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Abriss

Quasikristalle bilden eine erst in der 1980er Jahren entdeckte, noch unzureichend ver-
standene Art von Materialien. Eine mathematische Beschreibung quasikristalliner Struk-
turen bietet das Projektionsverfahren mit Hilfe dessen das verallgemeinerte Rauzy-Tiling
beschrieben wird. Es wird die normierten Zustandsdichte und die Partizipationsrate als
stationäre Eigenschaft untersucht. Weiterhin wird die Dynamik von Mikroteilchen, welche
sich durch das Gitter bewegen, anhand der zeitlichen Autokorrelationsfunktion und des
mittleren Abstandsquadraten dargestellt. Charakteristische Werte für die Leitfähigkeit des
Quasikristalls werden berechnet.
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1 Einleitung

Kristalle sind in regelmäßigen und periodischen Strukturen aufgebaut. Bei Verschiebung
des gesamten Kristalls um das Vielfache eines beliebigen Gittervektors geht das Gitter wie-
der in sich selbst über. Roger Penrose und Robert Ammann zeigten 1973, dass es ebenfalls
möglich ist, eine Ebene lückenlos mit Figuren so zu bedecken, dass das entstehende Mus-
ter nicht periodisch, bei gegebenen Anfangsfiguren die Anordnung allerdings für die kom-
plette Ebene vorherbestimmt ist [1]. Solche aperiodischen Parkettierungen zeigen oftmals
noch eine Rotationssymmetrie. Eine Translationssymmetrie hingegen fehlt völlig. Deshalb
bezeichnet man solche Strukturen auch als quasiperiodisch. In Abb. 1.1 sind einige Beispie-
le hierfür mit verschiedenen kristallographisch verbotenen Rotationssymmetrien (acht-,
zehn- und zwölfzählig) dargestellt.

(a) Penrose-Parkett [1, 2]
aus Rhomben mit
zehnzähliger
Symmetrie

(b) Penrose-Parkett aus
Drachenvierecken mit
zehnzähliger
Symmetrie

(c) Ammann-Beenker-
Parkett [3] mit
achtzähliger
Symmetrie

(d) Socolar-Parkett [4] mit
zwölfzähliger
Symmetrie

Abb. 1.1: Quasiperiodische Parkettierungen [5]

Abb. 1.2: AlMn-Beu-
gungsbild [6]

Abb. 1.3: Quasikristalline
AlCu-
Legierung [7]

Dan Shechtman untersuchte 1982 schnell
abgekühlte Aluminiummanganat-Kristalle
mit 10% bis 14% Mangananteil, die unter
bestimmten äußeren Bedingungen bei Beu-
gungsexperimenten auf eine ikosaedrische
und somit nicht translationssymmetrische
Symmetrie hinwiesen [6]. Das Beugungs-
bild der fünfzähligen Achse ist in Abb. 1.2
und eine mikroskopische Aufnahme eines
ähnlichen Materials in Abb. 1.3 dargestellt.
Dies ist mit der herkömmlichen Kristallo-
grafie jedoch nicht erklärbar. Man hatte so-
mit den ersten experimentellen Beweis für quasiperiodische Strukturen in vermeindlichen
Kristallen geliefert und nannte diese daher Quasikristalle. Seitdem hat sich eine Vielzahl
von Gruppen weltweit zum Ziel gesetzt, solche Strukturen gezielt herzustellen und sowohl
die Bedingungen, unter denen Quasikristalle entstehen, als auch die mechanischen, elek-
tronischen, magnetischen und thermodynamischen Eigenschaften weiter zu untersuchen.
Abb. 1.4 zeigt hierzu einen im Durchmesser ca. 50 µm großen mittels doppelter Silizium-
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(a) (b) (c) (d)

Abb. 1.4: Quasikristalline Probe mit ikosaedrischer Symmetrie (a) und Beugungsbilder entlang der zwei- ,
drei- und fünfzähligen Achse (b-d) [8]

(a) (b) (c) (d)

Abb. 1.5: Quasiferromagnetismus [9]: experimentelle Anordnung von Ferromagneten auf einem
Penrose-Parkett (a) und Simulation der magnetischen Dipolwechselwirkung ohne
Austauschwechselwirkung (b), mit starker Austauschwechselwirkung (c) und mit geringer
Austauschwechselwirkung, bei der sich lokale Magnetwirbel ausbilden (d)

inversion hergestellten dreidimensionalen photonischen Quasikristall mit ikosaedrischer
Symmetrie, welcher entlang der Symmetrieachsen die dargestellten Beugungsbilder im Be-
reich des sichtbaren Lichtes liefert [8]. Quasikristalle eröffnen neue Möglichkeiten sowohl
für das Studium der Materie und deren Eigenschaften als auch für potentielle technische
Anwendungen. Als Beispiel sei hier der Magnetismus erwähnt, über den es kontroverse
Diskussionen gibt. So könnten auf Zink und Magnesium basierende Quasikristalle, wel-
che Seltene Erden mit starken magnetischen Momenten beinhalten, aufgrund der häufigen
Spin-Frustration ferromagnetisches Verhalten zeigen. In Abb. 1.5 sind ein einfacher experi-
menteller Aufbau mit Magneten auf dem Penrose-Tiling sowie verschiedene Simulationen
der Magnetisierung auf diesem dargestellt [10, 9]. Gelingt es quasiferromagnetische Ma-
terialien stabil herzustellen, so könnten diese Anwendung im Bereich der Spintronik, wie
zum Beispiel für Spinkanäle und Magnetleseköpfe, finden.

Im Rahmen dieser Arbeit wird eine spezielle quasiperiodische Struktur, das Rauzy-Tiling,
vorgestellt. Hierzu folgt im Kapitel 2 eine kurze Zusammenfassung der quantenmechani-
schen Grundlagen, die für die Beschreibung mikroskopischer Systeme nötig sind. Im Kapi-
tel 3 wird das Rauzy-Tiling mathematisch eingeführt und die Berechnung der Gitterpunkt-
koordinaten erläutert sowie die zwei- und dreidimensionale Struktur veranschaulicht. Die
stationären Eigenschaften, wie zum Beispiel Darstellungen der Eigensysteme und die Be-
rechnung der Zustandsdichte und der Partizipationsrate, sind im 4. Kapitel beschrieben.
Im Kapitel 5 werden dynamische Prozesse anhand von sich zeitlich ausbreitenden Wellen-
paketen dargestellt und charakteristische Größen aus der zeitlichen Autokorrelationsfunk-
tion und dem mittleren Abstandsquadrat abgeleitet. Den Abschluss der Arbeit bildet eine
Zusammenfassung der Ergebnisse in Kapitel 6.
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2 Quantenmechanische Grundlagen

Ausgehend von der klassischen Mechanik gelangt man bei der Betrachtung mikroskopi-
scher Teilchen zu tiefen Widersprüchen zwischen Theorie und Experiment. Einen Ausweg
bietet die Quantentheorie, welche nicht mehr auf determinierten Teilchenbahnen, sondern
auf Wellenverhalten und Aufenthaltswahrscheinlichkeiten beruht. Hierbei wird jedes mi-
kroskopische Teilchen oder System durch eine Wellenfunktion Ψ(~r, t) beschrieben, wobei
diese als Wahrscheinlichkeitsamplitude und |Ψ(~r, t)|2 als Wahrscheinlichkeitsdichte für
das Antreffen des Teilchens am Ort~r zum Zeitpunkt t interpretiert wird.

Die Quantentheorie beruht auf folgenden drei fundamentalen Prinzipien:

1. Superpositionsprinzip: Ein System, welches sich in den Zuständen {Ψi} befinden kann,
kann sich auch in einer Linearkombination daraus befinden.

2. Äquivalenzprinzip: Klassische Variablen wie Ort, Impuls und Energie werden durch
ihre entsprechenden Operatoren ersetzt.

3. Unbestimmtheitsprinzip: Jede Wirkung, wie das Produkt aus Ort und Impuls oder
Energie und Zeit, ist stets mit einer Unschärfe in der Größenordnung von h̄ gege-
ben. Eine exakte gleichzeitige Messung beider Größen ist nicht möglich. Somit hat
eine kleine Unschärfe des einen zwangsläufig eine große Unschärfe des anderen zur
Folge.

Im Potential V(~r) genügt die Wellenfunktion eines Teilchens der Schrödinger-Gleichung

ih̄
∂Ψ
∂t

= Ĥ Ψ (2.1)

mit dem Hamilton-Operator

Ĥ = − h̄2

2m
∆ + V(~r) . (2.2)

Mit dem Ansatz Ψ(~r, t) = ψ(~r) · T(t) lassen sich die Abhängigkeiten separieren. Es folgt
für die Zeitkomponente

T(t) = e−
i
h̄ Et (2.3)

und für die Ortskomponente die stationäre Schrödinger-Gleichung

Ĥ ψ = Eψ . (2.4)

Bei letzterem handelt es sich, der mathematischen Struktur entsprechend, um ein Eigen-
wertproblem, dessen Lösungen die Energie-Eigenwerte E und die zugehörigen Eigenfunk-
tionen bzw. Eigenzustände ψ liefern.

Für den Fall, dass Ĥ endlichdimensional ist, lässt sich die Lösung der Schrödinger-Glei-
chung mit dem Zeitentwicklungsoperator Û (t) auch als

Ψ(t) = Û (t)ψ = e−
i
h̄ Ĥ tψ (2.5)

schreiben. Die Ψ und ψ sind hier Eigenvektoren.
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2.1 Nützliche Eigenschaften

Bei tiefgehender Betrachtung des Hamilton-Operators und der Wellenfunktion zeigen sich
einige wichtige Eigenschaften, welche im Kapitel 5 für die Beschreibung eines Wellenpa-
ketes benötigt werden.

Der Hamilton-Operator Ĥ ist ein linearer Operator im Hilbertraum H. Daher bilden die
Eigenzustände {|ψn〉} eine Basis in H. Weiterhin bildet {|ψn〉} ein Orthonormalsystem,
d.h. es gilt

〈ψm| ψn〉 = δmn . (2.6)

Aufgrund der Tatsache, dass der Hilbertraum H vollständig ist, kann jedes beliebige Wel-
lenpaket |φ〉 ∈ H nach Eigenfunktionen entwickelt werden, wobei das Betragsquadrat des
Entwicklungskoeffizienten cn die Wahrscheinlichkeit angibt, mit der sich das durch das
Wellenpaket beschriebene Teilchen im Eigenzustand |ψn〉 befindet:

|φ〉 =
dimH
∑
n=1

cn |ψn〉 mit cn = 〈ψn| φ〉 . (2.7)

Aus der Umkehrung folgt zwangsläufig, dass sich jede Funktion aus H nach einem belie-
bigen Orthonormalsystem entwickeln lässt.

2.2 Diskretisierung

Ist anstatt eines kontinuierlichen Systems ein System aus Gitterpunkte gegeben oder will
man kontinuierliche Systeme numerisch berechnen, so ist es vorteilhaft, Ĥ zu diskretisie-
ren und die Eigenwertgleichung in Matrixform zu lösen. Dies ist im Folgenden am Beispiel
eines eindimensionalen äquidistanten Gitters erläutert.

