE
Gitternetzabstände(1) 150 Ry(2)

k-Punkt-Rasterung (1,1,100)
Poisson-Gleichungslöser FFT(3) mit periodischen Randbedingungen

in alle Richtungen
(1) in Energieeinheiten. Längeneinheit λ = c

√
h̄2E
2me

(2) 1 Ry = 1Rydberg ≈ 13,6 eV = Bindungsenergie des 1s-Zustandes im Wasserstoffatom
(3) schnelle Fouriertransformation
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4 Geometrie des untersuchten Systems in
unterschiedlichen Konfigurationen

Die im folgenden untersuchten Systeme sind stets in drei Bereiche gegliedert, wie dies
schematisch in Abb. 4.1, 4.2 und 4.3 dargestellt ist: eine große Zentralregion, die das ei-
gentliche zu untersuchende System darstellt, und zwei kleinere Elektrodenregionen, die
als Kontakte und Elektronenreservoir dienen. Die Kontaktfläche ist blau eingezeichnet.
Die Elektrodenregionen enthalten an allen Kontaktstellen zur Zentralregion eine möglichst
kleine Anzahl an Einheitszellen CNT (rot eingezeichnet), die jedoch länger sein muss als
der effektive Wechselwirkungsabstand zweier Atome. Die Zentralregion enthält an beiden
Seiten eine Kopie der Elektrode (ebenfalls rot eingezeichnet), welche an den Rändern die
Eigenschaften der Elektroden erzwingt. Des Weiteren enthält diese zuzüglich zu demjeni-
gen CNT, dessen Eigenschaften berechnet werden sollen, eine zusätzliche Einheitszelle an
der Elektrodenkopie (grün eingezeichnet), die bei der Optimierung festgehalten wird und
einen Abbruch des Programms verhindert, für den Fall, dass die inneren Atome in den
Bereich der Elektrodenkopie verschoben werden sollten.

Um den Einfluss der Krümmung eines Kohlenstoffnanoröhrchens und den zweier nah bei-
einander liegender CNTs, im folgenden stets als Kreuzung bezeichnet, systematisch und
getrennt von einander zu untersuchen, empfielt sich die Variation diverser Parameter bei
der Berechnung der Eigenschaften des Systems.

4.1 Variation des Krümmungsradius

Die Variation des Krümmungsradius geschieht wie in Abb. 4.1 dargestellt. Das zentrale
CNT wird dabei in drei Bereiche unterteilt: einen horizontalen, einen gekrümmten und
einen diagonalen Teil. Es empfielt sich, die Anzahl der Atome konstant zu halten und für
die Bereiche ganze Einheitszellen zu wählen. Eine Gesamtzahl von 12 Einheitszellen bietet
sich daher an. Die Aufteilung erfolgt dann in

• jeweils zwei Einheitszellen in der Kontaktregion, jeweils zwei Einheitszellen in der
Krümmungsregion, vier Einheitszellen in der diagonalen Verbindungsregion (kurz:
{2, 2, 4}, siehe Abb. 4.1a),

• jeweils eine Einheitszelle in der Kontaktregion, jeweils vier Einheitszellen in der Krüm-
mungsregion, zwei Einheitszellen in der diagonalen Verbindungsregion (kurz: {1, 4, 2},
siehe Abb. 4.1b),

• keine Kontaktregion, jeweils sechs Einheitszellen in der Krümmungsregion, keine
diagonale Verbindungsregion (kurz: {0, 6, 0}, siehe Abb. 4.1c).
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4.2 Zusammengesetztes System aus linearem und
gekrümmtem CNT

Um den Einfluss von Krümmung und Kreuzung herauszuarbeiten, sind die Eigenschaften
der folgenden drei Systeme zu berechnen:

• ein lineares CNT (siehe Abb. 4.2a),

• ein gekrümmtes CNT (siehe Abb. 4.2b),

• ein zusammengesetztes System aus dem linearen und dem gekrümmten CNT aus
den obigen beiden Punkten (siehe Abb. 4.2c).

Das gekrümmte CNT wird dabei so gewählt, wie in Kapitel 4.1 beschrieben. Die Länge des
linearen CNT wird der Länge der Zentralregion des gekrümmten CNTs angepasst. Der
senkrechte Abstand beider CNTs im zusammengesetzten System wird auf den CNT-CNT-
Gleichgewichtsabstand von etwa 3 Å gesetzt [10]. Den Einfluss des Krümmungsradius auf
eine Observable lässt sich daraus wiefolgt bestimmen:

∆Oo = Okr −Olin . (4.1)

Analog folgt für den Einfluss des Kreuzungsbereiches

∆O× = Otot −Olin −Okr . (4.2)

Dabei steht Olin , Okr bzw. Otot für die Observable des einzelnen, linearen CNTs, des ein-
zelnen gekrümmten CNTs sowie des zusammengesetzten Gesamtsystems und ∆Oo bzw.
∆O× für den Einfluss von Krümmung sowie Kreuzung. Bei einem solchen Vergleich feh-
len bei den Einzelsystemen im Vergleich zum Gesamtsystem ein Teil der Atome und in
der Rechnung somit auch die zugehörigen Basisfunktionen. Da bei großen Systemen der
Basissatz nie vollständig ist, kommt es dadurch zu Superpositionsfehlern. Diese können
behoben werden, indem man sogenannte Geisteratome einführt, bei denen lediglich an
der entsprechenden Atomposition eine Basis zur Verfügung gestellt wird, alle sonstigen
atomaren Eigenschaften aber fehlen. Somit kann in den Einzelsystemen das jeweils andere
CNT als Geister-CNT mit eingebracht werden, um den Superpositionsfehler zu beheben.
Das hier untersuchte System weißt allerdings bis auf in der Kreuzungsregion große Ab-
stände zwischen den beiden CNTs auf, sodass der Fehler gering sein sollte. Weiterhin wür-
de das Geister-CNT die Atomzahl der Einzelsysteme verdoppeln und somit die Rechenzeit
dieser extrem erhöhen. Auf die Verwendung der Geister-Atome wurde daher verzichtet.

4.3 Variation des Kontaktwinkels

Zur Bestimmung des Einflusses des Kreuzungsbereiches wird der Kontaktwinkel α, d.h.
der Winkel zwischen den beiden Tangenten an die longitutinale Achse beider CNTs, von
10◦ bis 90◦ in Intervallen von 10◦ für alle Systemkombinationen aus Kapitel 4.1 und 4.2 vari-
iert (siehe Abb. 4.3). Die Gesamtzahl der Atome wurde dabei wieder auf 12 Einheitszellen
festgehalten. Da mit der Veränderung des Kontaktwinkels somit auch eine Veränderung
des Krümmungsradius einhergeht, ist somit der Einfluss der Krümmung ebenfalls erfasst.
Bei einer Einheitszellenlänge l und einer Anzahl von k Einheitszellen in der Krümmungs-
region ist der Zusammenhang zwischen Kreuzungswinkel und Krümmungsradius durch
Rα = kl gegeben.
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(a) {2, 2, 4} (b) {1, 4, 2} (c) {0, 6, 0}

Abb. 4.1: Zur Untersuchung des Einflusses der Krümmung wurden die Observablen für drei verschiedene
Kombinationen mit der gleichen Anzahl Einheitszellen berechnet. (a) jeweils 2 Einheitszellen
Kontaktregion, jeweils 2 Einheitszellen Krümmung und 4 Einheitszellen mittlere Verbindung. (b)
jeweils 1 Einheitszelle Kontaktregion, jeweils 4 Einheitszellen Krümmung und 2 Einheitszellen
mittlere Verbindung. (c) jeweils 6 Einheitszellen Krümmung, keine Kontaktregion und mittlere
Verbindung. Der rote Bereich markiert die Elektrode und die Elektrodenkopie. Die blaue Linie
markiert die Kontaktebene zwischen der Zentralregion und den Elektroden. Bei allen
Konfigurationen wurde jeweils eine Einheitszelle als Abstandshalter (grün) eingefügt.

