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Algorithms for Model Reduction of Large Dynamical Systems

Thilo Penzl

Abstract

Three algorithms for the model reduction of large-scale, continuous-time, time-
invariant, linear, dynamical systems with a sparse or structured transition matrix
and a small number of inputs and outputs are described. They rely on low rank ap-
proximations to the controllability and observability Gramians, which can efficiently
be computed by ADI based iterative low rank methods. The first two model reduc-
tion methods are closely related to the well-known square root method and Schur
method, which are balanced truncation techniques. The third method is a heuris-
tic, balancing-free technique. The performance of the model reduction algorithms is
studied in numerical experiments.

Keywords: dynamical systems, Lyapunov equation, model reduction, balanced
truncation, Schur method, square root method, numerical algorithms, sparse matri-
ces.

AMS Subject Classification: 65F30, 65F50, 93A15, 93A25.

1 Introduction
In this paper we consider realizations

z(r) = Az(r) + Bu(1)

y(t) = Cx(r)+ Du(r) 1)
of continuous-time, time-invariant, linear, dynamical systems, where A € R*", B € R"™,
CeRe™ D eRP™, 7 €R, and nis the order of the realization. R and R™™ denote the sets
of real numbers and real n-by-m matrices, respectively. Together with an initial condition
z(7y) = g, realizations (1) are uniquely described by the matrix tuple (A, B, C, D). When
appropriate, we will also use the equivalent notation [ a1B ], which is more common in
control theory. The vector-valued functions u, z, and y are referred to as input, state,
and output of the system, respectively. In particular, we focus on realizations with large
state space dimension (say, n > 1000) and small input space and output space dimensions
(say, m,q < ﬁn). Moreover, we assume that the matrix A is sparse or structured. An
important source for such dynamical systems are parabolic differential equations. Their
semidiscretization w.r.t. the space component leads to systems of type (1). Usually, the
dimension n depends on the fineness of the discretization and is very large, whereas m
and ¢ are small and independent of the discretization. Large dynamical systems also arise
from circuit simulation; e.g., [1].

Often numerical methods for controller design or simulation cannot be applied to very
large systems because of their extensive numerical costs. This motivates model reduction,

which is the approximation of the original, large realization by a realization of smaller
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order. In this paper we describe three model reduction algorithms for large systems,
which are numerically inexpensive with respect to both memory and computation.

The remainder of this paper is organized as follows. In § 2 we give an introduction to
continuous-time, algebraic Lyapunov equations (ALEs) and describe an iterative solution
method. The reason for this is that many important model reduction methods for small
and medium systems as well as our methods for large systems are based on ALEs. § 3.1
contains a brief discussion of model reduction in general. §§ 3.2 and 3.3 deal with existing
methods for systems of moderate size and large scale systems, respectively. Moreover,
§§ 3.1 and 3.2 provide the foundation for the three model reduction methods for large
systems described in § 4. The efficiency of these methods is demonstrated by numerical
experiments in § 5. Finally, conclusions are provided in § 6.

2 Numerical solution of Lyapunov equations and the
LR-Smith(/) iteration

Besides model reduction several topics in control theory, such as stability analysis [32],
stabilization, optimal control [33, 46], solution of algebraic Riccati equations [28, 31], and
balancing [35] involve ALEs. These linear matrix equations usually have the structure

FX +XF"=-GG", (2)

where G € R™ is a rectangular matrix with ¢ < n and the matrix F' € R™" is stable, i.e.,
A(F) C C_. Here, A\(F') denotes the spectrum of F'. C_ is the open left half of the complex
plane, i.e., C. = {a € C| Rea < 0}, where C is the set of the complex numbers and Rea
is the real part of a. The stability of F' is sufficient for the existence of a solution matrix
X € R™" which is unique, symmetric, and positive semidefinite. If the pair (F,G) is
controllable, then X is even positive definite. Note that (2) is mathematically equivalent
to a system of linear equations with O(n?) unknowns. For this reason, ALEs of order
n > 1000 are said to be of large scale.

The relation between (1) and (2) depends on the particular problem, but in context
with model reduction mostly F' = A or AT and G = B or CT. For this reason, we assume
that F'is sparse or structured, whereas (G is a matrix with very few columns. If the latter is
true, the nonnegative eigenvalues of the solution X tend to decay very fast [38]. In this case
the solution matrix can be approximated very accurate by a positive semidefinite matrix
of relatively low rank. This property is essential for our model reduction algorithms.

The Bartels-Stewart method [2] and the Hammarling method [20] are the direct stan-
dard methods for ALEs. Whereas the first is applicable to the more general Sylvester
equation, the second tends to deliver more accurate results in the presence of round-off
errors. Both methods require the computation of the Schur form of F'. As a consequence,
they generally cannot profit by sparsity or other structures in the equation. The squared
Smith method [48] and the sign function method [40] are iterative methods, which can-
not exploit sparsity or structures as well. However, they are of particular interest when
dense ALEs should be solved on parallel computers [14, 3]. The alternating direction
implicit iteration (ADI) [36, 52] is an iterative method which often delivers good results
for sparse or structured ALEs. The solution methods mentioned so far have the compu-
tational complexity O(n?), except for the ADI method. Tts complexity strongly depends
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on the structure of F' and is sometimes better. All methods have the memory complexity
O(n?) because they generate the dense solution matrix X explicitly. It should be stressed
that often the memory complexity rather than the amount of computation is the limiting
factor for the applicability of solution methods to large ALEs.

Low rank methods are the only existing methods which can solve very large ALEs.
They require that G consists of very few columns and they exploit sparsity or structures
in F'. The solution X is not formed explicitly. Instead, low rank factorizations, which
approximate X, are computed. Note that throughout this paper “low rank” stands for
“(resulting in or having) a rank much smaller than n”. (We will later call certain matrices,
whose numbers of columns are much smaller than n, low rank factors although their column
rank may be full.) Most low rank methods [21, 22, 25, 41] are Krylov subspace methods,
which are based either on the Lanczos process or on the Arnoldi process; see, e.g., [17, 42].
Furthermore, there are low rank methods [41, 19] based on the explicit representation of
the ALE solution in integral form, e.g., [30]. Two low rank methods related to the ADI
iteration and the Smith method were proposed in [37]. Here, we describe the cyclic low
rank Smith method (LR-Smith(l)), which is the more efficient of both methods. Note that
in the following algorithm and the remainder of this paper I,, denotes the n-by-n identity
matrix.

