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1 Introduction

From a theoretical point of view, a physical body can be treated as a set B of material

points representing the atoms or molecules of the body's material. Considering this body

as a continuum, the theory shortly outlined in the following applies. For more details see

[Tri81].

First we introduce a system U of open subsets of B with the following properties:

a) ;2U and B2U .

b) Finite intersections of subsets from U are again subsets of U .

c) Any unions of subsets from U are again subsets of U .

U is called a topology of B and A

x

2U is called neighbourhood of a point x2B if x2A

x

.

B is called a Hausdor� space, if for each two points x2B and y2B there exist neighbour-

hoods A

x

and A

y

with A

x

T

A

y

= ;, i.e. the topology of B is rich enough to separate the

points of B.

The Hausdor� space B is said to have the dimension n, if for each x 2 B there exists a

neighbourhood A

x

that can be mapped onto an open subset of R

n

by a bijective mapping,

called chart or local coordinate system, with components fx

k

g

k=1:::n

.

If this mapping can be choosen to be C

1

and orientation preserving, the n{dimensional

Hausdor� space B equipped with the chart fx

k

g is called a n{dimensional C

1

{manifold

1

.

The mathematical assumptions made above correspond to the common physical under-

standing of bodies and physical spaces. So, from a general point of view, including also

shells, rods and "exotic" materials like liquid crystals, a physical body B and the physical

space S containing B can be considered to be special cases of manifolds.

To have a uni�ed approach, as well as for conceptual clarity, it is usefull to think geomet-

rically and to represent bodies in terms of manifolds [MH83].

2 Some Di�erential Geometry

The tangent space

Let M be a n{dimensional C

1

{manifold and let x2M. Then the tangent space T

x

M to

M at x is the vector space R

n

of vectors regarded as emanating from x. So vectors like

the velocity and the acceleration (see ch. 3) can be understood as elements of T

x

S to S at

x2S, where S denotes the physical space described as C

1

{manifold.

The dual space T

�

x

M to T

x

M is called the cotangent space. It's elements �2T

�

x

M will be

called covectors. A covector � is a functional �(x) :T

x

M7!R. In this sence T

�

x

M is dual

to T

x

M

2

. A covector is said to be "covariant", and a vector to be "contravariant".

1

This is not the most general de�nition of a C

1

{manifold, but it should be suitable for the

understandig of the present subject (for more details see [Tri81]).

2

After the introduction of cotangent spaces T

�

x

M, a vector v also can be de�ned as a functional

v(x) :T

�

x

M7!R.

1



Tensors

A tensor t of the type

�

p

q

�

at x2M is a multilinear mapping

t :

p copies

z }| {

T

�

x

M� : : :� T

�

x

M�T

x

M� : : :� T

x

M

| {z }

q copies

7! R :

It is said that t is contravariant of rank p and covariant of rank q.

Let fe

j

g � T

x

M and fe

i

g � T

�

x

M be the base vectors in T

x

M and the dual base vectors

in T

�

x

M respectively. Then the components of t are de�ned by

t

i

1

:::i

p

j

1

:::j

q

:= t(e

i

1

; :::; e

i

p

; e

j

1

; :::; e

j

q

) ;

and

t(w

1

; : : : ;w

p

;v

1

; : : : ;v

q

) = t

i

1

:::i

p

j

1

:::j

q

w

1

i

1

� � �w

p

i

p

v

j

1

1

� � � v

j

q

q

holds for all w

i

= w

i

a

e

a

2T

�

x

M and v

j

= v

b

j

e

b

2T

x

M.

The Riemannian metric

For x 2 M let g be a covariant tensor of rank 2 (i.e., a tensor of type

�

0

2

�

) with the

properties

g(u;v) = g(v;u); u;v2T

x

M

g(u;u) > 0; 0 6= u2T

x

M :

(2.1)

With this symmetric and positive de�nite (and therefore invertible) metric tensor g the

functional hu;vi := g(u;v) is an inner product on T

x

M. Written in components it reads

hu;vi = u

a

v

b

g

ab

: (2.2)

Introducing such a tensor g for each x2M we get a Riemannian metric on M.

Tensor and vector �elds

The associated tensor and vector �elds

For � := �

b

e

b

2 T

�

x

M the associated vector �eld �

]

:= �

a

e

a

2 T

x

M is de�ned by it's

components �

a

:= g

ab

�

b

with g

ab

denoting the components of g

�1

. The associated covector

�eld u

[

:= u

a

e

a

2 T

�

x

M to u := u

b

e

b

2 T

x

M is de�ned by u

a

:= g

ab

u

b

. Similarly t

[

means

the tensor associated to t with all indices lowered and t

]

with all indices raised, especially

g

�1

� g

]

and g � g

[

.

Scalar products

Using this notation and equation (2.2), we de�ne the dual paring "(� ; �)" between elements

of T

�

x

M and T

x

M and the scalar product "i� ; �h" in T

�

x

M by (u;v) := hu

]

;vi for u 2 T

�

x

M,

v 2 T

x

M and iu;vh := hu

]

;v

]

i for u;v 2 T

�

x

M. These de�nitions yield to the identity

hu

]

;v

]

i= (u;v

]

) = iu;vh for any u;v 2 T

�

x

M as well as hu;vi= (u

[

;v) = iu

[

;v

[

h for any

u;v 2 T

x

M.
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The dual base

In two or three dimensions, the dual base is de�ned by the vector product e

a

:=

e

b

�e

c

[e

a

e

b

e

c

]

.

Due to this de�nition the equation (e

a

; e

b

)=�

a

b

holds, and once the base fe

b

g is given, the

base vectors e

a

are uniquely de�ned. Since we deal here with spaces of arbitrary dimenson,

we have to go another way:

Let the base fe

b

g in T

x

M be given. On page 2 we just introduced and used a base fe

a

g

in T

�

x

M. From now on we postulate, that the base vectors fe

a

g ful�ll (e

a

; e

b

) = �

a

b

. This

uniquely determins the e

a

, since in case of n dimensions n

2

conditions have to be ful�lled

by choosing n components of n (co-)vectors. Note that this doesn't mean to have any

orthonormalized system

3

in T

x

M or in T

�

x

M.

The covariant derivative

Let x 2M. The covariant derivative of a vector v 2 T

x

M along a vector w 2 T

x

M is a

bilinear mapping de�ned by grad

w

v :T

x

M� T

x

M 7! T

x

M, ful�lling

grad

fw

v = f grad

w

v

grad

w

fv = f grad

w

v+ (rf;w) v

(2.3)

for all scalar functions f , where rf =

@f

@x

a

e

a

2 T

�

x

M and (rf;w) =

@f

@x

a

w

a 4

. De�ning

this for all x, v and w have to be regarded as vector �elds and we get a connection on

the manifold M. The Christo�el symbols 


c

ab

of this connection on M with the coordinate

system fx

c

g are de�ned by grad

e

b

e

a

= 


c

ab

e

c

. Using the properties (2.3) for v= v

a

e

a

and

w = w

b

e

b

, the identity grad

w

v = w

b

h

v

a

grad

e

b

e

a

+ (rv

a

; e

b

)e

a

i

follows. Introducing the

Christo�el symbols we get

grad

w

v =

 

@v

c

@x

b

+ 


c

ab

v

a

!

w

b

e

c

= v

c

jb

w

b

e

c

(2.4)

with v

c

jb

:=

@v

c

@x

b

+ 


c

ab

v

a

.

De�ning for each v 2 T

x

M another tensor grad v of type

�

1

1

�

with components

(grad v)

a

b

:=

@v

a

@x

b

+ 


a

cb

v

c

= v

a

jb

; (2.5)

the covariant derivative can be expressed by grad

w

v� (gradv;w) :

5

We de�ne the covariant derivative of a covector u2T

�

x

M along a vector w2T

x

M via the

3

As an example, in two dimensions, e

1

= (1 0)

T

; e

2

= (1 1)

T

; e

1

= (1 � 1)

T

and e

2

= (0 1)

T

ful�lls this conditions.

4

(rf;w)= h(rf)

]

;wi=((rf)

]

)

a

w

b

g

ab

=g

ac

@f

@x

c

w

b

g

ab

=

@f

@x

c

w

b

g

ca

g

ab

=

@f

@x

c

w

b

�

c

b

5

Here and in the following we use the symbol (�; �), originally de�ned for the dual paring, also in the

sense of (gradv;w)

a

:= (gradv)

a

b

w

b

, since the components of the resulting vector can be regarded as

dual parings of the "columns" of gradv with w.

3



associated vector �elds:

grad

w

u :=

�

grad

w

u

]

�

[

; u = u

a

e

a

; w = w

b

e

b

: (2.6)

Using the rules from page 2, the identity g

ab

g

ac

= �

c

b

, the properties (2.3) and the repre-

sentation (2.4) some calculus shows that the components r

f

of r := grad

w

u= r

f

e

f

will be

r

f

= w

b

�

@u

f

@x

b

+ u

d

�

g

cf




c

ab

g

ad

+ g

cf

@g

cd

@x

b

��

. Applying (2.10) to g

cf




c

ab

and taking for the

rightmost term into account that 0 =

@�

d

f

@x

b

=

@

�

g

cf

g

cd

�

@x

b

= g

cf

@g

cd

@x

b

+ g

cd

@g

cf

@x

b

, we �nd

r

f

=w

b

�

@u

f

@x

b

� u

d

g

ad

1

2

�

@g

ab

@x

f

+

@g

af

@x

b

�

@g

bf

@x

a

��

=w

b

�

@u

f

@x

b

� u

d

g

ad

g

ca




c

fb

�

(again (2.10) and

the symmetry of g was used). So �nd the analogon to (2.4) for covectors:

grad

w

u =

 

@u

c

@x

b

� 


a

cb

u

a

!

w

b

e

c

= u

cjb

w

b

e

c

(2.7)

with u

cjb

:=

@u

c

@x

b

� 


a

cb

u

a

.

Regarding a tensor t of type

�

p

q

�

as a multivector of p vectors and q covectors

6

, it is natural

to de�ne the components of the covariant derivative of a tensor by a generalization of

(2.4) and (2.7):

(grad

v

t)

a:::b

c:::d

:= t

a:::b

c:::dje

v

e

:=

"

@t

a:::b

c:::d

@x

e

+

�

t

f:::b

c:::d




a

fe

+: : :+t

a:::g

c:::d




b

ge

�

�

�

t

a:::b

f :::d




f

ce

+: : :+t

a:::b

c:::g




g

de

�

#

v

e

:

(2.8)

The Riemannian space

If a connection is de�ned on a manifold M, M is called an a�ne space. Introducing a

Riemannian metric g on an a�ne space M, M becomes torsion free, i.e. the Christo�el

symbols are symmetric (


c

ab

= 


c

ba

). A torsion free a�ne space is called a Riemannian

space.

