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1 Introduction

In this paper, we study descriptor systems with linear variable coefficient

E(1)i(t) = Al (1) + B(t)u() (1)

in the interval [t1, 3] C R together with an initial condition
x(tg) = wo. (2)

Let C"([t1,1,],C™") denote the set of r-times continuously differentiable functions from the
interval [t1,1,] to the vector space C™' of complex n x [ matrices. We assume that

[tl,tz], 1)7 7 (3)

and B(t) has full column rank for all ¢ € [t1,15]. () is called the state and u(t) the control
of the system.

Descriptor systems of the form (1) arise naturally in a variety of circumstances, i.e.
they are used in modelling of mechanical multibody systems [31, 32] and electrical circuits
[19].

The constant coefficient case shows that one has to have first a good understanding of
the behaviour of the corresponding differential algebraic equations (DAEs). For a square
constant coefficient system (n = 1)

Ei(t) = Az(t) + Bul(t) (4)

it is well known that the behaviour of the system (4),(2) (and the corresponding DAE)
depends upon the properties of the matrix pencil

oF — 3B. (5)
The system (4) and the corresponding pencil (5) are called regular if

det(aA — BB) # 0 for some (a, 3) € C°. (6)

While regularity of the system (4) guarantees the existence and uniqueness of classical
solutions [7, 1], this is not true for the system (1) with variable coefficients [18, 22].

The constant coefficient system (4) and the corresponding pencil (5) are said to have
index at most one if the dimension of the largest nilpotent block in the Kronecker canonical
form of the pencil (5) is less than or equal to one (see e.g. [1, 14, 33]). For higher
index descriptor systems (4) impulses can arise if the control is not sufficiently smooth
or the system can even lose causality (see [16, 17, 34]). Therefore, one is interested in a
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proportional and/or derivative feedback for which the closed loop system is regular and
at most of index one to guarantee existence and uniqueness of the solution and to avoid
impulsive modes [3, 5].

The main difficulty in understanding the DAE that corresponds to the descriptor sys-
tems (1) is that different generalizations of the concepts of solvability, index, etc from
constant DAEs to variable coefficient DAEs are possible and have been discussed in the
literature [1, 18, 20, 22]. These different concepts can be used as a basis for different results
for linear descriptor systems with variable coefficients. Until today, only few results have
been achieved in this direction. The results in [11, 12], for example, use the solvability
concepts for DAEs as described in [1, 8, 9, 10].

In a series of articles, Kunkel and Mehrmann discussed a more general solvability con-
cept and presented new canonical forms for linear DAEs with variable coefficients [22, 24].
Furthermore, they presented new numerical methods based on an index reduction pro-
cess [23]. Recently, Rabier and Rheinboldt generalized this approach [27] and in [29] they
showed that, as in the constant coefficient case, impulse modes can only occur for higher
index systems.

We will briefly discuss the main results from [22, 24] in Section 2.

In Section 3 and 4 we show that analogous methods can be used to study linear de-
scriptor systems with variable coefficients. First, we obtain local characteristic quantities
and local canonical forms for the system (1) in Section 3. Then in Section 4, we show that
this local quantities can be used to study the global properties of the system and we end
up with global canonical forms from which we can read off system properties.

Finally in Section 5 we study under which conditions a linear descriptor system with
variable coefficients is regularizable. That means we give necessary and sufficient conditions
for the existence of derivative and/or proportional state feedback so that the closed loop
system is uniquely solvable for all consistent initial values. Furthermore Section 5 shows
how we can get in theory a closed loop system of index at most one.

2 Canonical forms for linear differential-equations
with variable coefficients

We begin our analysis of the descriptor system (1), (2) with a short look at canonical forms
for differential-algebraic equations (DAEs) with variable coefficients [22, 24]. These DAEs
are of the form
E)i(t) = A(t)z(t) + f(1), t €[t 1] TR (7)

with initial condition (2), F, A as in (3) and f € C([t1,12],C").

The standard variable coefficient transformations that can be applied to linear DAEs
are changes of bases, i.e. x(t) = Q(¢)y(t) and pre—multiplication of (7) by P(t). Equation
(7) then transforms to

PHE®Q1)i(t) = (PAMQ) — PE®)Q(1) x(1) + P(t)x(t) (8)
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and we get the following definition of equivalence for pairs of matrix functions.

Definition 1 Two pairs of matriz functions (E;(t), Ai(t)), E;, A; € C([t1,15],C™), 1 =1,2
are called equivalent if there are P € C([t1,12],C™") and Q € CY([ty,1,],C") with P(t), Q(t)
nonsingular for all t € [t1,13] such that

(B0, ) = PB A |9 20 )
0 Q)

This approach is very useful for an analysis of DAEs, but for a numerical solution the
derivative Q(t) creates difficulties. Taking into account that at a fixed point ¢ € [ty, 5]
we can choose Q(t) and Q(t) independently [15, 22] one obtains the following definition of
equivalence for constant pencils.

Definition 2 Two pairs of matrices (E;, A;), E;, A; € C™ i = 1,2 are called equivalent
if there are matrices P € C™", ), R € C" with P,Q nonsingular such that

(Fy, As) = P(Ey, Ay) [%2 _QR]. (10)

For this local equivalence we find in [24] the following canonical form:
Theorem 3 Let £, A € C™' and

(a) T basis of kernel £

(b) 7 basis of corange FF = kernel £*
(¢) T’ basis of cokernel £ = range E*
(d) V basis of corange(Z*AT).

(11)

Then, the quantities (with the convention rank () =0)

r = rank Iv

(a) (
(b) a=rank(Z*AT) (algebraic part)
(¢) s=rank(V*Z*AT") (strangeness) (12)
(d) d=r—s (differential part)
() w=n—r—a—s (left undetermined part)
(f) vw=1l—r—a—s (right undetermined part)
are invariant under (9) and (E,A) is equivalent to the canonical form
Is 0 0 0 0 00 0 00 S
0 I; 000 00 0 00 d
00 000[,]001 00]|]|a (13)
0 0 0 00 Is 0 0 0 0 S
0 0 0 00 00 0 00 U

where the last block column in both matrices has width u”.



Applying now the results for the local canonical form (13) to equation (7) one obtains
functions r, a,s,u',u" : [t;,t;] — Ny. Currently we do not know in general how to char-
acterize points, where these quantities change their values with ¢. For these reasons, we
exclude such phenomena by assuming

rt)=r, alt) = a, s(t)=s, u'(t) =u', v (1) =" (14)

For analytic matrix functions E(t), A() the functions r(¢),a(t), s(t),u!(t),u"(t) change
their values only at isolated points and for the theory such points do not cause any
problems.! For nonanalytic matrix functions F(t), A(t) a characterization of such points is
still under investigation. Recently, Rabier and Rheinboldt [28, 29] generalized the approach
of [22, 24] and studied generalized (weak) solutions of the DAE (7).

