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of Embedded Hamiltonian Pencils
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Abstract

We discuss the numerical solution of structured generalized eigenvalue problems that

arise from linear-quadratic optimal control problems, H

1

optimization, multibody sys-

tems and many other areas of applied mathematics, physics, and chemistry. The classical

approach for these problems requires computing invariant and de
ating subspaces of ma-

trices and matrix pencils with Hamiltonian and/or skew-Hamiltonian structure. We ex-

tend the recently developed methods for Hamiltonian matrices and matrix pencils to the

general case of embedded matrix pencils. The rounding error and perturbation analysis

of the resulting algorithms is favorable.

Keywords. eigenvalue problem, de
ating subspace, algebraic Riccati equation, Hamiltonian

matrix, skew-Hamiltonian matrix, skew-Hamiltonian/Hamiltonian matrix pencil, embedded

matrix pencils.

AMS subject classi�cation. 49N10, 65F15, 93B40, 93B36, 93C60.

1 Introduction and Preliminaries

In this paper we study eigenvalue and invariant subspace computations involving matrices

and matrix pencils with the following algebraic structures.

De�nition 1 Let J :=

h

0

�I

n

I

n

0

i

, where I

n

is the n� n identity matrix.

a) A matrix H 2 C

2n;2n

is Hamiltonian if (HJ )

H

= HJ . The Lie Algebra of Hamiltonian

matrices in C

2n;2n

is denoted by H

2n

.

b) A matrix H 2 C

2n;2n

is skew-Hamiltonian if (HJ )

H

= �HJ . The Jordan algebra of

skew-Hamiltonian matrices in C

2n;2n

is denoted by SH

2n

.

c) A matrix pencil �S � �H 2 C

2n;2n

is skew-Hamiltonian/Hamiltonian if S 2 SH

2n

and

H 2 H

2n

.

d) A matrix S 2 C

2n;2n

is symplectic if SJS

H

= J . The Lie group of symplectic matrices

in C

2n;2n

is denoted by S

2n

.

e) A matrix U

d

2 C

2n;2n

is unitary symplectic if U

d

JU

H

d

= J and U

d

U

H

d

= I

2n

. The

compact Lie group of unitary symplectic matrices in C

2n;2n

is denoted by US

2n

.

f) A subspace L of C

2n

is called Lagrangian if it has dimension n and x

H

J y = 0 for all

x; y 2 L.

�

Working title was \Numerical Computation of De
ating Subspaces of Embedded Hamiltonian and Sym-

plectic Pencils". All authors were partially supported by Deutsche Forschungsgemeinschaft, Research Grant

Me 790/7-2 and Sonderforschungsbereich 393, \Numerische Simulation auf massiv parallelen Rechnern".

2

This author was partially supported by National Science Foundation awards CCR-9732671, MRI-9977352,

and by the NSF EPSCoR/K*STAR program through the Center for Advanced Scienti�c Computing.

3

This work was completed while this author was with the TU Chemnitz.

1



There is little di�erence between the structure of complex skew-Hamiltonian matrices and

complex Hamiltonian matrices. If S 2 SH

2n

and H 2 H

2n

, then iS 2 H

2n

and iH 2

SH

2n

. Similarly, there is little di�erence between the structure of complex skew-Hamiltoni-

an/Hamiltonian matrix pencils, complex skew-Hamiltonian/skew-Hamiltonian and complex

Hamiltonian/Hamiltonian matrix pencils. For S 2 SH

2n

and H 2 H

2n

the matrix pencil

�S � �H is skew-Hamiltonian/Hamiltonian, the matrix pencil �S �

~

�(iH) is skew-Hamil-

tonian/skew-Hamiltonian, and the matrix pencil ~�(iS) � �H is Hamiltonian/Hamiltonian.

(Here, ~� = �i� and

~

� = �i�.) However, real skew-Hamiltonian matrices are not real scalar

multiples of Hamiltonian matrices. There is a greater di�erence in the structure of real

skew-Hamiltonian and real Hamiltonian matrices than in the complex case.

The structures in De�nition 1 arise in linear-quadratic optimal control [35, 40, 43], H

1

optimization [20, 48] and several other areas of applied mathematics, computational physics

and chemistry, e.g., gyroscopic systems [28], numerical simulation of elastic deformation [42],

and linear response theory [37]. Here, we focus on applications in linear-quadratic optimal

control and H

1

optimization.

First, we consider the continuous time, in�nite horizon, linear-quadratic optimal control

problem:

Choose a control function u(t) to minimize the cost functional

S

c

=

Z

1

t

0

�

x(t)

u(t)

�

H

�

Q S

S

H

R

� �

x(t)

u(t)

�

dt (1)

subject to the linear di�erential-algebraic system (descriptor control system)

E _x = Ax+Bu; x(t

0

) = x

0

: (2)

Here, u(t) 2 C

m

, x(t) 2 C

n

, A; E 2 C

n;n

, B 2 C

n;m

, Q = Q

H

2 C

n;n

, R = R

H

2 C

m;m

and

S 2 C

n;m

. If the (m+ n)� (m+ n) weighting matrix

R =

�

Q S

S

H

R

�

is Hermitian and positive semide�nite, then the problem is well-posed. Note that R, Q and/or

R may be singular. Typically, in addition to minimizing (1), the control u(t) must make x(t)

asymptotically stable. (Of course, if R is positive de�nite, then asymptotic stability of x(t)

is automatically achieved by any control for which the cost functional (1) is �nite.)

Application of the maximum principle [35, 41] yields as a necessary optimality condition

that the control u satis�es the two-point boundary value problem of Euler-Lagrange equations

E

c

2

4

_x

_�

_u

3

5

= A

c

2

4

x

�

u

3

5

; x(t

0

) = x

0

; lim

t!1

E

H

�(t) = 0; (3)

with the matrix pencil

�E

c

� �A

c

:= �

2

4

E 0 0

0 �E

H

0

0 0 0

3

5

� �

2

4

A 0 B

Q A

H

S

S

H

B

H

R

3

5

: (4)
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The matrix pencil (4) does not have matrices with one of the structures of De�nition 1.

Nevertheless, many of the properties of Hamiltonian matrices carry over [35]. As reviewed be-

low, if E and/or R are nonsingular, then (3) and (4) reduce to an ordinary di�erential equation

with Hamiltonian matrix coe�cients or a di�erential-algebraic equation with a skew-Hamilto-

nian/Hamiltonian matrix pencil coe�cients. In Section 2, we circumvent the nonsingularity

assumptions by embedding the matrix pencil (4) into a skew-Hamiltonian/Hamiltonian ma-

trix pencil of larger dimension.

If both E and R are nonsingular, then with � := �E

H

�, (3) reduces to the two-point

boundary value problem

�

_x

_�

�

= H

�

x

�

�

; x(t

0

) = x

0

; lim

t!1

�(t) = 0 (5)

with the Hamiltonian matrix

H =

�

F G

H �F

H

�

:=

�

E

�1

(A�BR

�1

S

H

) E

�1

BR

�1

B

H

E

�H

Q� SR

�1

S

H

�(E

�1

(A�BR

�1

S

H

))

H

�

: (6)

This is the classical formulation found in many textbooks on linear-quadratic optimal control

like [25, 40, 43]. The solution of this boundary value problem can be obtained in many

di�erent ways [35]. For example, let Y be a symmetric solution (if it exists) of the associated

(continuous-time) algebraic Riccati equation

0 = H + Y F + F

H

Y � Y GY:

Multiplying (6) from the left by the matrix

h

I

Y

0

I

i

and changing variables to

h

x

�

i

=

h

I

Y

0

I

i h

x

�

i

one obtains the decoupled system

�

_x

_

�

�

=

�

F �GY G

0 �F

H

+ Y G

� �

x

�

�

; x(t

0

) = x

0

; lim

t!1

�(t) = 0:

In the desired solution, � is identically zero. In that case, x is the solution to _x = (F �GY )x

(with initial condition x(0) = x

0

), � = �Y x, � = �E

�H

�, and the control that minimizes

(1) is u = �R

�1

(S

H

+B

H

E

�H

Y )x.

If E is singular and R is nonsingular, then (3) does not simplify quite so much, because

it is a di�erential-algebraic equation with nontrivial linear constraints. Substituting u(t) =

�R

�1

(S

H

x(t) +B

H

�(t)), system (3) does simplify to

S

�

_x

_�

�

= H

�

x

�

�

; x(t

0

) = x

0

; lim

t!1

E

H

�(t) = 0; (7)

with the reduced skew-Hamiltonian/Hamiltonian matrix pencil

�S � �H := �

�

E 0

0 E

H

�

� �

�

A�BR

�1

S

H

�BR

�1

B

H

SR

�1

S

H

�Q �(A�BR

�1

S)

H

�

: (8)

In this case, the corresponding generalized algebraic Riccati equation is

0 = Q� SR

�1

S

H

+E

H

Y (A�BR

�1

S)

+ (A�BR

�1

S)

H

Y E �E

H

Y (BR

�1

B

H

)Y E; (9)
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but, in general, the relationship with solutions of the optimal control problem is lost or

hidden. See [3, 26, 27, 35] for details. But even for E nonsingular, the formulation in (7){(9)

is preferable from a numerical point of view if E is ill-conditioned with respect to inversion.

If R is singular and E is nonsingular then the situation becomes still more complicated.

Although the boundary value problem remains well de�ned, the Riccati equation does not.

This case has been recently studied [22, 23, 24].

At this writing, the case in which both E and R are singular has not been analyzed in

full generality.

The Euler-Lagrange and Riccati equations, their solvability and their numerical solution

have been the subject of numerous publications in recent years, see, e.g., [9, 29, 35, 40, 43]

and the references therein. In most numerical methods, the Riccati solutions are obtained

through the computation of de
ating or invariant subspaces of associated matrix pencils, see

[35]. A key observation in this context, is that the Riccati solutions need not be formed

explicitly [45]. It su�ces to work with bases of the de
ating subspaces of the matrix pencil.

For example, suppose �E

c

��A

c

in (4) has an n-dimensional de
ating subspace associated

with eigenvalues in the left half plane. (This can only be the case if E is invertible.) Let this

subspace be spanned by the columns of a matrix U , partitioned conformally with (4) as

U =

2

4

U

1

U

2

U

3

3

5

:

If U

1

is invertible, then the optimal control is a linear feedback of the form u(t) = U

3

U

�1

1

x(t)

and the solution of the associated Riccati equation is Y = U

2

U

�1

1

E

�1

, see [35]. Observe

that the optimal control may be obtained without explicitly inverting E (or solving equations

with coe�cient E). If E is \nearly singular", i.e., ill-conditioned, then explicitly forming

the Riccati solution may introduce unnecessarily large rounding errors. If E is singular,

then an n-dimensional de
ating subspace associated with left half plane eigenvalues may

not exist. In some circumstances, the de
ating subspace can be augmented in dimension by

enlarging a basis with appropriately chosen eigenvectors and principal vectors associated with

the in�nite eigenvalue, see [35]. In this case, the optimal control law may still be obtained as

u(t) = U

3

U

�1

1

x(t), but the Riccati solution need not exist. Examples appear in [26, 36].

Matrices and Riccati equations of a similar structure occur in H

1

optimization, see [20,

48]. Consider the linear time-invariant system

_x = Ax+B

1

u+B

2

w;

z = C

1

x+D

11

u+D

12

w; (10)

y = C

2

x+D

21

u+D

22

w;

where A 2 C

n;n

, B

k

2 C

n;m

k

, C

k

2 C

p

k

;n

for k = 1; 2, and D

ij

2 C

p

i

;m

j

for i; j = 1; 2. Here

u 2 C

m

1

denotes the control inputs, w 2 C

m

2

the exogenous inputs, y 2 C

p

2

the measured

outputs, and z 2 C

p

1

the output error signals to be minimized. The H

1

optimization problem

is to determine a stabilizing controller that minimizes the closed-loop transfer function T

zw

from w to z in the H

1

norm. Under mild hypotheses [48, p. 419], for any 
 > 0, there exists

an admissible controller such that jjT

zw

jj

1

< 
 if and only if the following three conditions

hold.
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(i) There is a Hermitian nonnegative semide�nite solution X

1

2 C

n;n

to the algebraic

Riccati equation

C

1

C

H

1

+A

H

X

1

+X

1

A+X

1

(


�2

B

1

B

H

1

�B

2

B

H

2

)X

1

= 0

and A+ (


�2

B

1

B

H

1

�B

2

B

H

2

)X

1

has no eigenvalue with nonnegative real part.

(ii) There is a Hermitian nonnegative semide�nite solution Y

1

2 C

n;n

to the algebraic

Riccati equation

B

1

B

H

1

+ Y

1

A

H

+AY

1

+ Y

1

(


�2

C

1

C

H

1

� C

2

C

H

2

)Y

1

= 0

and A+ Y

1

(


�2

C

1

C

H

1

� C

2

C

H

2

) has no eigenvalue with nonnegative real part.

(iii) 


2

> �(X

1

Y

1

), where �(�) represents the spectral radius.

Moreover, a controller that satis�es (i){(iii) is determined by the linear time invariant system

having the state-space representation

_q =

^

Aq +

^

By;

u =

^

Cq +

^

Dy;

where

^

A := A+ 


�2

B

1

B

H

1

X

1

+B

2

^

C �

^

BC

2

;

^

B := (I � 


�2

Y

1

X

1

)

�1

Y

1

C

H

2

;

^

C := �B

H

2

X

1

;

^

D := 0:

The (suboptimal) H

1

controller determined by the above formulae is called the central con-

troller.

The H

1

optimization problem is equivalent to determining the supremum of 
 > 0 for

which at least one of the three conditions (i){(iii) fails.

A di�culty in this optimization is that in the limit as 
 approaches the minimal H

1

norm the Riccati solutions X

1

and Y

1

may have in�nite norm. Hence, typically with this

approach only suboptimal controllers can be computed numerically. The essential role played

by X

1

and Y

1

is to represent particular right and left invariant subspaces of the Hamiltonian

matrices

H

1

:=

�

A 


�2

B

1

B

H

1

�B

2

B

H

2

�C

1

C

H

1

�A

H

�

and

K

1

:=

�

A �B

1

B

H

1




�2

C

1

C

H

1

� C

H

2

C

2

�A

H

�

; (11)

respectively. The columns of [I; X

1

]

H

span a right invariant subspace of H

1

and the rows of

[I; Y

1

] span a left invariant subspace of K

1

. In [48, p. 445], conditions (i){(iii) are generalized

in terms of an arbitrary basis of the same invariant subspaces as follows.

(i') There are matrices Q

1

; Q

2

; T

x

2 C

n;n

such that Q

H

1

Q

2

= Q

H

2

Q

1

,

5



H

1

�

Q

1

Q

2

�

=

�

Q

1

Q

2

�

T

x

; (12)

and T

x

has no eigenvalue with positive real part.

(ii') There are matrices U

1

; U

2

; T

y

2 C

n;n

such that U

H

1

U

2

= U

H

2

U

1

,

�

U

H

1

U

H

2

�

K

1

= T

y

�

U

H

1

U

H

2

�

;

and T

y

has no eigenvalue with positive real part.

(iii') The 2n� 2n matrix

�

Q

H

2

Q

1




�1

Q

H

2

U

2




�1

U

H

2

Q

2

U

H

2

U

1

�

is positive semide�nite.

