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Abstract

For inner products defined by a symmetric indefinite matrix ¥, ,, we study canonical
forms for real or complex ¥, ,-Hermitian matrices, X, ;-skew Hermitian matrices and
3, g-unitary matrices under equivalence transformations which keep the class invariant.
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AMS subject classification. 15A21, 65F15,

1 Introduction

In several recent papers [1, 14, 15, 6] the topic of canonical forms for structured matrices and
pencils associated with classical Lie groups, Lie algebras and Jordan algebras has been stud-
ied. Although the invariants under equivalence transformations have been classified already
for quite a while [5, 17], the recent interest comes from the fact that structure preserving
transformations can be used very effectively in numerical computations. They allow a reduc-
tion in complexity and at the same time often give a better perturbation and error analysis,
see for example [2, 3, 4]. The main goal today is to use equivalence transformations that
preserve the algebraic structure, but that can also be implemented in a numerically stable
way, which usually means that they are unitary transformations. A second goal is to ob-
tain canonical forms that are essentially triangular (within the given structure), and where
the nonunitary structured canonical form is just a more condensed version of an analogous
unitary structured canonical form.

A complete analysis for the case of Hamiltonian, skew Hamiltonian and symplectic matrices,
i.e., matrices that are Hermitian, skew Hermitian and unitary with respect to an indefinite
scalar product given by a skew symmetric matrix, has recently been given in [14]. In this
paper we now derive analogous results for the matrices that are Hermitian, skew Hermitian
and unitary with respect to an inner product defined via the indefinite symmetric matrix
dipg i= [ 167 —OIq ] , where [, is the p X p identity matrix. We consider the following classes

of matrices.

*Fakultat fiir Mathematik, TU Chemnitz, D-09107 Chemnitz, FR Germany. This work has been supported
by Deutsche Forschungsgemeinschaft, Research Grant Me 790/7-2.



Definition 1 Let R and C denote the real and complex field, respectively.

o A matriz C € CPtdx(+9) s called %, ,-Hermitian if CS,, = (CX, ). C is called
Yp.q-symmetric if it is 3, ,-Hermitian and real.

o A matriz C € CPtIx(+9) s called ¥, ,-skew Hermitian if CX,, = —(CX, ). C is
called 33, ,-skew symmetric if it is X, ,-skew Hermitian and real.

o A mairiz G € Cle+a)x(p+a) s called Yy q-unitary if QHEW]Q =Yy, q. It is called 3, ,-
orthogonal if it is X, ,-unitary and real.

Note that the X, ,-Hermitian matrices form a Lie algebra, while the X, ,-skew Hermitian
matrices from a Jordan algebra. Both algebras are invariant under similarity transformations
with ¥, ;-unitary matrices.

Proposition 1

1. If C is 3, g-Hermitian and G is 3, ,-unitary then G~1CG is Yy q-Hermitian.
2. If C is X, 4-skew Hermitian and G is 3, ,-unitary then G~1CG is Ypq-skew Hermitian.

3. If G1 and Gy are ¥, ,-unitary then G1Gy is also X, ,-unitary.

Similar to the approach for Hamiltonian and symplectic matrices in [14] we derive struc-
tured Jordan canonical forms for these classes of matrices. But different from the case of
Hamiltonian and symplectic matrices and pencils, for matrices that are X, ,-Hermitian, skew
Hermitian or unitary, it is difficult to derive structured triangular Schur like forms with simi-
larity transformations that are both unitary and 3, ,-unitary, since this class has only a very
small dimension. Currently the best that one can do in this respect are the fishbone like
forms of [1]. The approach that we present here is different. To describe the general idea let
us consider the case of 3, ,-Hermitian matrices. The discussion for the other cases is similar.
There are many different approaches that one can take to derive canonical and condensed
forms for such matrices. A very simple approach to obtain a canonical form is the idea to
express the 3, ,-Hermitian matrix C as an Hermitian pencil AX, , — 3, ,C. Using congruence
transformations UH(/\EZW -3, ,C)U, we obtain a canonical form via classical results, see e.g.,
[8, 18, 19]. In view of our goals, however, this is not quite what we want, since in general these
forms do not give that UHEW]U = Y, 4, hence they do not lead directly to the structured
form that we want. Clearly, however, the characteristic quantities that we obtain from this
canonical form will have to appear in our canonical from, too.

The outline of the paper is as follows:

We will present some basic preliminary results in Section 2 and then present structured
canonical forms for X, -Hermitian matrices and X, ;-skew Hermitian matrices under 3, ,
unitary similarity transformations in Section 3 and Section 4, respectively. By combining the
Cayley transformation and the structured canonical forms for ¥, ;-skew Hermitian matrices
we will then derive the structured canonical forms for 3, ;-unitary matrices in Section 5. All
canonical forms are represented both for real and complex matrices.



2 Preliminaries

In this section we introduce some further notation, derive some preliminary results and state

some basic facts that are needed in the following analysis.

Let A(A) denote the spectrum of a matrix A. We begin with a well-known fact on the

relationship between left and right invariant subspaces, see e.g., [7].

Proposition 2 Let the columns of U span the left invariant subspace of a square matriz
A corresponding to Ay € A(A) and let the columns of V' span the right invariant subspace
corresponding to Ay € A(A). If \y # Ay then UV =0 and if \y = Ay then det(UHV) #£ 0.

Our construction of structured Jordan froms will be based on the combination of different
blocks of the classical, unstructured Jordan form. To do this we need to study in particular

canonical forms under congruence for matrices K that satisfy
KM=+MPK, K=K" detK#0.

Let us recall some facts from the classical theory. Let

be an r x r nilpotent Jordan block and let

N(r,m) := diag(N,, ..., N,),

m

then the general structure of the Jordan canonical form of a nilpotent matrix is
M = diag(N(ri,m1),..., N(rs,ms)).

Consider, analogously

-1 1
—1)? .
P = ( 1) N SIS
(=1 ! rxr
and
P(r,m) :=diag(P.,..., P.), P(r,m):=diag(F,,..., P).
S— S—

Then the following relations can be easily verified.
Proposition 3
i) P =Pt = (-1)""'P,;

ii) PT'NHP, = —N,;

(1)



iii) P, = PH = p-1;

r

w) PTINHP, = N,.

For any given nilpotent matrix N = diag(N,,, ..., N,,) we set

Py :=diag(P,,,..., P,.), Py:=diag(P,,...,P.) (6)

and we denote by G(N) the set of all matrices that commute with N. To characterize the
matrices in G(N), we need upper triangular Toeplitz matrices of the form

0O T1 cee Tp—1
o : r—1
T = T | =Y nNE (7)
. 1 k=0
0 T0

The diagonal element of such a matrix is denoted by ©(T') := 79. We have the following
well-known Lemma, see Lemma 4.4.11 in [11].

Lemma 2 Let Nj, Ny be as in (2). A matriz E € C/*F satisfies N;E = ENy if and only if
E has the form

T j=k
b K ;F} j <k, -
1] o

where T has the form (7).

For more complicated nilpotent matrices in Jordan form we have the following well-known
Lemma, see [7, 10], where we denote the set of j x k rectangular upper triangular Toeplitz
matrices I as in (8) by G7xk.

Lemma 3 Let N be a nilpotent Jordan matriz of the form N = diag(N,,,...N,.). A matriz

E commutes with N if and only if E has the block structure E = [EL]‘]SXS,L where each
E; ; € C"*7i s a rectangular upper triangular Toeplitz matriz of the form (8).

For the particular nilpotent matrix N, .,y as in (3), it follows that £ € G(N, ) if and
only if I/ has the block structure I = [E; ;] xm, partitioned conformally with N(rm), where
E; ; € G, Collecting the diagonal elements of each of the blocks in one matrix we obtain
an m X m matrix

O(FE11) ... O(Erm)
O(L) = : : 7
O(E1) ... O(Enm)

which we call the main submatriz of E/. Defining

Q= [e1, €415+ s €ma1)r415 €25 Er 42y - o3 €(me1)r425 - - =3 €y €215« - s iyl



where ey is the k-th unit vector, we have for each E € G(Nj, ), that

Eo Ey ... E_,
w(F) =0 EQ = o (9)

.. El

0 Eo

with Fo = ©(F). This transformation sets up a one-to-one relationship between G(N(; ))
and the set of block upper triangular Toeplitz matrices. We then have the following result.

Lemma 4 Let M be as in (4) and Py as in (6). Let Y € G(M) and partition E conformally
with the block structure of M in (4), i.e., E = [F; ;]sxs and By € G(N (rg, my)). Let ©(Ly )
be the main submatrices of the diagonal blocks Fy ., k= 1,...,s. Then I is nonsingular if
and only if det(©(Ly %)) #0, for allk =1,...,s.

If £ is nonsingular, then there exists a matriz Y € G(M), such that

Eiy 0
(PYIPEY = | ]?2’2 , € G(M), (10)
where )
O(Es) = O(Ery), k=1,....5 (11)

and where for each k, ©(Ey 1) is the main submatriz of the diagonal block Ey, € G(N (rg, my)).

Similarly there exists Y € G(M), such that (Py'Y Py )EY and (Py'YT Pyr)EY, respec-
tively, have the block lower triangular forms as in (10) with the diagonal blocks EAM satisfying
(11).

If E is a real matriz, then in all cases Y can be chosen real as well.

Proof. The proof of the first part is given in [14], the other parts follow analogously. O
The following Lemma is an extension of Lemma 11 in [14].

Lemma 5 Let ) € G(N(r,m)) be nonsingular, where N(r,m) is defined in (3).
i) If P(r,m)E is Hermitian then there exists a matriz Y € G(N(r,m)), such that
YH(P(r,m)E)Y =diag(m1 Py, ..., mmP,),

with m, € {&i} if r is even and 7y € {£1} if r is odd.

If E is real, then we have two cases. If r is odd, then Y can be chosen real as well and
if r is even, then there exists a real Y such that

=

YT(P(r,m)E)Y:diag([ 1% b ] l o ]).




ii) If P(r,m)E is Hermitian, then there exists a matriz Y € G(N(r,m)), such that
YH(P(r,m)E)Y =diag(mi Py, ..., m0mB)),
with 7wy € {1} forallk=1,....m
If E is real, then Y can be chosen real.

iii) If P(r,m)FE is complex symmetric then there exists a matriz Y € G(N (r,m)) such that

YI(P(r,m)E)Y = diag(P,,..., P,).

m

Proof. 1) For convenience we abbreviate P(r,m) by P. With the linear operator w in (9),
we have that £ = w(F) is a block upper triangular Toeplitz matrix with diagonal block
Eq = O(F). Using Kronecker products (A @ B = [a;;B], see [12]), E can be expressed as
E =YY"t Nt @ Fy, and

P=uw(P) = (=1m)* =P @ 1,.

(=Lm)" 0

Since PE is Hermitian, so is PE and by symmetry if 7 is even then Eg, Fs, ..., F,_y are skew
Hermitian and FEy, F3,..., E._1 are Hermitian. Similarly if r is odd then FEy, Fy, ..., E._1
are Hermitian and Fy, Fs, ..., E,_y are skew Hermitian. Suppose that Y is a block upper
triangular Toeplitz matrix with the same block structure as I. Let Y = Zz;é NF @Y. Then
using properties of the Kronecker product [12], we obtain

r—1
PlyHp = Z PIINEPY oVl =3 (1) NF oy
k=0
and hence
r—1 k—p
(P~YYHP)EY = ZN’“@{Z DY ErpgYo) )
k=0 p=0 9=0

( Note that NF =0 for k > r.) We will choose Y such that

(P"YWYHPYEY =1, @11, Il =diag(ry,..., 7). (12)
To this end we will determine matrices Yg, ..., Y,_1 that satisfy
YA FEoYy =11 (13)

and fork=1,...,r—1

H
Yo o Ep_y R ) Yo
Y; —Fj_, —FEy_y ... —E Y;
Y EYi+ ()Y EoYo =— |, : : e
Yk—l (—1)k_1E1 (—1)k_1E0 0 Yk—l



Since Iy = O(F), solving (13) is equivalent to determining the canonical form of Fy under
congruence, which is clearly possible. Once Yy has been determined, each equation in (14)
has the form
YH EoYi + (-1 EoYo = —C.

We now consider different cases: If r and k are both odd or both even then Cf is skew
Hermitian and otherwise 'y is Hermitian. By Lemma 4, det EY £ 0 implies det Fjy # 0. So in
any case Y can be chosen successively (but not necessarily uniquely) as Y, = —2(Y{ Eg)~'Cy,
to satisfy (14).

Now we apply the inverse transformation w™" in (12). Using ¥ = w~='(Y), it follows by (9)
that Y € G(N(r,m)) and

(P"YWYWHP)EY = w™Y(I, @ T1) = diag(ri 1, ..., 7 1,).

Pre-multiplying by P we obtain the assertion.

When FE'is real, if r is odd then, since Fy = O(F) is real symmetric, Yy can be chosen real
in (13). From (14) then all Y3 and hence also ¥ and therefore Y can be chosen real. If r is
even, then Fj is real skew symmetric but we can still choose a real Yy to transform FEy under

congruence to the real skew symmetric canonical form diag([ _01 (1) ] ey [ _01 (1) ]) For

this real Yy the remaining Y can and therefore also Y and Y again can be chosen real and
we obtain a real form.

ii) In this case with I as before, since w(P(r,m)) = P, @ I,,, it follows that all I} are
Hermitian. Similarly as before, we can determine a matrix ¥ = Zz;é N @Y} so that

{w(P(r,m)) " YHL(P(r,m))YEY = diag(1I,..., 1),

where 11 is the canonical form of Fpy under congruence. Taking again the inverse transforma-
tion of w we obtain the result and clearly if F is real we can determine a real Y.

iii) This case is proved analogous as ii). O

The final result in this section presents special condensed forms of the matrices K satisfying

(1)-
Theorem 6 Consider a matriz M as in (4).

i) If K is nonsingular Hermitian and satisfies KM + MH K = 0, then there ezists a
nonsingular matriz Y € G(M) such that

H g : . .
YPKY =diag(m 1Py, o s Timy Pyt i1 Brss oo T Brl),s

where for j =1,...,my, k=1,...,s we have my ; € {£i} if ry is even and 7y, ; € {£1}
otherwise.