Applying equivalence (9) to the pair (E(t), A(f)) we obtain from [24] the following
canonical form:

Theorem 4 Let F, A as in (3) and let (14) hold. Then (E(t), A(t)) is equivalent to a pair

of matrix functions of the form

I, 0 0 0 O 0 Apa(t) 0 Au(t) Ais(t) =
0 I 00 0 0 0 0 Au(t) Ayt d
o 000O0O|,]O0 o0 I, 0 0 a (15)
0 0 00 0 L, 0 0 0 0 S
0 0 000 o 0 0 0 0 u!

where the last block column in both matrices has width u”.
Writing down the system of differential-algebraic equations that corresponds to (15),
we get

21(t) = Ara(t)xa(l) + Ava()wa(t) + Ass(t)as(t) + f()
To(t) = Aga(t)xa(l) + Ags(t)xs5(t) + f2(1)

0 =x3(t) + f3(t)
0=a1(2) + fa(t)
0= f5(1).

Now we can differentiate equation (16d) and insert it in (16a). This corresponds to passing
from (15) to

a
b
¢

——

(16)
d

€

(
(
(
(
(

~—

00 000 0 Ap(t) 0 Au(t) Aist) s
0 I, 0 0 0 0 0 0 Ag(t) Ass(t) d
00 0O0O0][,]0 0 I, 0 0 a (17)
00 000 I, 0 0 0 0 s
0 0 000 0 0 0 0 0 u'

'For analytic E(t), A(t) we can use the analytic singular value decomposition [2, 26, 35] to compute a
cononical form similar to (15) where we get X(¢)’s instead of the identities. These X(#)’s are diagonal and
can become singular only at isolated points.



for which we again compute characteristic values r, a, s, d, u!, u".

Y )

The above procedure leads to an inductive definition of a sequence of pairs of matrix
functions (E;(t), Ai(t)), 1 € No, where (Fo(t), Ao(t)) = (E(t), A(t)) and (Eiy1(1), Aipi(t))
is derived from (FE;(t), A;(1)) by one step of this procedure.

Here we must assume (14) for every occurring pair of matrices. Connected with this
sequence, we then have sequences r;, a;, s;,d;, ul,u?, i € Ny of nonnegative integers. The
sequences 15, a;, 55, 1 € Ny are characteristic for the given DAE, that is, they do not depend
on the specific way they are obtained (recall that d;, ul,u’ are not independent of these).
Furthermore, the sequences stop after finitely many (say ) steps with s; = 0. The quantity
p is called the strangeness index of the pencil (F(t), A(t)).

As last result from [22, 24] we cite an appropriate generalization of the Weierstrafi—

Kronecker canonical form for constant pencils (£, A) in the case of variable pencils:

Theorem 5 Let the strangeness index y be well-defined for the pair (E(t), A(t)) of smooth
matriz functions. Let v, a;, s;, d;,ub,ul, i € Ny be the related characteristic values as above.

1) e
Define

(@) bo=ao,  bi=rank ([ AL (0) ALV ]),
(b) co=ap+ 80, ¢ =rank ([ Agg_l)(t) Aﬁ_l)(t) A%‘l)(t) D ;
¢) wo = ul w; = ub — ub 1=1,..., 4.
( ) 0 % t—19 ) s M
(18)
We then have (@
a) ¢ =b;+ s, t=0,...,p¢
(b) wi=sic1—¢, t=1,...,p (19)

and the pair (FE(t), A(t)) is equivalent to a pair of matriz functions of the form (without
arguments)

[T 0 ... 0 0 =« * k. * 0 0 d,
00 ...00 F, 0 0 . 0 0 0 w,
: F : Do
00 0 0|, 100 0 0 . 0 wo (20)
00 0 0 G, 0 0 0 1 Cu
Do : e Do : . :
00 ... 0 0] [0 0 ... 0 I|) ¢
where
F;
rank ([ . ]) =c+w =51 <c¢_1 (21)

and the second block column in both matrices has width uL
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In the next two sections we will prove generalizations of these theorems for the descriptor
system (1).

3 Local canonical forms

In this section we will generalize the local canonical form for linear DAEs with variable
coefficients of Theorem 3 for the descriptor system (1).

For constant coefficient systems canonical and condensed forms have been studied for
unitary transformations in [3, 4, 5] and for general transformations in [25].

Note that for a linear descriptor system with variable coefficients (1) we cannot apply
directly the results of Section 2 since usually we cannot assume that the control u(t) is
sufficiently differentiable. In principle we can apply differentiation of components only in
the uncontrollable subspace, i.e., the part of the system operating in the left nullspace of
B(t). Recently, a condensed form for unitary transformations has been studied in [6]. In
the approach of [11, 12] it is assumed that the control is sufficiently smooth, which is a
major difference to our approach.

The standard variable coefficient transformations that can be applied to the linear de-
scriptor system (1) are pre-multiplication of (1) by a nonsingular matrix P(¢) and changes
of the bases for the state () and control u(t) of the system. Therefore, we use the following
global equivalence transformations for a triple of matrix functions (E(t), A(t), B(t)).

Definition 6 Two triples of matriz functions (E;(t), Ai(1), Bi(t)), Bi(t) € C([t1,12],C™™),
Ei(t), Ai(t) € C([t1,t2],C™") i = 1,2 are called equivalent if there are P(t) € C([t1,t2],C™"),
Q(t) € C([t,t2],CH) and S(t) € C([tl,tz],cmm) with P(t),Q(t), S(t) nonsingular for all
t € [t1,t2] such that

(E(1), As(1), Bao(1)) = P(O(E(L), A1), Bu(2)) | 0 Q1) 0 |.  (22)

Standard rules for differentiation show that this is indeed an equivalence relation.
As in the case of linear DAEs we get the responding local equivalence by choosing Q(t)
independent of Q(t) at a fixed point ¢ € [t1,12].

Definition 7 Two triples of matrices (E;, A;, B;), E;, A; € CV, B; € C™™, 1 = 1,2

are called equivalent if there are matrices P € C™", Q, R € C, S € C™™ with P,Q, S
nonsingular such that

(E27A27B2) — P(ElvAlvBl)

e D)

“R 0
Q 0. (23)
0 S



Again, it is easily checked that the local transformations describe an equivalence trans-
formation.

Using the local equivalence transformations we obtain the following canonical form for
a triple of matrices (F, A, B).

Theorem 8 Let B, AcC%, Be&C" and

T basis of kernel £

7 basis of corange F = kernel £*

T’ basis of cokernel £ = range £*

K basis of corange(Z*B)

V basis of corange(K*Z*AT) (24)
L basis of kernel(Z*B)

Y basis of kernel(V*K*Z*AT")

Y’ basis of cokernel(V*K*Z*AT")

N basis of kernel([I, 0][Y' Y]~ Y Z™*ET")"'Z"*BL).

/—\/—\GAA/—\A/—\/—\
o o o
= S~k =W Q

.

Then, the quantities

s¢ = rank([[; O]Y" Y|"Y(Z*ET")" ' Z™*BL

RN
~—

J) st=s—s°
k) d°=rank([0 LY Y]"YZ*ET")"*Z"*BLN
) d*=d-—d.