In this formulation the computation of the optimal 
 can be obtained numerically by comput-

ing the largest 
 at which one of the conditions (i'), (ii') or (iii') fails. This approach is more

appropriate in �nite precision arithmetic. See also [48, Remark 6.14]. For the optimal 
, an

admissible controller is determined by the descriptor system having generalized state-space

realization

^

E _q =

^

Aq +

^

By;

u =

^

Cq +

^

Dy;

where

^

E = U

H

1

Q

1

� 


�1

U

H

2

Q

2

;

^

B = U

H

2

C

H

2

;

^

C = �B

H

2

Q

2

;

^

D = 0;

^

A =

^

ET

x

�

^

BC

2

Q

1

= T

y

^

E + U

H

1

B

2

^

C:

This form avoids explicit solutions of algebraic Riccati equations and inversion of the poten-

tially ill-conditioned matrix I � 


�2

Y

1

X

1

. We close the introduction with some remarks on

the numerical solution of the eigenvalue problems for matrices and matrix pencils involving the

structures in De�nition 1. Although the numerical computation of n-dimensional Lagrangian

invariant subspaces of Hamiltonian matrices and the solution of algebraic Riccati equations

have been extensively studied (see [12, 30, 35, 43] and the references therein), completely

satisfactory methods for general Hamiltonian matrices and extended matrix pencils are still

an open problem. Such methods would be numerically backward stable, have complexity

O(n

3

) and preserve the given structure. There are several reasons for this di�culty all of

which are well demonstrated in the context of algorithms for Hamiltonian matrices. (Similar

di�culties arise in the extended matrix pencil case.) First of all, an algorithm based upon

structure preserving similarity transformations (including QR-like algorithms) would require

a triangular-like Hamiltonian Schur form that displays the desired de
ating subspaces. (We

summarize the de�nitions and basic results on Schur-like forms in Section 3.) A Hamiltonian

Schur form under unitary symplectic similarity transformations is presented in [38]. Unfortu-

nately, not every Hamiltonian matrix has this kind of Hamiltonian Schur form. For example,

the Hamiltonian matrix J in De�nition 1 is invariant under arbitrary symplectic similarity

transformations but is not in the Hamiltonian Schur form described in [38]. A characterization

6



of Hamiltonian matrices that do admit a Hamiltonian Schur form under unitary symplectic

similarity transformations was conjectured in [31] and proved in [32]. (We summarize that

result in Section 3.) Schur-like forms are characterized for skew-Hamiltonian/Hamiltonian

matrix pencils in [33, 34] and for the other structures in [32]. A second di�culty comes from

the fact that even when a Hamiltonian Schur form exists, there is no known structure pre-

serving, numerical method to compute it. It has been argued in [2] that, except in special

cases [13, 14], QR-like algorithms are impractically expensive because of the lack of a Ha-

miltonian Hessenberg-like form. For this reason other methods like the multishift-method of

[1], the structured implicit product methods of [4, 5, 6, 46] do not follow the QR-algorithm

paradigm. (The implicit product methods [5, 6] do come quite close to optimality. We extend

the method of [5] to skew-Hamiltonian/Hamiltonian matrix pencils in Section 5.) A third

di�culty arises when the Hamiltonian matrix or the skew-Hamiltonian/Hamiltonian matrix

pencil has eigenvalues on the imaginary axis. In that case, the desired Lagrangian subspace

is, in general, not unique [36]. Furthermore, if �nite precision arithmetic or other errors per-

turb the matrix o� the Lie algebra of Hamiltonian matrices, then it is typically the case that

the perturbed matrix has no Lagrangian subspace or does not have the expected eigenvalue

pairings, see, e.g., [6, 46].

To simplify notation, the term eigenvalue is used both for eigenvalues of matrices and

for pairs (�; �) 6= (0; 0) for which det(�E � �A) = 0. These pairs are not unique. If � 6= 0

then we identify (�; �) with (�=�; 1) and � = �=�. Pairs (�; 0) with � 6= 0 are called in�nite

eigenvalues.

By �(E;A), we denote the set of eigenvalues of �E � �A including �nite and in�nite

eigenvalues both counted according to multiplicity.

We will denote by �

�

(E;A), �

0

(E;A) and �

+

(E;A) the set of �nite eigenvalues of �A�

�E with negative, zero and positive real parts, respectively. The set of in�nite eigenvalues

is denoted by �

1

(E;A). Multiple eigenvalues are repeated in �

�

(E;A), �

0

(E;A), �

+

(E;A)

and �

1

(E;A) according to algebraic multiplicity. The set of all eigenvalues counted according

to multiplicity is �(E;A) := �

�

(E;A) [ �

0

(E;A) [ �

+

(E;A) [ �

1

(E;A). Similarly, we

denote by Def

�

(E;A), Def

0

(E;A), Def

+

(E;A) and Def

1

(E;A) the right de
ating subspaces

corresponding to �

�

(E;A), �

0

(E;A), �

+

(E;A) and �

1

(E;A), respectively.

Throughout this paper, the imaginary number

p

�1 is denoted by i. The inertia of a

Hermitian matrix A consists of the triple In(A) = (�; !; �), where � = �(A), ! = !(A) and

� = �(A) represent the number of positive, zero and negative eigenvalues, respectively.

2 Embedding of Extended Matrix Pencils

It is important to exploit and preserve algebraic structures (like symmetries in the matrix

blocks or symmetries in the spectrum) as much as possible. Such algebraic structures typically

arise from physical properties of the problem. If rounding errors or other perturbations destroy

the algebraic structures, then the results may be physically meaningless. Not coincidentally,

numerical methods that preserve algebraic structures are typically more e�cient as well as

more accurate. Preserving and exploiting structure recommends using the Euler-Lagrange

equations in the form of (5) and (6) or (7) and (8).

On the other hand, reducing to the form of (5) or (7) using �nite precision arithmetic may

be ill-advised. For the purpose of �nite precision computation, it is desirable to obtain the

solution directly from the original data without explicitly forming matrix products and in-
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verses. Otherwise, there is a real danger of numerical instability by transforming the problem

to an equivalent but more ill-conditioned one, i.e., transforming the problem to one that is

more sensitive to perturbations. The matrices E and/or R may be singular. Even if they are

nominally nonsingular, they may be \nearly singular", i.e., ill-conditioned. Even if E and R

are not ill-conditioned, forming \matrix-times-its-transpose" products like BR

�1

B

H

su�ers

from the same kind of well-known numerical instability as forming the normal equations to

solve least squares problems. (See, for example, [19, Example 5.3.2].) Hence, it may happen

that the transformed coe�cient matrices in (6) or (8) are so corrupted by rounding errors

that the control u(t) computed from them is of limited value. This recommends using the

Euler-Lagrange equations in the form of (3) and (4) in case small rounding errors can not be

guaranteed a priori when forming BR

�1

B

T

.

In this section, we show how to reconcile the super�cially contradictory requirement to

avoid explicit products and inverses (by working directly with (3) and (4)) with the require-

ment to preserve and exploit special structure (by working directly with (5) and (6) or (7) and

(8)). This is accomplished by embedding (3) and (4) into an extended di�erential-algebraic

boundary value problem involving a skew-Hamiltonian/Hamiltonian matrix pencil of larger

dimension. Solutions of the extended system display solutions of (3) and (4). For this ap-

proach, no nonsingularity assumption is required and only unitary matrix products are formed

explicitly.

The extension requires an even number of controls. If the number of controls m is odd,

then the control system (2) must be extended with one or more arti�cial control variables.

Let v 2 C

k

be a vector of arti�cial controls with k chosen so that m + k is even. If m is

even, then k may be set to zero and v becomes void. We will see that even if k > 0, changing

the linear-quadratic optimal control problem appropriately, v will have no in
uence on the

optimal solution u. Introduce the control matrix

~

B 2 C

n;k

corresponding to v. (If k > 0, then

we may take

~

B = 0.) With the arti�cial control vector, the descriptor system (2) becomes

the extended system

E _x = Ax+

�

B

~

B

�

�

u

v

�

; x(t

0

) = x

0

: (13)

Introduce an arti�cial Hermitian positive de�nite weighting matrix

~

R 2 C

k;k

in (1) to obtain

the extended cost functional

S

e

=

Z

1

t

0

2

4

x(t)

u(t)

v(t)

3

5

H

2

4

Q S 0

S

H

R 0

0 0

~

R

3

5

2

4

x(t)

u(t)

v(t)

3

5

dt; (14)

where minimization is now performed with respect to (u; v) 2 R

m

� R

k

. (If k > 0, then

~

R

may be taken to be the identity matrix.)

Now we repartition [u

H

; v

H

]

H

into two parts u

1

and u

1

of equal dimension ` :=

m+k

2

.

Then we may repartition [B;

~

B] and the cost functional weighting matrix conformally as

�

1

m u

k v

�

:=

�

1

` u

1

` u

2

�

; (15)

�

m k

n B

~

B

�

:=

�

` `

n B

1

B

2

�

(16)
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and

2

4

n m k

n Q S 0

m S

H

R 0

k 0 0

~

R

3

5

:=

2

4

n ` `

n Q S

1

S

2

` S

H

1

R

11

R

12

` S

H

2

R

21

R

22

3

5

: (17)

In this notation, the extended descriptor system (13) becomes

E _x = Ax+

�

B

1

B

2

�

�

u

1

(t)

u

2

(t)

�

; x(t

0

) = x

0

;

and the cost functional becomes

S

e

=

Z

1

t

0

2

4

x(t)

u

1

(t)

u

2

(t)

3

5

H

2

4

Q S

1

S

2

S

H

1

R

11

R

12

S

H

2

R

H

12

R

22

3

5

2

4

x(t)

u

1

(t)

u

2

(t)

3

5

dt:

After a reordering of variables and equations, the Euler-Lagrange equations (3) for this ex-

tended linear-quadratic optimal control problem become

E

e

c

2

6

6

4

_x

_u

1

_�

_u

2

3

7

7

5

= A

e

c

2

6

6

4

x

u

1

�

u

2

3

7

7

5

; x(t

0

) = x

0

; lim

t!1

E

H

�(t) = 0; (18)

with the skew-Hamiltonian/Hamiltonian matrix pencil

�E

e

c

� �A

e

c

:= �

2

6

6

4

E 0 0 0

0 0 0 0

0 0 E

H

0

0 0 0 0

3

7

7

5

� �

2

6

6

4

A B

1

0 B

2

S

H

2

R

H

12

B

H

2

R

22

�Q �S

1

�A

H

�S

2

�S

H

1

�R

11

�B

1

H

�R

12

3

7

7

5

: (19)

Numerical methods working directly with (18) and (19) can preserve and exploit the skew-

Hamiltonian/Hamiltonian structure while avoiding the explicit matrix inverses and products

required to form (5) and (6) or (7) and (8).

There is some freedom in the choice of k,

~

B and

~

R. How best to use the freedom is an

open question, but some guidelines are appropriate.

� To avoid increasing the complexity of the problem much, it may be best to choose k

as small as possible, i.e., k = 0 if m is even and k = 1 if m is odd. However, if the

dimension of the problem is small, then k = m may also be a suitable choice.

� If

~

B = 0 and

~

R is positive de�nite, then for (u

�

; v

�

) 2 R

m

� R

k

minimizing S

e

in (14),

it is clear that v

�

(t) � 0 and u

�

is a solution to the original problem.

� It is important that

~

R and

~

B be chosen so that the matrix pencil (19) is regular, i.e.,

for some (�; �) 2 C � C , det(�E

e

c

� �A

e

c

) 6= 0. Otherwise, the two-point boundary

value problem of di�erential-algebraic equations (18) may not have a unique solution

for all consistently chosen initial values x

0

, see [27]. If the original extended Hamiltonian

matrix pencil (4) is regular and

~

B = 0, then (18) is also regular. Note that (4) can be

made to be regular by appropriate preprocessing of the system [15, 27, 35].
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� The matrices

~

R and

~

B should be chosen so that the matrix pencil (19) has a struc-

tured Schur-like form. Such forms are characterized for skew-Hamiltonian/Hamiltonian

matrix pencils in [33, 34] and for the other structures in [32].

� If possible,

~

R and

~

B should be chosen so that the problem of computing the desired

invariant subspace should not be more ill-conditioned than that for the original matrix

pencil (4). If

~

B = 0 and (4) has well-conditioned de
ating subspaces, (e.g., if E and R

are nonsingular and well-conditioned, and the reduced Hamiltonian matrix in (6) has

no purely imaginary eigenvalues), then the de
ating subspaces of (19) are likely to have

well-conditioned de
ating subspaces also.

There is a certain philosophy behind this embedding. First of all, the extension is an

approximate \dual" operation to the reduction of the extended problem (3) to the problem

(7). Furthermore, from a behavioral point of view [47, 27], i.e., if control variables and state

variables are interchangeable, then the partitioning (15){(17) is not unnatural [15, 16, 27].

A similar embedding may also be constructed for the Hamiltonian matrices in H

1

opti-

mization.

3 Hamiltonian Triangular Forms

In this section we brie
y review the results on the existence of structured Schur forms for

Hamiltonian matrices and skew-Hamiltonian/Hamiltonian matrix pencils.

We call a matrix Hamiltonian block triangular if it is Hamiltonian and has the form

�

F G

0 �F

H

�

:

If, furthermore, F is triangular then we call the matrix Hamiltonian triangular. The terms

skew-Hamiltonian block triangular and skew-Hamiltonian triangular are de�ned analogously.

If a Hamiltonian (skew-Hamiltonian) matrix H can be transformed into Hamiltonian (skew-

Hamiltonian) triangular form by a similarity transformation with a unitary symplectic matrix

U 2 US

2n

, then we say that U

H

HU has Hamiltonian Schur form (skew-Hamiltonian Schur

form).

Not all Hamiltonian matrices have a Hamiltonian Schur form. All real skew-Hamiltonian

matrices (but not all complex skew-Hamiltonian matrices) have a skew-Hamiltonian Schur

form [46]. For Hamiltonian matrices that have no purely imaginary eigenvalues the existence

of a Hamiltonian Schur form was proved in [38]. The general result was suggested in [31]

and a proof based on a structured Hamiltonian Jordan form was recently given in [32]. The

results were extended in [33, 34] to skew-Hamiltonian/Hamiltonian matrix pencils. In this

section we summarize the results from [32, 33, 34] needed for the analysis and development

of the numerical methods below.

The following theorem gives necessary and su�cient conditions for the existence of a

Hamiltonian triangular form under unitary symplectic similarity transformations. If this form

exists, then we have also a Lagrangian invariant subspace that may be used to decouple the

boundary value problem (5) [36]. Note that here and in the following, by abuse of notation,

we identify a subspace and a matrix whose columns span this subspace by the same symbol.
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Theorem 2 [32] Let H be a Hamiltonian matrix with � pairwise distinct, nonzero, purely

imaginary eigenvalues i�

1

, i�

2

, . . . , i�

�

and associated invariant subspaces U

1

, U

2

, . . . , U

�

,

respectively. The following are equivalent.

(i) There exists a symplectic matrix S such that S

�1

HS is Hamiltonian triangular.

(ii) There exists a unitary symplectic matrix U such that U

H

HU is Hamiltonian triangular.

(iii) For k = 1; 2; : : : ; �, U

H

k

JU

k

is congruent to a copy of J of appropriate dimension. (If

� = 0, i.e., if H has no nonzero, purely imaginary eigenvalue, then this statement holds

vacuously.)

For regular skew-Hamiltonian/Hamiltonian matrix pencils the situation is similar, see

[33, 34]. The structure of skew-Hamiltonian/Hamiltonian matrix pencils is preserved by J-

congruence transformations [33, 34], i.e., if �S � �H is skew-Hamiltonian/Hamiltonian then

for any nonsingular matrix Y, JY

H

J

T

(�S � �H)Y is also skew-Hamiltonian/Hamiltonian.

Theorem 3 [33, 34] Let �S��H be a regular skew-Hamiltonian/Hamiltonian matrix pencil,

with � pairwise distinct, �nite, nonzero, purely imaginary eigenvalues i�

1

, i�

2

, . . . , i�

�

of

algebraic multiplicity p

1

, p

2

, . . . , p

�

, and associated right de
ating subspaces Q

1

, Q

2

, . . . ,

Q

�

. Let p

1

be the algebraic multiplicity of the eigenvalue in�nity and let Q

1

be its associated

de
ating subspace. The following are equivalent.

(i) There exists a nonsingular matrix Y, such that

JY

H

J

T

(�S � �H)Y = �

�

S

11

S

12

0 S

H

11

�

� �

�

H

11

H

12

0 �H

H

11

�

; (20)

where S

11

and H

11

are upper triangular while S

12

is skew-Hermitian and H

12

is Her-

mitian.

(ii) There exists a unitary matrix Q such that JQ

H

J

T

(�S � �H)Q is of the form on the

right-hand-side of (20).

(iii) For k = 1; 2; : : : ; �, Q

H

k

JSQ

k

is congruent to a p

k

� p

k

copy of J . (If � = 0, i.e., if

�S ��H has no �nite, nonzero, purely imaginary eigenvalue, then this statement holds

vacuously.)

Furthermore if p

1

6= 0 then Q

H

1

JHQ

1

is congruent to a p

1

� p

1

copy of iJ .

The results covering real Schur-like forms of real Hamiltonian matrices and skew-Hamil-

tonian/Hamiltonian matrix pencils are similar [32, 33, 34].

