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Abstract

The continuum theory of large deformation elasto—plasticity is summarized as far as
it is necessary for the numerical treatment with the Finite-Element-Method. Using
the calculus of modern differential geometry and functional analysis, the fundamental
equations are derived and the proof of most of them is shortly outlined. It was not
our aim to give a contribution to the development of the theory, rather to show the
theoretical background and the assumptions to be made in state of the art elasto—
plasticity.
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1 Introduction

From a theoretical point of view, a physical body can be treated as a set B of material
points representing the atoms or molecules of the body’s material. Considering this body
as a continuum, the theory shortly outlined in the following applies. For more details see
[Tri81].

First we introduce a system U of open subsets of B with the following properties:

a) 0eld and Bell.
b) Finite intersections of subsets from U are again subsets of U.

¢) Any unions of subsets from U are again subsets of .

U is called a topology of B and Ax €U is called neighbourhood of a point xe B if x€ Ax.
B is called a Hausdorff space, it for each two points x € B and y € B there exist neighbour-
hoods Ax and Ay with Ax N Ay = 0, i.e. the topology of B is rich enough to separate the
points of B.

The Hausdorff space B is said to have the dimension n, if for each x € B there exists a
neighbourhood Ax that can be mapped onto an open subset of R" by a bijective mapping,
called chart or local coordinate system, with components {:L'k}kzlmn.

If this mapping can be choosen to be €'~ and orientation preserving, the n—dimensional
Hausdorff space B equipped with the chart {z*} is called a n—dimensional C~ —manifold *.
The mathematical assumptions made above correspond to the common physical under-
standing of bodies and physical spaces. So, from a general point of view, including also
shells, rods and "exotic” materials like liquid crystals, a physical body B and the physical
space S containing B can be considered to be special cases of manifolds.

To have a unified approach, as well as for conceptual clarity, it is usefull to think geomet-
rically and to represent bodies in terms of manifolds [MHS83].

2 Some Differential Geometry

The tangent space

Let M be a n—dimensional C~ —manifold and let x€ M. Then the tangent space T, M to
M at x is the vector space R™ of vectors regarded as emanating from x. So wvectors like
the velocity and the acceleration (see ch. 3) can be understood as elements of 7,8 to S at
x €S, where S denotes the physical space described as C™ —manifold.

The dual space T M to T, M is called the cotangent space. It’s elements e € T¥ M will be
called covectors. A covector a is a functional a(x): T, M +— R. In this sence T M is dual
to T, M 2. A covector is said to be "covariant”, and a vector to be “contravariant”.

!This is not the most general definition of a C°°-manifold, but it should be suitable for the
understandig of the present subject (for more details see [Tri81]).
2After the introduction of cotangent spaces TXM, a wvector v also can be defined as a functional

v(x): TrM—R.



Tensors

A tensor t of the type (5) at x € M is a multilinear mapping
p copies
t: T M o X TIMX T Mx oo xTyM— R
g copies
It is said that t is contravariant of rank p and covariant of rank gq.
Let {e;} C T, M and {e'} C T M be the base vectors in T, M and the dual base vectors
in T M respectively. Then the components of t are defined by

i1edp | 0 ip ] ]
tjl...jq i t(e yees € 7e]17"'7e]q) ’
and 1 iedp 1 P j
p — T Pant oL oqpt 1. .. e
twh, WV vy = T g ) v v

holds for all w* = we* € T;M and v; = vie, e T, M.

The Riemannian metric

For x € M let g be a covariant tensor of rank 2 (i.e., a tensor of type (g)) with the
properties

g(u,v) = g(v,u); u,vel, M

g(u,u) > 0; 0#uci, M.

With this symmetric and positive definite (and therefore invertible) metric tensor g the

(2.1)

functional (u,v) := g(u,v) is an inner product on T, M. Written in components it reads
(u,v) = u"v'g. . (2.2)

Introducing such a tensor g for each x& M we get a Riemannian metric on M.

Tensor and vector fields
The associated tensor and vector fields

For a := e’ € T>M the associated vector field o' = a'e, € T, M is defined by it’s
components a® := ¢, with ¢* denoting the components of g='. The associated covector
field 0" = uqe € T*M to u := ube, € T, M is defined by u, := gpu’. Similarly t” means
the tensor associated to t with all indices lowered and t* with all indices raised, especially
gl=glandg=g"

Scalar products

Using this notation and equation (2.2), we define the dual paring” (-, -)” between elements
of T*M and T, M and the scalar product™)- , -(" in T* M by (u,v):=(u*,v) foru € T: M,
v € T,M and )u,v(:= (u’,v¥) for u,v € T*M. These definitions yield to the identity
(uf, vf) = (u, v¥) = )u, v( for any u,v € T:M as well as (u,v)=(u’,v) =)u’,v’( for any

u,v e, M



The dual base

In two or three dimensions, the dual base is defined by the vector product e := [gabéb%c].
Due to this definition the equation (e”, e;)=06; holds, and once the base {ey} is given, the
base vectors e* are uniquely defined. Since we deal here with spaces of arbitrary dimenson,
we have to go another way:

Let the base {ey} in T, M be given. On page 2 we just introduced and used a base {e*}
in TX M. From now on we postulate, that the base vectors {e*} fulfill (e*, e;) = 7. This
uniquely determins the e?, since in case of n dimensions n? conditions have to be fulfilled
by choosing n components of n (co-)vectors. Note that this doesn’t mean to have any

orthonormalized system? in T, M or in T M.

