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Algorithms for Model Redu
tion of Large Dynami
al Systems

Thilo Penzl

Abstra
t

Three algorithms for the model redu
tion of large-s
ale, 
ontinuous-time, time-

invariant, linear, dynami
al systems with a sparse or stru
tured transition matrix

and a small number of inputs and outputs are des
ribed. They rely on low rank ap-

proximations to the 
ontrollability and observability Gramians, whi
h 
an eÆ
iently

be 
omputed by ADI based iterative low rank methods. The �rst two model redu
-

tion methods are 
losely related to the well-known square root method and S
hur

method, whi
h are balan
ed trun
ation te
hniques. The third method is a heuris-

ti
, balan
ing-free te
hnique. The performan
e of the model redu
tion algorithms is

studied in numeri
al experiments.

Keywords: dynami
al systems, Lyapunov equation, model redu
tion, balan
ed

trun
ation, S
hur method, square root method, numeri
al algorithms, sparse matri-


es.

AMS Subje
t Classi�
ation: 65F30, 65F50, 93A15, 93A25.

1 Introdu
tion

In this paper we 
onsider realizations

_x(�) = Ax(�) +Bu(�)

y(�) = Cx(�) +Du(�)

(1)

of 
ontinuous-time, time-invariant, linear, dynami
al systems, where A 2 R

n;n

, B 2 R

n;m

,

C 2 R

q;n

,D 2 R

q;m

, � 2 R, and n is the order of the realization. R and R

n;m

denote the sets

of real numbers and real n-by-m matri
es, respe
tively. Together with an initial 
ondition

x(�

0

) = x

0

, realizations (1) are uniquely des
ribed by the matrix tuple (A;B;C;D). When

appropriate, we will also use the equivalent notation

�

A B

C D

�

, whi
h is more 
ommon in


ontrol theory. The ve
tor-valued fun
tions u, x, and y are referred to as input, state,

and output of the system, respe
tively. In parti
ular, we fo
us on realizations with large

state spa
e dimension (say, n > 1000) and small input spa
e and output spa
e dimensions

(say, m; q <

1

100

n). Moreover, we assume that the matrix A is sparse or stru
tured. An

important sour
e for su
h dynami
al systems are paraboli
 di�erential equations. Their

semidis
retization w.r.t. the spa
e 
omponent leads to systems of type (1). Usually, the

dimension n depends on the �neness of the dis
retization and is very large, whereas m

and q are small and independent of the dis
retization. Large dynami
al systems also arise

from 
ir
uit simulation; e.g., [1℄.

Often numeri
al methods for 
ontroller design or simulation 
annot be applied to very

large systems be
ause of their extensive numeri
al 
osts. This motivates model redu
tion,

whi
h is the approximation of the original, large realization by a realization of smaller

This work was supported by the Deuts
her Akademis
her Austaus
hdienst, Bonn, Germany.
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order. In this paper we des
ribe three model redu
tion algorithms for large systems,

whi
h are numeri
ally inexpensive with respe
t to both memory and 
omputation.

The remainder of this paper is organized as follows. In x 2 we give an introdu
tion to


ontinuous-time, algebrai
 Lyapunov equations (ALEs) and des
ribe an iterative solution

method. The reason for this is that many important model redu
tion methods for small

and medium systems as well as our methods for large systems are based on ALEs. x 3.1


ontains a brief dis
ussion of model redu
tion in general. xx 3.2 and 3.3 deal with existing

methods for systems of moderate size and large s
ale systems, respe
tively. Moreover,

xx 3.1 and 3.2 provide the foundation for the three model redu
tion methods for large

systems des
ribed in x 4. The eÆ
ien
y of these methods is demonstrated by numeri
al

experiments in x 5. Finally, 
on
lusions are provided in x 6.

2 Numeri
al solution of Lyapunov equations and the

LR-Smith(l) iteration

Besides model redu
tion several topi
s in 
ontrol theory, su
h as stability analysis [32℄,

stabilization, optimal 
ontrol [33, 46℄, solution of algebrai
 Ri

ati equations [28, 31℄, and

balan
ing [35℄ involve ALEs. These linear matrix equations usually have the stru
ture

FX +XF

T

= �GG

T

; (2)

where G 2 R

n;t

is a re
tangular matrix with t � n and the matrix F 2 R

n;n

is stable, i.e.,

�(F ) � C

�

. Here, �(F ) denotes the spe
trum of F . C

�

is the open left half of the 
omplex

plane, i.e., C

�

= fa 2 C j Re a < 0g, where C is the set of the 
omplex numbers and Re a

is the real part of a. The stability of F is suÆ
ient for the existen
e of a solution matrix

X 2 R

n;n

, whi
h is unique, symmetri
, and positive semide�nite. If the pair (F;G) is


ontrollable, then X is even positive de�nite. Note that (2) is mathemati
ally equivalent

to a system of linear equations with O(n

2

) unknowns. For this reason, ALEs of order

n > 1000 are said to be of large s
ale.

The relation between (1) and (2) depends on the parti
ular problem, but in 
ontext

with model redu
tion mostly F = A or A

T

and G = B or C

T

. For this reason, we assume

that F is sparse or stru
tured, whereas G is a matrix with very few 
olumns. If the latter is

true, the nonnegative eigenvalues of the solutionX tend to de
ay very fast [38℄. In this 
ase

the solution matrix 
an be approximated very a

urate by a positive semide�nite matrix

of relatively low rank. This property is essential for our model redu
tion algorithms.

The Bartels-Stewart method [2℄ and the Hammarling method [20℄ are the dire
t stan-

dard methods for ALEs. Whereas the �rst is appli
able to the more general Sylvester

equation, the se
ond tends to deliver more a

urate results in the presen
e of round-o�

errors. Both methods require the 
omputation of the S
hur form of F . As a 
onsequen
e,

they generally 
annot pro�t by sparsity or other stru
tures in the equation. The squared

Smith method [48℄ and the sign fun
tion method [40℄ are iterative methods, whi
h 
an-

not exploit sparsity or stru
tures as well. However, they are of parti
ular interest when

dense ALEs should be solved on parallel 
omputers [14, 3℄. The alternating dire
tion

impli
it iteration (ADI) [36, 52℄ is an iterative method whi
h often delivers good results

for sparse or stru
tured ALEs. The solution methods mentioned so far have the 
ompu-

tational 
omplexity O(n

3

), ex
ept for the ADI method. Its 
omplexity strongly depends
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on the stru
ture of F and is sometimes better. All methods have the memory 
omplexity

O(n

2

) be
ause they generate the dense solution matrix X expli
itly. It should be stressed

that often the memory 
omplexity rather than the amount of 
omputation is the limiting

fa
tor for the appli
ability of solution methods to large ALEs.

Low rank methods are the only existing methods whi
h 
an solve very large ALEs.

They require that G 
onsists of very few 
olumns and they exploit sparsity or stru
tures

in F . The solution X is not formed expli
itly. Instead, low rank fa
torizations, whi
h

approximate X, are 
omputed. Note that throughout this paper \low rank" stands for

\(resulting in or having) a rank mu
h smaller than n". (We will later 
all 
ertain matri
es,

whose numbers of 
olumns are mu
h smaller than n, low rank fa
tors although their 
olumn

rank may be full.) Most low rank methods [21, 22, 25, 41℄ are Krylov subspa
e methods,

whi
h are based either on the Lan
zos pro
ess or on the Arnoldi pro
ess; see, e.g., [17, 42℄.

Furthermore, there are low rank methods [41, 19℄ based on the expli
it representation of

the ALE solution in integral form, e.g., [30℄. Two low rank methods related to the ADI

iteration and the Smith method were proposed in [37℄. Here, we des
ribe the 
y
li
 low

rank Smith method (LR-Smith(l)), whi
h is the more eÆ
ient of both methods. Note that

in the following algorithm and the remainder of this paper I

n

denotes the n-by-n identity

matrix.

Algorithm 1 (LR-Smith(l) iteration [37℄)

INPUT: F , G, P = fp

i

g

l

i=1

� C

�

OUTPUT: Z = Z

i

max

l

, su
h that ZZ

T

� X

(1. Find a suitable transformation matrix H and transform the equation: F := HFH

�1

,

G := HG.)

