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Abriss

Quasikristalle bilden eine erst in der 1980er Jahren entdeckte, noch unzureichend ver-
standene Art von Materialien. Eine mathematische Beschreibung quasikristalliner Struk-
turen bietet das Projektionsverfahren mit Hilfe dessen das verallgemeinerte Rauzy-Tiling
beschrieben wird. Es wird die normierten Zustandsdichte und die Partizipationsrate als
stationdre Eigenschaft untersucht. Weiterhin wird die Dynamik von Mikroteilchen, welche
sich durch das Gitter bewegen, anhand der zeitlichen Autokorrelationsfunktion und des
mittleren Abstandsquadraten dargestellt. Charakteristische Werte fiir die Leitfahigkeit des
Quasikristalls werden berechnet.
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1 Einleitung

Kristalle sind in regelméfiigen und periodischen Strukturen aufgebaut. Bei Verschiebung
des gesamten Kristalls um das Vielfache eines beliebigen Gittervektors geht das Gitter wie-
der in sich selbst tiber. Roger Penrose und Robert Ammann zeigten 1973, dass es ebenfalls
moglich ist, eine Ebene liickenlos mit Figuren so zu bedecken, dass das entstehende Mus-
ter nicht periodisch, bei gegebenen Anfangsfiguren die Anordnung allerdings fiir die kom-
plette Ebene vorherbestimmt ist [1]. Solche aperiodischen Parkettierungen zeigen oftmals
noch eine Rotationssymmetrie. Eine Translationssymmetrie hingegen fehlt vollig. Deshalb
bezeichnet man solche Strukturen auch als quasiperiodisch. In Abb. 1.1 sind einige Beispie-
le hierfiir mit verschiedenen kristallographisch verbotenen Rotationssymmetrien (acht-,
zehn- und zwolfzahlig) dargestellt.
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(a) Penrose-Parkett [1,2] (b) Penrose-Parkett aus (c) Ammann-Beenker- (d) Socolar-Parkett [4] mit

aus Rhomben mit Drachenvierecken mit Parkett [3] mit zwolfzahliger
zehnzahliger zehnzahliger achtzahliger Symmetrie
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Abb. 1.1: Quasiperiodische Parkettierungen [5]

Dan Shechtman untersuchte 1982 schnell
abgekiihlte Aluminiummanganat-Kristalle
mit 10% bis 14% Mangananteil, die unter
bestimmten dufleren Bedingungen bei Beu-
gungsexperimenten auf eine ikosaedrische
und somit nicht translationssymmetrische
Symmetrie hinwiesen [6]. Das Beugungs-
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bild der fiinfzdhligen Achse ist in Abb. 1.2 P
und eine mikroskopische Aufnahme eines ;1 5. Apvin-Beu- Abb. 1.3: Quasikristalline
dhnlichen Materials in Abb. 1.3 dargestellt. gungsbild [6] AlCu-

Dies ist mit der herkdmmlichen Kristallo- Legierung [7]

grafie jedoch nicht erkldarbar. Man hatte so-

mit den ersten experimentellen Beweis fiir quasiperiodische Strukturen in vermeindlichen
Kristallen geliefert und nannte diese daher Quasikristalle. Seitdem hat sich eine Vielzahl
von Gruppen weltweit zum Ziel gesetzt, solche Strukturen gezielt herzustellen und sowohl
die Bedingungen, unter denen Quasikristalle entstehen, als auch die mechanischen, elek-
tronischen, magnetischen und thermodynamischen Eigenschaften weiter zu untersuchen.
Abb. 1.4 zeigt hierzu einen im Durchmesser ca. 50 um grofsen mittels doppelter Silizium-
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Abb. 1.4: Quasikristalline Probe mit ikosaedrischer Symmetrie (a) und Beugungsbilder entlang der zwei-,
drei- und fiinfzahligen Achse (b-d) [8]
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Abb. 1.5: Quasiferromagnetismus [9]: experimentelle Anordnung von Ferromagneten auf einem
Penrose-Parkett (a) und Simulation der magnetischen Dipolwechselwirkung ohne
Austauschwechselwirkung (b), mit starker Austauschwechselwirkung (c) und mit geringer
Austauschwechselwirkung, bei der sich lokale Magnetwirbel ausbilden (d)

inversion hergestellten dreidimensionalen photonischen Quasikristall mit ikosaedrischer
Symmetrie, welcher entlang der Symmetrieachsen die dargestellten Beugungsbilder im Be-
reich des sichtbaren Lichtes liefert [8]. Quasikristalle eroffnen neue Moglichkeiten sowohl
fur das Studium der Materie und deren Eigenschaften als auch fiir potentielle technische
Anwendungen. Als Beispiel sei hier der Magnetismus erwéahnt, tiber den es kontroverse
Diskussionen gibt. So kénnten auf Zink und Magnesium basierende Quasikristalle, wel-
che Seltene Erden mit starken magnetischen Momenten beinhalten, aufgrund der hdufigen
Spin-Frustration ferromagnetisches Verhalten zeigen. In Abb. 1.5 sind ein einfacher experi-
menteller Aufbau mit Magneten auf dem Penrose-Tiling sowie verschiedene Simulationen
der Magnetisierung auf diesem dargestellt [10, 9]. Gelingt es quasiferromagnetische Ma-
terialien stabil herzustellen, so konnten diese Anwendung im Bereich der Spintronik, wie
zum Beispiel fiir Spinkanile und Magnetlesekopfe, finden.

Im Rahmen dieser Arbeit wird eine spezielle quasiperiodische Struktur, das Rauzy-Tiling,
vorgestellt. Hierzu folgt im Kapitel 2 eine kurze Zusammenfassung der quantenmechani-
schen Grundlagen, die fiir die Beschreibung mikroskopischer Systeme nétig sind. Im Kapi-
tel 3 wird das Rauzy-Tiling mathematisch eingefiihrt und die Berechnung der Gitterpunkt-
koordinaten erldutert sowie die zwei- und dreidimensionale Struktur veranschaulicht. Die
stationdren Eigenschaften, wie zum Beispiel Darstellungen der Eigensysteme und die Be-
rechnung der Zustandsdichte und der Partizipationsrate, sind im 4. Kapitel beschrieben.
Im Kapitel 5 werden dynamische Prozesse anhand von sich zeitlich ausbreitenden Wellen-
paketen dargestellt und charakteristische Grofsen aus der zeitlichen Autokorrelationsfunk-
tion und dem mittleren Abstandsquadrat abgeleitet. Den Abschluss der Arbeit bildet eine
Zusammenfassung der Ergebnisse in Kapitel 6.



2 Quantenmechanische Grundlagen

Ausgehend von der klassischen Mechanik gelangt man bei der Betrachtung mikroskopi-
scher Teilchen zu tiefen Widerspriichen zwischen Theorie und Experiment. Einen Ausweg
bietet die Quantentheorie, welche nicht mehr auf determinierten Teilchenbahnen, sondern
auf Wellenverhalten und Aufenthaltswahrscheinlichkeiten beruht. Hierbei wird jedes mi-
kroskopische Teilchen oder System durch eine Wellenfunktion ¥ (7,t) beschrieben, wobei
diese als Wahrscheinlichkeitsamplitude und |¥(7,£)|* als Wahrscheinlichkeitsdichte fiir
das Antreffen des Teilchens am Ort 7 zum Zeitpunkt ¢ interpretiert wird.

Die Quantentheorie beruht auf folgenden drei fundamentalen Prinzipien:

1. Superpositionsprinzip: Ein System, welches sich in den Zustédnden {¥;} befinden kann,
kann sich auch in einer Linearkombination daraus befinden.

2. Aquivalenzprinzip: Klassische Variablen wie Ort, Impuls und Energie werden durch
ihre entsprechenden Operatoren ersetzt.

3. Unbestimmtheitsprinzip: Jede Wirkung, wie das Produkt aus Ort und Impuls oder
Energie und Zeit, ist stets mit einer Unschérfe in der Groffenordnung von h gege-
ben. Eine exakte gleichzeitige Messung beider Grofien ist nicht moglich. Somit hat
eine kleine Unschérfe des einen zwangsldufig eine grofie Unschérfe des anderen zur

Folge.
Im Potential V(7) gentigt die Wellenfunktion eines Teilchens der Schridinger-Gleichung
ihaa‘f =AY (2.1)
mit dem Hamilton-Operator
N
H = —%A +V(7) . (2.2)

Mit dem Ansatz ¥ (7,t) = (7) - T(t) lassen sich die Abhdngigkeiten separieren. Es folgt
fir die Zeitkomponente

T(t) = e nEf (2.3)
und fiir die Ortskomponente die stationdire Schrodinger-Gleichung
Ay =Ep . (24)

Bei letzterem handelt es sich, der mathematischen Struktur entsprechend, um ein Eigen-
wertproblem, dessen Losungen die Energie-Eigenwerte E und die zugehorigen Eigenfunk-
tionen bzw. Eigenzustédnde 1 liefern.

Fiir den Fall, dass .#Z endlichdimensional ist, lasst sich die Losung der Schrodinger-Glei-
chung mit dem Zeitentwicklungsoperator % (t) auch als

¥(t) =% () =e vy (2.5)

schreiben. Die ¥ und ¢ sind hier Eigenvektoren.
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2.1 Nutzliche Eigenschaften

Bei tiefgehender Betrachtung des Hamilton-Operators und der Wellenfunktion zeigen sich
einige wichtige Eigenschaften, welche im Kapitel 5 fiir die Beschreibung eines Wellenpa-
ketes bendtigt werden.

Der Hamilton-Operator .7 ist ein linearer Operator im Hilbertraum . Daher bilden die
Eigenzustinde {|,)} eine Basis in . Weiterhin bildet {|y,)} ein Orthonormalsystem,
d.h. es gilt

<1/1m| l/)n> = Omn - (2.6)

Aufgrund der Tatsache, dass der Hilbertraum H vollstandig ist, kann jedes beliebige Wel-
lenpaket |¢) € H nach Eigenfunktionen entwickelt werden, wobei das Betragsquadrat des
Entwicklungskoeffizienten c, die Wahrscheinlichkeit angibt, mit der sich das durch das
Wellenpaket beschriebene Teilchen im Eigenzustand |,,) befindet:

dim H
9) =) culn) mit cu=(pulg) 27)
n=1
Aus der Umkehrung folgt zwangsladufig, dass sich jede Funktion aus H nach einem belie-
bigen Orthonormalsystem entwickeln ldsst.