Theorems 2 and 3 give necessary and su�cient conditions for the existence of structured

triangular-like forms. They also demonstrate that whenever a structured triangular-like form

exists, then it also exists under unitary transformations. This fact gives hope that these forms

and the eigenvalues and de
ating subspaces that they display can be computed with structure

preserving, numerically stable, unitary transformations. The following sections propose such

numerical methods for the computation of eigenvalues of Hamiltonian matrices and skew-Ha-

miltonian/Hamiltonian matrix pencils.
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4 Skew-Hamiltonian/Hamiltonian Matrix Pencils

The skew-Hamiltonian/Hamiltonian matrix pencils (8) and (19) have the common charac-

teristic that the skew-Hamiltonian matrix S is block diagonal. In this case (and also other

cases), the matrix S factors in the form

S = JZ

H

J

T

Z (21)

where J is as in De�nition 1. For example, if S =

h

E

0

0

E

H

i

where E 2 C

n;n

, then Z =

diag(I; E

H

) in (21).

Consider the inde�nite inner product on C

2n

� C

2n

de�ned as hx; yi = x

H

J y. If Z 2

C

2n;2n

, then for all x; y 2 C

2n

, h(Zx); yi = hx; (JZ

H

J

T

)yi, i.e., the adjoint of Z with respect

to h : ; : i is JZ

H

J

T

. Because J

T

= �J , the adjoint may also be expressed as JZ

H

J

T

.

From this point of view, (21) is a symmetric-like factorization of S into the product of Z and

its adjoint JZJ

T

. By analogy with the factorization of symmetric matrices, we will call (21) a

skew-Hamiltonian J -Hermitian factorization and we will use the term J -semide�nite to refer

to skew-Hamiltonians matrices which have a skew-Hamiltonian J -Hermitian factorization

(21). A J -de�nite skew-Hamiltonian matrix is a skew Hamiltonian matrix that is both J -

semide�nite and non-singular.

As seen in the skew-Hamiltonian/Hamiltonian matrix pencils (8) and (19) J -semide�nite-

ness arises frequently in applications. We show below that all real skew-Hamiltonian matrices

are J -semide�nite. We also show that if a skew-Hamiltonian/Hamiltonian matrix pencil has

a skew-Hamiltonian/Hamiltonian form as in Theorem 3, then the skew-Hamiltonian part is

J -semide�nite.

Although J -semide�niteness is a common property of skew-Hamiltonian matrices it is not

universal. The following lemma shows that neither iJ nor any nonsingular, skew-Hamiltonian

matrix of the form iJLL

T

is J -semide�nite. (Later, Lemma 5 will show that iJLL

T

fails to

be J -semide�nite for any L 6= 0.)

Lemma 4 A nonsingular skew-Hamiltonian matrix S is J -de�nite if and only if iJS is

Hermitian with n positive and n negative eigenvalues.

Proof. If S is J -de�nite, then Z in (21) is nonsingular and the Hermitian matrix iJS is

congruent to �iJ

T

= iJ . It follows from Sylvester's law of inertia [18, p. 296] that iJS is a

Hermitian matrix with n positive eigenvalues and n negative eigenvalues.

Conversely, suppose that iJS is Hermitian with n positive and n negative eigenvalues. The

matrix iJ

T

also has n positive and n negative eigenvalues, so, by an immediate consequence

of Sylvester's law of inertia, there is a nonsingular matrix Z 2 C

2n;2n

for which iJS =

Z

H

(iJ

T

)Z. It follows that (21) holds with this matrix Z.

Lemma 4 suggests that J -semide�niteness might be a characteristic of the inertia of iJS.

The next lemma shows that this is indeed the case.

Lemma 5 A matrix S 2 SH

2n

is J -semide�nite if and only if iJS satis�es both �(iJS) � n

and �(iJS) � n.

Proof. Suppose that S 2 SH

2n

is J -semide�nite. For some Z satisfying (21), de�ne

S(�) by S(�) = J (Z + �I)

H

J

T

(Z + �I). For � small enough, Z + �I is nonsingular, and, by

Lemma 4, �(iJS(�)) = n and �(iJS(�)) = n. Because eigenvalues are continuous functions

of matrix elements and S = lim

�!0

S(�), it follows that �(iJS) � n and �(iJS) � n.
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For the converse, if �(iJS) = p � n and �(iJS) = q � n, then, there exists a nonsingular

matrix W for which iJS =W

H

LW with signature matrix

L =

2

6

6

4

p n� p q n� q

p I

p

0 0 0

n� p 0 0 0 0

q 0 0 �I

q

0

n� q 0 0 0 0

3

7

7

5

:

Because p � n and q � n, L factors as L = Ldiag(I

n

;�I

n

)L (where I

n

is the n� n identity

matrix). The matrix diag(I

n

;�I

n

) is the diagonal matrix of eigenvalues of iJ

T

, so L =

L(U

H

(iJ

T

)U)L, where U = (1=

p

2)

h

I

n

iI

n

I

n

�iI

n

i

is the unitary matrix of eigenvectors of iJ

T

.

Hence, (21) holds with Z = ULW.

The following immediate corollary also follows from [17].

Corollary 6 Every real skew-Hamiltonian matrix S is J -semide�nite.

Proof. If S is real, then JS is real and skew-symmetric. The eigenvalues of JS appear

in complex conjugate pairs with zero real part. Hence, the eigenvalues of iJS lie on the

real axis in � pairs. In particular, �(iJS) = �(iJS). It follows from the trivial identity

�(iJS) + !(iJS) + �(iJS) = 2n that �(iJS) � n and �(iJS) � n.

The next lemma and its corollary show that J -semide�niteness of both S and iH are

necessary conditions for a skew-Hamiltonian/Hamiltonian matrix pencil �S ��H to have the

skew-Hamiltonian/Hamiltonian Schur form of Theorem 3.

Lemma 7 If S 2 SH

2n

and there exists a nonsingular matrix Y such that

JY

H

J

T

SY =

�

S

11

S

12

0 S

H

11

�

with S

11

; S

12

2 C

n;n

, then S is J -semide�nite.

Proof. Let T be the Hermitian matrix

T = Y

H

(iJS)Y =

�

0 iS

H

11

�iS

11

�iS

12

�

;

and set T (�) = T + �

�

0 I

n

I

n

I

n

�

. For � su�ciently small, both �I

n

� iS

12

and �I

n

� iS

11

are

nonsingular and T (�) is congruent to

�

�(�I

n

� iS

11

)(�I

n

� iS

12

)

�1

(�I

n

� iS

11

)

H

0

0 (�I

n

� iS

12

)

�

:

By Sylvester's law, the inertia of the negative of the (1; 1) block is equal to the inertia of the

(2; 2) block. This implies �(T (�)) = �(T (�)) = n. Continuity of eigenvalues as �! 0 implies

�(T ) � n and �(T ) � n. The lemma now follows from Lemma 5.

Corollary 8 If H 2 H

2n

and there exists a nonsingular matrix Y such that

JY

H

J

T

HY =

�

H

11

H

12

0 �H

H

11

�

with H

11

; H

12

2 C

n;n

, then iH is J -semide�nite.
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Proof. Apply Lemma 7 to the skew-Hamiltonian matrix iH.

It follows from Lemma 7, Corollary 8, and Theorem 3 part (ii) that if �S��H is a skew-Ha-

miltonian/Hamiltonian matrix pencil that has a skew-Hamiltonian/Hamiltonian Schur form,

then S and iH are J -semide�nite. As noted above, the factor Z in (21) is often either given

explicitly as part of the problem statement or can be obtained as in the proof of Lemma 5.

The next theorem shows that if S is nonsingular, then the skew-Hamiltonian/Hamiltonian

Schur form (if it exists) can be expressed in terms of block triangular factorizations of Z and

H without explicitly using S. This opens the possibility of designing numerical methods that

work directly on Z and H and avoid forming S explicitly.

Theorem 9 Let �S ��H be a skew-Hamiltonian/Hamiltonian matrix pencil with nonsingu-

lar, J -semide�nite skew-Hamiltonian part S = JZ

H

J

T

Z. If any of the equivalent conditions

of Theorem 3 holds, then there exists a unitary matrix Q and a unitary symplectic matrix U

such that

U

H

ZQ =

�

Z

11

Z

12

0 Z

22

�

; (22)

JQ

H

J

T

HQ =

�

H

11

H

12

0 �H

H

11

�

; (23)

where Z

11

, Z

H

22

and H

11

are n� n and upper triangular.

Proof. With Q as in Theorem 3 part (ii) we obtain (23) and JQ

H

J

T

SQ =

h

S

11

0

S

12

S

11

i

H

:

Partition

~

Z = ZQ as

~

Z = [Z

1

; Z

2

], where Z

1

; Z

2

2 C

2n;n

. Using S = JZ

H

J

T

Z, we obtain

~

Z

H

J

~

Z =

�

0 S

H

11

�S

11

�S

12

�

: (24)

In particular, Z

H

1

JZ

1

= 0, i.e., the columns of Z

1

form a basis of a Lagrangian subspace and

therefore the columns of Z

1

form the �rst n columns of a symplectic matrix. (It is easy to verify

from De�nition 1 that, using the non-negative de�nite square root, [Z

1

; �JZ

1

(Z

H

1

Z

1

)

�1=2

]

is symplectic.) It is shown in [11] that Z

1

has a unitary symplectic QR factorization

U

H

Z

1

=

�

Z

11

0

�

;

where U 2 US

2n

is unitary symplectic and Z

11

2 C

n;n

is upper triangular. Setting

U

H

ZQ = U

H

~

Z =

�

Z

11

Z

12

0 Z

22

�

we obtain from (24) that Z

H

22

Z

11

= S

11

. Since S

11

and Z

11

are both upper triangular and Z

11

is nonsingular, we conclude that Z

H

22

is also upper triangular.

Note that the invertibility of Z is only a su�cient condition for the existence of U as in

(22) and (23). However, there is no particular pathology associated with Z being singular.

The algorithms described below do not require Z to be nonsingular. (The unitary symplectic

matrix U is closely related to the Hermitian solution of the generalized algebraic Riccati

equation (9), see [7]. However, when Z is singular, the relationship to Riccati equations is

complicated [27].)

If both S and H are nonsingular, then the following stronger form of Theorem 9 holds.
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Corollary 10 Let �S � �H be a skew-Hamiltonian/Hamiltonian matrix pencil with nonsin-

gular J -semide�nite skew-Hamiltonian part S = JZ

H

J

T

Z and nonsingular J -semide�nite

Hamiltonian part iH = JW

H

J

T

W. If any of the equivalent conditions of Theorem 3 holds,

then there exists a unitary matrix Q and a unitary symplectic matrix U such that

U

H

ZQ =

�

Z

11

Z

12

0 Z

22

�

; U

H

WQ =

�

W

11

W

12

0 W

22

�

;

where Z

11

, Z

H

22

and W

11

, W

H

22

are n� n and upper triangular.

Proof. Similar to the proof of Theorem 9.

We will obtain the structured Schur form of a complex skew-Hamiltonian/Hamiltonian

matrix pencil from the structured Schur form of a real skew-Hamiltonian/skew-Hamiltoni-

an matrix pencil of double dimension. Consequently, we need the following theorem that

establishes the existence of a structured real Schur form for these matrix pencils.

Theorem 11 If �S��N is a real, regular skew-Hamiltonian/skew-Hamiltonian matrix pen-

cil with S = JZ

T

J

T

Z, then there exists a real orthogonal matrix Q 2 R

2n;2n

and a real

orthogonal symplectic matrix U 2 R

2n;2n

such that

U

T

ZQ =

�

Z

11

Z

12

0 Z

22

�

; (25)

JQ

T

J

T

NQ =

�

N

11

N

12

0 N

T

11

�

; (26)

where Z

11

and Z

T

22

are upper triangular, N

11

is quasi upper triangular and N

12

is skew-

symmetric.

Moreover,

JQ

T

J

T

(�S � �N )Q = �

�

Z

T

22

Z

11

Z

T

22

Z

12

� Z

T

12

Z

22

0 Z

T

11

Z

22

�

� �

�

N

11

N

12

0 N

T

11

�

(27)

is a J -congruent skew-Hamiltonian/skew-Hamiltonian matrix pencil.

Proof. A constructive proof for the existence of Q and U satisfying (25) and (26) is

Algorithm 3 in Appendix A. To show (27), recall that U is orthogonal symplectic and therefore

commutes with J . Hence,

JQ

T

J

T

SQ = JQ

T

J

T

(JZ

T

J

T

Z)Q

= JQ

T

J

T

(JZ

T

J

T

U)(U

T

ZQ)

= J (U

T

ZQ)

T

J

T

(U

T

ZQ):

Equation (27) now follows from the block triangular form of (25).

Note that this theorem does not easily extend to complex skew-Hamiltonian/skew-Ha-

miltonian matrix pencils. In the complex case, there is little di�erence in the structure of

Hamiltonian and skew-Hamiltonian matrices, because a skew-Hamiltonian matrix is just a

scalar multiple (by i) of a Hamiltonian matrix. Real skew-Hamiltonian matrices have a

fundamentally di�erent structure than real Hamiltonian matrices.
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A method for computing the structured Schur form (27) for real matrices was proposed in

[39]. If S is given in factored form, then Algorithm 3 in Appendix A is more robust in �nite

precision arithmetic, because it avoids forming S explicitly.

Neither the method in [39] nor Algorithm 3 in Appendix A applies to complex skew-Ha-

miltonian/Hamiltonian matrix pencils because those algorithms depend on the fact that real

diagonal skew-symmetric matrices are identically zero. This property is also crucial for the

structured Schur form algorithms in [5, 46].

Algorithm 1 given below, computes the eigenvalues of a complex skew-Hamiltonian/Ha-

miltonian matrix pencil �S ��H using an unusual embedding of C into R

2

that was recently

proposed in [7]. Let �S��H be a complex skew-Hamiltonian/Hamiltonian matrix pencil with

J -semide�nite skew-Hamiltonian part S = JZ

H

J

T

Z. Split the skew-Hamiltonian matrix

N = iH 2 SH

2n

as iH = N = N

1

+ iN

2

, where N

1

is real skew-Hamiltonian and N

2

is real

Hamiltonian, i.e.,

N

1

=

�

F

1

G

1

H

1

F

T

1

�

; G

1

= �G

T

1

; H

1

= �H

T

1

;

N

2

=

�

F

2

G

2

H

2

�F

T

2

�

; G

2

= G

T

2

; H

2

= H

T

2

;

and F

j

; G

j

;H

j

2 R

n�n

for j = 1; 2. Setting

Y

c

=

p

2

2

�

I

2n

iI

2n

I

2n

�iI

2n

�

;

P =

2

6

6

4

I

n

0 0 0

0 0 I

n

0

0 I

n

0 0

0 0 0 I

n

3

7

7

5

; (28)

X

c

= Y

c

P; (29)

and using the embedding B

N

= diag(N ;

�

N ) we obtain that

B

c

N

:= X

H

c

B

N

X

c

=

2

6

6

4

F

1

�F

2

G

1

�G

2

F

2

F

1

G

2

G

1

H

1

�H

2

F

T

1

F

T

2

H

2

H

1

�F

T

2

F

T

1

3

7

7

5

(30)

is a real skew-Hamiltonian matrix in SH

4n

. Similarly, set

B

Z

:=

�

Z 0

0

�

Z

�

; (31)

B

T

:=

�

JZ

H

J

T

0

0 JZ

H

J

T

�

; (32)

B

S

:=

�

S 0

0

�

S

�

= B

T

B

Z

: (33)

Hence,

�B

S

� �B

N

=

�

�S � �N 0

0 �

�

S � �

�

N

�

:
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We can easily verify that

B

c

Z

:= X

H

c

B

Z

X

c

; (34)

B

c

T

:= X

H

c

B

T

X

c

= J (B

c

Z

)

T

J

T

;

B

c

S

:= X

H

c

B

S

X

c

= J (B

c

Z

)

T

J

T

B

c

Z

(35)

are all real. Therefore,

�B

c

S

� �B

c

N

= X

H

c

(�B

S

� �B

N

)X

c

= X

H

c

�

�S � �N 0

0 �

�

S � �

�

N

�

X

c

(36)

is a real 4n � 4n skew-Hamiltonian/skew-Hamiltonian matrix pencil. For this matrix pencil

we can employ Algorithm 3 in Appendix A to compute the structured factorization (26), i.e.,

we can determine an orthogonal symplectic matrix U and an orthogonal matrix Q such that

^

B

c

Z

:= U

T

B

c

Z

Q =

�

Z

11

Z

12

0 Z

22

�

; (37)

^

B

c

N

:= JQ

T

J

T

B

c

N

Q =

�

N

11

N

12

0 N

T

11

�

: (38)

Thus, if

^

B

c

S

:= J (

^

B

c

Z

)

T

J

T

^

B

c

Z

, then

�

^

B

c

S

� �

^

B

c

N

= �(JQ

T

J

T

B

c

S

Q)� �(JQ

T

J

T

B

c

N

Q)

is a J -congruent skew-Hamiltonian/skew-Hamiltonian matrix pencil in Schur form. By (36)

and the fact that the �nite eigenvalues of �S � �N are symmetric with respect to the real

axis, we get

�(S;H) = �(S;�iN ) = �(Z

T

22

Z

11

;�iN

11

):

In this way, Algorithm 1 below computes the eigenvalues of the complex skew-Hamiltoni-

an/Hamiltonian matrix pencil �S � �H = �S + i�N .