2. Z

1

=

p

�2p

1

(F + p

1

I

n

)

�1

G

FOR i = 2; : : : ; l

3. Z

i

=

�

(F � p

i

I

n

)(F + p

i

I

n

)

�1

Z

i�1

p

�2p

i

(F + p

i

I

n

)

�1

G

�

END

4. Z

(l)

= Z

l

FOR i = 1; 2; : : : ; i

max

� 1

5. Z

((i+1)l)

=

 

l

Q

j=1

(F � p

j

I

n

)(F + p

j

I

n

)

�1

!

Z

(il)

6. Z

(i+1)l

=

�

Z

il

Z

((i+1)l)

�

END

(7. Transform the fa
tor of the approximate solution ba
k: Z

i

max

l

:= H

�1

Z

i

max

l

.)

Numeri
al aspe
ts of this method are dis
ussed in detail in [37℄. However, some remarks

should be made here. The LR-Smith(l) iteration is mathemati
ally equivalent to the ADI

iteration, where p

1

; : : : ; p

l

are 
y
li
ally used as shift parameters. Usually, a small number

of di�erent parameters is suÆ
ient to a
hieve an almost optimal rate of 
onvergen
e (say,

l 2 f10; : : : ; 25g). It is important to use a set P of pairwise distin
t shift parameters,

whi
h is 
losed under 
omplex 
onjugation (i.e., if p 2 P, then �p 2 P). This ensures that
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Z is a real matrix. Su
h suboptimal shift parameters 
an be 
omputed eÆ
iently by a

heuristi
 algorithm [37, Algorithm 1℄. In pra
ti
al implementations the iteration should be

stopped when round-o� errors start to dominate the di�eren
e between the exa
t solution

and the numeri
ally 
omputed approximate solution ZZ

T

, whi
h is 
hara
terized by the

stagnation of the normalized residual norms (see also (21)) on a level that is in the vi
inity

of the ma
hine pre
ision. Usually, this is the 
ase for i

max

l 2 f30; : : : ; 100g if ALEs with a

symmetri
 matrix F are 
onsidered. For unsymmetri
 problems i

max

l tends to be larger.

The resulting fa
tor Z 
onsists of i

max

lt 
olumns.

Of 
ourse, the matri
es (F + p

i

I

n

)

�1

, whi
h are involved in Steps 2, 3, and 5, are not

formed expli
itly. Instead, systems of type (F + p

i

I

n

)x = y are solved. If F is sparse,

this requires 
omputing and storing l sparse LU fa
torizations, whi
h are repeatedly used

in ba
ksubstitutions. Thus, the 
omplexity of the method strongly depends on nonzero

pattern and the bandwidth of F in this 
ase. Therefore, it is often useful to improve this

stru
ture by a transformation of the ALE with the nonsingular matrix H (optional Steps

1 and 7). For example, H 
an be a permutation matrix for bandwidth redu
tion [5℄ or a

matrix whi
h transforms F into a tridiagonal matrix [15, 44℄. However, the matrix H is

never formed expli
itly and multipli
ations with H and H

�1

must be inexpensive. Alter-

natively, the shifted systems 
an be solved by iterative methods, su
h as (pre
onditioned)

Krylov subspa
e methods; e.g., [42℄. In this 
ase Steps 1 and 7 
an be omitted.

Basi
ally, the model redu
tion algorithms proposed in x 4 
an also be used in 
ombi-

nation with the aforementioned alternative low rank methods for ALEs, whi
h are mainly

Krylov subspa
e methods. Our model redu
tion algorithms only require the availability

of approximations to ALE solutions whi
h have a high a

ura
y and a very low rank. In

general, LR-Smith(l) delivers better results than Krylov subspa
e methods w.r.t. both 
ri-

teria; see [37, x 6℄. Moreover, the latter often fail for relatively easy problems. Therefore,

we prefer LR-Smith(l) to Krylov subspa
e methods despite the fa
t that the 
omputational


ost of Krylov subspa
e methods is often lower.

3 Model redu
tion: preliminaries and some existing

methods

3.1 Preliminaries

Assume that we are given a realization (A;B;C;D) of order n. The purpose of model

redu
tion is to �nd a redu
ed realization (

^

A;

^

B;

^

C;

^

D) with

^

A 2 R

k;k

,

^

B 2 R

k;m

,

^

C 2 R

q;k

,

^

D 2 R

q;m

, su
h that the input-output behavior of the redu
ed system approximates that

of the original system in some sense. Here, k 2 f1; : : : ; n� 1g is the (arbitrary, but �xed)

order of the redu
ed realization. Many pra
ti
ally important 
riteria for assessing the

deviation of the redu
ed system from the original one are based on the di�eren
e of the

transfer matri
es G and

^

G on the imaginary axis

�G(|!) = G(|!)�

^

G(|!);

where | =

p

�1, ! 2 R, G(s) = C(sI

n

� A)

�1

B + D, and

^

G(s) =

^

C(sI

k

�

^

A)

�1

^

B +

^

D.

Measuring the di�eren
e �G(|!) 
orresponds to 
omparing the frequen
y response of both

systems, i.e., the response y to a sinusoidal input fun
tion u; see, e.g., [47℄.

There are typi
ally two tasks whi
h require the redu
tion of the order of a system.
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� Task 1 is the redu
tion of systems of small or moderate size (say, n 2 f5; : : : ; 1000g

depending on the problem). Although numeri
al algorithms for 
ontroller design

applied to su
h systems mostly require an a�ordable amount of 
omputation and

deliver satisfa
tory results, the redu
tion of the model or the 
ontroller is often

desired be
ause the pra
ti
al implementation of the 
ontroller (in an ele
tri
al devi
e,

for example) is too 
omplex or too expensive. Here, the main goal is to a
hieve a

parti
ular obje
tive, for example, (sub)minimizing �G(s) w.r.t. the L

2

or L

1

norm

or a frequen
y weighted norm. The 
omplexity of model redu
tion methods for su
h

obje
tives usually prohibits their appli
ation to large s
ale problems.

� Task 2 is the redu
tion of systems whi
h are so large that numeri
al standard

methods for 
ontroller design or simulation of the system 
annot be applied due to

their extensive numeri
al 
osts (say, n > 1000). Methods for 
ontroller design have in

most 
ases at least the 
omputational 
omplexity O(n

3

) and the memory 
omplexity

O(n

2

). Moreover, they usually 
annot bene�t from stru
tures in the system. The

primary obje
tives of Task 2 are to repla
e the system by a smaller one, for whi
h

a 
ontroller 
an be designed or whi
h 
an be simulated with reasonable numeri
al

e�ort, and to lose only a very small amount of information by the redu
tion. Ideally,

this loss should be of the same magnitude as the ina

ura
ies, that are 
aused by

round-o� or approximation errors in the subsequent 
ontroller design or simulation,

and the inherent errors in the model of the underlying real pro
ess.

In pra
ti
e, a model redu
tion pro
ess for a very large system 
an 
onsist of two steps,

where Task 2 and Task 1 are treated su

essively. The model redu
tion methods proposed

in this paper are intended to solve problems related to Task 2.

Modal trun
ation [6℄, balan
ed trun
ation [34, 49, 43, 51℄, singular perturbational

model redu
tion [10℄, frequen
y weighted balan
ed trun
ation [7℄, optimal Hankel norm

approximation [16℄ are well-known model redu
tion methods for stable systems. All these

methods mainly fo
us on Task 1. Ea
h requires the solution of eigenvalue problems of

order n, whi
h make their standard implementations expensive when large systems should

be redu
ed. However, they are very useful for systems of moderate size. Ex
ept for modal

trun
ation ea
h of the above methods is based either expli
itly or impli
itly on balan
ed

realizations, the 
omputation of whi
h involves the solutions of a pair of ALEs

AX

B

+X

B

A

T

= �BB

T

(3)

A

T

X

C

+X

C

A = �C

T

C: (4)

The solution matri
es X

B

and X

C

are 
alled 
ontrollability and observability Gramians.