Algorithm 1 (LR-Smith(l) iteration [37])
INPUT: F, G, P = {p;}}_, c C_
OUTPUT: Z = Z; such that 727 ~ X

(1. Find a suitable transformation matrix H and transform the equation: F := HFH 1,
G := HG.)

2. Z1 = \/—2p1(F+p11—n)71G

mazl7

FORi=2,....1
3. Z; = [ (F = pilo)(F +pily) ' Ziew /=2pi(F +pi1,) 7 'G ]

END

4. 70 = 7,

FORi=1,2,... imew — 1

[
5ZWWD:(HG¥mMMF+MQVQZW

j=1
6. Zir1y = [ Zy  Z() ]
END

(7. Transform the factor of the approximate solution back: Z; H7'Z;, 1)

mazl *

Numerical aspects of this method are discussed in detail in [37]. However, some remarks
should be made here. The LR-Smith(l) iteration is mathematically equivalent to the ADI
iteration, where pq, ..., p; are cyclically used as shift parameters. Usually, a small number
of different parameters is sufficient to achieve an almost optimal rate of convergence (say,
[ € {10,...,25}). It is important to use a set P of pairwise distinct shift parameters,
which is closed under complex conjugation (i.e., if p € P, then p € P). This ensures that



4 Thilo Penzl

Z is a real matrix. Such suboptimal shift parameters can be computed efficiently by a
heuristic algorithm [37, Algorithm 1]. In practical implementations the iteration should be
stopped when round-off errors start to dominate the difference between the exact solution
and the numerically computed approximate solution ZZ%, which is characterized by the
stagnation of the normalized residual norms (see also (21)) on a level that is in the vicinity
of the machine precision. Usually, this is the case for i,,,,/ € {30,...,100} if ALEs with a
symmetric matrix F' are considered. For unsymmetric problems 4,,,,/ tends to be larger.
The resulting factor Z consists of 4,,,./t columns.

Of course, the matrices (F + p;I,) ", which are involved in Steps 2, 3, and 5, are not
formed explicitly. Instead, systems of type (F' + p;I,,)r = y are solved. If F' is sparse,
this requires computing and storing [ sparse LU factorizations, which are repeatedly used
in backsubstitutions. Thus, the complexity of the method strongly depends on nonzero
pattern and the bandwidth of F' in this case. Therefore, it is often useful to improve this
structure by a transformation of the ALE with the nonsingular matrix H (optional Steps
1 and 7). For example, H can be a permutation matrix for bandwidth reduction [5] or a
matrix which transforms F' into a tridiagonal matrix [15, 44]. However, the matrix H is
never formed explicitly and multiplications with H and H~! must be inexpensive. Alter-
natively, the shifted systems can be solved by iterative methods, such as (preconditioned)
Krylov subspace methods; e.g., [42]. In this case Steps 1 and 7 can be omitted.

Basically, the model reduction algorithms proposed in § 4 can also be used in combi-
nation with the aforementioned alternative low rank methods for ALEs, which are mainly
Krylov subspace methods. Our model reduction algorithms only require the availability
of approximations to ALE solutions which have a high accuracy and a very low rank. In
general, LR-Smith([) delivers better results than Krylov subspace methods w.r.t. both cri-
teria; see [37, § 6]. Moreover, the latter often fail for relatively easy problems. Therefore,
we prefer LR-Smith(7) to Krylov subspace methods despite the fact that the computational
cost of Krylov subspace methods is often lower.

3 Model reduction: preliminaries and some existing
methods

3.1 Preliminaries

Assume that we are given a realization (A, B,C, D) of order n. The purpose of model
reduction is to find a reduced realization (A, B, ', D) with A € R** B € R¢™ | (' € RO,
De R%™ such that the input-output behavior of the reduced system approximates that
of the original system in some sense. Here, k € {1,...,n — 1} is the (arbitrary, but fixed)
order of the reduced realization. Many practically important criteria for assessing the
deviation of the reduced system from the original one are based on the difference of the
transfer matrices G and G on the imaginary axis

AG(jw) = G(w) — G(w),
where ) = /=1, w € R, G(s) = C(sI, — A)"'B + D, and G(s) = C(sI;, — A) B + D.
Measuring the difference AG(jw) corresponds to comparing the frequency response of both
systems, i.e., the response y to a sinusoidal input function u; see, e.g., [47].
There are typically two tasks which require the reduction of the order of a system.



Model reduction of large dynamical systems 5

e Task 1 is the reduction of systems of small or moderate size (say, n € {5,...,1000}
depending on the problem). Although numerical algorithms for controller design
applied to such systems mostly require an affordable amount of computation and
deliver satisfactory results, the reduction of the model or the controller is often
desired because the practical implementation of the controller (in an electrical device,
for example) is too complex or too expensive. Here, the main goal is to achieve a
particular objective, for example, (sub)minimizing AG(s) w.r.t. the Ly or L., norm
or a frequency weighted norm. The complexity of model reduction methods for such
objectives usually prohibits their application to large scale problems.

e Task 2 is the reduction of systems which are so large that numerical standard
methods for controller design or simulation of the system cannot be applied due to
their extensive numerical costs (say, n > 1000). Methods for controller design have in
most cases at least the computational complexity O(n?®) and the memory complexity
O(n?). Moreover, they usually cannot benefit from structures in the system. The
primary objectives of Task 2 are to replace the system by a smaller one, for which
a controller can be designed or which can be simulated with reasonable numerical
effort, and to lose only a very small amount of information by the reduction. Ideally,
this loss should be of the same magnitude as the inaccuracies, that are caused by
round-off or approximation errors in the subsequent controller design or simulation,
and the inherent errors in the model of the underlying real process.

In practice, a model reduction process for a very large system can consist of two steps,
where Task 2 and Task 1 are treated successively. The model reduction methods proposed
in this paper are intended to solve problems related to Task 2.

Modal truncation [6], balanced truncation [34, 49, 43, 51], singular perturbational
model reduction [10], frequency weighted balanced truncation [7], optimal Hankel norm
approximation [16] are well-known model reduction methods for stable systems. All these
methods mainly focus on Task 1. Each requires the solution of eigenvalue problems of
order n, which make their standard implementations expensive when large systems should
be reduced. However, they are very useful for systems of moderate size. Except for modal
truncation each of the above methods is based either explicitly or implicitly on balanced
realizations, the computation of which involves the solutions of a pair of ALEs

AXp+ XpAT = —-BBT (3)
ATXo+ XA = —CTC. (4)

The solution matrices Xp and X are called controllability and observability Gramians.
They play an important role in input-state and state-output energy considerations, which
provide a motivation for some of the aforementioned model reduction methods as well as
the methods proposed in § 4.