Gegeben seien die Gitterpositionen x = i · a mit dem Gitterabstand a und i ∈ Z. Der
Anteil des Potentials lässt sich vereinfacht schreiben als V (~r) = Vi. Für die Behandlung
des Laplace-Operators geht man vom Differential- zum Differenzenquotient über und be-
handelt diesen symmetrisch [11, 12].
Für eine beliebige Funktion f (x) gilt

d f
dx
→ ∆ f

∆x
=

1
a

[
f
(

x +
a
2

)
− f

(
x− a

2

)]
, (2.8)

d2 f
dx2 →

∆ ∆ f
∆x

∆x
=

1
a

[
∆ f
∆x

(
x +

a
2

)
− ∆ f

∆x

(
x− a

2

)]
=

1
a2 [ f (x− a)− 2 f (x) + f (x + a)] . (2.9)

Dabei beträgt die Abweichung vom kontinuierlichen Laplace-Operator [13]

∆kontinuierlich − ∆diskret = O(a2) (Konsistenzordnung 2) . (2.10)

Insbesondere ist die Beschreibung des Kontinuums als Grenzwert a→ 0 enthalten.

Mit f (x) = ψ|i , t =
h̄2

2ma2 und εi = Vi + 2t lässt sich Gl. (2.4) schreiben als

Ĥ ψ
∣∣∣
i
= −t

(
ψ|i−1 + ψ|i+1

)
+ εi ψ|i = E ψ|i (2.11)
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bzw. in Bra-Ket-Schreibweise〈
i
∣∣ Ĥ ∣∣ψ〉 = −t

(
〈i− 1| ψ〉+ 〈i + 1| ψ〉

)
+ εi 〈i| ψ〉 = E 〈i| ψ〉 (2.12)

mit einer beliebigen Basis {|i〉}. Die Entwicklung des Eigenzustandes |ψ〉 nach dieser Basis

〈
i
∣∣ Ĥ ∣∣ψ〉 (2.7)

= ∑
j

〈
i
∣∣ Ĥ ∣∣j〉 〈j| ψ〉 = ∑

j
Hij 〈j| ψ〉 (2.13)

liefert die Matrixelemente

Hij =

{
εi ∀j = i
t ∀j = i± 1

. (2.14)

Für beliebige Gitter lässt sich der Hamilton-Operator allgemein wie folgt ausdrücken:

Ĥ = ∑
i
|i〉 εi 〈i|+ ∑

i 6=j
|i〉 tij 〈j| . (2.15)

Hierbei ist {|i〉} die Orthonormalbasis der Wannier-Zustände [14, 15]. Diese sind die Orts-
Fouriertransformierten der Bloch-Zustände und beschreiben die an den Gitterpunkten i
stark lokalisierten Orbitale. Die Übergangsmatrixelemente tij sind Energien, welche die
Übergänge vom Zustand |i〉 zum Zustand |j〉 beschreiben. Die εi enthalten die Potentiale
und charakterisieren somit die Wechselwirkung der Mikroteilchen mit dem Gitter.

Die Beschreibung der Rauzy-Tilings geschieht im weiteren Verlauf mit dem Modell star-
ker Bindung [14, 15]. Man nimmt an, dass die Übergangsenergien zwischen zwei Gitter-
punkten, welche nächste Nachbarn sind, viel größer sind als die aller anderen und letztere
somit vernachlässigt werden können. Des Weiteren seien nur Teilchen betrachtet, die nicht
mit dem Gitter wechselwirken. Es ergibt sich demnach für dieses Modell

εi = 0 ∀i ,

tij =

{
t : nächste Nachbarn
0 : sonst

.
(2.16)
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3 Die Struktur der Rauzy-Tilings

In diesem Kapitel soll die Herleitung eines Projektionsverfahrens zur Berechnung der Git-
terpunktkoordinaten der Rauzy-Tilings, einer speziellen aperiodischen Struktur, erfolgen.
Dem liegt die in Abb. 3.1 dargestellte Fibonacci-Projektion, die im ersten Punkt erklärt ist
und durch die spezielle Beschreibung anschließend auf höhere Dimensionen verallgemei-
nert werden kann, zugrunde. Die mathematischen Grundlagen wurden hierbei von Vidal
und Mosseri übernommen [16].

3.1 Die Fibonacci-Kette als eindimensionaler Fall
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Abb. 3.1: Fibonacci-Projektion (Projektionswinkel tan α = 1+
√

5
2 )

Bei der in Abb. 3.1 dargestellten Fibonacci-Projektion wird ein zweidimensionales qua-
dratisches Gitter um den Winkel α = arctan τ gedreht und anschließend ein zur x-Achse
parallel verlaufender Streifen (orangfarbener Ausschnitt1) auf diese projiziert. Hierbei ist
τ = 1+

√
5

2 der Grenzwert der Fibonacci-Folge, welche in Gl. (3.2) bei der exakten mathe-
matischen Erläuterung angeführt ist. Im Gegensatz zu einem rationalen Verhältnis τ, bei
dem die Projektion wieder periodisch ist, entsteht bei einem irrationalen τ ein quasiperi-
odisches Gitter. Die so entstandene Projektion ist unterhalb des Gitters dargestellt. Dabei
existieren zwei Gitterabstände: Die größeren sind durch rote Rechtecke (A) und die klei-
neren durch blaue Rechtecke (B) symbolisiert. Diese sog. Fibonacci-Kette erhält man eben-
falls, wenn man (A) und (B) analog der Definition der Fibonacci-Folge aneinanderreiht:
Im ersten Schritt sei (A) gegeben, im zweiten (B) und man erhält (AB). In jedem weite-
ren Schritt hängt man das Resultat des vorangegangenen Schrittes an. Der dritte Schritt
liefert demnach (AB) + (A) = (ABA), der vierte (ABA) + (AB) = (ABAAB), der fünfte
(ABAAB) + (ABA) = (ABAABABA) etc. In Abb. 3.1 ist der siebente Schritt dargestellt.

1 Ein Ausschnitt ist notwendig, da man sonst eine dichte Menge an Punkten erhält. Für obigen Streifen
wurde |y| ≤ 1 gewählt.
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Zur besseren mathematischen Beschreibung wird nach dem allgemeinen Projektions-Prin-
zip [17] vorgegangen: Gegeben sei ein kubisches Gitter im D-dimensionalen Raum, wel-
cher durch zwei senkrecht aufeinander stehende Unterräume, dem parallelen oder physi-
kalischen d-dimensionalen Raum ~E‖ und dem senkrechten (D − d)-dimensionalen Raum
~E⊥, aufgespannt wird. Ein Ausschnitt des Gitters wird dann parallel zum senkrechten
Raum ~E⊥ auf den physikalischen Raum ~E‖ projiziert. Des Weiteren sind zwei (in den Ein-
trägen monoton steigende) Folgen von Basen

{
~A‖ik

}
und

{
~A⊥i

k

}
gegeben (i indiziert die

Basisvektoren, k die Folgeglieder), welche die beiden Unterräume ~E‖ und ~E⊥ aufspannen.
Dabei seien die Folgen so definiert, dass im Grenzfall k → ∞ die Einheitszelle unendlich
groß wird und die Anstiege der Basisvektoren des senkrechten Raumes gegen irrationale
Zahlen streben, sodass bei der Projektion ein nichtperiodisches Gitter entsteht.
Bei der numerischen Berechnung ist man stets auf endliche k beschränkt. Die durch die
Basis des physikalischen Raumes aufgespannte Einheitszelle ist somit endlich und der ge-
samte physikalische Raum wird durch Verschiebung dieser parallel zu ~E‖ parkettiert. Mit
wachsendem k wird die Einheitszelle jedoch immer größer, sodass der Grenzfall immer
besser beschrieben wird. Man spricht von der Näherung k-ter Ordnung.
Bei den Rauzy-Tilings handelt es sich um Projektionen von Dimension D auf Dimension
d = (D− 1), d.h. der senkrechte Raum ist eindimensional. Abb. 3.2 zeigt dies am Beispiel
des eindimensionalen physikalischen Raumes und ist im Folgenden genauer erläutert.

E4
||

A4
||

⊥E4

⊥A4

e1

e2

g4

u

0

1

2

3

5

4

6

7

Abb. 3.2: Projektionsschema und Nummerierung bei 4. Ordnung

Mit der kanonischen Basis B2 = {~e1,~e2} sei ein quadratisches Gitter gegeben. Der Vektor
des senkrechten Raumes ist in der Basis B2 definiert als

~A⊥k = (Fk, Fk−1) . (3.1)

Die Einträge sind beschrieben durch die Fibonacci-Folge

Fk+1 = Fk + Fk−1 mit F0 = F1 = 1 , (3.2)
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die auch mittels Transfermatrix M bestimmt ist:(
Fk+1
Fk

)
= M

(
Fk

Fk−1

)
mit M =

(
1 1
1 0

)
. (3.3)

Die Eigenwertgleichung von M folgt sofort aus den Beziehungen(
Fk+1
Fk

)
(3.3)
= M2

(
Fk−1
Fk−2

)
(3.4)(

Fk+1
Fk

)
(3.2)
=

(
Fk

Fk−1

)
+

(
Fk−1
Fk−2

)
(3.3)
= M

(
Fk−1
Fk−2

)
+

(
Fk−1
Fk−2

)
(3.5)

und lautet

M2 = M + 1 . (3.6)

Im Grenzfall k → ∞ strebt das Verhältnis Fk+1
Fk

gegen deren positive Lösung, den golde-

nen Schnitt τ = 1+
√

5
2 ≈ 1,6180, sodass man die zuvor beschriebene Projektion in Abb. 3.1

erhält.

Mit einem zu ~A⊥k senkrechten Vektor ~A‖k des physikalischen Raumes definiert man die Ba-

sis des Spurgitters Lk =
{
~A‖k , ~A⊥k

}
. Die Beschreibung der Gitterpunktkoordinaten ist in die-

ser Basis geeignet, da sich die Projektion damit einfach durch Weglassen der senkrechten
Komponente ergibt. Weiterhin ist die Basis des Bandgitters definiert als Sk =

{
~A‖k ,~u

}
mit

einem Vektor ~u = (1, 1). Die Einheitszelle dieser Basis soll der zu projizierende Ausschnitt
sein. Die Basistransformationen seien mit Lk : B2 → Lk und Sk : B2 → Sk bezeichnet.

Führt man die Matrixdarstellung der Fibonacci-Folge in Gl. (3.3) auf deren erste Glieder
F1, F0 und F−1 zurück, d.h.(

Fk
Fk−1

)
= Mk

(
1
0

)
und

(
Fk+1
Fk

)
= Mk

(
1
1

)
, (3.7)

folgt aus der ersten Gleichung die erste Zeile von Mk und aus der zweiten anschließend
die zweite Zeile:

Mk =

(
Fk Fk+1 − Fk

Fk−1 Fk − Fk−1

)
=

(
Fk Fk−1

Fk−1 Fk−2

)
. (3.8)

Hieraus kann ~A⊥k mit der ersten Spalte von Mk identifiziert werden. Da ~A⊥k und ~A‖k senk-

recht aufeinander stehen wählt man ~A‖k als zweite Zeile von M−k:

~A‖k = (F−k−1, F−k−2) . (3.9)

Für die Basistransformationen gilt dann

Lk =
(
~A‖k ~A⊥k

)
=

(
F−k−1 Fk
F−k−2 Fk−1

)
, Sk =

(
~A‖k ~u

)
=

(
F−k−1 1
F−k−2 1

)
. (3.10)

Die Anzahl der Gitterpunkte der Sk-Einheitszelle berechnet sich als

sk = |det Sk| . (3.11)
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Eine einfachere Möglichkeit bietet sich mit

sk =
∣∣∣~A‖k ∣∣∣

∣∣∣∣∣∣~u ·
~A⊥k∣∣∣~A⊥k ∣∣∣

∣∣∣∣∣∣ = ~u · ~A⊥k = Fk+1 , (3.12)

wobei
∣∣∣~A⊥k ∣∣∣ = ∣∣∣~A‖k ∣∣∣ gilt (Beweis B im Anhang).