We can also extend the complex skew-Hamiltonian/Hamiltonian matrix pencil �S � �H

to a double size complex skew-Hamiltonian/Hamiltonian matrix pencil �B

S

� �B

H

, where

B

H

=

�

H 0

0 �

�

H

�

(39)

and B

S

is as in (35). The spectrum of the extended matrix pencil �B

S

��B

H

consists of two

copies of the spectrum of �S � �H [5]. If

B

c

H

= X

H

c

B

H

X

c

; (40)

then it follows from (37) and (38) that

~

B

c

Z

:= U

T

B

c

Z

Q =

�

Z

11

Z

12

0 Z

22

�

;

~

B

c

H

:= JQ

T

J

T

B

c

H

Q =

�

�iN

11

�iN

12

0 �(�iN

11

)

H

�

;
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and the matrix pencil �

~

B

c

S

� �

~

B

c

H

:= �J (

~

B

c

Z

)

H

J

T

~

B

c

Z

� �

~

B

c

H

is in skew-Hamiltonian/Hamil-

tonian Schur form. We have thus obtained the structured Schur form of the extended complex

skew-Hamiltonian/Hamiltonian matrix pencil �B

c

S

� �B

c

H

. Moreover,

�

~

B

c

S

� �

~

B

c

H

= JQ

H

J

T

(�B

c

S

� �B

c

H

)Q

= (X

c

JQJ

T

)

H

�

�S � �H 0

0 �

�

S + �

�

H

�

(X

c

Q) (41)

is in skew-Hamiltonian/Hamiltonian Schur form.

We have seen so far that we can compute structured Schur forms and thus are able

to compute the eigenvalues of the structured matrix pencils under consideration using the

embedding technique into a structured matrix pencil of double size.

To get the desired subspaces we generalize the techniques developed in [5]. For this we

need a structure preserving method to reorder the eigenvalues in the structured Schur form.

This reordering method is described in detail in Appendix A. The method shows that the

eigenvalues can be ordered along the diagonal of structured Schur form so that all eigenvalues

with negative real part appear in the (1; 1) block and eigenvalues with positive real part

appear in the (2; 2) block.

The following theorem uses this eigenvalue ordering to determine the desired de
ating

subspaces of the matrix pencil �S � �H from the real structured Schur form (41).

Theorem 12 Let �S � �H 2 C

2n;2n

be a skew-Hamiltonian/Hamiltonian matrix pencil with

J -semide�nite skew-Hamiltonian matrix S = JZ

H

J

T

Z. Consider the extended matrices

B

Z

= diag(Z;

�

Z);

B

T

= diag(JZ

H

J

T

;JZ

H

J

T

);

B

S

= B

T

B

Z

= diag(S;

�

S);

B

H

= diag(H;�

�

H):

Let U ;V;W be unitary matrices such that

U

H

B

Z

V =

�

Z

11

Z

12

0 Z

22

�

=: R

Z

;

W

H

B

T

U =

�

T

11

T

12

0 T

22

�

=: R

T

; (42)

W

H

B

H

V =

�

H

11

H

12

0 H

22

�

=: R

H

;

where �

�

(B

S

;B

H

) � �(T

11

Z

11

;H

11

) and �(T

11

Z

11

;H

11

)\�

+

(B

S

;B

H

) = ;. Suppose �

�

(S;H)

contains p eigenvalues. If

h

V

1

V

2

i

2 C

4n;m

are the �rst m columns of V, 2p � m � 2n � 2p,

then there are subspaces L

1

and L

2

such that

range V

1

= Def

�

(S;H) + L

1

; L

1

� Def

0

(S;H) + Def

1

(S;H);

range V

2

= Def

+

(S;H) + L

2

; L

2

� Def

0

(S;H) + Def

1

(S;H): (43)

If �(T

11

Z

11

;H

11

) = �

�

(B

S

;B

H

), and

h

U

1

U

2

i

,

h

W

1

W

2

i

are the �rst m columns of U , W, respec-

tively, then there exist unitary matrices Q

U

; Q

V

; Q

W

such that

U

1

= [P

�

U

; 0]Q

U

; U

2

= [0; P

+

U

]Q

U

;

V

1

= [P

�

V

; 0]Q

V

; V

2

= [0; P

+

V

]Q

V

;

W

1

= [P

�

W

; 0]Q

W

; W

2

= [0; P

+

W

]Q

W
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and the columns of P

�

V

and P

+

V

form orthogonal bases of Def

�

(S;H) and Def

+

(S;H), re-

spectively. Moreover, the matrices P

�

U

, P

+

U

, P

�

W

and P

+

W

have orthonormal columns and the

following relations are satis�ed

ZP

�

V

= P

�

U

~

Z

11

; JZ

H

J

T

P

�

U

= P

�

W

~

T

11

; HP

�

V

= P

�

W

~

H

11

;

ZP

+

V

= P

+

U

~

Z

22

; JZ

H

J

T

P

+

U

= P

+

W

~

T

22

; HP

+

V

= �P

+

W

~

H

22

:

(44)

Here,

~

Z

kk

,

~

T

kk

and

~

H

kk

, k = 1; 2, satisfy �(

~

T

11

~

Z

11

;

~

H

11

) = �(

~

T

22

~

Z

22

;

~

H

22

) = �

�

(S;H).

Proof.

The factorizations in (42) imply that B

S

V = WR

T

R

Z

and B

H

V = WR

H

. Comparing

the �rst m columns and making use of the block forms we have

SV

1

= W

1

(T

11

Z

11

); HV

1

= W

1

H

11

;

SV

2

= W

2

(T

11

Z

11

); HV

2

= �W

2

H

11

:

(45)

Clearly rangeV

1

and range V

2

are both de
ating subspaces of �S � �H. Since

�

�

(S;H) � �

�

(B

S

;B

H

) � �(T

11

Z

11

;H

11

)

and �(T

11

Z

11

;H

11

) contains no eigenvalue with positive real part, we get

range V

1

� Def

�

(S;H) + L

1

; L

1

� Def

0

(S;H) + Def

1

(S;H);

range V

2

� Def

+

(S;H) + L

2

; L

2

� Def

0

(S;H) + Def

1

(S;H):

We still need to show that

Def

�

(S;H) � range V

1

; Def

+

(S;H) � range V

2

: (46)

Let

~

V

1

and

~

V

2

be full rank matrices whose columns form bases of Def

�

(S;H) and Def

+

(S;H),

respectively. It is easy to show that the columns of

h

~

V

1

0

0

~

V

2

i

span Def

�

(B

S

;B

H

). This implies

that

range

"

~

V

1

0

0

~

V

2

#

� range

�

V

1

V

2

�

:

Therefore,

range

�

~

V

1

0

�

; range

"

0

~

V

2

#

� range

�

V

1

V

2

�

;

and from this we obtain (46) and hence (43).

If �(T

11

Z

11

;H

11

) = �

�

(B

S

;B

H

), where p is the number of eigenvalues in �

�

(S;H), then

from (43) we have m = 2p and

rangeV

1

= Def

�

(S;H); rangeV

2

= Def

+

(S;H):

Hence, rankV

1

= rankV

2

= p and furthermore T

11

, Z

11

and H

11

must be nonsingular. Using

(45) we get

HV

1

= SV

1

((T

11

Z

11

)

�1

H

11

);

HV

2

= �SV

2

((T

11

Z

11

)

�1

H

11

):
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Let V

1

= [P

�

V

; 0]Q

V

be an RQ decomposition [19] with P

�

V

of full column rank. Since

rankV

1

= p we have rankP

�

V

= p. Partition V

2

Q

H

V

= [P

V

; P

+

V

] conformally with V

1

Q

H

V

. Since

the columns of

h

V

1

V

2

i

are orthonormal, we obtain (P

+

V

)

H

P

+

V

= I

p

and hence rankP

+

V

= p.

Furthermore, since rankV

2

= p we have

rangeP

V

� rangeP

+

V

= rangeV

2

;

and using orthonormality, we obtain P

V

= 0. Therefore, the columns of P

�

V

and P

+

V

form

orthogonal bases of Def

�

(S;H) and Def

+

(S;H), respectively.

From (42) we have

ZV

1

= U

1

Z

11

; JZ

H

J

T

U

1

=W

1

T

11

; HV

1

=W

1

H

11

; (47)

and

ZV

2

= U

2

Z

11

; JZ

H

J

T

U

2

=W

2

T

11

; HV

2

= �W

2

H

11

: (48)

Let U

1

= [P

�

U

; 0]Q

U

and W

1

= [P

�

W

; 0]Q

W

be RQ decompositions, with P

�

U

, P

�

W

of full

column rank. Using V

1

= [P

�

V

; 0]Q

V

and the fact that ZP

�

V

, SP

�

V

and HP

�

V

are of full rank

(otherwise there would be a zero or in�nite eigenvalue associated with the de
ating subspace

rangeP

�

V

), from the �rst and third identity in (47) we obtain

rankP

�

U

= rankP

�

W

= rankP

�

V

= p:

Moreover, setting

~

Z = Q

U

Z

11

Q

H

V

;

~

T = Q

W

T

11

Q

H

U

;

~

H = Q

W

H

11

Q

H

V

;

we obtain

~

Z =

�

~

Z

11

0

~

Z

21

~

Z

22

�

;

~

T =

�

~

T

11

0

~

T

21

~

T

22

�

;

~

H =

�

~

H

11

0

~

H

21

~

H

22

�

;

where all diagonal blocks are p� p.

Set U

2

Q

H

U

=: [P

U

; P

+

U

], W

2

Q

H

W

=: [P

W

; P

+

W

] and take V

2

Q

H

V

=: [0; P

+

V

]. The block forms

of

~

Z,

~

T and

~

H together with the �rst identity of (48) imply that P

U

~

Z

11

= P

+

U

~

Z

21

. Since

the columns of

h

U

1

U

2

i

are orthonormal, we have (P

+

U

)

H

P

+

U

= I

p

and (P

+

U

)

H

P

U

= 0. Hence,

~

Z

21

= 0, and consequently P

U

= 0. Similarly, from the third identity of (48) we get P

W

= 0,

~

H

21

= 0 and from the second identity we obtain

~

T

21

= 0. Combining all these observations,

we obtain

�

Z 0

0

�

Z

� �

P

�

V

0

0 P

+

V

�

=

�

P

�

U

0

0 P

+

U

� �

~

Z

11

0

0

~

Z

22

�

;

�

JZ

H

J

T

0

0 JZ

H

J

T

� �

P

�

U

0

0 P

+

U

�

=

�

P

�

W

0

0 P

+

W

� �

~

T

11

0

0

~

T

22

�

;

�

H 0

0 �

�

H

� �

P

�

V

0

0 P

+

V

�

=

�

P

�

W

0

0 P

+

W

� �

~

H

11

0

0

~

H

22

�

;

which gives (44).

(We remark that (42) can be constructed from (41) by reordering the eigenvalues properly.)

Theorem 12 gives a way to obtain the stable de
ating subspace of a skew-Hamiltonian/Ha-

miltonian matrix pencil form the de
ating subspaces of an embedded skew-Hamiltonian/Ha-

miltonian matrix pencil of double size. This will be used by the algorithms formulated in the

next section.
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5 Algorithms

The results of Theorem 12 together with the embedding technique lead to the following

algorithm to compute the eigenvalues and the de
ating subspaces Def

�

(S;H) and Def

+

(S;H)

of a complex skew-Hamiltonian/Hamiltonian matrix pencil �S � �H.

In summary, Algorithm 1 proposed below transforms a 2n � 2n complex skew-Hamilto-

nian/Hamiltonian matrix pencil with J -semide�nite skew-Hamiltonian part into a 4n � 4n

complex skew-Hamiltonian/Hamiltonian matrix pencil in Schur form. The process passes

through intermediate matrix pencils of the following types.

2n� 2n complex skew-Hamiltonian/Hamiltonian matrix pencil

�S � �H with S = JZ

H

J

T

Z.

+

Equation (36)

+

4n� 4n real skew-Hamiltonian/skew-Hamiltonian matrix pencil

�B

c

S

� �B

c

N

with B

c

S

= J (B

c

Z

)

T

J

T

B

Z

+

Algorithm 3 in Appendix A

+

4n� 4n real skew-Hamiltonian/skew-Hamiltonian matrix pencil in Schur form

�

^

B

c

S

� �

^

B

c

N

with

^

B

c

S

= J (

^

B

c

Z

)

T

J

T

^

B

c

Z

and

^

B

c

Z

= U

T

B

c

Z

Q =

h

Z

11

0

Z

12

Z

22

i

as in (37) and (38)

+

Algorithm 4 in Appendix A

+

4n� 4n complex skew-Hamiltonian/skew-Hamiltonian matrix pencil in Schur form

with ordered eigenvalues.

The required de
ating subspaces of the original skew-Hamiltonian/Hamiltonian matrix

pencil are then obtained from the de
ating subspaces of the �nal 4n� 4n complex skew-Ha-

miltonian/skew-Hamiltonian matrix pencil. (Unfortunately, if there are non-real eigenvalues,

then Algorithm 4 in Appendix A (the eigenvalue sorting algorithm) reintroduces complex

entries into the 4n� 4n extended real matrix pencil.)

Algorithm 1 Given a complex skew-Hamiltonian/Hamiltonian matrix pencil �S � �H with

J -semide�nite skew-Hamiltonian part S = JZ

H

J

T

Z, this algorithm computes the structured

Schur form of the extended skew-Hamiltonian/Hamiltonian matrix pencil �B

c

S

� �B

c

H

, the

eigenvalues of �S ��H, and orthonormal bases of the de
ating subspace Def

�

(S;H) and the

companion subspace rangeP

�

U

.

Input: Hamiltonian matrix H and the factor Z of S.

Output: P

�

V

, P

�

U

as de�ned in Theorem 12.

Step 1:

Set N = iH and form matrices B

c

Z

, B

c

N

as in (34) and (30), respectively. Find the

21



structured Schur form of the skew-Hamiltonian/Hamiltonian matrix pencil �B

c

S

��B

c

N

using Algorithm 3 in Appendix A to compute the factorization

~

B

c

Z

= U

T

B

c

Z

Q =

�

Z

11

Z

12

0 Z

22

�

;

~

B

c

N

= JQ

T

J

T

B

c

N

Q =

�

N

11

N

12

0 N

T

11

�

;

whereQ is real orthogonal, U is real orthogonal symplectic, Z

11

, Z

T

22

are upper triangular

and N

11

is quasi upper triangular.

Step 2:

Reorder the eigenvalues using Algorithm 4 in Appendix A to determine a unitary matrix

~

Q and a unitary symplectic matrix

~

U such that

~

U

H

~

B

c

Z

~

Q =

�

~

Z

11

~

Z

12

0

~

Z

22

�

;

J

~

Q

H

J

T

(�i

~

B

c

N

)

~

Q =

�

H

11

H

12

0 �H

H

11

�

;

with

~

Z

11

,

~

Z

H

22

, H

11

upper triangular such that �

�

(J (

~

B

c

Z

)

H

J

T

~

B

c

Z

;�i

~

B

c

N

) is contained

in the spectrum of the 2p� 2p leading principal subpencil of �

~

Z

H

22

~

Z

11

� �H

11

.

Step 3:

Set V = [I

2n

; 0]X

c

Q

~

Q

h

I

2p

0

i

, U = [I

2n

; 0]X

c

U

~

U

h

I

2p

0

i

(where X

c

is as in (29)) and com-

pute P

�

V

, P

�

U

, orthogonal bases of range V and rangeU , respectively, using any numer-

ically stable orthogonalization scheme.