In the following theorem [16], [u|,,; denotes the £, norm of a vector-valued function

u, i.e., ||u||i2(a’b) = fabu(T)Tu(T)dT. A realization (1) is called minimal if both (A, B) and
(AT CT) are controllable.

Theorem 1 Let (1) be a minimal realization with a stable matriz A. Then the solutions
Xp and X¢ of the ALEs (3) and (4), respectively, are positive definite and

. 5 S
ueﬁz(—og,l(g,lx(o):xo ”u”ﬁ2(—oo,0) Ty Ap To ( )
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Furthermore, if ©(0) = xy and u(t) =0 for 7 >0, then

2
[91%5(0,00) = %0 X0 (6)

Loosely speaking, this means that a large input energy ||u||£2(_0070) is required to steer the
system to a (normalized) final state xq, which is contained in an invariant subspace of Xp
related to the smallest eigenvalues of this matrix. Likewise, (normalized) initial states z
contained in an invariant subspace of X related to the smallest eigenvalues deliver little
output energy |y £2(0,00) @, thus, they hardly have an effect on the output.

Finally, it should be stressed that all model reduction methods in §§ 3.2 and 4 belong
to the class of state space projection methods. That means the reduced realization of order
k is obtained by a projection of the state space to a subspace of dimension k. Assume that
T € R™" is a nonsingular matrix such that the chosen subspace is spanned by the first k
columns of T. Then the reduced system corresponds to the first & columns and rows of
the transformed realization

T—'AT | T~'B
cT | D |’

which is equivalent to (1). Using the MATLAB style colon notation we set
SB = T(:,l:k:) and SC = (TiT)(:,I:k:)- (7)

The reduced order realization is given by

~

[A
C

B] B [SEASB\SEB]

D CSp | D

(8)

where

SISy = I, (9)

holds. This means state space projection methods differ in the choice of matrices Sp,
Sc € R™* that fulfill (9). From the numerical point of view one is interested in attaining
as small a condition number of Sp and S as possible.

3.2 Balanced truncation techniques

The perhaps most popular way to tackle model reduction problems corresponding to Task
1 is balanced truncation. The basic motivation for this technique is provided by Theorem
1 and its subsequent discussion. Unfortunately, the equations (5) and (6) for the input-
state and state-output mapping, respectively, suggest different subspaces for a state space
projection. However, both parts can be treated simultaneously after a transformation
of the system (A, B,C, D) with a nonsingular matrix 7" € R™" into a balanced system
(A,B,C,D) = (T™"AT,T~'B,CT, D); see [35]. A realization (A, B,C, D) with a stable
matrix A and the corresponding transformed Gramians X g = T'XgT T and X’C =
TT X T is called balanced if

Xp = Xc = diag(oq, ..., 0n), (10)

where 01 > 09 > ... > 0, > 0. The values o; are called Hankel singular values. A
balanced realization exists if (A, B,C, D) is a stable, minimal realization; e.g., [16]. The
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result of the basic balanced truncation algorithm [34] is given by (8), where the balancing
transformation matrix 7' is used to define the matrices Sg and S¢ in (7). If o}, # o1,
the reduced order realization is minimal, stable, and balanced. Its Gramians are equal to
diag(oy, ..., 0r). One of the main attractions of balanced truncation is the availability of
the following L, error bound, which was independently derived in [7] and [16],

n
IAG |z = sup |G(w) = G(w)| <2 Y oi. (11)
w€eR i—kt1
Here, ||-|| is the spectral norm of a matrix. Finally, it should be mentioned that there exist

several implementations of balanced truncation model reduction algorithms [34, 49, 43, 51].
They deliver reduced order realizations with identical transfer matrices but differ in their
numerical robustness.

3.3 Methods based on Padé approximation and Krylov sub-
spaces

Motivated by applications in circuit simulation, quite a large number of publications on
model reduction of large systems (Task 2) have appeared in the last few years. The ma-
jority of the proposed algorithms are based on Padé approximation and Krylov subspaces.
For this reason, we briefly sketch the underlying principle of these algorithms despite the
fact that the algorithms proposed in § 4 are based on a completely different approach.
For simplicity, we only consider the special case, where m =1, ¢ = 1, and D = 0, in this
section. See [11] for a detailed survey.

Let @(s) and g(s) be the Laplace transformed of w(t) and y(t), respectively. It is
well-known that the frequency domain representation

y(s) = G(s)u(s) with G(s) =C(sl, — A) 'B,

which maps the transformed input to the transformed output without reference to the
(transformed) state, is mathematically equivalent to the state space representation (1) of
a dynamical system provided that z(0) = 0. The basic principle of the Padé approximation
based model reduction algorithms (Padé algorithms) is an expansion of G(s) about a point
sp € CU{oo}. A frequent choice is sy = oo although other or even multiple expansion
points (e.g., [13]) can be used. For example, the expansion about infinity delivers

1 .
G(s) =) S M: with M =CA'B, (12)

=0

which can be interpreted as a Taylor series, that converges if |s| is sufficiently large. The
matrices M;, which are called Markov parameters, are system invariants. The leading 2n
parameters determine the system uniquely. Expansions of G(s) about infinity as well as
other points can be rewritten in terms of a rational function in s. More precisely,

— %4(8)
©n(s)

G(s)

)
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where 1,_1 and ¢, are polynomials of degree at most n — 1 and n, respectively. The
reduction of the system order is now achieved by computing a rational function of the

type

G(s) = : (13)

which corresponds to a realization (/Al, B, C’, 0) of reduced order provided that & < n. In
view of the series (12) a sensible choice of the polynomials ¢,_; and ¢y is that for which

G(s)— G(s) =3 3—1+1M

1=2k

holds. That means, the leading 2k —1 Markov parameters of G and G coincide. This pro-
cedure is known as moment matching. The resulting function G is called Padé approrimant

of GG.