Zur Berechnung der Gitterpunkte definiert man einen erzeugenden Vektor ~gk so, dass die
Einheitszelle

{
~A‖k ,~gk

}
genau einen Gitterpunkt beinhaltet, d.h. ~gk zeigt auf denjenigen Git-

terpunkt, welcher dem physikalischen Raum ~E‖ am nächsten liegt, aber nicht in ihm, und
~gk die kleinste Norm hat. Da |det M| = 1, kann man ~gk mit der ersten Zeile von M−k iden-
tifizieren2:

~gk = (F−k, F−k−1) . (3.13)

Die Gitterpunktkoordinaten der Sk-Einheitszelle in der Basis B2 ergeben sich somit als Viel-
fache von ~gk, wobei ein Verlassen der Einheitszelle durch den Modulo-Operator korrigiert
wird:

~rj
k = (j ·~gk)mod ~A‖k , j ∈ [0, sk − 1] . (3.14)

Stellt man dies in der Basis Lk dar, so vereinfacht sich die Modulo-Operation derart, dass
man nur den fraktionellen Anteil zu nehmen braucht3:

~rj
k = Frac

[
j · L−1

k ~gk

]
, j ∈ [0, sk − 1] . (3.15)

Die durch ~gk gegebene natürliche Nummerierung ist in Abb. 3.2 für die Näherung vierter
Ordnung der Fibonacci-Folge gezeigt.

3.2 Verallgemeinerung auf höhere Dimensionen

Das Verfahren für die Fibonacci-Projektion lässt sich auf den d-dimensionalen physika-
lischen Raum verallgemeinern, indem man ein in der kanonischen Basis Bd+1 gegebe-
nes (d + 1)-dimensionales hyperkubisches Gitter parallel zum Vektor ~A⊥k des senkrech-
ten Raumes projiziert. Der physikalische Raum wird aufgespannt durch die d Vektoren
~A‖1k . . . ~A‖dk .
Zunächst führt man die verallgemeinerten Fibonaccizahlen

Fk+1 =
d

∑
l=0

Fk−l , F0 = F1 = 1, F−1 = . . . = F1−d = 0 (3.16)

 Fk+1
...

Fk+1−d

 = M

 Fk
...

Fk−d

 mit M =


1 · · · 1 1
1 0 0

. . .
...

0 1 0

 (3.17)

2 Es ist det M = −1. Das zusätzliche Vorzeichen führt lediglich dazu, dass beim Übergang von einer Ord-

nung zur nächsten sowohl ~gk als auch ~A‖k seine Richtung ändert. Die projizierte Einheitszelle bleibt dabei
unverändert.

3 Lk ist Basistransformation und somit stets invertierbar.
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ein und wählt in der kanonischen Basis Bd+1

~A⊥k = (Fk, Fk−1, . . . , Fk−d) . (3.18)

Aus der Beziehung  Fk+1
...

Fk+1−d

 =
d

∑
l=0

 Fk−l
...

Fk−d−l

 (3.19)

folgt mit Gl. (3.17) die Eigenwertgleichung

Md+1 =
d

∑
l=0

Ml . (3.20)

Der Grenzwert lim
k→∞

Fk+1

Fk
= τd ist die einzige positive Lösung dieser Gleichung. Für d = 2

und d = 3 lauten diese

τ2 =
1 + 3

√
19− 3

√
33 + 3

√
19 + 3

√
33

3
≈ 1,8393 , (3.21)

τ3 ≈ 1,9276 . (3.22)

Führt man analog zu Gl. (3.8) die Definition in Matrixschreibweise auf die ersten Glieder
Fd bis F−d zurück, folgen die (d + 1) Beziehungen

 Fk
...

Fk−d

 = Mk

1
0
...

 ,

 Fk+1
...

Fk+1−d

 = Mk


1
1
0
...

 , . . . ,

Fk+d
...

Fk

 = Mk


2d−1

2d−2

...
1
1

 (3.23)

und man erhält den Ausdruck für die Potenzen von M, wobei die erste Zeile aus der ersten
Gleichung folgt und jede weitere Gleichung eine weitere Zeile liefert:

Mk =


Fk ∑d−1

l=0 Fk−1−l ∑d−2
l=0 Fk−1−l · · · Fk−1

Fk−1 ∑d−1
l=0 Fk−2−l ∑d−2

l=0 Fk−2−l · · · Fk−2
...

...
...

...
Fk−d ∑d−1

l=0 Fk−(d+1)−l ∑d−2
l=0 Fk−(d+1)−l · · · Fk−(d+1)

 . (3.24)

Mit den gleichen Begründungen wie im eindimensionalen Fall wählt man nun ~A⊥k als erste
Spalte von Mk, ~A‖1k . . . ~A‖dk als zweite bis (d+ 1)-te Zeile von M−k und~gk als erste Zeile von

M−k. Die Basis des Spurgitters definiert man als Lk =
{
~A‖ik , ~A⊥k

}
und die des Bandgitters

als Sk =
{
~A‖ik ,~u

}
mit dem Vektor ~u = (1, . . . , 1).

Die Sk-Einheitszelle beinhaltet wieder

sk = |det Sk| =
|det Lk|∣∣∣~A⊥k ∣∣∣

∣∣∣∣∣∣~u ·
~A⊥k∣∣∣~A⊥k ∣∣∣

∣∣∣∣∣∣ = lk∣∣∣~A⊥k ∣∣∣2~u · ~A
⊥
k = ~u · ~A⊥k = Fk+1 (3.25)

Gitterpunkte, wobei lk =
∣∣∣~A⊥k ∣∣∣2 gilt.

Die Gitterpunktkoordinaten der Sk-Einheitszelle ergeben sich wie im eindimensionalen
Fall als Vielfache von ~gk, wobei in der Basis Lk das Nicht-Verlassen der Einheitszelle durch
den fraktionellen Anteil beachtet wird:

~rj
k = Frac

[
j · L−1

k ~gk

]
, j ∈ [0, sk − 1] . (3.26)
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3.2.1 Das zweidimensionale Rauzy-Tiling

In Abb. 3.3 sind drei verschiedene Ordnungen des zweidimensionalen Rauzy-Tilings in
der Basis L dargestellt, wobei die Gitterpunkte nach Gl. (3.26) berechnet wurden. Da diese
durch Projektion eines dreidimensionalen kubischen Gitters entstehen, existieren 3 Rich-
tungen, die die Nächste-Nachbar-Verknüpfungen angeben. Die Ebene wird aus zwei dieser
Richtungen aufgespannt. Demnach gibt es (3

2) = 3 verschiedene Parallelogramme, welche
die Ebene vollständig parkettieren.

(a) 7. Ordnung (b) 10. Ordnung (c) 13. Ordnung

Abb. 3.3: Projektion der S-Einheitszelle (Ordnung 7, 10 und 13) in zwei Dimensionen

3.2.2 Das dreidimensionale Rauzy-Tiling

(a) 7. Ordnung (b) 8. Ordnung (c) 9. Ordnung (d) 10. Ordnung

(e) 11. Ordnung (f) 12. Ordnung (g) 13. Ordnung (h) 14. Ordnung

Abb. 3.4: Projektion der S-Einheitszelle (Ordnung 7 bis 14) in drei Dimensionen
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Das dreidimensionale Rauzy-Tiling ist in Abb. 3.4 zur besseren räumlichen Vorstellung
für mehrere verschiedene Ordnungen und ein detailierterer Ausschnitt der 11. Ordnung
in Abb. 3.5 dargestellt. Bei letzterem erkennt man, verursacht durch die Projektion ei-
nes vierdimensionalen hyperkubischen Gitters, die 4 Richtungen der Nächste-Nachbar-
Verknüpfungen. Das Tiling besteht aus (4

2) = 6 verschiedenen Parallelogrammen (in Abb.
3.5 mit a-f bezeichnet), welche die (4

3) = 4 Parallelepipete (gelbe Markierungen), die den
dreidimensionalen Raum vollständig füllen, begrenzen.

1

2 3

4

a

e

c

b f

d

Abb. 3.5: Projektion der S11-Einheitszelle in drei Dimensionen (Ausschnitt) mit den 6 verschiedenen
Parallelogrammen (a-f) und den 4 verschiedenen Parallelepipeten (gelbe Markierungen)

3.3 Die Verbindungsmatrix

Zur Beschreibung der Nächste-Nachbar-Verknüpfungen des Rauzy-Tilings k-ter Ordnung
führt man die Verbindungsmatrix

Kk =
{

Kij
}Fk+1−1

i,j=0 , Kij =

{
1 : nächste Nachbarn
0 : sonst

(3.27)

ein.

Für die genaue Gestalt der Matrix helfen folgende Überlegungen: Die Projektion der ka-
nonischen Einheitsvektoren auf den senkrechten Raum sind in der Basis Bd+1 durch die
Einträge von ~A⊥k gegeben:

 ~e1 · ~A⊥k
...

~ed+1 · ~A⊥k

 =

 Fk
...

Fk−d

 . (3.28)
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Die Projektion des erzeugenden Vektors ~gk auf ~A⊥k ist mit lk =
∣∣∣~A⊥k ∣∣∣2 gegeben durch die

Beziehung∣∣∣det
(
~A‖1k · · · ~A‖dk ~gk

)∣∣∣ = ∣∣∣det M−k
∣∣∣ = 1 (3.29)

=
|det Lk|∣∣∣~A⊥k ∣∣∣

∣∣∣∣∣∣~gk ·
~A⊥k∣∣∣~A⊥k ∣∣∣

∣∣∣∣∣∣ = lk∣∣∣~A⊥k ∣∣∣2~gk · ~A⊥k = ~gk · ~A⊥k . (3.30)

Somit zeigen Fk~gk . . . Fk−d~gk auf die durch die kanonischen Basisvektoren gegebenen nächs-
ten Nachbarn, d.h. zwei Gitterpunkte sind benachbart, wenn die Differenz ihrer Numme-
rierung gleich einem der Einträge von ~A⊥k ist. Dies ist für d = 2 in Abb. 3.6 dargestellt.