2.2 Diskretisierung

Ist anstatt eines kontinuierlichen Systems ein System aus Gitterpunkte gegeben oder will
man kontinuierliche Systeme numerisch berechnen, so ist es vorteilhaft, 2 zu diskretisie-
ren und die Eigenwertgleichung in Matrixform zu 16sen. Dies ist im Folgenden am Beispiel
eines eindimensionalen dquidistanten Gitters erldutert.

Gegeben seien die Gitterpositionen x = i-a mit dem Gitterabstand 2 und i € Z. Der
Anteil des Potentials ldsst sich vereinfacht schreiben als V (7) = V. Fiir die Behandlung
des Laplace-Operators geht man vom Differential- zum Differenzenquotient {iber und be-
handelt diesen symmetrisch [11, 12].
Fiir eine beliebige Funktion f(x) gilt

o ma fry) -] 28)
2 Af
= ) a5
= L) -2f () + f(x+a)] 29)

Dabei betrdgt die Abweichung vom kontinuierlichen Laplace-Operator [13]
Avtontinuiertich — Daiskret = O(a%) (Konsistenzordnung 2) . (2.10)

Insbesondere ist die Beschreibung des Kontinuums als Grenzwert a — 0 enthalten.

h2
Mit f(x) = ¢|, , t = a2 und €; = V; + 2t ldsst sich Gl. (2.4) schreiben als

Y| = —t(Plir+ ¥lisr) +e 9l = E ¥, @11)



2.2 Diskretisierung 9

bzw. in Bra-Ket-Schreibweise
A2 g) = —t(G =11 @) + i+ 1] 9)) +ei (il 9) = E il ) (2.12)

mit einer beliebigen Basis {|i) }. Die Entwicklung des Eigenzustandes |¢) nach dieser Basis

0o (2.7) dos A .
({12 |p) =" Y (i A2 17) (il ¥) = Y Hy Gl 9) (2.13)
j j
liefert die Matrixelemente
Hyj = {el‘ vi=i . (2.14)
t Vi=ixl

Fiir beliebige Gitter ldsst sich der Hamilton-Operator allgemein wie folgt ausdriicken:

A=Y li)ei (i + Y |0t (I (2.15)
i i#]

Hierbei ist {|i) } die Orthonormalbasis der Wannier-Zustinde [14, 15]. Diese sind die Orts-

Fouriertransformierten der Bloch-Zustinde und beschreiben die an den Gitterpunkten i

stark lokalisierten Orbitale. Die Ubergangsmatrixelemente t;; sind Energien, welche die

Ubergénge vom Zustand |i) zum Zustand |j) beschreiben. Die €; enthalten die Potentiale

und charakterisieren somit die Wechselwirkung der Mikroteilchen mit dem Gitter.

Die Beschreibung der Rauzy-Tilings geschieht im weiteren Verlauf mit dem Modell star-
ker Bindung [14, 15]. Man nimmt an, dass die Ubergangsenergien zwischen zwei Gitter-
punkten, welche ndchste Nachbarn sind, viel grofSer sind als die aller anderen und letztere
somit vernachldssigt werden konnen. Des Weiteren seien nur Teilchen betrachtet, die nicht
mit dem Gitter wechselwirken. Es ergibt sich demnach fiir dieses Modell

b t: néchste Nachbarn (2.16)
Y7 10: sonst '
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3 Die Struktur der Rauzy-Tilings

In diesem Kapitel soll die Herleitung eines Projektionsverfahrens zur Berechnung der Git-
terpunktkoordinaten der Rauzy-Tilings, einer speziellen aperiodischen Struktur, erfolgen.
Dem liegt die in Abb. 3.1 dargestellte Fibonacci-Projektion, die im ersten Punkt erklart ist
und durch die spezielle Beschreibung anschlieffend auf hohere Dimensionen verallgemei-
nert werden kann, zugrunde. Die mathematischen Grundlagen wurden hierbei von Vidal
und Mosseri iibernommen [16].

3.1 Die Fibonacci-Kette als eindimensionaler Fall

Abb. 3.1: Fibonacci-Projektion (Projektionswinkel tan a = %)

Bei der in Abb. 3.1 dargestellten Fibonacci-Projektion wird ein zweidimensionales qua-
dratisches Gitter um den Winkel & = arctan T gedreht und anschlieffend ein zur x-Achse
parallel verlaufender Streifen (orangfarbener Ausschnitt') auf diese projiziert. Hierbei ist

T = 14“2—\/5 der Grenzwert der Fibonacci-Folge, welche in Gl. (3.2) bei der exakten mathe-
matischen Erlduterung angefiihrt ist. Im Gegensatz zu einem rationalen Verhiltnis 7, bei
dem die Projektion wieder periodisch ist, entsteht bei einem irrationalen T ein quasiperi-
odisches Gitter. Die so entstandene Projektion ist unterhalb des Gitters dargestellt. Dabei
existieren zwei Gitterabstdnde: Die groBeren sind durch rote Rechtecke (A) und die klei-
neren durch blaue Rechtecke (B) symbolisiert. Diese sog. Fibonacci-Kette erhdlt man eben-
falls, wenn man (A) und (B) analog der Definition der Fibonacci-Folge aneinanderreiht:
Im ersten Schritt sei (A) gegeben, im zweiten (B) und man erhilt (AB). In jedem weite-
ren Schritt hangt man das Resultat des vorangegangenen Schrittes an. Der dritte Schritt
liefert demnach (AB) + (A) = (ABA), der vierte (ABA) + (AB) = (ABAAB), der fiinfte
(ABAAB) + (ABA) = (ABAABABA) etc. In Abb. 3.1 ist der siebente Schritt dargestellt.

1 Ein Ausschnitt ist notwendig, da man sonst eine dichte Menge an Punkten erhalt. Fiir obigen Streifen
wurde |y| < 1 gewihlt.
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Zur besseren mathematischen Beschreibung wird nach dem allgemeinen Projektions-Prin-
zip [17] vorgegangen: Gegeben sei ein kubisches Gitter im D-dimensionalen Raum, wel-
cher durch zwei senkrecht aufeinander stehende Unterrdume, dem parallelen oder physi-
kalischen d-dimensionalen Raum E!l und dem senkrechten (D — d)-dimensionalen Raum
E', aufgespannt wird. Ein Ausschnitt des Gitters wird dann parallel zum senkrechten
Raum E' auf den physikalischen Raum E! projiziert. Des Weiteren sind zwei (in den Ein-

trdgen monoton steigende) Folgen von Basen {Alﬂz} und {A}"} gegeben (i indiziert die

Basisvektoren, k die Folgeglieder), welche die beiden Unterrdaume El und E+ aufspannen.
Dabei seien die Folgen so definiert, dass im Grenzfall k — oo die Einheitszelle unendlich
grofs wird und die Anstiege der Basisvektoren des senkrechten Raumes gegen irrationale
Zahlen streben, sodass bei der Projektion ein nichtperiodisches Gitter entsteht.

Bei der numerischen Berechnung ist man stets auf endliche k beschrankt. Die durch die
Basis des physikalischen Raumes aufgespannte Einheitszelle ist somit endlich und der ge-
samte physikalische Raum wird durch Verschiebung dieser parallel zu Ell parkettiert. Mit
wachsendem k wird die Einheitszelle jedoch immer grofier, sodass der Grenzfall immer
besser beschrieben wird. Man spricht von der Ndherung k-ter Ordnung.

Bei den Rauzy-Tilings handelt es sich um Projektionen von Dimension D auf Dimension
d = (D — 1), d.h. der senkrechte Raum ist eindimensional. Abb. 3.2 zeigt dies am Beispiel
des eindimensionalen physikalischen Raumes und ist im Folgenden genauer erldutert.
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Abb. 3.2: Projektionsschema und Nummerierung bei 4. Ordnung

Mit der kanonischen Basis B, = {€},¢,} sei ein quadratisches Gitter gegeben. Der Vektor
des senkrechten Raumes ist in der Basis B, definiert als

At = (FoF1) . (3.1)
Die Eintréage sind beschrieben durch die Fibonacci-Folge

Foi=FK+F 1 mt F[p=F=1 , (3.2)
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die auch mittels Transfermatrix M bestimmt ist:

Fer) F . (11
<F:1>_M<Fkk1) mit M_<1 0> . (3.3)

Die Eigenwertgleichung von M folgt sofort aus den Beziehungen

<F’1;:1> 2 2 <§’;_i> (3.4)
() () G =)o) e
und lautet
M*=M+1 . (3.6)
Im Grenzfall k — oo strebt das Verhiltnis F"Tzl gegen deren positive Losung, den golde-
nen Schnitt 7 = % ~ 1,6180, sodass man die zuvor beschriebene Projektion in Abb. 3.1
erhalt.

Mit einem zu A}f senkrechten Vektor AL‘ des physikalischen Raumes definiert man die Ba-

sis des Spurgitters Ly = {/Y H, A'kL }. Die Beschreibung der Gitterpunktkoordinaten ist in die-
ser Basis geeignet, da sich die Projektion damit einfach durch Weglassen der senkrechten

Komponente ergibt. Weiterhin ist die Basis des Bandgitters definiert als Sy = {A | it } mit
einem Vektor if = (1,1). Die Einheitszelle dieser Basis soll der zu projizierende Ausschnitt
sein. Die Basistransformationen seien mit Ly : B, — L£; und Sy : B, — Sk bezeichnet.

Fiihrt man die Matrixdarstellung der Fibonacci-Folge in Gl. (3.3) auf deren erste Glieder
Fi, Fp und F_q zurick, d.h.