In the last decade two basic approaches to compute the reduced system corresponding
to the Padé approximant (13) have been pursued although model reduction based on Padé
approximation was studied much earlier; e.g., [45]. The so-called asymptotic waveform
evaluation (AWE) [39] computes the reduced system in a way that involves computing
the leading Markov parameters of G and the coefficients of the polynomials ¢;_; and
¢r explicitly, which tends to be numerically unstable. The second approach [8, 12, 9],
which is called Padé via Lanczos (PVL) algorithm, exploits a connection between Padé
approximation and Krylov subspace processes [18]. AWE and PVL are mathematically
equivalent, but PVL turns out to be numerically more robust in general. For this reason,
PVL is usually preferred to AWE in practical applications. There exist a number of
variations of the PVL algorithm; see, e.g., [11] and references therein.

A few general aspects in context with Padé algorithms should be discussed here. First,
it is not clear, whether they deliver good approximations for values s which lie far away
from the expansion point. In contrast to balanced truncation, no L., error bounds are
known for Padé algorithms. Unlike the algorithms proposed in § 4, the implementation of
such methods often becomes more complicated when m > 1 and ¢ > 1. An essential advan-
tage of Padé algorithms is that they are not restricted to systems of type (1). They can be
applied to more general linear, time-invariant, differential-algebraic equations. Moreover,
their numerical costs are quite low.

Finally, we want to stress that there exist a few algorithms [23, 24, 26, 27], which are
not directly motivated by Padé approximation and moment matching, but involve Krylov
subspace techniques. For example, in [26] a Galerkin technique is proposed, whereas in
[24] an approach related to GMRES (e.g., [42]) is pursued to generate a reduced system.
In both cases low rank approximations to the Gramians Xg and X are involved. These
approximations are computed by Krylov subspace methods for ALEs described in [41, 22,
25]. A basic difference to the model reduction methods proposed in § 4 is that the latter can
use arbitrary, symmetric, positive semidefinite low rank approximations to the Gramians.
In particular, this includes approximations generated by Algorithm 1, which are often
more accurate and of lower rank than those computed by Krylov subspace methods for
ALEs.
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4 Three model reduction methods for large systems

4.1 Low Rank Square Root Method

The original implementation of balanced truncation [34] involves the explicit balancing of
the realization (1). This procedure is dangerous from the numerical point of view because
the balancing transformation matrix 7" tends to be highly ill-conditioned. Moreover, the
implementation in [34] is restricted to minimal realizations. The so-called square root
method [49] (see also [43, 51]) is an attempt to cope with these problems. It is con-
structed in a way that avoids explicit balancing of the system. The method is based on
the Cholesky factors of the Gramians instead of the Gramians themselves. In [49] the use
of the Hammarling method was proposed to compute these factors, but, basically, any
numerical method that delivers Cholesky factors of the Gramians can be applied. For
example, a combination of a modified sign function iteration for ALEs and the square
root method, which, in particular, allows the efficient model reduction of large dense sys-
tems on parallel computers, has been proposed in [4]. For large systems with a structured
transition matrix A, the LR-Smith(/) method can be an attractive alternative because
the Hammarling method or sign function based methods can generally not benefit from
such structures. Algorithm 2, which we refer to as low rank square root method (LRSRM),
is based on the algorithm proposed in [49] and differs formally from the implementation
given there only in Step 1. In the original implementation this step is the computation
of exact Cholesky factors, which may have full rank. We formally replace these (exact)
factors by (approximating) low rank Cholesky factors to obtain the following algorithm.

Algorithm 2 (Low rank square root method (LRSRM))

INPUT: A, B, C, D, k
OUTPUT: A, B, C, D

1. Compute low rank factors Zp and Zc by Algorithm 1 (or alternative low rank meth-
ods), such that ZzZ% and ZoZ% are approximate solutions of (3) and (4), respectively.

2. UCOEOUIJB:O = ZgZB (SVD)7 UC' = UCO(:,I:k)a Y= Z0(1:/9,1:/9)7 UB = UBO(:,I:k)
3. Sp=ZgUpS~'2,  So = ZoUsL™1/?
4. A=SLASy;, B=SIB, C=0CSz, D=D

In this algorithm we assume that k < rank ZL Zp. Note further that throughout this paper
singular value decompositions (SVDs) are arranged so that the diagonal matrix contain-
ing the singular values has the same dimensions as the factorized matrix and the singular
values appear in nonincreasing order. The use of (approximated) low rank factors of the
Gramians reduces the computational cost and the memory requirement of the square root
method significantly. Note that we only have to compute an SVD of an r¢-by-rp matrix,
where 75 and r¢ are the numbers of columns in Zg and Z¢, respectively, and rg,rc << n.
In contrast, if exact Gramians (of possibly full rank) were used, the implementation would
involve an SVD of a square matrix of order n. The complexity of algorithm LRSRM except
for Step 1 is O(nmax{r%,r%}) w.r.t. computation and O(n max{rg,rc}) w.r.t. memory.
However, the total complexity depends on the numerical costs for the LR-Smith({) iter-



10 Thilo Penzl

ations in Step 1 of Algorithm 4, which in turn strongly depend on the structural and
algebraic properties of the matrix A.

4.2 Low Rank Schur Method

An alternative to the basic balanced truncation algorithm described in § 3.2 and the square
root method is provided by the so-called Schur method [43], which is (in exact arithmetics)
mathematically equivalent to the first two methods in the sense that the transfer matrices
of the reduced realizations are identical. It has become quite popular because it generates
projection matrices S and Sc, which have generally much smaller condition numbers
compared to those by the square root method.

Algorithm 3 (Schur method for balanced truncation model reduction [43])

INPUT: 4, B, C, D, k
OUTPUT: A, B, C, D
1. Solve (3) and (4).

2. Determine the k largest eigenvalues of X5 X and compute orthonormal bases Vg, Vo €
R™* for the corresponding right and left, invariant subspaces, respectively, by means of
ordered Schur factorizations.