+Fk

+Fk-2
+Fk-1

Abb. 3.6: Drei Richtungen im
zweidimensionalen Gitter

Kk ergibt sich demnach mit periodischen Randbedingungen als symmetrische Toeplitzma-
trix:

Kij =
d

∑
l=0

δ|i−j|,Fk−l
. (3.31)

Für das zweidimensionale Rauzy-Tiling lautet die Verbindungsmatrix beispielsweise

K4 =



0 0 1 0 1 0 0 1 0 0 0 0 0
0 0 0 1 0 1 0 0 1 0 0 0 0
1 0 0 0 1 0 1 0 0 1 0 0 0
0 1 0 0 0 1 0 1 0 0 1 0 0
1 0 1 0 0 0 1 0 1 0 0 1 0
0 1 0 1 0 0 0 1 0 1 0 0 1
0 0 1 0 1 0 0 0 1 0 1 0 0
1 0 0 1 0 1 0 0 0 1 0 1 0
0 1 0 0 1 0 1 0 0 0 1 0 1
0 0 1 0 0 1 0 1 0 0 0 1 0
0 0 0 1 0 0 1 0 1 0 0 0 1
0 0 0 0 1 0 0 1 0 1 0 0 0
0 0 0 0 0 1 0 0 1 0 1 0 0



.
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Ein Vergleich von Gl. (3.27) mit Gl. (2.15) und Gl. (2.16) zeigt, dass der Hamilton-Operator
proportional zur Verbindungsmatrix ist:

Ĥ = t ·Kk . (3.32)

Diese Gleichung verknüpft auf einfache Weise die quantenmechanischen Eigenschaften
mit der Geometrie des Systems. Für die in den folgenden Kapiteln aufgeführten Rechnun-
gen genügt es also, die Verbindungsmatrix Kk zu betrachten. Sowohl die Systemabmes-
sungen und somit die Skalierung der Energieeigenwerte als auch die Einheiten stecken im
Vorfaktor t. Des Weiteren setzt man vereinfacht h̄ = 1, um nicht mit allzu kleinen Werten
rechnen zu müssen. Somit erhält man die Energien in Frequenzeinheiten.

3.4 Die Nächste-Nachbar-Umgebungen

Aus Gl. (3.31) und dem darunter angefügten Beispiel lassen sich sofort einige geometrische
Eigenschaften der Rauzy-Tilings in d Dimensionen ableiten.

Es existieren d + 1 verschiedene Nächste-Nachbar-Verknüpfungen, welche durch die Git-
terpunktdifferenzen Fk−l (0 ≤ l ≤ d) gegeben sind. Die Anzahl der Paare von nächsten
Nachbarn, deren Verbindungsrichtung durch die Differenz Fl gegeben ist, beträgt 2(Fk+1−
Fl). Die Anzahl und Position der Einträge einer Zeile gibt die Anzahl und Verknüpfungs-
richtung der nächsten Nachbarn eines Gitterpunktes und somit deren lokale Umgebung
an. Mit Pa0a1...ad sei ein Gitterpunkt bezeichnet, welcher al (0 ≤ l ≤ d) Nächste-Nachbar-
Verknüpfungen mit der Gitterpunktdifferenz Fk−l aufweist. Es ist unbedingt 0 ≤ al ≤ 2, da
jede Richtung höchstens zweimal (vorzeichenbehaftet) auftreten kann. Demzufolge gibt es
maximal 2d+1 lokale Umgebungen. Für d ≥ 2 ist Fk−1 < Fk+1 − Fk < Fk, damit läuft bei zei-
lenweiser Betrachtung die obere Diagonale δ|i−j|,Fk

aus der Verbindungsmatrix, nachdem
der erste Eintrag der unteren Diagonale δ|i−j|,Fk−1

und bevor der erste Eintrag der unteren
Diagonale δ|i−j|,Fk

begonnen hat. Durch die schwachbesetzte Toeplitzstruktur der Verbin-
dungsmatrix, lässt sich diese zeilenweise in Blöcke gleicher lokaler Umgebung einteilen
und es ergeben sich 2(d + 1) + 1 = 2d + 3 Abschnitte:

1: Gitterpunkte der Art P1...1, da in den ersten Zeilen von Kk alle d + 1 oberen Dia-
gonalen und keine untere Diagonale vorhanden ist.

2: Gitterpunkte der Art P1...12 durch das Einsetzen der unteren Diagonale δ|i−j|,Fk−d

3: Gitterpunkte der ArtP1...122 durch das Einsetzen der unteren Diagonale δ|i−j|,Fk−d+1
...

d + 1: Gitterpunkte der Art P12...2 durch das Einsetzen der unteren Diagonale δ|i−j|,Fk−1

d + 2: Gitterpunkte der Art P02...2 durch das Ende der oberen Diagonale δ|i−j|,Fk

d + 3: Gitterpunkte der Art P12...2 durch das Einsetzen der unteren Diagonale δ|i−j|,Fk
...

2d + 1: Gitterpunkte der Art P1...122 durch das Ende der oberen Diagonale δ|i−j|,Fk−d+2

2d + 2: Gitterpunkte der Art P1...12 durch das Ende der oberen Diagonale δ|i−j|,Fk−d+1

2d + 3: Gitterpunkte der Art P1...1 durch das Ende der oberen Diagonale δ|i−j|,Fk−d
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Die letzten d + 1 Blöcke sind aufgrund der Symmetrie K T
k = Kk in Anzahl und Art der

Gitterpunkte identisch mit den ersten d + 1 Blöcken. Somit existieren im d-dimensionalen
Rauzy-Tiling (d ≥ 2) insgesamt genau d + 2 verschiedene durch die Nächste-Nachbar-
Verknüpfungen charakterisierte lokale Umgebungen, welche für zwei und drei Dimensio-
nen in Abb. 3.7 und 3.8 dargestellt sind. Die Anzahl der Gitterpunkte #P je Art beträgt
hierbei

#P1...1 = 2Fk−d ,
#P1...12 = 2(Fk−d+1 − Fk−d) ,

#P1...122 = 2(Fk−d+2 − Fk−d+1) ,
...

#P12...2 = 2(Fk+1 − Fk − Fk−1) ,
#P02...2 = Fk − (Fk+1 − Fk) = Fn−d−1 .

ææ

ææ

ææ
ææ

Abb. 3.7: Die vier verschiedenen lokalen
Umgebungen des 2D-Systems: P111 blau,
P112 grün, P122 rot, P022 gelb

Abb. 3.8: Die fünf verschiedenen lokalen
Umgebungen des 3D-Systems: P1111 blau,
P1112 grün, P1122 rot, P1222 cyan, P0222 gelb
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4 Die stationäre Lösung

Im Vordergrund dieses Kapitels steht die Diskussion der Eigenwerte und Eigenvektoren
als Lösung der stationären Schrödinger-Gleichung.

Hierzu wurden die folgenden bereits vorhandenen Fortran-Routinen verwendet:

1. dsyev aus dem Algebra-Paket Lapack [18] zur Berechnung des gesamten Spektrums:
Die Berechnungen waren im zweidimensionalen Rauzy-Tiling für das gesamte Ei-
gensystem bis zur 16. Ordnung, für die Eigenwerte bis zur 17. Ordnung und im drei-
dimensionalen Rauzy-Tiling für das gesamte Eigensystem bis zur 15. Ordnung und
für die Eigenwerte bis zur 16. Ordnung möglich, da es die Systemressourcen des PCs
nicht zuließen, größere Datenmengen zu verarbeiten.

2. Jadamilu [19] zur näherungsweisen Berechnung der Eigenwerte großer Matrizen in
Umgebung eines gewählten Startwertes:
Zunächst wurden die Berechnungen der größten bereits vorhandenen Systeme wie-
derholt und mit den Ergebnissen von dsyev verglichen. Da sich eine große Überein-
stimmung zeigte, ist davon auszugehen, dass die Routine auch bei größeren Syste-
men korrekte Resultate liefert.

Die Programme liefern die Fk+1 Energien En und zugehörigen Eigenzustände |ψn〉 der Ver-
bindungsmatrix Kk. Im Weiteren ist die Anzahl der Gitterpunkte (= Anzahl der Eigen-
zustände) als Systemgröße N (= Fk+1) bezeichnet.
Als Vorlage für die Berechnung von Zustandsdichte, Partizipationszahl und Skalenexpo-
nent und als Vergleichsmaterial dienten Resultate von Triozon et al [20].

4.1 Die Zustandsdichte

Um die Vielzahl der Eigenenergien in eine übersichtliche Form zu bringen, definiert man
wie bei Einführung des freien Elektronengases in der Festkörperphysik die normierte Zu-
standsdichte

n(E) =
1
N

∆N
∆E

(4.1)

und interpretiert die von Null verschiedenen Gebiete als quasikontinuierliche Energiebän-
der, welche bis zur Fermienergie aufgefüllt sind. Die Zustandsdichte gibt die Anzahl der
Zustände ∆N pro Energieintervall ∆E an. Die Normierung auf die Gesamtzahl N der
Zustände sorgt für eine Vergleichbarkeit zwischen verschiedenen Ordnungen, da mit grö-
ßerer Einheitszelle mehr Gitterpunkte und somit Zustände hinzukommen, diese aber auf-
grund der Tatsache, dass stets das gleiche System beschrieben wird und sowohl die Band-
kanten als auch der qualitative Verlauf erhalten bleiben sollten, immer dichter liegen. Dies
ist in Abb. 4.1 für das zweidimensionale Rauzy-Tiling in der 17. Ordnung mit 35 890 Git-
terpunkten und in Abb. 4.2 für das dreidimensionale Rauzy-Tiling in der 16. Ordnung mit
39 648 Gitterpunkten dargestellt.
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Abb. 4.1: Normierte Zustandsdichte des 2D-Systems (17. Ordnung: 35 890 Gitterpunkte)
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Abb. 4.2: Normierte Zustandsdichte des 3D-Systems (16. Ordnung: 39 648 Gitterpunkte)
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Es zeigt sich, dass sich sowohl beim zweidimensionalen als auch beim dreidimensionalen
System ein annähernd um die Bandmitte E = 0 symmetrisches Energieband ausbildet,
wobei die Bandkante EB beim dreidimensionalen System größer ist:

EB,2D = 4,12 , EB,3D = 6,20 . (4.2)

Beim 2D-System erkennt man im Intervall [−1, 1] zahlreiche größere Peaks und im Ab-
stand E ≈ ±0,08 zur Bandmitte zwei sehr starke Peaks, bei denen die Zustandsdichte auf
den fast dreifachen Wert ansteigt und welche ein Tal einschließen, bei dem n(E) immer-
noch doppelt so groß ist. Zur Bandkante hin sinkt n(E) leicht ab und fällt bei EB abrupt auf
Null. Die Zustandsdichte des 3D-Systems weist keinerlei größere Peaks auf. Auch bricht
diese an der Bandkante nicht ab, sondern sinkt beginnend bei einem Knick bei |E| = 3
über einen größeren Bereich bis auf Null. Vergleicht man diese Resultate mit denen des
periodischen Gitters, so zeigen sich gewisse Gemeinsamkeiten: Die Bandkanten sind im
Vergleich zu EB,2D,periodisch = 4 und EB,3D,periodisch = 6 nur leicht erhöht. Der grobe Verlauf
der Zustandsdichte des dreidimensionalen Rauzy-Tilings ist dem eines periodischen Git-
ters ähnlich. So sind sowohl der wurzelförmige Anstieg an den Bandkanten als auch das
konstante Plateau in der Bandmitte annähernd vorhanden. Im zweidimensionalen Rauzy-
Tiling hingegen weicht der Kurvenverlauf vor allem in der Bandmitte signifikant von der
konstanten Zustandsdichte des periodischen Gitters ab.