If K is real then there exists a real nonsingular matriz Y such that

YTKY = diag(Ky,. .., K,),

where Ky = diag(ng 1P, , ..., Thm, ) for odd ry and
. 0 P, 0 P,
my
2

for even rg.



i) If K is nonsingular Hermitian and satisfies KM = MY K, then there exists a nonsin-
gular matriz' Y € G(M) such that

YAKY = diag(mi 1Py ooy T1m, Py

1?---?775,1PT57---77757msPT5)7

where mp ; € {1} forallj=1,....my, k=1,... 5.

If K is real then Y can be chosen real.

iii) If K is nonsingular symmetric and satisfies KM = MUYK, then there exists a nonsin-
gular matriz' Y € G(M) such that

YTKY =diag(P(ri,m1), ..., P(rs,my)),

where P(ry,my) = diag(P,,, ..., P,,).
N —

mg

Furthermore all results still hold if M is replaced by a more general matriz N = diag(N,,, ..., N,,).

Proof. We only prove i). The proofs of the other cases are similar. Since KM + M7 K = 0,
by Proposition 3 we have KM = Py MPy K, or equivalently (Py!K)M = M(Py'K).
This implies that PA}IK commutes with M, and hence by Lemma 3 there exists a matrix
FE € G(M) such that K = Py E. Since K is nonsingular, so is £/. Applying Lemma 4 and
using that K = K| there exists a nonsingular matrix ¥; € G(M) such that

YlHKYl = Py diag(FEn, ..., Es) = diag(P(r1, m1) By, ..., P(rs, ms) Es),

where E € G(N(rg,my)). Moreover for all £ = 1,...,s the matrices P(rg, my)L} are
nonsingular Hermitian. Finally applying Lemma 5 for each P(ry, my)E} finishes the proof in
the complex case. The real case directly follows from Lemma 4 and 5.

For the last statement we recognize that any matrix N can be transformed to the form of
M via an appropriate permutation. [

Remark 1 By Lemma 4 and 5 we see that the parameters m;; that occur in the different
cases of Theorem 6 are only related to the matrix K and the nilpotent matrix M. They are
invariant under the transformations with matrices in G(M).

Remark 2 The structured canonical forms can be obtained in an analogous way for all

problems associated with nonsingular matrices K satisfying one of the following relations,
1) KM+ MYK =0, K = KH,
2) KM=M{K, K=K",

KM+ MK =0, K=—-K",

S w

KM+ MUK =0, K = K7,

[

KM=M"K, K=K",

(@]

)
)
)
) KM =MiK, K=-K",
)
)
)

) KM+MPK =0, K =-KT,



8) KM =M"K, K=-KT.
Here M is as in (4).

We have now finished the preliminary considerations and come to the structured Jordan
forms.

3 Y, ,Hermitian matrices

In this section we derive structured Jordan canonical forms for 3, ,-Hermitian matrices. We
will always consider two cases, a structured canonical form where the transformation matrices
are not necessarily ¥, ;-unitary and a structured canonical form under X, ,-unitary matrices.
We first prove some Lemmas which then will be combined to prove the canonical forms.

Lemma 7 LetC be a ¥, ,-Hermitian matriz and let X € A(C) be nonreal. Let N(X) = A+ N
with N = diag(N,,, ..., N,,) be the Jordan structure associated with A and let Py be as in

s

(6). Then there exists a full rank matriz U such that

" 0 Py Ny 0
Uzp,qU_[pﬁ 0 ] CU_U[ 0 N |-

Furthermore, A € A(C) has the same algebraic and geometric multiplicity as .

If C is real, then the matriz U can be chosen of the form [V, V].

Proof. Since N () is the Jordan structure associated with one eigenvalue A, there exists a
full rank matrix Uy, whose columns are composed by the chains of root vectors such that

CU = U N(N). (15)
Substituting C = ¥, %, , into the conjugate transpose of (15) we obtain
Uiy, .c = NWTUTE, . (16)

Now since A is nonreal, we have A\ # X and it is clear that A € A(C). Using the relation-
ship between (15) and (16) we obtain that A and A have the same algebraic and geometric
multiplicity.

It follows that there exists a full rank matrix Uy such that

CUy = U N (A), (17)

i.e., the columns of U, span the right invariant subspace of C corresponding to A. Similarly
as before we obtain

U2HEP7qC = N(X)HUZHEPJJ‘ (18)

Using (15)-(18) we get that the columns of Uy, X, ,U; and Uy, X, ,U; form bases of the right
and left invariant subspaces of C corresponding to A and ), respectively. Since A # A, by
Proposition 2,

vy, Uy =0, U, Uy, =0, det(Ux,,Usy) # 0. (19)



Premultiplying by U{Y, , in (17) and postmultiplying by Us in (16) we obtain

(Ulep,qUZ)N(/\) = N(/\)H(Ulep,qU2)

and thus (UFY, ,U)N = NH(UFS, ,U,). Since by Proposition 3, PEN" Py = N, then
Py (UEY, ,Uy) commutes with N, so does (Uf1Y, ,Us) ™1 Py. Therefore we have

N(X)(Uleanﬁ_le = (Ulltlzp,qU?)_leN(X)- (20)
H -1p H 0 Py
Let U = [Uy, U (U7, ;Uz) ™" Py]. From (19) we have U"Y, U = P g and from
N

(15), (17), (20) we obtain CU = U diag(N (), N(})).
If C is real, then (15) implies that

CU, = U N(A).

Replacing Uy by U; we still have (19) and

(U, U0 N () = N (U5,,,0h),

or (U1¥, ,U)N = NH(UHY, U}). Note that U, ,U; is complex symmetric, and since it
is also nonsingular by Theorem 6 iii), there exists a nonsingular matrix ¥ € G(N) such that
YTy, ,U1)Y = Py. Now set V = U;Y and U = [V, V] then we also have

" _| 0 Py Ny o
Uzp,qU_lpﬁ 0], CU_U[ 0 N |-

This finishes the proof. 0
The main difficulty in the construction of structured Jordan canonical forms arises from
the real eigenvalues. For this case we will employ the results of Section 2.

Lemma 8 Let C be a X, ,-Hermitian matriz, let X € A(C) be real and let N(A\) = A + N
with N = diag(N,,,..., N;,) be the Jordan structure associated with X. Then there exists a

s

Sull rank matriz U such that

UHEZMJU = diag(ﬂlpﬁ, ey s Pr),

s

with m, € {£1} and CU = UN(X). Moreover, if C is real then the matriz U can be chosen
real as well.

Proof. Let Uy be a matrix formed from the chains of root vectors corresponding to A. Then
from (15) and (16), since A is real, Uy and X, ,U; are the bases of the right and left invariant
subspaces of C corresponding to A. By Proposition 2 we have det UlHEngl #0.

Premultiplying U{%, , in (15) and postmultiplying U in (16) we get

U1H2p7qCUl = (Ulep,qu)N(/\) = N(/\)H(Ulezqul)v
which implies that

(U5, Un)N = N (U5, Un).

10



Since UlHEngl is Hermitian and nonsingular, we can apply Theorem 6 ii) and obtain that
there exists a nonsingular matrix Y € G(N) such that

(U1Y)H2p7q(U1Y) = diag(ﬂ—lpmv RS ﬂ-SP’/’s)
Set U = U1Y, then, since Y and N commute, ¥ and N () also commute and hence
CU=CUY =UtNA)Y =U1YN(A) =UN(N).

If C is real, then since A is real, also the initial Uy can be chosen real and by Theorem 6, Y
can be chosen real and hence U is real. O

It follows from Remark 1 that the parameters 7 in Lemma 8 are uniquely determined by the
Jordan structure associated with the eigenvalue A. For this reason we call the parameters 7,
the structure inertia indices of C corresponding to the real eigenvalue A, or simply the structure
inertia indices of \. We will denote the complete set of parameters by Ind(A) = {my,..., 75}
Note that for each Jordan block there is a corresponding structure inertia index.

Using Lemma 7 and 8 we now obtain the structured Jordan canonical form for X, .-
Hermitian matrices under general similarity transformations.

Theorem 9 LetC be a X, ,-Hermitian matriz with pairwise different real eigenvalues avq, .. ., o,
and pairwise different eigenvalues Ay, ..., Ay, with positive imaginary parts. Then there exists
a nonsingular matriz U such that

U-'c = dlag(Rj—v RZ, RT)? (21)
where the blocks are

Rj’ = diag(H1(M),.. -vHu(/\u))

) Rc_ :diag(Hl(/\_l)v"'vHu(/\_u))v
R, = diag(Ml(al)v"'vMu(au))v

with substructures
Hk(/\k):/\kI+Hk7 Hk(/\_k) :/\_kf—l—ffk7 Hk:diag(Npk,N“‘?Npk,sk)?

Jork=1,... u, and

Mk(ak) =oil + Mg, My :diag(qu,N“‘qu,tk)?
fork=1,...,v.
The matriz U has the form
0 W, 0
ults, u=|1wt o o |, (22)
0 0 W,

with W, = diag(Pp,., ..., Pu,) and W, = diag(W7,..., W}

7)), where for k=1,..., 1 we have

ka = di:aLg(]ADph17 .. '7Ppk75k) and for k = 1,...,v and Ind(ay) = {m1,...,Thst,} we have
Wi = diag(ﬂk,lpq

PR '77Tk7tkqu,tk)'

11



Proof. For each nonreal eigenvalue A\; with the corresponding Jordan structure Hy(Ag), by
Lemma 7 we can choose a matrix U}, such that

0 Py,

Uls, Uy = [ P 0 ] , CUy = Ug diag(Hy (M), He(Ar)).- (23)
k

Partition Uy = [Uy 1, Uk,2], where Uy 1, Uy 2 have the same size and set
Uc = [Ul,h ey UMJ; ULQ, ey UM72] = [Uf,U§]

Note that the columns of U}, X, ;U5 and U3, 3, Ui form bases of the right and left invariant
subspaces corresponding to the two disjoint sets of eigenvalues {Aq,..., A} and {Aq,..., A},
respectively. By Proposition 2 and (23) we have

0 W,

] , CU =Udiag(RT, R7),
with W,, R} and R as asserted.

For each real eigenvalue oy with the corresponding Jordan structure My (ay), by Lemma 8
we can choose a matrix V; such that

H o 3 ;
Vit Vi = dlag(ﬂklqu,m .. '77Tk7tkPQk,tk)7

where Ind(ag) = {mr1,..., ke, } and CVy = VipMy(Ag). Set U, = [Vi,...,V,], then by
Proposition 2 we have

urrs, u. =w,, Ccu, =U.R,,

where W, and R, are of the asserted form and with & = [U.,U,] the result follows from
Proposition 2. 0O

The canonical form in Theorem 9 is just the classical Jordan canonical form, but the
transformation matrix is constructed in such a way that it satisfies the relationship (22)
associated with X, ,. This is not quite what we want, since we would rather like to have
that the transformation matrix is 3, ,-unitary. In order to obtain this we have to look at the
structure in more detail. For this we need to use transformations with

sl

Tr = I, I,

(24)

for which we have
gl 0 I, | I, 0
We also need in the following the symmetric and skew symmetric part of Jordan blocks

1 1
NP = SN+ N, N = (N - N,
and

NFA)=AL+ N, N7 (A=A, +N].

r

By Lemma 7 and 8 we only need to analyse the structure of the left and right chains of root

vectors corresponding to a pair of Jordan blocks N, (A), N, (A) for a nonreal A and to a Jordan
block N, («) for a real oe. We first consider nonreal eigenvalues.

12



Lemma 10 LetC be a X, ,-Hermitian matriz and let A € A(C) be nonreal. If N,(X) = A[+N,
1s a Jordan block of C, then there exists a full rank matriz U such that

I, 0 _ NF(ReA) —N7(iIm )
0 —I, ] CU—Ul _N-(iImA)  N*(Re))

r

Uiy, U= [ (25)

Proof. By Lemma 7 for the Jordan block N, (), there exists a full rank matrix U such that

oHy, 17 = l ]2 IZ ] . CU = Udiag(N,(A), N.(N)).

Set
7z, = diag(1,, P,)Y, (26)
and let U= UZ,. Using Proposition 3 we can easily verify that U satisfies (25). O

The next lemma analyses the Jordan blocks associated with a real eigenvalue.

Lemma 11 Let C be a X, ,-Hermitian matriz, let o € A(C) be real. Let N, (o) = ol + N, be
a Jordan block and let = € Ind(«) be the structure inertia index associated with this Jordan
block. Then there exists a full rank matriz U such that

I 0 Nf(e)+ tresell  — N7+ Lregel
H _ s _ s 2 sts s 2 sts
UP%paU = [ 0 —I ] , CU=U [ —-N; — %ﬂesef N];"(oe) — %ﬂ'esef (27)
if r =2s and
I, 0 0 Nf(a) e, -N;
UMs, U=10 7 0 |, CU=U| Lgel o Ll (28)
0 0 —I —NT —@es Nt ()
if r =2s+ 1.

Moreover, if C is real, then U can be chosen real.

) Proof.A By Lemma 8, fOIA’ the Jordan block N,(a) there exists a matrix U such that
Uy, ,U=rP, and CU = UN,(a).

If r = 2s, then we form the partition

- 0 7P, | No(a) egel
”PT_[(WPS)H 0 ] NT(O‘)_[ 0 Ns(oe)]'

With 7, = diag(/s, TPS)TS and U = ﬁZT, then a simple calculation yields (27).
If r = 2s+ 1, then we form the partition

0 0 7P, Ny(a) e 0
7P, = 0 T 0 |, N, (a) = 0 a el
xP)E 0 0 0 0 Na)
With
) et 0 L0 -2,
7, = l A ] 0 1 0
L2 0 22,



and U = UZ,, then a simple calculation yields (28).

If C is real, by Lemma 8 U can be chosen real and since in both cases Z, is real, U can be
chosen real. DO

Combining Lemmas 10 and 11 we obtain the structured Jordan form of ¥, ,-Hermitian
matrices under ¥, -unitary similarity transformations.