3. UcSUEL =VEVs  (SVD)
4. Sp =VUgS~'2,  So = VUL ™1/?
5. A=STASy, B=SLB, C=CSg, D=D

Even if the ALEs (3) and (4) in Step 1 can be solved in an inexpensive way, Algorithm
3 cannot be applied to large systems because a dense eigenvalue problem of order n needs
to be solved in Step 2. For this reason we propose the following modification we refer to as
low rank Schur method (LRSM). We solve the ALEs (3) and (4) approximately by applying
Algorithm 1 twice. Assuming that we obtain matrices Zp € R""? and 7 € R™"¢ such
that Xp ~ ZpZh =: Xp, Xe ~ ZcZE =: X¢, and max{rp,r7¢} << n, we then formally
replace XpXc by the approximation XpXc in Step 2 of Algorithm 3. The basic idea of
our approach is now to avoid forming Xz Xc explicitly in this step. Instead, we generate
a low rank factorization of this matrix product, which enables us to compute Vg and Vg
in a more efficient way. Note that r = rank XX < min{rg,rc} << n. Steps 3-5 of
Algorithm 3 remain the same. Our modification of Step 2 should be described in detail
now.

First, we determine an “economy size” SVD (that means the version of the SVD
where the diagonal matrix containing the singular values is square and has full rank) of
the product XzX¢, which reveals its low rank structure. For this purpose, we compute
“economy size” QR factorizations Zp = Q1 Rp and Z¢ = Qc1 R with Qg € R™™ and
Qc1 € R™"c . After that, an “economy size” SVD

RpZL7Z-REL =: QpDQE,
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with the nonsingular diagonal matrix D € R™" is cmeuted. Defining Qp = (1@ B2 and
Qc = Qc1Qco, we finally get the desired SVD of Xp X by

XpXe = ZpZ57Zc 2% = QpRpZ5ZcREQL, = QsDQL. (14)

By means of this equation we now compute an orthonormal basis for the right, dominant,
invariant subspace of XpXc. Obviously, the right, invariant subspace related to the
nonzero eigenvalues of XX coincides with the range of (Jp. Because of

XpXcQp = Zp757:725Qp = QpDQLQp (15)

all nonzero eigenvalues of X5 X are eigenvalues of the matrix DQLQp as well. Assuming
that r << n, the merit of our approach is that we have to determine the dominant eigen-
values of the r-by-r matrix DQLQp instead of those of the n-by-n matrix XpXe itself.
More precisely, we compute an ordered Schur factorization

DQ{Qp =: PsTpPf = | Ppi Pgy | [ , (16)

where the block T, € R¥* (k < r) corresponds to the k largest eigenvalues of Tz. The
desired orthonormal basis in the right, dominant, invariant subspace is formed by the
columns of the matrix Vg = Qg Pp1 because

XBXC’VB - ZBzgzcngBPB = QBDQEQBPB = QBPBITBII — VBTBlla

which in turn is a consequence of (15) and (16). An orthonormal basis in the left, dominant,
invariant subspace of XX is obtained by an analogous procedure.
Piecing the single steps together we obtain the following algorithm.

Algorithm 4 (Low rank Schur method (LRSM))
INPUT: A, B, C, D, k
OUTPUT: A, B, C, D

1. Compute low rank factors Zp and Zc by Algorithm 1 (or alternative low rank meth-
ods), such that Z5Z% and ZoZ% are approximate solutions of (3) and (4), respectively.

2. QpRp =75, Qc1Rc:=7c (“economy size” QR factorizations)
3. QpaDQL, := RpZEZcRL  (“economy size” SVD)
4. QB = QBlQBZ, QC = QCchz

5. PpTpPL := DQLQg, PcTcPL := DTQLQc (Schur factorizations with nonin-
creasing ordered eigenvalues on the main diagonals of T and T¢)

6. VB = QpPp(1x), Vo =0QcPciin

7. UcSUL :=VIVs  (SVD)

8. Sp=VaUp2™2  Se=VoUcn 12

9. A=STASs, B=SIB, C=CSg, D=D

The execution of Steps 2-9 has the complexity O(n max{r%,r%}) w.r.t. computation and
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O(nmax{rg,rc}) w.r.t. memory, whereas the original Algorithm 3 has the computational
complexity O(n?) and the memory complexity O(n?).

The square root method and the Schur method based on exact Gramians are known
to be mathematically equivalent in the sense that they deliver reduced realizations with
identical transfer matrices. The analog statement holds also for LRSRM and LRSM. In
the following lemma we assume that in LRSRM and LRSM the same low rank factors Zp
and Z¢ are used und that both algorithms generate reduced realizations of order k.

Lemma 1 Let k < rank ZZ:ZB and o1 > 09 > ... be the singular values of ZZ:ZB. If
Ops1 # 0, LRSRM and LRSM deliver reduced realizations, which have identical transfer
matrices.

Proof: Throughout this proof we provide the matrices in Algorithm 2 with a tilde (e.g.,
i) to distinguish them from the variables that correspond to Algorithm 4. In Steps 2-6 of
Algorithm 4 we compute orthonormal bases Vg and V¢ in the right and left, k-dimensional,
dominant, invariant subspaces of ZpZ}ZcZ%. Observe that

MZpZ5 20 2E)\0} = MZEZp 25 2e)\{0} = MEo%q)\ {0},

where eigenvalue multiplicities are retained by the equalities. Thus, there exists a nonsin-
gular matrix Wp; € R¥* such that Vj fulfills

ZpZEZc ZEVEWr = VeWe B2

Note that & and the dominant invariant subspaces are uniquely defined because Okt1 F Op.
Furthermore, it follows from Step 2 in Algorithm 2 that

Zp 7L 7cZEVE = V¥,

As a consequence, Vg = VWapo holds for a certain nonsingular matrix Wy, € RFF,
This and a comparison of Step 4 in Algorithm 2 and Step 8 in Algorithm 4 reveal that
a nonsingular matrix Wps € RFF exists, such that Sp = SpWags. Analogously, it can
be shown that S¢ = ScWes holds for a certain nonsingular matrix Wes € REF. Tt is
easy to prove that SESp = SLSp = I, which leads to Weg = W5, Finally, we obtain
SLASp = WziSLASEWps, STB = WZISLB, and CSp = CSpWas, from which the
statement of the lemma follows. H

4.3 Dominant Subspaces Projection Model Reduction

The dominant subspaces projection model reduction (DSPMR) is motivated by Theorem
1. As a consequence of (5) and (6), the invariant subspaces of the Gramians Xp and X¢
w.r.t. the maximal eigenvalues are the state subspaces which dominate the input-state
and state-output behavior of the system (1). The subspaces range Zp and range Z¢ can
be considered as approximations to these dominant subspaces because ZpZ% ~ Xp and
ZcZl ~ Xc. The straightforward idea is now to use the sum of both subspaces for a
state space projection. That means the reduced realization is given by (8), where Sp is
a matrix, such that range Sp = range Zp + range Z-. More precisely, we choose Sp as
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a matrix with orthonormal columns and set Sp = Sc =: S because this results in an
orthoprojection, which is advantageous in view of numerical robustness. The basic version
of our algorithm is given as follows.