Als weitere auffällige Eigenschaft weisen beide Kurven einen sehr zackigen Verlauf auf.
Zwar lässt sich aufgrund der begrenzten Anzahl berechneter Eigenwerte und der im Ver-
gleich dazu recht kleinen Intervalle nicht ausschließen, dass dieser Effekt aus der Berech-
nung resultieren könnte und sich im unendlich großen System die Kurven glätten, je-
doch legen tiefgehendere Untersuchungen nahe, dass es sich hierbei um eine inhärente
Eigenschaft quasiperiodischer Gitter handelt [21]. Simulationen von komplexen Alumini-
ummanganat-Phasen zeigten ebenfalls, dass es sich bei solchen zackigen Zustandsdichten
nicht um Artefakte handelt [22].

4.2 Die Partizipationsrate

Die Eigenzustände |ψn〉, welche im Kapitel 4.4 dargestellt und ausführlicher diskutiert
sind, können sehr unterschiedlich über der Einheitszelle ausgedehnt sein. Zur Charakteri-
sierung der Ausgedehntheit bzw. Lokalisiertheit der Zustände definiert man die Partizipa-
tionszahl [23]

P(En) =
1

N

∑
i=1
|〈i| ψn〉|4

. (4.3)

Zur Verdeutlichung betrachtet man zwei anschauliche Extremfälle:

• Ist der zur Energie En gehörende Zustand |ψn〉 auf einen festen Gitterpunkt j loka-
lisiert, so ist die Projektion von |ψn〉 auf einen beliebigen Gitterpunkt i Null für alle
i ungleich j und Eins für i gleich j. Von der Summe bleibt also nur der Summand
|〈j| ψn〉|4 = 1 übrig und es ergibt sich P(En) = 1.

• Für einen über dem gesamten System gleichmäßig verteilten Zustand |ψn′〉 hingegen
ist die Projektion auf einen beliebigen Gitterpunkt konstant und ergibt sich aufgrund
der Normierung von |ψ|2 zu 〈i| ψn′〉 = 1√

N
für alle i. Die Summation liefert nun

∑N
i=1

1
N2 = 1

N und es ist somit P(En′) = N.
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Die Partizipationszahl gibt folglich an, auf wie viele Gitterpunkte der jeweilige Zustand
effektiv lokalisiert ist.

Zur Vergleichbarkeit verschiedener Ordnungen normiert man wieder auf die Anzahl der
Zustände N. Die somit definierte Partizipationsrate

p(En) =
P(En)

N
(4.4)

gibt dann den Anteil am Gesamtsystem an, auf den der entsprechende Zustand ausge-
dehnt ist. Für das zweidimensionale Rauzy-Tiling 16. Ordnung mit 19 513 Gitterpunkten
ist die Partizipationsrate in Abb. 4.3 dargestellt und für das dreidimensionale Rauzy-Tiling
15. Ordnung mit 20 569 Gitterpunkten in Abb. 4.4.
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Abb. 4.3: Partizipationsrate des 2D-Systems
(16. Ordnung: 19 513 Gitterpunkte)
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Abb. 4.4: Partizipationsrate des 3D-Systems
(15. Ordnung: 20 569 Gitterpunkte)
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Abb. 4.5: Mittlere Partizipationsrate des 2D-Systems
(16. Ordnung: 19 513 Gitterpunkte)
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Abb. 4.6: Mittlere Partizipationsrate des 3D-Systems
(15. Ordnung: 20 569 Gitterpunkte)
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Es ist aus beiden Diagrammen ersichtlich, dass die Partizipationsrate einer starken Streu-
ung von etwa 0,2 bis 0,3 unterliegt. Sowohl im zwei- als auch im dreidimensionalen Sys-
tem sind die Zustände in der Bandmitte, in 2D im Intervall [−1, 1] und in 3D im Intervall
[−3, 3], stärker lokalisiert, d.h. auf weniger Gitterplätzen ausgedehnt, als in der Nähe der
Bandkanten, zu deren Richtung hin immer mehr Zustände mit höherer Partizipationsrate
zu finden sind. Des Weiteren zeigt sich bei betragsmäßig großen Energien ein Plateau bei
p ≈ 0,62, über dem nur vereinzelt Zustände liegen. In der Nähe der Bandmitte zeigen sich
Unterschiede zwischen beiden Systemen. So existiert im 3D-System ebenfalls ein unteres
Plateau bei p ≈ 0,27, unterhalb dessen kaum Zustände zu finden sind. Die Partizipations-
rate ist allerdings in keinem Bereich klein genug, um von stark lokalisierten Zuständen
sprechen zu können. Das 2D-System weist hingegen eine ausgeprägtere Struktur auf. In
direkter Umgebung der Bandmitte und in zwei schmalen Energiebereichen bei E ≈ 0,6
existieren wesentlich stärker lokalisierte Zustände mit Partizipationsraten bis zu p ≈ 0,15.

Der Großteil der Zustände in der Bandmitte und bei der Bandkante häuft sich bei annä-
hernd gleichen Partizipationsraten, sodass es sich anbietet, p über kleinere Energiebereiche
zu mitteln und somit den groben Verlauf zu verdeutlichen. Dies ist für die gleichen Sys-
teme in Abb. 4.5 und Abb. 4.6 abgebildet. Die größeren Partizipationsraten an den Band-
kanten, das Plateau in der Bandmitte beim 3D-System und die ausgeprägtere Struktur des
2D-Systems sind hier ebenfalls deutlich. Weiterhin ist auffällig, dass die Bereiche kleiner
Partizipationsraten des 2D-Systems und die Ränder des unteren Plateaus des 3D-Systems
gerade mit den Peaks (2D) bzw. den Knicken (3D) in der Zustandsdichte zusammenfallen
(vgl. Abb. 4.1 und 4.2).

4.3 Der Skalenexponent

Schaut man sich die Partizipationsraten verschiedener Systemgrößen an, so zeigt sich, dass
diese mit wachsendem N leicht abnehmen. Man betrachtet daher das Skalierungsverhalten
genauer.
Fällt ein Zustand von seinem Maximum aus, abgesehen von stets auftretenden nahezu be-
liebigen Fluktuationen, exponentiell schnell ab, so spricht man von exponentiell lokalisierten
Zuständen. Bei diesen wird die Partizipationszahl mit steigendem N gegen eine Konstante
konvergieren. Für ausgedehnte Zustände hingegen wird P ebenfalls anwachsen. Der Zu-
sammenhang zur makroskopischen elektrischen Leitfähigkeit ist allerdings nicht mit Be-
stimmtheit feststellbar. Vielmehr sind ausgedehnte bzw. exponentiell lokalisierte Zustände
nur ein Indiz dafür, ob der Quasikristall als solcher elektrisch leitend bzw. nichtleitend ist.

Für ausgedehnte Zustände lässt sich der asymptotische Verlauf meist durch ein Potenz-
gesetz

P ∼ Nγ (4.5)

mit dem charakteristischen Skalenexponent γ beschreiben [23]. Hierbei entspräche γ = 0
exponentiell lokalisierten und γ = 1 ausgedehnten Zuständen, welche bei variierter Sys-
temgröße stets auf den gleichen Systemanteil ausgebreitet sind. Für 0 < γ < 1 nimmt die
Partizipationsrate p mit wachsendem N ab und strebt gegen Null. Da allerdings P weiter
wächst, ist der entsprechende Zustand nicht exponentiell lokalisiert. γ ist somit ein geeig-
neteres Maß als die Partizipationszahl P für die Lokalisiertheit der Zustände.

Abb. 4.7 zeigt die Abhängigkeit der mittleren Partizipationszahl (gemittelt über dem ge-
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Abb. 4.7: Mittlere Partizipationszahl des 2D-Systems (blaue Punkte) und des 3D-Systems (rote Quadrate) in
Abhängigkeit der Systemgröße, durchgezogene Linie: nichtlinearer Fit

samten Spektrum) von der Systemgröße in doppeltlogarithmischer Darstellung. Ein nicht-
linearer Fit nach Gl. (4.5) liefert die Werte

γ2D = 0,972 ,
γ3D = 0,975 .

Beide Ergebnisse liegen sehr nahe bei Eins, sodass alle Zustände im Mittel stark ausge-
dehnt sind. Dies bestätigt die Erwartungen, da selbst für den Zustand mit der geringsten
Partizipationsrate bei 16. Ordnung (Abb. 4.8d) kein exponentieller Abfall vorhanden ist. Da
γ im dreidimensionalen etwas größer ist, sind die Zustände bei abnehmender Dimension
stärker lokalisiert [24]. Des Weiteren ist zu beachten, dass hier nur der Mittelwert über al-
len Energien betrachtet wurde, aber möglicherweise in unterschiedlichen Energiebereichen
verschiedene γ auftreten können. Eine energieabhängige Betrachtung durch Mittelung der
Partizipationszahl über Teilbereiche des Spektrums ließ allerdings keine eindeutigen Ten-
denzen erkennen. Dies könnte auf eine Energieunabhängigkeit des Skalenexponenten γ
hindeuten, muss aber nicht zwangsläufig der Fall sein, da eine nicht ausreichende System-
größe die gleichen Resultate liefern würde.

4.4 Die Eigenzustände

Wie bereits in Kapitel 4.2 beschrieben, sind die Eigenzustände sehr unterschiedlicher Na-
tur. Für das zweidimensionale Rauzy-Tiling 16. Ordnung mit 19 513 Gitterpunkten sind
vier sehr unterschiedliche Zustände mit verschiedenen Partizipationsraten in Abb. 4.8 dar-
gestellt. Die Diagramme in der oberen Hälfte zeigen in einer dreidimensionalen Darstel-
lung die Aufenthaltswahrscheinlichkeit |ψ|2 über den Gitterpunkten, welche mittels Gl.
(3.26) schon in Kapitel 3.2.1 berechnet wurden. Hierbei ist zu beachten, dass die Skalierung
der z-Achsen nicht identisch ist, sondern für optimale Darstellung jeweils angepasst wur-
de. Die Diagramme darunter zeigen den selben Sachverhalt in einem zweidimensionalen
Diagramm, wobei hier |ψ|2 den Radius der Kreise an den Gitterpunkten bestimmt. Da sich
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aufgrund ausgedehnter Zustände die Streuung nicht über mehrere Größenordnungen er-
streckt, wurde eine lineare Abhängigkeit gewählt4.

Die Untersuchung verschiedener Ordnungen zeigte, dass derjenige Zustand mit der höchs-
ten Energie (Bandkante) eine bedeutend höhere Partizipationsrate und somit die regelmä-
ßigste Struktur aufweist, welche mit einer ”Eierpappe“ vergleichbar ist (Abb. 4.8a). Wei-
terhin existieren viele Zustände mit 0,2 ≤ p ≤ 0,6 , von denen zwei charakteristische
ausgewählt wurden. Einige habe eine deutliche periodische Struktur, bei der sich Strei-
fen oder Inseln mit größerer Aufenthaltswahrscheinlichkeit ausbilden (Abb. 4.8b). Andere
sind unregelmäßig in der Anordnung der Peaks (Abb. 4.8c). Hierbei ist jedoch die Partizi-
pationsrate kein ausschlaggebendes Kriterium, ob der entsprechende Zustand periodisch
ist oder nicht. Vielmehr sind die periodischen Zustände in Umgebung der Bandkante zu
finden, während die nicht-periodischen in der Bandmitte auftreten. Bei dem ausgewählten
Zustand mit sehr kleiner Partizipationsrate sieht man, dass dort die Wellenfunktion auf
kleinere Gebiete lokalisiert ist und in der restlichen Struktur kaum nennenswerte Aufent-
haltwahrscheinlichkeiten vorhanden sind (Abb. 4.8d).