End

A detailed 
op count shows that this algorithm needs approximately the same number of


ops as the periodic QZ algorithm [10, 21] applied to �JZ

H

J

T

Z � �H.

If S is not factored, then the algorithm can be simpli�ed by using the method of [39] to

compute the real skew-Hamiltonian/skew-Hamiltonian Schur form of �B

c

S

� �B

c

H

directly.

Algorithm 2 Given a complex skew-Hamiltonian/Hamiltonian matrix pencil �S��H. This

algorithm computes the structured Schur form of the extended skew-Hamiltonian/Hamiltonian

matrix pencil �B

c

S

��B

c

H

, the eigenvalues of �S��H, and an orthogonal basis of the de
ating

subspace Def

�

(S;H).

Input: A complex skew-Hamiltonian/Hamiltonian matrix pencil �S � �H, with S 2 SH

2n

,

H 2 H

2n

.

Output: P

�

V

as de�ned in Theorem 12.

Step 1:

Set N = iH and form the matrices B

c

S

, B

c

N

as in (35) and (30), respectively.
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Find the structured Schur form of the skew-Hamiltonian/Hamiltonian matrix pencil

�B

c

S

� �B

c

N

using Algorithm 5 in Appendix A to compute the factorization

~

B

c

S

= JQ

T

J

T

B

c

S

Q =

�

S

11

S

12

0 S

T

11

�

;

~

B

c

N

= JQ

T

J

T

B

c

N

Q =

�

N

11

N

12

0 N

T

11

�

;

where Q is real orthogonal, S

11

is upper triangular and N

11

is quasi upper triangular.

Step 2:

Reorder the eigenvalues using Algorithm 6 in Appendix A to determine a unitary matrix

~

Q such that

J

~

Q

H

J

T

~

B

c

S

~

Q =

�

~

S

11

~

S

12

0

~

S

H

11

�

;

J

~

Q

H

J

T

(�i

~

B

c

N

)

~

Q =

�

H

11

H

12

0 �H

H

11

�

;

with

~

S

11

, H

11

upper triangular and such that �

�

(

~

B

c

S

;�i

~

B

c

N

) is contained in the spec-

trum of the 2p� 2p leading principal subpencil of �

~

S

11

� �H

11

.

Step 3:

Set V = [I

2n

; 0]X

c

Q

~

Q

h

I

2p

0

i

(where X

c

is as in (29)) and compute P

�

V

, the orthogonal

basis of range V , using any numerically stable orthogonalization scheme.

End

The algorithm can also compute rangeP

�

U

if S = JZ

H

J

T

Z, by computing the orthogonal

basis of ZP

�

V

. However, if Z is near singular, then in �nite arithmetic, the isotropy of the

subspace, i.e., that (P

�

U

)

H

JP

�

U

= 0, may be lost or poor.

Algorithm 2 needs roughly 60% of the 
ops required by the QZ algorithm applied to

�S � �H as suggested in [45].

In this section we have presented (complex) structured triangular forms and numerical

algorithms for the computation of these forms. In the next section we give an error analysis

for these methods. The analysis is a generalization of the analysis for Hamiltonian matrices

in [5, 6, 7].

6 Error and Perturbation Analysis

In this section we will give the perturbation analysis for eigenvalues and de
ating subspaces

of skew-Hamiltonian/Hamiltonian matrix pencils. Variables marked with a circum
ex denote

perturbed quantities.

We begin with the perturbation analysis for the eigenvalues of �S��H and �JZ

H

J

T

Z�

�H. In principle, we could multiply out JZ

H

J

T

Z and apply the classical perturbation

analysis of matrix pencils using the chordal metric [44], but this may give pessimistic bounds

and would display neither the e�ects of perturbing each factor separately nor the e�ects of
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structured perturbations. Therefore, we make use of the perturbation analysis for formal

products of matrices developed in [8].

If Algorithm 2 is applied to the skew-Hamiltonian/Hamiltonian matrix pencil �S � �H,

then we compute the structured Schur form of the extended skew-Hamiltonian/Hamiltonian

matrix pencil �B

c

S

� �B

c

H

. The well-known backward error analysis of orthogonal matrix

computations implies that rounding errors in Algorithm 2 are equivalent to perturbing �B

c

S

�

�B

c

H

to a nearby matrix pencil �

^

B

c

S

� �

^

B

c

H

, where

^

B

c

S

= B

c

S

+ E

S

; (49)

^

B

c

H

= B

c

H

+ E

H

; (50)

with E

S

2 SH

4n

, E

H

2 H

4n

and

jjE

S

jj

2

< c

S

" jjB

c

S

jj

2

; (51)

jjE

H

jj

2

< c

H

" jjB

c

H

jj

2

: (52)

Here " is the unit round of the 
oating point arithmetic and c

S

and c

H

are modest constants

depending on the details of the implementation and arithmetic. Let x and y be unit norm

vectors such that

Hx = �

1

y; Sx = �

1

y; (53)

and let � = �

1

=�

1

be a simple eigenvalue of �S � �H. If � is �nite and Re� 6= 0, then �

�

� is

also a simple eigenvalue of �S � �H. Let u; v be unit norm vectors such that

Hu = �

2

v; Su = �

2

v; (54)

and �

2

=�

2

= �

�

�. Then we have

�

�

H�u = ���

2

�v;

�

S�u =

�

�

2

�v: (55)

Using the equivalence of the matrix pencils �B

c

S

� �B

c

H

and �B

S

� �B

H

, and setting

U

1

= X

H

c

�

y 0

0 �v

�

; U

2

= X

H

c

�

x 0

0 �u

�

; (56)

we obtain from (53) and (55) that

B

c

H

U

2

= U

1

�

�

1

0

0 ���

2

�

; B

c

S

U

2

= U

1

�

�

1

0

0

�

�

2

�

;

which implies that � is a double eigenvalue of �B

c

S

� �B

c

H

with a complete set of linearly

independent eigenvectors. Similarly, �

�

� is a double eigenvalue of �B

c

S

��B

c

H

with a complete

set of linearly independent eigenvectors and

B

c

H

V

2

= V

1

�

�

2

0

0 ���

1

�

; B

c

S

V

2

= V

1

�

�

2

0

0

�

�

1

�

;

where

V

1

= X

H

c

�

v 0

0 �y

�

; V

2

= X

H

c

�

u 0

0 �x

�

: (57)

Note that the �nite eigenvalues with non-zero real part appear in pairs as in (53) and (54),

but in�nite and purely imaginary eigenvalues may not appear in pairs. Consequently, in the

following perturbation theorem, the bounds for purely imaginary and in�nite eigenvalues are

di�erent from the bounds for �nite eigenvalues with non-zero real part.
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Theorem 13 Consider the skew-Hamiltonian/Hamiltonian matrix pencil �S��H along with

the corresponding extended matrix pencils �B

c

S

��B

c

H

= X

H

c

(�B

S

��B

H

)X

c

, where B

S

is given

by (33), B

H

by (40), X

c

by (29) and B

c

S

by (35). Let �

^

B

c

S

� �

^

B

c

H

be a perturbed extended

matrix pencil satisfying (49){(52) with constants c

H

, c

S

and let " be equal to the unit round

of the 
oating point arithmetic.

If � is a simple eigenvalue of �S � �H with vectors x and y as in (53) and vectors u

and v as in (54), then the corresponding double eigenvalue of �B

c

S

� �B

c

H

may split into two

eigenvalues

^

�

1

and

^

�

2

of the perturbed matrix pencil �

^

B

c

S

� �

^

B

c

H

, each of which satis�es the

following bounds.

1. If � is �nite and Re � 6= 0, then

�

�

�

�

�

^

�

k

� �

�

�

�

�

�

�

�

"

ju

H

J yj

�

c

H

j�

1

j

jjHjj

2

+

c

S

j�

1

j

jjSjj

2

�

+O("

2

); k = 1; 2:

2. If � is �nite and Re � = 0, then

j

^

�

k

� �j �

"

j�

1

jjx

H

J yj

(c

H

jjHjj

2

+ c

S

j�j jjSjj

2

) +O("

2

); k = 1; 2:

3. If � =1, then

1

j

^

�

k

j

� "

c

S

jjSjj

2

j�

1

jjx

H

J yj

+O("

2

); k = 1; 2:

Proof. We �rst consider the case that � is �nite and Re� 6= 0. Let U

1

and U

2

be de�ned

by (56) and V

1

and V

2

be de�ned by (57). Using the perturbation theory for formal products

of matrices (see [8]), we obtain

�

�

�

�

�

^

�� �

�

�

�

�

�

�

� min

�

�

�

�

�

�

�

�

�

(V

H

2

JU

1

C

S

)

�1

V

H

2

J (

1

�

E

H

� E

S

)U

2

�

�

�

�

�

�

�

�

2

;

�

�

�

�

�

�

�

�

(V

H

2

JU

1

)

�1

V

H

2

J (

1

�

E

H

� E

S

)U

2

C

�1

S

�

�

�

�

�

�

�

�

2

�

+O("

2

):

Here, C

S

=

h

�

1

0

0

�

�

2

i

and V

H

2

JU

1

=

�

u

0

0

�x

�

H

X

c

JX

H

c

�

y

0

0

�v

�

=

h

u

H

J y

0

0

x

T

J �v

i

. The second

equation in (54) implies u

H

JS =

�

�

2

v

H

J . Combining this with the second equation of (53)

we get

�

�

2

v

H

J x = �

1

u

H

J y. Hence,

�

�

�

�

�

^

�� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

(V

H

2

JU

1

C

S

)

�1

V

H

2

J (

1

�

E

H

� E

S

)U

2

�

�

�

�

�

�

�

�

2

+O("

2

)

�

�

�

�

�

(V

H

2

JU

1

C

S

)

�1

�

�

�

�

2

�

�

�

�

�

�

�

�

1

�

E

H

� E

S

�

�

�

�

�

�

�

�

2

+O("

2

)

�

1

ju

H

J yj

�

jjE

H

jj

2

j�

1

�j

+

jjE

S

jj

2

j�

1

j

�

+O("

2

)

�

"

ju

H

J yj

�

c

H

j�

1

j

jjHjj

2

+

c

S

j�

1

j

jjSjj

2

�

+O("

2

):

If � is purely imaginary or in�nite, then the bounds are obtained by adapting the classical

perturbation theory in [44] to a formal product of matrices (for details see [8]) and by replacing
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(55) with �

�

H�x = ���

1

�y and

�

S�x =

�

�

1

�y as well as replacing u, v, �

2

and �

2

by x, y, �

1

and

�

1

, respectively.

The bound in part 1 appears to involve only u, y, �

1

and �

1

but not v, x, �

2

and �

2

.

However, note in the proof that

�

�

2

v

H

J x = �

1

u

H

J y, so the bound implicitly involves all the

parameters.

If S is given in factored form, Algorithm 1 computes the triangular form of the perturbed

matrix pencil

�

^

B

c

Z

� �

^

B

c

H

= �(B

c

Z

+ E

Z

)� �(B

c

H

+ E

H

) (58)

where

jjE

Z

jj

2

� c

Z

" jjB

c

Z

jj

2

; jjE

H

jj

2

� c

H

" jjB

c

H

jj

2

(59)

and " is the machine precision and c

Z

and c

H

are constants. The eigenvalue perturbation

bounds then are essentially the same as in Theorem 13.

Theorem 14 Consider the skew-Hamiltonian/Hamiltonian matrix pencil �S � �H with J -

semide�nite skew-Hamiltonian part S = JZ

H

J

T

Z. Let �B

c

S

� �B

c

H

= X

H

c

(�B

S

� �B

H

)X

c

be the corresponding extended matrix pencils, where B

c

S

= J (B

c

Z

)

H

J

T

B

c

Z

, B

Z

is given by

(31), B

H

by (39), and X

c

by (29). Let �

^

B

c

S

� �

^

B

c

H

be the perturbed extended matrix pencil

in (49){(52) with constants c

H

, c

S

and let " be equal to the unit round of the 
oating point

arithmetic.

Let � be a simple eigenvalue of �S � �H = �JZ

H

J

T

Z � �H with Re � 6= 0, and let x,

y, z, u, v, w be unit norm vectors such that

JZ

H

J

T

x = �

1

y; Hz = �

1

y; Zz = 


1

x; (60)

with � =

�

1

�

1




1

, and

JZ

H

J

T

u = �

2

v; Hw = �

2

v; Zw = 


2

u; (61)

with �

�

� =

�

2

�

2




2

.

The corresponding double eigenvalue of �B

c

S

��B

c

H

may split into two eigenvalues

^

�

1

and

^

�

2

of the perturbed matrix pencil �

^

B

c

S

� �

^

B

c

H

, each of which satis�es the following bounds.

1. If � is �nite and Re � 6= 0, then

�

�

�

�

�

^

�� �

�

�

�

�

�

�

� "

�

c

H

j�

1

w

H

J yj

jjHjj

2

+ 2

c

Z

minfj


1

u

H

J xj; j�

1

w

H

J yjg

jjZjj

2

�

+O("

2

):

2. If � is purely imaginary, then

j

^

�� �j � "

�

c

H

j�

1




1

y

H

J zj

jjHjj

2

+

2j�jc

Z

j


1

u

H

J xj

jjZjj

2

�

+O("

2

):

3. If � =1, then j

^

�j

�1

= O("

2

).

Proof. The perturbation analysis follows [8]. If � is �nite and Re � 6= 0, then

�

�

�

�

�

^

�� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

(V

H

2

JU

3

)

�1

(

~

C

1

~

C

3

)

�1

(V

H

3

E

H

Z

JU

1

C

3

+

~

C

H

3

U

H

1

JE

Z

U

3

�

1

�

V

H

3

JE

H

U

3

)

�

�

�

�

�

�

�

�

2

+O("

2

):
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From V

H

2

JU

3

=

�

v

H

J z 0

0 y

T

J �w

�

, it follows that

�

�

�

�

�

^

�� �

�

�

�

�

�

�

�

maxfj


1

j; j


2

jg jjE

Z

jj

2

+

1

j�j

jjE

H

jj

2

minfj��

2

�


2

v

H

J zj; j�

1




1

w

H

J yjg

+

jjE

Z

jj

2

minfj��

2

v

H

J zj; j�

1

w

H

J yjg

+O("

2

):

From (60) and (61), we also have

��

2

v

H

J z = 


1

u

H

J x; �


2

u

H

J x = �

1

w

H

J y;

�

�

2

v

H

J z = ��

1

w

H

J y: (62)

It follows that

j��

2

�


2

v

H

J zj = j�


2




1

u

H

J xj = j


1

�

1

w

H

J yj:

Hence,

maxfj


1

j; j


2

jg

minfj��

2

�


2

v

H

J zj; j�

1




1

w

H

J yjg

=

1

minfj��

2

v

H

J zj; j�

1

w

H

J yjg

;

j�jminfj��

2

�


2

v

H

J zj; j�

1




1

w

H

J yjg = j�

1

w

H

J yj;

and

�

�

�

�

�

^

�� �

�

�

�

�

�

�

� "

�

c

H

j�

1

w

H

J yj

jjHjj

2

+

2c

Z

minfj��

2

v

H

J zj; j�

1

w

H

J yjg

jjZjj

2

�

+O("

2

):

Equation (62) implies that ��

2

v

H

J z = 


1

u

H

J x. The �rst part of the theorem follows.

If � is purely imaginary, the proof is analogous.

If � = 1, then �

1

= 0 or 


1

= 0. Using the �rst equation of (62), we have ��

1

y

H

J z =




1

x

H

J x, where we have replaced u, v and �

2

by x, y and �

1

, respectively. Since � is simple,

i.e., y

H

J z 6= 0 and x

H

J x 6= 0, we have �

1

= 


1

= 0 and hence, C

1

= C

3

= 0. Using the

same argument as in Theorem 13 gives

1

^

�

= O("

2

).