(a) Lineares CNT (b) Gekrümmtes CNT (c) Beide CNTs

Abb. 4.2: Zur Untersuchung des Einflusses von Krümmung und Kontaktwinkel wurden die Observablen (a)
für ein lineares CNT, (b) für ein gekrümmtes CNT und (c) für die Kombination aus beiden CNTs
berechnet. Der rote Bereich markiert die Elektrode und die Elektrodenkopie. Die blaue Linie
markiert die Kontaktebene zwischen der Zentralregion und den Elektroden. Die grüne Einheitszelle
fungiert als zusätzlicher Abstandshalter.

(a) 30◦ (b) 60◦ (c) 90◦

Abb. 4.3: Zur Untersuchung des Einflusses von Krümmung und Kontaktwinkel wurden die Observablen für
Winkel von 10◦ bis 90◦ in Intervallen von 10◦ berechnet. Der rote Bereich markiert die Elektrode und
die Elektrodenkopie. Die blaue Linie markiert die Kontaktebene zwischen der Zentralregion und
den Elektroden. Die grüne Einheitszelle fungiert als zusätzlicher Abstandshalter.
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4.4 Wahl des CNT

Das gekrümmte CNT in der gewählten Geome-
trie besitzt in der Zentralregion 14 Einheitszellen.
Um die Rechnung möglichst kurz zu halten, ist
es daher zweckmäßig, eine CNT-Art mit wenigen
Atomen je Einheitszelle zu wählen. Tab. 4.1 zeigt
hierzu für m = 4 . . . 6 die Atomanzahl je Ein-
heitszelle, den Umfang und die Länge. Setzt man
500 Atome als Grenze, so entfallen alle CNTs mit
mehr als 35 Atomen je Einheitszelle und es ver-
bleiben (4,0)-, (4,1)-, (4,4)-, (5,0)-, (5,5)-, (6,0)- und
(6,6)-CNT. Als zweites Kriterium sollte die Län-
ge möglichst groß und somit der Umfang mög-
lichst klein sein. Dies wird am besten durch das
(4,1)-CNT erfüllt. Eine zugehörige Grafik ist in
Abb. 4.4 abgebildet. Dabei handelt es sich um ein
metallisches CNT. Zur systematischen Untersu-
chung des Leitfähigkeitverhaltens ist dies besser
geeignet als ein halbleitendes CNT. Um eventu-
ell auch Aussagen über halbleitende CNTs zu be-
kommen, wid im Anschluss an die systematische
Untersuchung des metallischen CNTs das halblei-
tende (4,2)-CNT mit kleiner Bandlücke und das
halbleitende (7,0)-CNT mit großer Bandlücke in
der Konfiguration {0, 6, 0} untersucht.

Tab. 4.1: Übersicht über Atomzahl, Umfang
und Länge verschiedener CNT.

m n N u/a N /u ∼ l
4 0 16 4,000 4,000

1 28 4,583 6,110
2 56 5,292 10,583
3 148 6,083 24,331
4 16 6,928 2,309

5 0 20 5,000 4,000
1 124 5,568 22,271
2 52 6,245 8,327
3 196 7,000 28,000
4 244 7,810 31,241
5 20 8,660 2,309

6 0 24 6,000 4,000
1 172 6,557 26,229
2 104 7,211 14,422
3 84 7,937 10,583
4 152 8,718 17,436
5 364 9,539 38,158
6 24 10,392 2,309

7 0 28 7,000 4,000

Abb. 4.4: Untersuchtes System mit einem (4,1)-CNT im Kugel-Modell. Der Abstand beider CNTs senkrecht
zur Bildebene beträgt 3 Å.
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5 Ergebnisse

5.1 Observablen

5.1.1 Gesamtenergie

Abb. 5.1 zeigt die Gesamtenergie pro Atom in Abhängigkeit des Kreuzungswinkels α.
Dargestellt sind die drei verschiedenen Konfigurationen {0, 6, 0} (durchgezogene Linie),
{1, 4, 2} (gestrichelte Linie) und {2, 2, 4} (gepunktete Linie). Ein Vergleich zwischen den
drei Kurven zeigt, dass mit zunehmender Krümmung bzw. abnehmendem Krümmungs-
radius (vgl. Kurvenverlauf: R ({2, 2, 4}) > R ({1, 4, 2}) > R ({0, 6, 0})) die Gesamtenegie
pro Atom abnimmt und sich dem Energieminimierungsprinzip zufolge stets die Konfigu-
ration {0, 6, 0} einstellen wird. Dies bestätigt die Vermutungen, da durch die Krümmung
innere Spannungen verursacht werden und diese mit kleiner werdendem Krümmungsra-
dius zunehmen. Dies wird auch durch die Winkelabhängigkeit bestätigt: mit zunehmen-
dem Kreuzungswinkel nimmt der Krümmungsradius ab und die Gesamtenergie pro Atom
erhöht sich. Weiterhin ist ersichtlich, dass die Energie dabei etwa quadratisch mit α an-
wächst. Allerdings liegt der Effekt bei etwa 0,18 eV und ist somit sehr gering.
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Abb. 5.1: Winkelabhängigkeit der Gesamtenergie pro Atom für das einzelne gekrümmte CNT jeweils für die
drei Konfigurationen aus Abb. 4.1.
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5.1.2 Elektronendichte

Ausgangspunkt aller Observablen ist die Berechnung der Elektronendichte n (~r). Da es
sich dabei um eine Abbildung R3 → R handelt und die Darstellung dessen im Allgemei-
nen schwierig ist, wird eine Integration über die einzelnen Raumrichtungen durchgeführt.
Die entsprechenden integrierten Elektronendichten sind

n (x , y) =
∞∫
−∞

n (~r)dz , (5.1)

n (x , z ) =
∞∫
−∞

n (~r)dy , (5.2)

n (y , z ) =
∞∫
−∞

n (~r)dx (5.3)

und zeigen eine Seitenansicht, Draufsicht bzw. Frontansicht. Abb. 5.2, 5.3 und 5.4 zei-
gen n (y , z ) für die Konfiguration mit größtem Krümmungsradius {0, 6, 0} für die Winkel
α = 30◦, α = 60◦ und α = 90◦. Es sind die Atompositionen erkennbar, da dort die Elektro-
nendichte maximal ist. Mit wachsender Entfernung von den Atompositionen fällt n sehr
schnell ab. Die scheinbar doppelt so hohe Dichte in der Mitte der Bilder ist lediglich darauf
zurückzuführen, dass dort beide CNT hintereinander liegen und somit doppelt so viele
Atome auf die dargestellte Ebene projiziert werden.