(Ff:) = MF (é) und (P’gl> = Mk G) , (3.7)

folgt aus der ersten Gleichung die erste Zeile von M* und aus der zweiten anschliefend

die zweite Zeile:
F. F.1—F F. F
Mk — k k+1 k> — ( k k—l) . 3.8
(Fkl F— F Fr1 Fea (3:8)

Hieraus kann A'kL mit der ersten Spalte von M* identifiziert werden. Da A’ki und /_f]! senk-

recht aufeinander stehen wahlt man A}L' als zweite Zeile von M~
A = (Fy1,Fpa) (3.9)
Fiir die Basistransformationen gilt dann
_(z z1) — (Fr1 K (xS (Fx1 1
L= (4 4p) <sz Pk1> , so= (4l a) (sz I CRT)
Die Anzahl der Gitterpunkte der Si-Einheitszelle berechnet sich als

sk = |detSg| . (3.11)
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Eine einfachere Moglichkeit bietet sich mit

. Al .
sp = )A,U‘ ik =i A =Fy (3.12)
4
k
wobei /T]f = ‘AH gilt (Beweis B im Anhang).

Zur Berechnung der Gitterpunkte definiert man einen erzeugenden Vektor g so, dass die
Einheitszelle { A I g} genau einen Gitterpunkt beinhaltet, d.h. g zeigt auf denjenigen Git-

terpunkt, welcher dem physikalischen Raum Ell am nichsten liegt, aber nicht in ihm, und
&y die kleinste Norm hat. Da |det M| = 1, kann man g mit der ersten Zeile von M~ iden-
tifizieren?:

k= (Fr, Fx1) - (3.13)

Die Gitterpunktkoordinaten der Sx-Einheitszelle in der Basis B, ergeben sich somit als Viel-
fache von g, wobei ein Verlassen der Einheitszelle durch den Modulo-Operator korrigiert
wird:

A=(-g)mod Al , je0s—1 . (3.14)

Stellt man dies in der Basis Ly dar, so vereinfacht sich die Modulo-Operation derart, dass
man nur den fraktionellen Anteil zu nehmen braucht?:

Ao=Frac|j-L'&%] , jelos—1] . (3.15)

Die durch g gegebene natiirliche Nummerierung ist in Abb. 3.2 fiir die Ndherung vierter
Ordnung der Fibonacci-Folge gezeigt.

3.2 Verallgemeinerung auf hohere Dimensionen

Das Verfahren fiir die Fibonacci-Projektion ldsst sich auf den d-dimensionalen physika-
lischen Raum verallgemeinern, indem man ein in der kanonischen Basis B;.1 gegebe-
nes (d + 1)-dimensionales hyperkubisches Gitter parallel zum Vektor A',{L des senkrech-
ten Raumes projiziert. Der physikalische Raum wird aufgespannt durch die d Vektoren
Al Al

Zundchst fiihrt man die verallgemeinerten Fibonaccizahlen

d
Fi=YF, , h=R=1, Fi=...=F 4=0 (3.16)
1=0
Fk-‘rl Fk 1 O 0
: =M mit M= ] . (3.17)
Friy1-a Fr g 0 10

2 Esist det M = —1. Das zusitzliche Vorzeichen fiihrt lediglich dazu, dass beim Ubergang von einer Ord-
nung zur ndchsten sowohl g als auch A,U seine Richtung dndert. Die projizierte Einheitszelle bleibt dabei
unverdndert.

3 L, ist Basistransformation und somit stets invertierbar.
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ein und wahlt in der kanonischen Basis By 1

At = (B, F_1,..., ) . (3.18)
Aus der Beziehung
Fiesa i [ Bt
=) : (3.19)
Fry1-a FONF 4

folgt mit Gl. (3.17) die Eigenwertgleichung

d
Mt =Y"M . (3.20)
=0
F
Der Grenzwert klim % = 14 ist die einzige positive Losung dieser Gleichung. Fiir d = 2
— 00 k

und d = 3 lauten diese

3 3
n= 1t V19— 3\/3§+ V19+3V33 1,8393 (3.21)

75~ 1,9276 . (3.22)

Fiihrt man analog zu GI. (3.8) die Definition in Matrixschreibweise auf die ersten Glieder
F; bis F_; zuriick, folgen die (d + 1) Beziehungen

2d*l
1 -2
Fy 1 Fiea 1 Fieva 2
c =M O, o =Mool Lo, Lol =M (3.23)
Fea : Fit1-a : Fe 1
' 1

und man erhilt den Ausdruck fiir die Potenzen von M, wobei die erste Zeile aus der ersten
Gleichung folgt und jede weitere Gleichung eine weitere Zeile liefert:

Fy EZ;oi Fy 1 Zg;(i Feiy - F
F1v X2 B2 Yoo Fc2 - Fea
Mk =|"" = = . (324)
Fea Yo Fe @it Tig B @en—1  F@s

Mit den gleichen Begriindungen wie im eindimensionalen Fall wéhlt man nun A}f als erste
Spalte von MF, A}Ul e A,Ud als zweite bis (d + 1)-te Zeile von M—¥ und g als erste Zeile von
M. Die Basis des Spurgitters definiert man als £; = { Al A’kl} und die des Bandgitters

als S = {A“i,ﬁ} mit dem Vektor i = (1,...,1).
Die Si-Einheitszelle beinhaltet wieder

detL Al ! . .
so=ldets = 9t g Al N g di g Al =R, G29)
Al A ]
k k Ap

L2
Gitterpunkte, wobei [ = ‘Aki’ gilt.

Die Gitterpunktkoordinaten der Si-Einheitszelle ergeben sich wie im eindimensionalen
Fall als Vielfache von gk, wobei in der Basis £y das Nicht-Verlassen der Einheitszelle durch
den fraktionellen Anteil beachtet wird:

Ao=Frac|j-L'&] , jelos—1] . (3.26)
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3.2.1 Das zweidimensionale Rauzy-Tiling

In Abb. 3.3 sind drei verschiedene Ordnungen des zweidimensionalen Rauzy-Tilings in
der Basis £ dargestellt, wobei die Gitterpunkte nach GI. (3.26) berechnet wurden. Da diese
durch Projektion eines dreidimensionalen kubischen Gitters entstehen, existieren 3 Rich-
tungen, die die Nachste-Nachbar-Verkniipfungen angeben. Die Ebene wird aus zwei dieser
Richtungen aufgespannt. Demnach gibt es (;) = 3 verschiedene Parallelogramme, welche
die Ebene vollstindig parkettieren.

(a) 7. Ordnung (b) 10. Ordnung (c) 13. Ordnung

Abb. 3.3: Projektion der S-Einheitszelle (Ordnung 7, 10 und 13) in zwei Dimensionen

3.2.2 Das dreidimensionale Rauzy-Tiling

(e) 11. Ordnung (f) 12. Ordnung (g) 13. Ordnung (h) 14. Ordnung

Abb. 3.4: Projektion der S-Einheitszelle (Ordnung 7 bis 14) in drei Dimensionen
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Das dreidimensionale Rauzy-Tiling ist in Abb. 3.4 zur besseren rdumlichen Vorstellung
fiir mehrere verschiedene Ordnungen und ein detailierterer Ausschnitt der 11. Ordnung
in Abb. 3.5 dargestellt. Bei letzterem erkennt man, verursacht durch die Projektion ei-
nes vierdimensionalen hyperkubischen Gitters, die 4 Richtungen der Néchste-Nachbar-
Verkniipfungen. Das Tiling besteht aus (3) = 6 verschiedenen Parallelogrammen (in Abb.
3.5 mit a-f bezeichnet), welche die (g) = 4 Parallelepipete (gelbe Markierungen), die den
dreidimensionalen Raum vollstindig fiillen, begrenzen.

Abb. 3.5: Projektion der Sp1-Einheitszelle in drei Dimensionen (Ausschnitt) mit den 6 verschiedenen
Parallelogrammen (a-f) und den 4 verschiedenen Parallelepipeten (gelbe Markierungen)

3.3 Die Verbindungsmatrix

Zur Beschreibung der Nachste-Nachbar-Verkniipfungen des Rauzy-Tilings k-ter Ordnung
fiihrt man die Verbindungsmatrix

e = {Kij} (3.27)

i,j=0

Fa—1 Ko — 1: nichste Nachbarn
’ K 0: sonst

ein.

Fiir die genaue Gestalt der Matrix helfen folgende Uberlegungen: Die Projektion der ka-
nonischen Einheitsvektoren auf den senkrechten Raum sind in der Basis ;.1 durch die
Eintrdge von A;- gegeben:

e - AkL F
; = : - (3.28)
i1 AL Fe g
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S Y
Die Projektion des erzeugenden Vektors gy auf A;- ist mit [, = ‘AH gegeben durch die

Beziehung
(A )|~ .
detLy| |, At L L
- 1” 8 Ji oS AP =5 AF . (330)
] 1 Tal| T

Somit zeigen Fi gy . . . Fx—48 auf die durch die kanonischen Basisvektoren gegebenen nichs-
ten Nachbarn, d.h. zwei Gitterpunkte sind benachbart, wenn die Differenz ihrer Numme-
rierung gleich einem der Eintrdge von A}} ist. Dies ist fiir d = 2 in Abb. 3.6 dargestellt.

