

TECHNISCHE UNIVERSITÄT CHEMNITZ R Crashkurs Professur Finanzmathematik, Fakultät für Mathematik

R Crashkurs

Dr. Dana Uhlig Professur Finanzmathematik Fakultät für Mathematik

Stand 30. Mai 2018

30. Mai 2018 \cdot ©2018, Dana Uhlig

Umfrage:Erfahrungen mit R

- A O keine
- B X reingeschnuppert, ich kann einfache statistische Grafiken, Kennzahlen und Tests berechnen
- C − Umgang mit R bekannt, Umsetzung statistischer Verfahren neu
- D 🗆 Vollprofi

Onlineabstimmung http://twbk.de

Aktuelles Thema

1. Erste Schritte in R

- 2. Datenstrukturen in R
- 3. Schritt für Schritt mehr R
- 4. Erste Statistiken mit R

Was ist R?

TECHNISCHE UNIVERSITÄT CHEMNITZ

- Statistiksoftware / Programmiersprache, aktuelle Version 3.5.0 (2018-04-23) basierend auf der Sprache R
- freie Software (open source software, GNU General Public License): http://www.r-project.org/
- verfügbar für viele Plattformen (Windows, Linux, Mac, Unix, …)
- Entwicklung: 1992 von Ross Ihaka und Robert Gentleman an der Universität Auckland in Anlehnung an kommerzielle Software S
- flexible Programmiersprache

Erste Schritte in R

- ► Interpretersprache: Benutzereingaben in der Kommandozeilenkonsole ⇒ Betätigung Enter-Taste ⇒ unmittelbare Ausführung
- Ausführung von Skripten (Anreihung mehrerer Kommandos)
- zahlreiche Pakete zur Erweiterung des Funktionsumfangs

Arbeiten mit R, I

► R-Standard-Konsole

Arbeiten mit R, II

- hilfreiche Editoren: zahlreiche grafische Benutzeroberflächen (z.B. R Commander, JGR (Jaguar), RStudio, Tinn-R, ...)
- hier in der Lehrveranstaltung: RStudio, da unter Windows, Linux und Mac frei verfügbar http://www.rstudio.com/

R als einfacher Taschenrechner

5 + 2 ## [1] 7 3*6 ## [1] 18

Arbeiten mit Variablen

a = 5 b = 2 (c=sqrt(a^2+b^2)) ## [1] 5.385165

Konventionen

```
#Kommentare werden vom Interpreter ignoriert
#1. Zuweisungen mittels = oder <-
a = 5
b <- 4
c = a + b
С
## [1] 9
x = seq(from = 1, to = 10, by = 0.2)
x[1:5]
## [1] 1.0 1.2 1.4 1.6 1.8
#Aufrufen von Funktionen
y = loq(x)
#die ersten 5 Werte von y
y[1:5]
## [1] 0.0000000 0.1823216 0.3364722 0.4700036 0.5877867
```

Erste Schritte in R TECHNISCHE UNIVERSITÄT CHEMNITZ Konventionen #einfache Grafiken **plot**(x,y,type = "l",main = "y=log(x)")

y=log(x)

Erste Statistik mit einem simulierten Datensatz

```
set.seed(1121)
x=rnorm(n=200, mean=100, sd=2)
#die ersten 8 Werte von x
x[1:8]
## [1] 100.28992 100.87664 100.30638 102.16989 103.99909 98.37623 100.32054
mean(x);var(x)
## [1] 100.0464
## [1] 3.774443
```

Das erste Element von x ist 100.2899166 und der empirische Mittelwert \overline{x} = 100.0463889 und die empirische Varianz s^2 =3.7744426.

boxplot(x)
hist(x,main='Histogramm')

Funktionserweiterung mittels Paketen Zusatzpakete einmalig installieren und vor Gebrauch in R-Session laden

```
#Pakete laden
library("quantmod")
```