As can be shown [Tri81], in a Riemannian space M for each x 2 M a local Carte-

sian coordinate system with the base vectors i

j

2 T

x

M can be found with 


i

jk

= 0 and

g(i

i

; i

j

)= �

ij

. Therefore the metric tensor g is uniquely determined. Its components may

be computed by g

ab

:= g(e

a

; e

b

) = e

i

a

e

j

b

g(i

i

; i

j

) = e

i

a

e

i

b

. With components e

i

a

of e

a

(with

respect to the base fi

i

g e

a

= e

i

a

i

i

) and the components x

a

and z

i

for any x= x

a

e

a

= z

i

i

i

,

we get z

i

=x

a

e

i

a

. This gives e

i

a

=

@z

i

@x

a

, and the �rst part of (2.9) is proved. The Christof-

fel symbols 


a

bc

are de�ned by grad

e

a

e

b

= 


c

ab

e

c

. To compute grad

e

a

e

b

, we formulate (2.4)

in the Cartesian coordinate system and use it for w := e

a

= e

k

a

i

k

and v := e

b

= e

j

b

i

j

so

6

roughly spoken, write the vectors and covectors one besides the other
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grad

e

a

e

b

=

�

@e

i

b

@z

j

+ 


i

kj

e

k

b

�

e

j

a

i

i

=

@e

i

b

@z

j

e

j

a

i

i

. The resulting equation

@e

i

b

@z

j

e

j

a

i

i

= 


c

ab

e

i

c

i

i

is equiv-

alent to 


c

ab

@z

i

@x

c

=

@

@z

j

�

@z

i

@x

b

�

@z

j

@x

a

=

@x

d

@z

j

@

2

z

i

@x

d

@x

b

@z

j

@x

a

=

@

2

z

i

@x

d

@x

b

�

d

a

=

@

2

z

i

@x

a

@x

b

. So the second

part of (2.9) is veri�ed:

g

ab

=

@z

i

@x

a

@z

j

@x

b

�

ij




c

ab

=

@

2

z

i

@x

a

@x

b

@x

c

@z

i

:

(2.9)

The combination of both formulas in (2.9) gives

2g

ab




a

dc

=

@g

cb

@x

d

+

@g

db

@x

c

�

@g

dc

@x

b

: (2.10)

Consequently, taking into account the local Euclidean structure of torsion free a�ne spaces,

the components of the metric tensor g and the Christo�el symbols 


a

bc

of the coordinate

system fx

a

g are uniquely determined and so is the connection on M.

The divergence of a vector in noncartesian coordinates

For any vector v 2T

x

M we have v=v

i

i

i

=v

b

e

b

=v

b

e

i

b

i

i

=v

b

@z

i

@x

b

i

i

7

and therefore as imme-

diately can be seen, the components of a vector transform as v

i

=

@z

i

@x

b

v

b

, and consequently

we have

@

@z

j

v

i

=

@x

a

@z

j

@

@x

a

�

@z

i

@x

b

v

b

�

=

@x

a

@z

j

�

@

2

z

i

@x

a

@x

b

v

b

+

@z

i

@x

b

@v

b

@x

a

�

. Using the notation from

(2.9), (2.4) and (2.5) we get the divergence div v :=

@v

i

@z

i

in curvilinear coordinates as

div v = 


b

ab

v

a

+

@v

a

@x

a

= v

a

ja

= (grad v)

a

a

= trace(grad v) : (2.11)

Push forward and pull back

Let B and S be two (not necessary di�erent) manifolds, X 2 B, x 2 S and ' : B 7! S

(x = '(X)) a regular mapping in the sense, that ' has a C

1

inverse. For U 2 T

X

B the

vector �eld '

�

U2T

'(X)

S with components (2.12) is called the push forward of U by ':

('

�

U)

a

j

x

:=

 

@(')

a

@X

A

U

A

!

j

'

�1

(x)

: (2.12)

The components of the pull back '

�

u2T

X

B of some vector �eld u2T

'(X)

S by the mapping

' are de�ned in (2.13):

('

�

u)

A

j

X

:=

 

@('

�1

)

A

@x

a

u

a

!

j

'(X)

: (2.13)

7

cf. the previous section
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In the same way for covectors V2T

�

X

B and v2T

�

'(X)

S the push forward '

�

V2T

�

'(X)

S

and the pull back '

�

v2T

�

X

B are de�ned by their components

('

�

V)

a

j

x

:=

 

@('

�1

)

A

@x

a

!

j

x

(V

A

)

j

'

�1

(x)

; ('

�

v)

A

j

X

:=

 

@(')

a

@X

A

!

j

X

(v

a

)

j

'(X)

: (2.14)

If T is a tensor of type

�

p

q

�

acting on B, its push forward '

�

T is a tensor of the same type

on '(B) de�ned by:

('

�

T)

j

x

(v

1

;: : :;v

p

;u

1

;: : :;u

q

)

j

x

:=T

j

'

�1

(x)

('

�

v

1

;: : :;'

�

v

p

;'

�

u

1

;: : :;'

�

u

q

)

j

'

�1

(x)

(2.15)

with v

i

2T

�

x

S and u

i

2T

x

S, and the pull back of a tensor t de�ned on '(B) is:

('

�

t)

j

X

(V

1

;: : :;V

p

;U

1

;: : :;U

q

)

j

X

:=t

j

'(X)

('

�

V

1

;: : :;'

�

V

p

;'

�

U

1

;: : :;'

�

U

q

)

j

'(X)

: (2.16)

The pull back and the push forward of scalar functions f(x) and F (X) are de�ned by

'

�

f(x) := f('(X)) ; '

�

F (X) := F ('

�1

(x)) : (2.17)

The material time derivative

Let c(t) be a integral curve inM, i.e. the tangent to c(t) can be found as v=

dc

dt

2 T

c(t)

M.

Then thematerial time derivative of a=a

c

e

c

2T

c(t)

M and b=b

c

e

c

2T

�

c(t)

M with a

c

; b

c

; e

c

and e

c

depending on x(t) :=c(t) is given by

d

dt

a = v

b
@a

c

@x

b

e

c

+v

b

a

a
@

@x

b

e

a

= v

b

�

@a

c

@x

b

+a

a




c

ab

�

e

c

= a

c

jb

v

b

e

c

= grad

v

a

d

dt

b = v

b

@b

c

@x

b

e

c

+v

b

b

a

@

@x

b

e

a

= v

b

�

@b

c

@x

b

�b

a




a

bc

�

e

c

= b

cjb

v

b

e

c

= grad

v

b

(2.18)

with the covariant derivative "grad " from (2.4) and (2.7). To verify (2.18) we only have

to remember

8

, that

@

@x

b

e

a

=

@

@x

b

e

i

a

i

i

=

@

2

z

i

@x

a

@x

b

e

c

i

e

c

=

@

2

z

i

@x

a

@x

b

@x

c

@z

i

e

c

= 


c

ab

e

c

and

@

@x

b

e

a

=

@

@x

b

e

a

i

i

i

=

@

@x

b

@x

a

@z

i

i

i

=

@

@x

b

@x

a

@z

i

e

i

c

e

c

=

(9

�

@x

a

@z

i

@

2

z

i

@x

b

@x

c

e

c

=�


a

bc

e

c

is valid. In a similar way,

the material time derivative of a tensor t can be proved to be

d

dt

t = grad

v

t : (2.19)

If t, a, b explicitely depend on t, their material derivatives are given by

d

dt

t =

@

@t

t+ grad

v

t ;

d

dt

a =

@

@t

a + grad

v

a ;

d

dt

b =

@

@t

b+ grad

v

b : (2.20)

8

cf. pages 4, 5

9

taking into accout

@x

a

@z

i

@z

i

@x

c

=�

a

c

and consequently

0=

@

@x

b

�

a

c

=

@

@x

b

h

@x

a

@z

i

@z

i

@x

c

i

=

@x

a

@z

i

@

@x

b

@z

i

@x

c

+

@z

i

@x

c

@

@x

b

@x

a

@z

i

6



The transport of vectors and tensors along curves

Let  

t;s

:M!M for real s and t be a collection of maps, such that for an integral curve

x = c(s) of v (cf. page 6) c(t) :=  

t;s

(c(s)) is an integral curve of v again. Assume in

addition, that  

s;s

(x) = x and  

t;s

� 

s;r

=  

t;r

holds

10

.

Based on this construction, we introduce a linear mapping 	

t;s

: T

c(s)

M 7! T

c(t)

M with

	

t;s

�	

s;r

= 	

t;r

and 	

s;s

beeing the identical mapping. Then 	

t;s

transports a vector

a

s

2 T

x

M emanating from x := c(s) to x

0

:= c(t), i.e. a

t

:= 	

t;s

a

s

2 T

x

0

M with

a

a

t

:= (	

t;s

)

a

b

a

b

s

.

Assuming the transport to be done in a parallel manner, i.e.

d

ds

(	

s;r

a

r

) =

d

ds

a

s

= 0, 	

t;s

is called shifter and denoted by S

t;s

. For the case of parallel transport, we get from (2.18)

0 =

�

d

ds

a

s

�

a

=

�

d

ds

(S

s;r

)

a

b

+


a

cd

v

c

(S

s;r

)

d

b

�

a

b

r

, or lim

s!t

d

ds

(S

s;t

)

a

b

=�


a

cb

v

c

. Since S

t;s

= S

�1

s;t

and

therefore (S

t;s

)

a

c

(S

s;t

)

c

b

= �

a

b

, the relation

�

d

ds

(S

t;s

)

a

c

�

(S

s;t

)

c

b

= � (S

t;s

)

a

c

�

d

ds

(S

s;t

)

c

b

�

can be

found, tending to lim

s!t

d

ds

(S

t;s

)

a

c

�

c

b

= �

a

c




c

db

v

d

if s tends to t. Applying this to the equation

lim

s!t

d

ds

h

(S

t;s

)

a

b

a

b

s

i

= lim

s!t

�

a

b

s

d

ds

(S

t;s

)

a

b

+(S

t;s

)

a

b

d

ds

a

b

s

�

= a

b

t

lim

s!t

d

ds

(S

t;s

)

a

b

+�

b

a

d

dt

a

b

t

and regarding

(2.18), (2.20), we get

lim

s!t

d

ds

(S

t;s

a

s

)

a

=

d

dt

a

a

t

+ 


a

cb

v

c

a

b

t

=

 

d

dt

a

t

!

a

:

11

(2.21)

Applying the same calculus to a tensor t yields to

lim

s!t

d

ds

(S

t;s

t

s

) =

d

dt

t: (2.22)

The Lie derivative

Using in (2.22) the push forward induced by  

t;s

instead of a shifter, we get the Lie

derivative:

Let the mapping ' used in (2.14) be  

t;s

. Then, the transport 	

t;s

:=  

�

t,s

is well de�ned

and

L

v

t := lim

s!t

d

ds

�

 

�

t,s

t

s

�

(2.23)

is called the Lie derivative L

v

t of the tensor t. Owing to  

�

t,s

t

s

= 

�

s;t

t

s

, the Lie derivative

de�ned in (2.23) is equaivalent to L

v

t = lim

s!t

d

ds

�

 

�

s;t

t

s

�

.