Abb. 3.6: Drei Richtungen im
zweidimensionalen Gitter

. ergibt sich demnach mit periodischen Randbedingungen als symmetrische Toeplitzma-
trix:

d
Kij = IZ(:)(SH—J'\/H—I : (3.31)

Fiir das zweidimensionale Rauzy-Tiling lautet die Verbindungsmatrix beispielsweise

Hy =

QO OO OO MR OO MOMMOO
O OO O MR OO MOMOOO
O OO OO OMOOO M
OO MR OO MOMOOOMmO
O OO Od OO O = O B
—_ O O O M O OO MOMmO
OO M O MR OOOMOMOO
O O OO O OO O M
—_ O = O OO M OMOOMmMO
O OO O MO MOOMmOO
—_ O O O O M OOMmMOOO
O OO MR OMODOMOOOO
O O O OO R OOOOO
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Ein Vergleich von Gl. (3.27) mit Gl. (2.15) und Gl. (2.16) zeigt, dass der Hamilton-Operator
proportional zur Verbindungsmatrix ist:

A

o=t Ay (3.32)

Diese Gleichung verkniipft auf einfache Weise die quantenmechanischen Eigenschaften
mit der Geometrie des Systems. Fiir die in den folgenden Kapiteln aufgefiihrten Rechnun-
gen geniigt es also, die Verbindungsmatrix %, zu betrachten. Sowohl die Systemabmes-
sungen und somit die Skalierung der Energieeigenwerte als auch die Einheiten stecken im
Vorfaktor t. Des Weiteren setzt man vereinfacht h = 1, um nicht mit allzu kleinen Werten
rechnen zu miissen. Somit erhdlt man die Energien in Frequenzeinheiten.

3.4 Die Nachste-Nachbar-Umgebungen

Aus Gl. (3.31) und dem darunter angefiigten Beispiel lassen sich sofort einige geometrische
Eigenschaften der Rauzy-Tilings in d Dimensionen ableiten.

Es existieren d + 1 verschiedene Nachste-Nachbar-Verkniipfungen, welche durch die Git-
terpunktdifferenzen F,_; (0 < [ < d) gegeben sind. Die Anzahl der Paare von néchsten
Nachbarn, deren Verbindungsrichtung durch die Differenz F; gegeben ist, betragt 2(F 1 —
F). Die Anzahl und Position der Eintrdge einer Zeile gibt die Anzahl und Verkniipfungs-
richtung der ndchsten Nachbarn eines Gitterpunktes und somit deren lokale Umgebung
an. Mit Pyyq,..q, sei ein Gitterpunkt bezeichnet, welcher a; (0 < I < d) Néachste-Nachbar-
Verkniipfungen mit der Gitterpunktdifferenz F;_; aufweist. Es ist unbedingt 0 < a; <2, da
jede Richtung hochstens zweimal (vorzeichenbehaftet) auftreten kann. Demzufolge gibt es
maximal 27+1 lokale Umgebungen. Fiird > 2 ist F,_; < Fy,1 — Fx < F, damit lauft bei zei-
lenweiser Betrachtung die obere Diagonale J);_; 5, aus der Verbindungsmatrix, nachdem
der erste Eintrag der unteren Diagonale J;_; r_, und bevor der erste Eintrag der unteren
Diagonale §;_; r, begonnen hat. Durch die schwachbesetzte Toeplitzstruktur der Verbin-
dungsmatrix, lasst sich diese zeilenweise in Blocke gleicher lokaler Umgebung einteilen
und es ergeben sich 2(d + 1) + 1 = 2d + 3 Abschnitte:

1: Gitterpunkte der Art P; .1, da in den ersten Zeilen von .%#; alle 4 + 1 oberen Dia-
gonalen und keine untere Diagonale vorhanden ist.

2: Gitterpunkte der Art P; 12 durch das Einsetzen der unteren Diagonale Oijl,Fea

3: Gitterpunkte der Art P _12; durch das Einsetzen der unteren Diagonale & li— |, Feeasn

d + 1: Gitterpunkte der Art Pyp_» durch das Einsetzen der unteren Diagonale 5‘1-, iLFea
d + 2: Gitterpunkte der Art Py, » durch das Ende der oberen Diagonale & li—i|,F;

d + 3: Gitterpunkte der Art Pyp_» durch das Einsetzen der unteren Diagonale OiiE,

2d + 1: Gitterpunkte der Art P;_122 durch das Ende der oberen Diagonale O1i— i _asa
2d + 2: Gitterpunkte der Art P;_1» durch das Ende der oberen Diagonale & [

2d + 3: Gitterpunkte der Art P;_; durch das Ende der oberen Diagonale Oij|,Fea
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Die letzten d + 1 Blocke sind aufgrund der Symmetrie %" = % in Anzahl und Art der
Gitterpunkte identisch mit den ersten d + 1 Blocken. Somit existieren im d-dimensionalen
Rauzy-Tiling (d > 2) insgesamt genau d + 2 verschiedene durch die Néachste-Nachbar-
Verkniipfungen charakterisierte lokale Umgebungen, welche fiir zwei und drei Dimensio-
nen in Abb. 3.7 und 3.8 dargestellt sind. Die Anzahl der Gitterpunkte #P je Art betrédgt
hierbei

#P1.1=2F_4 ,
#P1.12 = 2(Fe—g+1 — F—a)
#P1.12 = 2(Fe—d+2 — Fe—a+1)

#P12.o = 2(Fep1 — B — F—1)
#Po2..2 = Fe — (Fep1 — F) = Fumaa

—_—

Abb. 3.7: Die vier verschiedenen lokalen Abb. 3.8: Die fiinf verschiedenen lokalen
Umgebungen des 2D-Systems: Py11 blau, Umgebungen des 3D-Systems: Py117 blau,
P112 griin, Prp rot, Pox gelb Pi112 grin, P12, rot, Piogn cyan, Poyop gelb
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4 Die stationare Losung

Im Vordergrund dieses Kapitels steht die Diskussion der Eigenwerte und Eigenvektoren
als Losung der stationdren Schrédinger-Gleichung.

Hierzu wurden die folgenden bereits vorhandenen Fortran-Routinen verwendet:

1. dsyev aus dem Algebra-Paket Lapack [18] zur Berechnung des gesamten Spektrums:
Die Berechnungen waren im zweidimensionalen Rauzy-Tiling fiir das gesamte Ei-
gensystem bis zur 16. Ordnung, fiir die Eigenwerte bis zur 17. Ordnung und im drei-
dimensionalen Rauzy-Tiling fiir das gesamte Eigensystem bis zur 15. Ordnung und
fiir die Eigenwerte bis zur 16. Ordnung moglich, da es die Systemressourcen des PCs
nicht zulieflen, groflere Datenmengen zu verarbeiten.

2. Jadamilu [19] zur ndherungsweisen Berechnung der Eigenwerte grofser Matrizen in
Umgebung eines gewdhlten Startwertes:
Zunidchst wurden die Berechnungen der grofiten bereits vorhandenen Systeme wie-
derholt und mit den Ergebnissen von dsyev verglichen. Da sich eine grofle Uberein-
stimmung zeigte, ist davon auszugehen, dass die Routine auch bei grofieren Syste-
men korrekte Resultate liefert.

Die Programme liefern die Fy; 1 Energien E, und zugehorigen Eigenzustiande |¢,) der Ver-
bindungsmatrix .#;. Im Weiteren ist die Anzahl der Gitterpunkte (= Anzahl der Eigen-
zustdnde) als Systemgrofie N (= Fi41) bezeichnet.

Als Vorlage fiir die Berechnung von Zustandsdichte, Partizipationszahl und Skalenexpo-
nent und als Vergleichsmaterial dienten Resultate von Triozon et al [20].

4.1 Die Zustandsdichte

Um die Vielzahl der Eigenenergien in eine tibersichtliche Form zu bringen, definiert man
wie bei Einfithrung des freien Elektronengases in der Festkorperphysik die normierte Zu-
standsdichte

1 AN

n(E) = NAE 4.1)
und interpretiert die von Null verschiedenen Gebiete als quasikontinuierliche Energiebin-
der, welche bis zur Fermienergie aufgefiillt sind. Die Zustandsdichte gibt die Anzahl der
Zustinde AN pro Energieintervall AE an. Die Normierung auf die Gesamtzahl N der
Zustande sorgt fiir eine Vergleichbarkeit zwischen verschiedenen Ordnungen, da mit gro-
erer Einheitszelle mehr Gitterpunkte und somit Zustdnde hinzukommen, diese aber auf-
grund der Tatsache, dass stets das gleiche System beschrieben wird und sowohl die Band-
kanten als auch der qualitative Verlauf erhalten bleiben sollten, immer dichter liegen. Dies
ist in Abb. 4.1 fiir das zweidimensionale Rauzy-Tiling in der 17. Ordnung mit 35890 Git-
terpunkten und in Abb. 4.2 fiir das dreidimensionale Rauzy-Tiling in der 16. Ordnung mit
39 648 Gitterpunkten dargestellt.
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Abb. 4.1: Normierte Zustandsdichte des 2D-Systems (17. Ordnung: 35 890 Gitterpunkte)
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Abb. 4.2: Normierte Zustandsdichte des 3D-Systems (16. Ordnung: 39 648 Gitterpunkte)
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Es zeigt sich, dass sich sowohl beim zweidimensionalen als auch beim dreidimensionalen
System ein anndhernd um die Bandmitte E = 0 symmetrisches Energieband ausbildet,
wobei die Bandkante Ep beim dreidimensionalen System grofier ist:

Epop =412 , Epsp =1620 . (4.2)

Beim 2D-System erkennt man im Intervall [—1,1] zahlreiche gréBere Peaks und im Ab-
stand E ~ +0,08 zur Bandmitte zwei sehr starke Peaks, bei denen die Zustandsdichte auf
den fast dreifachen Wert ansteigt und welche ein Tal einschlielen, bei dem n(E) immer-
noch doppelt so grof ist. Zur Bandkante hin sinkt n(E) leicht ab und fillt bei Eg abrupt auf
Null. Die Zustandsdichte des 3D-Systems weist keinerlei grofiere Peaks auf. Auch bricht
diese an der Bandkante nicht ab, sondern sinkt beginnend bei einem Knick bei |[E| = 3
tiber einen grofleren Bereich bis auf Null. Vergleicht man diese Resultate mit denen des
periodischen Gitters, so zeigen sich gewisse Gemeinsamkeiten: Die Bandkanten sind im
Vergleich zu Egop periodisch = 4 und Eg3p periodiscn = 6 nur leicht erhdht. Der grobe Verlauf
der Zustandsdichte des dreidimensionalen Rauzy-Tilings ist dem eines periodischen Git-
ters dhnlich. So sind sowohl der wurzelférmige Anstieg an den Bandkanten als auch das
konstante Plateau in der Bandmitte anndhernd vorhanden. Im zweidimensionalen Rauzy-
Tiling hingegen weicht der Kurvenverlauf vor allem in der Bandmitte signifikant von der
konstanten Zustandsdichte des periodischen Gitters ab.