TECHNISCHE UNIVERSITÄT CHEMNITZ **Erste Schritte in R**

```
## Loading required package: xts
## Loading required package: zoo
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
## as.Date, as.Date.numeric
## Loading required package: TTR
## Content of the second of the
```

Zahlreiche Datensätze bereits in R

head(mtcars, n = 6)

	mpg	су	disp	hp	drat	wt
Mazda RX4	21.00	6.00	160.00	110.00	3.90	2.62
Mazda RX4 Wag	21.00	6.00	160.00	110.00	3.90	2.88
Datsun 710	22.80	4.00	108.00	93.00	3.85	2.32
Hornet 4 Drive	21.40	6.00	258.00	110.00	3.08	3.21
Hornet Sportabout	18.70	8.00	360.00	175.00	3.15	3.44
Valiant	18.10	6.00	225.00	105.00	2.76	3.46

 \sim für Übungszwecke und zur Veranschaulichung statistischer Verfahren

Arbeitsverzeichnis = Working Directory

aktuelles Arbeitsverzeichnes abfragen getwd()

[1] "/home/mathe/lvhome50/users/personal/dana/svn/Angewandt

#mittels setwd("PFAD-NEUES-VERZEICHNIS")
#neues Arbeitsverzeichnis festlegen
setwd()

- \blacktriangleright Alternative in Rstudio: Menü "Session" \rightarrow "Set working directory "
- wichtig bei Arbeiten mit Datenfiles oder f
 ür Aufruf weiterer Skripte (mittels source())
- relative Pfade anstatt absolute

Aktuelles Thema

1. Erste Schritte in R

2. Datenstrukturen in R

Vektoren Matrizen und Arrays Data Frames Listen Faktoren

3. Schritt für Schritt mehr R

4. Erste Statistiken mit R

verschiedene Datenstrukturen und Datentypen aller Objekte in R, Abfrage in R mittels

mode() typeof() class() str()

- ► Datentypen
 - ► *numeric* (Unterscheidung zwischen *integer* und *double*) ~ Zahlen
 - *complex* \sim komplexe Zahlen
 - ► *character* ~ Zeichenkette / String
 - ► *logical* ~ logische Werte (TRUE bzw. FALSE)
 - ► *raw* ∩ Bytes
- Klassen (komplexe Datentypen)
 - Vektoren
 - Faktoren
 - Matrizen / Arrays
 - Listen
 - Data Frames
 - Funktionen

Erstellung von Vektoren mittels combine c()

```
(a = c(5, 3, 2))
## [1] 5 3 2
(b = c("A", "B", "C"))
## [1] "A" "B" "C"
(x = 1:6)
## [1] 1 2 3 4 5 6
typeof(a) ; class(a) #mode(a)
## [1] "double"
## [1] "numeric"
is.numeric(b); is.character(b)
## [1] FALSE
## [1] TRUE
```

а ## [1] 5 3 2 #Laenge des Vektors length(a) ## [1] 3 *#das 2. Element* a[2] ## [1] 3 #das 2. bis 4. Element von x x[2:4] ## [1] 2 3 4 x+3 ## [1] 4 5 6 7 8 9

```
x*3
## [1] 3 6 9 12 15 18
(x = 1:6)
## [1] 1 2 3 4 5 6
#loeschen des 3. Wertes
(x = x[-3])
## [1] 1 2 4 5 6
#Anhängen weiterer Komponenten an einen bestehenden Vektor
(y1 = append(x, c(10, 11), after=5))
## [1] 1 2 4 5 6 10 11
(y_2 = c(-1, 0, x, 10))
## [1] -1 0 1 2 4 5 6 10
```

Vergleiche und Zugriff auf bestimme Komponenten

```
a > 4
```

```
## [1] TRUE FALSE FALSE
```

a == 3

```
## [1] FALSE TRUE FALSE
```

```
#Wie viele Vektor-Komponenten sind groesser als 3
sum(a>3)
```

[1] 1

#Welche Vektor-Komponenten sind groesser als 2.5 sowie deren Werte which(a>2.5)