Theorem 12 LetC be a 3, .- Hermitian matriz with pairwise different real eigenvalues aq, . . ., «,
and pairwise different eigenvalues Ay, ..., Ay, with positive imaginary parts. Then there exists
a X, g-unitary matriz U such that

R. 1.
Rt T
-1 _ T T
U 'CU = _7H R, (29)
-TH R;
For the blocks we have the following substructures.
i) The blocks with index c, associated with the nonreal eigenvalues, are R. = diag(R1, ..., R},)

and T, = diag(TY, ..., TS), where for k=1,..., u we have
Rj, = diag(N (ReAg),.. .,N;W (Re Ap)),
T¢ = —diag(N;,, (ilmAg),..., Ny | (ilmAg).

Pk,s
ii) The blocks with index r, associated with the real eigenvalues are
RY =diag(Cy,...,C,), R, =diag(Dy,...,D,), T,=diag(F,...,F,).
Fork=1,...,v these have the substructures

Cr = diag(Cy, CF,Cr), Dy = diag(Df, D, Dy, Fy, = diag(Ff, F;7, Iy ),

where
i = ding(V], (@) + = H o NE ()4 "o
o= d1aglivg  (Qk 27’“716%,16%,17"'7 Gr,e, \ Yk Qﬂ-kvtkeqk,tkeqk,tk J
1
e __ : + H + H
D = dl:augz;(Z\T%1 (o) — §7Tk,1€qk71€qk717 .. "qu,tk (o) — §7Tk,tk€qk7tk eqk,tk)’
1
e . — H — H
Fk = dla;g(_]\qu71 -I_ §7Tk,1€qk71 eqk717 cry _quvtk —I_ §ﬂ-k7tkeqk,tk eqk,tk)7
+ V2 + V2
C-|— _ d Nuk71 (Oék) 2 euk,l Nuk,wk (Oék) 2 eukywk
k - lag( ﬁ H 9ty ﬁ H )7
2 Cur, Ok 2 euk,wk g

Df = diag(Ng  (ax), .. .,Njkywk (),

+ : [ _Nu_k,l _Nu_kvwk .
Fk = dlag( NG gy V2 )7
| "2 Cur; Teuk,wk
C, = diag(N;;yl (o), - .,N;Zk (o)),
i V2 H
D- — d; a —@6521 Ok _7€Uk,zk
Po= diag E o - ; )
L T2 evk,zk vayzk (Oék)

~Le, . N ()
Y

_ V2 _
Fk = dlag([Tevk,m_vaJ]M' [

@e N
2

14



Here each nonreal Ay, (/\_k) has sy, Jordan blocks of sizes py1, ..., pr,s, and each real eigenvalue

o has
a) ty even sized Jordan blocks of sizes 2qyq,...,2qk:, and the corresponding structure
inertia indices T 1, ..., Tk,
b) wy odd sized Jordan blocks of sizes 2uy 141, . .., 2ug o, +1, corresponding to the structure

inertia index 1;

c) z odd sized Jordan blocks of sizes 2up 141, ..., 2v; ., +1, corresponding to the structure
inertia index —1.

Proof. Let Ap be a nonreal eigenvalue with associated Jordan structure Ayl 4+ Hy, where
Hjy = diag(Np, .-+, Np, . ). By Lemma 7 we can determine a matrix & such that

? Pk,sp,

Cﬁk = ﬁk diag(NpM (/\k)v Npk,1 (/\_k)v SERR) Npk,sk (/\k)v Npk,sk (/\_k))

and ) A
2 ~ 0 P 0 P,
S SR I SURE

. P 0 PkaSk 0

In fact this form is obtained by an appropriate permutation applied simultaneously to the
equations in Lemma 7. Partition Uy = [Ug1,...,Uss,], where for j = 1,...,s; the part
Uy ; has 2py ; columns. Applying Lemma 10 to each diagonal block composed from the pair

Ny, (M), Ny, (Ag) we obtain that for each Uy ; = (A]kJZka, with 7, . asin (26), we have
I 0 Nt (ReXg) =N, (¢ImAg)
UHE U, . = Pk,j , CU..=U Pk,j } Pk,
k,j=paVk,j [ 0 —I,,, ] k.j k,j [ N, (¢1m Ag) N]j;w (Re Ag)

Partition Uy; = [Vi;, Wk ], with Vi ; and Wy, of the same dimensions and set U, =
Vs s Vs IWea,..., Wi s, ], then a simple calculation yields

In, 0

Ulflzp,qu = [ 0 7

]7 CUk:Uk[_Rk Tk]7

(T By,

k

where m; = Ejkzl prj- Let m = Y74 _ my and partition Uy = [Vj, W], where Vj, and W
have the same dimensions. Let

Ve=[W1,..., Vi, W.=[Wq,...,W,], U. = [V, We].

Then by the invariant subspace property in Proposition 2 we obtain

1 0 R T,

H m c c

uc Epvquc = l 0 _Im ] ) Cuc — uc [ _Tc]{ Rc ] . (30)
Similarly let v, be a real eigenvalue with associated even sized Jordan blocks of sizes 2¢y 1, . . ., 2qx 1,

and associated odd sized Jordan blocks of sizes 2uy 141, ..., 2up o, +1 and 2vp 1 +1,..., 2055, + 1

15



corresponding to the structure inertia indices 1 and —1, respectively. By Lemma 8 and
Lemma 11 for each even block there is a matrix Uf ; such that

re \H re _ qu, 0
(Uk,j) Ep,qu,j - [ OJ _qu ;
)
+ 1 . H _N-— 1 , H
Cﬁe = (76 ) NQk,J (ak) + 27Tk7]€qkyjeqk,] NQk,J + ZTkvfeqk,Jeqk
k.3 2 I 9k, k.3 k.3 2 Ik, g k5

For each odd sized Jordan block we have two cases. If the structure inertia index is 1 then
there exists a matrix U,;"j such that

+ V2 _N-
I 0 Nf/‘ﬁu (ak) 2 Cup,; \/_Nuw
S+ NH b | g+l it 2 0 2 0
(Uk,j) Ep,qu,j = l 6 _1, ] ) CUk,j = Uk,j "2 Cup U "2 Cup
= — V2 +
—No, %, | N (k)

If the structure inertia index is —1, then there exists a matrix (A]k_] such that

+ V2 _N-
I 0 N“kﬂ(ak) ‘ 2 vk, gvkg
T— \H T — Uk, j = - 2 _H 2 _H
(Uk,]) Epquk,j - 0 _Ivk 41 ) CUk,] - Uk,] 72 evkd \/O_ék — 9 evkd
¥ _ 2 +
_va,] _Tevk,j N’de (Oék)

Partition Up ; = [V,f7j,W,§7j] with V)7, Wy . having the same number of columns, partition
U,j:j = [V,:j, W,j:j], where V,:"j has uy ; + 1 columns and W,j:j has uy ; columns and partition
Uy = [Vi; Wyl where V™. has vy ; columns and Wy has v j + 1 columns. Set
_ e e + + - -
Vi = [Viq,-- .,Vk’tka’17 . .,Vk’kak’17 . .7Vk72k]7
_ e e + + — —
Wy = [Wgq,-. .,VVMRH/V,“17 . '7Wk,wk|Wk,17 . .,W,“Zk]

and Uy = [Vi, Wi]. Then a simple calculation yields

I, 0 C F
vy, Uy = [ 5,1 _; ] , CU,=Uj [ _FZH D]Z ] )
Nk 2

t w z t w
where ng1 = wi + 35, g+ D02 upg + D25 vk and ngpo = 2+ D05 qrg 302wk +
Sk vk Set ng = Y[y ng1, ng = Y p—q Nk,2. Then with

Ve=[V1,....,Vi], W, =[Wh,...,W,], U, = [V,, W,]

we have
I, 0

. (31)

Uy, U, = [

_|_
|\ ama] 1],

-TH R-
Finally set U = [V, V,|W,, W,], then by Proposition 2 and by above construction we have

I 0
H _ m+ng
us, U = [ o L ] :

Since U is nonsingular it follows that UHEW]U is congruent to X, , and hence m + n; = p,
m+ny = qand US, U =3, ,. Equation (29) then follows from (30) and (31). O
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Remark 3 The difference between the structured canonical form of Theorems 9 and 12
is that in order to get a X, ,-unitary transformation matrix we need to refine further and
combine different blocks together. This leads to a loss in structure in the Jordan canonical
form, which becomes more complicated, but shows that the classical Jordan canonical form
somehow obscures the extra structure in the chains of root vectors.

Remark 4 By the structured Jordan from we immediately obtain the following relationships

wo Sk v tg W 2k
Po= 3 pei (e g+ D uky + Y vk),s
k=1 j=1 j=1 =1

k=1 ;=1

o Sk v tg W 2k
q = Z Zpk,y‘ + Z(Zk + Z(]k,j + ZUM + ka,j%
k=1 Jj=1 Jj=1 j=1

k=1j=1
p—ql = | (wp—z)l. (32)
k=1

These relationship show that the parameters p,q will affect the eigenstructure of C. For
example, we get in the case ¢ = 0 that C is unitarily similar to a real diagonal matrix.
Another direct consequence is that for a real eigenvalue the largest size of the associated
Jordan block is not larger than 2min{p, ¢} + 1, and for a nonreal eigenvalue the largest size
of the associated Jordan block is not larger than min{p, ¢}. Furthermore, it is clear that if
|p — ¢| # 0, then C must have real eigenvalues with at least |p — ¢| odd sized Jordan blocks.

In the case of a real matrix we can obtain real structured canonical forms under real
Y, g-orthogonal similarity transformations combining blocks associated with pairs of complex
conjugate eigenvalues. Note that for real eigenvalues based on Lemma 8 and 11 we have
already real canonical forms. Hence we only need to consider the Jordan structure associated
with nonreal eigenvalues. Parallel to the complex case we only need to set up the real forms
as in Lemma 7 and 10. Before we do this we need some further notation.

Let

Wy, = [€1,€r41, €2, Er2y-- -y €y €3],  Pop = diag(Pg, Po, ..., Pg), (33)
r

where

®y = 1

V21 i

5 .
Then the following properties hold, see [14].

Lemma 13 If A =a; ;] € C"*", then

A 0

(W, ®,) " [ 0 ] (W3, ®3,) = B =: [Bjj],

where fori,7 =1,...,r the blocks are

Bi; = [ Rea;; Imay; ]

—Ima;; Rea;;
1] 1]

and if U € C"%" then [U, U]V, Py, is a real matriz.

17



For a nonreal eigenvalue A € A(C) set A = [ —Rlin/\A Eii ] and for a real 2 x 2 matrix A
we set
A I
NT(A) :IT®A+NT®12 =
Iy
A

In particular we denote by N, (A) the real Jordan block of C corresponding to the eigenvalues
A and A. Similarly for N = diag(N,,, ..., N,.) we set

N(A) = diag(Ny, (A), .., N, (A))

and with the 2 x 2 zero matrix 05 we set

r

NF(0) = S(V(02) + N(0)T), N7 (02) = (N (02) = N,(0)7),
and analogously

NI(A) =L @ A+ NF(02), N7(A)=1@A+ N7 (02)

for a real 2 x 2 matrix A.

Lemma 14 Let C be a real ¥, ,-symmetric matriz and let A € A(C) be nonreal. If N(\) =
M+ N, where N = diag(N,,, ..., N,,), is the Jordan structure corresponding to the eigenvalue
A, then there exists a real full rank matriz U such that

UTEZMJU = pN ® 2171 = diag(Pﬁ ® 21717 ceey ]57«5 ® 2171)7
CU = UN(A). (34)

Proof. By Lemma 7, if C is real, then there exists a matrix U= [V, V] such that

- H -~ | 0 Py -~ N 0
Uzp,qU_lpﬁ 0], CU_U[ 0 N |-

Partition V' = [V1,..., Vs], where for k = 1,...,s, Vj has rj columns. Let Vi = [Vi, Vi) and
set U = [Vi,..., Vs], then

. . , 0o P, 0 P,
UHEP#JU = dlag(l pH 0 ] [ l PH 0; ])7
S 1 (A) 0 N, (N) 0
U= Udlag(l 0 NN |77 0 N, )

Setting U = ﬁdiag(\llgﬁ(bgﬁ, ooy Wy, Py, ) it follows by Lemma 13 that U is real and satisfies
(34). D

The nonreal eigenvalues of a complex Y, -Hermitian matrix are already coupled in con-
jugate pairs. But in the real case Lemma 14 shows that the root vectors have additional
structure.
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Lemma 15 Let C be a real ¥, ,-symmetric matriz and let A € A(C) be nonreal. Let A =

ReA  ImA ,
[ “Im A ReA ] and let N, (A) be a real Jordan block of C. Then there exists a real full rank

matriz U such that

I 0 A B
lfT U r U U 1
Epvq - [ 0 _IT ] 3 CU = [ _BT 42 ] 3 (35)

where we have the following two cases.
i) If r = 2s, then
A1 = NS ((ReN ) + E,, Ay=NS((Re\ly) — E,, B=-N;((Im\).J;)+FE,,

0 0
; -1
with E, = 5 [ 0 i ]

ii) If r =2s+ 1, then

N ((ReA)ly) e, , N ((Re AN ly) %Ze,
A= 2T A= V2T ’
e Re A R Re A
5o | =NS(mA) L2, |
7267?_2 —Im A

wherelel_Ol (1)]

Proof. By Lemma 14 for a real Jordan block there exists a real matrix U/ such that

UTEZLqﬁ =P 211, cU = UNT(A).

i) If r = 2s, then we partition

~ 0 0
Urs, U = P ®OE " ®02171 ; Ne(A) = o) I, 0
5 1,1 0 ‘ Ns (A)

and we can easily verify that
(]55 @Y )= P,® g = (Ps @ 21,1)T7 (155 @ 21,1)T(N5(A))(Ps @¥11) = (Ns(A)T.
Let U = ﬁdiag(b,ﬁs @ X41)Y,, where T, is defined in (24). Then U is real and we have

(35).
ii) If r = 2s4 1, then we partition

) ) 0 0 PoX, No(A) | 0

urs, U = 0 Y14 0 , Ne(A) = 0 T 0
P 2
P 0 0 0 0 | Ny(A)
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L0 =20, 0
. L - 0 1 0 0 . .
Setting U = U diag({,41, Ps ©® X1 1) 0 0 0 R it follows that U is real
2,0 2L, 0

and we obtain (35). O
Combining Lemmas 8, 11, 14 and15, we obtain the real versions of Theorems 9 and 12.