0 20 40 60 80 100

z
[
Å
]

0

5

10

15

20

25

30

35

40

y
[ Å

]

0

1

2

3

4

5

6

7

8

9

10

11

12

n(y, z)
[
Å
−2

]

Abb. 5.2: Integrierte Elektronendichte n (y , z ) der Konfiguration {0, 6, 0} bei einem Kreuzungswinkel α = 30◦.
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Abb. 5.3: Integrierte Elektronendichte n (y , z ) der Konfiguration {0, 6, 0} bei einem Kreuzungswinkel α = 60◦.
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Abb. 5.4: Integrierte Elektronendichte n (y , z ) der Konfiguration {0, 6, 0} bei einem Kreuzungswinkel α = 90◦.
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5.1.3 Zustandsdichte

In Abb. 5.5 ist die Zustandsdichte eines linearen CNT vor (schwarz) und nach (blau) der
Optimierung der Zentralregion dargestellt. Deutlich erkennbar sind die Van-Hove-Singula-
ritäten des periodischen quasi-eindimensionalen Systems. Durch die Optimierung ver-
schwinden diese, der Verlauf wird welliger und es taucht das allgemeine zackige Verhal-
ten nicht periodischer Strukturen auf, d.h. es existieren nah bei einander liegende, scharfe
Peaks. Des Weiteren ist die Zustandsdichte des linearen optimierten CNT stark abhän-
gig von der Länge der Zelle. Dabei treten offenbar unsystematisch zusätzliche Peaks in
den nahezu konstanten Bereichen zwischen den Singularitäten auf. Um den Verlauf bes-
ser herauszuarbeiten, kann man die Kurve glätten, indem man jeden Datenpunkt (Ej , Dj )
gaußverbreitert, d.h. in eine Gaußkurve mit Erwartungswert Ej und gegebener Varianz σ2

(diese gibt die Verbreiterung der Peaks an) umwandelt, wobei diese auf Dj normiert ist.
Die geglättete (gaußverbreiterte) Kurve ist somit die diskrete Faltung der Funktion D(E )
mit einem gaußförmigen Kern und für einen neuen Datenpunkt D ′i ergibt sich

D ′i = ∑
j

Dj√
2πσ2

e
− 1

2σ2 (Ei−Ej )
2

. (5.4)

Für die Verbreiterung wurde stets σ = 0,02 eV1/2 gewählt. Abb. 5.6 zeigt die geglättete
Zustandsdichte des gekrümmten CNT der Konfiguration {0, 6, 0} für die verschiedenen
Kreuzungswinkel α. Abb. 5.7 zeigt den gleichen Sachverhalt für das zusammengesetzte
System. Zusätzlich eingezeichnet ist die Zustandsdichte des linearen unoptimierten Sys-
tems. Es zeigt sich, dass sich die Zustände der Van-Hove-Singularitäten in Richtung der
nahezu konstanten Bereiche verschieben.
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Abb. 5.5: Zustandsdichte D (E ) eines linearen CNT.
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Abb. 5.6: Gaußverbreiterte Zustandsdichte D (E ) des gekrümmten CNT der Konfiguration {0, 6, 0} für die
verschiedenen Kreuzungswinkel α.
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Abb. 5.7: Gaußverbreiterte Zustandsdichte D (E ) des Gesamtsystems der Konfiguration {0, 6, 0} für die
verschiedenen Kreuzungswinkel α.
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5.1.4 Transmissionsspektrum

In Abb. 5.8 ist das Transmissionsspektrum eines linearen CNT vor (schwarz) und nach
(blau) der Optimierung der Zentralregion dargestellt. Durch die Optimierung wird der
Kurvenverlauf in Bereichen hoher Transmission sinusförmig vermindert. eine Erhöhung ist
nicht möglich, da der ballistische Transport von Graphen und idealen unendlichen CNTs
die theoretische Obergrenze darstellt. Abb. 5.9 zeigt das geglättete Transmissionsspektrum
des gekrümmten CNT der Konfiguration {0, 6, 0} für die verschiedenen Kreuzungswinkel
α. Es ist ersichtlich, dass mit zunehmendem Kreuzungswinkel, mit dem der Krümmungs-
radius abnimmt, sich das Transmissionsspektrum im etwa 0,8 eV breiten Energiebereich
mit T = 4 nahe der Fermienergie stark verringert, bis bei α = 90◦ schließlich T (E ) im
Schnitt auf den Wert der angrenzenden Bereiche (T ≈ 2) abgefallen ist. Die Transmission
bei höheren Energien bleibt unverändert. Abb. 5.10 und 5.11 zeigen den selben Sachver-
halt für die Konfgurationen {1, 4, 2} und {2, 2, 4}. Dabei wird die weitere Absenkung der
Transmission bei noch kleineren Krümmungsradien ersichtlich. Bei der Unterschreitung ei-
nes kritischen Krümmungsradius wird die Transmission im gesamten Energiebereich dras-
tisch abgesenkt, auf durchschnittlich etwa T ≈ 0,8 bei 80◦ und T ≈ 0,4 bei 90◦ in Abb. 5.11.
Dies führt zu einer Absenkung der elektrischen Leitfähigkeit für die entsprechende Struk-
tur. Der kritische Krümmungsradius lässt sich daraus zu

7 Å < Rkrit < 8 Å (5.5)

abschätzen. Abb. 5.12 zeigt das Transmissionsspektrum für das zusammengesetzte Sys-
tem der Konfiguration {0, 6, 0}. Zusätzlich eingezeichnet ist das Transmissionsspektrum
zweier idealer, linearer, unkorrelierter CNTs. Hierbei kann die Transmission bis auf maxi-
mal die Hälfte abgesenkt werden, da das lineare CNT unverändert bleibt und Beiträge zur
Transmission liefert.
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Abb. 5.8: Transmissionsspektrum T (E ) eines linearen CNT.
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Abb. 5.9: Gaußverbreitertes Transmissionsspektrum T (E ) des gekrümmten CNT der Konfiguration {0, 6, 0}
für die verschiedenen Kreuzungswinkel α.
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Abb. 5.10: Gaußverbreitertes Transmissionsspektrum T (E ) des gekrümmten CNT der Konfiguration {1, 4, 2}
für die verschiedenen Kreuzungswinkel α.
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Abb. 5.11: Gaußverbreitertes Transmissionsspektrum T (E ) des gekrümmten CNT der Konfiguration {2, 2, 4}
für die verschiedenen Kreuzungswinkel α.
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Abb. 5.12: Gaußverbreitertes Transmissionsspektrum T (E ) des Gesamtsystems der Konfiguration {0, 6, 0}
für die verschiedenen Kreuzungswinkel α.
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5.2 Einfluss von Krümmung und Kreuzung durch
Differenzbildung

Der Einfluss der Krümmung (Index o) und der Kreuzungsregion (Index ×) kann durch
Bildung der Differenz der Observablen des linearen (Index lin), gekrümmten (Index kr )
und des Gesamtsystems (Index tot) bestimmt werden:

∆Oo = Okr −Olin , (5.6)
∆O× = Otot −Olin −Okr . (5.7)

In Abb. 5.13, 5.14 und 5.15 ist die Differenz der Elektronendichten

∆n = ntot − nlin − nkr (5.8)

für die drei jeweiligen Ansichten für die Konfiguration {0, 6, 0} dargestellt. Dabei ist der
Kreuzungswinkel α = 10◦, da hier die größte Überlappung auftritt und der Effekt da-
her am besten sichtbar ist. Die grauen Punkte markieren die Atompositionen. Es zeigt
sich, dass es im Kontaktbereich zur Umverteilung der Elektronen kommt. Dabei wird die
Elektronendichte an den Atompositionen in Richtung des Kontaktbereiches erhöht und
in den direkt angrenzenden Gebieten innerhalb und außerhalb des Kohlenstoffnanoröhr-
chens verringert. Weiterhin kommt es zu einer in z periodischen, im Vergleich dazu et-
wa doppelt so starken Erhöhung der Elektronendichte in der Mitte des Kontaktbereiches
(30 Å < z < 70 Å, 13 Å < x < 14 Å). 20 Maxima befinden sich innerhalb einer Strecke von
40 Å. Somit beträgt die zugehörige Wellenlänge etwa 2 Å.
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Abb. 5.13: Integrierte Elektronendichtedifferenz ∆n (x , y) der Konfiguration {0, 6, 0} bei einem
Kreuzungswinkel α = 10◦.
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Abb. 5.14: Integrierte Elektronendichtedifferenz ∆n (x , z ) der Konfiguration {0, 6, 0} bei einem
Kreuzungswinkel α = 10◦.
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Abb. 5.15: Integrierte Elektronendichtedifferenz ∆n (y , z ) der Konfiguration {0, 6, 0} bei einem
Kreuzungswinkel α = 10◦.
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5.3 Strom-Spannungs-Kennlinen