[1] 1 2

a[a>2.5]

[1] 5 3

Matrix \triangleq Anordnung mehrerer Vektoren in einer Tabelle , Array \triangleq beliebige Dimension

```
qewicht = c(56, 63, 80, 49, 75)
groesse = c(1.64, 1.73, 1.85, 1.6, 1.81)
alter = c(22, 21.5, 24, 28, 39)
#spaltenweise (c = columns) zusammenbinden
(S = cbind(alter, gewicht, groesse))
## alter gewicht groesse
## [1,] 22.0 56 1.64
## [2,] 21.5 63 1.73
## [3,] 24.0 80 1.85
## [4,] 28.0 49 1.60
## [5,] 39.0 75 1.81
#zeilenweise (r = rows) zusammenbinden
(Z = rbind(alter, gewicht, groesse))
## [,1] [,2] [,3] [,4] [,5]
## alter 22.00 21.50 24.00 28.0 39.00
## gewicht 56.00 63.00 80.00 49.0 75.00
## groesse 1.64 1.73 1.85 1.6 1.81
```

Zugrfiff auf Matrizen analog zu Vektoren: S[i, j] entspricht dem Eintrag in der i-ten Zeile und j-ten Spalte von S

S[5,1]			
## alter ## 39			
S[1,]			
## alter ## 22.00	gewicht 56.00	groess 1.6	e 4
S[c (1,3,5),]		
## alt	er gewic	cht gro	esse
## [1,]	22	56	1.64
## [2,]	24	80	1.85
## [3,]	39	75	1.81

Namen vergeben

```
colnames(S)
## [1] "alter" "gewicht" "groesse"
namen = c("Gerda", "Karin", "Hans", "Doris", "Ludwig")
rownames(S) = namen
S["Doris", "gewicht"]
## [1] 49
S[4,2]
## [1] 49
```


hilfreiche Funktionen zum Arbeiten mit Matrizen oder Arrays

#Matrix-Dimension length(S)
[1] 15
dim(S)
[1] 5 3
<pre>nrow(S); ncol(S)</pre>
[1] 5 ## [1] 3
#structure str(S)
<pre>## num [1:5, 1:3] 22 21.5 24 28 39 56 63 80 49 75 ## - attr(*, "dimnames")=List of 2 ##\$: chr [1:5] "Gerda" "Karin" "Hans" "Doris" ##\$: chr [1:3] "alter" "gewicht" "groesse"</pre>

Alternative Erzeugung einer Matrix aus Vektor am Beispiel für x =

```
\begin{pmatrix} 1\\2\\\vdots\\12 \end{pmatrix}
```

```
x = 1:12
matrix(data = x, nrow=3)
## [,1] [,2] [,3] [,4]
## [1,] 1 4 7 10
## [2,] 2 5 8 11
## [3,] 3 6 9 12
matrix(data = x, ncol=3)
## [1,] 1 5 9
## [2,] 2 6 10
## [3,] 3 7 11
## [4,] 4 8 12
```


- häufigste Verwendungsform für statistische Daten
- matrixähnliche Struktur f
 ür verschiedene Datentypen
- Beispiel

```
S
## alter gewicht groesse
## Gerda 22.0 56 1.64
## Karin 21.5 63 1.73
## Hans 24.0 80 1.85
## Doris 28.0 49 1.60
## Ludwig 39.0 75 1.81
sex = c("weiblich", "weiblich", "männlich", "weiblich", "männlich")
(daten = data.frame(S, sex))
## alter gewicht groesse sex
## Gerda 22.0 56 1.64 weiblich
## Karin 21.5 63 1.73 weiblich
## Hans 24.0 80 1.85 männlich
## Doris 28.0 49 1.60 weiblich
## Ludwig 39.0 75 1.81 männlich
```

Zugriff auf Data Frames

```
daten$gewicht
## [1] 56 63 80 49 75
daten[, "gewicht"]
## [1] 56 63 80 49 75
daten["Doris",]
## alter gewicht groesse sex
## Doris 28 49 1.6 weiblich
daten[4,]
## alter gewicht groesse sex
## Doris 28 49 1.6 weiblich
```