(a) r=rank £ (rank)

(b) f=rank(Z*B) (feedback part)

(¢) a=rank(K*Z*AT) (algebraic part)

(d) s=rank(V*K*Z*AT") (strangeness)

(e) d=r—s (differential part)

(f)y vv=n—-r—a—s—f (left undetermined part) (25)
(9) v =1—-r—a—s (right undetermined part)
(h) v=m—J

(

(

(

(



are invariant under (23) and (E, A, B) is equivalent to the canonical form

(I O 0 0 0 0 0 07
0 I« O 0 0 000
0 0 Izpe 0 00 0O
0O 0 0 I 0000
o 0 0 0 000 0],
o 0 0 0 0000
o 0 0 0 0000
o 0 0 0 0000
L0 0 0 0 00 0 0]
- S ; (26)
0O 0 00 0 000 0 Iy O 5¢
0O 0 00 0 000 0 0 0 s
0O 0 00 0 000 0 0 g d°
0O 0 00 0 000 0 0 0 d*
o 0 0014 000, 0 0 O a
Iec 0 00 0 0 0O 0o 0 0 5°
0 I 00 0 0 00 0 0 0 s
0 0 * *x 0 #* x % Iy 0 0 f
L0 0 00 0 0O0O0)J LO 0 0 ] u!

and the last column in the first and second matriz has width u”.
Proof. Let (E;, A, B;), ¢ = 1,2, be equivalent. Since
rank(Fy) = rank(PFE1Q) = rank(FEy),

r is invariant. For f,a,s,s® and d° we must first show that they are well-defined with
respect to the choice of the bases. Each change of bases can be represented by

T=TMyp, Z=7ZMyg, T'=T'Mp, 7' = Z'My, K = M; KMy, V= Mg'VMy
L=LMp, Y'=M'Y'My,, Y = Mz'Y My, N = M;'NMy

with nonsingular matrices My, Mz, My, Mg, My, My, My, My and My. The well-

definiteness follows from

rank(Z*B) = rank(M3Z* B) = rank(Z*B),

vank ([1, 0][Y" Y]~ (2" ET")™' 72" BL)
= rank ([1, 0)[Mz'Y' My, Mp'Y My]™
x (M3, 2" ET'My)™ M3, 2 BLM,)
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= rank ([1, 0] (diag(My}! M"Y Y] My)

x (MpHNZ" BT M) M3, 2" BLM,,)
= rank (My![1, O)[Y" Y]~ (2" ET")™ 2" BLMy,)
= rank ([, 0)[Y" Y] (£~ E1")"' 2" BL)

and similar calculations for the other values.

Let now bases Ty, Zy, Z4, Ty, Ko, Va, L2, Y], Y5, N3 be given for (Fs, Az, Bs), i.e.

rank(FyT3) =0, T5T; nonsingular, rank(7T373) =n —r
rank(Z3F>) =0, 7575 nonsingular, rank(Z;7z)=n—r
rank(FLT5) =, TT5 nonsingular, rank(7y7Ty) =r
rank(Z5" Ey) =7, 74" 7% mnonsingular, rank(Z5Z}) =r
rank( K75 Bs) =0, KK, nonsingular, rank(KjK;) = fa
rank (V' Z5 K3 AoTy) =0, ViV nonsingular, rank(VyVa) = as
rank(Z5ByLy) =0, L3Ly nonsingular, rank(K;K;) = fy
rank(V 75 A T'5Y2) = 0, Y'Y, nonsingular, rank(Y;Y;) = $
rank(VyZ5 A TY)) = sq, Y'5Y] nonsingular, rank(Y)"Y)) = s,
vank([1, O][Y] Yol (24" ByTY) " 2 By Lo Ny) = ds,

N3 N> nonsingular, rank(NjNy) = d§

with fz = dim(corange(Z;B2)), a» = dim(corange(Z;K;AsT3)) and §; =
dim(kernel(VyZ5AyT3)). Using (23) and setting
Ty = QTy, 77 = Z3P, T! = QTY, 7" = Z)°P, Ki = K5, Vy =V
Ly =WLy, Yi=Y5, Y/ =Y, Ny =N,

we obtain the same relations for (E1, Ay, By) and the above Ty, 71,1}, K1, Vi, L1, Y1, Y{, Ny,

i.e. they form bases according to (24). Since

fo = rank(Z;By)
= rank(Z;PBW)
= rank(Z;B1) = fi

we get the invariance of f. With the same technique, the invariance of a and s can be
shown. s¢is invariant, since

sy = rank([L 0][Yy Yo] 7 (Z) ErTy) ™' Z) " By L)
= rank([L, 0[Y] VA" (2" PE.QT)) ™ Z) PB,W Ly)
= rank([L 0][YY Yi]7H (2] EATY) 7 21" Bila) = s,

this also holds for Ny, i.e. d° is invariant. Therefore, the invariance of the other values in
(25) follows immediately.



For the derivation of the canonical form (26) we always use nonsingular transformation
matrices, i.e. in the first step we take a basis Z’ of range £ and set () = [Z' 7], etc. As
result we obtain the following sequence of equivalent (~) matrix pairs:

Z"ET' 0 Z"AT! 2" AT Z"B
(E’A’B)N([ 0 0]’ [Z*AT’ Z*AT]’ lZ*BU
[ Z7ET' 0 . * Z"BL'  Z"BL
~ 0 0|, | K "ZAT" K"Z*AT |, | K"Z*BL' 0
00 K*Z"AT'  K*Z*AT 0 0
(I, 0 * *
~|] 0 0], | K"ZAT" K"Z°AT |,
[0 0 K*Z*AT"  K*Z"AT
(Zz"ET)"'Z"BL (Z"ET")'Z"BL
K"Z*BL' 0
0 0
(L, 0] [« « ] [0 (Z7ET)'Z"BL]
~|1 0 0|, | Kz AT K"Z°AT |, | I 0
|0 0] | K*Z*AT" K Z*AT | | 0 0 ]
[, 0] [ 0 0 ] [0 (Z7ET)'Z"BL]
~|] 0 0|, | K ZAT" K"Z°AT |, | I 0
|0 0] | K*Z*AT" K Z*AT | | 0 0 ]
(1, 007 T 0 0 0 0 (Z"ET")'Z"BL
0 00 * kK I 0
0 0 0" | VKZAT I, 0" |0 0
L0 0 0 LVEZAT 0 0 0 0
(1, 007 T 0 0 07 [0 (Z7ET")'Z"BL ]
0 00 * kK I 0
00 0| 0 L 0] |0 0
L0 00 LVEKZAT 0 0] Lo0 0 ]
1, 007 0 0 07 [0 (Z7ET)'Z"BL]
0 00 * 0 I 0
00 0| 0 L 0[]0 0
L0 00 LVEKZAT 0 0] Lo0 0 ]
(I, 00007 [OO0O0O0O0] [0 Byl
0 I, 000 00000 0 Ba
0 0000 £ ok 0 % x Iy 0
0000000 0O0["]0 0
0 0000 I, 00 00 0 0
(0 0 000] [00o000] [0 0|
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where By = [I, 0][Y' Y]~ Y(Z"ET’

I
N
sy
t~
®
=
o

Bayy = [0 I[Y' Y]"Y 2" ET") "' 2" BL
7, 0 0007 [0 O O 007 [0 Bl
0 I, 000 00 0 00 0 By
0 0 000 0 01, 00 0 0
“1lo oo0oo0o0|°|Lo0oo0O OO ]0 O
0 0 000 0 * 0 *x = Iy 0
0 0 000] [0O0O0ODOO0O] LO 0 |
(I, 0 0 000017 [O 0 00 00 0]
0 I. 0 000 0 0O 0 0 0 000
0O 0 I, 000 0 0O 0 0 0 000
0O 0 0 000 0 0O 0 011, 000
~ 0O 0 00000/ |l 0 00000]/
0O 0 0 000 0 0 I. 0 0 000
0O 0 0 000 0 0 0 * 0 % % %
0 0 00000 LO 0 00 0O O]
[0 I, 0 T
0 0 0
0 0 [0L)(Z"ET)*Z"BLN
0 0 0
0 0 0 :
0 0 0
I; 0 0
0 0 0 ]

which at last leads to (26) by a similar final transformation step. ™
If we do not split the d and s blocks of B(t) in the proof of Theorem 8 we get the
following condensed form.