5.3.1 Strom-Spannungs-Kennlinen

Abb. 5.16 zeigt die Strom-Spannungs-Kennlinien des linearen sowie der gekrümmten CNTs
der Konfiguration {0, 6, 0}mit Winkel α im Bereich von 10◦ bis 90◦. Abb. 5.17 und 5.18 zei-
gen dies für die Konfigurationen {1, 4, 2} und {2, 2, 4}. Es ist ersichtlich, dass der Strom
im Spannungbereich bis 0,7 V mit zunehmendem Winkel α, d.h. mit zunehmender Krüm-
mung, abnimmt. Der Vergleich der drei Diagramme untereinander bestätigt dies, da auch
hier der Strom für die Kurven mit gleichem Kreuzungswinkel beim Durchlaufen der Kon-
figurationen von {0, 6, 0} über {1, 4, 2} nach {2, 2, 4}, d.h. mit zunehmender Krümmung,
abnimmt. Die bereits aus den entsprechenden Transmissionsspektren entnommene Tatsa-
che, dass unterhalb eines kritischen Krümmungsradius die Leitung der Elektronen stark
behindert und somit die Transmission durch das System stark verringert wird, zeigt sich
ebenfalls in den Kennlinen in Abb. 5.18. Für die Winkel α = 80◦ und α = 90◦ der Konfigu-
ration {2, 2, 4} ist auch für Spannungen U 6= 0 der Strom stärker verringert als der Trend
erwarten lässt.

Des Weiteren ändert sich mit zunehmender Krümmung auch der qualitative Verlauf der
Strom-Spannungs-Kennline. Während der Strom des linearen und der schwach gekrümm-
ten CNTs bei U ≈ 0,5 V in Sättigung geht, zeigen die stark gekrümmten CNTs einen durch-
gehend linearen Verlauf. Die Ursache hierfür lässt sich in den Transmissionsspektren fest-
stellen.

In Abb. 5.19 sind die Transmissionsspektren des linearen CNT für verschiedene Spannun-
gen abgebildet. Das Plateau T ≈ 2 in Umgebung der Fermienergie nimmt mit zunehmen-
der Spannung an Breite ab, bis es schließlich bei U ≈ 0,8 V komplett verschwunden ist und
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Abb. 5.16: Strom-Spannungs-Kennlinie des gekrümmten CNT der Konfiguration {0, 6, 0} für verschiedene
Winkel.
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Abb. 5.17: Strom-Spannungs-Kennlinie des gekrümmten CNT der Konfiguration {1, 4, 2} für verschiedene
Winkel.
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Abb. 5.18: Strom-Spannungs-Kennlinie des gekrümmten CNT der Konfiguration {2, 2, 4} für verschiedene
Winkel.
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die Transmission auf dem Niveau der von der Fermienergie weiter entfernten Energien bei
T ≈ 2 liegt. Für U = 0,9 V entsteht eine weitere Lücke, in der die Transmission auf Null ab-
fällt und es ist zu vermuten, dass die Breite dieser Lücke mit zunehmender Spannung noch
weiter wächst. Der geometrischen Deutung der Landauer-Büttiker-Formel entsprechend,
ist der zur Spannung U gehörende Strom gleich der Fläche unter der Transmissionskur-
ve T (E , U ) innerhalb eines um die Fermienergie symmetrischen Fensters der Breite eU .
Mit steigender Spannung wird dieses Fenster linear breiter und da die Transmission in
Umgebung der Fermienergie konstant ist, steigt der Strom zunächst linear an. Ab einer be-
stimmten Spannung überschreitet das sich vergrößernde Fenster die Grenze des Bereiches
mit T ≈ 4. Ab diesem Punkt ist der Stromzuwachs durch das breiter werdende Span-
nungsfenster nur noch halb so groß, da T ≈ 2 für den zusätzlichen Bereich ist. Zusätzlich
verringert sich der Strom um die Fläche, die durch das schmaler werdende Plateau ver-
loren geht. Da das Plateau auf beiden Seiten in etwa um den halben Spannungszuwachs
kleiner wird, ist die dadurch verursachte Stromabnahme gleich der Stromzunahme durch
das sich verbreiternde Spannungsfenster. Der Strom bleibt somit konstant. Da das Plateau
T ≈ 4 nicht symmetrisch um die Fermienergie liegt, ergeben sich zwei verschiedene Span-
nungen für das Überschreiten der linken bzw. rechten Grenze. Die linke Grenze wird bei
U ≈ 0,3 V überschritten, die rechte Grenze bei U ≈ 0,5 V. Beide Punkte sind in der Strom-
Spannungs-Kennlinie zu erkennen. Der Übergang vom linearen zum konstanten Verlauf
erfolgt nun in zwei Schritten. Für kleine U steigt der Strom linear an. Bei U ≈ 0,3 V weist
die Kurve einen Knick auf und steigt bis U ≈ 0,5 V linear mit halbem Anstieg an. Bei
U ≈ 0,5 V weist die Kurve einen weiteren Knick auf und bleibt darüber hinaus konstant.

Die Transmissionsspektren des gekrümmten CNT der Konfiguration {0, 6, 0} mit α = 90◦

sind für verschiedene Spannungen in Abb. 5.20 abgebildet. Im Gegensatz zum linearen
CNT zeigt das gekrümmte CNT ein völlig anderes spannungsabhängiges Verhalten. Auf-
grund der starken Krümmung ist bereits für U = 0 V die Transmission in Umgebung
der Fermienergie bei T ≈ 2. Für wachsende Spannungen ändert sich dies bis auf klei-
ne Schwankungen nicht, sodass durch das breiter werdende Integrationsfenster der Strom
linear mit der Spannung ansteigt.

5.3.2 Einfluss von Krümmung und Kreuzung durch Differenzbildung

Der Einfluss der Krümmung und der Kreuzungsregion auf den Stromfluss lässt sich durch
Betrachten der Differenzen der einzelnen Strom-Spannungs-Kennlinien herausarbeiten.
Als Beispiel sind die Kennlinien der Konfiguration {0, 6, 0} für α = 30◦ in Abb. 5.21 ge-
zeigt. Dabei ist das lineare CNT schwarz, das einzelne, gekrümmte CNT blau und das
Gesamtsystem grün dargestellt. Die Stromänderung, welche durch die Krümmung verur-
sacht wird (orange dargestellt) ist gegeben durch die Differenz von linearem und gerümm-
tem CNT. Die durch die Kreuzungsregion verursachte Stromänderung (rot dargestellt) ist
durch die Differenz von Gesamtsystem und der Summe der beiden Einzelsysteme (linear
und gekrümmt) gegeben.