The covariant derivative

Let x € M. The covariant derivative of a vector v € T, M along a vector we T, M is a
bilinear mapping defined by grad,v:T, M x T,M — T, M, tulfilling

gradfwv = fgradyv

(2.3)

gradg,fv = fgrad,v+ (Vf,w)v

: _ af a * _ af a 4 :

for all scalar functions f, where Vf = g € T:M and (Vf,w)= Fawt " Defining
this for all x, v and w have to be regarded as vector fields and we get a connection on
the manifold M. The Christoffel symbols ~5, of this connection on M with the coordinate
system {z°} are defined by grad, e, = 7;,e.. Using the properties (2.3) for v=10"e, and
w = w’ey, the identity gradyv = w’ [v“gradebea + (Vv“,eb)ea] follows. Introducing the
Christoffel symbols we get

a c
grad,v = (a—;b + ’ysbv“) w'e, = vfbwbec (2.4)

with v}, := % + o0t
Defining for each v € T, M another tensor grad v of type G) with components
dv®

(grad V), i= =5 + 9500 = v (2.5)

the covariant derivative can be expressed by grad,v=(gradv,w).’?
We define the covariant derivative of a covector ue 1M along a vector weT, M via the

3As an example, in two dimensions, e; = (1 0)¥, ex = (1 1), e! = (1 — 1)T ande? = (0 1)
fulfills this conditions.

VW)= (VI w) = (V) whgar =g Lot gy = DLt geega, = Lowbs;

SHere and in the following we use the symbol (-, -), originally defined for the dual paring, also in the
sense of (gradv, w)® := (gradv)?w®, since the components of the resulting vector can be regarded as
dual parings of the ” columns” of gradv with w.




associated vector fields:
i’ a b
gradgu = (gradwu ) , u=u.e" . w=uwe. (2.6)
Using the rules from page 2, the identity g.,,¢%° = ¢;, the properties (2.3) and the repre-
sentation (2.4) some calculus shows that the components r; of r:=grad u=rsel will be
cd
re=wb [% + uy (gcf’y;bg“d + gcf%g]?)]. Applying (2.10) to g.s75, and taking for the

. . 964 0(gerg ed
rightmost term into account that 0 = % = (;b) = §cf aagb + g“l%, we find

ou . 9Gap . 0Gay 0 du :
rf:wb [a—x{; — ugqg d% (6{;;) + agxg — aibj)] =’ (a—x{ — ugg® gca’be) (again (2.10) and
the symmetry of g was used). So find the analogon to (2.4) for covectors:

Ju.
gradgu = (a—ub — ’yfbua) w’e® = uc|bwbec (2.7)
x

with wu.p := % — Yo Uq.

Regarding a tensort of type (5) as a multivector of p vectors and q covectors®, it is natural
to define the components of the covariant derivative of a tensor by a generalization of

(2.4) and (2.7):

(gradyt)’ =¢a-4 eV =

g (2.8)
[ﬁoﬁd (Lt Aty ) = (t a4 Svfée)]

The Riemannian space

If a connection is defined on a manifold M, M is called an affine space. Introducing a
Riemannian metric g on an affine space M, M becomes torsion free, i.e. the Christoffel
symbols are symmetric (75, = 75,). A torsion free affine space is called a Riemannian
space.

As can be shown [Tri81], in a Riemannian space M for each x € M a local Carte-
stan coordinate system with the base vectors 1; € T, M can be found with ’y}k =0 and
g(i;,1;) = 6;;. Therefore the metric tensor g is uniquely determined. Its components may
be computed by ¢, 1= g(ea,eb) = e'eé g(i;,i;) = elei. With components ¢t of e, (Wlth
respect to the base {i,} e, =€!i;) and the components z* and z* for any x = z%e, = 2'i;,
we get z'=gz%!. This gives ¢! = %, and the first part of (2.9) is proved. The Christof-
fel symbols v, are defined by grade e, =75,e.. To compute grad, ey, we formulate (2.4)

in the Cartesian coordinate system and use it for w := e, = esik and v := e, = eji; so