Corollary 9 Let £, A € C™, B e C»".Then (E, A, B) is equivalent to the form

o

0

oy

(27)

cocoococoo
cocoococoo
cocoococoo
o oo oo
cooM~No o
o oo oo
o oo oo
—Sh Q2 L ®»

oMo ocoo
oo oo * ¥

coM~Noc oo

jenBN e Bl an Bl en BN an
jen BN en BN an BN an)

<

where the last block column in the first and second matriz has width u” and the last block
column of the last matriz has width v. The quantities s,d, a, f,u',u, and v are defined as
in Theorem 8 and invariant under (23).
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4 Global canonical forms

As in Section 2, we can apply the results for the local canonical form (26) to equation (1)
and one obtains functions r, f, a, s, s d° : [t1,t3] — Np. Note that the other values depend
only on this invariants. Again, we do not know in general how to characterise points,
where these quantities change their values with ¢. Therefore, we exclude such phenomena
by assuming

rity=r, f) = [, at) =a, s(t)=s, () =s°, d°(t) = d". (28)
Applying transformation (22) to (1) we get the following canonical form:

Theorem 10 Let E, A, B in (1) be sufficiently smooth and let (28) hold. Then the triple
(E(t), A1), B(t)) is equivalent to a triple of matriz functions of the form

I 0 0 0 0000
0 I 0 0 0 0 0 0
0 0 Iz 0 0000
0 0 0 Im 0 0 0 0
0 0 0 0 00O0O0O]|,
0 0 0 0 0000
0 0 0 0 0000
0 0 0 0 0000
.0 0 0 0 000 0 (29)
i 0 0 Alg(t) A14(t) 0 A16(t) A17(t) Alg(t)_ i 0 Isc 0 i 8¢
0 0 Azg(t) A24(t) 0 A26(t) A27(t) Azg(t) 0 0 0 s
0 0 0 Asq(t) 0 Aszs(t) Aszr(t) Ass(t) 0 0 Iy de
0 0 Agt) 0 0 Ag(t) Agr(t) Ags(t) 0 0 0 de
0 0 0 0 I, 0 0 0 ., 0 0 o a
Ie 0 0 0 0 0 0 0 0 0 0 5°
0 Iu 0 0 0 0 0 0 0 0 0 sY
0 0 Asgs(t) Asga(t) 0 Agg(t) Asz(t) Ass(t) Iy 0 0 f
L 0 0 0 0 0 0 0 o | Lo o o |/

The proof of Theorem 10 is given in Appendix A.
Again, as in Section 3 we get a condensed form if we do not split the d and s blocks of

B(t).
Corollary 11 Let E, A, B in (1) be sufficiently smooth and let

rity=r, f()= [, a(t) = a, s(t)

S

12



hold. Then (F(t), A(t), B(t)) is equivalent to a triple of matriz functions of the form

I, 0000 0 Aw(t) 0 Au(t) As(t)] [0 Bu@)]) s
0 I, 0 0 0 0 0 0 Ay(t) A1) 0 Buy(l) d
0 0 000 0 0 I, 0 0 0 0 “ 30
0 0000[ |, 0 0 0 0 ["|o 0 s
0 0 000 0 Asy(t) 0 Asg(t) Ass(t) Iy 0 f
00 000] L0 0 0 0 o | Lo o ul

From the analysis of linear DAEs with variable coefficients we know that higher index
problems, i.e., of the index greater than one, are indicated by a non—vanishing strangeness
s (see [24]).

Our main goal is, to study the regularization of the descriptor system (1) by feedback.
As the next lemma shows, Corollary 11 is a first step in this direction.

Lemma 12 Let a quadratic descriptor system (1), i.e. n =1, be in the form (30) and
assume that s = 0.
If up =0, then their exists a state feedback u(t) = F(t)x(t) + w(t), such that the closed

loop system
(1) = (A(t) + BIOP@O)(t) + B (t), 2(to) = w0

is uniquely solvable for every consistent initial value xo and any given control w(t).

Proof. The descriptor system is of the form

L 00 0 0 Al 0 Bu(l)
0 0 0 |a(t)= 0 1, 0 x(t)+ ] 0 0 w(t).
0 0 0 Aa(t) 0 Ass(t) 0

“An(t) 0 I — Ass()
0 0 0

@
=
o
S
=.
=
i)
ﬁ
=
I
| —

] , we get the closed loop system

I, 00 0 0 Ayl 0 Bt
{o 0 Oli;(t) {0 L 0 |z)+] 0 0 |w@). (31)
0 0 0 00 I Iy 0

For any given control w(t) (31) is a DAE with characteristic values spap = 0, dpap =
d, apap = a+ f and uly .o = U,y = 0. From [24, Corollary 20] we now get immediately
that (31) is uniquely solvable for every consistent initial value x,. W

Lemma 12 shows, that under certain assumptions the condensed form (30) allows us to
construct a feedback which makes the closed loop system uniquely solvable. Even more,
in Section 5 we will show, that it is sufficient to study a closely related condensed form to
answer the question whether there exist a state and/or derivative feedback which makes
the closed loop uniquely solvable or not.
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From now on we will focus our analysis on the generalization of the remaining results
from Section 2 for the condensed form (30) of Corollary 11.

Writing down the descriptor system equations that belongs to the matrix triple from
Corollary 11, we get

(a) @1(t) = Awa(t)72(t) + Ara(t)za(t) + Ars(t)s(t) + Biz(t)us(?)
E ; 3’2@) Z( ;124@)51/‘4@) + Ags(t)a5(t) + Bao(t)us(t)
= x3(t
(d) 0= 1) (32)
(e) 0= As(t)x2(t) + Asa(t)2a(t) + Ass(t)xs(t) + ua(?)
(f) 0=0
From equation (32d) we see that x1(¢) = 0. This implies @1(¢) = 0 and from inserting

#1(t) = 0in (32a) we get an algebraic equation. This corresponds to passing from the form

(30) to

[0 0 00 07 [0 Ap(t) 0 Au(t) As(t)] [0 Bua) 1) s
0 I; 0 0 0 0 0 0 Ay(t) A(t) 0 Bu(t) || d
00 00 0 0 0 I, 0 0 0 0 “ g
00 00O0|”[Z 0 0 0 0 [0 0 s
00 00 0 0 Asp(t) 0 Asy(t) Ass(t) Iy 0 f
(00 000] LO 0 0 0 o J Lo o ]/

for which we again compute characteristic values r, a, s, d,u',u" and v.