Als weitere auffillige Eigenschaft weisen beide Kurven einen sehr zackigen Verlauf auf.
Zwar lasst sich aufgrund der begrenzten Anzahl berechneter Eigenwerte und der im Ver-
gleich dazu recht kleinen Intervalle nicht ausschliefen, dass dieser Effekt aus der Berech-
nung resultieren konnte und sich im unendlich grofien System die Kurven glitten, je-
doch legen tiefgehendere Untersuchungen nahe, dass es sich hierbei um eine inhdrente
Eigenschaft quasiperiodischer Gitter handelt [21]. Simulationen von komplexen Alumini-
ummanganat-Phasen zeigten ebenfalls, dass es sich bei solchen zackigen Zustandsdichten
nicht um Artefakte handelt [22].

4.2 Die Partizipationsrate

Die Eigenzustinde |,), welche im Kapitel 4.4 dargestellt und ausfiihrlicher diskutiert
sind, konnen sehr unterschiedlich iiber der Einheitszelle ausgedehnt sein. Zur Charakteri-
sierung der Ausgedehntheit bzw. Lokalisiertheit der Zustdnde definiert man die Partizipa-
tionszahl [23]

P(E)) = —-—— . (4.3)

Zur Verdeutlichung betrachtet man zwei anschauliche Extremfalle:

e Ist der zur Energie E, gehorende Zustand |i,) auf einen festen Gitterpunkt j loka-
lisiert, so ist die Projektion von |¢,) auf einen beliebigen Gitterpunkt i Null fiir alle
i ungleich j und Eins fiir i gleich j. Von der Summe bleibt also nur der Summand
|(j] ¥u)|* = 1 iibrig und es ergibt sich P(E,) = 1.

e Fiir einen tiber dem gesamten System gleichmé&Rig verteilten Zustand |¢,/) hingegen
ist die Projektion auf einen beliebigen Gitterpunkt konstant und ergibt sich aufgrund
der Normierung von |1p|2 zu (i| Py) = ﬁ fur alle i. Die Summation liefert nun

YN, 3> = & und es ist somit P(E,s) = N.
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Die Partizipationszahl gibt folglich an, auf wie viele Gitterpunkte der jeweilige Zustand
effektiv lokalisiert ist.

Zur Vergleichbarkeit verschiedener Ordnungen normiert man wieder auf die Anzahl der
Zustdnde N. Die somit definierte Partizipationsrate

p(En) = PS? (4.4)

gibt dann den Anteil am Gesamtsystem an, auf den der entsprechende Zustand ausge-
dehnt ist. Fiir das zweidimensionale Rauzy-Tiling 16. Ordnung mit 19 513 Gitterpunkten
ist die Partizipationsrate in Abb. 4.3 dargestellt und fiir das dreidimensionale Rauzy-Tiling
15. Ordnung mit 20 569 Gitterpunkten in Abb. 4.4.

([ e PR
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—~ N 1 ~ N
':”,05} - ”305}
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Abb. 4.3: Partizipationsrate des 2D-Systems Abb. 4.4: Partizipationsrate des 3D-Systems
(16. Ordnung: 19 513 Gitterpunkte) (15. Ordnung: 20 569 Gitterpunkte)
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Abb. 4.5: Mittlere Partizipationsrate des 2D-Systems Abb. 4.6: Mittlere Partizipationsrate des 3D-Systems
(16. Ordnung: 19 513 Gitterpunkte) (15. Ordnung: 20 569 Gitterpunkte)
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Es ist aus beiden Diagrammen ersichtlich, dass die Partizipationsrate einer starken Streu-
ung von etwa 0,2 bis 0,3 unterliegt. Sowohl im zwei- als auch im dreidimensionalen Sys-
tem sind die Zustdnde in der Bandmitte, in 2D im Intervall [—-1,1] und in 3D im Intervall
[—3,3], starker lokalisiert, d.h. auf weniger Gitterpldtzen ausgedehnt, als in der Nédhe der
Bandkanten, zu deren Richtung hin immer mehr Zustdnde mit hoherer Partizipationsrate
zu finden sind. Des Weiteren zeigt sich bei betragsméfiig grofsen Energien ein Plateau bei
p ~ 0,62, iiber dem nur vereinzelt Zustdnde liegen. In der Ndhe der Bandmitte zeigen sich
Unterschiede zwischen beiden Systemen. So existiert im 3D-System ebenfalls ein unteres
Plateau bei p =~ 0,27, unterhalb dessen kaum Zustdnde zu finden sind. Die Partizipations-
rate ist allerdings in keinem Bereich klein genug, um von stark lokalisierten Zustanden
sprechen zu konnen. Das 2D-System weist hingegen eine ausgeprégtere Struktur auf. In
direkter Umgebung der Bandmitte und in zwei schmalen Energiebereichen bei E ~ 0,6
existieren wesentlich starker lokalisierte Zustdnde mit Partizipationsraten bis zu p ~ 0,15.

Der Grofsteil der Zustiande in der Bandmitte und bei der Bandkante hauft sich bei anna-
hernd gleichen Partizipationsraten, sodass es sich anbietet, p iiber kleinere Energiebereiche
zu mitteln und somit den groben Verlauf zu verdeutlichen. Dies ist fiir die gleichen Sys-
teme in Abb. 4.5 und Abb. 4.6 abgebildet. Die grofleren Partizipationsraten an den Band-
kanten, das Plateau in der Bandmitte beim 3D-System und die ausgeprégtere Struktur des
2D-Systems sind hier ebenfalls deutlich. Weiterhin ist auffillig, dass die Bereiche kleiner
Partizipationsraten des 2D-Systems und die Rénder des unteren Plateaus des 3D-Systems
gerade mit den Peaks (2D) bzw. den Knicken (3D) in der Zustandsdichte zusammenfallen
(vgl. Abb. 4.1 und 4.2).

4.3 Der Skalenexponent

Schaut man sich die Partizipationsraten verschiedener Systemgrofien an, so zeigt sich, dass
diese mit wachsendem N leicht abnehmen. Man betrachtet daher das Skalierungsverhalten
genauer.

Fillt ein Zustand von seinem Maximum aus, abgesehen von stets auftretenden nahezu be-
liebigen Fluktuationen, exponentiell schnell ab, so spricht man von exponentiell lokalisierten
Zustinden. Bei diesen wird die Partizipationszahl mit steigendem N gegen eine Konstante
konvergieren. Fiir ausgedehnte Zustdnde hingegen wird P ebenfalls anwachsen. Der Zu-
sammenhang zur makroskopischen elektrischen Leitfdhigkeit ist allerdings nicht mit Be-
stimmtheit feststellbar. Vielmehr sind ausgedehnte bzw. exponentiell lokalisierte Zustande
nur ein Indiz dafiir, ob der Quasikristall als solcher elektrisch leitend bzw. nichtleitend ist.

Fiir ausgedehnte Zustdande ladsst sich der asymptotische Verlauf meist durch ein Potenz-
gesetz

P~ N7 (4.5)

mit dem charakteristischen Skalenexponent 7y beschreiben [23]. Hierbei entsprache v = 0
exponentiell lokalisierten und v = 1 ausgedehnten Zustidnden, welche bei variierter Sys-
temgrofle stets auf den gleichen Systemanteil ausgebreitet sind. Fiir 0 < o < 1 nimmt die
Partizipationsrate p mit wachsendem N ab und strebt gegen Null. Da allerdings P weiter
wichst, ist der entsprechende Zustand nicht exponentiell lokalisiert. -y ist somit ein geeig-
neteres Maf$ als die Partizipationszahl P fiir die Lokalisiertheit der Zustdnde.

Abb. 4.7 zeigt die Abhédngigkeit der mittleren Partizipationszahl (gemittelt tiber dem ge-
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Abb. 4.7: Mittlere Partizipationszahl des 2D-Systems (blaue Punkte) und des 3D-Systems (rote Quadrate) in
Abhingigkeit der Systemgrofle, durchgezogene Linie: nichtlinearer Fit

samten Spektrum) von der Systemgrofle in doppeltlogarithmischer Darstellung. Ein nicht-
linearer Fit nach GIl. (4.5) liefert die Werte

Y2D = 0,972 ,
v3p = 0,975

Beide Ergebnisse liegen sehr nahe bei Eins, sodass alle Zustdnde im Mittel stark ausge-
dehnt sind. Dies bestitigt die Erwartungen, da selbst fiir den Zustand mit der geringsten
Partizipationsrate bei 16. Ordnung (Abb. 4.8d) kein exponentieller Abfall vorhanden ist. Da
v im dreidimensionalen etwas grofser ist, sind die Zustdnde bei abnehmender Dimension
stiarker lokalisiert [24]. Des Weiteren ist zu beachten, dass hier nur der Mittelwert {iber al-
len Energien betrachtet wurde, aber moglicherweise in unterschiedlichen Energiebereichen
verschiedene < auftreten konnen. Eine energieabhédngige Betrachtung durch Mittelung der
Partizipationszahl tiber Teilbereiche des Spektrums lief allerdings keine eindeutigen Ten-
denzen erkennen. Dies konnte auf eine Energieunabhéngigkeit des Skalenexponenten 7y
hindeuten, muss aber nicht zwangsldufig der Fall sein, da eine nicht ausreichende System-
grofle die gleichen Resultate liefern wiirde.