Holding s �xed in t

s

at s= t, i.e.

e

t

t

:=t(t; c(s)), we get the autonomous Lie derivative

L

v

t := lim

s!t

d

ds

( 

�

t,s

e

t

t

) : (2.24)

10

then  

t;s

is called the 
ow or evolution operator of v

11

Note, that for a

t

:=S

t;s

a

s

we have

�

da

t

ds

�

a

=

�

d[(S

t;s

)

c

b

a

b

s

e

c

(t)]

ds

�

a

=

�

d[(S

t;s

)

c

b

a

b

s

)]

ds

e

c

(t)

�

a

=

d[(S

t;s

)

a

b

a

b

s

)]

ds

=

da

a

t

ds

7



In the general case, the autonomous Lie derivative is related to L

v

t by

L

v

t =

@

@t

t+ L

v

t : (2.25)

The autonomous Lie derivative of a tensor

The components of the autonomous Lie derivative of a tensor t are

(L

v

t)

a:::b

c:::d

= t

a:::b

c:::dje

v

e

�

�

t

f:::b

c:::d

v

a

jf

+ : : :+ t

a:::f

c:::d

v

b

jf

�

+

�

t

a:::b

f :::d

v

f

jc

+ : : :+ t

a:::b

c:::f

v

f

jd

�

(2.26)

(for notation see (2.18, 2.8)). In the special case of the metric tensor g the autonomous

Lie derivative can be simpli�ed to

(L

v

g)

ab

=

@g

ab

@x

c

v

c

+ g

cb

@v

c

@x

a

+ g

ac

@v

c

@x

b

; (2.27)

taking into account (2.26, 2.8, 2.10).

The Lie derivative of a function

Let f

s

:=f (s; c(s)) be a function on S. Then, the push forward of f

s

induced by  

t;s

reads

 

�

t,s

f

s

=f

�

s; 

�1

t;s

(c(t))

�

=f (s; c(s)). Due to v

s

:=v (s; c(s))=

dc

s

ds

we have

L

v

f

t

:=lim

s!t

 

d

ds

 

�

t,s

f

s

!

=lim

s!t

 

@f

s

@s

+

@f

s

@x

a

d( 

�1

t;s

)

a

ds

!

=

 

@f

t

@t

+

@f

t

@x

a

v

a

t

!

=

df

t

dt

: (2.28)

The Lie derivative of a vector �eld

For a vector �eld w on S we get

�

 

�

t,s

w

s

�

a

=

 

@( 

t;s

)

a

@x

b

w

b

s

!

j

 

�1

t;s

for the push forward`s

components. Some simple calculus gives

d

ds

�

 

�

t,s

w

s

�

a

=

@( 

t;s

)

a

@x

b

d

ds

w

b

s

+w

b

s

d

ds

 

@( 

t;s

)

a

@x

b

!

with

@( 

t;s

)

a

@x

b

d

ds

w

b

s

=

@( 

t;s

)

a

@x

b

 

@w

b

s

@s

+

@w

b

s

@x

c

d( 

�1

t;s

)

c

ds

!

�!

(s!t)

�

a

b

 

@w

b

t

@t

+

@w

b

t

@x

c

v

c

t

!

, and using

12

@( 

�1

t;s

)

a

@x

c

d

ds

 

@( 

t;s

)

c

@x

b

!

=�

@( 

t;s

)

c

@x

b

@

@x

c

d( 

�1

t;s

)

a

ds

=�

@( 

t;s

)

c

@x

b

@v

a

s

@x

c

�!

(s!t)

��

c

b

@v

a

t

@x

c

, we get

(L

v

w)

a

=

@w

a

t

@t

+

@w

a

t

@x

b

v

b

t

� w

b

t

@v

a

t

@x

b

: (2.29)

The Lie derivative of a covector �eld

Let u be a covector �eld on S. Then the components of its push forward can be found

as

�

 

�

t,s

u

s

�

a

=

 

@( 

�1

t;s

)

b

@x

a

!

j

c(t)

u

s

b

j

 

�1

t;s

, an analogous computation as above leads to

12

c.f. page 6

8



d

ds

�

 

�

t,s

u

s

�

a

=

d

ds

 

@( 

�1

t;s

)

b

@x

a

!

u

s

b

+

@( 

�1

t;s

)

b

@x

a

du

s

b

ds

=

@v

b

s

@x

a

u

s

b

+

@( 

�1

t;s

)

b

@x

a

�

v

c

s

@u

s

b

@x

c

+

@u

s

b

@s

�

and consequently

(L

v

u)

a

=

@u

t

a

@t

+

@u

t

a

@x

b

v

b

t

+ u

t

b

@v

b

t

@x

a

: (2.30)

Linearization of tensor �elds

The Taylor's Theorem

t

t

= t

s

+

 

d

ds

t

s

!

(t� s) + : : :+

1

n!

 

d

n

ds

n

t

s

!

(t� s)

n

+ : : : (2.31)

(used for (t � s) su�ciently small) remains valid also for su�ciently smooth tensor �elds

t over curves c(r) on manifolds, i.e. for t :=t

r

=t(c(r)) ([MH83]). So, according to (2.19)

and (2.3), the linearization

e

t of such a tensor �eld t can be written as

e

t = t+ grad

u

t; (2.32)

with the tangent vector u :=u

s

:=(t� s)v

s

to the curve c(s) on whitch t

s

is de�ned. With

(2.22) an alternative formulation

e

t

t

= t

s

+ lim

r!s

 

d

dr

(S

s;r

t

r

)

!

(t� s); (2.33)

usefull for farther computations, can be gained from (2.31).

3 Kinematics of Finite Deformations

In the following the positions of the material points of a body shall be described by its

reference con�guration B � S. B has to be an open set in the Riemannian space S with

a piecewise smooth boundary. Material points in B are denoted by X = (X

1

; : : : ;X

N

),

while spatial points in S are denoted by x=(x

1

; : : : ; x

n

). The dimensions of B and S are

assumed to be the same (n = N). Any motion of a body B may be regarded as a time{

dependent family of con�gurations, de�ned as su�ciently smooth, orientation preserving

and invertible mappings �

t

: B �! S (i.e. x := x

t

=�(X; t) :=�

t

(X) )

13

. According

to this de�nition, the identi�cation of the body B with the reference con�guration �

0

(B)

makes sense (X � �

0

(X)). Let additionally fX

A

g and fx

a

g denote coordinate systems

on Band S, respectively. Component wise representations will be assumed always with

respect to these coordinate systems in the following chapters.

13

We denote the function �(X; t) with t �xed by �

t

(X) and with X �xed by �

X

(t)

9



Velocity and acceleration

The material velocity V

X

(t) and the material acceleration A

X

(t) at some point X are

de�ned via its motion x = �

X

(t) in S:

V

X

(t) :=

d

dt

�

X

(t) ; A

X

(t) :=

d

dt

V

X

(t) : (3.1)

They will be regarded as vectors based at the point x = �

X

(t) with components

V

a

=

d

dt

�

a

X

(t) ; A

a

=

d

dt

V

a

+


a

bc

V

b

V

c

:

14

(3.2)

The spatial velocity and spatial acceleration are de�ned as

v

x

(t) := V

�

�1

x

(t)

(t) ; a

x

(t) := A

�

�1

x

(t)

(t) : (3.3)

Some calculus shows, that a

x

(t) is the material time derivative

d

dt

v of v:

a

x

(t) =

d

dt

v

x

(t) =

@v

x

@t

+ grad

v

v (3.4)

with the covariant derivative grad

v

v from (2.4) in the current con�guration. The compo-

nents of v and a are

v

a

= V

a

and a

a

=

@v

a

@t

+ v

a

jb

v

b

with v

a

jb

:=

@v

a

@x

b

+ 


a

bc

v

c

: (3.5)

As in [Wri86] and using  

�

t,s

t

s

= �

�t

�

�

s

t

s

, the Lie derivative L

v

t from (2.23) of a tensor

t on S with respect to the velocity v can be found as

L

v

t = �

� t

 

d

dt

(�

�

t

t

t

)

!

: (3.6)

The displacements

Let S :=S(X) : T

X

B 7! T

�

t

(X)

S be a shifter,

15

transporting a vector emanating from X

to a vector emanating from x = �

t

(X). Using the existence of local Cartesian coordinate

systems fz

i

g and fZ

I

g corresponding to fx

a

g and fX

A

g the components of S(X) are

S

a

A

=

@x

a

@z

i

@Z

I

@X

A

�

i

I

(3.7)

14

Note, that A

a

from (3.2) coincides with the material time derivative from (2.18) and (2.20), with the

only di�erence, that the term

@V

a

@X

A

d

dt

X

A

, araising from (2.18) for a := V, disappears in (3.2) since

the reference con�guration does not change in time

15

In the notation of page 7 it reads S

t;0

with  

t;0

:= �(X; t).

10



with �

i

I

denoting Kronecker's symbol. Note, that S is orthogonal (S

T

= S

�1

). Now, on the

reference con�guration, the displacements U can be de�ned as

U := S

T

x

t

�X with components U

A

= S

A

a

x

a

t

�X

A

: (3.8)

In the current con�guration the displacements u is

u := x

t

� SX with components u

a

= x

a

t

� S

a

A

X

A

: (3.9)

In (3.8) and (3.9) no di�erence is made in descriptors for X 2 B and X 2 T

X

B and also

not for x

t

2S and x

t

2T

�

t

(X)

S . This is possible because of the supposed underlying local

Eucledian structure of B, implicating an isomorphism between B and T

X

B.