They play an important role in input-state and state-output energy 
onsiderations, whi
h

provide a motivation for some of the aforementioned model redu
tion methods as well as

the methods proposed in x 4.

In the following theorem [16℄, jjujj

L

2

(a;b)

denotes the L

2

norm of a ve
tor-valued fun
tion

u, i.e., jjujj

2

L

2

(a;b)

=

R

b

a

u(�)

T

u(�)d� . A realization (1) is 
alled minimal if both (A;B) and

(A

T

; C

T

) are 
ontrollable.

Theorem 1 Let (1) be a minimal realization with a stable matrix A. Then the solutions

X

B

and X

C

of the ALEs (3) and (4), respe
tively, are positive de�nite and

min

u2L

2

(�1;0); x(0)=x

0

jjujj

2

L

2

(�1;0)

= x

T

0

X

�1

B

x

0

: (5)
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Furthermore, if x(0) = x

0

and u(�) = 0 for � � 0, then

jjyjj

2

L

2

(0;1)

= x

T

0

X

C

x

0

: (6)

Loosely speaking, this means that a large input energy jjujj

L

2

(�1;0)

is required to steer the

system to a (normalized) �nal state x

0

, whi
h is 
ontained in an invariant subspa
e of X

B

related to the smallest eigenvalues of this matrix. Likewise, (normalized) initial states x

0


ontained in an invariant subspa
e of X

C

related to the smallest eigenvalues deliver little

output energy jjyjj

L

2

(0;1)

and, thus, they hardly have an e�e
t on the output.

Finally, it should be stressed that all model redu
tion methods in xx 3.2 and 4 belong

to the 
lass of state spa
e proje
tion methods. That means the redu
ed realization of order

k is obtained by a proje
tion of the state spa
e to a subspa
e of dimension k. Assume that

T 2 R

n;n

is a nonsingular matrix su
h that the 
hosen subspa
e is spanned by the �rst k


olumns of T . Then the redu
ed system 
orresponds to the �rst k 
olumns and rows of

the transformed realization

�

T

�1

AT T

�1

B

CT D

�

;

whi
h is equivalent to (1). Using the MATLAB style 
olon notation we set

S

B

= T

(:;1:k)

and S

C

= (T

�T

)

(:;1:k)

: (7)

The redu
ed order realization is given by

�

^

A

^

B

^

C

^

D

�

=

�

S

T

C

AS

B

S

T

C

B

CS

B

D

�

; (8)

where

S

T

C

S

B

= I

k

(9)

holds. This means state spa
e proje
tion methods di�er in the 
hoi
e of matri
es S

B

,

S

C

2 R

n;k

that ful�ll (9). From the numeri
al point of view one is interested in attaining

as small a 
ondition number of S

B

and S

C

as possible.

3.2 Balan
ed trun
ation te
hniques

The perhaps most popular way to ta
kle model redu
tion problems 
orresponding to Task

1 is balan
ed trun
ation. The basi
 motivation for this te
hnique is provided by Theorem

1 and its subsequent dis
ussion. Unfortunately, the equations (5) and (6) for the input-

state and state-output mapping, respe
tively, suggest di�erent subspa
es for a state spa
e

proje
tion. However, both parts 
an be treated simultaneously after a transformation

of the system (A;B;C;D) with a nonsingular matrix T 2 R

n;n

into a balan
ed system

(

~

A;

~

B;

~

C;

~

D) = (T

�1

AT; T

�1

B;CT;D); see [35℄. A realization (

~

A;

~

B;

~

C;

~

D) with a stable

matrix

~

A and the 
orresponding transformed Gramians

~

X

B

= T

�1

X

B

T

�T

and

~

X

C

=

T

T

X

C

T is 
alled balan
ed if

~

X

B

=

~

X

C

= diag(�

1

; : : : ; �

n

); (10)

where �

1

� �

2

� : : : � �

n

> 0. The values �

i

are 
alled Hankel singular values. A

balan
ed realization exists if (A;B;C;D) is a stable, minimal realization; e.g., [16℄. The
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result of the basi
 balan
ed trun
ation algorithm [34℄ is given by (8), where the balan
ing

transformation matrix T is used to de�ne the matri
es S

B

and S

C

in (7). If �

k

6= �

k+1

,

the redu
ed order realization is minimal, stable, and balan
ed. Its Gramians are equal to

diag(�

1

; : : : ; �

k

). One of the main attra
tions of balan
ed trun
ation is the availability of

the following L

1

error bound, whi
h was independently derived in [7℄ and [16℄,

k�Gk

L

1

= sup

!2R

kG(|!)�

^

G(|!)k � 2

n

X

i=k+1

�

i

: (11)

Here, k�k is the spe
tral norm of a matrix. Finally, it should be mentioned that there exist

several implementations of balan
ed trun
ation model redu
tion algorithms [34, 49, 43, 51℄.

They deliver redu
ed order realizations with identi
al transfer matri
es but di�er in their

numeri
al robustness.

3.3 Methods based on Pad�e approximation and Krylov sub-

spa
es

Motivated by appli
ations in 
ir
uit simulation, quite a large number of publi
ations on

model redu
tion of large systems (Task 2) have appeared in the last few years. The ma-

jority of the proposed algorithms are based on Pad�e approximation and Krylov subspa
es.

For this reason, we brie
y sket
h the underlying prin
iple of these algorithms despite the

fa
t that the algorithms proposed in x 4 are based on a 
ompletely di�erent approa
h.

For simpli
ity, we only 
onsider the spe
ial 
ase, where m = 1, q = 1, and D = 0, in this

se
tion. See [11℄ for a detailed survey.

Let �u(s) and �y(s) be the Lapla
e transformed of u(t) and y(t), respe
tively. It is

well-known that the frequen
y domain representation

�y(s) = G(s)�u(s) with G(s) = C(sI

n

� A)

�1

B;

whi
h maps the transformed input to the transformed output without referen
e to the

(transformed) state, is mathemati
ally equivalent to the state spa
e representation (1) of

a dynami
al system provided that x(0) = 0. The basi
 prin
iple of the Pad�e approximation

based model redu
tion algorithms (Pad�e algorithms) is an expansion of G(s) about a point

s

0

2 C [ f1g. A frequent 
hoi
e is s

0

= 1 although other or even multiple expansion

points (e.g., [13℄) 
an be used. For example, the expansion about in�nity delivers

G(s) =

1

X

i=0

1

s

i+1

M

i

with M

i

= CA

i

B; (12)

whi
h 
an be interpreted as a Taylor series, that 
onverges if jsj is suÆ
iently large. The

matri
es M

i

, whi
h are 
alled Markov parameters, are system invariants. The leading 2n

parameters determine the system uniquely. Expansions of G(s) about in�nity as well as

other points 
an be rewritten in terms of a rational fun
tion in s. More pre
isely,

G(s) =

 

n�1

(s)

'

n

(s)

;
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where  

n�1

and '

n

are polynomials of degree at most n � 1 and n, respe
tively. The

redu
tion of the system order is now a
hieved by 
omputing a rational fun
tion of the

type

^

G(s) =

 

k�1

(s)

'

k

(s)

; (13)

whi
h 
orresponds to a realization (

^

A;

^

B;

^

C; 0) of redu
ed order provided that k < n. In

view of the series (12) a sensible 
hoi
e of the polynomials  

k�1

and '

k

is that for whi
h

G(s)�

^

G(s) =

1

X

i=2k

1

s

i+1

M

i

holds. That means, the leading 2k� 1 Markov parameters of G and

^

G 
oin
ide. This pro-


edure is known asmoment mat
hing. The resulting fun
tion

^

G is 
alled Pad�e approximant

of G.