4.4 Die Eigenzustande

Wie bereits in Kapitel 4.2 beschrieben, sind die Eigenzustdande sehr unterschiedlicher Na-
tur. Fiir das zweidimensionale Rauzy-Tiling 16. Ordnung mit 19513 Gitterpunkten sind
vier sehr unterschiedliche Zustdnde mit verschiedenen Partizipationsraten in Abb. 4.8 dar-
gestellt. Die Diagramme in der oberen Halfte zeigen in einer dreidimensionalen Darstel-
lung die Aufenthaltswahrscheinlichkeit |1/J|2 tiber den Gitterpunkten, welche mittels Gl.
(3.26) schon in Kapitel 3.2.1 berechnet wurden. Hierbei ist zu beachten, dass die Skalierung
der z-Achsen nicht identisch ist, sondern fiir optimale Darstellung jeweils angepasst wur-
de. Die Diagramme darunter zeigen den selben Sachverhalt in einem zweidimensionalen
Diagramm, wobei hier |1[J|2 den Radius der Kreise an den Gitterpunkten bestimmt. Da sich
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aufgrund ausgedehnter Zustidnde die Streuung nicht tiber mehrere Gréflenordnungen er-
streckt, wurde eine lineare Abhdngigkeit gewéihlt4.

Die Untersuchung verschiedener Ordnungen zeigte, dass derjenige Zustand mit der hochs-
ten Energie (Bandkante) eine bedeutend hohere Partizipationsrate und somit die regelma-
Bigste Struktur aufweist, welche mit einer ,Eierpappe” vergleichbar ist (Abb. 4.8a). Wei-
terhin existieren viele Zustinde mit 0,2 < p < 0,6 , von denen zwei charakteristische
ausgewdhlt wurden. Einige habe eine deutliche periodische Struktur, bei der sich Strei-
fen oder Inseln mit grofierer Aufenthaltswahrscheinlichkeit ausbilden (Abb. 4.8b). Andere
sind unregelmiflig in der Anordnung der Peaks (Abb. 4.8c). Hierbei ist jedoch die Partizi-
pationsrate kein ausschlaggebendes Kriterium, ob der entsprechende Zustand periodisch
ist oder nicht. Vielmehr sind die periodischen Zustidnde in Umgebung der Bandkante zu
finden, wahrend die nicht-periodischen in der Bandmitte auftreten. Bei dem ausgewdihlten
Zustand mit sehr kleiner Partizipationsrate sieht man, dass dort die Wellenfunktion auf
kleinere Gebiete lokalisiert ist und in der restlichen Struktur kaum nennenswerte Aufent-
haltwahrscheinlichkeiten vorhanden sind (Abb. 4.8d).

Anhand der kreiskodierten Abbildungen erkennt man eine weitere Eigenschaft quasipe-
riodischer Gitter: Die Struktur weist zwar keine Periodizitit auf, allerdings lassen sich be-
liebige Ausschnitte andernorts (im unendlichen Grenzfall sogar beliebig oft) wiederfinden,
sodass sich auch in der Wellenfunktion dhnliche Strukturen in verschiedenen Gebieten wie-
derfinden. Dies ist auch in Abb. 4.8c und 4.8d erkennbar. Quasiperiodische Gitter besitzen
in der Regel auch eine fraktale (selbstihnliche) Struktur [25], d.h. dass ein Ausschnitt die
gleiche Struktur aufweist wie das gesamte Gitter. Die hier abgebildeten Gitter sind aller-
dings noch zu klein, um dies zu erkennen.

(@) E = 4,11501 (b) E = —4,09891 (c) E = 0,0415527 (d)E = —0,0168951
p =093 p =042 p =030 p = 0,10

Abb. 4.8: Aufenthaltswahrscheinlichkeit |1[J|2 der Eigenzustdnde zu verschiedenen Energien E des
2D-Systems (16. Ordnung: 19 513 Gitterpunkte)
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Auch im dreidimensionalen Rauzy-Tiling sind die eben beschriebenen Eigenschaften zu
finden. Da bei gleicher Systemgrofie allerdings weniger Gitterpunkte pro Raumrichtung
vorhanden sind, sind diese weniger deutlich ausgeprigt. Zwei Beispiele sind in Abb. 4.9
dargestellt. Abb. 4.9a zeigt ein ausgeprégtes Streifenmuster, wahrend Abb. 4.9b keine er-
kennbare Periodizitdt ausweist. Die Grafiken sind hier analog der kreiskodierten Abbil-
dungen im zweidimensionalen zu verstehen. An jedem Gitterpunkt befindet sich ein Wiirfel,
dessen Kantenlinge ein Ma8 fiir die Aufenthaltswahrscheinlichkeit ist (lineare Skalierung®).
Die Farbe der Wiirfel soll lediglich zur Orientierung dienen. Das Koordinatensystem bildet
einen Farbwiirfel, bei dem x, y und z die Anteile der Farben rot, griin und blau angeben.
Ein an der Position (x, y, z) befindlicher Wiirfel wird dann in der zugehorigen RGB-Farbe
dargestellt.

(a E=-6,113893 , p=0,60 (b) E=0,0482275 , p=022

Abb. 4.9: Aufenthaltswahrscheinlichkeit \1/}\2 der Eigenzustinde zu verschiedenen Energien E des
3D-Systems (15. Ordnung: 20 569 Gitterpunkte)

2
5 k=0 fir |l,l7|2 <1072 max{\lp\2} , k= 0,03#“1#‘2} fiir 1072 max{|¢|2} < |pf?
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5 Die Dynamik von Wellenpaketen

Dynamische Effekte, wie zum Beispiel das Diffusionsverhalten von Mikroteilchen und den
dadurch resultierenden elektronischen Transport, werden quantenmechanisch durch die
zeitabhdngige Schrodinger-Gleichung beschrieben. Dazu betrachtet man das Zerflief3en ei-
nes deltaformigen Wellenpaketes |®(t)), welches ein zum Zeitpunkt Null am Gitterpunkt j
befindliches Teilches beschreibt:

[2(0) =17} - (5.1)

Dieses entwickelt man nach Eigenzustdnden (vgl. Kapitel 2)

N N .
[©(1)) = ) cu[¥u) = ) cultpn) €7 (5.2)
n=1 n=1
und mit
N
(Pm| @(0)) = (Ym] j) = ;Cn‘smn =Cm (5.3)
erhilt man den Ausdruck
N .
[©(8)) = Y (Yul ) [n) €70 (5.4)
n=1

Das Verhalten dieses Wellenpaketes im zweidimensionalen Rauzy-Tiling (16. Ordnung mit
19513 Gitterpunkten) ist in den folgenden Abschnitten zunédchst qualitativ und anschlie-
end anhand der zeitlichen Autokorrelationsfunktion und des mittleren Abstandsquadra-
tes quantitativ ndher untersucht.

5.1 Das Zeitverhalten

In Abb. 5.1 ist die Aufenthaltswahrscheinlichkeit |®(¢)|* des deltafsrmigen Wellenpaketes
im 2D-Rauzy-Tiling zu verschiedenen Zeiten ¢ dargestellt. Dabei wurden die Berechnun-
gen fiir denjenigen Startpunkt j, welcher dem Zentrum am néchsten liegt, durchgefiihrt.
Weiterhin wurden exponentiell ansteigende Zeitschritte gewdhlt, um die verschiedenen
Stadien des ZerfliefSens deutlich zu machen. Es ist zu erkennen, dass der Delta-Peak (Abb.
5.1a) zunédchst schnell abklingt und anschlieffend in direkter Umgebung des Startpunktes
stets einige grofiere Peaks entstehen, wihrend auch in grofierem Abstand die Aufenthalt-
wahrscheinlichkeit ansteigt und zahlreiche kleinere Peaks anndhernd ringférmig auftreten
(Abb. 5.1b bis 5.1g). In den Grafiken sind alle |®|* < 10~ nicht dargestellt, da diese keinen
wesentlichen Beitrag liefern. Das rosafarbene Gebiet kann demnach als Ausdehnungsge-
biet betrachtet werden. Dieses wéchst soweit an, bis es bei tg,,,4 = 28 schlieSlich den Rand
der Einheitszelle erreicht hat. Aufgrund der periodischen Randbedingungen stromt das
Wellenpaket beim Uberschreiten des Randes auf der gegeniiberliegenden Seite wieder in
das Gitter ein (Abb. 5.1g). Betrachtet man der Verlauf weiter, so kommt es anschlieffend zu
Interferenzerscheinungen durch die Uberlagerung der sich immer stirker iiberlappenden
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Abb. 5.1: Zeitliche Entwicklung eines deltaférmigen Wellenpaketes [®(#)|* im 2D-System
(16. Ordnung: 19 513 Gitterpunkte)
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Abb. 5.2: Aufenthaltswahrscheinlichkeit |®(#) |2 am Initialisierungspunkt j
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Wellenfunktion. Am deutlichsten ist dies in Abb. 5.1g an den bereits iiberschrittenen Rén-
dern zu erkennen. Fiir grofiere Zeiten nehmen die Peaks im Zentrum weiter ab, bis sich
schlieflich im gesamten Gebiet eine bis auf die stets vorkommenden Fluktuationen anna-
hernd gleiche Aufenthaltswahrscheinlichkeit einstellt (Abb. 5.1h und 5.1i). Weiterhin fallt
bei Abb. 5.1e, 5.1f und 5.1g auf, dass sich |®(t) ? nicht homogen tiber das Gitter ausbreitet,
sondern dass es eine Vorzugsrichtung gibt. Ein Vergleich mit Abb. 3.3 und 3.6 zeigt, dass
es sich hierbei um diejenige Richtung handelt, welche durch die Gitterpunktdifferenz Fy_,
beschrieben wird. Diese Nachste-Nachbar-Verkniipfung tritt im Gitter am haufigsten auf
und folglich besitzt das Rauzy-Tiling in dieser Richtung die regelméfigste Struktur und
somit auch die besten Ausbreitungsmoglichkeiten.

Der zeitliche Verlauf der Aufenthaltswahrscheinlichkeit am Initialisierungspunkt j (d.h.
|(j| ®(t))[?) ist in Abb. 5.2 dargestellt, wobei j so gewéhlt wurde, dass es dem blau mar-
kierten Gitterpunkt aus Abb. 5.3 entspricht. Es ist ersichtlich, dass die Aufenthaltswahr-
scheinlichkeit insgesamt tiber acht Groflenordnungen, zu manchen Zeiten stdrker und zu
anderen weniger stark schwankt und somit kaum physikalisch relevante Aussagen ableit-
bar sind. Daher glittet man die Kurve durch Integration. Dies ist im ndchsten Abschnitt
ndher erldutert.