To study the perturbations in the computed de
ating subspaces we need to study the

perturbations for the extended matrix pencil in more detail. As mentioned before, by applying

Algorithm 2 to �B

c

S

� �B

c

H

we actually compute a unitary matrix

^

Q such that

J

^

Q

H

J

T

(�

^

B

c

S

� �

^

B

c

H

)

^

Q = �

^

R

S

� �

^

R

H

=: �

�

^

S

11

^

S

12

0

^

S

H

11

�

� �

�

^

H

11

^

H

12

0 �

^

H

H

11

�

; (63)

where

^

B

c

S

and

^

B

c

H

are de�ned in (49) and (50), and �(

^

S

11

;

^

H

11

) = �

�

(

^

B

c

S

;

^

B

c

H

). If we assume

that the matrix pencil �S � �H has no purely imaginary eigenvalues, then by Theorem 3

there exist unitary matrices Q

1

, Q

2

such that

JQ

H

1

J

T

(�S � �H)Q

1

= �

�

S

�

11

S

�

12

0 (S

�

11

)

H

�

� �

�

H

�

11

H

�

12

0 �(H

�

11

)

H

�

with �(S

�

11

;H

�

11

) = �

�

(S;H), and

JQ

H

2

J

T

(�S � �H)Q

2

= �

�

S

+

11

S

+

12

0 (S

+

11

)

H

�

� �

�

H

+

11

H

+

12

0 �(H

+

11

)

H

�
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with �(S

+

11

;H

+

11

) = �

+

(S;H), respectively. Set Q = X

H

c

diag(Q

1

;

�

Q

2

)P with P and X

c

as in

(28) and (29). Then Q is unitary and

JQ

H

J

T

(�B

c

S

� �B

c

H

)Q

= �

2

6

6

6

4

S

�

11

0 S

�

12

0

0 S

+

11

0 S

+

12

0 0 (S

�

11

)

H

0

0 0 0 (S

+

11

)

H

3

7

7

7

5

� �

2

6

6

6

4

H

�

11

0 H

�

12

0

0 �H

+

11

0 �H

+

12

0 0 �(H

�

11

)

H

0

0 0 0 (H

+

11

)

H

3

7

7

7

5

=: �

�

S

11

S

12

0 S

H

11

�

� �

�

H

11

H

12

0 �H

H

11

�

(64)

=: �R

S

� �R

H

:

This is the structured Schur form of the extended skew-Hamiltonian/Hamiltonian matrix

pencil �B

c

S

� �B

c

H

. Moreover, �(S

11

;H

11

) = �

�

(B

c

S

;B

c

H

).

In the following, we will use the linear space C

n;n

� C

n;n

endowed with the norm

jj(X;Y )jj = maxfjjXjj

2

; jjY jj

2

g:

Theorem 15 Let �S � �H be a regular skew-Hamiltonian/Hamiltonian matrix pencil with

neither in�nite nor purely imaginary eigenvalues. Let P

�

V

be the orthogonal basis of the

de
ating subspace of �S � �H corresponding to �

�

(S;H), and let

^

P

�

V

be the perturbation of

P

�

V

obtained by Algorithm 2 in �nite precision arithmetic. Denote by � 2 C

n;n

the diagonal

matrix of canonical angles between P

�

V

and

^

P

�

V

.

Using the structured Schur form of the extended skew-Hamiltonian/Hamiltonian matrix

pencil �B

c

S

� �B

c

H

(as in (35) and (40)) given by (64), de�ne � by

� = min

Y 2C

2n;2n

nf0g

�

�

�

�

(H

H

11

Y + Y

H

H

11

;S

H

11

Y � Y

H

S

11

)

�

�

�

�

jjY jj

2

: (65)

If

8 jj(E

S

; E

H

)jj (� + jj(S

12

;H

12

)jj) < �

2

; (66)

then

jj�jj

2

< c

b

jj(E

S

; E

H

)jj

�

< c

b

"

jj(c

S

S; c

H

H)jj

�

; (67)

where c

S

and c

H

are the modest constants in (51){(52) and c

b

= 8(

p

10+4)=(

p

10+2) � 11:1.

Proof. Let �

^

R

S

� �

^

R

H

,

^

Q be the output of Step 2 in Algorithm 2 in �nite precision

arithmetic, where

^

B

c

S

,

^

B

c

H

satisfy (49) and (50). Let

~

Q be the unitary matrix computed by

Algorithm 2 in exact arithmetic such that

J

~

Q

H

J

T

(�B

c

S

� �B

c

H

)

~

Q = �

~

R

S

� �

~

R

H

= �

�

~

S

11

~

S

12

0

~

S

H

11

�

� �

�

~

H

11

~

H

12

0 �

~

H

H

11

�

;

with �(

~

S

11

;

~

H

11

) = �

�

(B

c

S

;B

c

H

). Since (64) is another structured Schur form with the same

eigenvalue ordering, there exits a unitary diagonal matrix G = diag(G

1

; G

2

) such that Q =

~

QG. Therefore, we have

�

�

�

�

�

�

(

~

S

12

;

~

H

12

)

�

�

�

�

�

�

= jj(S

12

;H

12

)jj ;
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and for � given in (65) we also have

� = min

Y 2C

2n;2n

nf0g

�

�

�

�

�

�

(

~

H

H

11

Y + Y

H

~

H

11

;

~

S

H

11

Y � Y

H

~

S

11

)

�

�

�

�

�

�

jjY jj

2

:

Let

~

E

S

:= J

~

Q

H

J

T

E

S

~

Q =:

�

E

11

E

12

E

21

E

H

11

�

;

~

E

H

:= J

~

Q

H

J

T

E

H

~

Q =:

�

F

11

F

12

F

21

�F

H

11

�

and set 
 = jj(E

21

;F

21

)jj, � =

�

�

�

�

�

�

(

~

S

12

+ E

12

;

~

H

12

+ F

12

)

�

�

�

�

�

�

and

~

� = � � 2 jj(E

11

;F

11

)jj. Since we

have

�

�

�

�

�

�

(

~

E

S

;

~

E

H

)

�

�

�

�

�

�

= jj(E

S

; E

H

)jj, condition (66) implies that

~

� � � � 2 jj(E

S

; E

H

)jj >

3

4

�;

and clearly,

4 jj(E

S

; E

H

)jj jj(S

12

;H

12

)jj < �

2

� 4� jj(E

S

; E

H

)jj :

Hence


�

~

�

2

�

jj(E

S

; E

H

)jj f

�

�

�

�

�

�

(

~

S

12

;

~

H

12

)

�

�

�

�

�

�

+ jj(E

S

; E

H

)jjg

(� � 2 jj(E

S

; E

H

)jj)

2

<

jj(E

S

; E

H

)jj

2

+ (�

2

� 4� jj(E

S

; E

H

)jj)=4

(� � 2 jj(E

S

; E

H

)jj)

2

=

1

4

:

Following the perturbation analysis for a formal product of matrices in [8], it can be shown

that there exists a unitary matrix

W =

"

(I +W

H

W )

�

1

2

�W

H

(I +WW

H

)

�

1

2

W (I +W

H

W )

�

1

2

(I +WW

H

)

�

1

2

#

with

jjW jj

2

< 2




~

�

<

8

3




�

<

1

3

(68)

such that

J (

~

QW)

H

J

T

(�

^

B

c

S

� �

^

B

c

H

)(

~

QW)

is another structured Schur form of the perturbed matrix pencil. Since there are neither

in�nite nor purely imaginary eigenvalues, (63) implies that

^

Q

H

~

QW is unitary block diagonal.

Without loss of generality we may take

^

Q =

~

QW. If X

c

as in (29) and X

c

~

Q =

h

Q

11

Q

21

Q

12

Q

22

i

,

then it follows from Theorem 12 that P

�

V

= rangeQ

11

. Clearly

^

P

�

V

= rangef(Q

11

+Q

12

W )(I+

W

H

W )

�

1

2

g. The upper bound (67) then can be derived from (68), by using the same argument

as in the proof of Theorem 4.4 in [5].

If S is given in factored form, then we obtain a similar result. In this case by using

Algorithm 1 we compute a unitary matrix

^

Q and a unitary symplectic matrix

^

U such that

^

U

H

^

B

c

Z

^

Q =

^

R

Z

=:

�

^

Z

11

^

Z

12

0

^

Z

22

�

;

J

^

Q

H

J

T

^

B

c

H

^

Q =

^

R

H

=:

�

^

H

11

^

H

12

0 �

^

H

H

11

�

; (69)
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where

^

B

c

Z

and

^

B

c

H

are de�ned in (58) and (59), and �(

^

Z

H

22

^

Z

11

;

^

H

11

) = �

�

(

^

B

c

S

;

^

B

c

H

), where

^

B

c

S

= J (

^

B

c

Z

)

H

J

T

^

B

c

Z

.

Analogous to Theorem 9, if �S � �H has no purely imaginary eigenvalues, then there

exist unitary matrices Q

1

, Q

2

and unitary symplectic matrices U

1

, U

2

such that

U

H

1

ZQ

1

=

�

Z

�

11

Z

�

12

0 Z

�

22

�

; JQ

H

1

J

T

HQ

1

=

�

H

�

11

H

�

12

0 �(H

�

11

)

H

�

;

with �((Z

�

22

)

H

Z

�

11

;H

�

11

) = �

�

(S;H), and

U

H

2

ZQ

2

=

�

Z

+

11

Z

+

12

0 Z

+

22

�

; JQ

H

2

J

T

HQ

2

=

�

H

+

11

H

+

12

0 �(H

+

11

)

H

�

;

with �((Z

+

22

)

H

Z

+

11

;H

+

11

) = �

+

(S;H), respectively. Set

Q = X

H

c

diag(Q

1

;

�

Q

2

)P; U = X

H

c

diag(U

1

;

�

U

2

)P;

where P and X

c

are as in (28) and (29). Then Q is unitary and U 2 US

4n

, and a simple

calculation yields

U

H

B

c

Z

Q =

2

6

6

6

4

Z

�

11

0 Z

�

12

0

0 Z

+

11

0 Z

+

12

0 0 Z

�

22

0

0 0 0 Z

+

22

3

7

7

7

5

=:

�

Z

11

Z

12

0 Z

22

�

=: R

Z

; (70)

JQ

H

J

T

B

c

H

Q =

2

6

6

6

4

H

�

11

0 H

�

12

0

0 �H

+

11

0 �H

+

12

0 0 �(H

�

11

)

H

0

0 0 0 (H

+

11

)

H

3

7

7

7

5

=:

�

H

11

H

12

0 �H

H

11

�

=: R

H

: (71)

This leads to the structured Schur form of the extended skew-Hamiltonian/Hamiltonian ma-

trix pencil �J (B

c

Z

)

H

J

T

B

c

Z

� �B

c

H

with �(Z

H

22

Z

11

;H

11

) = �

�

(B

c

S

;B

c

H

):

Theorem 16 Consider the regular skew-Hamiltonian/Hamiltonian matrix pencil �S � �H

with nonsingular, J -de�nite skew-Hamiltonian part S = JZ

H

J

T

Z. Suppose that �S � �H

has no eigenvalue with zero real part. Let the extended skew-Hamiltonian and Hamiltonian

matrix B

c

Z

and B

c

H

be as in (34) and (40), respectively with structured triangular form given

by (70) and (71). De�ne �

p

as

�

p

= min

(X;Y )2C

2n;2n

�C

2n;2n

nf(0;0)g

�

�

�

�

(H

H

11

Y + Y

H

H

11

;XZ

11

�Z

22

Y )

�

�

�

�

jj(X;Y )jj

2

:

De�ne errors E

Z

and E

H

by (58) and (59). Let P

�

V

, P

�

U

,

^

P

�

V

and

^

P

�

U

be the de
ating subspaces

computed by Algorithm 1 in exact and �nite precision arithmetic, respectively. Denote by

�

V

;�

U

2 C

n;n

the diagonal matrices of canonical angles between P

�

V

and

^

P

�

V

, P

�

U

and

^

P

�

U

,

respectively.

If

8 jj(E

Z

; E

H

)jj (�

p

+ jj(Z

12

;H

12

)jj) < �

2

p

;

then

jj�

V

jj

2

; jj�

U

jj

2

< c

b

jj(E

Z

; E

H

)jj

�

p

< c

b

"

jj(c

Z

Z; c

H

H)jj

�

p

;

with c

b

as in Theorem 15.
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Proof. The proof is analogous to the proof of Theorem 15.

It follows that all the described numerical algorithms are numerically backwards sta-

ble. The di�erent methods compute the eigenvalues and the de
ating subspaces Def

�

(S;H),

Def

+

(S;H) of a skew-Hamiltonian/Hamiltonian matrix pencil �S � �H. These algorithms

can also be used to compute de
ating subspaces which contain eigenvectors associated with

in�nite or purely imaginary eigenvalues. By Theorem 12 we get partial information also in

these cases, but we face the di�culty that the desired de
ating subspace may not be unique

or may not exist. (See the recent analysis for Hamiltonian matrices [36]).

7 Conclusion

We have presented numerical procedures for the computation of structured Schur forms,

eigenvalues, and de
ating subspaces of matrix pencils with matrices having a Hamiltonian

and/or skew-Hamiltonian structure. These methods generalize the recently developed meth-

ods for Hamiltonian matrices which use an extended, double dimension Hamiltonian matrix

that always has a Hamiltonian Schur form.

The algorithms circumvent problems with skew-Hamiltonian/Hamiltonian matrix pencils

that lack structured Schur form by embedding them in extended matrix pencils that always

admit a structured Schur form. For the extended matrix pencils, the algorithms use structure

preserving unitary matrix computations and are strongly backwards stable, i.e., they compute

the exact structured Schur form of a nearby matrix pencil with the same structure. Such

structured Schur forms can always be computed regardless of the regularity of the original

matrix pencil.

It is still somewhat unsatisfactory that the algorithms do not e�ciently exploit the micro

structures of the extended matrix pencils, as for example in the matrix B

c

N

in (30). How best

to use these micro structures is still an open question.

References

[1] G.S. Ammar, P. Benner, and V. Mehrmann. A multishift algorithm for the numerical

solution of algebraic Riccati equations. Electr. Trans. Num. Anal., 1:33{48, 1993.

[2] G.S. Ammar and V. Mehrmann. On Hamiltonian and symplectic Hessenberg forms.

Linear Algebra Appl., 149:55{72, 1991.

[3] D.J. Bender and A.J. Laub. The linear-quadratic optimal regulator for descriptor sys-

tems. IEEE Trans. Automat. Control, AC-32:672{688, 1987.

[4] P. Benner, R. Byers, and E. Barth. FORTRAN 77 subroutines for computing the eigen-

values of Hamiltonian matrices I: The square-reduced method. ACM Trans. Math. Soft.,

To appear.

[5] P. Benner, V. Mehrmann, and H. Xu. A new method for computing the stable invariant

subspace of a real Hamiltonian matrix. J. Comput. Appl. Math., 86:17{43, 1997.

[6] P. Benner, V. Mehrmann, and H. Xu. A numerically stable, structure preserving method

for computing the eigenvalues of real Hamiltonian or symplectic pencils. Numer. Math.,

78(3):329{358, 1998.

31



[7] P. Benner, V. Mehrmann, and H. Xu. A note on the numerical solution of complex

Hamiltonian and skew-Hamiltonian eigenvalue problems. Electr. Trans. Num. Anal.,

8:115{126, 1999.

[8] P. Benner, V. Mehrmann, and H. Xu. Perturbation analysis for the

eigenvalue problem of a formal product of matrices. Available from

http://www.math.uni-bremen.de/zetem/berichte.html, January 2000.

[9] S. Bittanti, A. Laub, and J. C. Willems, editors. The Riccati Equation. Springer-Verlag,

Berlin, 1991.

[10] A. Bojanczyk, G.H. Golub, and P. Van Dooren. The periodic Schur decomposition;

algorithms and applications. In Proc. SPIE Conference, vol. 1770, pages 31{42, 1992.

[11] A. Bunse-Gerstner. Matrix factorization for symplectic QR-like methods. Linear Algebra

Appl., 83:49{77, 1986.

[12] A. Bunse-Gerstner, R. Byers, and V. Mehrmann. Numerical methods for algebraic Riccati

equations. In S. Bittanti, editor, Proc. Workshop on the Riccati Equation in Control,

Systems, and Signals, pages 107{116, Como, Italy, 1989.

[13] R. Byers. Hamiltonian and Symplectic Algorithms for the Algebraic Riccati Equation.

PhD thesis, Cornell University, Dept. Comp. Sci., Ithaca, NY, 1983.

[14] R. Byers. A Hamiltonian QR-algorithm. SIAM J. Sci. Statist. Comput., 7:212{229, 1986.

[15] R. Byers, T. Geerts, and V. Mehrmann. Descriptor systems without controllability at

in�nity. SIAM J. Cont., 35(2):462{479, 1997.

[16] Ralph Byers, Peter Kunkel, and Volker Mehrmann. Regularization of linear descriptor

systems with variable coe�cients. SIAM J. Cont. Optim., 35:117{133, 1997.