Sroughly spoken, write the vectors and covectors one besides the other
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grade e, = (g 2+ f) el i ge% e/1;. The resulting equation g ; eli; =~ ell; is equiv-
7 7 d 2.1 7 2 4
alent to ’YEb?TZ 62] (gZ ) g;a = gﬁ] agdaxb g;a = afdgxb o 86“5 . So the second

part of (2.9) is verified:
q — Dz M(g
ab Waxb ¥
(2.9)
c _ 822i 8:1;0
Tab T 92028 027
The combination of both formulas in (2.9) gives

g | Ogan  09gac
20ap7g. = — . 2.10
Gab7de Oz + Oz’ Oz ( )
Consequently, taking into account the local Fuclidean structure of torsion free affine spaces,
the components of the metric tensor g and the Christoffel symbols ~;. of the coordinate

system {x*} are uniquely determined and so is the connection on M.

The divergence of a vector in noncartesian coordinates
b bis D2

For any vector v € T, M we have v=2v"l;=v"¢, =v"¢}i; =v —1Z and therefore as imme-

Ox®

diately can be seen, the components of a vector transform as v’ =

0 i 02 9 (02 p\_ 0z (_9* ., 02 8vb) : :
we have 9, 0" = 0.7 " <8xbv )— 57 <ax“8xbv + o |- Using the notation from

(2.9), (2.4) and (2.5) we get the divergence div v:= OV 5\ curvilinear coordinates as

0z

i
=o' and consequently

a

a a

div v =~ 0" + = vp, = (grad v); = trace(grad v) . (2.11)

Push forward and pull back

Let B and § be two (not necessary different) manifolds, X € B, x €S and ¢ : B — §
(x = (X)) a regular mapping in the sense, that ¢ has a C'' inverse. For U € TxB the
vector field o, U €T, (x)S with components (2.12) is called the push forward of U by ¢:

a . Np)* 4
(go*U)|X = (8XA U )|(p_1( | . (2.12)

The components of the pull back p*u €Tx B of some vector field u € T,,(x)S by the mapping

¢ are defined in (2.13):
—1\A
wh = (Mu“) . (2.13)
x O | p(X)

“¢f. the previous section



In the same way for covectors VeT3B and ve T;(X)S the push forward ¢,V € T;(X)S
and the pull back p*ve T3 B are defined by their components

O™ oy — dp)" "
(So*v)alx'_( Jat )|X(VA)|¢_1(X)7 ' )A|X‘ (9XA)|X(G)|¢(X)' =

It T is a tensor of type (5) acting on B, its push forward ¢ T is a tensor of the same type
on (B) defined by:

(. T) &' vPu,...u) =T (V. . eVl pu,.. . pu,) (2.15)
|x |X |<p—1(x) |‘P_1(X)
with v!€ TS and u; € TS, and the pull back of a tensor t defined on ¢(B) is:
(p*t), (V'...,VPU;,... U,) :=t @ V.. .oV U, . . 0U,) (2.16)
x X lpx) lp(X)
The pull back and the push forward of scalar functions f(x) and F(X) are defined by
e f(x):= fle(X) @ F(X)=Fle(x). (2.17)
The material time derivative
Let ¢(t) be a integral curve in M, i.e. the tangent to ¢(¢) can be found as v= M.
Then the material time derivative of a=a‘e. € T,y M and b=b.e° € T* ./\/l Wlt% , €°
and e, depending on x(t):=c¢(t) is given by
d%a = vbgabe +vba %ea = (gab—l—a ’Vab) e. = a‘po’e. = grad,a
(2.18)
0b. a 0b, c
ditb = b@ Ce —I—Ubbaaibe = (8:1; ba%c) = bpv’e’ = gradyb
with the covariant derivative ”grad ” from (2.4) and (2.7). To verify (2.18) we only have
to remember®, that 0 e, = 0 iy, = inece _ 0% Oz o — =~¢e. and a
dz® ™" T o2t T O “8:1;52 i€ T Drtaal 027 % T Tare 0z’
aibe i’ aab %xz i'= %%—?—ece =0 _ %xz agbax = —~p.e® is valid. In a similar way,
the material time derivative of a tensor t can be proved to be
d
Ett = gradyt . (2.19)
It t, a, b explicitely depend on ¢, their material derivatives are given by
d 0 d d d d
— —t dt —a=— d —b=—b d,b . 2.20
i T gt Tt gR = gt rada L G =gyt grady (2.20)

8cf. pages 4, 5
dzx® 9z

“taking into accout 62 and consequently

9% Oz~ Ce
0=_0 ga_ _0_ [61‘ &z] dz® 9 L 02 9 0xt
oxb ¢ T 9t L 92" x° 0z 81"73— 0x® 9zt 97
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The transport of vectors and tensors along curves

Let ¥, . : M — M for real s and t be a collection of maps, such that for an integral curve
X = c(s) of v (cf. page 6) c(t) := ¥, (c(s)) is an integral curve of v again. Assume in
addition, that ¢, (x) = x and ¥, 04, =1, holds™.