Theorem 16 Let C be a real ¥, ,-symmetric matriz with pairwise different real eigenvalues
aq, ..., and pairwise different eigenvalues Ay, ..., A\, with positive imaginary parts.
Then there exists a real full rank matriz U such that

U-'cu = diag(R., R,),

where

R, = diag(Hi(Ay), ..., H,(A)))
and for k = 1,...,u the subblocks are Hy(Ay) = diag(Np, , (Ax), ..., N

Phsy (Ag)) with Ay =
[ ReA;, ImAg

—ImA; Relg ] . The other diagonal block is

R, = diag(Ml(oq), .. -7My(041/))7

where for k =1,... v the subblocks are My (ay) = ol + My, with My, = di:augz;(]\f%17 .. ‘qu,tk)'
The matriz U has the form
W. 0
T c
UEW]U:[ 0 WT‘|7
where W, = di:aug(]f’H1 ® X1, .- .,PHM @ X41), W, = diag(W7,...,W)), and where for k =
1,..., 0 we have ka = di:augz;(]apky17 .. .,Ppmk) and for Ind(ag) = {7p1,..., Tk} and k =
1,...,v we have W[ = diag(ﬂhl]sqm, .. '77Tk7tkPQk,tk)'
Proof. The proof is similar to the proof of Theorem 9. O
The real structured Jordan canonical form under real X, ,-orthogonal matrices is also ob-
tained analogously.

Theorem 17 Let C be a real ¥, ,-symmetric matriz with pairwise different real eigenvalues
a1, ..., and pairwise different eigenvalues Ay, ..., A, with positive imaginary parts. Then
there exists a real 3, ,-orthogonal matriz U, such that

RF T.
_l_
Ucu = T B B I (36)
-TT R;
i) The blocks with index ¢, associated with nonreal eigenvalues, are RF = diag(Ay,..., A,),

R7 = diag(By, ..., B,) and T, = diag(1T7Y, ..., T;), where for k =1,..., u we have

Ap = dlag(A27 AZ)v By = dlag(31§7 32)7 TIS = dlag(lev Tl?)v
Po= diag(NS  ((ReAp)lo) + Bga, ..oy N;;Sk (Re Ap)I2) + Frs,),
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Bp = diag(Ny  ((ReAp)D) = Ey, .. .,N;;S (Re Ap)I2) — Frs,),
T,f = —dlag( pkl((lm/\k)Jl) —Ek71,...,NZ;7 ((ImAk)Jl) Ek,sk)7
| F (R l) Ley,, o, (ReAIT) Pea, -1
AL = diag( \/—T ’ yeee T * ),
L 2 “2q-1 Re Ax €21, ,, 1 Re Ak
B — ding [ N (ReAn)l) ey, ((Re /\k)Ig) Ly, )
ko — [ )
I \é_e2Tlm Re A, i ;Flk Re A,
o . _Nl;1 ((Im /\k)Jl) —@62% _Nl; ((Im /\k)Jl) _gezlk,mk
Tk = dlag( ﬁ T 3 ) ﬁ T
2 €2 -1 —Im Ay 2 2y, -1 — Im Ay
. R U
with Fy ; = 3 L
ii) The blocks with index r, associated with real eigenvalues, are
RY = diag(Cy,...,C)), R, =diag(Dy,...,D,), T,=diag(Fy,...,F,).

These have for k=1,...,

Ck — diag(czv Cljv Ck_)v

v the substructures

Dy, = diag(Dy, Dff, D),

Fy = diag(Fg, FiF Fy),

where
e 1 T T
Cp = diag(N, Qk | (o) + ST €ans Cqp - Nq‘: . (o) + Ttk Canr, equ)7
e T T
Df = diag(N, o 1(04k) — §7Tk716qk716qk717 .. Nq‘: . (o) — §7Tk7tkeqk,tk eqk,tk)7
e . - 1 T - 1 T
F; = d1ag(—N + §7Tk716qk716qk717 cer, _qu,t + §7Tk7tkeqk,tk eqk,tk)7
+ 2
C]j = diag( N\;ﬁl (ak) lgeukvl Nj/‘ﬁ wy, (ak) léeukywk )
T e, - ,
i ) eukJ L 2 Cupu, o
Df = diag(N]  (aw),...,Nf | (aw)),
FF = diag( ﬁeuk’l ],---,[ ﬁekwk ]);
L 2 “Uka1 2 UK S W
Cp = diag(NJ;l(Oék)w Ny (),
_V2,.T V2T
D; = diag(| 5 SN IR R 2 sy |
| Feu N (on) —Feu,., Nb (o)
_ V2 _ V2 _
Fr = dlag([ o _Nvm]’ .. '[76%% . _N“kyz;g])'

Each Ay, (M) has sy, even sized Jordan blocks of sizes 2py 1, . . .,

blocks of sizes 211 +1,...,2l ., + 1.
For each real eigenvalue oy there are

21
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a) ty even sized Jordan blocks of sizes 2qy 1, ..., 2qy+, corresponding to the structure inertia
indices Tp1,. .., Thi,;

b) wy odd sized Jordan blocks of sizes 2up1+1, ..., 2uy \, +1 corresponding to the structure
inertia index 1;

c) z odd sized Jordan blocks of sizes 2vp1+1,...,2v; ., +1 corresponding to the structure
inertia index —1.

Proof. The proof is analogous to the proof of Theorem 12. O

In this section we have obtained real and complex structured Jordan canonical forms for
Yy g-Hermitian matrices. In the next section we obtain analogous results for ¥, ,-skew Her-
mitian matrices.

4 Y, ,-skew Hermitian matrices

In this section we discuss structured Jordan canonical forms for 3, ,-skew Hermitian matrices.
The construction is similar to that for X, ,-Hermitian matrices discussed in Section 3 and
therefore we can omit much of the detail. The essential difference is that the role of the real
eigenvalues is now taken by the purely imaginary eigenvalues.

But let us first discuss Jordan structures associated with eigenvalues that are not purely
imaginary.

Lemma 18 Let C be a ¥, ,-skew Hermitian matriz and let A € A(C) have nonzero real part.
Let N(A) = Al + N with N = diag(N,,,...,N,.) be the Jordan structure associated with X

s

and let Py be as in (6). Then there exists a full rank matriz U such that

" [ o Py Ny 0
UEMU_[Bg 0],CU_U[ 0 N |

Furthermore, —\ € A(C) and has the same algebraic and geometric multiplicity as ).
In the case that C is real, we have two cases. If A is real nonzero, then there exists a real
Sull rank matriz U such that

T [ o Py Ny 0
UEMU_[% 0],(W_U[ 0 NN

and if A is nonreal, then there exists a real full rank matriz U such that

T _ 0 Py ® X4 _ N(A) 0
Uzp,qU_[P]%QEL1 . cev=u| T D]
) ReX ImA
wlthA_[—Im/\ Re/\]'

Proof. By hypothesis there exists a full rank matrix Uy such that

CUL = U1N (). (37)
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Since C is X, ;-skew Hermitian, we have cH = -3, CX, 4. Substituting this into the conju-
gate transpose of (37) we obtain

U1H2p7qc = _N(/\)HUlep,q- (38)

Now since Re A # 0, we have —\ # )\ and as in the proof of Lemma 7 for the 3, ,-Hermitian
case we obtain —A € A(C), and that —X and A have the same algebraic and geometric

multiplicities.
Let Uy be a full rank matrix such that
CUy = UyN(=A). (39)
Then
U2HEP7qC = _N(_X)HUszzxq (40)
and we have
vy, Uy =0, UPS, U,=0, det(UFY,,Us) #0. (41)

Premultiplying (39) with U{1¥, , and postmultiplying (38) with Uy, we obtain
(U1 S, U2)N (=) = =N (V) (U5, Us).
Since PyNTPH = — N we have Py(—N (MNP = N(-X) and therefore PZ(UHY, U,)

and N(—A\) commute, or equivalently,

N (=N (P (U 55,0U2)) " = (P (Uf15,,0U2)) 7' N (=2 (42)

).
H -1 H U
Let U = [Uh, U (U7, ,U;) ™" Py, then from (41) we have U" Y, U = PH ¢ and by
N
(37), (39), (42) we obtain CU = U diag(N (\), N(=X)).

If C is real and A is real then Uy, Us can be chosen real and hence U is real. If A is nonreal
then from (37) and (39), we obtain

CO =ThN(Y), CT;=T;N(-N),

which implies that A\, —\ € A(C) have the same algebraic and geometric multiplicities as
A. Since Re A, Im A # 0, the four eigenvalues A, & —X and —\ are pairwise distinct. Let
U, = Us (U, ,Us) 1Py and set U = [Uy,U;,U;,U;). Then by the invariant subspace
property of Proposition 2 we obtain
Py N(X)

. -

UT U= PH ’ N(=X)
PH N(=X)

Let U = ﬁdiag(\llq), V) with ¥, asin (33), then by Lemma 13, U is real and we can easily
verify that

UTEZLqU — 0 PN X 21,1 ]

N(A) 0
CU=U .
P]€®21,1 ' l ]

0 N(=A)

|

While in the ¥, ,-Hermitian case difficulties arise from the real eigenvalues, here the purely
imaginary eigenvalues are causing difficulties. The characterization of the Jordan structure
for the purely imaginary eigenvalues is given in the following Lemma analogous to Lemma 11.
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Lemma 19 Let C be a X, ,-skew Hermitian matriz and let o € A(C) be purely imaginary.
Let N(¢) = 6l + N with N = diag(N,,,...,N,_) be the Jordan structure associated with o.

s

Then there exists a full rank matriz U such that

vty U = diag(mi Py, ..., 7sP,.), CU =UN(o),

s

with m, € {£i} for even ry, and p € {£1} for odd ry.
If C is real then there are again two cases.

i) If o is zero then there exists a real matriz U such that

. U o 0 Py
UTEP#]U = dlag(T1P2u1+17...77TaP2ua+17ngzjl ?)1 ‘|7,..7[szjb ?)b]%

CU = UN = Udiag(N2u1_|_1, . .7]\72u(1_|_17]\721]17]\721]17 .. -7N2vb7N2vb)-

This implies that for zero eigenvalues the number of even sized Jordan blocks must be
even and the corresponding structure inertia indices must occur in i, —t pairs.

ii) If 0 is nonzero then there exists a real matriz V' such that
vy, ,V =diag(P, @ E1,..., P, @), CV =VN((Imo).J;),
where Z, = mply if vy is odd and 2 = (Im 7y)J1 if r is even.

Proof. Let the columns of Uy be the chains of root vectors corresponding to . Then we
have (37) and (38), by replacing A with o. Since ¢ is purely imaginary, Uy and X, Uy are
the bases of the right and left invariant subspaces of C corresponding to . By Proposition 2
we have det(UH1%, ,U;) # 0. Premultiplying (37) by U{!X,, and postmultiplying (38) by U;
we obtain

U1H2p7qCUl = (Ulep,qu)N(U) = _N(U)H(Ulezqul)v
which implies that
(U118, ,UN)N = =NT (U8, ,Uh).

Note that UlHEngl is Hermitian and nonsingular. Thus, we can apply Theorem 6 i) and
hence there exists a nonsingular matrix ¥ € G(N) such that

(U1Y)H2p7q(U1Y) = diag(ﬂ—lpmv RS ﬂ-SP’/’ )

s

Set U = U1Y, then
CU=CUY =U;N(0)Y =U;YN(o)=UN{o)

and U is as required.

Now consider the case that C is real.

i) If o0 = 0, then clearly Uy can be chosen real and as before we can apply Theorem 6 i)
which yields the assertion.

ii) If ¢ is nonzero then we also have

7'y, ,U = diag(7(P,,,...,mP,.), CU=UN(@®).
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Set V = [U,U]¥®. Then, since o # 7, we have

il if r; is odd
(Im7g)Jy  if rg is even

®f diag(ry, 75) P2 = {

and by Lemma 13 we obtain that V is real and as desired. O
We can combine Lemmas 18 and 19 to obtain the structured Jordan canonical form for
Yy g-skew Hermitian matrices.

Theorem 20 Let C be a X, ,-skew Hermitian matriz with pairwise different purely imaginary
eigenvalues oy, ...,0, and pairwise different eigenvalues Ay, ..., A, with positive real parts.
Then there exists a nonsingular matriz U such that

UT'CU = diag(R}, R, R,), (43)

i) The diagonal blocks with index ¢, associated with eigenvalues not on the imaginary axis,
are

R =diag(Hi(M),...,Hu(A),  RZ =diag(Hi(=\), ..., H.(=\,)),
where for k=1,...,u we have
Hy,(A\g) = M\ + Hy, Hy (= M) = =MD + Hy, Hy = diag(Np, s s Ny, )
ii) The block R, associated with purely imaginary eigenvalues, has the form
Ry = diag(M(01), ..., My(0,)),
where My (or) = opl + My, and for k=1,...,v we have My = di:augz;(]\f%17 .. ‘qu,tk)'
The matriz U has the form

0 W. 0
ults, u=|wht o o |, (44)
0o 0 W,

where

W. = diag(Pp,,..., Pu,), W, = diag(W{,...,W?),
and fork =1,. .., we have Py, = diag(F,, ;.. .,Ppmk), and with Ind (o) = {7k 1, ..., T, }
fork=1,...,v we have W} = diag(mp 1Py, ;- - Tt P, )-

Proof. The proof is analogous to that for Theorem 9, using Lemmas 18 and 19 instead of

Lemma 7 and 8, respectively. 0O
For real matrices under nonstructured similarity transformation we obtain the following

canonical form.