Algorithm 5 (Dominant subspaces projection model reduction - basic version (DSPMR-

B))
INPUT: A, B, C, D
OUTPUT: A, B, C, D, k

1. Compute low rank factors Zp and Zc by Algorithm 1 (or alternative low rank meth-
ods), such that ZgZ% and ZoZ% are approximate solutions of (3) and (4), respectively.

2. Compute an orthonormal basis S in range Zg + range Zc, e.g., by an “economy size”
(rank-revealing) QR decomposition or an “economy size” SVD of the matrix [ Zp Zc |
and set k = rank S.

3. A=STAS, B=STB, C=CS, D=D

There exists the following connection between LRSRM, LRSM, and DSPMR-B.

Lemma 2 Let ky < rank ZLZc be the order of the reduced system generated by LRSRM
and LRSM. Assume that o, 11 # Ok,, where o1,09,... are the nonincreasingly ordered
singular values of Z5Zc. Denote the left (right) n-by-ky matrices used for a state space
projection (8) in these two algorithms by SLESEM (SLRSEM ) qpq SLRSM (GLRSM ) po
spectively. SPSPME c RvF2 s the matriz S generated in Step 2 of Algorithm 5, where
ko — rank [ g o } > k. Then,

LRSRM
S¢

range = range SE™M C range 7o C range SPSPME (17)

range SEFSFM — range SLFSM C range Zp C range SPSPME (18)

Proof: The equalities follow from the proof of Lemma 1. The inclusions are easy to
derive from Algorithms 2, 4, and 5. ]

In this sense, the state space projections of LRSRM and LRSM are contained in that
of DSPMR, which, however, generally delivers a reduced realization of larger order.
There is only a case for Algorithm 5 when the rank of S is much smaller than n.
However, the rank £ of this matrix can still be larger than the desired order of the reduced
realization. There are at least two ways to cope with this problem. If £ is sufficiently small
(say, k < 500), standard implementations of model reduction methods for moderately
sized systems (Task 1; see §§ 3.1 and 3.2) can be used to reduce the system delivered by
Algorithm 5 further. Alternatively, a realization of arbitrary small order can be obtained
by a modification of Algorithm 5. This modification is a heuristic choice of a sufficiently
small subspace of range Zp + range Z-. We propose to choose the columns of S as the &
dominant, left singular vectors of the matrix
Z=| 5 2p mzc . (19)

128 r
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The scalar factors 1/ | Zg| and 1/ | Z¢| » are weighting factors with which we try to attain
an equilibrium of the input-state and state-output relations. In particular, a scaling of the
matrices B and C' results in a scaling of B and C with the same factors, but it does not
affect the choice of S.

Algorithm 6 (Dominant subspaces projection model reduction - refined version (DSPMR-
R))

INPUT: A, B, C, D, k

OUTPUT: A, B, C, D

1. Compute low rank factors Zp and Z¢ by Algorithm 1 (or alternative low rank meth-
ods), such that ZgZ% and ZcZZ are approximate solutions of (3) and (4), respectively.

1 1
2. Z = Zp 7.1, 4c

1ZBlr

3. UEVT :=Z  (“economy size” SVD), S = U 1)

4, A=STAS, B=ST™B, C=CS, D=D

The reduced system (A, B, C, D) is stable if A+ AT < 0. Although instability of the
reduced system has not been encountered in our numerical experiments, stability is not
guaranteed in general.

5 Numerical experiments

We demonstrate the performance of LRSRM, LRSM, and DSPMR-R in numerical ex-
periments with three large test examples of dynamical systems (1). These experiments
were carried out on a SUN Ultra 450 workstation at the Department of Mathematics and
Statistics of the University of Calgary. The computations were performed with MATLAB
5.2 using IEEE double precision arithmetic (machine precision €40, = 27°% & 2.2-10716).
Our implementation makes use of the data structure for sparse matrices offered by MAT-
LAB whenever this is profitable.

Example 1 This example is a simplified linear model of a nonlinear problem arising
from a cooling process, which is part of the manufacturing method for steel rails [50]. The
temperature of the rail is lowered by water sprayed through several nozzles on its surface.
Since the problem is “frozen” w.r.t. one space dimension and symmetric w.r.t. another, it
is sufficient to consider the problem related to half the cross-section €2 of the rail, where
homogeneous Neumann boundary conditions are imposed on the artificial boundary seg-
ment 'z (see Figure 1). The pressure of the nozzles can be steered independently for
different sections I'1,...,['¢ of the surface. This corresponds to the boundary control of
a two-dimensional instationary heat equation in x = x(7,&;,&). The nozzle pressures
provide the input signals u; = w;(7), which form the right hand side of the third type
boundary conditions (20). The output signals of this model are given by the temperature
in several interior observation points marked by small circles in Figure 1. After a proper
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scaling of the physical quantities we get the parabolic differential equation

Fx = gextiex (L&) eQ
X+ X = (61,6) €Ty, i=1,...,6 (20)
mx = 0 (&1,62) € T

We utilized the MATLAB PDE toolbox to obtain a finite element discretization of the
problem. Figure 1 shows the initial triangularization. The actual triangularization is the
result of two steps of regular mesh refinement, i.e., in each refinement step all triangles
are split into four congruent triangles. The final result of this procedure is a generalized
dynamical system of the type M2 = —Ni+Bu, y = C# with dimensions n = 3113, m = 6,
and ¢ = 6, where M is the mass matrix and N is the stiffness matrix of the discretization.
We compute a Cholesky factorization UpUl, = M of the sparse, symmetric, positive
definite, well-conditioned mass matrix. Defining A = —~U,}NU,/}, B = UA’;B, and
C =CU A’/IT leads to a mathematically equivalent standard system (1). Note that the
matrix A is never formed explicitly because the result would be a dense matrix. Instead,
we exploit the product structure.
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Figure 1: Example 1. Cross-section of the steel rail and initial triangularization of 2.

Example 2 This example is a dynamical system with dimensions n = 3600, m = 4, and
q = 2. It was also used as a test example in [37, Example 5]. The example arises from the
control of a process in chromatography. See [29] for background information. The matrix
A is sparse and unsymmetric. It has relatively bad algebraic properties. For example, its
symmetric part is indefinite and there are eigenvalues of A with dominant imaginary parts.