The computation of the velocity and the acceleration using the displacements is possible,

but seems to make not so much sense, as can be seen in the following. On page 7 was

shown, that for a shifter S

T

0;t

used here

d

dt

S

A

a

=S

A

c




c

ba

V

b

is valid.

16

The time derivative of

S

t;0

can be found, taking into account

d

dt

S

a

A

=�S

b

A

S

a

B

d

dt

S

B

b

, as

d

dt

S

a

A

=�S

b

A




a

cb

v

c

. So the

time derivative of displacements reads in components

�

d

dt

U

�

A

=

d

dt

U

A

=S

A

a

V

a

+S

A

c




c

ba

V

b

x

a

=S

A

a

�

V

a

+


a

bc

V

b

x

c

�

�

d

dt

u

�

a

=

d

dt

u

a

+


a

bc

v

b

u

c

=v

a

+S

c

A




a

cb

v

b

X

A

+


a

bc

v

b

�

x

c

�S

c

A

X

A

�

= v

a

+


a

bc

v

b

x

c

:

The deformation gradient

Another kind of mapping between T

X

B and T

�

t

(X)

S is the deformation gradient F,

F :=F(X; t) : T

X

B 7!T

�

t

(X)

S with components

F

a

A

=

@�

a

@X

A

(3.10)

In terms of displacements the deformation gradient F, its inverseF

�1

and their components

can be expressed by

F = S(I+GRADU) ; F

�1

= S

T

(i� gradu)

F

a

A

= S

a

B

(�

A

B

+ U

B

jA

) ; (F

�1

)

A

a

= S

A

b

(�

b

a

� u

b

ja

)

(3.11)

with GRADU and gradu according to (2.5), U

B

jA

and u

b

ja

from (3.5) and I , i denoting the

identity operator.

The transpose, or adjoint of F

17

is the linear transformation F

T

: T

�

t

(X)

S 7! T

X

B such

that hFW;vi = hW;F

T

vi for all W 2 T

X

B and v 2 T

�

t

(X)

S. Consequently F

T

(x; t) is

given in components by

(F

T

)

A

a

= g

ab

F

b

B

G

AB

: (3.12)

The deformation gradient and its adjoint play a fundamental role in the subsequent theory.

16

This can also be seen by the following calculation, using (3.7, 3.2, 2.9):

d

dt

S

A

a

=

d

dt

�

@z

i

@x

a

@X

A

@Z

I

�

I

i

�

=

@

2

z

i

@x

a

@x

b

V

b
@X

A

@Z

I

�

I

i

=


c

ab

V

b
@z

i

@x

c

@X

A

@Z

I

�

I

i

=S

A

c




c

ba

V

b

.

17

and any other linear transformation A : T

X

B 7!T

�

t

(X)

S

11



The deformation tensors

On the reference con�guration we de�ne the right Cauchy{Green tensor C(X; t), also called

Green deformation tensor, to be

C := F

T

F ; C

A

B

= g

ab

G

AC

F

b

C

F

a

B

: (3.13)

If C is invertible, B := C

�1

is called the Piola deformation tensor. On the current

con�guration the left Cauchy{Green tensor, also called Finger deformation tensor, b(x; t)

is de�ned as

b := FF

T

; b

a

b

= g

bc

G

AB

F

c

A

F

a

B

(3.14)

with the inverse c := b

�1

. The material or Lagrangian strain tensor E is de�ned by

E :=

1

2

(C � I) ; E

A

B

=

1

2

�

C

A

B

� �

A

B

�

(3.15)

and the spatial or Eulerian strain tensor e by

e :=

1

2

(i� c) ; e

a

b

=

1

2

(�

a

b

� c

a

b

) : (3.16)

In terms of pull backs and push forwards the various deformation tensors (3.13){(3.16) can

be rede�ned by:

C

[

:= �

�

g B

]

:= �

�

g

]

E

[

:= �

�

e

[

c

[

:= �

�

G b

]

:= �

�

G

]

e

[

:= �

�

E

[

:

(3.17)

The material (or Lagrangian) rate of deformation tensor D is de�ned by

D :=

1

2

d

dt

C: (3.18)

Using the formulation of the Lie derivative from (3.6), the associated material rate of

deformation tensor D

[

can be found as

D

[

=

1

2

�

�

L

v

g : (3.19)

At last, the spatial (or Eulerian) rate of deformation tensor d can be de�ned using

d

[

:=

1

2

L

v

g: (3.20)

Remark:

From an empirical point of view, the changes in the lenght of a line element during a

motion of a body B are a measure of deformation. Some computation gives

dS

2

� ds

2

= G

AB

dX

A

dX

B

� g

ab

dx

a

dx

b

:

12



From this we get

dS

2

� ds

2

= [ G

AB

� g

ab

F

a

A

F

b

B

] dX

A

dX

B

= G

AC

E

C

B

dX

A

dX

B

as well as

dS

2

� ds

2

= [ G

AB

(F

�1

)

A

a

(F

�1

)

B

b

� g

ab

] dx

a

dx

b

= g

ac

e

c

b

dx

a

dx

b

;

i.e., the deformation can completely be described in terms only related to the reference con-

�guration or to the current con�guration by using E or e from above and the corresponding

metric tensors.

4 The stress tensor and balance of momentum

In the following we will assume that for a given su�ciently smooth motion �(X; t) of a

body B � S = R

n

there exist

- a mass density function �(x; t) ;

- a continuous vector �eld r(x; t;n), called the Cauchy traction vector (representing

the force per unit area exerted on a surface element of @�

t

(A) , oriented with unit

outward normal n) and

- an external force �eld l(x; t) :

Then, the balance of momentum is sati�ed, if for every su�ciently smooth open set A � B

the equation (4.1) is true:

d

dt

Z

�

t

(A)

� v dv =

Z

�

t

(A)

� l dv +

Z

@�

t

(A)

r da : (4.1)

If (4.1) and conservation of mass

�

d

dt

�+�divv=0

�

holds, there exists a unique

18

symmetric

Cauchy stress tensor �=�(x; t) satisfying

r = h�;ni

19

and �

d

dt

v = � l+ div � ; (4.2)

or, written in components

20

,

r

a

= �

ac

g

bc

n

b

; �

�

@v

a

@t

+ v

a

jb

v

b

�

= � l

a

+ (div �)

a

; (div �)

a

= �

ba

jb

;

�

ba

jb

=

@�

ba

@x

b

+ �

ca




b

cb

+ �

bc




a

cb

:

(4.3)

18

For a proof see page 31 in the appendix.

19

Here and in the following we use the symbol h�; �i, originally de�ned for the inner product, also in the

sense of the leftmost part of (4.3), since the components of the resulting vector may be regarded as

inner products of the "columns" of � with n.

20

See page 5 for a hint on how to derive the components of div �.
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With the Jacobian (9.8) we de�ne the Piola transform P(X; t) of � with components

P

aA

:= J (F

�1

)

A

b

�

ab

(4.4)

which is called the �rst Piola{Kirchho� stress tensor. This tensor is related to the Cauchy

stress tensor � by means of the Piola Identity

DIV P = J div� ; (4.5)

what can be proved by some calculus. Using the theorem of Gauss and Ostrogradski

(9.7), taking into account the underlying Euclidean structure of �

t

(A), the transformation

behaviour of domain integrals (9.5), (9.6) and making use of (4.5) it can be shown, that

the balance of momentum (4.1) is equivalent to

d

dt

Z

A

�

Ref

V dV =

Z

A

�

Ref

L dV +

Z

@A

R dA (4.6)

with the density �

Ref

:= � J in the reference con�guration, N denoting the unit outward

normal to @A, L(X; t) = l(�

t

(X); t) and R = hP;Ni = P

aA

N

A

. The same analysis used

to deduce (4.2) from (4.1) gives (4.7) from (4.6):

�

Ref

d

dt

V = �

Ref

L+DIV P

in coordinates:

�

Ref

�

dV

a

dt

+ 


a

bc

V

b

V

c

�

= �

Ref

L

a

+ P

aA

jA

with

P

aA

jA

:=

@P

aA

@X

A

+ F

c

A




a

bc

P

bA

+ �

A

AC

P

aC

:

(4.7)

The second Piola{Kirchho� stress tensor T(X; t) is de�ned by

T

AB

:= (F

�1

)

A

a

P

aB

: (4.8)

The symmetry of T follows from the symmetry of �. The �rst Piola{Kirchho� stress

tensor is symmetric in the sense of

P

aA

F

b

A

= P

bA

F

a

A

: (4.9)

On the current con�guration it is also usefull to introduce a fourth stress tensor � called

Kirchho� stress tensor, de�ned by

� := J�: (4.10)
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5 Balance of energy and principle of virtual work

Balance of momentum (4.1) explicitly uses the linear structure of R

n

, because vector func-

tions are integrated. It is correct to interpret this equation component-by-component in

Cartesian coordinates fz

i

g but not in a general coordinate system, because the assumption

of total forces like l and r in (4.1) acting on a body doesn't directly make sense, when the

containing space S is curved. However, energy balance is sensefull on manifolds and can

be used as a covariant basis for elasticity. Covariance may be explained in general terms

in the following:

Suppose we have a theory described by a number of tensor �elds a, b, ... on some space

S, and the equations of our theory (partial di�erential equations, integral equations, ... )

take the form �(a;b; ...) = 0. The equations are called covariant or form invariant, if for

any di�eomorphism

21

' : S 7! S the equation '

�

�(a;b; ...) := �('

�

a;'

�

b; ...) = 0 holds

with the pull back '

�

a of some tensor a by the mapping ' as de�ned on page 5.

The balance of energy principle

We take into account only mechanical e�ects with functions �(x; t) ; l(x; t) and r(x; t;n) ;

given for x 2 �

t

(B) and n 2 T

x

S, as they were described at the beginning of chapter 4.