This leads to an inductive definition of a sequence (F;(t),Ai(t),Bi(t)), 1 €
Ny of matrix function triples, where (FEo(t), Ao(t), Bo(t)) = (E(t),A(t), B(t)) and
(Bip1(t), Aixa(t), Biya (1)) is derived from (FE;(t), A;(1), B;(t)) by bringing it into the form
(30) and passing them to the form above. Here we must assume that none of the values

r(t) =r, f(t) = f,a(t) = a,s(t) = s for every occurring pair of matrices. Connected with
this sequence, we then have sequences r;, fi, a;, 54, ut, u?, v, © € N of nonnegative integers.

The next Theorem shows that these sequences are indeed characteristic for a given
triple (F(t), A(t), B)t)), i.e. they do not depend on the specific way they are obtained.

Theorem 13 Let (E(t), A(t), B(t)), (E(t), A(t), B(t)) be equivalent and of the form (30).
Then the modified triples (FEmoa(t), Amod(t), Bmod(t)), (Emoa(t), Amoda(t), Bmoa(t)) obtained
by passing to (33) are also equivalent.

Proof. Assume that (E(t), A(t), B(t)), (E(t), A(t), B(t)) are equivalent and of the form

(30). Omitting arguments we get

PE = EQ, PA= AQ — EQ, PB=BS

14



where P, () and S are smooth, pointwise nonsingular matrix functions. From the first
relation we get

[ Py Py 00 0] [ Qi Q12 Qi3 Qua Qs |
Py Py 00 0 Q21 Q22 Q3 Qa1 Qs
Py Py 00 0 0 0 0 0 0
Py P 00 0] 0 0 0 0 0
Py Py 0 00 0 0 0 0 0

| FPs1 FPs2 0 0 0 | | 0 0 0 0 0 |

if we partition P and () according to Corollary 11.
With this we obtain for the third, fourth and sixth block rows of the second relation

P34 PSS%SZ P33 P35454 PSS%SS QSI Q32 QSS Q34 QSS
P44 P45A52 P43 P45A54 P45455 —

P64 P65A52 P63 P65A54 P65A55

Qu Gz 0 0 0
o 0 0 0 0

For the third to sixth block rows of the third relation we then deduce

Py 0 0 0
P 0| | 0 0
P55 0 N Sll 512
Pss 0 0 0
Sll 512

where we partition S = ] according to Corollary 11.

521 522

In terms of the matricies () and S we therefore have

[ Qll 0 P13 P14 P15 P16
Q?l Q22 P23 P24 P25 P26
0 0 QSS QSI 0 P36

0 0 0 Qll 0 P46 ’
0 0 P53 P54 Sll P56
0 0 0 0 0 Fes

Q1 0 0 0 0
Qu Qu 0 0 0

Q=|@Qu 0 Qu 0 0 ,Szlgn SO]
Q41 Q42 Q43 Q44 Q45 2 2
QSI QSQ Q53 Q54 QSS

Q44 Q45
Q54 QSS

] must be nonsingular. From the first two and

and Q117Q227Q33751175227P667 l
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the fifth block row of the second relation, we then get

Qll 0 P15 A12 414 415

Q?l Q22 P25 70 424 425 -

0 0 Sll A52 A54 A55
A12 A14 A15 Q22 0 0 0 00
0 A24 A25 Q42 Q44 Q45 - Q22 0 0
A52 A54 A55 QSZ Q54 QSS 0 0 0

Similar, from the same block rows of the third equation, we deduce

Qu 0 P 0 512 0 Bis
Q21 Q22 Pos 0 Ba | =0 By |5
0 0 Si I 0 I 0

Let (Fmods Amod, Bmod) be the modified
(E, A, B). Then

triple which we obtained form the triple

(Emod7 Amoda Bmod)

[ Q1 170 ]
Q21 Q2 1
1 0
~ I 0 ’
511 0
i 1] 0
[ Qu [0 Ay 0 A Ass |
Q21 Q2 0 0 0 Ay A
1 0 0 I 0 0
1 I 0 0 0 0
St 0 Ass 0 Asy Ass
i L0 0 0 0 0
[ Qu [0 Bz 1
Q21 Q2 0 By
0 0
0 0
St I 0
i 110 0 |
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[0 1 [0 A 0 Ay Ags | I
(22 0 0 0 Ay Ay Q
0 0 0 I 0 0 22 /
0 ’ I 0 0 0 0
Qa2 Qas Qas
0 0 A52 0 A54 A55 Q Q Q
i 0 ] i 0 0 0 0 0 ] 52 54 55
i 0 . 1 [ 0 B12 1
()22 0 By
0 0 0
B 0 o oo |°
0 I 0
i 0 | L0 0 |
[0 i I [0 Az 0 Ay Ags |
(22 Q_l 0 0 0 Ay A
0 22 I 0 0 I 0 0
0 ’ I 0 0 0 0
0 0 As2 0 Asq Ass
L 0 L0 0 0 0 0
0 Q 7
2 Qr
— I
* ok
0
* ok
L 0 |
T 0 [0 Bis
()22 9 0 By
0 22 0 0 0
0 ’ 0 0
0 I 0
0 | 10 0
[0 1 [0 A 0 Ay Ay | [0 By |
] 0 X 0 A24 A25 0 B22
0 0O 0 I 0 0 0 0
’ I 0 0 0 0 ’ 0 0
0 A52 0 A54 A55 I 0
i | L0 0 0 0 0 | L0 0 |

where X = — (@203 + QQ% ) = — (QuQs)) = —1=0. =

Now we can state some basic properties of these quantities:
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Lemma 14 Let FE(t), A(t) and B(t) in (1) be Suﬁcienﬂy smooth and such that the se-
quences (Ey(t), Ai(t), Bi(t)), i € No and vy, fiya;, 85, di,ubul g, 1 € Ny are well-defined by

the above process. Let furthermore

(£:(1), Ai(1), Bi(1))

I, 0 0 0 0
0 I 0 00
N 0 0 0 00
0 0 0 0 0]|”
0 0 0 00
L0 0 00 0 ’ ' (34)
[0 AR 0 ARG ARD ] [ o BY® ) =
000 AL AR | | o BYE) ||
0 0 1., 0 0 0 0 a;
I, 0 0 0 0 1o 0 S
0 AR 0 AR ADw) | | L0 i
L 0 0 0 0 o | L O 0 |/
Then, we have (for all t € [t;,t3], 1 € N)
(a) rig1=1i— 8
() S = fo k(B0
(©) s = a + 5+ rank( B[4S AD(D)])
(@) siar = rank(W;(1)" R (1) AL (1) )
(©) s — ds — rank( Wit R A1) |
(£) b = i+ (s = rank( B TA(0) Ay () A (D)) — rank(BE(1)
(9) wiyy = uf + (i — rank(Ri(1) [AT (1) AT () AT (1))
(h) vigr = vi — rank(B{ (1))
with R;(1) = corange( B\ (1)) and W;(t) = corange( R, (1)*[A)(1) A (1)]).
There exists a number v € Ny defined by
v = min{i € Nyls; =0} (36)
and the above sequences have the properties
(a) ri>rigr for e<v, rp=r, for i>v
b) fi<fiqr for i<v, fi=f, for i>v
(¢) a; < a1 for 1<v, ay=a, for i>v
(d) s> 841 for i<v, $,=0 for i>v (37)
() di>diy1 for 1<v, di=d, for i>v
() <y for i<v. ul=ub for i
(9) wi <wuiyy for i<v, ui=wuy for i>v
(h) v;>wviyr for 1 <v, vi=v, for i>v