In the last de
ade two basi
 approa
hes to 
ompute the redu
ed system 
orresponding

to the Pad�e approximant (13) have been pursued although model redu
tion based on Pad�e

approximation was studied mu
h earlier; e.g., [45℄. The so-
alled asymptoti
 waveform

evaluation (AWE) [39℄ 
omputes the redu
ed system in a way that involves 
omputing

the leading Markov parameters of G and the 
oeÆ
ients of the polynomials  

k�1

and

'

k

expli
itly, whi
h tends to be numeri
ally unstable. The se
ond approa
h [8, 12, 9℄,

whi
h is 
alled Pad�e via Lan
zos (PVL) algorithm, exploits a 
onne
tion between Pad�e

approximation and Krylov subspa
e pro
esses [18℄. AWE and PVL are mathemati
ally

equivalent, but PVL turns out to be numeri
ally more robust in general. For this reason,

PVL is usually preferred to AWE in pra
ti
al appli
ations. There exist a number of

variations of the PVL algorithm; see, e.g., [11℄ and referen
es therein.

A few general aspe
ts in 
ontext with Pad�e algorithms should be dis
ussed here. First,

it is not 
lear, whether they deliver good approximations for values s whi
h lie far away

from the expansion point. In 
ontrast to balan
ed trun
ation, no L

1

error bounds are

known for Pad�e algorithms. Unlike the algorithms proposed in x 4, the implementation of

su
h methods often be
omes more 
ompli
ated whenm > 1 and q > 1. An essential advan-

tage of Pad�e algorithms is that they are not restri
ted to systems of type (1). They 
an be

applied to more general linear, time-invariant, di�erential-algebrai
 equations. Moreover,

their numeri
al 
osts are quite low.

Finally, we want to stress that there exist a few algorithms [23, 24, 26, 27℄, whi
h are

not dire
tly motivated by Pad�e approximation and moment mat
hing, but involve Krylov

subspa
e te
hniques. For example, in [26℄ a Galerkin te
hnique is proposed, whereas in

[24℄ an approa
h related to GMRES (e.g., [42℄) is pursued to generate a redu
ed system.

In both 
ases low rank approximations to the Gramians X

B

and X

C

are involved. These

approximations are 
omputed by Krylov subspa
e methods for ALEs des
ribed in [41, 22,

25℄. A basi
 di�eren
e to the model redu
tion methods proposed in x 4 is that the latter 
an

use arbitrary, symmetri
, positive semide�nite low rank approximations to the Gramians.

In parti
ular, this in
ludes approximations generated by Algorithm 1, whi
h are often

more a

urate and of lower rank than those 
omputed by Krylov subspa
e methods for

ALEs.
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4 Three model redu
tion methods for large systems

4.1 Low Rank Square Root Method

The original implementation of balan
ed trun
ation [34℄ involves the expli
it balan
ing of

the realization (1). This pro
edure is dangerous from the numeri
al point of view be
ause

the balan
ing transformation matrix T tends to be highly ill-
onditioned. Moreover, the

implementation in [34℄ is restri
ted to minimal realizations. The so-
alled square root

method [49℄ (see also [43, 51℄) is an attempt to 
ope with these problems. It is 
on-

stru
ted in a way that avoids expli
it balan
ing of the system. The method is based on

the Cholesky fa
tors of the Gramians instead of the Gramians themselves. In [49℄ the use

of the Hammarling method was proposed to 
ompute these fa
tors, but, basi
ally, any

numeri
al method that delivers Cholesky fa
tors of the Gramians 
an be applied. For

example, a 
ombination of a modi�ed sign fun
tion iteration for ALEs and the square

root method, whi
h, in parti
ular, allows the eÆ
ient model redu
tion of large dense sys-

tems on parallel 
omputers, has been proposed in [4℄. For large systems with a stru
tured

transition matrix A, the LR-Smith(l) method 
an be an attra
tive alternative be
ause

the Hammarling method or sign fun
tion based methods 
an generally not bene�t from

su
h stru
tures. Algorithm 2, whi
h we refer to as low rank square root method (LRSRM),

is based on the algorithm proposed in [49℄ and di�ers formally from the implementation

given there only in Step 1. In the original implementation this step is the 
omputation

of exa
t Cholesky fa
tors, whi
h may have full rank. We formally repla
e these (exa
t)

fa
tors by (approximating) low rank Cholesky fa
tors to obtain the following algorithm.

Algorithm 2 (Low rank square root method (LRSRM))

INPUT: A, B, C, D, k

OUTPUT:

^

A,

^

B,

^

C,

^

D

1. Compute low rank fa
tors Z

B

and Z

C

by Algorithm 1 (or alternative low rank meth-

ods), su
h that Z

B

Z

T

B

and Z

C

Z

T

C

are approximate solutions of (3) and (4), respe
tively.

2. U

C0

�

0

U

T

B0

:= Z

T

C

Z

B

(SVD), U

C

= U

C0

(:;1:k)

; � = �

0

(1:k;1:k)

; U

B

= U

B0

(:;1:k)

3. S

B

= Z

B

U

B

�

�1=2

; S

C

= Z

C

U

C

�

�1=2

4.

^

A = S

T

C

AS

B

;

^

B = S

T

C

B;

^

C = CS

B

;

^

D = D

In this algorithm we assume that k � rankZ

T

C

Z

B

. Note further that throughout this paper

singular value de
ompositions (SVDs) are arranged so that the diagonal matrix 
ontain-

ing the singular values has the same dimensions as the fa
torized matrix and the singular

values appear in nonin
reasing order. The use of (approximated) low rank fa
tors of the

Gramians redu
es the 
omputational 
ost and the memory requirement of the square root

method signi�
antly. Note that we only have to 
ompute an SVD of an r

C

-by-r

B

matrix,

where r

B

and r

C

are the numbers of 
olumns in Z

B

and Z

C

, respe
tively, and r

B

; r

C

<< n.

In 
ontrast, if exa
t Gramians (of possibly full rank) were used, the implementation would

involve an SVD of a square matrix of order n. The 
omplexity of algorithm LRSRM ex
ept

for Step 1 is O(nmaxfr

2

B

; r

2

C

g) w.r.t. 
omputation and O(nmaxfr

B

; r

C

g) w.r.t. memory.

However, the total 
omplexity depends on the numeri
al 
osts for the LR-Smith(l) iter-
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ations in Step 1 of Algorithm 4, whi
h in turn strongly depend on the stru
tural and

algebrai
 properties of the matrix A.

4.2 Low Rank S
hur Method

An alternative to the basi
 balan
ed trun
ation algorithm des
ribed in x 3.2 and the square

root method is provided by the so-
alled S
hur method [43℄, whi
h is (in exa
t arithmeti
s)

mathemati
ally equivalent to the �rst two methods in the sense that the transfer matri
es

of the redu
ed realizations are identi
al. It has be
ome quite popular be
ause it generates

proje
tion matri
es S

B

and S

C

, whi
h have generally mu
h smaller 
ondition numbers


ompared to those by the square root method.

Algorithm 3 (S
hur method for balan
ed trun
ation model redu
tion [43℄)

INPUT: A, B, C, D, k

OUTPUT:

^

A,

^

B,

^

C,

^

D

1. Solve (3) and (4).

2. Determine the k largest eigenvalues of X

B

X

C

and 
ompute orthonormal bases V

B

; V

C

2

R

n;k

for the 
orresponding right and left, invariant subspa
es, respe
tively, by means of

ordered S
hur fa
torizations.

3. U

C

�U

T

B

:= V

T

C

V

B

(SVD)

4. S

B

= V

B

U

B

�

�1=2

; S

C

= V

C

U

C

�

�1=2

5.

^

A = S

T

C

AS

B

;

^

B = S

T

C

B;

^

C = CS

B

;

^

D = D

Even if the ALEs (3) and (4) in Step 1 
an be solved in an inexpensive way, Algorithm

3 
annot be applied to large systems be
ause a dense eigenvalue problem of order n needs

to be solved in Step 2. For this reason we propose the following modi�
ation we refer to as

low rank S
hur method (LRSM). We solve the ALEs (3) and (4) approximately by applying

Algorithm 1 twi
e. Assuming that we obtain matri
es Z

B

2 R

n;r

B

and Z

C

2 R

n;r

C

, su
h

that X

B

� Z

B

Z

T

B

=:

�

X

B

, X

C

� Z

C

Z

T

C

=:

�

X

C

, and maxfr

B

; r

C

g << n, we then formally

repla
e X

B

X

C

by the approximation

�

X

B

�

X

C

in Step 2 of Algorithm 3. The basi
 idea of

our approa
h is now to avoid forming

�

X

B

�

X

C

expli
itly in this step. Instead, we generate

a low rank fa
torization of this matrix produ
t, whi
h enables us to 
ompute V

B

and V

C

in a more eÆ
ient way. Note that r = rank

�

X

B

�

X

C

� minfr

B

; r

C

g << n. Steps 3{5 of

Algorithm 3 remain the same. Our modi�
ation of Step 2 should be des
ribed in detail

now.