Anhand der kreiskodierten Abbildungen erkennt man eine weitere Eigenschaft quasipe-
riodischer Gitter: Die Struktur weist zwar keine Periodizität auf, allerdings lassen sich be-
liebige Ausschnitte andernorts (im unendlichen Grenzfall sogar beliebig oft) wiederfinden,
sodass sich auch in der Wellenfunktion ähnliche Strukturen in verschiedenen Gebieten wie-
derfinden. Dies ist auch in Abb. 4.8c und 4.8d erkennbar. Quasiperiodische Gitter besitzen
in der Regel auch eine fraktale (selbstähnliche) Struktur [25], d.h. dass ein Ausschnitt die
gleiche Struktur aufweist wie das gesamte Gitter. Die hier abgebildeten Gitter sind aller-
dings noch zu klein, um dies zu erkennen.

(a) E = 4,115 01
p = 0,93

(b) E = −4,098 91
p = 0,42

(c) E = 0,041 552 7
p = 0,30

(d) E = −0,016 895 1
p = 0,10

Abb. 4.8: Aufenthaltswahrscheinlichkeit |ψ|2 der Eigenzustände zu verschiedenen Energien E des
2D-Systems (16. Ordnung: 19 513 Gitterpunkte)

4 r = 0 für N |ψ|2 < 10−2 , r = 0,01

√
N|ψ|2

102 für 10−2 ≤ N |ψ|2 ≤ 102 , r = 1 für 102 < N |ψ|2
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Auch im dreidimensionalen Rauzy-Tiling sind die eben beschriebenen Eigenschaften zu
finden. Da bei gleicher Systemgröße allerdings weniger Gitterpunkte pro Raumrichtung
vorhanden sind, sind diese weniger deutlich ausgeprägt. Zwei Beispiele sind in Abb. 4.9
dargestellt. Abb. 4.9a zeigt ein ausgeprägtes Streifenmuster, während Abb. 4.9b keine er-
kennbare Periodizität ausweist. Die Grafiken sind hier analog der kreiskodierten Abbil-
dungen im zweidimensionalen zu verstehen. An jedem Gitterpunkt befindet sich ein Würfel,
dessen Kantenlänge ein Maß für die Aufenthaltswahrscheinlichkeit ist (lineare Skalierung5).
Die Farbe der Würfel soll lediglich zur Orientierung dienen. Das Koordinatensystem bildet
einen Farbwürfel, bei dem x, y und z die Anteile der Farben rot, grün und blau angeben.
Ein an der Position (x, y, z) befindlicher Würfel wird dann in der zugehörigen RGB-Farbe
dargestellt.

(a) E = −6,113 893 , p = 0,60 (b) E = 0,048 227 5 , p = 0,22

Abb. 4.9: Aufenthaltswahrscheinlichkeit |ψ|2 der Eigenzustände zu verschiedenen Energien E des
3D-Systems (15. Ordnung: 20 569 Gitterpunkte)

5 k = 0 für |ψ|2 < 10−2 max
{
|ψ|2

}
, k = 0,03 |ψ|2

max{|ψ|2} für 10−2 max
{
|ψ|2

}
≤ |ψ|2
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5 Die Dynamik von Wellenpaketen

Dynamische Effekte, wie zum Beispiel das Diffusionsverhalten von Mikroteilchen und den
dadurch resultierenden elektronischen Transport, werden quantenmechanisch durch die
zeitabhängige Schrödinger-Gleichung beschrieben. Dazu betrachtet man das Zerfließen ei-
nes deltaförmigen Wellenpaketes |Φ(t)〉, welches ein zum Zeitpunkt Null am Gitterpunkt j
befindliches Teilches beschreibt:

|Φ(0)〉 = |j〉 . (5.1)

Dieses entwickelt man nach Eigenzuständen (vgl. Kapitel 2)

|Φ(t)〉 =
N

∑
n=1

cn |Ψn〉 =
N

∑
n=1

cn |ψn〉 · e−iEnt (5.2)

und mit

〈ψm| Φ(0)〉 = 〈ψm| j〉 =
N

∑
n=1

cnδmn = cm (5.3)

erhält man den Ausdruck

|Φ(t)〉 =
N

∑
n=1
〈ψn| j〉 |ψn〉 · e−iEnt . (5.4)

Das Verhalten dieses Wellenpaketes im zweidimensionalen Rauzy-Tiling (16. Ordnung mit
19 513 Gitterpunkten) ist in den folgenden Abschnitten zunächst qualitativ und anschlie-
ßend anhand der zeitlichen Autokorrelationsfunktion und des mittleren Abstandsquadra-
tes quantitativ näher untersucht.

5.1 Das Zeitverhalten

In Abb. 5.1 ist die Aufenthaltswahrscheinlichkeit |Φ(t)|2 des deltaförmigen Wellenpaketes
im 2D-Rauzy-Tiling zu verschiedenen Zeiten t dargestellt. Dabei wurden die Berechnun-
gen für denjenigen Startpunkt j, welcher dem Zentrum am nächsten liegt, durchgeführt.
Weiterhin wurden exponentiell ansteigende Zeitschritte gewählt, um die verschiedenen
Stadien des Zerfließens deutlich zu machen. Es ist zu erkennen, dass der Delta-Peak (Abb.
5.1a) zunächst schnell abklingt und anschließend in direkter Umgebung des Startpunktes
stets einige größere Peaks entstehen, während auch in größerem Abstand die Aufenthalt-
wahrscheinlichkeit ansteigt und zahlreiche kleinere Peaks annähernd ringförmig auftreten
(Abb. 5.1b bis 5.1g). In den Grafiken sind alle |Φ|2 < 10−6 nicht dargestellt, da diese keinen
wesentlichen Beitrag liefern. Das rosafarbene Gebiet kann demnach als Ausdehnungsge-
biet betrachtet werden. Dieses wächst soweit an, bis es bei tRand ≈ 28 schließlich den Rand
der Einheitszelle erreicht hat. Aufgrund der periodischen Randbedingungen strömt das
Wellenpaket beim Überschreiten des Randes auf der gegenüberliegenden Seite wieder in
das Gitter ein (Abb. 5.1g). Betrachtet man der Verlauf weiter, so kommt es anschließend zu
Interferenzerscheinungen durch die Überlagerung der sich immer stärker überlappenden
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(a) |Φ(0)|2 (b) |Φ(1)|2 (c) |Φ(2)|2

(d) |Φ(4)|2 (e) |Φ(8)|2 (f) |Φ(16)|2

(g) |Φ(32)|2 (h) |Φ(64)|2 (i) |Φ(128)|2

Abb. 5.1: Zeitliche Entwicklung eines deltaförmigen Wellenpaketes |Φ(t)|2 im 2D-System
(16. Ordnung: 19 513 Gitterpunkte)
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Abb. 5.2: Aufenthaltswahrscheinlichkeit |Φ(t)|2 am Initialisierungspunkt j
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Wellenfunktion. Am deutlichsten ist dies in Abb. 5.1g an den bereits überschrittenen Rän-
dern zu erkennen. Für größere Zeiten nehmen die Peaks im Zentrum weiter ab, bis sich
schließlich im gesamten Gebiet eine bis auf die stets vorkommenden Fluktuationen annä-
hernd gleiche Aufenthaltswahrscheinlichkeit einstellt (Abb. 5.1h und 5.1i). Weiterhin fällt
bei Abb. 5.1e, 5.1f und 5.1g auf, dass sich |Φ(t)|2 nicht homogen über das Gitter ausbreitet,
sondern dass es eine Vorzugsrichtung gibt. Ein Vergleich mit Abb. 3.3 und 3.6 zeigt, dass
es sich hierbei um diejenige Richtung handelt, welche durch die Gitterpunktdifferenz Fk−2
beschrieben wird. Diese Nächste-Nachbar-Verknüpfung tritt im Gitter am häufigsten auf
und folglich besitzt das Rauzy-Tiling in dieser Richtung die regelmäßigste Struktur und
somit auch die besten Ausbreitungsmöglichkeiten.

Der zeitliche Verlauf der Aufenthaltswahrscheinlichkeit am Initialisierungspunkt j (d.h.
|〈j| Φ(t)〉|2) ist in Abb. 5.2 dargestellt, wobei j so gewählt wurde, dass es dem blau mar-
kierten Gitterpunkt aus Abb. 5.3 entspricht. Es ist ersichtlich, dass die Aufenthaltswahr-
scheinlichkeit insgesamt über acht Größenordnungen, zu manchen Zeiten stärker und zu
anderen weniger stark schwankt und somit kaum physikalisch relevante Aussagen ableit-
bar sind. Daher glättet man die Kurve durch Integration. Dies ist im nächsten Abschnitt
näher erläutert.

5.2 Die zeitliche Autokorrelationsfunktion

Durch das Zerfließen des Wellenpaketes werden von den umgebenden Gitterpunkten auch
stets Teile zurückgestreut. Für quantitative Aussagen darüber definiert man die zeitliche
Autokorrelationsfunktion [23, 26]

C(t) =
1
t

∫ t

0

∣∣〈Φ(0)
∣∣ Φ(t′)

〉∣∣2 dt′ , (5.5)

welche sich für das hier untersuchte deltaförmige Wellenpaket |Φ(0)〉 = |j〉 zu

C(t) =
1
t

∫ t

0

∣∣〈j
∣∣ Φ(t′)

〉∣∣2 dt′ (5.6)

vereinfacht. C(t) wird auch als Wiederkehrwahrscheinlichkeit bezeichnet und gibt den
zeitlichen Verlauf des Mittelwertes der Aufenthaltswahrscheinlichkeit am Initialisierungs-
punkt j an.

ææ

ææ

ææ
ææ

Abb. 5.3: Die vier verschiedenen lokalen Umgebungen des 2D-Systems:
P111 blau, P112 grün, P122 rot, P022 gelb
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In Abb. 5.4 ist die Autokorrelationsfunktion für vier Initialisierungspunkte j mit den vier
verschiedenen lokalen Umgebungen des 2D-Rauzy-Tilings, welche nochmals in Abb. 5.3
aufgeführt sind, dargestellt. Alle vier Kurven weisen den selben qualitativen Verlauf auf:
Aus der Definition folgt C(t → 0) → 1. Für t < 1 schwächt sich zunächst nur die Wahr-
scheinlichkeit am Gitterpunkt j ab und verteilt sich auf die nächsten Nachbarn. Dies ist
nicht von der Beschaffenheit des Gitters abhängig und somit stets gleich. Anschließend
kommt es zur Ausbreitung über dem Gitter und zur Rückstreuung, welche durch dieses
verursacht wird. Das Ende dieses physikalisch relevanten Bereiches wird durch den Zeit-
punkt 2 · tRand markiert. Ab tRand werden, verursacht durch die periodischen Randbedin-
gungen, entfernte Aufenthaltswahrscheinlichkeiten wieder zum Ausgangspunkt zurück-
laufen und letztlich bei 2 · tRand den Gitterpunkt j erreichen. Der Trend setzt sich jedoch
weiter fort, da diese Anteile sehr gering sind und sich erst für Zeiten t ' 1000 eine sicht-
bare Veränderung im Kurvenverlauf zeigt. Wenn nach hinreichend langer Zeit die Aufent-
haltswahrscheinlichkeit im Zentrum stark abgeklungen ist und sich die Fluktuationen in
der gesamten Struktur angleichen, so stellt sich in der zeitlichen Autokorrelationsfunktion
ein konstanter Sättigungswert ein.