18



Proof. Replacing I, by 0 in F;(t) we get (3ba) from r;y1 = rank(F;41(t)). (35b)
is then a consequence of fii1 = rank(Zi41(1)*Bit1(t)), where Z;41(t) is a basis of
corange( F;11(1)). Since a;41 = rank(K;41 (1) Zip1 (1) Aig1(1)Ti41(2)), where Ki1q1(t) is a
basis of corange(Z;11(t)*Bi41(t)) and T;11(1) is a basis of kernel(E;11(1)), we get (35¢).
(35d) follows now immediately from the definition (24) of s,41. By direct application of
(24) we now get (35e-h).

Ag?(t) is an (s;,d;)—matrix, so that s; > s;41 and s; must become zero after a finite
number of steps. Thus, (37) is a direct consequence of (35). ®

The quantities v and r;, f;, a;,8;, ¢ € {0,..., v} are characteristic for a given descriptor
system and the hope is that they are sufficient to describe the possible phenomena for (1).
We now get a condensed form which reflects the above quantities similar to the condensed

form of [6].

Theorem 15 Let v from Lemma 1 be well defined for a triple (E(t), A(t), B(t)) of smooth
matriz functions. Let r;, fi,a;, s, di,ub,ub v, @ € 0,...,v be the related characteristic
values as above. Furthermore define (in the notation of Lemma 14)

(a) bo=ao, b= rank(Ria(t) (AL (1) AT ()]),

(b) 9o =0, gi = rank(Bi; (1)),

Ec)) o = ao+ 50, Gi = ra?k(R;_l(t)*[Agg—”(t)Agg—”(t)Agg—”(t)]) + g, (38)
d) wy = uy, w; = u; — U_q,

(e) wh = up, wi=ul —ul_, t=1,...,0.

We then have

(a) ¢i=bi+s;, 1=0,...,v,
() wi=six—c—gi i=1,...,v, (39)
(¢) wi=s_1—¢, i=1,...,v

)

and the triple (E(t), A(t), B(t)) is equivalent to a triple of matriz functions of the form
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(without arguments)

(7 0 0 0 =«
00 00 F,
: Iy
0 0 - 0 0
00 0 0 L, ’
: By
0 0 - 0 0
1 0 0 0 0 = * |
R * 0 07 [0 *17 d, (40)
0 0 0 0 0 0 0 wf,
0 0 0 0 0 0 0 w}
00 0 1 10 0 cy
I 0 0 Co
ERE: * 0 0] [ I 0] 1
where
F; I
rank I =¢ 4w =821 < ¢ (41)

The second to the v + 2-th block column have size w), to wy.

The proof of Theorem 15 is given in Appendix B.

To complete the picture, we will conclude this section with some remarks about the
generalization of the above process for the canonical form (29) of Theorem 10.

Generalizing the above process we again get an inductive definition of a sequence of
matrix function triples (FE;(¢), A;(t), Bi(t)), ¢ € Ny and sequences of corresponding char-
acteristic values. In this case we must assume additionally that d°(¢) = d° and s°(t) = ¢
for every occuring pair of matricies.

Then we can generalize Theorem 13 and Lemma 14. But note, that neither for d;, d¥, s¢

K3
or s¥ we do get any recurrence formulas nor properties as in (37) are valid.

Finally, we can generalize Theorem 15 and get the following canonical form.
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Theorem 16 Let v from Lemma 14 be well-defined for a triple (FE(t), A(t), B(t)) of smooth
matrixz functions and let the values c;, w', w!, i = 0,...,v be defined as in Theorem 15.

The triple (E(t), A(t), B(t)) is then equivalent to a triple of matriz functions of the form
(without arguments)

I 00 --- 0 0
071 0 ---0 0
00 -~ 0 0 F, *
F
00 0 0 0 |,
00 0 0 0 K, *
Ey
00 0 0 0
00 0 0 0 =
' R 0 o] [o 17\ & (42)
ok ok 0 0 0 0 d;
000 0 0 0 00 w!,
000 0 0 01,00 w))
000 0 I 00 ¢y
0 I 0 0 Co
I * 0 0] [T 0]) L

and (39) and (41) are still valid.

Note that we have assumed additionally that d°(t) = d° and s°(¢) = s° for every occuring
pair of matrices, but in the normal form (42) only the df’s occur. Therefore, one can use
weaker assumptions to prove Theorem 16.

Until now we have studied only equivalence transformations of the form (22) and (23).
For constant coefficient system feedback canonical forms have been studied in [25]. The
canonical form (42) gives us the possibility to generalize these results for the variable
coefficient case.
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5 Regularization by feedback

In this final section we answer the question whether the system is regularizable by propor-
tional and/or derivative feedbacks, i.e. that the closed loop system is uniquely solvable for
all consistent initial vectors.

For constant coefficient systems regularizability has been studied by several authors,
for example [3, 4]. An approach similar to the one we present in this paper for linear
descriptor systems with variable coefficients has been studied in [6].

Using the results of Section 4 we can transform (1) to an equivalent descriptor system
of a very special structure. Note that equivalence here means that there is a one-to—one
correspondence of the solutions, that is we get a descriptor system which has the same
solutions as the original system (1) for every consistent initial value and any given control.

Theorem 17 Let v from (36) be well-defined for the triple (E(t), A(t), B(t)) in (1). Then

(1) is equivalent to a descriptor system of the form

(a) a1(t) = Aw(t)zs(t) + Bra(t)ua(t)

(b) 0 = xQ(t) (43)
(C) 0 = Agl(t)l'l(t) —|— A33(t>$3(t> —|— ul(t)

(d) 0 = 0

dy,,a, and u), are the number of the differential, algebraic and undetermined components of

the unknown x in (43) and f' and u! are the number of equations in (43¢) and (43d).

Proof. We transform the triple (F(t), A(t), B(t)) to the form (30) and pass to (33).
From Lemma 14 we know that we can repeat this process v—times until s, = 0. This yields
a triple of matrices of the form

I, 0 0 0 0 Ayl 0 Bp(t) 1\ d
0 00 0 I, O 0 0 a, (14)
0 0 0| | Au(t) 0 As(t) || I, 0 £
0 00 0 0 0 0 0 ul

14

where the last block columns of the first and second matrix have width u/, and all these
steps are reversible W

Note that some solution components of (43b) which are constrained to zero come from
uncontrollable higher index components of (1). The other uncontrollable higher index
components are fulfilled trivially and can be found in (43d).