First, we determine an \e
onomy size" SVD (that means the version of the SVD

where the diagonal matrix 
ontaining the singular values is square and has full rank) of

the produ
t

�

X

B

�

X

C

, whi
h reveals its low rank stru
ture. For this purpose, we 
ompute

\e
onomy size" QR fa
torizations Z

B

= Q

B1

R

B

and Z

C

= Q

C1

R

C

with Q

B1

2 R

n;r

B

and

Q

C1

2 R

n;r

C

. After that, an \e
onomy size" SVD

R

B

Z

T

B

Z

C

R

T

C

=: Q

B2

DQ

T

C2
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with the nonsingular diagonal matrix D 2 R

r;r

is 
omputed. De�ning Q

B

= Q

B1

Q

B2

and

Q

C

= Q

C1

Q

C2

, we �nally get the desired SVD of

�

X

B

�

X

C

by

�

X

B

�

X

C

= Z

B

Z

T

B

Z

C

Z

T

C

= Q

B1

R

B

Z

T

B

Z

C

R

T

C

Q

T

C1

= Q

B

DQ

T

C

: (14)

By means of this equation we now 
ompute an orthonormal basis for the right, dominant,

invariant subspa
e of

�

X

B

�

X

C

. Obviously, the right, invariant subspa
e related to the

nonzero eigenvalues of

�

X

B

�

X

C


oin
ides with the range of Q

B

. Be
ause of

�

X

B

�

X

C

Q

B

= Z

B

Z

T

B

Z

C

Z

T

C

Q

B

= Q

B

DQ

T

C

Q

B

(15)

all nonzero eigenvalues of

�

X

B

�

X

C

are eigenvalues of the matrix DQ

T

C

Q

B

as well. Assuming

that r << n, the merit of our approa
h is that we have to determine the dominant eigen-

values of the r-by-r matrix DQ

T

C

Q

B

instead of those of the n-by-n matrix

�

X

B

�

X

C

itself.

More pre
isely, we 
ompute an ordered S
hur fa
torization

DQ

T

C

Q

B

=: P

B

T

B

P

T

B

=

�

P

B1

P

B2

�

�

T

B11

T

B12

0 T

B22

�

�

P

B1

P

B2

�

T

; (16)

where the blo
k T

B11

2 R

k;k

(k � r) 
orresponds to the k largest eigenvalues of T

B

. The

desired orthonormal basis in the right, dominant, invariant subspa
e is formed by the


olumns of the matrix V

B

= Q

B

P

B1

be
ause

�

X

B

�

X

C

V

B

= Z

B

Z

T

B

Z

C

Z

T

C

Q

B

P

B

= Q

B

DQ

T

C

Q

B

P

B

= Q

B

P

B1

T

B11

= V

B

T

B11

;

whi
h in turn is a 
onsequen
e of (15) and (16). An orthonormal basis in the left, dominant,

invariant subspa
e of

�

X

B

�

X

C

is obtained by an analogous pro
edure.

Pie
ing the single steps together we obtain the following algorithm.

Algorithm 4 (Low rank S
hur method (LRSM))

INPUT: A, B, C, D, k

OUTPUT:

^

A,

^

B,

^

C,

^

D

1. Compute low rank fa
tors Z

B

and Z

C

by Algorithm 1 (or alternative low rank meth-

ods), su
h that Z

B

Z

T

B

and Z

C

Z

T

C

are approximate solutions of (3) and (4), respe
tively.

2. Q

B1

R

B

:= Z

B

; Q

C1

R

C

:= Z

C

(\e
onomy size" QR fa
torizations)

3. Q

B2

DQ

T

C2

:= R

B

Z

T

B

Z

C

R

T

C

(\e
onomy size" SVD)

4. Q

B

= Q

B1

Q

B2

; Q

C

= Q

C1

Q

C2

5. P

B

T

B

P

T

B

:= DQ

T

C

Q

B

; P

C

T

C

P

T

C

:= D

T

Q

T

B

Q

C

(S
hur fa
torizations with nonin-


reasing ordered eigenvalues on the main diagonals of T

B

and T

C

)

6. V

B

= Q

B

P

B

(:;1:k)

; V

C

= Q

C

P

C

(:;1:k)

7. U

C

�U

T

B

:= V

T

C

V

B

(SVD)

8. S

B

= V

B

U

B

�

�1=2

; S

C

= V

C

U

C

�

�1=2

9.

^

A = S

T

C

AS

B

;

^

B = S

T

C

B;

^

C = CS

B

;

^

D = D

The exe
ution of Steps 2{9 has the 
omplexity O(nmaxfr

2

B

; r

2

C

g) w.r.t. 
omputation and
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O(nmaxfr

B

; r

C

g) w.r.t. memory, whereas the original Algorithm 3 has the 
omputational


omplexity O(n

3

) and the memory 
omplexity O(n

2

).

The square root method and the S
hur method based on exa
t Gramians are known

to be mathemati
ally equivalent in the sense that they deliver redu
ed realizations with

identi
al transfer matri
es. The analog statement holds also for LRSRM and LRSM. In

the following lemma we assume that in LRSRM and LRSM the same low rank fa
tors Z

B

and Z

C

are used und that both algorithms generate redu
ed realizations of order k.

Lemma 1 Let k < rankZ

T

C

Z

B

and �

1

� �

2

� : : : be the singular values of Z

T

C

Z

B

. If

�

k+1

6= �

k

, LRSRM and LRSM deliver redu
ed realizations, whi
h have identi
al transfer

matri
es.

Proof: Throughout this proof we provide the matri
es in Algorithm 2 with a tilde (e.g.,

~

�) to distinguish them from the variables that 
orrespond to Algorithm 4. In Steps 2{6 of

Algorithm 4 we 
ompute orthonormal bases V

B

and V

C

in the right and left, k-dimensional,

dominant, invariant subspa
es of Z

B

Z

T

B

Z

C

Z

T

C

. Observe that

�(Z

B

Z

T

B

Z

C

Z

T

C

)nf0g = �(Z

T

C

Z

B

Z

T

B

Z

C

)nf0g = �(

~

�

0

~

�

T

0

)nf0g;

where eigenvalue multipli
ities are retained by the equalities. Thus, there exists a nonsin-

gular matrix W

B1

2 R

k;k

, su
h that V

B

ful�lls

Z

B

Z

T

B

Z

C

Z

T

C

V

B

W

B1

= V

B

W

B1

~

�

2

:

Note that

~

� and the dominant invariant subspa
es are uniquely de�ned be
ause �

k+1

6= �

k

.

Furthermore, it follows from Step 2 in Algorithm 2 that

Z

B

Z

T

B

Z

C

Z

T

C

~

V

B

=

~

V

B

~

�

2

:

As a 
onsequen
e,

~

V

B

= V

B

W

B2

holds for a 
ertain nonsingular matrix W

B2

2 R

k;k

.

This and a 
omparison of Step 4 in Algorithm 2 and Step 8 in Algorithm 4 reveal that

a nonsingular matrix W

B3

2 R

k;k

exists, su
h that

~

S

B

= S

B

W

B3

. Analogously, it 
an

be shown that

~

S

C

= S

C

W

C3

holds for a 
ertain nonsingular matrix W

C3

2 R

k;k

. It is

easy to prove that S

T

C

S

B

=

~

S

T

C

~

S

B

= I

k

, whi
h leads to W

C3

= W

�T

B3

. Finally, we obtain

~

S

T

C

A

~

S

B

= W

�1

B3

S

T

C

AS

B

W

B3

,

~

S

T

C

B = W

�1

B3

S

T

C

B, and C

~

S

B

= CS

B

W

B3

, from whi
h the

statement of the lemma follows.