Such properties have usually a negative effect on the convergence of iterative methods for
ALEs.

The Bode plots of Examples 1 and 2 are quite smooth. For this reason and because
these examples are MIMO systems (i.e., systems with m,q > 1), we omit printing such
plots for the first two examples. In order to demonstrate that our algorithms are also
applicable to systems with Bode plots which are not smooth, we include a third example.
The Bode magnitude plot of the following Example 3, that is a purely theoretical test
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example, shows three spikes; see Figure 2.

Example 3 The system matrices are given as follows, where e¢; € R"! is the vector with
each entry equal to 1.

Ay
_ Ay | -1 100 | —1 200
A= As ’ Al_[—mo —1]’ Az‘[—mo —1}’
Ay
| —1 400 T [ 10eg 7
Ag—[_400 _1}, Ay = —diag(1,2,...,1000), B_[elooo}’ C = BT,

=
Q.

[G(jw)|

o+

o

-

107 S 3 g

10 10 10 10
w

Figure 2: Example 3. Bode magnitude plot.

In our tests we apply each model reduction method to each test example three times
(three “runs”).

e In Run 1 we compute the low rank approximations to the Gramians very accurately.
That means we do not terminate the LR-Smith(/) iteration in Step 1 of each method
before a stagnation of the iteration caused by round-off errors is observed. Moreover,
we allow a relatively large order of the reduced model. In the spirit of Task 2 (see
§ 3.1) our goal is to attain as small an approximation error as possible. Ideally, the
magnitude of this error should be in the vicinity of the machine precision.

e In Run 2 we use the same quite accurate low rank factors Zg and Zs as in Run 1,
but we limit the maximal order of the reduced model to a smaller value. This can
be considered as an attempt of Task 2 and Task 1 in a single sweep.

e The number of LR-Smith([) iteration steps is restricted to a small value in Run
3, which generally leads to relatively inaccurate approximations to the Gramians.
Indeed, in a practical implementation rp and rc, the numbers of columns in the
Cholesky factors Zp and Z¢, respectively, which are proportional to the number of
iteration steps, may be restricted by memory limits. Given such relative inaccurate
approximations, we try to generate as good a reduced order model as possible without
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fixing the reduced order k a priori. Instead, k is chosen as the numerical rank of
ZEZp in LRSRM and LRSM, whereas k is the numerical rank of Z given by (19)
for DSPMR. This means that the reduced orders of the realizations delivered by
DSPMR are generally larger than those of the realizations by LRSRM and LRSM.

Each test run of our numerical experiments can be subdivided into two stages. In the
first stage we run the LR-Smith(/) iteration twice to compute the matrices Zp and Z¢.
Within this iteration we solve sparse or structured systems of linear equations directly
although iterative solvers (see [42], for example) could be used instead. To reduce the
numerical costs, the bandwidth of the involved sparse matrices (M and N in Example 1, A
in Example 2) is reduced by a suitable simultaneous column-row reordering, which is done
by means of the MATLAB function SYMRCM. This corresponds to Step 1 in Algorithm 1. We
use [-cyclic shift parameters p; computed by the algorithm proposed in [37, Algorithm 1].
The accuracy of the approximated ALE solutions is measured by the normalized residual
norm (NRN), which is defined as

NEN(Z) = |FZZ" + ZZTFT + GGT| ..
N |GGk

(21)

with (F,G, Z) = (A, B, Zp) or (AT,C",Zc). The parameter | and the values of rp, rc,
NRN(Zg), and NRN(Z¢) are shown in Table 1.

‘ H Example 1 Example 2 Example 3 ‘
system dimensions (n, m, q) || (3113, 6, 6) (3600, 4, 2) (1006,1,1)
l 10 20 12
Run 1,2 | rp 360 480 72

re 420 240 72

NRN(Zp) 3.4-107"  1.2-107"  9.7-1071

NRN(Z¢) 1.2-1072  84-1078 12107
Run 3 R 60 80 12

re 60 40 12

NRN(Zp) 2.2-107° 22-10%  9.0-10*

NRN(Z¢) 30-10* 22-10*  9.0-10°*

Table 1: System dimensions and parameters describing the LR-Smith(7) iterations in Step
1 of LRSRM, LRSM, and DSPMR.

The second stage consists of the computation of the reduced order models themselves
by LRSRM, LRSM, and DSPMR. It should be noted that the first two methods often
deliver reduced models with an unstable matrix A. We believe that this phenomenon
is mainly caused by round-off errors in Run 1 (where high accuracy reduced realizations
are computed) and by the use of quite inaccurate Gramians in Run 3. However, there
are usually only few slightly unstable modes (i.e., eigenvalues of A with a nonnegative
real part of very small magnitude). Mostly, these unstable modes are hardly controllable
and observable. If unstable modes are encountered, we remove them by modal truncation
[6]. That means the order of the reduced system is further decreased by the number of
unstable modes in this kind of optional postprocessing. Table 2 displays the order k of the
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reduced realizations after postprocessing. Furthermore, it is shown whether the reduced
realization (before postprocessing) is stable or unstable. Note that in our experiments
DSPMR always delivered stable reduced realizations.

‘ H Example 1 Example 2 Example 3 ‘

Run 1 | LRSRM 194 (u) 173 (u) 46 (u)
LRSM 197 (W) 196 (u) 50 (s)
DSPMR | 200 (s) 200 (s) 50 (s)

Run 2 | LRSRM 40 (s) 40 (s) 10 (s)
LRSM 40 (s) 40 (s) 10 (s)
DSPMR 40 (s) 40 (s) 10 (s)

Run 3 | LRSRM 54 (u) 38 (u) 12 (s)
LRSM 54 (u) 38 (u) 12 (s)
DSPMR || 120 (s) 120 (s) 18 (s)

Table 2: Orders of reduced realizations delivered by LRSRM, LRSM, and DSPMR.
DSPMR-R is applied in Runs 1 and 2, whereas DSPMR-B is used in Run 3. It is also
shown whether the reduced realization is stable (s) or unstable (u).

Next, we study the numerical costs of the algorithms. Table 3 shows the total number
of floating point operations (“flops”, see [17, § 1.2.4]) required for each test run. These
values include the computational cost for both computing of the low rank Cholesky factors
and performing the model reduction itself.