Let e := e(x; t) be the density of internal energy. Then, the balance of energy principle is

satis�ed if, for each su�ciently smoot A � B ; the equation (5.1) holds:

d

dt

Z

�

t

(A)

�

�

e+

1

2

hv;vi

�

dv =

Z

�

t

(A)

�hl;vi dv +

Z

@�

t

(A)

hr;vi da: (5.1)

Superposed motions

Let the motion �

t

; x := �(X; t) of our body S be superposed by another motion or

a change of observer '

t

: S 7! S ;

e

x :=

e

x

t

:= '(x

t

; t) = '(�

X

(t); t) =:

e

�

X

(t) with

'(x; t

0

) =

e

x

t

0

=

e

�

X

(t

0

) = �

X

(t

0

) = x

t

0

. Under this superposed motion the metric

tensor g changes to

e

g = '

�

g with ~g

ab

=

@('

�1

)

c

@~x

a

@('

�1

)

d

@~x

b

g

cd

: (5.2)

To proof this, we start with (2.9) and get ~g

ab

:=

@z

i

@~x

a

@z

i

@~x

b

=

@z

i

@x

c

@x

c

@~x

a

@z

i

@x

d

@x

d

@~x

b

=

@x

c

@~x

a

@x

d

@~x

b

g

cd

with x='

�1

(
~
x). According to (3.1), the velocity

f

V of

e

� has the components

e

V

a

X

(t) =

 

d

dt

e

�

X

(t)

!

a

=

@'

a

@t

j

�

X

(t)

+

@'

a

@x

b

t

j

�

X

(t)

V

b

X

(t): (5.3)

21

a su�ciently smooth bijective mapping
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Using (3.3) and (2.12) we get the spatial velocity

e

v as

e

v

e

x

(t) = '

�

v

x

(t) + �(t) with ~v

a

=

@'

a

@x

b

v

b

+ �

a

(5.4)

where � :=

d'

dt

is the velocity of
~
x relative to x.

As proved on page 32, the spatial acceleration

e

a reads

e

a = '

�

a+

@�

@t

+

g

grad

�

� + 2

g

grad

('

�

v)

� ; (5.5)

with

@�

@t

+

g

grad

�

� denoting the accelaration of

e

x relative to x. Due to (3.2){(3.5) and

(2.18), the components of

e

a are

e

a

a

=

d

dt

e

v

a

+

e




a

cd

e

v

c

e

v

d

: (5.6)

We assume, that the forces and the Cauchy stress vector transform as in (5.7):

e

l�

e

a = '

�

(l� a) ;

e

r = '

�

r : (5.7)

At time t = t

0

equations (5.4-5.7) read

e

v = v+ � ;

e

a = a+

@�

@t

+ grad

�

� + 2 grad

v

�

e

l�

e

a = l� a ;

e

r = r

(5.8)

If the transformation ' is not a rigid body motion, ' changes the metric (cf. (5.2))

and in
uences the acceleration (cf. (5.5)). Therefore, the internal energy e must depend

parametrically on the metric g, and it is natural to suppose the transformation

e

e := e('

�1

t

(

e

x); t;'

�

e

g) : (5.9)

Then, as proved in the appendix page 33, the time derivative of

e

e at= t

0

where '= identity

can be found as

 

d

dt

e

e

!

j

t

0

=

d

dt

e+

@e

@g

ab

(L

�

g)

ab

=

d

dt

e+

@e

@g

: L

�

g (5.10)

with the autonomous Lie derivative L

�

g from (2.27). Comparing the balance of energy

principle in the original and in the transformed state, on page 33 the identity

Z

�

t

(A)

" 

d

dt

�+� divv

!

�

1

2

h�; �i+hv; �i

�

+�

 

@e

@g

: L

�

g+ha�l; �i

!#

dv =

Z

@�

t

(A)

hr; �ida (5.11)

is proved. Introducing the Cauchy stress tensor r = h�;ni from (4.2) and applying the

divergency theorem

22

divh�; �i = hdiv �; �i+ � :!

[

�

+

1

2

� : L

�

g

with the spin !

[

�

; !

�ab

=

1

2

�

(g

ac

�

c

)

jb

� (g

bc

�

c

)

ja

�

=

1

2

�

g

ac

�

c

jb

� g

cb

�

c

ja

�

;

(5.12)

22

For a proof see page 31 in the appendix.
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and div � from (4.3) to the right hand side of (5.11) it reads

Z

�

t

(A)

" 

d

dt

�+� divv

!

h

1

2

�+v; �i+

 

�

@e

@g

�

1

2

�

!

:L

�

g�� :!

[

�

+h�a��l�div�; � i

#

dv = 0:

(5.13)

Since A is arbitrary, (5.13) results in a di�erential equation in � at any point. This violates

the assumption of the arbitraryness of �, unless the whole term to be integrated vanishes

in each point. So (5.13) is valid only if we have

d

dt

�+ �divv = 0 =) conservation of mass

�a� �l� div � = 0 =) conservation of momentum

� is symmetric =) conservation of moment of momentum

� = 2�

@e

@g

=) Doyle{Ericksen{Formula:

(5.14)

So we see, that the conservation of mass, the conservation of momentum and the conserva-

tion of moment of momentum, as assumed in the previous chapter, can be shown to follow

from balance of energy and the principle of covariance.

The principal of virtual work

Inserting the Doyle{Ericksen{Formula and the conservation of momentum from (5.14) into

(5.11) with A = B we get the principal of virtual work

Z

�

t

(B)

h

� :d

[

�

+ �ha � l; �i

i

dv �

Z

@�

t

(B)

hr; �ida = 0 (5.15)

with d

[

�

:=

1

2

L

�

g according to (3.20). Pulling back (5.1) to the reference con�guration, it

yields to

d

dt

Z

A

�

Ref

�

E +

1

2

hV;Vi

�

dV =

Z

A

�

Ref

hL;Vi dV +

Z

@A

hhP;Ni;Vi dA; (5.16)

the analogon to (5.1), with E := �

�

e = e(�

t

(X); t;�

�

C

[

) = E(X; t;C

[

), as sketched on

page 34. From this we get the equation (5.17):

Z

A

" 

2�

Ref

@E

@C

[

�T

!

:D

[

�

�T :


[

�

+h�

Ref

A��

Ref

L�DIVP;�i

#

dV=0: (5.17)
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Following the argumentation used to derive (5.14) from (5.13) we see, that

�

Ref

A � �

Ref

L�DIVP = 0 ;

T is symmetric and

T = 2�

Ref

@E

@C

[

:

(5.18)

Inserting the last line of (5.18) into (9.25) we �nally get the principle of virtual work on

the reference con�guration :

Z

B

�

T :D

[

�

+ �

Ref

hA �L;�i

�

dV �

Z

@B

hR;�i dA = 0 (5.19)

with R := hP;Ni.

6 The second law of thermodynamics

In thermodynamics of irreversible processes, one of the important objectives is to relate the

change of speci�c entropy � to the various irreversible phenomena which may occur inside

the system. The second law of thermodynamics is introduced by the ad{hoc dissipation

inequality

d

dt

Z

�

t

(A)

�� dv �

Z

�

t

(A)

�s

#

dv +

Z

@�

t

(A)

h

#

da; (6.1)

for each su�ciently smoot A � B, with the heat supply per unit mass s(x; t), the heat 
ux

(across a surface with normal n) h(x; t;n) and the absolute temperature #(x; t). The �rst

law of thermodynamics, as given in (5.1), doesn't re
ect the in
uence of thermal e�ects as

introduced now. So it has to be rewritten as

d

dt

Z

�

t

(A)

�

�

e+

1

2

hv;vi

�

dv =

Z

�

t

(A)

� [hl;vi + s] dv +

Z

@�

t

(A)

[hr;vi + h] da: (6.2)

Assume, that there exists a heat 
ux vector q(x; t) with h(x; t;n) = �hq(x; t);ni and that

conservation of mass holds. Then

�

d

dt

� �

�s

#

� div

�

q

#

�

=

�s

#

�

1

#

�

div q�

1

#

hq;r#i

�

(6.3)

and

�

d

dt

e� � :d

[

� �s+ div q = 0 (6.4)

can be shown

23

to follow from (6.1) and (6.2). Combining (6.3) and (6.4) we get

�

"

d

dt

e� #

d

dt

�

#

� � :d

[

+

1

#

hq;r#i � 0;

23

cf. page 37
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and with the speci�c free energy � := e� #� the reduced dissipation inequality

�

"

d

dt

� + �

d

dt

#

#

�� :d

[

+

1

#

hq;r#i � 0 (6.5)

follows.

Pulling back

24

(6.1) and (6.2), the second and the �rst law of thermodynamics on the

reference con�guration are obtained as

d

dt

Z

A

�

Ref

E dV �

Z

A

�

Ref

S

T

dV +

Z

@A

H

T

dA; (6.6)

d

dt

Z

A

�

Ref

�

E+

1

2

hV;Vi

�

dV =

Z

A

�

Ref

[hL;Vi+S] dV +

Z

@A

[hR;Vi+H] dA; (6.7)

with E(X; t;C

[

;T ) :=�

�

�

t

(X); t;�

�

C

[

; #

�

25

, T (X; t) :=#(�

t

(X); t) ; S(X; t) :=s(�

t

(X); t) ;

H(X; t;N) := �hQ(X; t);Ni;Q := JF

�1

�q; R(X; t;N) := hP(X; t);Ni;P = JF

�1

�. Fol-

lowing the ideas sketched on page 37, the localized forms of (6.6) and (6.7) can be found

as

�

Ref

d

dt

E �

�

Ref

S

T

�DIV

 

Q

T

!

; (6.8)

�

Ref

d

dt

E �T :D

[

� �

Ref

S +DIVQ = 0 ; (6.9)

and the reduced dissipation inequality with Z := E � T E reads

�

Ref

"

d

dt

Z + E

d

dt

T

#

�T :D

[

+

1

T

hQ;rT i � 0 : (6.10)

The inequalities (6.5) and (6.10) are also called spatial and material Clausius{Duhem in-

equality, respectively.

7 Linearization of nonlinear elasticity

Applying (2.33) and (2.21) to the deformation gradient F de�ned in (3.10) we get

e

F

a

A

=F

a

A

+ lim

r!s

"

d

dr

 

(S

s;r

)

a

b

@�

b

r

@X

A

!#

(t� s)=F

a

A

+

@	

a

s

@X

A

+ 


a

bc

	

b

s

F

c

A

=F

a

A

+	

a

sjA

: (7.1)

with 	

a

s

:=

d

ds

�

a

s

(t� s) and assuming s � t (cf. page 7), or, in a more compact notation,

e

F = F +GRAD	: (7.2)

24

specially using (9.5) and (9.6), for details see page 34 and the de�nitions made there.

25

demanding the principle of covariance to apply to the second law of thermodynamics, the speci�c

entropy � is not permitted to depend on themetric [MH83], so we must write E(X; t; T ) :=�(�

t

(X); t; #).

But this doesn't infer the following theory.

19



We saw that, assuming an in�nitesimal deformation 	 imposed on the �nite deformation

�

t

, the deformation gradient changes to (7.2).