Theorem 21 Let C be a real X, ,-skew symmetric matriz with pairwise different nonzero
purely imaginary eigenvalues oy, . . ., 0, with positive imaginary parts, pairwise different eigen-
values Ay, ..., A, with positive real and imaginary parts and pairwise different real positive
eigenvalues o, .. ., o, (Note that the spectrum contains with oy also —oy, with «; also —a;
and with Aj also —Xj, A;,—X; and also 0 may be a further eigenvalue.) Then there exists a
real nonsingular matriz U such that

UT'CU = diag(R}, R, R,).
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i) The blocks with index ¢, associated with eigenvalues not on the imaginary axis, are
R = diag(R}, RY), with RY = diag(Ki(a1),..., K,(ay)) where for k = 1,....1
we have Kp(ap) = apl + Ky, and Ky, = di:aug.{(]\ffh17 .. '7kavlk)' Analogously R} =

ReA; Im A ]

diag(Hq (A1), ..., Hu(Ay)), where for k = 1,...,p we have Ay = [ m X Re )
- k k

and Hk (Ak) = diag(Nka (Ak), oo N (Ak))

° Pk,sp,

The block R = diag(RZ, RZ), has the same substructure as R just replacing a; with
—ao; and Aj by —A;.

ii) The block R, associated with purely imaginary eigenvalues, has the structure
R, = diag(M;((Imoq)J1),..., M, ((Imo,)J1), Mo),
where for k=1,...,v we have
My((Imoy)J1) = diag(Ng, , (Im op)J1), ..., Ny, ((Imog)J1))
and where
Mo = diag(Nag, 415 - - Nogat1s Nongs Nopyy ooy, Nopys Nop, )
s the structure associated with the eigenvalue 0.
The matriz U has the form

0 W.
urs, U=\ wl o
0

goo

where W, = di:aug(l/i/c7 VVC) with

Wc = diag(]jj(17 ey P]{n)7 Wc = d1ag(PH1 ® 21717 ey ]D]{M ® 2171)7

and where
P]{k = diag(Pfk,m ceey Pfk,lk)7 PHk = diag(Ppk,m ceey PkaSk).

The block W, has the form W, = diag(W{, ..., Wg, W), where fork =1,...,v and Ind(o},) =
{7k, s T, ) we have W} = diag (P, , @ Zg 1, - - o Py, @ Bkt ), With 2y = w13 if qi
is odd and Zy ; = (Im 7y ;)J1 if qx,; is even.

Finally for Ind(0) = {#¥,..., 7% i, —i, ..., 4, —i} we have

rar ™

0 P. 0 P.
. 0 0 2hq 2hy
WO = Cllag(ﬂ'1132gl_|_17...777'(113257(14_17 [ sz;,bl 0 ] s ee ey [ Pg;bb 0 ])

Proof. The proof follows from Lemmas 18 and 19. D

After determining the Jordan structure under non ¥, ,-unitary similarity transformations
we now derive the corresponding structured canonical form under ¥, ,-unitary transforma-
tions. For this we need the following two lemmas.

26



Lemma 22 Let C be a X, ,-skew Hermitian matriz and let X € A(C) and ReX # 0. If
N, (A) = Al + N, is a Jordan block of C, then there exists a full rank matriz U such that

I, 0 N7 (ilmA) —N+(Re
0 —I, ] , U= U[ —N(+(Re /\)) N‘(i(lm /\)) ] ' (4)

r

vy, U = [

r

If C is real, then there are two cases.

i) If X is real nonzero then there exists a real full rank matriz U such that

T [ o B N-  —NF())
UEMU_[O ol U= by N |

r

ii) If X is nonreal then there exists a real full rank matriz U such that

Iy, 0

N7 ((ImA)Jy)  —NF((ReM)1y) ]
0 _IQT

],CU:Ul :

urs, U= [ —NF((ReM) ) N7 ((ImA)Jp)

Proof. By Lemma 18 for the Jordan block N, ()\) there exists a full rank matrix I/ such that

Wﬁmﬁzlﬁfﬁﬂ,cﬁ=ﬁ®MM@»me®»

Set 7, = diag(I,, P~1)Y, and U = UZ,. Then we can easily verify that (45) holds.
Now let C be real. Then in case i), if A is real nonzero, taking U real we have the real form.
In case ii) if A is nonreal, by Lemma 18 there exists a real matrix U such that

4T v 0 P, ® Y14 r B
U2 U = [ P &%, 0 , CU = Udiag(N,(A), N.(—A)),
. ReA ImA )
with A = [ “Im A ReA ] . Setting

Zr = diag(IZW (PT ® E1,1)_1)T27°
and U = ﬁZT, the assertion follows. 0O

Lemma 23 Let C be a X, ,-skew Hermitian matriz and let o € A(C) be purely imaginary. If
N,(c) = ol + N, is a Jordan block of C, then there exists a full rank matriz U such that we
have the following cases:

i) If r = 2s, then

I, 0 N7 (o) + Lipesell  —NF + Ligegell

H _ _
U, U= l 0 -1, ] CU_U[ INF = Lige,ell Ny (o) - Sigegetl |+ (40

where § = (=1)%im and = € {%i} is the structure index corresponding to the Jordan
block N, (o).
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ii) If r =2s+ 1, then

L 0 0 NZ(o) e,  -NF
UM, U=10 8 0 |, CU=U| 231 5 V280 |, (47)
00 —I -NS -, Ni(0)

where f = (—1)** 7 and © € {£1} is the structure index corresponding to the Jordan
block N, (o).

If C is real then we have to distinguish whether o = 0 or not.

a) If 0 =0, then there exists a real full rank matriz U such that

- _N*t
UTEMU:[IS 0 ] CU:U[ N NS]

0 -1 ~-Nf NT
if r = 2s and
L 0 0 Ng Yley  —NjF
vts, U=]10 8 0 |, CU=U @ﬁeT 0 @ﬂef 7
0 0 —I, B S

if r=2s+1. Here 3 = (=1)**x and = € {£1} is the structure index corresponding to
the Jordan block N,.

b) If o is nonzero then there exists a real full rank matriz U such that if r = 2s then

I, 0 N7 ((Imo)Jy) + E, —NF(02) + F,
T _ _ s s
UT 8V = l 0 —I, ] CU—Ul _NF(0) =B, N-((Imo)Jy) = E, |’
1 0 0 . .
where 2, = 33 0 J and 3 is the same as in the complex case. If r = 2s+ 1, then
1
Ir—l
uts, U = Bl )
—dr-1
No(ma)h) | N (02)
mo -
5 1 lgfz s (U2
cu = U 0 —lgﬁlz (Imo)Jy | 0 —lgﬁb ,
0
NFO) | s, | No(me))
— Y27,

where 3 is again the same as in the complex case.

) Proof.A By Lemma 19, foAr the Jordan block N.(o), there exists a matrix U such that
Uy, ,U=rP, and CU = UN,(0).

i) If r = 2s, then we partition

_ _ Ns(o) 656{1
”PT—[(WPS)H 0 ] NT(")—[ 0 Ns(a)]'



Here we have used that P = (=1)*~'P, and 7 € {%i}. Setting Z, = diag(I,, (v P)~")T,
and U =UZ,, a simple calculation yields (46) with this U.
ii) If r = 2s4 1, then we partition

0 0 L A Ns(o) e 0
TP, = 0 (-)*tx 0 |, Ni(o)= 0 o el ],
(mP)H 0 0 0 0 Nyo)

V2 2
) L 0 2,0 -2,
S B 0 1 0
’ L0 L2

and U = UZ,, again a simple calculation yields (47).

With Lemma 19 the real case follows analogously. 0O

Using these lemmas we can now derive the structured Jordan canonical form for X, ,-skew
Hermitian matrices under similarity transformations with ¥, -unitary matrices.

Theorem 24 LetC be a X, ,-skew Hermitian matriz with pairwise distinct eigenvalues Ay, ..., A,
with positive real parts and pairwise distinct o4, ...,0, with real part zero. Then there exists
a X, o-unitary matriz U, such that

R. T.
_|_
Uu-cu = T ky B Iy (48)
c I ¢ B
Tg Rg

For the different blocks we have the following substructures.

i) The blocks with index ¢, associated with eigenvalues not on the imaginary azxis, are
R. = diag(RS,..., R}) and T, = diag(Ty, ..., TS) where for k=1,...,u

R = diag(N,, (iTmA\),..., N, (ilm ),

Dk,

i = —diag(Ny (Redp),...,NJ (Reg)).

ii) The blocks with index g, associated with purely imaginary eigenvalues, are

Rf = diag(Cy,...,C,), R, =diag(Dy,...,D,), T,=diag(F,...,F)),

g

where for k =1,...,v the substructures are
Cr = diag(C§,Cf,Cy), Dp=diag(Dg, D, D;), Fyp=diag(Ff, Ff, F),
with further partitioning
e . _ 1, " _ 1. I
cp = dl:aLg(Z\f%1 (ok) + §Zﬁk,1€qk71€qk717 .. ‘7quvtk (or) + §Zﬁk7tkeq1c,tk eqk,tk)7

. _ 1, H _ 1, H
Dleg = dlag(quJ (Uk) - §Zﬁk71€qk,1 eqk,ﬁ T qu,tk (Uk) a §Zﬁk’tkequtk eqkytk%
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1 1
e _~ H + - H
by = diag qk 1 QZﬁkvleqk,leqk,ﬁ T _qu,tk + Zﬁkikeqk,tk eqk,tk)7

(=N
Ny, ﬁu U ﬁu
cr o= diag([ “,21(;’“) 26“]7‘_‘7[ j_wk; k) 2€k,wk])7
(N,

k
—7e Tk

Ug,1 T2 Cupu, Tk
Dl—: = diag _k ( )7 Nukwk(gk))v
N+
u Uk w
P = —dlag[ 26“ ] ol van s s
2 Tug; 2 TUk,wy,
Cp = diag(Ny (o)), Ny, (0k)),
- . Ok 465@ 1 Tk el
Dy = diag(| 5 _ 5 IR DR
5 Cuy 1 Nv (Uk) T2 Y,z Uk,zk( k)
_ V2 V2
Fro= diag( e, NG L e N D).
Each M\ (—)1,) has s Jordan blocks of sizes Py« Ph,s- Loach purely imaginary eigenvalue
oy, has
a) ty even sized Jordan blocks of sizes 2qi1,...,2qk+, with the corresponding structure
inertia indices i(—1)H1 T3, 4 .. .,i(—l)qkytk'i'lﬁk’tk ;
b) wy odd sized Jordan blocks of sizes 2up1+1, ..., 2uy \, +1 corresponding to the structure
inertia indices (—1)"1t L (=1)%kwe Tt
c) z odd sized Jordan blocks of sizes 2vp1+1,...,2v; ., +1 corresponding to the structure

indices (—1)"m1 ... (=1)".

Proof. The proof is analogous to that of Theorem 12, using Lemmas 22 and 23 instead of
Lemma 10 and 11, respectively. O
As the final result in this section we present the real version of Theorem 24.

Theorem 25 Let C be a real X, ,-skew symmetric matriz with pairwise distinct real positive

eigenvalues aq, . .., oy, pairwise distinct eigenvalues Ay, ..., A, with positive real and imagi-
nary parts and pairwise distinct purely imaginary eigenvalues o1, ..., 0, with positive imagi-
nary parts. (Note that we then also have eigenvalues —avy, ..., —0n, A, ... A, —A1, . 0,— A,
M., = A, and —oq,...,—0, and also 0 may be another eigenvalue.)
Then there exists a real 3, ,-orthogonal matriz U, such that
R, T.
RF T,
U'c = g g 49
Tr R, ’ (49)
T —
T R,

where the different blocks have the following substructures:
i) The blocks with index ¢, associated with the eigenvalues with nonzero real part, are
R. = diag(R., R,), T.=diag(T.,T.),
R. = diag(Ry,..., R;), R.=diag(R{,...,R}),

o= diag(TY,..., 1Y), T.=diag(T},...,T}),
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where for k= 1,...,n the substructures are

R;:diag(zvjrm, N7 ), T,S:—diag(Nﬁyl(ak),...,N"' (ar)),

T ey, Troty

and for k=1,..., 4,
R = diag(N,, , ((ImAx)J1), ..., N ((ImAg)J1)),

Ti = —diag(N, (ReAn)lz),..., NF  ((ReXp)lz)).

The blocks with index g, associated with the purely imaginary eigenvalues, are

R} = diag(Cy,...,C,,Co), R, =diag(Dy,...,D,, Dy), T,=diag(Fy,...,F,, Fp),

with the partitioning
Cr = diag(Cy, CF,Cr), Dy = diag(Df, D, Dy, Fy, = diag(Ff, F;7, Iy ),
and for k =1,...,v the blocks have the further substructure

cp = diag(Nq_k ((Imo'k)Jl)‘|‘Ek,1---7Nq_k7tk((ImUk)Jl)‘|‘Ek,tk)7

1

D = diag(N(;yl((Imak)Jl)—EkJ,... Ny ((Imog)J1) — Exe,)s

7 Akt
Fp = diag(=Nj (02)—|-Ek71,...,—N;;tk (02) + Ert, )y
_ 0 _ 0
b | Nty |2 e e |
0 —glz ‘(Imak)Jl 0 —412 ‘(Imak)Jl
Df = diag(Ny, , ((Imog)J1), ..., Ny (Im o)1),
NI (09) Nt (09)
FF = —diag(|—2——, ..., [—28—"|);
’ g([ 0 I 0 I )
C, = diag(N&yl((Imak)Jl),...,N@ka((Imak)Jl)),
[ (Im oy).Jq ‘ 0 lglz (Im o).J4 ‘ 0 lglz
D; = diag 0 e 0
’f U Na (ma) | Nz (maw)
L -5 =51y k
- . 0 . 0 .
Fk = dla‘g( ﬁ]z _va,l (02) AR ﬁ]z _vavzk (02) )
L 2 2

0 Ji

Finally, the blocks with index 0, associated to the eigenvalue 0, are

Hereforj:l,...,tk, Ek7j:%ﬂk7j[0 0 ]

COZdlag(Cgvc(-Jl—ch_)v DOZdlag(D(erD(-)l—vDa)v FOZdlag(ngF(;I—vFO_)v
with substructures

Cs = Dj=diag(Ng,,,...,N5, ), F5=—diag(Nf, ,...,NS );

x1? 9 2w,
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cr o= diag(] o Feu || N e )
0 g ﬁ T 0 9 9 —ﬁeT 0 9
Ja

—73 ¢y 2
. _ _ . Nt N+
Df = diag(N,....Np,), Fo*z—chag<l Vo, ][ﬁ% ]%
2 ‘0 2 %0
_ o _ V2 V2
Cy = diag(Ny,...,N.), Fy = dlag([Tehl,—N}:],...,[Tehw—]\f}j'b]%
V2 T 0 V2. T
Dy = diag([ \/g 2€_h1]7'”7[ v 2€_hb‘|)‘
=3 e NV, =3 en, Ny
Fach nonzero real eigenvalue oy, (—ay,) has Iy Jordan blocks of sizes fi1, ..., fr1, and each

nonreal eigenvalue Ag (—Mp, A, —Ag) that is not on the imaginary axis has sj, Jordan blocks
with s12€8 Pr1, ..y Phosy-
For each nonzero purely imaginary eigenvalue oy, (—oy) we have

a) ty even sized Jordan blocks of sizes2qy 1, . . ., 2qx+, with the corresponding structure iner-
tia indicesi(—1)%1F1 3 i (= 1) a3y for op and i(=1)T1 By, ..o, i(—1) %% By,
Jor —oy;

b) wy odd sized Jordan blocks of sizes 2up1+1, ..., 2uy \, +1 corresponding to the structure
inertia indices (—1)"1t L (=1)%kwe Tt

c) z odd sized Jordan blocks of sizes 2vp1+1,...,2v; ., +1 corresponding to the structure

indices (—1)"m1 ... (=1)".