10-2 10-1 100 101 102 103 10410-4

10-3

10-2

10-1

100

t

C
HtL

Abb. 5.4: Autokorrelationsfunktion des 2D-Systems (16. Ordnung: 19 513 Gitterpunkte) für die vier
verschiedenen lokalen Umgebungen und physikalisch relevanter Bereich (orange)

Betrachtet man den physikalisch relevanten Bereich genauer, so zeigt sich wie bei der Ska-
lierung der Partizipationszahl (vgl. Kapitel 4.3) ein Potenzgesetz, welches das asymptoti-
sche Verhalten eines unendlichen quasiperiodischen Gitters beschreibt [23, 26]:

C(t) ∼ t−δ . (5.7)

Ist δ = 0, so ist C(t) konstant, d.h. die Aufenthaltswahrscheinlichkeit am Gitterpunkt j
muss ebenfalls konstant Eins sein, da diese nicht größere Werte annehmen kann. Das Mi-
kroteilchen bleibt demnach an seinem Ort, es gibt keine Diffusion. Bei 0 < δ ≤ 1 handelt es
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sich um anomale Diffusion, auf welche in Kapitel 5.3 etwas näher eingegangen wird. δ = 1 ist
ein weiterer Spezialfall, welcher bei der eindimensionalen Fibonacci-Kette den ballistischen
Teilchentransport beschreibt, d.h. dass das Wellenpaket sich ohne durch Streuung behin-
dert zu werden (ohne makroskopischen elektrischen Widerstand) ausbreitet. In höheren
Dimensionen muss dies allerdings nicht zwingend der Fall sein. So liefert der ballistische
Transport zwar δ = 1, die Umkehrung ist aber nicht zwangsläufig ebenfalls gültig. Daher
ist bei δ = 1 dennoch anomaler Transport möglich.
Weiterhin gibt δ Auskunft über die Beschaffenheit des Energiespektrums. So ist bei diskre-
ten Spektren δ = 0, bei absolut kontinuierlichen Spektren δ = 1 und bei singulär kontinu-
ierlichen Spektren 0 < δ < 1 analog zu einer Cantormenge mit Lebesque-Maß Null.

Ein nichtlinearer Fit im Bereich 4 ≤ t ≤ 60 (in Abb. 5.4 orange markiert) liefert für die
vier lokalen Umgebungen folgende Ergebnisse:

δ111 = 0,852 (blau) ,
δ112 = 0,968 (grün) ,
δ122 = 0,985 (rot) ,
δ022 = 0,924 (gelb) .

Hierbei gibt der Index die Anzahl der jeweiligen Nächste-Nachbar-Verknüpfungen mit den
Gitterpunktdifferenzen Fk, Fk−1 und Fk−2 an (vgl. Abb. 5.3 und 3.6). Die rot, grün und gelb
markierten Ausgangspunkte weisen mit wenigen Prozent Abweichung einen Exponenten
nahe Eins auf. Dies deutet darauf hin, dass die Ausbreitung dort demnach nahezu bal-
listisch vollzogen wird. Der blau markierte Gitterpunkt mit nur drei nächsten Nachbarn
hat hingegen einen Exponenten, der deutlich darunter liegt, d.h. hier tritt anomale Dif-
fusion auf. Dies ist auf die unregelmäßigere Nächste-Nachbar-Umgebung und den damit
verbundenen größeren Rückstreuungen zurückzuführen. Die Werte legen nahe, dass das
Energiespektrum absolut kontinuierlich ist. Ein Vergleich mit Abb. 4.1 bestätigt dies, da
(zumindest im Rahmen der Genauigkeit) keine Lücken im Spektrum sichtbar sind.

5.3 Das mittlere Abstandsquadrat

Ein Maß für das Zerfließen des Wellenpaketes bietet das mittlere Abstandsquadrat [23]

w(t) =

√√√√ N

∑
i=1

∣∣~ri −~rj
∣∣2 · |〈i| Φ (t) 〉|2 , (5.8)

wobei~rj der Ortsvektor des j-ten Gitterpunktes ist. Das asymptotische Verhalten unendlich
ausgedehnter Systeme ist wieder durch ein Potenzgesetz

w(t) ∼ tβ (5.9)

beschreibbar [23]. Dabei entspricht wiederum β = 0 einem statischen Delta-Peak und so-
mit liegt keine Diffusion vor. Wie schon aus der Standard-Quantenmechanik-Vorlesung
bekannt, ist das mittlere Abstandsquadrat eines zerfließenden freien Gauß-Paketes asymp-
totisch proportional zu t, d.h. dass β = 1 den ballistischen Transport beschreibt. Für 0 <
β < 1 liegt anomale Diffusion vor. Als weiterer Spezialfall ergibt sich hieraus für β = 1

2
ebenfalls die klassische Diffusion [27] der Brownschen Molekularbewegung (Wiener-Prozess
[28]) mit w2(t) ∼ t. In den Fällen β < 1

2 bzw. β > 1
2 breiten sich die Mikroteilchen dem-

zufolge langsamer bzw. schneller aus als im klassischen Fall. Man spricht daher von Sub-



34 5 Die Dynamik von Wellenpaketen

10-1 100 101 10210-3

10-2

10-1

100

t

w
HtL

Abb. 5.5: Mittleres Abstandsquadrat des 2D-Systems (16. Ordnung: 19 513 Gitterpunkte) für die vier
verschiedenen lokalen Umgebungen und physikalisch relevanter Bereich (orange)
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Abb. 5.6: Ableitung des mittleren Abstandsquadrates des 2D-Systems (16. Ordnung: 19 513 Gitterpunkte) für
die vier verschiedenen lokalen Umgebungen und physikalisch relevanter Bereich (orange)
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bzw. Superdiffusion.

Ein Vorteil bei der Betrachtung von w(t) liegt darin, dass ein direkter Zusammenhang zur
Leitfähigkeit σ besteht. Es gilt die Einstein-Formel

σ = 2e2Dn(EF) (5.10)

mit der Zustandsdichte n(EF) an der Fermi-Energie und dem Diffusionskoeffizienten D =
w2(τ)

τ mit der charakteristischen Stoßzeit τ. Somit gilt [29]

σ ∝ 2e2n(EF)τ
2β−1 . (5.11)

Für die gleichen Startpunkte j des vorherigen Abschnittes ist das Verhalten des mittleren
Abstandsquadrates in Abb. 5.5 dargestellt. Wie bei der zeitlichen Autokorrelationsfunkti-
on sind wieder drei Abschnitte erkennbar: Für das deltaförmige Wellenpaket |Φ(0)|2 ist
typischerweise w(0) = 0. Anschließend steigt die Kurve annähernd linear an bis zum Zeit-
punkt, bei dem die Grenzen des Systems erreicht werden und w(t) daher nicht weiter an-
wachsen kann. Des Weiteren sind bei t = 2 . . . 3 leichte Knicke in den Kurven zu erkennen,
die offensichtlich nach Abklingen des Initialisierungspeaks den Beginn des physikalisch
relevanten Bereiches markieren. Da man diesen Zeitpunkt allerdings in dieser Darstellung
nicht eindeutig bestimmen kann und aufgrund der Tatsache, dass die Kurve in etwa line-
ar verläuft, bietet es sich an zunächst die Ableitung w′(t), siehe Abb. 5.6, zu betrachten.
Hier ist sehr deutlich ein näherungsweise konstantes Plateau (orangefarbener Bereich) zu
erkennen, dessen Grenzen den interessanten Bereich markieren. Für größere t fällt w′(t)
von der ersten Berührung des Randes bis zur völligen Ausfüllung des Gitters bis auf Null
ab und osziliert anschließend wie auch w(t) selbst.
Ein nichtlinearer Fit im Bereich 4 ≤ t ≤ 30 (in Abb. 5.5 orange markiert) liefert für die vier
lokalen Umgebungen folgende Ergebnisse:

β111 = 0,925 (blau) ,
β112 = 0,933 (grün) ,
β122 = 0,932 (rot) ,
β022 = 0,930 (gelb) .

Auch hier zeigen sich wieder Werte nahe Eins, d.h. die Diffusion vollzieht sich nahezu
ballistisch. Ebenfalls weist der Gitterpunkt mit nur drei nächsten Nachbarn einen leicht
darunter liegenden Exponenten β, verursacht durch die etwas unregelmäßigere Nächste-
Nachbar-Umgebung, auf.

5.4 Der dreidimensionale Fall

Analog zum zweidimensionalen Rauzy-Tiling sind hier die Ergebnisse für die zeitliche Au-
tokorrelationsfunktion (Abb. 5.10) und das mittlere Abstandsquadrat (Abb. 5.8) des drei-
dimensionalen Rauzy-Tilings in 15. Ordnung mit 20 569 Gitterpunkten dargelegt. Hierbei
wurde wieder zwischen den lokalen Umgebungen, welche nochmals in Abb. 5.7 darge-
stellt sind, unterschieden. Die Ergebnisse sind allerdings mit geringerer Genauigkeit zu
betrachten, da nur zirka 27 Gitterpunkte pro Raumrichtung vorhanden sind, während es in
zwei Dimensionen etwa 139 Gitterpunkte sind. Bei der in Abb. 5.10 dargestellten zeitlichen
Autokorrelationsfunktion fällt dies nicht so stark ins Gewicht, da der Einfluss der periodi-
schen Randbedingungen durch die geringen Amplituden der vom Initialisierungspunkt
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Abb. 5.7: Die fünf verschiedenen lokalen Umgebungen
des 3D-Systems: P1111 blau, P1112 grün,
P1122 rot, P1222 cyan, P0222 gelb

weit entfernten Gebiete nur sehr schwach ist. Die Ableitung des mittleren Abstandsqua-
drates in Abb. 5.9 hingegen zeigt, dass das Plateau, welches den physikalisch relevanten
Bereich angibt, nur schwach ausgebildet ist und man keine klaren Grenzen erkennen kann.
Das Gebiet, über dem der nichtlineare Fit nach Gl. (5.7) und Gl. (5.9) durchgeführt wurde,
ist mit 1 ≤ t ≤ 2 entsprechend klein. Für die Exponenten ergibt sich

δ1111 = 0,991 β1111 = 1,031 (blau) ,
δ1112 = 0,997 β1112 = 0,946 (grün) ,
δ1122 = 0,996 β1122 = 0,913 (rot) ,
δ1222 = 0,999 β1222 = 0,959 (cyan) ,
δ0222 = 0,993 β0222 = 0,928 (gelb) .