Before we can answer the question posed in the beginning of this section, we have to
define what we understand under regularizability.
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Definition 18 (see [6], Definition 7)

(a) The descriptor system (1) is called regularizable by proportional feedback if there exists
a (proportional state) feedback u(t) = F(t)x(t)4w(t) such that the closed loop system

E)i(t) = (A(t) + B F(1))z(1) + B()w(l), (o) = wo
is uniquely solvable for every consistent initial value xo and any given control w(t).

(b) The descriptor system (1) is called regularizable by derivative feedback if there exists
a (derivative) feedback u(t) = G(t)2(t) + w(t) such that the closed loop system

(E(t) + B(1)G(1))a(t) = A(t)x(t) + B(t)w(t), w(to) = zo
is uniquely solvable for every consistent initial value xo and any given control w(t).

(¢) The descriptor system (1) is called reqularizable by combined derivative and propor-
tional state feedback if there exists a feedback u(t) = G(t)x(t) + F(t)x(t) + w(t) such
that the closed loop system

(E(t) + B(1)G(1))a(t) = (A(t) + B F(1))x(t) + B()w(t), (o) = wo
is uniquely solvable for every consistent initial value xo and any given control w(t).

Now we can formulate the main theorem of this section. It gives necessary and sufficient
conditions whether the descriptor system (1) is regularizable by proportional or derivative

feedback.

Theorem 19 Let the v from (36) be well-defined for the triple (E(t), A(t), B(t)) in (1).

(a) The descriptor system (1) can be regularized by proportional state feedback if and only
i uy = fo.
(b) The descriptor system (1) can be regularized by derivative feedback if and only if

u, = fo.

(¢) The descriptor system (1) can be reqularized by combined derivative and proportional

state feedback if and only if v, = f,.

Proof. From Theorem 17 we know that it is sufficient to analyse the descriptor system
(43). Therefore, we assume that (1) is of the form (43).

In order to show that the condition u!, = f, is necessary observe that the last block rows
(43(d)) are fullfilled trivially and we can leave these equations off altogether. If v/, > f, the
remaining system (43(a)—(c)) has more columns then rows, i.e. we can choose components
of & arbitrarily and the solution will not be unique. If u! < f, the system (43(a)—(c)) has
more rows then columns and we cannot apply arbitrary controls.
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Assume now that v/, = f,. We can choose the proportional feedback

)= [0 s

and the closed loop system is then of the form

I, 00 i) 0 0 Aps(t) 1) 0  Biylt)
0 00 {x;(t)] 0 I, 0 {x;(t) L]0 0 [wl(t)]
A A0 B R A0 B O R

The corresponding DAE has the characteristic values dpag = d,,apagp = a, + [, Spag =
0,up 4z = 0. Since vl = ul, and since the last block row of B(t) of the closed loop system
is zero, we get from [24, Corollary 20] that the closed loop system is uniquely solvable for
every consistent initial value x¢ and any given control w(t).

In the case of derivative feedback we choose

EARBEalE

x3(t)

and get the closed loop system
1 0

Q.
)

v xl‘(t) (1)

0 0 0 0 1, 0

0 0 I, {xz(t)] = As(1) OV Ass(1) {xz(t)]

0 0 0 z3(t) 0 0 0 73(t)
0  Biaft)
0 0 wi(t)

* Iy, 0 lwz(t)]

0 0

which is as required. (c) follows now immediately.

Corollary 20 Let v from (36) be well-defined for the triple (E(t), A(t), B(1)) of a square
system (1), i.e. n = 1. The system (1) can be regularized by a proportional state, a
derivative or a combined derivative proportional feedback if and only if u', = 0.

Theorem 19 and Corollary 20 show that it is sufficient to study the reduction process
based on the condensed form (30). Note that there is still a lot of freedom in the choice of
the feedback and the canonical form (29) can maybe used to improve robustness of the sys-
tem or guarantee controllability of the regularized system. For constant coefficient systems
this is done in [3, 4, 13] but so far it is not really clear what robustness or controllability
means for linear coefficients systems with variable coefficients.

24



6 Conclusion

We have presented local and global equivalences and corresponding canonical forms for
linear descriptor systems with variable coefficients. The global canonical forms and the
global condensed forms, which are not as far reduced as the canonical forms, are powertul
tools in the analysis of this type of descriptor systems. Based on a condensed form we
found under what conditions a linear descriptor system is regularizable, i.e., there exists a
derivative and/or proportional state feedback such that the closed loop system is uniquely
solvable for all consistent initial vectors. These conditions are necessary and sufficient.

While the global forms are not suitable for numerical computations the numerical acces-
sibility of local quantities which give essential information on the global solution behaviour
are of great importance in the development of numerical methods.

We assumed that sequences of characteristic values are constant. As for differential
algebraic equations weaker assumptions such as jumps at isolated points connected with a
weak solvability concept can be considered.

A Proof of Theorem 10

To proof Theorem 10 we make use of the following property [21, 30]

Lemma 21 Let £ € CH[ty,t5], C*™), { € Ny and rank E(t) = r for all t € [t1,15]. Then
there exist U,V € C*([t1,t3],C™") with U(t), V(t) nonsingular (unitary) for everyt € [t;, 1]
such that
M(t
Ut E@)V(t) = l (() ) 8 ] , L€ [ty 1), (45)

where X € C*([t,t5],C™").

Proof of Theorem 10. From now on, we will omit the argument ¢ in the proofs and
use the word "new” on top of the equivalence operator if we have changed the notation
according to the new block structure of the matrices. Using Lemma 21, we have

(E, A, B) ~ (UrSy Vi, Ur AVy — Ur EV4, U B)

n/s/w Z1 0 All A12 Bll
0 0] | A Ay |7 | Ba

new ]7’ 0 All A12 Bll
0 0| | A A || Ba
I ]7’ 0 1 I All A12 1 I Bll B12 1
0 0, | An A |, | S 0
L 0 0] | A As2 | | O 0 |
i ]T 0 i i All A12 1 [ Bll B12 |
o o, | An An |, | Iy 0
L 0 0] | A As2 | | O 0 |




new
~

new

new

new

new

1
~ ~
oooo@@oooﬂ e 2s
[

cCoococ o N oo oo oMN oo oo oM coo oo™

SNo

SN cocooco oo coocofNo coo o

jen BN en BN an BN an)