The zero eigenvalue has 2¢ even sized Jordan blocks with sizes of 2x1,2x1, ..., 22, 2z, with
corresponding structure inertia indices v, —ti,...,t,—1 , and a + b odd sized Jordan blocks,
where a of them have sizes 2g1+1,...,2g,+ 1 with the corresponding structure inertia indices
(=)t o (=1)9F and b of them have sizes 2hy + 1,...,2h, + 1 with the corresponding

structure inertia indices (—1)™, ..., (=1)".

Proof. The proof is analogous to the proof of Theorem 17 using Lemmas 22 and 23. O

We have seen that the results for X, ,-Hermitian and skew Hermitian matrices are quite
similar, which was to be expected, since both classes have an algebra structure. In the next
section we now study the canonical forms for matrices in the associated Lie group of ¥, -
unitary matrices.

5 XY, ,unitary matrices

In the previous two sections we have studied structured Jordan canonical forms for X, .-
Hermitian and skew Hermitian matrices. Both these classes have an algebra structure, the
Y, g-Hermitian matrices form a Jordan algebra and the ¥, ;-skew Hermitian matrices a Lie
algebra. The Lie group associated with these two algebras is the class of X, ,-unitary matrices.
In order to derive structured canonical forms for this group analogous to the results for the
algebras, we can make use of the Cayley transformation.

Lemma 26 If A is 3, ,-unitary and 1 ¢ A(A) then the Cayley transformation of B

B=p(A) = (A+ (A=) (50)
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is X, g-skew Hermitian. Conversely, if A is ¥, ,-skew Hermitian then B as in (50) is ¥, 4-
unitary.

Proof. We only prove the result for the case that A is ¥, ;-unitary. The other direction
follows form the fact that p(p(A)) = A.
Since A is %, -unitary, ¥, A = A7HY, . By this relation

YpeBB = pq(A‘|‘I)(A I)_l_(A_H‘|‘I) ( )
= (ATt - 1) 1qu—(erAH)( AN = AT, ,
= (A‘|‘I) (! _A) p,q:_BHE%q:_(Ep,qB)H-

Therefore B is ¥, ;-skew Hermitian. 0O

Using the Cayley transformation p the canonical forms of ¥, -unitary matrices (if 1 is not
an eigenvalue) can be easily obtained from the canonical form of the corresponding ¥, -skew
Hermitian matrix discussed in Section 4. However, if we Cayley transform the canonical form
it is usually not a canonical form again and we need further reductions to obtain again the
canonical form. But, obviously it sufflices to further reduce each Jordan block separately.
Before discussing these reductions, we first split the Jordan structure of a ¥, ;-unitary matrix
G into two parts, the part related to the eigenvalue 1 and the rest.

Lemma 27 Let G be a 3, ,-unitary matriz that has 1 as an eigenvalue. Then, there exists a
nonsingular matrix Y, such that

VY = diag(Zp, 00s Zpogn),  YV7'GY = diag(Gy, Ga),

where p1 +p2 = p,i + g2 = ¢, G1 is X, g -unitary with 1 ¢ A(Gy) and Gy is ¥, 4, -unitary
and has 1 as only eigenvalue.
Furthermore, if G is real, then Y can be chosen real, so that also Gi, Gy are real.

Proof. Let Y be a nonsingular matrix such that
GY = Ydiag(Gi,G2) = VG,
with 1 ¢ A(gl) and A(g2) = {1}. Then we have yHgH gHyH and, using the ¥, ~unitarity

of G we have the discrete Lyapunov (or Stein) equation
gAH(j}Hznq)})gA = )}Hznqj}- (51)

By the diagonal block form of G and the eigenvalue splitting, the solution of (51) has also
block diagonal form, i.e., YAV = diag(Ty,T3). Note that Y,V as well as T, T} are
nonsingular Hermitian. Therefore, there exist nonsingular matrices 7y, Z5 such that

Z{ITIZI = Ephqm ZéqT?Z? = E1727‘12'

To finish the proof, we set Y = ,')A)di:;,ug_);(Zl7 Z3), G1 = Zflngl and G, = Zz_lgAQZQ.

The real case is clear, since 1 is a real eigenvalue. 0O

It is well known, that Cayley transformation directly leads to a rational relationship between
the eigenvalues, i.e., if v # 1 is an eigenvalue of a ¥, ;-unitary matrix G, then A = p(y) = %
is an eigenvalue of the Cayley transformation p(G) and we have the following well-known

facts.
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Proposition 4 Let G be ¥, j-unitary with 1 ¢ A(G). Set C = p(G) and let v € A(G) and
A=p(y) € AC). Then

i) A£1,—1.
ii) v and X have the same algebraic and geometric multiplicities.
iii) |y| =1 if and only if X is purely imaginary.

iv) If X € A(C) is not purely imaginary, then —\ = p(¥~!) and, furthermore, X\, =\ € A(C)
if and only if v, 771 € A(G).

In order to further reduce Cayley transformed Jordan blocks we need the following result.

Lemma 28 Let N,(\) be a Jordan block with X # 1 and let v = p(A). Then there exists a
nonsingular upper triangular matriz X, such that

X 'p(N(N) X, = N, (v),

and el X, e, # 0.

Proof. See, e.g., [14]. O
We are now prepared to present block by block the transformations of the results in Sec-
tion 4.

Lemma 29 Let G be a ¥, j-unitary matriz and let N () = vI+N with N = diag(N,,,..., N;,)
be the Jordan structure of G corresponding to v € A(G) with |y| # 1. Then there exists a full
rank matriz U such that

Ui, U = [ ]%I PON ] . GU=U [ Né'y) N(%_l ] (52)

and ¥71 € A(G) has the same algebraic and geometric multiplicities as 7.
If G is real then we have two cases:

i) If v is real then there exists a real full rank matriz U such that

o Py | NO) 0
UTEMU_[];% 0 ] QU_U[ 0 (N(v))‘ll'

ii) If v is nonreal then there exists a real full rank matriz U such that

T 0 Py %1, N(I) 0
E = ~ ? =
U Seall l%@zm o | 9UEU 0T vy |

. . Rey Imy
wlthr_l—lm'y Re'y]'
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Proof. We may assume without loss of generality that 1 & A(G). Otherwise by Lemma 27 we
can consider the smaller size matrix Gy. If p is the Cayley transformation, then by Lemma 26,
C =p(G) is ¥, ;-skew Hermitian. Furthermore, A = p(v) € A(C) and by Proposition 4 ii), iv),
A is not purely imaginary and the associated Jordan structure associated with A is Al + N.
Applying Lemma 18 there exists a matrix U such that

P I Ny 0
Uzp,qU_[Pﬁ K ] CU_U[ 0 Nw |

With U = ﬁdiag([, P](,l) and, since Py NP = —NH we have

o R R R e

Using the Cayley transformation then we have

Note that

p=NOT) = N+ DN - DT
{(N) = DN+ D7
= {p(v))*.

Applying Lemma 28, there exists a nonsingular matrix X = diag(X,,,..., X,,) such that
X1p(N (V)X = N (7). Obviously X" {p(N(\)} /X ~H = N(3)~.
Setting V = U diag(X, X ~#) we obtain

vy, V= [ 0 ] L gv=v [ N N(»?)—H ] (53)

and taking U = V diag([, PN) finishes the proof in the complex case..

Since the Cayley transformation of a real matrix is also real, we can apply Lemma 18 to
get the result for the real case. 0O

This result shows for the eigenvalues of a ¥, ,-unitary matrix that are not of modulus 1, the
structured canonical form cannot be of the form of a usual Jordan matrix, only half of these
eigenvalues have the classical Jordan structure, while for the other half of the eigenvalues we
have to involve the inverses of Jordan blocks.

For eigenvalues with |y| = 1 the canonical structure is even more complicated. If we restrict
the chains of root vectors to have the proper structures coming form a X, ,-skew Hermitian
matrices as in Lemma 19 then no Jordan block will appear in the canonical form. We can do
further reductions for which we will need the following simple result.

Lemma 30 Given a vector t = [ty,...,t,]7 and t, # 0 then there exists a nonsingular upper
triangular Toeplitz matriz T such that Tt =e,.

Proof. See [14]. D
We now study the reduction of Cayley transformed blocks arising form unimodular eigen-
values.
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Lemma 31 Let G be a X, j-unitary matriz and let v € A(G) with |y| =1 and v # 1. Let
N, (v) be a single Jordan block, then there exists a full rank matriz U such that

- Ny(y) ifesef! Ny(y)~"

Uiy U=PF., GgU=U 177t , 54

P9 0 NS(P)/) 1 ( )
if r =2s and

uts, U = BB,
(55)
Ny(v) ves %656{1]\]5(7)_1
gu = U 0 Y _6{{]\75(7)_1 )
0 0 Ny(7)~

if r =2s+ 1.

Here 3 = (=1)%im with # € {£i} if r =2s and 8 = (=1)*Tlx, m € {1} if r = 25+ 1 where
7 is the structure inertia index of the corresponding eigenvalue A = p(7y).
If G is real then we have two cases:

Im -~
. B . | Revy Imy 5 |01 1 1 T-Rey
i) Ify # —1, then withI' = [ “Im~ Rey ], P, = [ 1 0 ] and S(y) = —3 [ 15%27 o
there exists a real full rank matriz U such that if r = 2s, then
0 0 1
U, U= Poasy,, gr=v| Nl =7 [ P, o0 ] () (56)
0 Ny()—t
and if r = 2s+ 1, then
0 0 P,@Xia
s, U = B 0 I 0 ;
P,o%iy 0 0
(57)
Ny |} { } N,(T
GU = U S50)
0 r [ 17 0] N (I
0 0 Ny ()t
ii) If v = —1, then there exists a real full rank matriz U such that
T 0o B | N 0
urs, U = l proo | GU=U 0 N.(-1) | (58)
if r is even and
) Ny(-1) —e, —1ie elN( )
uts, U=pP, GU=U 0 —1 —61 N (-1~ |, (59)

0 0 Ny(—=1)7!

if r =2s+1. Here 3 = (=1)*1x and 7 is the structure inertia index of 0 corresponding

to p(G).
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Proof. We may again assume without loss of generality that 1 ¢ A(G) and set C = p(G).
By Proposition 4 the corresponding A = p(v) now is purely imaginary, and C has the Jordan
block AT + N,. Applying Lemma 19 there exists a matrix U such that

Uy, U=xP, CU=UN,\). (60)
If r =2s then # € {£i} and we partition

0 7Py

ﬁHzp,qﬁ:[(ﬂPS)H 0 ] NT(/\):[ 0 N

Applying the Cayley transformation we obtain

Using the notation N,(y) = p(Ns()\)) and the property that (N,(\) — )~ = %(Ns(y) -1

we obtain
V 1 - \ € €H \ —
p(N, () = | M) 2= :(;)(Ns(v) 1)1‘

Setting U = U diag(I,, (v P,)~'), then

HE — l ? é ] L GU=0 l Nso(’Y) LI - Ns(’Y))esez\%](\:s)(ﬁI_H(I— No(v)H ] '

By Lemma 27, there exists a nonsingular upper triangular matrix X such that X_1N5(7)X =

N(v). Since the last component of ¢ := X! (?es) is nonzero, by Lemma 29 there exists
a nonsingular upper triangular Toeplitz matrix T" such that 77 lt = e,. Setting Y = X (I —
Ns(v))T and U = Udlag(Y Y- HPS)7 we obtain (54), since (I — Ny(v))1 commutes with
Ny(v) and PN, (y)~ 7P, = N, (7)1

If r is odd, following (60) we partition

) ) 0 0 =P, Ns(A) e 0
Uy, U = 0o 68 0 |, NO= 0 X €l
(#P)" 0 0 0 0 Ng(A)

) No(v) FHI = No(y))es 52T = No(y))eset! (No(v) = 1)
gU=U 0 ’Y et (Ns(y) = 1)
Ns(7)
With U = Udlag s+1, ( ~1) we then have

o Jo oo
vy, U=10 3 0

I, 0 0

No(A) 25 = No(y))es FEB8(1 = No(9))ese No(y) = (1 = No(1)H)
CU=U| 0 Y Bl No(y) (1 = No(m)")
0 0 NS('V)_H
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Setting Y = 152X (I — N,(v))T and U = U diag(V, 1, Y—H3P,), we have (55).

If G is real and v # —1 then similarly we can use the transformation ¥® to update the
real forms (56) and (57) from (54) and (55), respectively. If v = —1 then the corresponding
eigenvalue of C = p(G) is 0. By Lemma 19 for an even size Jordan block of C there exists a
real matrix U7 such that

e~ | 0 P P I A
UEMU_[PTT o | CU=U1 o]

Proceeding as in Lemma 29 we obtain (58). For odd size Jordan blocks U in (60) can be
chosen real and from (55) we obtain (59). O

So far we have restricted ourselves to the Jordan structure associated with eigenvalues not
equal to 1. For the eigenvalue 1 we give a separate analysis.

Lemma 32 Let G be a ¥, ,-unitary matriz and let N, (1) be a Jordan block of G. Then there
exists a full rank matriz U such that
N,(1) —iBesell Ny(1)7!

H T _ s
UMS, U =P, GU=U| " N1 :

ifr=2s and if r = 2s+ 1, then

) Ny(1) e —%ese{[Ns(l)_l
vy, U=pP, GgU=U| 0 1 =N 1) |. (61)

0 0 Ny(1)~!