The combination of (5.18) and (4.8) gives P = 2�

Ref

F

@E

@C

[

with E = E(X; t;C

[

), showing

us that, in the general case, the stresses P = P(F(t); E) depend on the deformation F

as well as on space and time. Assuming the investigated material to be homogeneous in

space and time means, that P is assumed to be a tensorial function of F only, and using

the linear terms of (2.31) the �rst Piola{Kirchho� stress tensor P can be found as

e

P = P +

@P

@F

: GRAD	 : (7.3)

Taking into account the linearization of V
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(7.4)

the linearization of the equation of motion (4.7) will be

�
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"

d

dt

 

V+

d

dt

	

!
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#

= DIV

 

P +

@P

@F

: GRAD	
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: (7.5)

As the next step we have to compute

@P

@F

:

With C

AB

= g

ab

F

a

A

F

b

B

from (3.13) and (3.17), we get
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�
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�
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(7.6)

due to the symmetry of g and C. Since E depends on F only by C we have
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=
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: (7.7)

Combining (5.18) and (4.8) we get

P
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: (7.8)

From (7.7) and (7.8) we get

g
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=
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e

E

. Multiplying this by g
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components of P, �
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g
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e

E
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d

c
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= P
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. So we �nd the �rst expression for
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: (7.9)
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Using (7.7) and (7.6) helps us to compute
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=
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ing this into (7.9) we get the second expression for

@P

@F

:
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A third representation for

@P

@F

, introducing the components of the elasticity tensor C, is

gained from (4.8) and (7.6):

Due to
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Using the widely in common use notation
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[
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, equation (7.5) becomes
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Next we linearize (4.2): From (3.3), (7.4) and  = 	(�

�1

(x)) we get

e
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 : (7.13)

Due to (4.4) we have � =
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J
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e

P from (7.3). From (4.2) we see, that �
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d

f

V
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� l

�

= div

e

� ; and the insertion (7.13),

(7.14) and (7.3) supplies

�

"

d

dt

 

v+

d

dt

 

!

� l

#

= div

"

� +

1

J

F

@P

@F

: GRAD 	

#

: (7.15)

For the in�nitesimal deformation 	 (X) =  (�(X)) we have
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Using the above equation and (7.10) we get the components of the inverse Piola transform

of
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(7.16)

Supposing the internal energy to satisfy the principle of covariance, as done in the previous

chapters, we have �

�

e(x; t;g)=E(X; t;C

[

) and consequently
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Inserting (7.17) with (9.2) into (7.16) we can write
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Finally, from (5.14) and (4.10) we get 2�
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ending up with
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Inserting (7.18) into (7.15), we get the desired linearization of (4.2) with notation explained

in (7.12) and (7.18):
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8 Multiplicative Elastoplasticity at Finite Strains

The following theory is founded on the basic assumption of the multiplicative split (cf.

[Sim93]) of the deformation gradient F in an elastic part F

e

and a plastic part F

p

F = F

e

� F

p

; F

a

A

= F

a

�

e

F

�

A

p

(8.1)

where the plastic part F

p

is obtained by elastic unloading all in�nitesimal neighbourhoods

of the body. This has the e�ect of introducing a new con�guration with coordinates f~x

�

g

and the metric

e

g into the formulation, commonly termed the intermediate con�guration.

Obviously, the inverse tensor to (8.1) has the components
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: (8.2)
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Under the above assumption and heeding (9.1), the right Cauchy {Green tensor from (3.17)

can be found as
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(8.3)
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and the left Cauchy{Green tensor from (3.17) reads
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: (8.6)

According to (3.18), the associated material rate of deformation tensor is given by
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; (8.7)

and consequently, with (see e.g. [Hac92])
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we may write
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Combining (3.19) and (3.20) we see that d

[

= �
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[

, and together with (8.9) we get the

spatial rate of deformation tensor

d

[

= d

[

e

+ d

[

p

with d

[

e

:= �

�

�

�

p

D

[

e

= �

�

e

D

[

e

and d

[

p

:= �

�

D

[

p

: (8.10)

Using the equations from above, their components can be easyly found as
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Analogically to (3.6) we de�ne the \elastic" Lie derivative
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and see from (9.1) that
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holds.
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The yield criterion

Let �

]

i

be a set of k contravariant tensors of any rank, describing the hardening, and let

the Stress space of

�

T;�

]

i

�

be de�ned to be the space R

m

, where m complies to the sum

of the number of components in T and in all the �

]

i

`s, counting symmetrical components

only once. For the sake of shortness and without lack of generality, we will restrict to

k = 1 and drop the index i in the sequel. Let`s assume, that the stress level of the second

Piola{Kirchho� stress tensor T, at which plastic deformation begins, is determined by a

convex hyperplane

�(T;�

]

) = 0 (8.14)

in the stress space. For stress levels with �(T;�

]

) < 0 the material is regarded to behave

hyperelastic, that is the last line of (5.18) is assumed to hold, and �(T;�

]

) > 0 will be for-

bidden. From (4.4) and (4.8) we get T = J�

�

� and therefore � =

1

J

�

�

T holds. According

to this we de�ne the internal variables describing hardening in the spatial formulation by
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: (8.15)

With �(�;�

]

) := �(J�

�

�; J�

�

�

]

) the correlating yield criterion in the spatial formulation

reads

�(�;�

]

) = 0 : (8.16)

The principle of maximal dissipation

Since plastic deformation is an irreversible process, the internal energy as discussed on page

15 does not fully describe the appearing phenomena. Energy will be dissipated, the entropy

of the system increases, although thermal e�ects further on are assumed to be neglectable.

This can be taken into consideration by the free energy as follows from thermodynamics

(cf. ch. 6).

As already stated on pages 17{19, the internal energy E and the entropy E in the gen-

eral case depend on X; t and C

[

. Restricting to homogeneous and stationary isothermal

problems, we have for the free energy Z=E�T E , Z = Z(C

[

). Here we introduce some

additional internal variables �

[

explained below

26

, the speci�c free energy in the material

formulation may depend on:

Z = Z(C
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[

) : (8.17)

Since the intermediate con�guration is an appropriate con�guration [Hac92] for describing

the material behaviour, it is suggestive to formulate the free energy function
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(8.18)

26

cf. (8.20).
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with C
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In the spatial con�guration we have
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Now we require the covariant tensors �
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and �
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from the previous section to be conjugate

to �
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In components, this reads �
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Combining (8.15) with (8.19), the transformations
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can be found. So the assumptions (8.20) are in correspondence to each other.

The Drucker postulate or the principle of maximal dissipation implies, that the local dissi-

pation function
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will become maximal during plastic deformation. Note, that (8.21) is the restriction of the

reduced dissipation inequalities (6.10), (6.5) to isothermal processes.
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This and an analogous calculation gives
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with D

[

e

from (8.8) and d

[

e

from (8.13).

Although it doesn't coincide with the Lie derivative from (3.6) or (8.12), we de�ne

L

p

v

�

[

:= �

�

p

d

dt

�

�

�

p

�

[

�

: (8.24)
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Using this, (8.20), (8.9) and the evident identity T : (�
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The same way, including (8.10), (8.20) and L
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the right part of (8.21)

reads
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Taking into account that, if no plastic deformation occours, also no dissipation should take

place, e.g. D

S

= D

M

= 0. Then
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(8.27)

hold and (8.27) replaces the Doyle{Ericksen{Formula in (5.14) and (5.18) for plasticity

problems. Now suppose, that (8.27) holds. Then, (8.25) and (8.26) reads
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L

e

v

�

[

: (8.28)

Now suppose, that the yield criterions (8.14) and (8.16) are full�lled, and that the stresses

and internal variables T

max

; �

max

; �

]

max

and �

]

max

adopt values, maximizing the dissi-

pation (8.28). Then, as necessary conditions,

@

@T

(���D

M

) = 0 ;

@

@�

]

(���D

M

) = 0 ; (8.29)

@

@�

(�� �D

S

) = 0 and

@
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]

(�� �D

S

) = 0 (8.30)

must be full�lled. Holding D

[

p

; L

p

v

�

[

; d

[

p

; L

e

v

�

[

tight, the extrem of (8.27) is described by

the equations
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; (8.31)

d

[

p

= �
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@�

and L

e

v

�

[

= �

@�

@�

]

; (8.32)

and the dissipation will be maximal if and only if the yield surface is convex, as assumed

on page 24.
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Note, that this complies to (3.6) and (8.12).
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The evolution of stresses

Applying (8.22) for

@Z

@C

[

instead of Z, the material time derivative of the second

Piola{Kirchho� stress tensor (8.27) can be found as

dT
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= 2�
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; (8.33)

and therefore the Lie derivative of the Kirchho� stress tensor reads
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: (8.34)

Consequently using (8.9), (8.11), (8.20),
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; (8.35)

L

v

� = 2

@�

@g

:

�

d

[

�d

[

p

�

+

@�

@�

[

L

e

v

�

[

; or L

v

� = 2

@�

@g

:

�

d

[

�d

[

p

�

� 2

@�

@g

L

e

v

�

[

(8.36)

can be shown, with � := J�

]

= ��

Ref

@�

@�

[
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.

The plastic spin

As easy can be seen, the set of equations describing the plastic material behaviour in the

material con�guration (8.31) (8.35) and in the spatial con�guration (8.32) (8.36) is not

entirelly complete, additional assumptions are necessary with respect to the plastic spin




[

p

, !

[

p

to construct the plastic and elastic Lie derivative L

p

v

�

[

and L

e

v

�

[

. Following the

strategie splitting the rate of deformation tensor (cf. page 23) in an elastic and a plastic

part, the skew symmetric spin 
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) can be splitted by:
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Or in a more compact notation
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; (8.37)
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like � := J� = 2�
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with 
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with
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The simpliest assumptions is to let the plastic spin 


[

p

;!

[

p

to be zero (see [Hac92]) until

more information is available.

A more detailled discussion of this subject, beside other modells where the plastic spin is

not explicitely included (e.g. [Sim93]), can be found in [MG98].

9 Appendix

Pull back, push forward and the deformation gradient

On several places of this article we use a representation of the pull back and the push

forward of some tensors in terms of the deformation gradient (3.10).