5.2 Die zeitliche Autokorrelationsfunktion

Durch das Zerfliefien des Wellenpaketes werden von den umgebenden Gitterpunkten auch
stets Teile zuriickgestreut. Fiir quantitative Aussagen dariiber definiert man die zeitliche
Autokorrelationsfunktion [23, 26]

C(t) = 1/()t\<<1>(o)| o(t))[2dt (5.5)

welche sich fiir das hier untersuchte deltaformige Wellenpaket |®(0)) = |j) zu

C(t) = 1/(: |(j] @())|? ar (5.6)

vereinfacht. C(t) wird auch als Wiederkehrwahrscheinlichkeit bezeichnet und gibt den
zeitlichen Verlauf des Mittelwertes der Aufenthaltswahrscheinlichkeit am Initialisierungs-
punkt j an.

—_

Abb. 5.3: Die vier verschiedenen lokalen Umgebungen des 2D-Systems:
Plll blau, 73112 grfm, PlZZ I‘Ot, P()Q_z gelb
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In Abb. 5.4 ist die Autokorrelationsfunktion fiir vier Initialisierungspunkte j mit den vier
verschiedenen lokalen Umgebungen des 2D-Rauzy-Tilings, welche nochmals in Abb. 5.3
aufgefiihrt sind, dargestellt. Alle vier Kurven weisen den selben qualitativen Verlauf auf:
Aus der Definition folgt C(t — 0) — 1. Fiir t < 1 schwécht sich zunichst nur die Wahr-
scheinlichkeit am Gitterpunkt j ab und verteilt sich auf die ndchsten Nachbarn. Dies ist
nicht von der Beschaffenheit des Gitters abhidngig und somit stets gleich. AnschliefSend
kommt es zur Ausbreitung tiber dem Gitter und zur Riickstreuung, welche durch dieses
verursacht wird. Das Ende dieses physikalisch relevanten Bereiches wird durch den Zeit-
punkt 2 - tgr,,s markiert. Ab tr,,; werden, verursacht durch die periodischen Randbedin-
gungen, entfernte Aufenthaltswahrscheinlichkeiten wieder zum Ausgangspunkt zuriick-
laufen und letztlich bei 2 - tg,,s den Gitterpunkt j erreichen. Der Trend setzt sich jedoch
weiter fort, da diese Anteile sehr gering sind und sich erst fiir Zeiten ¢ Z 1000 eine sicht-
bare Verdnderung im Kurvenverlauf zeigt. Wenn nach hinreichend langer Zeit die Aufent-
haltswahrscheinlichkeit im Zentrum stark abgeklungen ist und sich die Fluktuationen in
der gesamten Struktur angleichen, so stellt sich in der zeitlichen Autokorrelationsfunktion
ein konstanter Sattigungswert ein.

10° — e — T

1071

10_3 -

104 | | | | | L

1072 10t 100 10t 102 108 10*
t

Abb. 5.4: Autokorrelationsfunktion des 2D-Systems (16. Ordnung: 19 513 Gitterpunkte) fiir die vier
verschiedenen lokalen Umgebungen und physikalisch relevanter Bereich (orange)

Betrachtet man den physikalisch relevanten Bereich genauer, so zeigt sich wie bei der Ska-
lierung der Partizipationszahl (vgl. Kapitel 4.3) ein Potenzgesetz, welches das asymptoti-
sche Verhalten eines unendlichen quasiperiodischen Gitters beschreibt [23, 26]:

C(t) ~t° . (5.7)

Ist 6 = 0, so ist C(f) konstant, d.h. die Aufenthaltswahrscheinlichkeit am Gitterpunkt j
muss ebenfalls konstant Eins sein, da diese nicht grofiere Werte annehmen kann. Das Mi-
kroteilchen bleibt demnach an seinem Ort, es gibt keine Diffusion. Bei 0 < § < 1 handelt es
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sich um anomale Diffusion, auf welche in Kapitel 5.3 etwas nidher eingegangen wird. § = 1ist
ein weiterer Spezialfall, welcher bei der eindimensionalen Fibonacci-Kette den ballistischen
Teilchentransport beschreibt, d.h. dass das Wellenpaket sich ohne durch Streuung behin-
dert zu werden (ohne makroskopischen elektrischen Widerstand) ausbreitet. In hheren
Dimensionen muss dies allerdings nicht zwingend der Fall sein. So liefert der ballistische
Transport zwar § = 1, die Umkehrung ist aber nicht zwangsldufig ebenfalls giiltig. Daher
ist bei = 1 dennoch anomaler Transport moglich.

Weiterhin gibt 6 Auskunft tiber die Beschaffenheit des Energiespektrums. So ist bei diskre-
ten Spektren 6 = 0, bei absolut kontinuierlichen Spektren § = 1 und bei singuldr kontinu-
ierlichen Spektren 0 < § < 1 analog zu einer Cantormenge mit Lebesque-Mafs Null.

Ein nichtlinearer Fit im Bereich 4 < t < 60 (in Abb. 5.4 orange markiert) liefert fiir die
vier lokalen Umgebungen folgende Ergebnisse:

6111 = 0,852 (blau) ,
d112 = 0,968 (griin) ,
0120 = 0,985 (rot) ,
do22 = 0,924 (gelb)

Hierbei gibt der Index die Anzahl der jeweiligen Nachste-Nachbar-Verkniipfungen mit den
Gitterpunktdifferenzen Fi, F,_; und F;_; an (vgl. Abb. 5.3 und 3.6). Die rot, griin und gelb
markierten Ausgangspunkte weisen mit wenigen Prozent Abweichung einen Exponenten
nahe Eins auf. Dies deutet darauf hin, dass die Ausbreitung dort demnach nahezu bal-
listisch vollzogen wird. Der blau markierte Gitterpunkt mit nur drei ndchsten Nachbarn
hat hingegen einen Exponenten, der deutlich darunter liegt, d.h. hier tritt anomale Dif-
fusion auf. Dies ist auf die unregelméfiigere Nachste-Nachbar-Umgebung und den damit
verbundenen grofieren Riickstreuungen zurtickzufiihren. Die Werte legen nahe, dass das
Energiespektrum absolut kontinuierlich ist. Ein Vergleich mit Abb. 4.1 bestitigt dies, da
(zumindest im Rahmen der Genauigkeit) keine Liicken im Spektrum sichtbar sind.

5.3 Das mittlere Abstandsquadrat

Ein Maf fiir das Zerflieflen des Wellenpaketes bietet das mittlere Abstandsquadrat [23]

N
w(t) = J ; 7 =77 [l @ (1), (5.8)

wobei 7; der Ortsvektor des j-ten Gitterpunktes ist. Das asymptotische Verhalten unendlich
ausgedehnter Systeme ist wieder durch ein Potenzgesetz

w(t) ~ tP (5.9)

beschreibbar [23]. Dabei entspricht wiederum g = 0 einem statischen Delta-Peak und so-
mit liegt keine Diffusion vor. Wie schon aus der Standard-Quantenmechanik-Vorlesung
bekannt, ist das mittlere Abstandsquadrat eines zerflielenden freien Gauf3-Paketes asymp-
totisch proportional zu t, d.h. dass f = 1 den ballistischen Transport beschreibt. Fiir 0 <
B < 1 liegt anomale Diffusion vor. Als weiterer Spezialfall ergibt sich hieraus fiir = 1
ebenfalls die klassische Diffusion [27] der Brownschen Molekularbewegung (Wiener-Prozess
[28]) mit w?(¢) ~ t. In den Fillen B < 3 bzw. B > 1 breiten sich die Mikroteilchen dem-
zufolge langsamer bzw. schneller aus als im klassischen Fall. Man spricht daher von Sub-
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Abb. 5.5: Mittleres Abstandsquadrat des 2D-Systems (16. Ordnung: 19 513 Gitterpunkte) fiir die vier
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0.01 B
~~
= i
N
0.005 B
ﬁ
~
0 >
Y00 /o) WA S NS S ST FE S S F S S S
10 20 30 40 50 60 70 80 90 100

Abb. 5.6: Ableitung des mittleren Abstandsquadrates des 2D-Systems (16. Ordnung: 19 513 Gitterpunkte) fiir

die vier verschiedenen lokalen Umgebungen und physikalisch relevanter Bereich (orange)
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bzw. Superdiffusion.

Ein Vorteil bei der Betrachtung von w(t) liegt darin, dass ein direkter Zusammenhang zur
Leitfdahigkeit o besteht. Es gilt die Einstein-Formel

o = 2e*Dn(Ey) (5.10)

mit der Zustandsdichte n(Er) an der Fermi-Energie und dem Diffusionskoeffizienten D =
w?(7)
T

mit der charakteristischen Stofizeit 7. Somit gilt [29]
o «x2e’n(Ep)T?1 . (5.11)

Fiir die gleichen Startpunkte j des vorherigen Abschnittes ist das Verhalten des mittleren
Abstandsquadrates in Abb. 5.5 dargestellt. Wie bei der zeitlichen Autokorrelationsfunkti-
on sind wieder drei Abschnitte erkennbar: Fiir das deltaférmige Wellenpaket |®(0) ist
typischerweise w(0) = 0. Anschlieend steigt die Kurve anndhernd linear an bis zum Zeit-
punkt, bei dem die Grenzen des Systems erreicht werden und w(t) daher nicht weiter an-
wachsen kann. Des Weiteren sind bei t = 2. .. 3 leichte Knicke in den Kurven zu erkennen,
die offensichtlich nach Abklingen des Initialisierungspeaks den Beginn des physikalisch
relevanten Bereiches markieren. Da man diesen Zeitpunkt allerdings in dieser Darstellung
nicht eindeutig bestimmen kann und aufgrund der Tatsache, dass die Kurve in etwa line-
ar verlduft, bietet es sich an zunéichst die Ableitung w’(t), siche Abb. 5.6, zu betrachten.
Hier ist sehr deutlich ein ndherungsweise konstantes Plateau (orangefarbener Bereich) zu
erkennen, dessen Grenzen den interessanten Bereich markieren. Fiir groere t fallt w'(t)
von der ersten Beriihrung des Randes bis zur volligen Ausfiillung des Gitters bis auf Null
ab und osziliert anschlieBend wie auch w(t) selbst.