Here 8 = (—1)%r with ® € {£i} if r =25 and f = (= 1)*Tlxr with 7 € {£1} if r = 2s + 1.
If G is real, then there exists a real matriz U such that

T _ 7 | (D) 0
U EZMJU - P2T7 gU =U [ 0 NT(l)_l y

if v is even and if r = 2s+ 1 we have again (61).

Proof. By Lemma 27 we may assume without loss of generality that A(G) = {1}. Otherwise
we work on the small size matrix G,. We cannot use the Cayley transformation p but a
different rational transformation p(z) = (1 — 2)(1 + 2)71. If A is 3, ,-unitary then B = p(A)
is ¥, ;-skew Hermitian and conversely. With this new transformation we obtain the proof
analogous to the proof of Lemma 31. O

Using these results, we have the following structured canonical form.

Theorem 33 Let G be a X, j-unitary matriz G, let A1, ..., A, be the pairwise different eigen-
values of modulus less than one and let o1,...,0, be the pairwise different eigenvalues of
modulus one. Then there exists a nonsingular matriz U such that

U™'GU = diag(R., R, R.,).
i) The diagonal blocks R., R., associated with eigenvalues not on the unit circle, are
Rc — diag(Hl(/\l)v .- '7HM(AM))7 Ri = diag(Hl (/\_1)_17 . '7HM(A_M)_1)7

where for k = 1,..., 1 we have Hy(\,) = M\ + Hy, Hp(Mg) = M\l + Hy and Hy =
diag(Np, ,, .-, Ny, . ).

? pk,sk

38



ii) The diagonal block R, associated with the unimodular eigenvalues are R,, = diag(My, ..., M,),
where for k=1,...,v, we have My = diag(Ag1,..., Agt,i Bri, ..., Brw,)-

Here for j =1,...,t; we have

Ay = Ny (k) i(skﬁli,jeqme{[qu,J(U_k)_l
kg —

0 Ny, (@) ’
with 8 = 1 if op # 1 and 6y = =1 if o), = 1 and furthermore B ; = (=1)Prainy . with
T, € {£1}.
Moreover, for j = 1,...,w, we have
NTk,] (O-k) UkeTk,] S(O-k)eTk ‘]e{_INTkJ (O-_k)_l
By = 0 T} —ei' Ny, (7%) 7 :

0 0 NTk,] (O-_k)_l

with s(o) = 12— if o # 1 and s(1) = —1.

l—O'k

The matriz U has the form

0o WwW. 0
ults, u=|wh o o |,
0 0 Wy
with W, = di:aug(]sH17 .. .,]ADHM) and W, = diag(W', ..., W), where for k=1,..., 1 we have

Py, = diag(P,

Phr e
ng = dia'g(qukJ? SRR P?qkytk ; ﬁZ,IPQTkJ-I-lv SRR ﬁZ,ka%k,wk +1)'
Here for j =1,...,w; we have 3} . = (—1)”4“77;;7]4 with 7 € {£1}.

Fach eigenvalue g (/\_k_l) has sy, Jordan blocks of sizes py1, ..., pr,s, and each unimodular
eigenvalue o has

7Ppk75k) and for k=1,...,v we have

a) ty even sized Jordan blocks of sizes 2qy 1, ..., 2qy+, corresponding to the structure inertia
indices (=1)1 VB, (—1)qutk+1iﬁz7tk and

b) wy odd sized Jordan blocks of sizes 2ry1+1,...,2ry ., +1 corresponding to the structure
inertia indices (1)1 Y150 .. (—1)Tkvwk+1ﬁz7wk.

Proof. The proof follows from Lemmas 29, 31 and 32. O

Note that the structure inertia indices actually arise through the Cayley transformation in
the associated X, ,-skew Hermitian matrices, but they inherently describe also the associated
structure for the unimodular eigenvalues of G.

In the real case the structure is again more complicated.

Theorem 34 Let G be a real 3, ,-orthogonal matriz, let oy, ..., o, be pairwise different real
eigenvalues of modulus less than one, let A\1,..., A, be pairwise different nonreal eigenvalues
with positive imaginary parts of modulus less than one, and let v, ..., 7, be pairwise different
nonreal eigenvalues of modulus 1, also with positive imaginary parts. (Note that then also
041_1,...,04;1, Aoy Ay /\1_17---7/\;1?/\_1_17---7/\_u_ s sy, and possibly also —1,1 are
eigenvalues.) Then there exists a real nonsingular matriz U such that

U™'GU = diag(R., R, R.,).

39



i) The blocks with index ¢, associaled with eigenvalues not on the unit circle, are R, =
diag(R., R.) and R, = diag(R!, R.), with

R. = diag(Ki(en),...,Ky(ey)), R =diag(Ki(aq)™h ... Ky(a,)™h),
R. = diag(Hy(Ay),...,H,(A,), R.=diag(H;(A)™ .. H(A)™Y,
where for k = 1,...,n we have Kg(ay) = agl + Ky and Kj, = diag(Ny, ;.. '7kavlk)
and for k = 1,...,p we have Hy(Ay) = diag(Np, , (Ag)s ... Ny, (Ar)), with A =
ReA; Im A
—ImA;, ReXp |’

ii) The block R, associated with the unimodular eigenvalues, is R, = diag(My, ..., M,, M_, M)
with

Mk = diag(AkJ, ceey Akﬂgk; BkJ, .. .,B]“wk)7

M_ = diag(A7,..., A7 ,By,...,B; ),
My = diag(Af,..., AL, Bf,...,B},).

Here we have the following substructures:

a) Forj=1,...t

with B ; = (=1)Pxaing 5 and 7f ; € {+£i}.
b) Forj=1,...,wg

0 0 0 _1

0 Iy [—X1,1, 0N, (D) 7! 7
0 0 Ny (T

with

Im
_ Re Tk Im Tk _ 1 1 1—Re~vi
e = [ —Im~v, Rewve |’ S(T) = ke '

c) Fork=1,...,t_

d) Fork=1,...,w_

_ _ _1 T _1\—1
NTk_( 1) €, 2er%el NTk_( _13
Bk_ = 0 -1 -6 Nrk_(_l)
0 0 N, (1)1
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e) Fork=1,...,t}

AF = Nq:(l) 0
k 0 Nq:- (1)_1
f) Fork=1,... wy
T —
NTZ,(l) €t —5676%-161 NTZ (_13 1
Bl = 0 1 —ey NTZ, (1)
0 0 NTZ,(l)_1
The matriz U has the form
0o Ww., 0
urs, u=|1wr o o |,
0 W,

where

W, = diag(W,,W.), W, =diag(Wy,...,W W W),
Wc = diag(]sKl, ey pkﬁ), Wc = dlag(le ® 21717 ceey ]AD]{M ® 2171)
and as substructures we have for k = 1,...,n that P]{k = diag(Pfkyl, .. '7Pfk,lk) and for

k=1,...,u that ka = diag(Ppm, .. '7Ppk75k)'
The substructure for the blocks with index u is as follows:

1) For j=1,...,w; we have

) ) 0 0 RM @ X
W]g = diag(quM & 21717 ey Pqu,tk ® 2171; 52,1 . 0 12 0 s
PL %, 0 0
0 0 Prkywk @ X1
...,ﬁ,iwk ) 0 I 0 ),
Pl ®Y 0 0

with By ; = (—1)”4"'177,27]4 and wj, ; € {£1}.
2) Fork=1,...,w_ we have

Wl" = dia,g(qul—7 .. .7P2qt—_;ﬁ1_P27,1—+17 . .7ﬁ1;_P27*;_-|—1)7

with B = (=) Vxy and 7 € {£1}.
3) Fork=1,...,wy we have

U ool F b . ptp + 7
W—I— = dlag(qu;r, ey qu;:- N ﬁl P27°1"-|—17 ceey ﬁw+P2T$+ -I-l)’
with g = (—1)7’:"'1772', and T € {£1}.
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Fach real ergenvalue oy, (04,;1) has 1, Jordan blocks of sizes fi1,..., fi1, and each eigenvalue
Me (M, /\,;1, /\_k_l) has sy, Jordan blocks of sizes py1,..., ks, -
Fach nonreal unimodular eigenvalue vi (7g) has ty, even sized Jordan blocks of sizes2qy 1, ..., 2qx+,
corresponding to the structure inertia indices (—1)%71"'12'@31, ey (—1)qutk+1iﬁz7tk and wy odd
sized Jordan blocks of sizes 2rp1 +1,...,2r; w, + 1 corresponding to the structure inertia in-
dices (—1)Tea¥1G0 o (=1) et e
The eigenvalue —1 has 2t_ even sized Jordan blocks of sizes ¢; ,qy ,...,q;_,q;_ correspond-

ing to the structure inertia indices t, —1,...,1,—t, and w_ odd sized Jordan blocks of sizes
2r7 +1,...,2r, + 1 corresponding to the indices (—1)"1 Y187, . .., (—1)Tw—+1ﬁ;_.
The eigenvalue 1 has 2t even sized Jordan blocks of sizes qi", qi" .. .,q;: , q;: corresponding

to the structure inertia indices i, —1,...,i,—i and wy odd size Jordan blocks of sizes 2r1 +
+
1,.. .,2r$+ + 1 corresponding to the indices (—1)7’;r+1ﬁi", cer, (—1)Tw++1ﬁ$+.

Proof. The proof is analogous to the proof of Theorem 33. O
Finally we discuss the canonical forms under X, ,-unitary similarity transformations. To
simplify the notation which is even more technical, we introduce for a nonzero scalar v the

blocks
NF() = (Na(1) + M) 7Y, NE() = 2 (Ne(y) = No()~H)

2 2
and similarly for a 2 X 2 real nonsingular matrix I' we set
1 _ _ 1 _
NI = SOND) 4 No(D)F), N7 () = (N () = () 7).

Lemma 35 Let G be a X, j-unitary matriz and let N, (v) =1+ N, be a Jordan block of G.
If |v| # 1, then there exists a full rank matriz U such that

wwMUZ[ﬁ E;W gU:U[jg%%_QQ%W' .

If G is real then we have two cases:

i) If v is real then there exists a real full rank matriz U such that

U%MUZ[%_i]’gU:U[£€8>XE%W' o

ii) If v is nonreal then there exists a real full rank matriz U such that

U5%W:l%T_L]’gU:Ulj§2>3¥£yL "

. . Rey Imy
wlthr_l—lm'y Re'y]'

Proof. By Lemma 29 for N,(7) there exists a matrix U such that
e | 0 B _p | N0
Uy, U= [ P ] , GU= U[ 0 N |
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With U = (A]di:;,ug_);(lr7 PT)TT we th(§n have (62).
If G is real and 7 is real, then U can be chosen real and hence also U is real and we have
(63). If v is nonreal, then by the real form in Lemma 29 we obtain (64). O

Lemma 36 Let G be a ¥, ,-unitary matriz and let N.(y) be a Jordan block associated with

an eigenvalue v of modulus one. Then there exists a full rank matriz U with the following
properties:

i) If r = 2s, then with § = (—1)%iw, where 7 € {+i} we have

I, 0
vy, U= [ o —I ] :
GU =U NF(v) + iéﬁe est('y)_H —Ng(v)+ iéﬁesegNS('V)_H

UL N ) - el IN ) NF o) - el )]
where =1 if v # 1 and d = -1 if y = 1.

i) If r =2s+ 1, then with 3 = (—1)*t'x, where 7 € {£1} we have

I, 0 0
UHEZMJU: 0 5 0 )
0 0 -1,
NF(y) + e e N ()7 Lye, - <>+ﬁs<>eeHN< i
gU=U —L23eH N, ()~ Y \/_ﬁeHN( )-H

—N; () = B N, ()T = Lye, NF(y) = Bl Ny ()7
where s(y) = % if v # 1 and s(1) = —1.

If G is real then there exists a real matriz U with the following properties:

a) If v # +1 and r = 2s, then

T _ |40 NfT)+E -N7([)+E
UEMU—[O —IT]’ GU = U[ NSO B NED) -

9

| Rey Imy _5|0 0 T
wheref_l_ImPy Re’Y] and F, [0 JI]NS(F) .

b) If v # +1 and r =2s+ 1, then

125 0 0
UTEWJU = 0 B 0 ,
0 0 -1
NF () + E ) N;(I)+ E
S T 52@F S T
GU = U | 230, LN,D)T | T | =280, LN,(T)~T |,
- 0
_N_F_ET N+F—ET
s (D) _r ()
R 0 0 R 1 _ _Im~y
here E, = 5 | Ny and S(v) = -4 T-Rev |
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c) If y=—1 and r = 2s, then

I 0 NF(-1) —N7(-1)
uTs, U= l . _IT]7 gU:Ul CNACD) NE )

d) If y=—1andr =2s+1, then

I, 0 0
vy, U=10 3 0 |,
0 0 -1
NF(=1) = Be eI N(—1)"T  —L2e, —N7(=1) = Ze eI Ny(—1)~T
GU =U — 23T N, (—1)~T -1 — 23T N, (-1)~T

e) Ify=1 and r = 2s, then

I 0 NP - =Nl
U'S,,U = [ 0 -1, ] gU:U[ —Ns((i) Nﬁ((l))

f) Ify=1andr =2s+ 1, then

I, 0 0
vts, U=10 5 0 |,
0 0 —I,
NF(1) = BegeTN,()™T L2, —N7 (1) — BegeT Ny(1)T
GU=U 3TN, (1) T 1 — 23T N (1)7"
N7 (1) + Ze TNy (1) —L2e,  NF(1) 4 LeyeT Ny(1)-T

Proof. The proof is analogous to the proof of Lemma 35, using the results in Lemmas 31
and 32. O

This finally brings us to the structured canonical forms under X, ,-unitary or in the real
case Y, -orthogonal transformations.

Theorem 37 Ley G be a X, ,-unitary matriz with pairwise distinct eigenvalues Ay, ..., A\, of
modulus less than one and pairwise distinct eigenvalues vy, . .., 7, of modulus one. Note that
then also /\_1_17 .. -7/\_u_1 are eigenvalues. Then there exists a X, ,-unitary matriz U, such
that
R. 1.

R T,
1. R.