4.3 Dominant Subspa
es Proje
tion Model Redu
tion

The dominant subspa
es proje
tion model redu
tion (DSPMR) is motivated by Theorem

1. As a 
onsequen
e of (5) and (6), the invariant subspa
es of the Gramians X

B

and X

C

w.r.t. the maximal eigenvalues are the state subspa
es whi
h dominate the input-state

and state-output behavior of the system (1). The subspa
es rangeZ

B

and rangeZ

C


an

be 
onsidered as approximations to these dominant subspa
es be
ause Z

B

Z

T

B

� X

B

and

Z

C

Z

T

C

� X

C

. The straightforward idea is now to use the sum of both subspa
es for a

state spa
e proje
tion. That means the redu
ed realization is given by (8), where S

B

is

a matrix, su
h that rangeS

B

= rangeZ

B

+ rangeZ

C

. More pre
isely, we 
hoose S

B

as
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a matrix with orthonormal 
olumns and set S

B

= S

C

=: S be
ause this results in an

orthoproje
tion, whi
h is advantageous in view of numeri
al robustness. The basi
 version

of our algorithm is given as follows.

Algorithm 5 (Dominant subspa
es proje
tion model redu
tion - basi
 version (DSPMR-

B))

INPUT: A, B, C, D

OUTPUT:

^

A,

^

B,

^

C,

^

D, k

1. Compute low rank fa
tors Z

B

and Z

C

by Algorithm 1 (or alternative low rank meth-

ods), su
h that Z

B

Z

T

B

and Z

C

Z

T

C

are approximate solutions of (3) and (4), respe
tively.

2. Compute an orthonormal basis S in rangeZ

B

+ rangeZ

C

, e.g., by an \e
onomy size"

(rank-revealing) QR de
omposition or an \e
onomy size" SVD of the matrix

�

Z

B

Z

C

�

and set k = rankS.

3.

^

A = S

T

AS;

^

B = S

T

B;

^

C = CS;

^

D = D

There exists the following 
onne
tion between LRSRM, LRSM, and DSPMR-B.

Lemma 2 Let k

1

� rankZ

T

B

Z

C

be the order of the redu
ed system generated by LRSRM

and LRSM. Assume that �

k

1

+1

6= �

k

1

, where �

1

; �

2

; : : : are the nonin
reasingly ordered

singular values of Z

T

B

Z

C

. Denote the left (right) n-by-k

1

matri
es used for a state spa
e

proje
tion (8) in these two algorithms by S

LRSRM

C

(S

LRSRM

B

) and S

LRSM

C

(S

LRSM

B

), re-

spe
tively. S

DSPMR

2 R

n;k

2

is the matrix S generated in Step 2 of Algorithm 5, where

k

2

= rank

�

Z

B

Z

C

�

� k

1

. Then,

rangeS

LRSRM

C

= rangeS

LRSM

C

� rangeZ

C

� rangeS

DSPMR

; (17)

rangeS

LRSRM

B

= rangeS

LRSM

B

� rangeZ

B

� rangeS

DSPMR

: (18)

Proof: The equalities follow from the proof of Lemma 1. The in
lusions are easy to

derive from Algorithms 2, 4, and 5.

In this sense, the state spa
e proje
tions of LRSRM and LRSM are 
ontained in that

of DSPMR, whi
h, however, generally delivers a redu
ed realization of larger order.

There is only a 
ase for Algorithm 5 when the rank of S is mu
h smaller than n.

However, the rank k of this matrix 
an still be larger than the desired order of the redu
ed

realization. There are at least two ways to 
ope with this problem. If k is suÆ
iently small

(say, k < 500), standard implementations of model redu
tion methods for moderately

sized systems (Task 1; see xx 3.1 and 3.2) 
an be used to redu
e the system delivered by

Algorithm 5 further. Alternatively, a realization of arbitrary small order 
an be obtained

by a modi�
ation of Algorithm 5. This modi�
ation is a heuristi
 
hoi
e of a suÆ
iently

small subspa
e of rangeZ

B

+ rangeZ

C

. We propose to 
hoose the 
olumns of S as the k

dominant, left singular ve
tors of the matrix

Z =

h

1

jjZ

B

jj

F

Z

B

1

jjZ

C

jj

F

Z

C

i

: (19)
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The s
alar fa
tors 1= jjZ

B

jj

F

and 1= jjZ

C

jj

F

are weighting fa
tors with whi
h we try to attain

an equilibrium of the input-state and state-output relations. In parti
ular, a s
aling of the

matri
es B and C results in a s
aling of

^

B and

^

C with the same fa
tors, but it does not

a�e
t the 
hoi
e of S.

Algorithm 6 (Dominant subspa
es proje
tion model redu
tion - re�ned version (DSPMR-

R))

INPUT: A, B, C, D, k

OUTPUT:

^

A,

^

B,

^

C,

^

D

1. Compute low rank fa
tors Z

B

and Z

C

by Algorithm 1 (or alternative low rank meth-

ods), su
h that Z

B

Z

T

B

and Z

C

Z

T

C

are approximate solutions of (3) and (4), respe
tively.

2. Z =

h

1

jjZ

B

jj

F

Z

B

1

jjZ

C

jj

F

Z

C

i

3. UEV

T

:= Z (\e
onomy size" SVD), S = U

(:;1:k)

4.

^

A = S

T

AS;

^

B = S

T

B;

^

C = CS;

^

D = D

The redu
ed system (

^

A;

^

B;

^

C;

^

D) is stable if A + A

T

< 0. Although instability of the

redu
ed system has not been en
ountered in our numeri
al experiments, stability is not

guaranteed in general.

5 Numeri
al experiments

We demonstrate the performan
e of LRSRM, LRSM, and DSPMR-R in numeri
al ex-

periments with three large test examples of dynami
al systems (1). These experiments

were 
arried out on a SUN Ultra 450 workstation at the Department of Mathemati
s and

Statisti
s of the University of Calgary. The 
omputations were performed with MATLAB

5.2 using IEEE double pre
ision arithmeti
 (ma
hine pre
ision �

ma
h

= 2

�52

� 2:2 � 10

�16

).

Our implementation makes use of the data stru
ture for sparse matri
es o�ered by MAT-

LAB whenever this is pro�table.

Example 1 This example is a simpli�ed linear model of a nonlinear problem arising

from a 
ooling pro
ess, whi
h is part of the manufa
turing method for steel rails [50℄. The

temperature of the rail is lowered by water sprayed through several nozzles on its surfa
e.

Sin
e the problem is \frozen" w.r.t. one spa
e dimension and symmetri
 w.r.t. another, it

is suÆ
ient to 
onsider the problem related to half the 
ross-se
tion 
 of the rail, where

homogeneous Neumann boundary 
onditions are imposed on the arti�
ial boundary seg-

ment �

7

(see Figure 1). The pressure of the nozzles 
an be steered independently for

di�erent se
tions �

1

; : : : ;�

6

of the surfa
e. This 
orresponds to the boundary 
ontrol of

a two-dimensional instationary heat equation in x = x(�; �

1

; �

2

). The nozzle pressures

provide the input signals u

i

= u

i

(�), whi
h form the right hand side of the third type

boundary 
onditions (20). The output signals of this model are given by the temperature

in several interior observation points marked by small 
ir
les in Figure 1. After a proper
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s
aling of the physi
al quantities we get the paraboli
 di�erential equation

�

��

x =

�

2

��

2

1

x+

�

2

��

2

2

x (�

1

; �

2

) 2 


x+

�

�~n

x = u

i

(�

1

; �

2

) 2 �

i

; i = 1; : : : ; 6

�

�~n

x = 0 (�

1

; �

2

) 2 �

7

:

(20)

We utilized the MATLAB PDE toolbox to obtain a �nite element dis
retization of the

problem. Figure 1 shows the initial triangularization. The a
tual triangularization is the

result of two steps of regular mesh re�nement, i.e., in ea
h re�nement step all triangles

are split into four 
ongruent triangles. The �nal result of this pro
edure is a generalized

dynami
al system of the typeM

_

~x = �N ~x+

~

Bu, y =

~

C~x with dimensions n = 3113,m = 6,

and q = 6, where M is the mass matrix and N is the sti�ness matrix of the dis
retization.