∆Io = Ikr − Ilin (5.9)
∆I× = Itot − (Ikr + Ilin) (5.10)
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Abb. 5.19: Transmissionsspektren des linearen CNT für verschiedene Spannungen.
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Abb. 5.20: Transmissionsspektren des gekrümmten CNT der Konfiguration {0, 6, 0} für verschiedene
Spannungen für α = 90◦.
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Um quantitative Aussagen zu treffen und die beiden Effekte miteinander vergleichen zu
können, empfielt sich eine Normierung auf die unbeeinflusste Geometrie.(

∆I
I

)
o
=

Ikr − Ilin
Ilin

(5.11)(
∆I
I

)
×
=

Itot − (Ilin + Ikr )
Ilin + Ikr

(5.12)

Abb. 5.22, 5.23 und 5.24 zeigen die Differenzkurven des Krümmungseffektes für verschie-
dene Winkel α jeweils für die Konfigurationen {0, 6, 0}, {1, 4, 2} und {2, 2, 4}. Dabei zeigt
sich stets der gleiche qualitative Verlauf. Der relative Stromverlust bleibt bis zu einer ge-
wissen Spannung, bei kleinen Krümmungen etwa U ≈ 0,5 V, bei großen Krümmungen
etwa U ≈ 0,3 V, konstant und nimmt darüber hinaus ab. Weiterhin zeigt sich wieder, dass
sowohl mit zunehmendem Winkel α als auch durch Erhöhung der Krümmung durch die
verschiedenen Konfigurationen der Stromverlust zunimmt. Der zudem verstärkte Strom-
verlust beim unterschreiten eines kritischen Krümmungsradius ist ebenfalls sichtbar.

Abb. 5.25, 5.26 und 5.27 zeigen die Differenzkurven des Kreuzungseffektes für verschie-
dene Winkel α jeweils für die Konfigurationen {0, 6, 0}, {1, 4, 2} und {2, 2, 4}. Ein für alle
Parameter durchgehend quantitativ schlüssiges Verhalten lässt sich nicht ableiten. Dies ist
damit zu begründen, dass der Effekt sehr sensitiv auf den Abstand reagiert und somit
mit Variation des Winkels zufällig zwei Atome direkt übereinander oder verschieden stark
versetzt stehen können. Der Verlauf ist nur recht grob interpretierbar und liefert, vorrangig
bezüglich der kleineren Krümmungen von Konfiguration {0, 6, 0}, die folgenden qualitati-
ven Aussagen:

• Der Verlauf ist zweigeteilt. Bei kleinen Spannungen nimmt der Effekt (Stromverlust
durch Geometrieänderung) mit wachsender Spannung zu, für große Spannungen je-
doch mit wachsender Spannung wieder ab. Es gibt somit eine Spannung, bei dem
der Effekt, d.h. der Stromverlust, maximal ist und der Kurvenverlauf ein Minimum
aufweist.

• Das Minimum im Kurvenverlauf verschiebt sich mit zunehmendem Winkel zu höhe-
ren Spannungen. Für die Konfiguration {0, 6, 0} liegt es für α = 10◦ bis α = 40◦ bei
U = 0,3 V, für α = 50◦ bis α = 70◦ bei U = 0,4 V und für α = 80◦ und α = 90◦ bei
U = 0,5 V.

• Der Anstieg der Kurve im Intervall vor dem Minimum variiert. Für kleine Winkel ist
er negativ, steigt mit zunehmendem Winkel an, hat sein Maximum bei etwa α = 50◦

und fällt für wachsende Winkel anschließend wieder.

• Bei zu großen Krümmungen verschwindet der Effekt auch bei kleinen Spannungen.

Eine generelle quantitative Abschätzung des Effektes lässt sich wiefolgt treffen: Für kleine
Winkel und kleine Spannungen liegt der Stromverlust bei 8% bis 16%. Für größere Span-
nungen nimmt er linear ab und verschwindet bei U ≈ 0,9 V. Im Vergleich mit dem Krüm-
mungseffekt (Abb. 5.22) lässt sich demnach grob zusammenfassen, dass der Kreuzungsef-
fekt bei Winkeln bis α ≈ 50◦ dominiert und der Krümmungseffekt darüberhinaus.
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Abb. 5.21: Strom-Spannungs-Kennlinien der Konfiguration {0, 6, 0} für α = 30◦. Gezeigt ist das lineare CNT
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Abb. 5.23: Relative Änderung der Strom-Spannungs-Kennlinie durch den Krümmungseffekt:(
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Ilin für das CNT der Konfiguration {1, 4, 2} für verschiedene Winkel.
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Abb. 5.25: Relative Änderung der Strom-Spannungs-Kennlinie durch den Kreuzungseffekt:(
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I
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Itot−(Ilin+Ikr )
Ilin+Ikr für das CNT der Konfiguration {0, 6, 0} für verschiedene Winkel.
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Abb. 5.26: Relative Änderung der Strom-Spannungs-Kennlinie durch den Kreuzungseffekt:(
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Abb. 5.27: Relative Änderung der Strom-Spannungs-Kennlinie durch den Kreuzungseffekt:(
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I

)
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Itot−(Ilin+Ikr )
Ilin+Ikr für das CNT der Konfiguration {2, 2, 4} für verschiedene Winkel.

5.4 Unterbrochenes System

Der Einfluss der Kreuzungsregion geschieht neben der bereits untersuchten Abschwä-
chung des Stromflusses auch in die entgegengesetzte Richtung. Für zwei nicht zusam-
menhängende Elektroden kann es durch die Kreuzungsregion zum Stromfluss zwischen
zwei benachbarten, aber voneinander getrennten CNTs kommen. Als Beispiel wurde das
zusammengesetzte System der Konfiguration {0, 6, 0} und dem Kreuzungswinkel α = 90◦

berechnet. Dabei wurde die rechte Elektrode (zuzüglich Elektrodenkopie und Abstands-
halter) des linearen und die linke Elektrode (zuzüglich Elektrodenkopie und Abstandshal-
ter) des gekrümmten CNTs entfernt. Die Elektronendichte in der yz -Ebene ist in Abb. 5.28
dargestellt. Die Geometrieänderung und die offenen Enden sind dabei erkennbar. Durch
die Geometrieoptimierung ist das offene Ende des gekrümmten CNTs in ein Kräftemini-
mum relaxiert und somit annähernd linear geworden. Die Krümmung in der unteren Hälf-
te hat sich ebenfalls etwas verringert, wodurch der Kreuzungswinkel kleiner geworden
ist. Jedoch scheint die Wechselwirkung mit dem benachbarten linearen CNT stark genug
zu sein, um das gekrümmte CNT daran haften und sich nicht vollständig entkrümmen zu
lassen. In der Realität sind zwar keine offenen Enden anzutreffen, sondern stets mit Was-
serstoff abgesättigte oder fullerenartig abgerundete Enden, da sich diese jedoch nicht in
der für die Leitung relevanten Region befinden und einen geringen Einfluss haben sollten,
wurde auf diesen zusätzlichen Aufwand verzichtet.