‘ H Example 1 Example 2 Example 3 ‘
Run 1 | LRSRM 1.2-10' 2.5-10' 1.8-108
LRSM 2.6-101 3.5-101 3.3-108
DSPMR || 2.7-10% 4.0-10% 3.3-108
Run 2 | LRSRM 9.7-10° 2.2-10% 1.3-108
LRSM 2.3-101° 3.2-10%° 2.8-10%
DSPMR || 2.7-10% 3.9-10%° 3.3-108
Run 3 | LRSRM 1.1-10° 2.6-10° 4.5 - 107
LRSM 2.0-10° 3.3 10° 4.9-107
DSPMR 1.5-10° 3.2-10° 4.9-107

Table 3: Total numbers of flops required.

The computational costs of LRSM and DSPMR are slightly larger than that of LRSRM.
However, each is much smaller than the cost of standard implementations of the balanced
truncation method, which involve the computation of Schur factorizations or SVDs of dense
n-by-n matrices. A rough estimation of their cost gives 50n2 flops, which are 1.5-10'2 flops
for Example 1 and 2.3 - 10'2 flops for Example 2. Because of the block diagonal structure
of A in Example 3, the Gramians could be directly computed within O(n?) operations.
However, standard balanced truncation algorithms would still require O(n?) flops.

The second complexity aspect, which should briefly be discussed here, is the memory
requirement, of our methods. It is dominated by the amount of memory needed for storing
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the low rank factors Zp and Zs and the LU factors arising from the [ LU factorizations of
the matrices in the shifted systems of linear equations, which need to be solved in the course
of the LR~-Smith(/) method. Of course, these quantities strongly depend on the particular
problem. However, taking into account that suitably reordered sparse matrices often have
a relative small bandwidth (115 for M and N in Example 1, 57 for A in Example 2) and
considering the number of columns in the low rank factors given in Table 1 reveal that our
methods demand considerably less memory than standard implementations, which usually
require storing a few dense n-by-n matrices. Of course, this demand can be reduced even
further by solving the shifted linear systems iteratively.

Finally, we show how accurate the reduced order models approximate the original ones.
To this end we compare the frequency response of the original system with those of the
reduced systems in Figures 3, 4, and 5. There we display the function

IAG(w)ll/e = |G (w) — G(w)ll/e

for a certain frequency range w € [Wmin, Wimaz|- For Examples 1 and 2 we choose [Wiin, Wimaz)
= [10719,10%]. For Example 3 we consider the frequency range [Wpin, Wmaz] = [10', 104],
which contains the three spikes.

The scalar parameter ¢, which we define as

c=  max [|G(w),
WE[Wmin wWmae]
is used for a normalization and can be considered as an approximation to the L., norm
of G. That means, our plots show relative error curves in this particular sense. It should
be mentioned that, in contrast to the majority of publications on model reduction, no
simultaneous Bode plots of the original and reduced systems are used because it would be
impossible to distinguish the single curves in that type of plot.
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Figure 3: Example 1. Error plots for LRSRM (dashdotted line), LRSM (dashed line), and
DSPMR (solid line).

Except for DSPMR in Run 2 for Example 2, our algorithms generate reduced systems
whose approximation properties are quite satisfactory. In particular, in Run 1 we attain
error norms which are in the vicinity of the given machine precision. Note that the methods
mentioned in § 3.3 typically deliver considerably less accurate reduced systems. The
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Figure 4: Example 2. Error plots for LRSRM (dashdotted line), LRSM (dashed line), and
DSPMR (solid line).
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Figure 5: Example 3. Error plots for LRSRM (dashdotted line), LRSM (dashed line), and
DSPMR (solid line).

error curves for the algorithms LRSRM and LRSM, which are mathematically equivalent
in exact arithmetics, are almost identical. We observed that the condition numbers of
the projection matrices Sp and S¢ are considerable higher for LRSRM than for LRSM.
Moreover, the number of unstable modes in the reduced realization tends to be higher
for LRSRM compared to LRSM. However, both aspects seem to have no negative effect
on the approximation error of LRSRM. For Examples 1 and 2 the error curves of both
methods are slightly better for Run 1 and considerably better for Run 2 compared to those
of DSPMR. In Runs 1 and 2 for Example 3 all methods deliver almost identical results.
DSPMR performs generally better in Run 3, which can be explained by (17) and (18).
Note the superiority of DSPMR in the low-frequency range for Example 1. However, the
reduced order of the realizations delivered by DSPMR is larger than those of the LRSRM
and LRSM realizations in this run.
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6 Conclusions

In this paper we have studied three model reduction algorithms for large dynamical sys-
tems. The first two methods, LRSRM and LRSM, are modifications of the well-known
square root method and Schur method, which are balanced truncation techniques for
systems of moderate order. These modifications are based on a substitution of the con-
trollability and observability Gramians by low rank approximations. DSPMR, the third
method, is not directly related to balanced truncation and more heuristic in nature. It
is motivated by input and output energy considerations (Theorem 1) and related to the
other two methods by certain inclusions that hold for the ranges of the corresponding pro-
jection matrices. The availability of relatively accurate low rank approximations to the
system Gramians is of vital importance for each model reduction method. We compute
these approximations by the LR-Smith(l) iteration, which is a low rank version of the
well-known ADI iteration. However, alternative methods could be used.

The performance of the three model reduction algorithms has been studied in numer-
ical experiments. The results of LRSRM and LRSM are fairly similar and mostly better
than those for DSPMR. Because of this and its simplicity, LRSRM should be considered
as the method of choice in general. On the other hand, in situations when the low rank
approximations to the Gramians are not very accurate, DSPMR turns out to be an in-
teresting alternative to LRSRM. Furthermore, DSPMR, delivered stable reduced systems
in each of our test runs, whereas the reduced systems generated by LRSRM and LRSM
often contain a few unstable modes, which must be removed in a postprocessing step.

In our opinion the test results of LRSRM, LRSM, and DSPMR are quite promising in
view of the attainable accuracy of the reduced systems and the numerical costs, although
we expect that these costs are in many cases higher than those of model reduction methods
based on Padé approximation and Krylov subspaces. Nevertheless, our methods can be
applied to very large model reduction problems that do not allow the use of standard
techniques, in which the Gramians are computed by the Bartels-Stewart method or the
Hammarling method.
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