We 
ompute a Cholesky fa
torization U

M

U

T

M

= M of the sparse, symmetri
, positive

de�nite, well-
onditioned mass matrix. De�ning A = �U

�1

M

NU

�T

M

, B = U

�1

M

~

B, and

C =

~

CU

�T

M

leads to a mathemati
ally equivalent standard system (1). Note that the

matrix A is never formed expli
itly be
ause the result would be a dense matrix. Instead,

we exploit the produ
t stru
ture.

Γ
1

Γ
2

Γ
3

Γ
4

Γ
5

Γ
6

Γ
7

Figure 1: Example 1. Cross-se
tion of the steel rail and initial triangularization of 
.

Example 2 This example is a dynami
al system with dimensions n = 3600, m = 4, and

q = 2. It was also used as a test example in [37, Example 5℄. The example arises from the


ontrol of a pro
ess in 
hromatography. See [29℄ for ba
kground information. The matrix

A is sparse and unsymmetri
. It has relatively bad algebrai
 properties. For example, its

symmetri
 part is inde�nite and there are eigenvalues of A with dominant imaginary parts.

Su
h properties have usually a negative e�e
t on the 
onvergen
e of iterative methods for

ALEs.

The Bode plots of Examples 1 and 2 are quite smooth. For this reason and be
ause

these examples are MIMO systems (i.e., systems with m; q > 1), we omit printing su
h

plots for the �rst two examples. In order to demonstrate that our algorithms are also

appli
able to systems with Bode plots whi
h are not smooth, we in
lude a third example.

The Bode magnitude plot of the following Example 3, that is a purely theoreti
al test
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example, shows three spikes; see Figure 2.

Example 3 The system matri
es are given as follows, where e

i

2 R

i;1

is the ve
tor with

ea
h entry equal to 1.

A =

2

6

6

4

A

1

A

2

A

3

A

4

3

7

7

5

; A

1

=

�

�1 100

�100 �1

�

; A

2

=

�

�1 200

�200 �1

�

;

A

3

=

�

�1 400

�400 �1

�

; A

4

= � diag(1; 2; : : : ; 1000); B =

�

10e

6

e

1000

�

; C = B

T

:

10
1

10
2

10
3

10
4

10
−1

10
0

10
1

10
2

ω

| G
( j

 ω
 ) 

|

Figure 2: Example 3. Bode magnitude plot.

In our tests we apply ea
h model redu
tion method to ea
h test example three times

(three \runs").

� In Run 1 we 
ompute the low rank approximations to the Gramians very a

urately.

That means we do not terminate the LR-Smith(l) iteration in Step 1 of ea
h method

before a stagnation of the iteration 
aused by round-o� errors is observed. Moreover,

we allow a relatively large order of the redu
ed model. In the spirit of Task 2 (see

x 3.1) our goal is to attain as small an approximation error as possible. Ideally, the

magnitude of this error should be in the vi
inity of the ma
hine pre
ision.

� In Run 2 we use the same quite a

urate low rank fa
tors Z

B

and Z

C

as in Run 1,

but we limit the maximal order of the redu
ed model to a smaller value. This 
an

be 
onsidered as an attempt of Task 2 and Task 1 in a single sweep.

� The number of LR-Smith(l) iteration steps is restri
ted to a small value in Run

3, whi
h generally leads to relatively ina

urate approximations to the Gramians.

Indeed, in a pra
ti
al implementation r

B

and r

C

, the numbers of 
olumns in the

Cholesky fa
tors Z

B

and Z

C

, respe
tively, whi
h are proportional to the number of

iteration steps, may be restri
ted by memory limits. Given su
h relative ina

urate

approximations, we try to generate as good a redu
ed order model as possible without
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�xing the redu
ed order k a priori. Instead, k is 
hosen as the numeri
al rank of

Z

T

C

Z

B

in LRSRM and LRSM, whereas k is the numeri
al rank of Z given by (19)

for DSPMR. This means that the redu
ed orders of the realizations delivered by

DSPMR are generally larger than those of the realizations by LRSRM and LRSM.

Ea
h test run of our numeri
al experiments 
an be subdivided into two stages. In the

�rst stage we run the LR-Smith(l) iteration twi
e to 
ompute the matri
es Z

B

and Z

C

.

Within this iteration we solve sparse or stru
tured systems of linear equations dire
tly

although iterative solvers (see [42℄, for example) 
ould be used instead. To redu
e the

numeri
al 
osts, the bandwidth of the involved sparse matri
es (M and N in Example 1, A

in Example 2) is redu
ed by a suitable simultaneous 
olumn-row reordering, whi
h is done

by means of the MATLAB fun
tion SYMRCM. This 
orresponds to Step 1 in Algorithm 1. We

use l-
y
li
 shift parameters p

i


omputed by the algorithm proposed in [37, Algorithm 1℄.

The a

ura
y of the approximated ALE solutions is measured by the normalized residual

norm (NRN), whi
h is de�ned as

NRN(Z) =

�

�

�

�

FZZ

T

+ ZZ

T

F

T

+GG

T

�

�

�

�

F

jjGG

T

jj

F

(21)

with (F;G; Z) = (A;B; Z

B

) or (A

T

; C

T

; Z

C

). The parameter l and the values of r

B

, r

C

,

NRN(Z

B

), and NRN(Z

C

) are shown in Table 1.

Example 1 Example 2 Example 3

system dimensions (n, m, q) (3113, 6, 6) (3600, 4, 2) (1006,1,1)

l 10 20 12

Run 1, 2 r

B

360 480 72

r

C

420 240 72

NRN(Z

B

) 3:4 � 10

�11

1:2 � 10

�11

9:7 � 10

�13

NRN(Z

C

) 1:2 � 10

�12

8:4 � 10

�13

1:2 � 10

�12

Run 3 r

B

60 80 12

r

C

60 40 12

NRN(Z

B

) 2:2 � 10

�3

2:2 � 10

�3

9:0 � 10

�4

NRN(Z

C

) 3:0 � 10

�3

2:2 � 10

�3

9:0 � 10

�4

Table 1: System dimensions and parameters des
ribing the LR-Smith(l) iterations in Step

1 of LRSRM, LRSM, and DSPMR.

The se
ond stage 
onsists of the 
omputation of the redu
ed order models themselves

by LRSRM, LRSM, and DSPMR. It should be noted that the �rst two methods often

deliver redu
ed models with an unstable matrix

^

A. We believe that this phenomenon

is mainly 
aused by round-o� errors in Run 1 (where high a

ura
y redu
ed realizations

are 
omputed) and by the use of quite ina

urate Gramians in Run 3. However, there

are usually only few slightly unstable modes (i.e., eigenvalues of

^

A with a nonnegative

real part of very small magnitude). Mostly, these unstable modes are hardly 
ontrollable

and observable. If unstable modes are en
ountered, we remove them by modal trun
ation

[6℄. That means the order of the redu
ed system is further de
reased by the number of

unstable modes in this kind of optional postpro
essing. Table 2 displays the order k of the
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redu
ed realizations after postpro
essing. Furthermore, it is shown whether the redu
ed

realization (before postpro
essing) is stable or unstable. Note that in our experiments

DSPMR always delivered stable redu
ed realizations.

Example 1 Example 2 Example 3

Run 1 LRSRM 194 (u) 173 (u) 46 (u)

LRSM 197 (u) 196 (u) 50 (s)

DSPMR 200 (s) 200 (s) 50 (s)

Run 2 LRSRM 40 (s) 40 (s) 10 (s)

LRSM 40 (s) 40 (s) 10 (s)

DSPMR 40 (s) 40 (s) 10 (s)

Run 3 LRSRM 54 (u) 38 (u) 12 (s)

LRSM 54 (u) 38 (u) 12 (s)

DSPMR 120 (s) 120 (s) 18 (s)

Table 2: Orders of redu
ed realizations delivered by LRSRM, LRSM, and DSPMR.