Abb. 5.29 zeigt die Zustandsdichte des unterbrochenen Systems. Im Vergleich mit Abb. 5.7
zeigt sich, dass das Plateau im Energieintervall −1,1 eV < E − EF < −0,4 eV bis auf ei-
ne kleine Welligkeit erhalten bleibt. Die Van-Hoove-Singularitäten und der gesamte rest-
liche Verlauf im dargestellen Bereich weicht hingegen einem stärker und unsystematisch
schwankendem Verhalten.
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Abb. 5.28: Elektronendichte des unterbrochenen Systems.
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Abb. 5.29: Zustandsdichte des unterbrochenen Systems.
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Abb. 5.30: Transmissionsspektrum des unterbrochenen Systems.
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Abb. 5.31: Strom-Spannungs-Kennlinie des unterbrochenen Systems.
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In Abb. 5.30 sind die Transmissionsspektren des unterbrochenen Systems für Spannungen
von 0,0 V bis 0,9 V abgebildet. Im Vergleich zum verbundenen System, siehe Abb. 5.12,
ist die Transmission bei allen Energien wie erwartet stark vermindert. Jedoch ist diese nie
über einen größeren Bereich Null, sondern schwankt energie- und spannungsabhängig im
Bereich 0 < T < 1. Dadurch ist bei angelegter Spannung ein geringer Stromfluss zu er-
warten, welcher in den unterbrochenen Einzelsystemen nicht fließen würde und auf eine
Wechselwirkung zwischen beiden CNTs und Tunneleffekte in der Kreuzungsregion zu-
rückzuführen ist. Die zugehörige Strom-Spannungs-Kennlinie ist in Abb. 5.31 gezeigt. Der
Verlauf ist in etwa linear, da das Transmissionsspektrum keine wesentlichen Änderungen
aufweist. Durch die Oszillationen verursacht, gibt es allerdings kleine Schwankungen im
Kurvenanstieg, wodurch die Kurve um ihr linear verlaufendes gleitendes Mittel schwankt.
Vergleicht man die Werte mit dem nicht unterbrochenen System, d.h. der grünen Kurve in
Abb. 5.21, so lässt sich für U = 0,9 V (dort besteht kaum eine Abhängigkeit des Strom-
flusses vom Kontaktwinkel, siehe Abb. 5.16) der Stromfluss im unterbrochenen System auf
etwa 7% des Stromflusses des verbundenen Systems abschätzen.

Als Vergleich soll hier der Tunnelstrom IT durch eine konstante Potentialbarriere der Höhe
VB und der Länge lB dienen. Unter der Näherung kleiner Spannungen ergibt sich eine
Stromdichte von [11]

JT =
e2

h
· 1
lB

√
2meVB

h2 e
−2·lB

√
2meVB

h̄2 ·U . (5.13)

Der entsprechende Tunnelstrom ergibt sich mittels IT = JT ·A, wobei A die stromdurch-
flossene Fläche bezeichnet. Die Länge der Potentialbarriere sollte kleiner als der CNT-
Abstand von 3 Å) sein, kann jedoch schwer abgeschätzt werden. Eine effektive Barriere-
länge wird daher mit obiger Formel ermittelt. Die Fläche A kann aus Abb. 5.28 abgelesen
werden und beträgt etwa A = 5 Å · 4 Å = 20 Å2. Eine Barrierehöhe ist schwer abschätzbar.
Dazu müsste die Ionisierungsenergie berechnet werden. Als sehr grobe Abschätzung soll
hier die Austrittsarbeit von atomarem Kohlenstoff VB = W (C )

A = 4,81 eV genügen [12].
Da die Elektronen nicht aus dem Material ins Vakuum entfernt werden müssen, um auf
das jeweils andere CNT zu gelangen, ist die effektive zu überwindende Barrierehöhe ei-
gentlich geringer, bessere Werte sind jedoch nicht verfügbar. Bei der Spannung U = 0,1 V
ergab die Simulation (Abb. 5.31) einen Tunnelstrom von IT = 3,0 µA. Löst man mit diesen
Schätzwerten obige Gleichung, so ergibt sich für die Barrierelänge ein effektiver Wert von
lB = 2,14 Å. Dies ist etwas kleiner als der CNT-Abstand und somit ein plausibler Wert.

5.5 Halbleitendes System

Im folgenden seien noch (in weniger umfassendem Maße) die elektronischen und Trans-
porteigenschaften eines halbleitenden Systems angeführt. Dazu wurde ein aus (4,2)-CNTs
(65 Atome pro Einheitszelle) bestehendes System mit kleiner Bandlücke (eigene Rechnung:
EB = 0,18 eV) in der Konfiguration {0, 1, 0} und ein aus (7,0)-CNTs (28 Atome pro Einheits-
zelle) bestehendes System mit größerer Bandlücke (eigene Rechnung: EB = 0,45 eV) in der
Konfiguration {0, 5, 0} berechnet.

Abb. 5.32 und 5.33 zeigen die mitels Gaußverbreiterung geglätteten Zustandsdichten des
optimierten gekrümmten (4,2)-CNTs und des optimierten (4,2)-CNT-Gesamtsystems. Im
Vergleich mit Abb. 5.6 und 5.7 zeigt sich das gleiche Verhalten. Es ist kein signifikanter
Unterschied in qualitativen Verhalten festzustellen. Die Bandlücke bleibt unverändert (die
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abfallenden Ausläufer sind dabei lediglich Artefakte der Gaußverbreiterung). Gleiches gilt
für die Zustandsdichten der Systeme aus (7,0)-CNTs in Abb. 5.34 und 5.35.

Abb. 5.36 und 5.37 zeigen die mitels Gaußverbreiterung geglätteten Transmissionsspektren
des optimierten gekrümmten (4,2)-CNTs und des optimierten (4,2)-CNT-Gesamtsystems.
Im Vergleich mit Abb. 5.9 und 5.12 zeigt sich, dass hier mit Zunahme des Kontaktwinkels
α und somit mit Zunahme der Krümmung die Transmission im gesamten Energiebereich
abfällt, im Gegensatz zum metallischen (4,1)-System, bei dem dies nur in einem 0,8 eV brei-
ten Energiebereich um die Fermienergie auftrat. Auch geschieht diese Verminderung we-
sentlich stärker, sodass beim gekrümmten CNT bereits bei α = 60◦ (der entsprechende
Krümmungsradius beträgt etwa 11 Å) die Transmission im Mittel auf die Hälfte reduziert
ist. Gleiches gilt für die Transmissionsspektren der Systeme aus (7,0)-CNTs in Abb. 5.38
und 5.39.

Abb. 5.40, 5.41 und 5.42 zeigten die Differenz der integrierten Elektronendichten des (4,2)-
Systems in der Seitenansicht, Frontansicht und Draufsicht. Da im Gegensatz zum metalli-
schen System (siehe Abb. 5.13, 5.14 und 5.15), bei dem der Effekt mit abnehmendem Winkel
zunimmt, dieser hier mit zunehmendem Winkel zunimmt, ist beispielhaft α = 90◦ gewählt.
Die schwarzen Punkte markieren wieder die Atompositionen. Der Versatz zwischen den
Atompositionen in der xy-Ansicht zeigt, dass hier die Optimierung zu einer stärkeren Ver-
schiebung geführt hat, d.h. das halbleitende System ist in der idealen Konfiguration offen-
bar weniger stabil als das metallische System. Wie erwartet ist die periodische Erhöhung
der Elektronendichte des metallisches Systems im halbleitenden System nicht vorhanden.
Es bildet sich sogar eine starke Verminderung derer (blaue Bereiche) in der Kreuzungs-
region an der dem linearen CNT zugewandten Seite des gekrümmten CNTs aus (in der
yz -Ansicht sind dies diejenigen Bereiche in der Innenseite der gekrümmten Abschnitte).
Weiterhin ist auch an der abgewandten Seite eine Verminderung der Elektronendichte vor-
handen (siehe xy- und xz -Ansicht). Demzufolge ist diese innerhalb des gekrümmten CNTs
stark erhöht. Bei den parallelen Abschnitten, ist im Verhältnis zur Kreuzungsregion keine
wesentliche Änderung erkennbar. Des Weiteren ist der Effekt im Vergleich zum metalli-
schen System wesentlich größer. Man beachte die um einen Faktor 1750 bzw. 2333 größere
Farbachse der xz - bzw. yz -Ansicht.