Let t and T two tensors of type
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Then, from the formulas given on page 5 we derive
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(9.1)

In the same way for t and T of type
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For "two{point{tensors" W of type
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and it's pull back is
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Domain integrals

As well known [MK70], volume integrals transform under change of coordinate systems

fz

i

g!fx

a

g as

Z

A

z

f(z) dz

1

� � �dz

n

=

Z

A

x

f(z(x)) det

 

@z

i

@x

a

!

dx

1

� � �dx

n

=

Z

A

x

f(z(x))

q

det(g

ab

) dx

1

� � �dx

n

;
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The surface integral of 2. kind
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with �

a

:=
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related to fx
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g. This follows from the transformation of volume integrals
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So, in general coordinates, the surface element reads
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Using the same calculus as above, the theorem of Gauss and Ostrogradski can be written

in the form
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can be found using the identities
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due to
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(2.11), we get

@

@t

J = Jdiv v : (9.10)

Proof of equation (4.2)

Due to the theorem of Gauss and Ostrogradski (9.7), taking into account the underlying
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component-by-

component for every su�ciently smooth tensor �, and � can be choosen to be symmetric

and to ful�ll h�;ni = r. Applying the transport theorem (9.11) to the left hand side of

(4.1) and using the conservation of mass
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Proof of equation (5.12)
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see the footnote on page 13
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this again is a consequence of (2.10).

The transport theorem
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d

dt

Z

�

t

(A)

f

t

dv =

Z

�

t

(A)

 

df

t

dt

+ f

t

div v

!

dv (9.11)

with v denoting the velocity of the motion �

t

.

For superposed motions '

t

we have

Z

'

t

(�

t

(A))

e

f(
~
x) d~v=

Z

�

t

(A)

e

f ('

t

(x))

~

J

t

(x) dv with

~

J

t

(x) � 1 8x and 8t (9.12)

because we get det(~g

ab

) = det(g

ab

)det

 

@('

�1

t

)

a

@x

b

!

det

 

@('

�1

t

)

a

@x

b

!

from (5.2)
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, leading to

~

J

t

=

v

u

u

t

det(~g

ab

)

det(g

ab

)

det

 

@'

a

t

@x

b

!

=det

 

@('

�1

t

)

a

@x

b

!

det

 

@'

a

t

@x

b

!

=det

 

@('

�1

t

)

a

@x

c

@'

c

t

@x

b

!

=det (�

a

b

) � 1.

Using (9.12) and then (9.11) we �nd the transport theorem for superposed motions

d

dt

Z

'

t

(�

t

(A))

e

f

t

(
~
x) d~v=

Z

�

t

(A)

 

d

e

f

t

('

t

(x))

dt

+

e

f

t

('

t

(x))divv

!

dv : (9.13)

Proof of equation (5.5)

Using (5.4), (3.1) and (3.5), we get for the material acceleration

f

A the equation

f

A

X

(t)=

d

dt

f

V

X

(t)=

d

dt

��

@'

a

@t

+

@'

a

@x

b

V

b

�

e

e

a

�

with

d

dt

e

e

a

=

e




c

ab

�

@'

b

@t

+

@'

b

@x

d

V

d

�

e

e

c

(cf. (2.18))

and therefore we get

�

@'

a

@t

+

@'

a

@x

b

V

b

�

d

dt

e

e

a

=

e




a

bc

�

�

c

+

@'

c

@x

d

V

d

��

�

b

+

@'

b

@x

e

V

e

�

e

e

a

. Since

d

dt

�

@'

a

@t

+

@'

a

@x

b

V

b

�

=

d�

a

dt

+

@'

a

@x

b

dV

b

dt

+

@�

a

@x

b

V

b

+

@

2

'

a

@x

b

@x

c

V

b

V

c

,

d�

a

dt

=

@�

a

@t

+

@�

a

@

e

x

b

�

�

b

+

@

e

x

b

@x

c

V

c

�
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Note, that this doesn't apply to motions � because these are mappings between di�erent spaces.
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and

@�

a

@x

b

V

b

=

@�

a

@

e

x

c

@'

c

@x

b

V

b

the material acceleration

f

A in the transformed state will be

f

A =

�

@'

a

@x

b

dV

b

dt

+

�

e




a

bc

@'

c

@x

f

@'

b

@x

e

+

@

2

'

a

@x

f

@x

e

�

V

f

V

e

�

e

e

a

+

�

@�

a

@t

+ �

b

�

e




a

bc

�

c

+

@�

a

@

e

x

b

�

+ 2

�

e




a

bc

�

b

+

@�

a

@

e

x

b

�

@'

b

@x

e

V

e

�

e

e

a

:

Due to the transformation behaviour of the Christo�el symbols
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we substitute

e




a

bc

@'

c

@x

f

@'

b

@x

e

+

@

2

'

a

@x

f

@x

e

=

@'

a

@x

d




d

ef

: Note, that

@'

a

@x

d

�

dV

d

dt

+


d

ef

V

e

V

f

�

=

@'

a

@x

d

A

d

=('

�

A)

a

due

to (2.18) and (2.12). According to (2.4) we introduce ('

�

V)

c

�

@�

a

@

e

x

c

+

e




a

bc

�

b

�

=

�

g

grad

('

�

V)

�

�

a

:

Finally we get

f

A = '

�

A +

@�

@t

+

g

grad

�

� + 2

g

grad

('

�

V)

� : (9.14)

Proof of equation (5.10)

We have

d

dt

e =

@e

@t

+

@e

@x

a

v

a

+

@e

@g

ab

@g

ab

@x

c

v

c

, since the metric doesn't depend explicitly on

time. Starting from (5.9) we �nd for the material time derivative of the internal energy in

the transformed state

�

d

dt

~e

�

j

t

0

=

�

@e

@t

+

@e

@x

a

v

a

+

@e

@g

ab

d

dt

�

@'

c

@x

a

@'

d

@x

b

e

g

cd

��

j

t

0

=

d

dt

e�

@e

@g

ab

@g

ab

@x

c

v

c

+

@e

@g

ab

�

@'

c

@x

a

@'

d

@x

b

@

e

g

cd

@

e

x

e

e

v

e

+

e

g

cd

�

@'

c

@x

a

�

@�

d

@x

b

+

@

2

'

d

@x

b

@x

e

v

e

�

+

@'

d

@x

b

�

@�

c

@x

a

+

@

2

'

c

@x

a

@x

e

v

e

���

j

t

0

=

d

dt

e+

@e

@g

ab

�

�

c

a

�

d

b

@g

cd

@x

e

(v

e

+�

e

)�

@g

ab

@x

c

v

c

+g

cd

�

�

c

a

@�

d

@x

b

+�

d

b

@�

c

@x

a

��

=

d

dt

e+

@e

@g

ab

(L

�

g)

ab

;

cf.(2.27).

Proof of equation (5.11)

First we show identity (9.15):

1

2

d

dt

hv;vi = ha;vi (9.15)

Using (3.5) we get ha;vi := g(a;v) = g

ab

a

a

v

b

= g

ab

v

b

�

@v

a

@t

+

@v

a

@x

c

v

c

+ 


a

cd

v

d

v

c

�

.

Since

1

2

d

dt

hv;vi =

�

@v

a

@t

+

@v

a

@x

c

v

c

�

v

b

g

ab

+

1

2

v

a

v

b

v

c

@g

ab

@x

c

holds, it remains to check, that

g

ab




a

cd

v

b

v

c

v

d

=

1

2

@g

db

@x

c

v

b

v

c

v

d

, and this can be done by means of (2.10). Next, we compare
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~

�

A

BC

=

@

~

X

A

@X

D

h

�

D

EF

@X

E

@

~

X

B

@X

F

@

~

X

C

+

@

2

X

D

@

~

X

B

@

~

X

C

i
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the balance of energy on �

t

(A) and on '

t

(�

t

(A)) at t = t

0

. On �

t

(A) equation (5.1)

combined with (9.11) and (9.15) leads to

Z

�

t

(A)

"

�

e+

1

2

hv;vi

�

 

d

dt

�+� divv

!

+�

 

d

dt

e+ha�l;vi

! #

dv =

Z

@�

t

(A)

hr;vi da : (9.16)

The analogon to (9.16) for the superposed motion is

Z

�

t

(A)

"

�

e

e+

1

2

h

e

v;

e

vi

�

 

d

dt

e

�+

e

� divv

!

+

e

�

 

d

dt

e

e+h

e

a�

e

l;

e

vi

! #

dv =

Z

@�

t

(A)

h

e

r;

e

vi da : (9.17)

To prove (9.17), we formulate (5.1) on '

t

(�

t

(A)):

d

dt

Z

'(�

t

(A))

e

�

�

e

e+

1

2

h

e

v;

e

vi

�

d

e

v =

Z

'(�

t

(A))

e

�h

e

l;

e

vid

e

v +

Z

@'(�

t

(A))

h

e

r;

e

vid

e

a : (9.18)

Due to (9.12), the �rst term on the right of (9.18) is equal to

Z

�

t

(A)

e

�h

e

l;

e

vidv. To transform

the second term on the right we apply Gaussian formula (cf. page 31) getting an integral

over '(�

t

(A)), use (9.12) and apply Gaussian formula again on �

t

(A) to get

Z

@�

t

(A)

h

e

r;

e

vida.

After applying the transport theorem (9.13) to the integral on the left of (9.18) and using

(9.15), taken in the transformed state, the equation (9.17) is proved by recombining the

araising expressions. Due to (5.7){(5.9) the balance of energy (9.17) for the superposed

motion at t = t

0

reads

Z

�

t

(A)

"

�

e+

1

2

hv+�;v+�i

�

 

d

dt

�+�divv

!

+�

 

d

dt

e

e+ha�l;v+�i

!#

dv =

Z

@�

t

(A)

hr;v+�ida : (9.19)

Finally we subtract (9.16) from (9.19), regard (5.10) and get

Z

�

t

(A)

" 

d

dt

�+� divv

!