Zugriff auf Data Frames

#direkter Zugrfiff auf Unterelemente mittels Suchpfad durch
#attach() setzen
attach(daten)

The following objects are masked _by_ .GlobalEnv:
##
##

alter, groesse, sex

gewicht

```
## [1] 56 63 80 49 75
```

#Suchpfad fuer Objekt "daten" wieder loeschen
detach(daten)
#Zugriff auf Unterelemente wieder nur via objekt\$unterobjekt
daten\$gewicht

[1] 56 63 80 49 75

Arbeiten mit Data Frames

boxplot (daten\$gewicht~daten\$sex, main = "Gewicht")

alternative Dateneingabe

```
#1. Leeren Data Frame anlegen
mydata = data.frame()
#2. Beispielsweise Daten über Data Editor manuell eingeben
mydata = edit(mydata)
#weitere nützliche Befehle
head(mydata); fix(mydata); View(mydata);
save(mydata, file = "mydata.RData"); load("mydata.RData")
```

🔝 Data Editor							
File	Edit	Help					
	nr		geschlecht	einkommen	wohnung	familiens>	haushalts>
1	1		weiblich	3500	65	verheirat>	3
2	2		männlich	3800	50	ledig	2
3	3		weiblich	2500	83	verheirat>	4
4							
5							
6							
7							
8							
9							
10							
11							
12							
13							
14							
15							
16							
17							
18							
19							
			•		•		

 bei Vektoren und Matrizen sind alle Elemente vom gleichen Datentyp (schwächste)

```
a = c(2.0,1,"a")
typeof(a)
## [1] "character"
```

Datenstrukturen in R

Listen

- Listen zum Abspeichern beliebiger Datenstrukturen
- Details f
 ür rekursive Listen (geschachtelte Listen) siehe Literatur
- einfaches Beispiel

TECHNISCHE UNIVERSITÄT

CHEMNITZ

```
a = 1:5; b = c("a", "b", "c")
sex = as.factor(c("männlich", "weiblich"))
sim = rnorm(n=10, mean = 100, sd = 4)
mylist = list(a,b,sex,sim)
str(mylist)
## List of 4
## $ : int [1:5] 1 2 3 4 5
## $ : chr [1:3] "a" "b" "c"
## $ : Factor w/ 2 levels "männlich", "weiblich": 1 2
## $ : num [1:10] 106.4 100.6 97.8 101.3 89 ...
```

30. Mai 2018 · ©2018, Dana Uhlig

Warum Faktoren?

- nützlich für Umgang mit kategorialen Variablen
- Vektoren vom Typ char werden von R nicht als Faktor wahrgenommen
- wichtig: f
 ür ANOVA mittels aov() oder Im() muss Faktorvariable als Faktor definiert sein
- Kontrolle mittels is.factor()
- Umwandlung mittels as.factor()

```
a = c("ja", "nein")
str(a)
## chr [1:2] "ja" "nein"
is.factor(a)
## [1] FALSE
a.factor.1 = factor(a)
str(a.factor.1)
## Factor w/ 2 levels "ja", "nein": 1 2
#gleiches Ergebnis liefert as.factor()
a.factor.2= as.factor(a)
str(a.factor.2)
## Factor w/ 2 levels "ja", "nein": 1 2
#Gruppierung mittels cut()
(x = sample(20, size = 15, replace = TRUE))
## [1] 5 1 5 8 9 5 15 19 20 19 2 9 16 1 9
(f = cut (x, breaks = c(0, 10, 25, 50)))
## [1] (0,10] (0,10] (0,10] (0,10] (0,10] (0,10] (10,25] (10,25] (10,25] (10,25]
## [11] (0,10] (0,10] (10,25] (0,10] (0,10]
## Levels: (0,10] (10,25] (25,50]
```