Abb. 5.43, 5.44 und 5.45 zeigen die entsprechenden Differenzen der integrierten Elektro-
nendichten des (7,0)-Systems. Zu bemerken ist, dass für α = 60◦ und größere Kreuzungs-
winkel das gekrümmte CNT durch die Optimierung in den Innenseiten eingeknickt und
stellenweise aufgebrochen ist, obwohl der Krümmungsradius zirka um einen Faktor 3 grö-
ßer ist als der des (4,2)-Systems. Daher wurde beispielhaft das System mit α = 50◦ abge-
bildet. Während das gekrümmte, chirale (4,2)-System in der Kreuzungsregion nur leicht
und in den Darstellungen kaum erkennbar eingedrückt wurde, ist dies beim gekrümmten,
nicht chiralen (7,0)-System in wesentlich stärkerem Maße erfolgt. Beide Tatsachen deuten
darauf hin, dass chirale CNTs stabiler gegenüber äußeren Einflüssen sind als Zick-Zack-
CNTs. Ursache dafür ist vermutlich, dass in der hier verwendeten Geometrie ein Drittel
der Bindungen der Zick-Zack-CNTs parallel zur gekrümmten Achse liegen und somit bei
gegebenem Krümmungsradius maximal gestreckt bzw. gestaucht werden. Vermutlich sind
in dieser Hinsicht die Sesselform-CNTs durch die Bindungen senkrecht zur gekrümmten
Achse am stabilsten. Die yz -Ansicht zeigt, dass sich, wie auch beim (4,2)-System, durch die
Krümmung ebenfalls die Elektronendichte von der Innenseite des gekrümmten Abschnit-
tes zur Außenseite verschiebt, die Verminderung jedoch nicht in den Kreuzungsbereich
hineinragt, da keine dementsprechenden Auffälligkeiten in der xy- und xz -Ansicht vor-
handen sind. Die geringen Änderungen in der xz -Ansicht und die recht starken Verminde-
rungen bzw. Erhöhungen in der xy-Ansicht kommen dabei lediglich durch die Integration
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Abb. 5.32: Gaußverbreiterte Zustandsdichte D(E ) des gekrümmten (4,2)-CNTs.
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Abb. 5.33: Gaußverbreiterte Zustandsdichte D(E ) des Gesamtsystems aus (4,2)-CNTs.
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Abb. 5.34: Gaußverbreiterte Zustandsdichte D(E ) des gekrümmten (7,0)-CNTs.
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Abb. 5.35: Gaußverbreiterte Zustandsdichte D(E ) des Gesamtsystems aus (7,0)-CNTs.
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Abb. 5.36: Gaußverbreitertes Transmissionsspektrum T (E ) des gekrümmten (4,2)-CNTs.
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Abb. 5.37: Gaußverbreitertes Transmissionsspektrum T (E ) des Gesamtsystems aus (4,2)-CNTs.



5.5 Halbleitendes System 47

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

E − EF [eV]

0

1

2

3

4

5

6

7

8

9

10
T

10°
20°
30°
40°
50°
60°
70°
80°
90°
linear unoptimiert

Abb. 5.38: Gaußverbreitertes Transmissionsspektrum T (E ) des gekrümmten (7,0)-CNTs.
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Abb. 5.39: Gaußverbreitertes Transmissionsspektrum T (E ) des Gesamtsystems aus (7,0)-CNTs.
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Abb. 5.40: Integrierte Elektronendichtedifferenz ∆n(x , y) für das (4,2)-System bei einem Kreuzungswinkel
α = 90◦.
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Abb. 5.41: Integrierte Elektronendichtedifferenz ∆n(x , z ) für das (4,2)-System bei einem Kreuzungswinkel
α = 90◦.
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Abb. 5.42: Integrierte Elektronendichtedifferenz ∆n(y , z ) für das (4,2)-System bei einem Kreuzungswinkel
α = 90◦.
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Abb. 5.43: Integrierte Elektronendichtedifferenz ∆n(x , y) für das (7,0)-System bei einem Kreuzungswinkel
α = 50◦.
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Abb. 5.44: Integrierte Elektronendichtedifferenz ∆n(x , z ) für das (7,0)-System bei einem Kreuzungswinkel
α = 50◦.
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Abb. 5.45: Integrierte Elektronendichtedifferenz ∆n(y , z ) für das (7,0)-System bei einem Kreuzungswinkel
α = 50◦.
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und die bezüglich z unterschiedliche Ausdehnung der verminderten und erhöhten Gebiete
zustande und beinhalten keine weitergehende Struktur.

Abb. 5.46, 5.47 und 5.48 zeigen die Transmissionsspektren T (E , U ) für verschiedene Span-
nungen U für das lineare (4,2)-CNT, das gekrümmte (4,2)-CNT und das Gesamtsystem
aus (4,2)-CNTs. Dabei ist beispielhaft der Kreuzungswinkel α = 50◦ gewählt. Es zeigt
sich bei sämtlichen Grafiken, sowohl des (4,2)-CNTs als auch des im qualitativen T (E , U )-
Verlauf völlig identischen (7,0)-CNTs, dass sich die Plateaus um die angelegte Spannung
verschmälern, bis diese schließlich nicht mehr vorhanden sind und daraus resultierend
sich die Bandlücke um die angelegte Spannung verbreitert. Somit ist auch bei höheren
Spannungen kein signifikanter Stromfluss zu erwarten. Lediglich die Ausläufer der Fermi-
verteilung liefern kleine Beiträge. Da der Abstand des Integrationsfensters zur Bandkante
konstant bleibt, ist auch dieser Strom konstant. Auf die Darstellung der Strom-Spannungs-
Kennlinien wurde hier verzichtet, da die Rechnungen für Spannungen ungleich Null sehr
schlecht bzw. für große Winkel gar nicht konvergiert sind und somit zwar die Transmis-
sionsspektren aussagekräftig, aufgrund der zunehmend ungenauen Berechnung derer mit
zunehmender Spannung vor allem im Bandlückenbereich allerdings die Aussagen über
den Strom bei höheren Spannungen und größeren Winkeln und somit auch alle Folgerun-
gen bezüglich der Ängerungen durch den Krümmungs- und Kreuzungseffekt nicht ge-
rechtfertigt wären. Als verlässlichster Wert sei der Strom des linearen CNTs bei U = 0,1 V
aufgeführt. Für das (4,2)-CNT beträgt dieser 35 nA und für das (7,0)-CNT 0,43 nA.
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Abb. 5.46: Transmissionsspektren T (E , U ) des linearen (4,2)-CNTs für verschiedene Spannungen.
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Abb. 5.47: Transmissionsspektren T (E , U ) des gekrümmten (4,2)-CNTs bei einem Kreuzungswinkel α = 50◦

für verschiedene Spannungen.
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Abb. 5.48: Transmissionsspektren T (E , U ) des Gesamtsystems aus (4,2)-CNTs bei einem Kreuzungswinkel
α = 50◦ für verschiedene Spannungen.