Y. R,

U'GU =
i) The blocks with index ¢, associated with the eigenvalues that do not have modulus one,
have the form R. = diag(Rg, ..., R;) and T, = diag(TY,...,Ty), where fork =1,...,u

R = diag(N (M) N (), T = —diag(Ny, (M) N;y | ()

k1 P Pk,
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ii) The blocks with index u, associated with the unimodular eigenvalues, are

RY = diag(Cy,...,C,),

T, = diag(f,...,F),
Here for k =1,...,v the blocks are

Cr = diag(C}, ¢, Cy),

B = diag(Ff, 7, 1),

Yu = diag(Gl, ..

R, =diag(D1,...,D,),
LG

Dy = diag(Dszzij;%
Gk — diag(G;G:lez)v

and with §, = 1 for v # 1 and §, = —1 if v, = 1 the substructures are

. . 1. _
Ck = dlag( 9% 1(7k> + 525kﬁk716qk,1 eiJ Nq/m ('Yk) )

1
+ . H
cey qu,tk (’Yk) + _Z&cﬁk,tkeqk,tk eqk,tk

2

e . 1 H
Dy = dlag( qk1(7k)_§uskﬁkleqk1 qkquk1(7k) )

1. .
N, (k) = 210k Bkt Can iy €ar, Nawo,, (V0)

Ff = diag(—N .

— 1 . H _H
T _qu,tk (Pyk) + 525kﬁkvtkeqk,tk eqkytk qu,tk (7]6) );
. . _ 1. _
Gk = = dlag(N!Jk@ (7’“) + 525kﬁk716qk,1 eiJ qu,1 ('Yk) H7
L. H -H
qu S (Pyk) + §Z(Skﬁkvtkeqk,tk €ar o qu tx ('Yk) )?
CF = dia ( Nukl( )+ (;)euklequ1Nuk1(7k) - \é_Pykeulm
k g 3[ H —H s
2 euk Nuk 1 (7]6) Yk
. N":f:,wk (P)/k) —I_ euk J W equ W Nuk,wk (P)/k)_H §7keuk7wk
SQL qu,wk Nuk,wk (P)/k) - P)/k
s(vk) H -H
D;CI— = dla'g( Uk )1 (P)/ ) - 2 euk71 eukJ NukJ (P)/k) 9
(%) _
N = e N )
rt = _dia ( Nu—k,1 (7’“) - S(;k)eumequ,lNum (Vk)_H
k 8 V2 H _H )
"2 Cupy Nuk,1 (7]6)
Nopo () = Gey, el Ny, ()1 .
\é_euk W Nuk J W (P)/k)_H
(%) V2
G;CI— = _dla‘g([ ukl(P)/k) + 2 euklequlNukl(')/k) —H 77kequ1]
- s(vk) H V2 g
e [NukJ (P)/k) —I_ 2 euk S W euk Wy, Nuk S W (P)/k) 77k Uk,

45
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Ik (7’“) + _Z(Skﬁkvleqk,l Cara qu,1 ('Yk) )

H

qu,tk (7k)_H)7

—-H

—H)

9

H



p— . S -
Ck = d1ag(N+ (’)/k) - (P)/k)e eH va71 (Pyk) H7

Vg1 9 VE,1 Vg1
s(7k) H -H
SERE) 1;:7% ( ) - 2 Uk, 2y, evk,zk va,zk ('Yk) )7
- . Yk gefklem (7k)_H
Dy = diag( VZ + s(k) H " |
— 75 TkCuxq NUkJ (716) + 2 CupaCyy va,1 (716)
T el Noy, ()7 )
—lg'ﬂcevk,zk N;:,zk (vk) + s(;k) Cop., efk% Ny, .. (v)~H
- . V2 - s(vk) H -H
Fk = dlag([77kevk,1 ) _Nv;ﬂ (716) - Tevk,1 Cop 1 va,1 (716) ]7
2 - s(vk) H -H
tt [TP)/keUk,zk ! _vaVZk (P)/k) - 9 evk,zk ekaZk va,zk (P)/k) ])7
2 H —-H
V2 N,
Glz = dlag( _ ? ezk(fylk) " (7;;) _H |
—vaJ ('Yk) + 2 Cupg eka va,1 ('Yk)
7267]];[k,zk va,zk (P)/k)_H )
—NG )+ Gey, el N, ()7
In these formulas we have used s(yk) = 25— if v # 1 and s(1) = —1.
Fach A, (/\_k_l) has sy, Jordan blocks of sizes py1,...,Pk,s,. For each unimodular eigenvalue
V& we have
a) ty even sized Jordan blocks of sizes 2qi1,...,2qk+, with the corresponding structure
inertia indices i(—1)%1 13 o i(—1) st gy
b) wy odd sized Jordan blocks of sizes 2up1 +1, ..., 2up , + 1 corresponding to the indices
(_1)uk,1+17 . (_1)uk,wk+1;
¢) z odd sized Jordan blocks of sizes 2vpq +1,...,2v; 5, + 1 corresponding to the indices

(=1)¥i, ..., (= 1),

Proof. The proof follows from Lemmas 35 and 36. O
As our last result we present the real version of the structured canonical form of X, .-
orthogonal matrices under X, ~orthogonal similarity transformations.

Theorem 38 Let G be a real X, ,-orthogonal matriz with pairwise distinct real eigenvalues

a1, ..., 0 of modulus less than one, pairwise distinct nonreal eigenvalues Aq, ..., A, of mod-
ulus less than one with positive imaginary parts, and pairwise different nonreal eigenvalues
Y1y -y Yo of modulus one also with positive imaginary parts. (Note that we then also have
the eigenvalues ay?, .. ot A A, AT SAL A 7---7/\_u_1 and 31, ..., %, as well

as possibly —1,1.)
Then there exists a real X, ,-orthogonal matriz U such that

R. T.
RT T
-1 _ U w
u-gu=\ R.
Y, R
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i) The blocks with index c, ‘associated with eigenvalues not on the unit circle, are split
further as R. = diag(R., R.) and T. = diag(T.,T.) with
k. = diag(R§,....R), R.=diag(R;,...,R5),
T. = diag(Ty,....T¢), T.=diag(T},...,T;)

and for k =1,...,n we have
RS = diag(NF, (a), - .,N};lk (ap)), Tf= —diag(N7, ()., N (ax)),
while for k=1,...,u

]%i:diag(N;;l(Ak),...,N;Sk(/\k))v T = —diag(N,, (Ak), -, N, (Ag)-

o pk,sk

ii) The blocks with index u, associated with the unimodular eigenvalues, are split further in
real and nonreal eigenvalues, as

RY = diag(Cy,...,C,,C_,Cy), R; =diag(Dy,...,D,,D_, D),
T, =diag(Fy,...,F,,F_ Fy), Y, =diag(Gy,...,G,,G_,Gy)

and have for k= 1,...,v the partitioning

Cr = dlag(0570:70;)7 Dk:dlag(Dleleij;)v
Fr = dlag(Flijlijk_)v Gk:dlag(G;G:lez)

In these blocks we have with

1 0 0 _r = 110 0 _r
By = 5%;‘[0 JI]qu,J(Fk) : Elw:§[0 EI]va,J(Fk) :
. 1o o r 1 1 B
Ep; = = Ny, )T Bi=-2| . ew |
" 2 l 0 £ ] ro (T8) ' 2 l 1fRZZk 1
the following substructures.
Cp = diag(N} | (Fk)—|—Ek71...,N;l:7tk (Tx) + Er,),
Dy = diag(Ng (T) —Ek71,...,N;;tk(Fk) — Ery,),
b = diag(=Ng, (Tk) + Erase ooy =Ny (Fk) + Bty
—— —diag(Nq;l(Fk)+Ek71,...,Nq;7tk(Fk)+Ek¢k)
. 0
Nt (T E
Cf = diag( e () + B 2, |
[ 7_§12]N'U«k,1 (Fk)_T ‘ Iy
. 0
NE  (Tp) + Ep
..., diag( by (1) & B, ‘ @Fk )
[07_52212]]\7“;@,1% (Fk)_T ‘ Iy
D = diag(N} (%) _Ekvh‘“’Nl::,wk (Tr) = Eroy )
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By

Gy,

diag( NJkl(Fk)—Em Nu_kw(rk) B,

= —da

g [o,ﬁfzmkl(rw T o, ﬁfzmkw(rw ’
0

2

= diag(N}  (I'k) —EkJ,...,Nj;ka (Tx) = Ek.zp),

Uk, 1

L'y ‘ [OvﬁIQ]va1(Fk)_T

= diag( 0 ~
_ﬁrk ‘ Ni;:1(rk)+Ekak

Ly ‘ [07 SQQIQ]]V%,Z,< (Fk)_T
ey 0
_N2r

2’“‘

- ),
Nq;ll;’zk (Fk) + Ek,zk

. 0 _ - 0 _ -
= dlag([ \/51 |_va71(7k) _Ehl]v"'v[ \/51 | _vayzk(rk) _Ek72k])7
212 2 12

_ ding(| 0 BIN, (07T 0,5 1N, (0071 ],
va1‘|‘Ek1 gy —N;ﬂkaﬁ—Ek’Zk .

The blocks associated with eigenvalues 1, —1 are partitioned further as

and have with E,;t =

tures

L

Cy = dlag(Ci,C’j_C,Ci), D:I::dlag(Dzel:ijl:—vD:_l:)v
Fr = dlag(F:iszﬁ:—vF:E)v Gi:dlag(GivGivG:T:)v

%eg egff (j:l) and EF = %ehge%Nhg(:tl)_T the substruc-
Dy = diag(Ny 4 (+1), - ;;Uéti(il))v
G = —diag(N, 4+ (£1), - Nyg ()5
gl NY () - BF e N ) - B e |
1a, 1 1 1
& —ieT Ns(E)™ £ —éeTaNgaii(ﬂ)—T +1
diag(N (il)—|—E ;(Qlti(il)ﬁ-E;ti),
diag( 9 D+ BT Ng}i(il)—l_E;ti )
iag LTNi(ﬂ) széegfiNgaii(il)—T 7
_ diag(IN~ (+1) — B+ Y2 V2
diag([N s (1) = Bf| & Z-epal, .o [Ny (#1) - F el E e ),
diag(Nf:i(jzl)—l—Efc,...,N;’bi (1) + £7),
+
_ V2, T
£l PN ()T 5 ehbj bi(il) )

diag(

:Féehli N;:i(il) - B :Féehfi h:t (£1) -
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, 2 _ , _ .
Fr = dlag([igehf,—l\f}bf(il)—I—Eli],...,[:l:—ehzt ~NTL (£1) + EE)),

2
—N (1) - o

- — 4 ﬁe;‘fliNhgc(il)_T
+ - lag( DU  AT— (il)—Ei

FEach real eigenvalue ay, (04,;1) has Iy, Jordan blocks of sizes fr1, ..., fr1, and each Aj (/\,;1,

Ak, /\_k_l) has sy, Jordan blocks of sizes pi1, ..., Ph,s,-
Fach nonreal unimodular eigenvalue vy, (V%) has

a) ty even sized Jordan blocks of sizes 2qi1,...,2qk+, with the corresponding structure
inertia indices i(—1)%a 3 000 i(—l)qutk‘i'lﬁmk associated with vy, and ((—1)%1 5} 1,
(=) By associated with g ;

b) wy odd sized Jordan blocks of sizes 2up1+1, ..., 2uy \, +1 corresponding to the structure
inertia indices (—1)“a+1 . (=1)“Rwe Tl

c) z odd sized Jordan blocks of sizes 2vp1+1,...,2v; ., +1 corresponding to the structure
inertia indices (—1)Vk1, ... (=1)"%%.

The eigenvalue 1 has 2cy even sized Jordan blocks of sizes 2z, 227, .. .,2xj’+,2wj'+ corre-
sponding to the structure inertia indices i, —t, ..., ¢, —%, and aq + by odd sized Jordan blocks,
ay of them of sizes 2g1 +1,.. .,Qg;:r + 1 with the corresponding structure inertia indices

+
(—1)57;r"'17 cer, (—1)Q“++1 and by of them of sizes 2hT +1,.. .,2h2’+ + 1 with the corresponding

. .. . Rt hF
structure inertia indices (—1)"1 ..., (=1) .
Similarly, the eigenvalue —1 has 2c_ even sized Jordan blocks of sizes 2z ,2x7, ..., 22,2z,

corresponding to the structure inertia indices i, —t,...,%,—t, and a_ + b_ odd sized Jordan
blocks, a_ of them of sizes 2g7 +1,...,2g, 41 with the corresponding structure inertia indices

(=)ot (=1)% =Y and b_ of them of sizes 2hT +1,.. ., 2h; +1 with the corresponding

structure inertia indices (—1)" ..., (—1)hb_—.

Proof. The proof follows directly from Lemmas 35 and 36. O

6 Conclusion

We have presented real and complex structured Jordan canonical forms under real ¥, .-
orthogonal and X, -unitary matrices, respectively. Combining these results with the struc-
tured canonical forms for Hamiltonian, skew Hamiltonian and symplectic matrices in [14] a
complete list of the possible structured canonical forms is available.

Actually by Remark 2 the structured Jordan canonical forms for groups of structure ma-
trices such as complex X, ,-symmetric, skew symmetric and orthogonal matrices, complex J
symmetric, skew symmetric and orthogonal matrices, can be derived in a similar way, were

I, 0
placed by general nonsingular Hermitian and skew Hermitian matrices, respectively. Due to

I .
J = [ _0 . ] We can also generalize these results to the cases that X, , and J are re-
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the large amount of material that we have already presented we have refrained from presenting
these results.

It is also possible to generalize all these results to the matrix pencil case with structures
as it has been done for Hamiltonian pencils, and symplectic pencils in [14] and for skew
Hamiltonian/Hamiltonian pencils in [15, 16]. This generalization can be done as follows:
Suppose that for a matrix pencil A — AB with say A = A, B = B the matrix B is invertible,
then the matrix A = B~ A satisfies BA = A”B. So we can determine a nonsingular matrix
U such that

UTBU =D,, U AU = D,.

Taking the product form of A we have
UTBU =Dy, UT AU =DyD,,

which is just the result of Thompson [18] or Uhlig for the real case [20]. We can also easily
obtain the canonical forms for all the pencils with A =+ A", B =4+BH.
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