DSPMR-R is applied in Runs 1 and 2, whereas DSPMR-B is used in Run 3. It is also

shown whether the redu
ed realization is stable (s) or unstable (u).

Next, we study the numeri
al 
osts of the algorithms. Table 3 shows the total number

of 
oating point operations (\
ops", see [17, x 1.2.4℄) required for ea
h test run. These

values in
lude the 
omputational 
ost for both 
omputing of the low rank Cholesky fa
tors

and performing the model redu
tion itself.

Example 1 Example 2 Example 3

Run 1 LRSRM 1:2 � 10

10

2:5 � 10

10

1:8 � 10

8

LRSM 2:6 � 10

10

3:5 � 10

10

3:3 � 10

8

DSPMR 2:7 � 10

10

4:0 � 10

10

3:3 � 10

8

Run 2 LRSRM 9:7 � 10

9

2:2 � 10

10

1:3 � 10

8

LRSM 2:3 � 10

10

3:2 � 10

10

2:8 � 10

8

DSPMR 2:7 � 10

10

3:9 � 10

10

3:3 � 10

8

Run 3 LRSRM 1:1 � 10

9

2:6 � 10

9

4:5 � 10

7

LRSM 2:0 � 10

9

3:3 � 10

9

4:9 � 10

7

DSPMR 1:5 � 10

9

3:2 � 10

9

4:9 � 10

7

Table 3: Total numbers of 
ops required.

The 
omputational 
osts of LRSM and DSPMR are slightly larger than that of LRSRM.

However, ea
h is mu
h smaller than the 
ost of standard implementations of the balan
ed

trun
ation method, whi
h involve the 
omputation of S
hur fa
torizations or SVDs of dense

n-by-n matri
es. A rough estimation of their 
ost gives 50n

3


ops, whi
h are 1:5 �10

12


ops

for Example 1 and 2:3 � 10

12


ops for Example 2. Be
ause of the blo
k diagonal stru
ture

of A in Example 3, the Gramians 
ould be dire
tly 
omputed within O(n

2

) operations.

However, standard balan
ed trun
ation algorithms would still require O(n

3

) 
ops.

The se
ond 
omplexity aspe
t, whi
h should brie
y be dis
ussed here, is the memory

requirement of our methods. It is dominated by the amount of memory needed for storing
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the low rank fa
tors Z

B

and Z

C

and the LU fa
tors arising from the l LU fa
torizations of

the matri
es in the shifted systems of linear equations, whi
h need to be solved in the 
ourse

of the LR-Smith(l) method. Of 
ourse, these quantities strongly depend on the parti
ular

problem. However, taking into a

ount that suitably reordered sparse matri
es often have

a relative small bandwidth (115 for M and N in Example 1, 57 for A in Example 2) and


onsidering the number of 
olumns in the low rank fa
tors given in Table 1 reveal that our

methods demand 
onsiderably less memory than standard implementations, whi
h usually

require storing a few dense n-by-n matri
es. Of 
ourse, this demand 
an be redu
ed even

further by solving the shifted linear systems iteratively.

Finally, we show how a

urate the redu
ed order models approximate the original ones.

To this end we 
ompare the frequen
y response of the original system with those of the

redu
ed systems in Figures 3, 4, and 5. There we display the fun
tion

k�G(|!)k=
 = kG(|!)�

^

G(|!)k=


for a 
ertain frequen
y range ! 2 [!

min

; !

max

℄. For Examples 1 and 2 we 
hoose [!

min

; !

max

℄

= [10

�10

; 10

10

℄. For Example 3 we 
onsider the frequen
y range [!

min

; !

max

℄ = [10

1

; 10

4

℄,

whi
h 
ontains the three spikes.

The s
alar parameter 
, whi
h we de�ne as


 = max

!2[!

min

;!

max

℄

kG(|!)k ;

is used for a normalization and 
an be 
onsidered as an approximation to the L

1

norm

of G. That means, our plots show relative error 
urves in this parti
ular sense. It should

be mentioned that, in 
ontrast to the majority of publi
ations on model redu
tion, no

simultaneous Bode plots of the original and redu
ed systems are used be
ause it would be

impossible to distinguish the single 
urves in that type of plot.
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Figure 3: Example 1. Error plots for LRSRM (dashdotted line), LRSM (dashed line), and

DSPMR (solid line).

Ex
ept for DSPMR in Run 2 for Example 2, our algorithms generate redu
ed systems

whose approximation properties are quite satisfa
tory. In parti
ular, in Run 1 we attain

error norms whi
h are in the vi
inity of the given ma
hine pre
ision. Note that the methods

mentioned in x 3.3 typi
ally deliver 
onsiderably less a

urate redu
ed systems. The
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Figure 4: Example 2. Error plots for LRSRM (dashdotted line), LRSM (dashed line), and

DSPMR (solid line).
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Figure 5: Example 3. Error plots for LRSRM (dashdotted line), LRSM (dashed line), and

DSPMR (solid line).

error 
urves for the algorithms LRSRM and LRSM, whi
h are mathemati
ally equivalent

in exa
t arithmeti
s, are almost identi
al. We observed that the 
ondition numbers of

the proje
tion matri
es S

B

and S

C

are 
onsiderable higher for LRSRM than for LRSM.

Moreover, the number of unstable modes in the redu
ed realization tends to be higher

for LRSRM 
ompared to LRSM. However, both aspe
ts seem to have no negative e�e
t

on the approximation error of LRSRM. For Examples 1 and 2 the error 
urves of both

methods are slightly better for Run 1 and 
onsiderably better for Run 2 
ompared to those

of DSPMR. In Runs 1 and 2 for Example 3 all methods deliver almost identi
al results.

DSPMR performs generally better in Run 3, whi
h 
an be explained by (17) and (18).

Note the superiority of DSPMR in the low-frequen
y range for Example 1. However, the

redu
ed order of the realizations delivered by DSPMR is larger than those of the LRSRM

and LRSM realizations in this run.
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6 Con
lusions

In this paper we have studied three model redu
tion algorithms for large dynami
al sys-

tems. The �rst two methods, LRSRM and LRSM, are modi�
ations of the well-known

square root method and S
hur method, whi
h are balan
ed trun
ation te
hniques for

systems of moderate order. These modi�
ations are based on a substitution of the 
on-

trollability and observability Gramians by low rank approximations. DSPMR, the third

method, is not dire
tly related to balan
ed trun
ation and more heuristi
 in nature. It

is motivated by input and output energy 
onsiderations (Theorem 1) and related to the

other two methods by 
ertain in
lusions that hold for the ranges of the 
orresponding pro-

je
tion matri
es. The availability of relatively a

urate low rank approximations to the

system Gramians is of vital importan
e for ea
h model redu
tion method. We 
ompute

these approximations by the LR-Smith(l) iteration, whi
h is a low rank version of the

well-known ADI iteration. However, alternative methods 
ould be used.

The performan
e of the three model redu
tion algorithms has been studied in numer-

i
al experiments. The results of LRSRM and LRSM are fairly similar and mostly better

than those for DSPMR. Be
ause of this and its simpli
ity, LRSRM should be 
onsidered

as the method of 
hoi
e in general. On the other hand, in situations when the low rank

approximations to the Gramians are not very a

urate, DSPMR turns out to be an in-

teresting alternative to LRSRM. Furthermore, DSPMR delivered stable redu
ed systems

in ea
h of our test runs, whereas the redu
ed systems generated by LRSRM and LRSM

often 
ontain a few unstable modes, whi
h must be removed in a postpro
essing step.

In our opinion the test results of LRSRM, LRSM, and DSPMR are quite promising in

view of the attainable a

ura
y of the redu
ed systems and the numeri
al 
osts, although

we expe
t that these 
osts are in many 
ases higher than those of model redu
tion methods

based on Pad�e approximation and Krylov subspa
es. Nevertheless, our methods 
an be

applied to very large model redu
tion problems that do not allow the use of standard

te
hniques, in whi
h the Gramians are 
omputed by the Bartels-Stewart method or the

Hammarling method.
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