53

6 Zusammenfassung

In der vorliegenden Arbeit wurde untersucht, welchen Einfluss zwei an Elektroden ge-
koppelte, 3 Å nah beieinanderliegende Kohlenstoffnanoröhrchen auf das Transportverhal-
ten im Vergleich zu den einzelnen CNTs haben. Berechnet wurden Elektronendichten,
Zustandsdichten, Transmissionsspektren für verschiedene Spannungen und Stromspan-
nungskennlinien. Als theoretische Grundlage hierfür wurde die Dichtefunktionaltheorie,
die Theorie der Nichtgleichgewichtsgreensfunktion und die Landauer-Büttiker-Formel ver-
wendet. Die Berechnungen wurden mit der Software ATOMISTIX TOOLKIT 12.2.0 durch-
geführt [8, 9].

Der Großteil bestand in der systematischen Untersuchung eines Systems aus metallischen
(4,1)-CNTs durch Variation diverser Parameter. Hierzu wurden folgende geometrische Ab-
messungen variiert: (1) Der Krümmungsradius wurde variiert, indem bei der festen An-
zahl von sechs Einheitszellen je Elektrode die Anzahl der gekrümmten Einheitszellen auf
zwei, vier oder sechs gesetzt und die übrigen konstant gehalten wurden. (2) Zur Untersu-
chung des Einflusses von Krümmung und Kreuzung wurde jeweils nur das lineare, nur
das gekrümmte oder das zusammengesetzte Gesamtsystem berechnet. (3) Zur weiteren
Untersuchung des Einflusses des Kreuzungsbereiches wurde der Kontaktwinkel zwischen
linearem und gekrümmten CNT variiert.

Die Betrachtung der Gesamtenergie zeigte, dass das CNT mit kleinster Krümmung auch
die geringste Gesamtenergie besitzt, das System somit stets durch Minimierung der wir-
kenden Kräfte ins Energieminimum strebt und damit eine Bestätigung für ein korrektes
physikalisches Verhalten gegeben ist.

Die Zustandsdichte zeigte für das gekrümmte und das Gesamtsystem lediglich die erwar-
tete Abschwächung der van-Hove-Singularitäten sowie eine Verschiebung derer. Eine sig-
nifikante Veränderung bei der Variation des Kontaktwinkels war nicht ersichtlich.

Das Transmissionsspektrum des gekrümmten CNT zeigte mit Zunahme der Krümmung
in Umgebung der Fermienergie eine Abnahme des Plateaus T = 4 auf das Umgebungsni-
veau T = 2. Für alle anderen Energiewerte zeigte sich keine Abhängigkeit. Des Weiteren
zeigte sich, dass bei Unterschreiten des kritischen Krümmungsradius 7 Å < Rkrit < 8 Å
ein abruptes Abfallen der Transmission auf T < 1 im gesamten Energiebereich stattfindet.

Die Veränderung der Elektronendichte durch das Zusammenfügen der Einzelsysteme konn-
te durch Differenzbildung deutlich gemacht werden. Es kommt zur Umverteilung der
Elektronen, wobei in der Mitte der Kreuzungsregion eine Erhöhung der Elektronendichte
entsteht, welche in lateraler Richtung auf der Länge des Kontaktes mit einer Wellenlänge
von etwa 2 Å oszilliert.

Die Strom-Spannungs-Kennlinie zeigte mit zunehmender Krümmung zusätzlich zur er-
warteten Stromabnahme eine qualitative Änderung des Kurvenverlaufes von linear anstei-
gend und anschließend in Sättigung gehend bei kleinen Krümmungen zu schwächer linear
ansteigend im gesamten Bereich bei stärkeren Krümmungen. Dies ließ sich mit qualitativ
unterschiedlichen Transmissionsspektren begründen. Der Einfluss von Krümmung und
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Kreuzung auf den Stromfluss wurde durch Differenzbildung und anschließende Normie-
rung auf das isolierte System bestimmt. Bezüglich des Krümmungseffektes weist das ge-
krümmte CNT in der Konfiguration mit sechs gekrümmten Einheitszellen bei einem Kreu-
zungswinkel von α = 50◦ und Spannungen von U < 0,5 V einen Stromverlust von 11%
auf. Der Effekt nimmt zu größeren Spannungen hin ab. Bezüglich des Kreuzungseffektes
sind quantitative Aussagen aufgrund der stark schwankenden Datenpunkte schwierig. Für
kleine Spannungen liegt der Stromverlust im Bereich von 8% bis 16% und nimmt ebenfalls
zu höheren Spannungen hin ab. Ein Vergleich zeigt, dass für Kreuzungswinkel α / 50◦ der
Kreuzungseffekt dominiert, während für α ' 50◦ der Krümmungseffekt dominiert.

Weiterhin wurde untersucht, ob es bei einem System, bei dem die Elektroden nicht ver-
bunden sind durch Tunnelprozesse zum Transport kommt. hierzu wurde die rechte Elek-
trodenregion des linearen und die linke Elektrodenregion des gekrümmten CNTs entfernt.
Dabei zeigte sich eine geringe, aber deutlich von Null verschiedene Transmission 0 < T <
1, welche mit der Energie und der Spannung variiert. Der daraus resultierende Stromfluss
beträgt bei U = 0,9 V etwa 7% des Stromflusses des unverbundenen Systems.

Abschließend wurden zwei halbleitende Systeme, eines aus (4,2)-CNTs und eines aus (7,0)-
CNTs, berechnet. Bei beiden ist das Verhalten der Zustandsdichte analog dem des metal-
lischen Systems. Bei den Transmissionsspektren beider halbleitender Systeme tritt mit zu-
nehmendem Kontaktwinkel α eine Verminderung im gesamten Energiebereich ein, welche
zudem größer ist als die des metallischen Systems. Die Betrachtung der Elektronendichte
zeigt bei beiden halbleitenden Systemen eine starke Verschiebung, welche drei Größenord-
nungen stärker ist als die des metallischen Systems. Weiterhin ist die ideale Konfiguration
des halbleitenden Systems weniger stabil als die des metallischen und die der Sesselform-
CNTs stabiler als die der Zick-Zack-CNTs. Es zeigen sich jedoch Unterschiede in der Ver-
teilung der Regionen verminderter/erhöhter Elektronendichte zwischen dem (4,2)- und
dem (7,0)-System. So bildet sich im (4,2)-System ein großes Gebiet mit einer verringer-
ten Elektronendichte an der dem linearen CNT zugewandten Seite des gekrümmten CNTs
aus. Beim (7,0)-System ist dies nicht festzustellen. Die spannungsabhängigen Transmissi-
onsspektren zeigen bei beiden Systemen eine Erhöhung der Bandlücke um den Betrag der
angelegten Spannung, sodass keine Erhöhung des Stromflusses zustande kommt. Für das
einzelne lineare (4,2)-CNT fließt ein Strom von 35 nA und für das einzelne lineare (7,0)-
CNT fließt ein Strom von 0,43 nA.

Die in dieser Arbeit erlangten Resultate beziehen sich auf eine spezielle Geometrie, die
sich aus Software-Restiktionen, der Minimierung der Systemgröße und den speziellen Lei-
tungseigenschaften (metallisch/halbleitend) der Kohlenstoffnanoröhrchen ergab. Ob die
Aussagen auf Systeme mit anderen Chiralitäten übertragbar sind, ist aufgrund der Kom-
plexität des Systems nicht klar. Daher müssten zur Erhärtung fortführend weitere Rech-
nungen angestellt werden. Ebenfalls bedarf das halbleitende System einer eingehende-
ren Untersuchung, da die diesbezüglich gewonnenen Ergebnisse nur wenig zufriedenstel-
lend sind. Des Weiteren spielt in der Realität die hier vernachlässigte Elektron-Phonon-
Kopplung eine wichtige Rolle, sodass Rechnungen, die dies berücksichtigen, wichtige Kor-
rekturen liefern würden.
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