�

1

2

h�; �i+hv; �i

�

+�

 

@e

@g

: L

�

g+ha�l; �i

!#

dv =

Z

@�

t

(A)

hr; �ida : (9.20)

Proof of equations (5.16) and (5.17)

Equation (5.1) with r= h�;ni reads

d

dt

Z

�

t

(A)

�

�

e+

1

2

hv;vi

�

dv=

Z

�

t

(A)

�hl;vi dv +

Z

@�

t

(A)

hh�;vi;ni da;
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where we used, that hh�;ni;vi = hh�;vi;ni, what can be understood from simple com-

putation. Applying (9.5) and (9.6) to this equation we get

d

dt

Z

A

�

Ref

�

e+

1

2

hv;vi

�

j

x = �

t

(X)

dV=

Z

A

�

Ref

[hl;vi]

j

x = �

t

(X)

dV +

Z

@A

h�

�

h�;vi;NiJ dA

with �(�

t

(X))J = �

Ref

from (4.6), J from (9.8) and

E :=�

�

e(x; t;g)=e(�

t

(X); t;�

�

(�

�

g))=e(�

t

(X); t;�

�

C

[

)=E(X; t;C

[

)

due to (5.8), (5.9) and (3.17). Since v

j

x = �

t

(X)

=V (section 3) and l(�

t

(X); t) = L(X; t) as

in (4.6), this equation is equivalent to

d

dt

Z

A

�

Ref

�

E +

1

2

hV;Vi

�

dV =

Z

A

�

Ref

hL;Vi dV +

Z

@A

hJ�

�

h�;vi;Ni dA:

Equation (2.13) combined with (4.3) and (4.4), gives J (�

�

h�;vi)

A

=J

@(�

�1

t

)

A

@x

a

(h�;vi)

a

=

J(F

�1

)

A

a

�

ac

g

bc

v

b

=P

cA

g

bc

V

b

=(hP;Vi)

A

. So, the equation

d

dt

Z

A

�

Ref

�

E +

1

2

hV;Vi

�

dV =

Z

A

�

Ref

hL;Vi dV +

Z

@A

hhP;Vi;Ni dA (9.21)

with hhP;Vi;Ni = hhP;Ni;Vi is obtained, and this is exactly (5.16). To prove (5.17), we

permute di�erentiation and integration
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, include (9.15) and are led to

Z

A

�

Ref

(

d

dt

E + hA � L;Vi) dV =

Z

@A

hhP;Ni;Vi dA: (9.22)

As on page 34, we formulate the analogon to (9.22) for an arbitrary superposed motion

with the material velocity � :=

@'

@t

=�:

From (5.3) and (5.4) we use

~

V = '

�

V+�. Like above, we have

~

E(X; t) =

~

�

�

~e(
~
x; t;

~
g)

= ~e(

~

�

t

(X); t;

~

�

�

(

~

�

�

~
g)) = ~e(

~

�

t

(X); t;

~

�

�

~

C

[

) =

~

E(X; t;

~

C

[

) with

~

C

[

:=

~

�

�

~
g, cf. (3.17) and

~

L(X; t) =

~

l(

~

�

t

(X); t). The de�nition (3.3) gives

~

A(X; t) =
~
a(

~

�

t

(X); t), and from (5.7)

we deduce

~

L�

~

A =

~

l�
~
a = '

�

(l�a) = '

�

(L�A). With (4.4) we have P = J�

�

� and

~

P =

~

J

~

�

�

~
� with

~

J = J as shown near (9.12). With those preliminaries we note (9.22) for

the superposed motion as

Z

A

�

Ref

 

d

dt

~

E + h

~

A �

~

L;

~

Vi

!

dV =

Z

@A

hh

~

P;Ni;

~

VidA (9.23)
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In contrast to (5.1), here is no need to heed (9.11), since A does not depend on the time.
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Subtracting (9.22) from (9.23) and selecting the time t

0

for which

~

�

t

0

= �

t

0

holds, we get

Z

A

�

Ref

0

B

B

@

 

d

dt

(

~

E�E)

!

j

t

0

+ hA�L;�i

1

C

C

A

dV =

Z

@A

hhP;Ni;�idA ; (9.24)

since (

~

A�

~

L)

j

t

0

=A�L;

~

V

j

t

0

=V+�, and from (4.2), (5.8) we get
~
�

j

t

0

= �, delivering

~

P

j

t

0

=P. For the term

d

dt

(

~

E�E) =

@

~

E

@t

�

@E

@t

+

@

~

E

@C

AB

d

dt

~

C

AB

�

@E

@C

AB

d

dt

C

AB

we see, that

@

~

E

@t

=

@E

@t

and

@

~

E

@C

AB

=

@E

@C

AB

for t = t

0

holds.

So we get

d

dt

(

~

E�E)

j

t

0

=

@E

@C

AB

d

dt

(

~

C

AB

j

t

0

�C

AB

)=2

@E

@C

AB

(

~

D

AB

j

t

0

�D

AB

). Due to (3.19)

we have

~

D

[

j

t

0

�D

[

=

1

2

�

�

�

(L

~v

~
g)

j

t

0

�L

v

g

�

=

1

2

�

�

L

�

g =: D

[

�

, cf. (2.29). So the equation

(9.25) is proven:

Z

A

�

Ref

(2

@E

@C

[

: D

[

�

+ hA �L;�i) dV =

Z

@A

hhP;Ni;�i dA : (9.25)

To continue, we need an analogon to the divergency theorem (5.12) formulated in the

reference con�guration. This reads

DIV hP;�i = hDIV P;�i+

�

P�F

�1

�

:


[

�

+

�

P�F

�1

�

:D

[

�

(9.26)

with the spin 


[

�

de�ned by




�AB

:=

1

2

�

(g

bc

�

c

)

jA

F

b

B

�(g

ac

�

c

)

jB

F

a

A

�

=

1

2

�

g

bc

�

c

jA

F

b

B

�g

ac

�

c

jB

F

a

A

�

; (9.27)

the rate of deformation D

[

�

with components

D

�AB

=:

1

2

�

g

bc

�

c

jA

F

b

B

+g

ac

�

c

jB

F

a

A

�

; (9.28)

and (PF

�1

)

AB

= P

aA

(F

�1

)

B

a

= T

AB

with T

AB

from (4.8). This shall be proved in the

sequal:

Following the proof on page 31, including (4.7) and introducing the temporary substitution

N

a

:= g

ab

�

b

we get

DIV hP;�i = N

a

�

@P

aA

@X

A

+ �

A
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P

aB

�

+ P
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@N

a

@X

A

= N

a

�
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A
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�

B
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b
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F

c

A

P
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�
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(
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b
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A
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a
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a

bc

) = N

a

(DIV P)

a

+ P

bA

N

bjA

= hDIV P;�i + P

bA

N

bjA

with

N

bjA

:=

@N

b

@X

A

�


a

bc

F

c

A

N

a

=

@N

b

@x

c

@x

c

@X

A

�


a

bc

F

c

A

N

a

=

@N

b

@x

c

F

c

A

�


a

bc

F

c

A

N

a

= F

c

A

�

@N

b

@x

c

� 


a

bc

N

a

�

= F

c

A

N

bjc

, and therefore DIV hP;�i = hDIV P;�i + P

bA

F

c

A

N

bjc

. To verify (9.26), it re-

mains to show, that P

bA

F

c

A

N

bjc

=

�

P�F

�1

�

:

�




[

�

+D

[

�

�

and that the identity inside (9.27)
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is true.

To start with the latter, we state, that �

c

jA

= F

b

A

�

c

jb

follows from simple computations. So,

rearranging the terms, we get g

bc

�

c

jA

F

b

B

�g

ac

�

c

jB

F

a

A

= g

ab

�

b

jc

(F

c

A

F

a

B

� F

c

B

F

a

A

) : In a similar

manner the following transformations (g

bc

�

c

)

jA

F

b

B

�(g

ac

�

c

)

jB

F

a

A

=

N

bjA

F

b

B

�N

ajB

F

a

A

= F

c

A

N

bjc

F

b

B

�F

c

B

N

ajc

F

a

A

= (F

c

A

F

a

B

�F

c

B

F

a

A

)(�

b

@g

ab

@x

c

+g

ab

@�

b

@x

c

�


d

ac

g

de

�

e

) =

(F

c

A

F

a

B

�F

c

B

F

a

A

)(�

b

@g

ab

@x

c

+g

ab

�

b

jc

�


b

cd

g

ab

�

d

�


d

ac

g

de

�

e

) are obtained and it remains to verify,

that �

b

�

@g

ab

@x

c

� g

ad




d

cb

� g

db




d

ac

�

= 0, what is a straight consequence of (2.10).

To complete the proof to (9.26) we compute

�




[

�

+D

[

�

�

AB

= g

bc

�

c

jA

F

b

B

and

�

P�F

�1

�

:

�




[

�

+D

[

�

�

=P

aA

g

bc

�

c

jA

F

b

B

(F

�1

)

B

a

=P

aA

g

bc

�

c

jA

�

b

a

=P

aA

g

ac

�

c

jA

=P

aA

g

ac

�

c

jd

F

d

A

and

compare it to P

bA

F

c

A

N

bjc

=P

bA

F

c

A

�

@N

b

@x

c

�


a

bc

N

a

�

=P

bA

F

c

A

�

@g

ab

@x

c

�

a

+g

ab

@�

a

@x

c

�


a

bc

g

ad

�

d

�

=

P

bA

F

c

A

�

g

ab

�

a

jc

+ �

d

�

@g

db

@x

c

� 


a

bc

g

ad

� 


a

cd

g

ab

��

=P

bA

F

c

A

g

ab

�

a

jc

. Applying Gauss' formula to

R

@A

hhP;Ni;�idA =

R

@A

hhP;�i;NidA =

R

A

DIV hP;�idV and the divergency theorem (9.26)

to (9.25), we end at (5.17).

Proof of equations (6.3), (6.4)

Equation (6.1) with h(x; t;n) = �hq(x; t);ni, reads

d

dt

Z

�

t

(A)

�� dv �

Z

�

t

(A)

�s

#

dv �

Z

@�

t

(A)

hq(x; t);ni

#

da : (9.29)

Applying the transport theorem (9.11) to the left of (9.29) and the Gauss theorem (9.7) to

the second term on the right, we get

Z

�

t

(A)

(

�

d

dt

� �

�s

#

+ div

�

q

#

�

+ �

"

d

dt

�+ �divv

#)

dv � 0:

with

d

dt

�+�divv vanishing due to the supposed conservation of mass. Taking into account

the arbitraryness of A, the �rst part of (6.3) is found. The second part of (6.3) follows

from simple calculus.

In a similar way, using (4.2), the divergency theorem (5.12), the conservation of mass (5.14),

(9.7), (9.11) and (9.15), from (6.2) we get

Z

�

t

(A)

(

�

d

dt

e+h�(a�l)�div � ;vi�

1

2

� :L

v

g�� :!

[

v

��s+div q

)

dv=0:

According to the symmetry of � we have � :!

[

v

= 0, and the conservation of momentum

from (5.14) gives h�(a� l)�div � ;vi = 0. Inserting the de�nition of the spatial rate of
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deformation tensor d

[

from (3.20), we �nd

Z

�

t

(A)

"

�

d

dt

e�� :d

[

��s+div q

#

dv = 0 ;

and the arbitraryness of A supplies (6.4).
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