30. Mai 2018 · ©2018, Dana Uhlig

Aktuelles Thema

1. Erste Schritte in R

2. Datenstrukturen in R

3. Schritt für Schritt mehr R

Daten: Import, Weiterverarbeitung und Export in R Fehlende Werte in R Grafiken in R

4. Erste Statistiken mit R

Daten laden und speichern

► Workspace bzw. einzelne Objekte davon speichern bzw. laden mittels

```
#kompletter Workspace in aktuelles working directory speichern
save.image(file = "myworkspace.RData")
#spezielle Objekte (diese stehen in mylist)
save(list = mylist ,file="myfile.RData")
#genau ein Objekt (hier mydata)
save(mydata, file = "mydata.RData");
#Daten / Workspace wieder laden
```

```
load("mydata.RData")
```

- Textdatein (.txt oder .dat) mittels read.table()
- CSV-Dateien (.csv) mittels read.csv()
- SPSS-Dateien (.sav) mittels Foreign Package: read.spss()
- Daten speichern mittels write()

Auswahl von Teilstichproben

- ► in SPSS Auswahl von Teilmengen mittels Filter
- Zugriff auf Elemente in matrix / array mittels [Elementevektor]
- Iogische Operatoren (Vergleiche A < B, A <= B, A == B, und: A & B, oder: A|B, Negation !A, exclusives oder: xor(A,B))
- R-Funkionen

subset(); subset.data.frame()

Beispiele

```
head (mtcars, n = 3)
## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
## Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
#Auswahl aller Autos aus mtcars mit Automatikgetriebe (am = 0)
mtcars.automatic = subset.data.frame(mtcars, subset = (mtcars$am==0))
```


($NA \triangleq$ "not available")

```
#simulieren 5 normalverteilte Daten und hängen in x einen NA Wert an
nv = rnorm(n=5, mean=100, sd=4)
(x = \mathbf{C}(nv, NA))
## [1] 104.5808 100.3318 94.7818 102.3856 109.8236
                                                            NA
mean(x); mean(x,na.rm=TRUE)
## [1] NA
## [1] 102.3807
#1. ueberpruefen, ob NA Werte und 2. wie viele fehlende bzw. gültige Werte
is.na(x); sum(is.na(x)); sum(!is.na(x))
## [1] FALSE FALSE FALSE FALSE FALSE
                                      TRUE
## [1] 1
## [1] 5
(m = sum(x[!is.na(x)])/sum(!is.na(x)))
```

30. Mai 2018 · ©2018, Dana Uhlig

[1] 102.3807

plot(x); plot(x,y); plot(faktor); hist(x); curve(); boxplot();
#hilfe zu grafikparametern
?par

30. Mai 2018 · ©2018, Dana Uhlig

Aktuelles Thema

- 1. Erste Schritte in R
- 2. Datenstrukturen in R
- 3. Schritt für Schritt mehr R
- 4. Erste Statistiken mit R Statistische Verteilungen

```
#rVERTEILUNG ... simuliere, dVERTEILUNG ... Dichte,
#pVERTEILUNG ... Verteilungsfkt, qVERTEILUNG ... Quantile
?Normal
rnorm(n=10, mean=100, sd=4)
dnorm(x=0,mean=0,sd=1)
pnorm(1.663,mean=0,sd=1)
```

#weitere Verteilungen
?Distributions

curve(dchisq(x,df=5), 0, 20, ylab="Dichte",main=expression(chi^2-Verteilung))
curve(df(x,df1=4,df2=2), 0,10, ylab="Dichte",main="F-Verteilung")

30. Mai 2018 · ©2018, Dana Uhlig

Hilfreiche Links

- http://personality-project.org/r/r.guide.html
- http://www.rseek.org/
- http://search.r-project.org/
- http://de.wikibooks.org/wiki/GNU_R
- http://www.r-stutorials.de/home
- https://www.uni-muenster.de/imperia/md/content/ psyifp/ae_holling/r-fehlermeldungen.pdf
- http://r4ds.had.co.nz/