[17] H. Fa�bender, D.S. Mackey, N. Mackey, and H. Xu. Hamiltonian square roots of skew{

Hamiltonian matrices. Linear Algebra Appl., 287:125{159, 1998.

[18] F.R. Gantmacher. Theory of Matrices, volume 1. Chelsea, New York, 1959.

[19] G.H. Golub and C.F. Van Loan. Matrix Computations. Johns Hopkins University Press,

Baltimore, third edition, 1996.

[20] M. Green and D.J.N Limebeer. Linear Robust Control. Prentice-Hall, Englewood Cli�s,

NJ, 1995.

[21] J.J. Hench and A.J. Laub. Numerical solution of the discrete-time periodic Riccati

equation. IEEE Trans. Automat. Control, 39:1197{1210, 1994.

[22] V. Ionescu, C. Oar�a, and M. Weiss. General matrix pencil techniques for the solution of

algebraic Riccati equations: A uni�ed approach. IEEE Trans. Automat. Control, 42(8),

1997.

[23] V. Ionescu, C. Oar�a, and M. Weiss. Generalized Riccati theory and robust control. A

Popov function approach. John Wiley & Sons, Chichester, 1999.

32



[24] V. Ionescu and M. Weiss. Continuous and discrete-time Riccati theory: a Popov-function

approach. Linear Algebra Appl., 193:173{209, 1993.

[25] H.W. Knobloch and H. Kwakernaak. Lineare Kontrolltheorie. Springer-Verlag, Berlin,

1985. In German.

[26] P. Kunkel and V. Mehrmann. Numerical solution of Riccati di�erential algebraic equa-

tions. Linear Algebra Appl., 137/138:39{66, 1990.

[27] P. Kunkel and V. Mehrmann. The linear quadratic control problem for linear descriptor

systems with variable coe�cients. Math. Control, Signals, Sys., 10:247{264, 1997.

[28] P. Lancaster. Strongly stable gyroscopic systems. Electr. J. Linear Algebra, 5:53{66,

1999.

[29] P. Lancaster and L. Rodman. The Algebraic Riccati Equation. Oxford University Press,

Oxford, 1995.

[30] A.J. Laub. Invariant subspace methods for the numerical solution of Riccati equations. In

S. Bittanti, A.J. Laub, and J.C. Willems, editors, The Riccati Equation, pages 163{196.

Springer-Verlag, Berlin, 1991.

[31] W.-W. Lin and T.-C. Ho. On Schur type decompositions for Hamiltonian and sym-

plectic pencils. Technical report, Institute of Applied Mathematics, National Tsing Hua

University, Taiwan, 1990.

[32] W.-W. Lin, V. Mehrmann, and H. Xu. Canonical forms for Hamiltonian and symplectic

matrices and pencils. Linear Algebra Appl., 301{303:469{533, 1999.

[33] C. Mehl. Compatible Lie and Jordan algebras and applications to structured matrices and

pencils. Dissertation, Fakult�at f�ur Mathematik, TU Chemnitz, 09107 Chemnitz (FRG),

1998.

[34] C. Mehl. Condensed forms for skew-Hamiltonian/Hamiltonian pencils. SIAM J. Matrix

Anal. Appl., 21:454{476, 1999.

[35] V. Mehrmann. The Autonomous Linear Quadratic Control Problem, Theory and Nu-

merical Solution. Number 163 in Lecture Notes in Control and Information Sciences.

Springer-Verlag, Heidelberg, July 1991.

[36] V. Mehrmann and H. Xu. Lagrangian invariant subspaces of Hamiltonian matrices.

Technical Report SFB393/98-25, Fakult�at f�ur Mathematik, TU Chemnitz, 09107 Chem-

nitz, FRG, 1998. Available from http://www.tu-chemnitz.de/sfb393/sfb98pr.html.

[37] J. Olson, H.J.A. Jensen, and P. J�rgensen. Solution of large matrix equations which

occur in response theory. J. Comput. Phys., 74:265{282, 1988.

[38] C.C. Paige and C.F. Van Loan. A Schur decomposition for Hamiltonian matrices. Linear

Algebra Appl., 14:11{32, 1981.

[39] R.V. Patel. On computing the eigenvalues of a symplectic pencil. Linear Algebra Appl.,

188/189:591{611, 1993.

33



[40] P.H. Petkov, N.D. Christov, and M.M. Konstantinov. Computational Methods for Linear

Control Systems. Prentice-Hall, Hertfordshire, UK, 1991.

[41] L.S. Pontryagin, V. Boltyanskii, R. Gamkrelidze, and E. Mishenko. The Mathematical

Theory of Optimal Processes. Interscience, New York, 1962.

[42] A.-M. S�andig and W.L. Wendland. Asymptotic expansions of elastic �elds in domains

with boundary and structural singularities. In Boundary element topics (Stuttgart, 1995),

pages 419{444. Springer, Berlin, 1997.

[43] V. Sima. Algorithms for Linear-Quadratic Optimization, volume 200 of Pure and Applied

Mathematics. Marcel Dekker, Inc., New York, NY, 1996.

[44] G.W. Stewart and J.-G. Sun. Matrix Perturbation Theory. Academic Press, New York,

1990.

[45] P. Van Dooren. A generalized eigenvalue approach for solving Riccati equations. SIAM

J. Sci. Statist. Comput., 2:121{135, 1981.

[46] C.F. Van Loan. A symplectic method for approximating all the eigenvalues of a Hamil-

tonian matrix. Linear Algebra Appl., 61:233{251, 1984.

[47] J.C. Willems. Paradigms and puzzles in the theory of dynamical systems. IEEE Trans.

Automat. Control, 36:259{294, 1991.

[48] K. Zhou, J.C. Doyle, and K. Glover. Robust and Optimal Control. Prentice-Hall, Upper

Saddle River, NJ, 1995.

A Algorithmic Details

In the following we describe the details of the factorization algorithms. We employ elementary

orthogonal and orthogonal symplectic transformation matrices.

We denote an m�m Givens rotation matrix by

G(i; j; �; �) =

2

6

6

6

6

4

I

i�1

cos(�) sin(�)e

�i�

I

j�i�1

� sin(�)e

i�

cos(�)

I

m�j

3

7

7

7

7

5

;

where 1 � i < j � m, � 2 [0; 2�) and � 2 [��=2; �=2). If � = 0, then the rotation matrix

is a real orthogonal matrix. In this case we drop the fourth argument �, and use the three

argument notation G(i; j; �) := G(i; j; �; 0). If m = 2n, j = n + i and � = 0, then the

rotation matrix is a real orthogonal and symplectic. In this case we also drop the second

argument j, and use the two argument notation G

s

(i; �) := G(i; n+ i; �) = G(i; n+ i; �; 0). If

z 2 C

n

, then the j-th component of the product G(i; j; arctan(jx

j

=x

i

j); (x

j

jx

i

j)=(jx

j

jx

i

))x is

zero. (Here we use the convention that 0=0 = 0.) If x 2 R

n

, then the j-th component of the

product G(i; j; arctan(x

j

=x

i

))x is zero. For brevity, we will use the arctangent formula when

describing algorithms. In practice, no transcendental functions are needed. For e�ciency and

numerical stability, rotations should be constructed as described, for example, in [19].
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Another elementary orthogonal symplectic matrix that we will use is

G

d

(i; j; �; �) =

�

G(i; j; �; �) 0

0 G(i; j; �; �)

�

;

where G(i; j; �; �) is n� n.

For 0 6= w 2 C

k

, we denote an n� n Householder matrix (n � k) by

H(k;w) = I

n

� 2

~w ~w

H

~w

H

~w

~w = [0; w

T

]

T

;

where ~w is obtained from w by prepending n� k zeros. If w = 0, then we take H(k; 0) = I

n

.

For ease of explication, the algorithms below explicitly assemble and multiply rotations

and re
ections as full size matrices. In actual implementation, one would store and use these

elementary unitary matrices in the e�cient way described, for example, in [19].

A.1 Schur Forms for Skew-Hamiltonian/Hamiltonian Matrix Pencils and

Skew-Hamiltonian/skew-Hamiltonian Matrix Pencils

In this subsection we describe the computation of the structured Schur forms for complex

skew-Hamiltonian/Hamiltonian and real skew-Hamiltonian/skew-Hamiltonian matrix pencils.

We �rst give the method for computing the structured factorization of a real skew-Hamilto-

nian/skew-Hamiltonian matrix pencil as in (25){(27).

Algorithm 3 Given a real skew-Hamiltonian/skew-Hamiltonian matrix pencil �S��N with

S = JZ

T

J

T

Z. The algorithm computes an orthogonal matrix Q and an orthogonal sym-

plectic matrix U such that U

T

ZQ and JQ

T

J

T

NQ are in the block triangular forms as in

(26).

Input: A real matrix N 2 SH

2n

and a real matrix Z 2 R

2n;2n

.

Output: A real orthogonal matrix Q, a real orthogonal symplectic matrix U and the struc-

tured factorization (26).

Step 0 Set U = Q = I

2n

.

Step 1 By changing the elimination order in the classical RQ decomposition, determine an

orthogonal matrix Q

1

such that

Z := ZQ

1

=:

�

Z

11

Z

12

0 Z

22

�

;

where Z

11

; Z

T

22

are upper triangular. Update Q := QQ

1

and N := JQ

T

1

J

T

NQ

1

.

Step 2 FOR k = 1; : : : ; n� 1

% I. Annihilate N (n+ k; k + 1 : n� 1) as well as N (n+ k + 1 : 2n� 1; k).

FOR j = k + 1; : : : ; n� 1

a) Use G(j; j + 1; �

1

) to eliminate N

n+k;j

from the right. Set

N := JG(j; j + 1; �

1

)

T

J

T

NG(j; j + 1; �

1

),
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Z := ZG(j; j + 1; �

1

),

Q := QG(j; j + 1; �

1

).

b) Use G

d

(j; j + 1; �

2

) to eliminate Z

j+1;j

from the left. Set

Z := G

d

(j; j + 1; �

2

)

T

Z,

U := UG

d

(j; j + 1; �

2

).

c) Use G(n+ j; n+ j +1; �

3

) to eliminate Z

n+j;n+j+1

from the right.

Set

Z := ZG(n+ j; n+ j + 1; �

3

),

N := JG(n+ j; n+ j + 1; �

3

)

T

J

T

NG(n+ j; n+ j + 1; �

3

),

Q := QG(n+ j; n+ j + 1; �

3

).

END FOR j

% II. Annihilate N

n+k;n

(and, due to the skew-Hamiltonian

% structure, simultaneously annihilate N

2n;k

).

a) Use G

s

(n; �

1

) to eliminate N

n+k;n

from the right. Set

N := JG

s

(n; �

1

)

T

J

T

NG

s

(n; �

1

),

Z := ZG

s

(n; �

1

),

Q := QG

s

(n; �

1

).

b) Use G

s

(n; �

2

) to eliminate Z

2n;n

from the left. Set

Z := G

s

(n; �

2

)

T

Z,

U := UG

s

(n; �

2

).

% III. Annihilate N (n + k; n + k + 2 : 2n) (and, due to the skew-

% Hamiltonian structure, simultaneously annihilate N (k + 2 : n; k)).

FOR j = n; n� 1; : : : ; k + 2

a) Use G(n+ j � 1; n+ j;  

1

) to eliminate N

n+k;n+j

from the right.

Set

N := JG(n+ j � 1; n+ j;  

1

)

T

J

T

NG(n+ j � 1; n+ j;  

1

),

Z := ZG(n+ j � 1; n+ j;  

1

),

Q := QG(n+ j � 1; n+ j;  

1

).

b) Use G

d

(j � 1; j;  

2

), to eliminate Z

n+j�1;n+j

from the left. Set

Z := G

d

(j � 1; j;  

2

)

T

Z,

U := UG

d

(j � 1; j;  

2

):

c) Use G(j � 1; j;  

3

) to eliminate Z

j;j�1

from the right. Set

Z := ZG(j � 1; j;  

3

),

N := JG(j � 1; j;  

3

)

T

J

T

NG(j � 1; j;  

3

),

Q := QG(j � 1; j;  

3

):

END FOR j

END FOR k
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% Now Z =

�

Z

11

Z

12

0 Z

22

�

, N =

�

N

11

N

12

0 N

T

11

�

:

Step 3 Apply the periodic QZ algorithm [10, 21] to the matrix pencil �Z

T

22

Z

11

� �N

11

to

determine orthogonal matrices Q

1

, Q

2

, U such that U

T

Z

11

Q

1

, Q

T

2

Z

T

22

U are both upper

triangular and Q

T

2

N

11

Q

1

is quasi upper triangular.

Set U

1

= diag(U;U), Q

2

= diag(Q

1

; Q

2

).

Update Z := U

T

1

ZQ

2

, N := JQ

T

2

J

T

NQ

2

, Q := QQ

2

, U := UU

1

.

END

The next subroutine is the eigenvalue reordering method for a complex skew-Hamiltoni-

an/Hamiltonian matrix pencil �S��H, with S = JZ

H

J

T

Z, which is in structured triangular

form. We �rst introduce some subroutines to deal with 2� 2 problems.

Subroutine 1 Given a regular 2�2 matrix pencil �TZ��H with T;Z;H upper triangular.

This subroutine determines unitary matrices Q

1

, Q

2

, Q

3

such that Q

H

3

TQ

2

, Q

H

2

ZQ

1

, Q

H

3

HQ

1

are still upper triangular, but the eigenvalues are in the reversed order.

Input: 2� 2 upper triangular matrices T , Z, H.

Output: The 2� 2 unitary matrices Q

1

, Q

2

, Q

3

described above.

Set 
 = t

11

z

11

h

22

� t

22

z

22

h

11

IF 
 = 0

% �TZ � �H has a double eigenvalue

Set Q

1

= Q

2

= Q

3

= I

2

.

ELSE

Compute Q

1

= G(1; 2; arctan(�=
); arg(
)� arg(�))

with � = t

11

z

12

h

22

+ t

12

z

22

h

22

� t

22

z

22

h

12

.

Compute Q

2

= G(1; 2; arctan(�=
); arg(
)� arg(�))

with � = t

12

z

11

h

22

� t

22

z

11

h

12

+ t

22

z

12

h

11

.

Compute Q

3

= G(1; 2; arctan(�=
); arg(
)� arg(�))

with � = �t

11

z

11

h

12

+ t

11

z

12

h

11

+ t

12

z

22

h

11

.

END IF

END

The second subroutine deals with 2� 2 triangular skew-Hamiltonian/Hamiltonian matrix

pencils.

Subroutine 2 Given a regular 2 � 2 complex skew-Hamiltonian/Hamiltonian matrix pencil

�S � �H with S = JZ

H

J

T

Z, where Z =

�

z

11

z

12

0 z

22

�

, H =

�

h

11

h

12

0 �

�

h

11

�

. The subrou-

tine determines a unitary matrix Q and a unitary symplectic matrix U such that U

H

ZQ,

(JQJ

T

)

H

HQ are both upper triangular but the eigenvalues of (JQJ

T

)

H

(�S ��H)Q are in

reversed order.
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Input: 2� 2 upper triangular matrices Z, H with H 2 H

2

.

Output: The 2 � 2 unitary matrix Q and a 2 � 2 real orthogonal symplectic matrix U

described above.

Set 
 = 2Re (h

11

�z

11

z

22

).

IF 
 = 0

% �S � �H has a double purely imaginary eigenvalue

Set Q = U = I

2

.

ELSE

Compute U = G(1; 2; arctan(�=
)) with � = jz

11

j

2

h

12

� 2Re (h

12

�z

11

z

22

).

Set

�

~z

11

~z

12

~z

21

~z

22

�

= U

H

Z.

Compute Q = G(1; 2; arctan(~z

22

=~z

11

); arg(~z

11

)� arg(~z

22

)).

END IF

END

Now we are ready to formulate the algorithm.

Algorithm 4 Given a regular 2n�2n complex skew-Hamiltonian/Hamiltonian matrix pencil

�S � �H with J -semide�nite skew Hamiltonian part S = JZ

H

J

T

Z,

Z =

�

Z W

0 T

�

; H =

�

H D

0 �H

H

�

; (72)

and Z, T

H

and H upper triangular. This algorithm determines a unitary matrix Q and a

unitary symplectic matrix U such that U

H

ZQ and JQ

H

J

T

HQ still have the same triangular

form as Z and H, respectively, but the eigenvalues in �

�

(S;H) are reordered so that they

occur in the leading principal subpencil of JQ

H

J

T

(�S � �H)Q.