Da β1111 > 1 berechnet wurde, ist für die Exponenten des mittleren Abstandsquadrates ein
Fehler von mindestens 0,04 anzunehmen. Die Werte weisen auf ballistischen Transport hin,
sind jedoch nicht eindeutig. Die besseren Ergebnisse liefert hier die Autokorrelationsfunk-
tion. Sämtliche Werte liegen bei weniger als 1% Abweichung von Eins, sodass daher ein
ballistischer Transport wahrscheinlich ist. Wie auch im zweidimensionalen Rauzy-Tiling
wird ebenfalls ein absolut kontinuierliches Spektrum (vgl. Abb. 4.2) bestätigt. Der Wert
des blau markierten Gitterpunktes mit nur vier nächsten Nachbarn liegt wieder etwas dar-
unter, allerdings ist die Abweichung hier wesentlich geringer. Somit bestätigt sich die auch
in Kapitel 4.3 angedeutete Tatsache, dass der Skalenexponent mit größer werdender Di-
mension größer und das Diffusionsverhalten zunehmend ballistisch wird [24].
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Abb. 5.8: Mittleres Abstandsquadrat des 3D-Systems (15. Ordnung: 20 569 Gitterpunkte) für die fünf
verschiedenen lokalen Umgebungen und physikalisch relevanter Bereich (orange)
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Abb. 5.9: Ableitung des mittleren Abstandsquadrates des 3D-Systems (15. Ordnung: 20 569 Gitterpunkte) für
die fünf verschiedenen lokalen Umgebungen und physikalisch relevanter Bereich (orange)
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Abb. 5.10: Autokorrelationsfunktion des 3D-Systems (15. Ordnung: 20 569 Gitterpunkte) für die fünf
verschiedenen lokalen Umgebungen und physikalisch relevanter Bereich (orange)
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6 Zusammenfassung und Ausblick

In dieser Arbeit wurden das zwei- und dreidimensionale Rauzy-Tiling, bei denen es sich
um quasiperiodische Gitter handelt, untersucht. Die quantenmechanische Beschreibung
mikroskopischer Teilchen geschah mit dem Modell starker Bindung ohne Wechselwirkung
mit dem Gitter. Die Übergangsmatrixelemente wurden für nächste Nachbarn als konstant
angenommen und Null gesetzt für nicht benachbarte Gitterpunkte.

Als erstes wurde die Berechnung der Gitterpunktkoordinaten durch das Projektionsver-
fahren erläutert, indem der eindimensionale Fall, die Fibonacci-Projektion, mathematisiert
und anschließend auf beliebige Dimensionen verallgemeinert wurde. Durch die natürliche
Nummerierung mittels eines erzeugenden Vektors erhielt man eine einfache Vorschrift für
das Aufstellen der Verbindungsmatrix, welche die Nächste-Nachbar-Verknüpfungen be-
schreibt und bedingt durch die Definition des Hamilton-Operators mit dem Modell starker
Bindung die System-Geometrie mit den quantenmechanischen Eigenschaften verknüpft.
Die Darstellungen des zwei- und dreidimensionalen Gitters veranschaulichten die Parket-
tierung mit den verschiedenen Nächste-Nachbar-Verknüpfungen und den lokalen Umge-
bungen.

Als nächstes wurde die stationäre Lösung des Schrödinger-Gleichung, welche durch be-
reits vorhandene Fortran-Routinen berechnet wurde, dargestellt. Die Zustandsdichte wies
eine zackige Struktur auf, die auf die Quasiperiodizität zurückzuführen ist. Das zwei-
dimensionale Rauzy-Tiling zeigte hierbei in Umgebung der Bandmitte große Peaks und
einen abrupten Abbruch an der Bandkante. Das dreidimensionale Rauzy-Tiling zeigte einen
ähnlichen Verlauf wie das eines periodischen Gitters. Die Partizipationsrate lieferte eine
einfache Möglichkeit, die Ausgedehntheit der Eigenzustände, welche von näherungsweise
periodischen bis zu auf kleinere Gebiete lokalisierte Funktionen variieren, zu charakteri-
sieren. Als weiteres Maß für die Ausgedehntheit wurde der Skalenexponent berechnet,
welcher für das 2D-System einen kleineren Wert lieferte als für das 3D-System und somit
bestätigt wurde, dass mit abnehmender Dimension die Zustände stärker lokalisiert sind.

Im letzten Teil wurden dynamische Eigenschaften anhand des Zeitverhaltens eines del-
taförmigen Wellenpaketes untersucht. Es wurden die zeitliche Autokorrelationsfunktion
und das mittlere Abstandsquadrat berechnet und analog zur Partizipationszahl mit einem
Potenzgesetz beschrieben. Die Skalenexponenten zeigten hierbei, dass das Energiespek-
trum nah am absolut kontinuierlichen Fall liegt und die Ausbreitung von Mikroteilchen
nahezu ballistisch vollzogen wird. Hierbei wurde zwischen den lokalen Umgebungen als
Initialisierungspunkt des Wellenpaketes unterschieden und es war erkennbar, dass derje-
nige Gitterpunkt, welcher die wenigsten Verknüpfungen aufweist, eine verzögerte Aus-
breitung des Wellenpaketes zeigt.

Viele der Resultate, wie die Ähnlichkeit der Zustandsdichte mit der des periodischen Git-
ters, das nahezu absolut kontinuierliche Energiespektrum und der annähernd ballistische
Transport zeigen, dass es sich bei den Rauzy-Tilings, vor allem in drei Dimensionen, um
schwach quasiperiodische Gitter handelt, d.h. das diese, beispielsweise im Gegensatz zum
Penrose-Tiling, nah am periodischen Fall liegen.
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Ein weiterer Ansatz besteht zum Beispiel in der energieabhängigen Berechnung der Ska-
lenexponenten. Es ist zu vermuten, dass diese in der Bandmitte geringer sind als an den
Bandkanten. Die hier durchgeführten Berechnungen konnten dazu allerdings keine Er-
gebnisse liefern. Die Beschränkung der Systemgröße liefert bei den Berechnungen stets
eine Limitierung der Genauigkeit. Auch bei der Dynamik im dreidimensionalen Rauzy-
Tiling war der interessante Bereich sehr klein. Die Berechnung größerer Systeme ist daher
wünschenswert. Die Routine Jadamilu wurde hierbei nicht ausgereizt und bietet somit
noch Potential nach oben.
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Anhang

Beweis A

Behauptung: F−k = (−1)kFk−2 für die Fibonacci-Folge aus Gl. (3.2).
Induktionsanfang: Die Behauptung ist erfüllt für k = 2 und k = 3:

F1 = 1
F0 = 1

F−1 = F1 − F0 = 1− 1 = 0
F−2 = F0 − F−1 = 1− 0 = 1 = F0

F−3 = F−1 − F−2 = 0− 1 = −1 = −F1

Induktionsbeweis: Es gelte F−(k−1) = (−1)k−1F(k−1)−2 und F−k = (−1)kFk−2.

F−(k+1) = F−k−1 = F−k+1 − F−k = F−(k−1) − F−k
!
= (−1)k−1F(k−1)−2 − (−1)kFk−2

= (−1)k+1(Fk−3 + Fk−2) = (−1)k+1F(k+1)−2

⇒ F−k = (−1)kFk−2 ∀ k �

Beweis B

Behauptung:
∣∣∣~A⊥k ∣∣∣ = ∣∣∣~A‖k ∣∣∣ für die Fibonacci-Folge Gl. (3.2).

Beweis: ∣∣∣~A⊥k ∣∣∣2 = F2
k + F2

k−1∣∣∣~A‖k ∣∣∣2 = F2
−k−1 + F2

−k−2
A
=
(
(−1)k+1Fk−1

)2
+
(
(−1)k+2Fk

)2
= F2

k + F2
k−1

⇒
∣∣∣~A⊥k ∣∣∣ = ∣∣∣~A‖k ∣∣∣ ∀ k �





43

Abbildungsverzeichnis

Abb. 1.1 Quasiperiodische Parkettierungen . . . . . . . . . . . . . . . . . . . . . 5
Abb. 1.2 Beugungsbild von AlMn-Quasikristallen . . . . . . . . . . . . . . . . . . 5
Abb. 1.3 Quasikristalline Aluminium-Kupfer-Legierung . . . . . . . . . . . . . . 5
Abb. 1.4 Quasikristalline Probe und Beugungsbilder . . . . . . . . . . . . . . . . 6
Abb. 1.5 Quasiferromagnetismus . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Abb. 3.1 Fibonacci-Projektion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Abb. 3.2 Projektionsschema und Nummerierung bei 4. Ordnung . . . . . . . . . 12
Abb. 3.3 Projektion der S-Einheitszelle in zwei Dimensionen . . . . . . . . . . . 16
Abb. 3.4 Projektion der S-Einheitszelle in drei Dimensionen . . . . . . . . . . . . 16
Abb. 3.5 Projektion der S11-Einheitszelle in drei Dimensionen (Ausschnitt) . . . 17
Abb. 3.6 Drei Richtungen im zweidimensionalen Gitter . . . . . . . . . . . . . . 18
Abb. 3.7 Die vier verschiedenen lokalen Umgebungen des 2D-Systems . . . . . 20
Abb. 3.8 Die fünf verschiedenen lokalen Umgebungen des 3D-Systems . . . . . 20

Abb. 4.1 Normierte Zustandsdichte des 2D-Systems . . . . . . . . . . . . . . . . 22
Abb. 4.2 Normierte Zustandsdichte des 3D-Systems . . . . . . . . . . . . . . . . 22
Abb. 4.3 Partizipationsrate des 2D-Systems . . . . . . . . . . . . . . . . . . . . . . 24
Abb. 4.4 Partizipationsrate des 3D-Systems . . . . . . . . . . . . . . . . . . . . . . 24
Abb. 4.5 Mittlere Partizipationsrate des 2D-Systems . . . . . . . . . . . . . . . . 24
Abb. 4.6 Mittlere Partizipationsrate des 3D-Systems . . . . . . . . . . . . . . . . 24
Abb. 4.7 Mittlere Partizipationszahl des 2D- und 3D-Systems in Abhängigkeit
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[14] WIKIPEDIA: Tight binding (24.07.2011, 13:51),
http://en.wikipedia.org/wiki/Tight_binding.

[15] D. L. MASLOV: Intro to solid state physics - tight-binding model,
http://www.phys.ufl.edu/~maslov/phy4905/tbm_notes.pdf.

[16] J. VIDAL und R. MOSSERI: Generalized quasiperiodic Rauzy tilings, Journal of Physics A:
Mathematical and General 34, Nr. 18, S. 3927 (2001),
http://stacks.iop.org/0305-4470/34/i=18/a=317.

[17] M. DUNEAU und A. KATZ: Quasiperiodic patterns, Physical Review Letters 54, Nr. 25,
S. 2688 (1985),
http://prl.aps.org/pdf/PRL/v54/i25/p2688_1.

[18] UNIVERSITY OF TENNESSEE, UNIVERSITY OF CALIFORNIA BERKELEY, UNIVERSITY

OF COLORADO DENVER, NUMERICAL ALGORITHMS GROUP (NAG): LAPACK - linear
algebra package,
http://www.netlib.org/lapack/.

[19] M. BOLLHÖFER und Y. NOTAY: User’s guide to JADAMILU - FORTRAN routines to solve
symmetric/hermitian (generalized) eigenvalue problems, 2008.

[20] F. M. C. TRIOZON, J. VIDAL, R. MOSSERI und D. MAYOU: Quantum dynamics in two-
and three-dimensional quasiperiodic tilings, Physical Review B 65, Nr. 22, S. 220202 (2002),
http://prb.aps.org/pdf/PRB/v65/i22/e220202.
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