Ein nichtlinearer Fit im Bereich 4 < t < 30 (in Abb. 5.5 orange markiert) liefert fiir die vier
lokalen Umgebungen folgende Ergebnisse:

B111 = 0,925 (blau) ,
B112 = 0933 (griin) ,
Bi22 = 0,932 (rot) ,
Bozz = 0,930 (gelb)

Auch hier zeigen sich wieder Werte nahe Eins, d.h. die Diffusion vollzieht sich nahezu
ballistisch. Ebenfalls weist der Gitterpunkt mit nur drei ndchsten Nachbarn einen leicht
darunter liegenden Exponenten 8, verursacht durch die etwas unregelméfsigere Néachste-
Nachbar-Umgebung, auf.

5.4 Der dreidimensionale Fall

Analog zum zweidimensionalen Rauzy-Tiling sind hier die Ergebnisse fiir die zeitliche Au-
tokorrelationsfunktion (Abb. 5.10) und das mittlere Abstandsquadrat (Abb. 5.8) des drei-
dimensionalen Rauzy-Tilings in 15. Ordnung mit 20 569 Gitterpunkten dargelegt. Hierbei
wurde wieder zwischen den lokalen Umgebungen, welche nochmals in Abb. 5.7 darge-
stellt sind, unterschieden. Die Ergebnisse sind allerdings mit geringerer Genauigkeit zu
betrachten, da nur zirka 27 Gitterpunkte pro Raumrichtung vorhanden sind, wéahrend es in
zwei Dimensionen etwa 139 Gitterpunkte sind. Bei der in Abb. 5.10 dargestellten zeitlichen
Autokorrelationsfunktion fallt dies nicht so stark ins Gewicht, da der Einfluss der periodi-
schen Randbedingungen durch die geringen Amplituden der vom Initialisierungspunkt
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Abb. 5.7: Die fiinf verschiedenen lokalen Umgebungen
des 3D-Systems: Pq111 blau, Pq112 griin,
P1122 rot, P12os cyan, Ppooz gelb

weit entfernten Gebiete nur sehr schwach ist. Die Ableitung des mittleren Abstandsqua-
drates in Abb. 5.9 hingegen zeigt, dass das Plateau, welches den physikalisch relevanten
Bereich angibt, nur schwach ausgebildet ist und man keine klaren Grenzen erkennen kann.
Das Gebiet, iiber dem der nichtlineare Fit nach Gl. (5.7) und Gl. (5.9) durchgefiihrt wurde,
ist mit 1 < t < 2 entsprechend klein. Fiir die Exponenten ergibt sich

01111 = 0,991 Bi111 = 1,031 (blau) ,
o112 = 0,997 Bi112 = 0,946 (grin) ,
011220 = 0,996 B1122 = 0913 (rot) ,
01220 = 0,999 B1222 = 0,959 (cyan) ,
do222 = 0,993 Boazz = 0,928 (gelb)

Da 1111 > 1 berechnet wurde, ist fiir die Exponenten des mittleren Abstandsquadrates ein
Fehler von mindestens 0,04 anzunehmen. Die Werte weisen auf ballistischen Transport hin,
sind jedoch nicht eindeutig. Die besseren Ergebnisse liefert hier die Autokorrelationsfunk-
tion. Samtliche Werte liegen bei weniger als 1% Abweichung von Eins, sodass daher ein
ballistischer Transport wahrscheinlich ist. Wie auch im zweidimensionalen Rauzy-Tiling
wird ebenfalls ein absolut kontinuierliches Spektrum (vgl. Abb. 4.2) bestitigt. Der Wert
des blau markierten Gitterpunktes mit nur vier nachsten Nachbarn liegt wieder etwas dar-
unter, allerdings ist die Abweichung hier wesentlich geringer. Somit bestétigt sich die auch
in Kapitel 4.3 angedeutete Tatsache, dass der Skalenexponent mit grofier werdender Di-
mension grofler und das Diffusionsverhalten zunehmend ballistisch wird [24].
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Mittleres Abstandsquadrat des 3D-Systems (15. Ordnung: 20 569 Gitterpunkte) fiir die fiinf
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6 Zusammenfassung und Ausblick

In dieser Arbeit wurden das zwei- und dreidimensionale Rauzy-Tiling, bei denen es sich
um quasiperiodische Gitter handelt, untersucht. Die quantenmechanische Beschreibung
mikroskopischer Teilchen geschah mit dem Modell starker Bindung ohne Wechselwirkung
mit dem Gitter. Die Ubergangsmatrixelemente wurden fiir nichste Nachbarn als konstant
angenommen und Null gesetzt fiir nicht benachbarte Gitterpunkte.

Als erstes wurde die Berechnung der Gitterpunktkoordinaten durch das Projektionsver-
fahren erldutert, indem der eindimensionale Fall, die Fibonacci-Projektion, mathematisiert
und anschliefsend auf beliebige Dimensionen verallgemeinert wurde. Durch die natiirliche
Nummerierung mittels eines erzeugenden Vektors erhielt man eine einfache Vorschrift fiir
das Aufstellen der Verbindungsmatrix, welche die Néchste-Nachbar-Verkniipfungen be-
schreibt und bedingt durch die Definition des Hamilton-Operators mit dem Modell starker
Bindung die System-Geometrie mit den quantenmechanischen Eigenschaften verkniipft.
Die Darstellungen des zwei- und dreidimensionalen Gitters veranschaulichten die Parket-
tierung mit den verschiedenen Néachste-Nachbar-Verkniipfungen und den lokalen Umge-
bungen.

Als ndchstes wurde die stationdre Losung des Schrodinger-Gleichung, welche durch be-
reits vorhandene Fortran-Routinen berechnet wurde, dargestellt. Die Zustandsdichte wies
eine zackige Struktur auf, die auf die Quasiperiodizitdt zurtickzufiihren ist. Das zwei-
dimensionale Rauzy-Tiling zeigte hierbei in Umgebung der Bandmitte grofie Peaks und
einen abrupten Abbruch an der Bandkante. Das dreidimensionale Rauzy-Tiling zeigte einen
dhnlichen Verlauf wie das eines periodischen Gitters. Die Partizipationsrate lieferte eine
einfache Moglichkeit, die Ausgedehntheit der Eigenzustdnde, welche von ndherungsweise
periodischen bis zu auf kleinere Gebiete lokalisierte Funktionen variieren, zu charakteri-
sieren. Als weiteres Maf3 fiir die Ausgedehntheit wurde der Skalenexponent berechnet,
welcher fiir das 2D-System einen kleineren Wert lieferte als fiir das 3D-System und somit
bestétigt wurde, dass mit abnehmender Dimension die Zustdande starker lokalisiert sind.

Im letzten Teil wurden dynamische Eigenschaften anhand des Zeitverhaltens eines del-
taformigen Wellenpaketes untersucht. Es wurden die zeitliche Autokorrelationsfunktion
und das mittlere Abstandsquadrat berechnet und analog zur Partizipationszahl mit einem
Potenzgesetz beschrieben. Die Skalenexponenten zeigten hierbei, dass das Energiespek-
trum nah am absolut kontinuierlichen Fall liegt und die Ausbreitung von Mikroteilchen
nahezu ballistisch vollzogen wird. Hierbei wurde zwischen den lokalen Umgebungen als
Initialisierungspunkt des Wellenpaketes unterschieden und es war erkennbar, dass derje-
nige Gitterpunkt, welcher die wenigsten Verkniipfungen aufweist, eine verzogerte Aus-
breitung des Wellenpaketes zeigt.

Viele der Resultate, wie die Ahnlichkeit der Zustandsdichte mit der des periodischen Git-
ters, das nahezu absolut kontinuierliche Energiespektrum und der anndhernd ballistische
Transport zeigen, dass es sich bei den Rauzy-Tilings, vor allem in drei Dimensionen, um
schwach quasiperiodische Gitter handelt, d.h. das diese, beispielsweise im Gegensatz zum
Penrose-Tiling, nah am periodischen Fall liegen.
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Ein weiterer Ansatz besteht zum Beispiel in der energieabhingigen Berechnung der Ska-
lenexponenten. Es ist zu vermuten, dass diese in der Bandmitte geringer sind als an den
Bandkanten. Die hier durchgefiihrten Berechnungen konnten dazu allerdings keine Er-
gebnisse liefern. Die Beschrankung der Systemgrofie liefert bei den Berechnungen stets
eine Limitierung der Genauigkeit. Auch bei der Dynamik im dreidimensionalen Rauzy-
Tiling war der interessante Bereich sehr klein. Die Berechnung grofierer Systeme ist daher
wiinschenswert. Die Routine Jadamilu wurde hierbei nicht ausgereizt und bietet somit
noch Potential nach oben.



Anhang

Beweis A

Behauptung: F_; = (—1)F,_, fiir die Fibonacci-Folge aus Gl. (3.2).
Induktionsanfang: Die Behauptung ist erfiillt fiir k = 2 und k = 3:
F=1
F=1
Fi1=F-FK=1-1=0
Fr,=F—-F.1=1-0=1=F
F3=F1—-F,,=0-1=-1=-F

Induktionsbeweis: Es gelte F_(;_1) = (—1)k_1F(k_1)_2 und F_; = (—1)*F._,.

! _
Fory=Fa1=Fpn—F=F 41)—Fp=(-1)""Fy_1» — (-1)*F
= (D" (Fs + Fez) = (=1 Fyqy 2

=F = (-1)"FR_, Vk O

Beweis B

Behauptung: AkL‘ = ’A,U‘ tiir die Fibonacci-Folge Gl. (3.2).
Beweis:
012 >
AL e
2

. A 2 2
A =P P A (0 R + ((R) = R

= |A¢ = |l vk 0
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