Input: A Matrix Z and a Hamiltonian matrix H in triangular form (72).

Output: A unitary matrix Q and a unitary symplectic matrix U . The matrices S and

H are overwritten by U

H

ZQ and JQ

H

J

T

HQ, respectively. that the eigenvalues of

JQ

H

J

T

(�S � �H)Q are in the desired order.

Step 0 Set Q = U = I

2n

.

Step 1 % Reorder the eigenvalues in the subpencil �T

H

Z � �H.

Set m

�

= 0, m

+

= n+ 1.

% I. Reorder the eigenvalues with negative real parts to the top.

Set k = 1.

WHILE k � n DO

IF

�

t

kk

z

kk

) 6= 0 and Re (h

kk

=(

�

t

kk

z

kk

)) < 0

FOR j = k � 1; : : : ;m

�

+ 1
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a) Apply Subroutine 1 to the matrix pencil

�

�

�

t

jj

�

t

j+1;j

0

�

t

j+1;j+1

� �

z

jj

z

j;j+1

0 z

j+1;j+1

�

� �

�

h

jj

h

j;j+1

0 h

j+1;j+1

�

to determine unitary matrices Q

1

; Q

2

; Q

3

.

b) Set

~

Q = diag(I

j�1

; Q

1

; I

n�j�1

; I

j�1

; Q

3

; I

n�j�1

),

~

U = diag(I

j�1

; Q

2

; I

n�j�1

; I

j�1

; Q

2

; I

n�j�1

).

c) Update Z :=

~

U

H

Z

~

Q, H := J

~

Q

H

J

T

H

~

Q, U := U

~

U ,

Q := Q

~

Q.

END FOR j

m

�

:= m

�

+ 1

END IF

k := k + 1

END WHILE

% II. Reorder the eigenvalues with positive real parts to the bottom.

Set k = n.

WHILE k � m

�

+ 1 DO

IF

�

t

kk

z

kk

) 6= 0 and Re (h

kk

=(

�

t

kk

z

kk

)) > 0

FOR j = k; : : : ;m

+

� 1

a) Apply Subroutine 1 to the matrix pencil

�

�

�

t

jj

�

t

j+1;j

0

�

t

j+1;j+1

� �

z

jj

z

j;j+1

0 z

j+1;j+1

�

� �

�

h

jj

h

j;j+1

0 h

j+1;j+1

�

to determine unitary matrices Q

1

; Q

2

; Q

3

.

b) Set

~

Q = diag(I

j�1

; Q

1

; I

n�j�1

; I

j�1

; Q

3

; I

n�j�1

),

~

U = diag(I

j�1

; Q

2

; I

n�j�1

; I

j�1

; Q

2

; I

n�j�1

).

c) Update Z :=

~

U

H

Z

~

Q, H := J

~

Q

H

J

T

H

~

Q, U := U

~

U ,

Q := Q

~

Q.

END FOR j

m

+

:= m

+

� 1

END IF

k := k � 1

END WHILE

% The remaining n �m

+

+ 1 eigenvalues with negative real part are now

in the bottom right subpencil of �S � �H.

Step 2 % Reorder the remaining n�m

+

+ 1 eigenvalues

FOR k = n; : : : ;m

+

% I. Exchange the eigenvalues between two diagonal blocks
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a) Apply Subroutine 2 to the 2� 2 matrix pencil

�

�

�

t

nn

� �w

nn

0 �z

nn

� �

z

nn

w

nn

0 t

nn

�

� �

�

h

nn

d

nn

0 �

�

h

nn

�

to determine a unitary matrix Q =

�

c �s

�s �c

�

and a unitary sym-

plectic matrix U =

�

u

1

u

2

�u

2

u

1

�

.

b) Let Q

1

= diag(1; : : : ; 1; c); Q

2

= diag(0; : : : ; 0; s);

U

1

= diag(1; : : : ; 1; u

1

); U

2

= diag(0; : : : ; 0; u

2

).

Set

~

Q =

�

Q

1

�

Q

2

�Q

2

�

Q

1

�

,

~

U =

�

U

1

U

2

�U

2

U

1

�

:

c) Update Z :=

~

U

H

Z

~

Q, H := J

~

Q

H

J

T

H

~

Q, U := U

~

Q, Q := Q

~

Q.

% II. Move the eigenvalue in the n-th diagonal position to the (m

�

+ 1)

position

m

�

:= m

�

+ 1

FOR j = n� 1; : : : ;m

�

a) Apply Subroutine 1 to the matrix pencil

�

�

�

t

jj

�

t

j+1;j

0

�

t

j+1;j+1

� �

z

jj

z

j;j+1

0 z

j+1;j+1

�

� �

�

h

jj

h

j;j+1

0 h

j+1;j+1

�

to determine unitary matrices Q

1

; Q

2

; Q

3

.

b) Set

~

Q = diag(I

j�1

; Q

1

; I

n�j�1

; I

j�1

; Q

3

; I

n�j�1

),

~

U = diag(I

j�1

; Q

2

; I

n�j�1

; I

j�1

; Q

2

; I

n�j�1

).

c) Update Z :=

~

U

H

Z

~

Q, H := J

~

Q

H

J

T

H

~

Q, U := U

~

U , Q := Q

~

Q.

END FOR j

END FOR k

END

A.2 Subroutines Required by Algorithm 2

In this appendix we present the subroutines used in Algorithm 2. First we recall the following

algorithm from [39].

Algorithm 5 Given a real skew-Hamiltonian/skew-Hamiltonian matrix pencil �S � �N .

This algorithm computes an orthogonal matrix Q such that JQ

T

J

T

SQ and JQ

T

J

T

NQ

are in skew-Hamiltonian triangular form.

Input: Real matrices S;N 2 SH

2n

.

Output: A real orthogonal matrixQ which reduces S and N to skew-Hamiltonian triangular

form. S and N are overwritten by JQ

T

J

T

SQ and JQ

T

J

T

NQ, respectively.

Step 0 Set Q = I

2n

.
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Step 1 % Reduce S to skew-Hamiltonian triangular form

FOR k = 1; : : : ; n� 1

a) Determine a Householder matrix H(n�k; x) to eliminate S(n+k; k+2 :

n) (as well as S(n+ k + 2 : 2n; k)) from the right. Set

~

Q = diag(H(n�k; x); I

n

), S := J

~

Q

T

J

T

S

~

Q, N := J

~

Q

T

J

T

N

~

Q, Q := Q

~

Q.

b) Determine G

s

(k+1; �) to eliminate S

n+k;k+1

(as well as S

n+k+1;k

) from

the right. Set

S := G

s

(k + 1; �)

T

SG

s

(k + 1; �),

N := G

s

(k + 1; �)

T

NG

s

(k + 1; �),

Q := QG

s

(k + 1; �).

c) Determine H(n� k+ 1; y) to eliminate S(n+ k; n+ k+ 1 : 2n) (as well

as S(k + 1 : n; k)) from the right.

Set

~

Q = diag(I

n

;H(n� k + 1; y)).

Update S := J

~

Q

T

J

T

S

~

Q, N := J

~

Q

T

J

T

N

~

Q, Q := Q

~

Q.

END FOR k

Step 2 % Reduce N to skew-Hamiltonian triangular form

FOR k = 1; : : : ; n� 1

% I. Annihilate N (n+ k; k + 1 : n� 1) as well as N (n+ k + 1 : 2n� 1; k).

FOR j = k + 1; : : : ; n� 1

a) Use G(j; j + 1; �

1

) to eliminate N

n+k;j

from the right. Set

N := JG(j; j + 1; �

1

)

T

J

T

NG(j; j + 1; �

1

),

S := JG(j; j + 1; �

1

)

T

J

T

SG(j; j + 1; �

1

),

Q := QG(j; j + 1; �

1

).

b) Use G(n+ j; n+ j +1; �

2

) to eliminate S

n+j;n+j+1

from the right.

Set

N := JG(n+ j; n+ j + 1; �

2

)

T

J

T

NG(n+ j; n+ j + 1; �

2

),

S := JG(n+ j; n+ j + 1; �

2

)

T

J

T

SG(n+ j; n+ j + 1; �

2

),

Q := QG(n+ j; n+ j + 1; �

2

).

END FOR j

% II. Annihilate N

n+k;n

(and simultaneously N

2n;k

).

Use G

s

(n; �

1

) to eliminate N

n+k;n

from the right. Set

N := G

s

(n; �

1

)

T

NG

s

(n; �

1

),

S := G

s

(n; �

1

)

T

SG

s

(n; �

1

),

Q := QG

s

(n; �

1

).

% III. Annihilate N (n+ k; n+ k + 2 : 2n) as well as N (k + 2 : n; k).

FOR j = n; n� 1; : : : ; k + 2
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a) Use G(n+ j � 1; n+ j;  

1

) to eliminate N

n+k;n+j

from the right.

Set

N := JG(n+ j � 1; n+ j;  

1

)

T

J

T

NG(n+ j � 1; n+ j;  

1

),

S := JG(n+ j � 1; n+ j;  

1

)

T

J

T

SG(n+ j � 1; n+ j;  

1

),

Q := QG(n+ j � 1; n+ j;  

1

).

b) Use G

d

(j � 1; j;  

2

) to eliminate S

j;j�1

from the right. Set

N := JG(j � 1; j;  

2

)

T

J

T

NG(j � 1; j;  

2

),

S := JG(j � 1; j;  

2

)

T

J

T

SG(j � 1; j;  

2

),

Q := QG(j � 1; j;  

2

).

END FOR j

END FOR k

% Now we have S =

�

S

11

S

12

0 S

T

11

�

, N =

�

N

11

N

12

0 N

T

11

�

.

Step 3 Apply the QZ algorithm [19] to the matrix pencil �S

11

� �N

11

to determine orthog-

onal matrices Q

1

, Q

2

such that Q

T

2

S

11

Q

1

is upper triangular and Q

T

2

N

11

Q

1

is quasi

upper triangular.

Set

~

Q = diag(Q

1

; Q

2

).

Update S := J

~

Q

T

J

T

S

~

Q, N := J

~

Q

T

J

T

N

~

Q, Q := Q

~

Q.

END

We also need an eigenvalue reordering method for Algorithm 2. We �rst introduce some

subroutines.

Subroutine 3 Given a regular 2 � 2 matrix pencil �S � �H with S;H upper triangular.

This subroutine determines unitary matrices Q

1

, Q

2

, such that Q

H

2

(�S � �H)Q

1

is still

upper triangular, but the eigenvalues are in reversed order.

Input: 2� 2 upper triangular matrices S, H.

Output: The 2� 2 unitary matrices Q

1

and Q

2

described above.

Set 
 = s

11

h

22

� s

22

h

11

.

IF 
 = 0

% �S � �H has a double eigenvalue

Set Q

1

= Q

2

= I

2

.

ELSE

Compute Q

1

= G(1; 2; arctan(�=
); arg(
)� arg(�)) where � = s

12

h

22

� s

22

h

12

.

Compute Q

2

= G(1; 2; arctan(�=
); arg(
)�arg(�)) where � = �s

11

h

12

+s

12

h

11

.

END IF

END
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Subroutine 4 Given a regular 2 � 2 complex skew-Hamiltonian/Hamiltonian matrix pencil

�S � �H with S =

�

s

11

s

12

0 �s

11

�

, H =

�

h

11

h

12

0 �

�

h

11

�

. This subroutine determines a unitary

matrix Q such that JQ

H

J

T

(�S��H)Q is upper triangular but the eigenvalues are in reversed

order.

Input: 2� 2 upper triangular matrices S 2 SH

2

, H 2 H

2

.

Output: The 2� 2 unitary matrix Q described above.

Set 
 = 2Re (h

11

�s

11

).

IF 
 = 0

% �S � �H has a double purely imaginary eigenvalue

set Q = I

2

.

ELSE

Compute Q = G(1; 2; arctan(arctan(�=
); arg(
)� arg(�)) with


 = ~z

11

and � = �s

11

h

12

+ s

12

�

h

11

.

END IF

END

Using these subroutines, we now present the eigenvalue reordering algorithm for a complex

skew-Hamiltonian/Hamiltonian matrix pencil.

Algorithm 6 Given a regular 2n�2n complex skew-Hamiltonian/Hamiltonian matrix pencil

�S � �H of the form

S =

�

S W

0 S

H

�

; H =

�

H D

0 �H

H

�

; (73)

with S and H upper triangular. This algorithm determines a unitary matrix Q such that

the matrix pencil JQ

H

J

T

(�S � �H)Q remains in triangular form but the eigenvalues in

�

�

(S;H) are reordered in the leading principal subpencil.

Input: Matrices S 2 SH

2n

and H 2 H

2n

in triangular form (73).

Output: Unitary matrix Q such that the eigenvalues of JQ

H

J

T

(�S � �H)Q are in the

desired order. S and H are overwritten by JQ

H

J

T

SQ and JQ

H

J

T

HQ, respectively.

Step 0 Set Q = I

2n

.

Step 1 % Reorder the eigenvalues in the subpencil �S � �H

Set m

�

= 0, m

+

= n+ 1.

% I. Reorder the eigenvalues with negative real parts to the top

Set k = 1.

WHILE k � n DO

IF s

kk

6= 0 and Re (h

kk

=s

kk

)) < 0

FOR j = k � 1; : : : ;m

�

+ 1
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a) Apply Subroutine 3 to the matrix pencil

�

�

s

jj

s

j;j+1

0 s

j+1;j+1

�

� �

�

h

jj

h

j;j+1

0 h

j+1;j+1

�

to determine unitary matrices Q

1

; Q

2

.

b) Set

~

Q = diag(I

j�1

; Q

1

; I

n�j�1

; I

j�1

; Q

2

; I

n�j�1

).

c) Update S := J

~

Q

H

J

T

S

~

Q, H := J

~

Q

H

J

T

H

~

Q, Q := Q

~

Q.

END FOR j

m

�

:= m

�

+ 1

END IF

k := k + 1

END WHILE

% II. Reorder the eigenvalues with positive real parts to the bottom

Set k = n.

WHILE k � m

�

+ 1 DO

IF s

kk

6= 0 and Re (h

kk

=s

kk

) > 0

FOR j = k; : : : ;m

+

� 1

a) Apply Subroutine 3 to the matrix pencil

�

�

s

jj

s

j;j+1

0 s

j+1;j+1

�

� �

�

h

jj

h

j;j+1

0 h

j+1;j+1

�

to determine unitary matrices Q

1

; Q

2

.

b) Set

~

Q = diag(I

j�1

; Q

1

; I

n�j�1

; I

j�1

; Q

2

; I

n�j�1

).

c) Update S := J

~

Q

H

J

T

S

~

Q, H := J

~

Q

H

J

T

H

~

Q, Q := Q

~

Q.

END FOR j

m

+

:= m

+

� 1

END IF

k := k � 1

END WHILE

% The remaining n�m

+

+ 1 eigenvalues with negative real part are

now in the bottom right subpencil of �S � �H.

Step 2 % Reorder the remaining n�m

+

+ 1 eigenvalues

FOR k = n; : : : ;m

+

% I. Exchange the eigenvalues between two diagonal blocks
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a) Apply Subroutine 4 to the 2� 2 matrix pencil

�

�

s

nn

w

nn

0 �s

nn

�

� �

�

h

nn

d

nn

0 �

�

h

nn

�

to determine a unitary matrix Q =

�

c �s

�s �c

�

.

b) Let Q

1

= diag(1; : : : ; 1; c); Q

2

= diag(0; : : : ; 0; s) and

set

~

Q =

�

Q

1

�

Q

2

�Q

2

�

Q

1

�

.

c) Update S := J

~

Q

H

J

T

S

~

Q, H := J

~

Q

H

J

T

H

~

Q, Q := Q

~

Q.

% II. Move the eigenvalue in n-th diagonal position to the (m

�

+ 1)

position

m

�

:= m

�

+ 1

FOR j = n� 1; : : : ;m

�

a) Apply Subroutine 3 to the matrix pencil

�

�

s

jj

s

j;j+1

0 s

j+1;j+1

�

� �

�

h

jj

h

j;j+1

0 h

j+1;j+1

�

to determine unitary matrices Q

1

; Q

2

.

b) Set

~

Q = diag(I

j�1

; Q

1

; I

n�j�1

; I

j�1

; Q

2

; I

n�j�1

).

c) Update S := J

~

Q

H

J

T

S

~

Q, H := J

~

Q

H

J

T

H

~

Q, Q := Q

~

Q.

END FOR j

END FOR k

END
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