O OO DO OO O OO OO OO 00 o0 o000 oo oo oo

All
A21

Us Az
An
A
Az
Agn

Y

O DO D OO O DD OO OO OO0 0O 0O oo oo o 0 coo o oo

O DO D OO O DD OO OO OO0 0O 0O oo oo o 0 coo o oo

jenilen il an N an BN en N e

A1aVs I, 0 T 0 By B
ApVs | =1 0 0 [ 0 0 ] Iy 0
Ui Az Vs 0 0 3 0 0
Ag Ass [ Bii DB
Agy A Iy 0
I, 0 [>] 0 0
0 0 0 0
[ All A12 A13 A14 A15 1 [ Bll B12 1
A21 A22 A23 A24 A25 B21 B22
A31 A32 A33 A34 A35 ]f 0
| Ay Ap I, 0 0 |7 0 0
Y4 0 0 0 0 0 0
.0 0 0 0 0] [0 0 |
[ All A12 A13 A14 A15 1 [ Bll B12 1
A21 A22 A23 A24 A25 B21 B22
A31 A32 A33 A34 A35 ]f 0
Ay Ag I, 0 0 |7 0 0
I, 0 0 0 0 0 0
.0 0 0 0 0] [0 0
[ All A12 A13 A14 A15 1 [ 0 B12 1
A21 A22 A23 A24 A25 0 B22
Ay Asy I, 0 0 0 0
I, 0 0 0 0 |"]0 0
A51 A52 A53 A54 A55 ]f 0
.0 0 0 0 0 L0 0 |
[0 A Az A Ass ] [0 DBia |
0 Az Axzs Agy Ass 0 DBy
0 A, I, 0 0 0 0
I, 0 0 0 0 |7]0 0
0 A52 A53 A54 A55 ]f 0
0 0 0 0 0 | 0 0
[0 Ay Az A Ags [0 By 1
0 Az Axzs Agy Ass 0 DBy
o 0 I, 0 0 0 0
I, 0 0 0 0 |”]0 0
0 Asy Ass Asq Ass ]f 0
L0 0 0 0 0 L0 0 |
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()5 was chosen to be the solution of the initial value problem

Qs — As3Qs, @s(to) =1,
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which is nonsingular at every point ¢ € [ty,15], i.e.

(E, A, B)
e 0 0 0 000 0]
0 [w. 0 0 00 00
0 0 I 0 000 0
0 0 0 Ju 0000
o 0o 0 0 000 0],
0 0 0 0 0000
0 0 0 0 0000
0 0 0 0 0000
L0 0 0 0 000 O]
[0 0 Ap A 0 A A Al [0 Le 0]
0 0 Ay Ay 0 Ay Ay Ass 0 0 0
0 0 0 Asy 0 Asg Agr As 0 0 I
0 0 Ay Ay 0 Ay Ay Ass 0 0 0
0o 0 0 0 I, 0 0 0 |,|l0 0 0
L. 0 0 0 0 0 0 0 0 0 0
0 [w 0 0 0 0 0 0 0 0 0
0 0 Asg Ass 0 Ass Asr Ass Iy 0 0
L0 0 0 0 0 0 0 0 0 0 0 |

which at last leads to (29) by a similar final transformation step. ®

B Proof of Theorem 15

From

rank(Ri_y (1)°[A% V()AL ()AL V(1)
= rank(R;_; (1) [AG V()AL (0)]) + rank(Wisy (1) Ry (1) A V(1))

we obtain (39a), while (39b,c) are consequences of Lemma 14 (35f,g).
Starting from Corollary 11 in the permuted form (if we do not perform the last elimi-
nation step, i.e. do not zero out As;)

1 000 0] [An A Az 0 07 [0 B\ do
00010 Asy Ay Asy 0 0 0 B S0
00000 0O 0 0 00 0 0 wl
0000O0|’] 0 0 0 I 0[]0 0 S0
00000 0O 0 0 0 I 0 0 bo
0000 0] |As A Ass 0 0] |1 0 |/ £
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we obtain the following equivalent triples of matrix functions in the i-th step (omitting
subscripts(l) and denoting by [A;; ... A;;] a block entry A;; which extends over several block

columns)
71 010 0|0 O * * ]
0O 010 0|71 O * *
0 F; *
0

I

0 0

0 0| Wn * *

0 0 W21 *

0 Ei—l *

By

0

L 0 0 * *

[ A Aqo Aqs .. Aqs T [0 Bz ] d;
A1 Aos | Asg oo eee a.. Ao 0 B Sq
0 0 0 w!
I 0 0 0 Si
o I 0 0 b;
I 0 0 Cy—1
I 0 0 Co
L = * * * 0 010 ol LI o0 | fi
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new
~

I 0 0]o0 0|0 0 0 * *
0 0 010 0|0 U1 U * *
0 0 0]0 00 Uy U * *
0 F; *
0
I
0 0
0 W11 %
W21 % b
W31 % b
Wy * *
0 Ei—l *
By
0
* 0 0 *
[ A1r A Ags | Agg A1y
A21 I 0 0 0
A31 0 0 0 0
0
0
I
I
I
I
* * * * * 0 0 0 0
[0 Bz ] d;
0 0 bit1
0 © 8= git1 — bit1
0 0 w;
0 0 w(l)
0 0 git1
0 0 bit1
0 0 8= git1 — bi1
0 0 ;
0 0 Cy—1
0 0 &4} 34
LI 0 | fit1




new
~

35

ri o0 0 0|0 0 0 * *
o I 0 0|0 0 0 * *
0 0 0 0]0 0| Uy | = «
0 0 0 0]0 0| Usi | % %
0 0 0 0]0 0| U | = "

0 F; *
0
I
0 0
0 E; *

0 FEi_
By
0

L * * *

[ Ain A1 Az Ay | Ags A1s
Az1 Az Azz Asy | Aas Aszg
Az Agqq I 0 0 0
0 I 0 0 0 0
0 0 0 0 0 0

0
0
I

L * * * * * 0

[0 B dig1
0 0 Si+1
0 0 bit1
0 0 Si41
0 0 wh |
0 0 w-z.

¥
0o 0 wlh
0 0 o
0 0 Cy—1
0 0 Co
LI 0 | fix1
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~
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ri o0 0 0|0 0 * * *
0O I 0 Ofo0 0 * * *
0O 0 0 0|0 0| Wy * *
0 0 0 00 o Wi | = *
0 0 0 0]0 0| Fiyr | = *

0 F; *
0

I

0 0

0 E; * ok

0 Ei—l *

By

0

L b b b

[ Ain 0 0 Ajg | Ags A1s
A21 0 0 A24 A25 A25
0 o I 0 0 0
0 I 0 0 0 0
0 0o 0 0 0 0

0
0
I

B 0 0 * * * 0

[0 Bz T dit1
0 0 Si41
0 0 bit1
0 0 Si41
0 0 wh |
0 0 u;-z.
0 0 w(l)
0 0 o
0 0 Cy—1
0 0 Co

LI o0 | fit1




7 olo o 0]lo o * * x ]
0o olo o 0o|I o * *
0 0 0 Fi+1 b b
0 0 F; *
I
new 0 0
0 0|0 O 0 0] Wii = *
0o olo o 0 0] War = *
0 E; *
IR
0
L * * * _
r All A12 A13 A14 e e A14 ] r 0 B12 ] dl_l_l
A21 A22 A23 A24 e e A24 0 0 s 1
0 0 0 vt
) Wit
0 1o o r
T 0 o0 o
I 0 0 Z?+1
T 0 0 ’:1
(3
Ci—1
I 0 o0 0
L * * x ... ... =*= |0 oflo ... ... 0] L1 o | fitr

Thus (40) follows by induction and (41) holds, since l ?H is obtained by nonsingular
i+1

transformations applied to [0 U 0], with nonsingular U, where U is the transformation used
above in the third step. W
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