Based on this construction, we introduce a linear mapping W, : T,y M +— T, M with
U, ,oW, =W, and ¥, beeing the identical mapping. Then W, transports a vector
a;, € T, M emanating from x := ¢(s) to X' := ¢(), i.e. a, = W, a, € Ty M with
at = (W, ,)ta

Assuming the transport to be done in a parallel manner, i.e. % (W,.a,)= %as =0, ¥,

is called shifter and denoted by S; ;. For the case of parallel transport, we get from (2.18)
0= (:ll_sas) = [%(Ss,r)z+vgdvc(ss,r)g:| a?«; or £1_f>rtl %(Ss,t)z = —’ygbvc. Since St,s = SS_; and

therefore (S;,)%(S,:), = 6f, the relation [di (Sts)a] (Ssi), = — (Sus)t [cclls (Sst)c] can be

found, tending to hm%S (St,s)l b = 625, v if s tends to t. Applying this to the equation

15153 cclls [(Sts)a 2] —h [a %(Sm)Z—I—(SH) :ll b] =a’ hmg (St,s)y —|—5sgta$ and regarding

(2.18), (2.20), we get

. d . d . d \"
££%%(St7sas) == —af + 40 b (Etat) 1 (2.21)
Applying the same calculus to a tensor t yields to
d d
151£Itl dS(Smts) = dtt (2.22)

The Lie derivative

Using in (2.22) the push forward induced by 1, instead of a shifter, we get the Lie
derivative:
Let the mapping ¢ used in (2.14) be ¥, .. Then, the transport ¥, , := gb*t is well defined

55
and

d
L,t:=1im— t, 2.2
2 ds <¢*t,s ) (2.23)

s—1

is called the Lie derivative L,t of the tensort. Owing to gb*t ts =1} t,, the Lie derivative

: : : v d (o
defined in (2.23) is equaivalent to L,t = 151_I>Itl T (¢57tts)-

Holding s fixed in t, at s=t, i.e. t;:=t(, c(s)), we get the autonomous Lie derivative

Lt:= lim (¢, t). (2.24)
s—1 dS

i,s

Othen P, ; is called the flow or evolution operator of v
HNote, that for a; : =8; ;a; we have

(@)a:@[(&s)aec<t>])":(d[(st,»za’;)]ec(t))a d[(St.s)gad)] _ dag

ds ds ds ds = ds

7



In the general case, the autonomous Lie derivative is related to L,t by

d
Lt =t + L. (2.25)

The autonomous Lie derivative of a tensor

The components of the autonomous Lie derivative of a tensor t are
a..b _ ja.b e fob a a..f b a.b f a.b, f
(Evt)c...d - tc...d|ev - (tc...dv|f +.o. tc...d v|f) + (tf...dv|c +. Tt tc...fv|d) (226)

(for notation see (2.18, 2.8)). In the special case of the metric tensor g the autonomous
Lie derivative can be simplified to

_ Oa dv° dv°
(L£o8)us = 5 20"+ g gz + Gac (2.27)

taking into account (2.26, 2.8, 2.10).
The Lie derivative of a function

Let fo:=f(s,¢(s)) be a function on S. Then, the push forward of f; induced by 4, ; reads
¢*t,sf5:f (3, ¢;51 (c(t))) = f(s,¢(s)). Due to vy:=v(s,c(s))= Ci;; we have

Jl - Odx* vt

- (223

C o (0f, Of. dwily
Lot —£1_I>Itl (ES¢*t,sfs) —151_I>Itl ( 0s + dz*  ds

The Lie derivative of a vector field

(aft Rl ) _df;

For a vector field w on § we get <¢*t WS) = (a(g%wg) |1/) . for the push forward‘s
.8 b
i b b d (a(’(lbt,s)a)

a(’(lbt,s) S‘HUSIS axb

components. Some simple calculus gives % <¢*t WS) == ds?
5 T

UG OW)" (duh | duwhd(ty, ) o (Qwh, Dwy .
with (a;’b) %wﬁ: (a;’b) ( 525—% 81;;)05 ( dg ) = o %—I— a;”g vf |, and using'?
a(’(lbt_,sl)a d a(’(lbt,s)c a(,(lbt,s)c 8 d(,(lbt_,sl)a a(,(lbt,s)c av: cava

G- ds\ "ot )T T ant G ds T gab da =h Oigge e st

(Low) = 208 Owe 00 (2.29)

ot gzt oLt
The Lie derivative of a covector field

Let u be a covector field on §. Then the components of its push forward can be found

(i)
s)] = —r’;‘" s | tati b leads t
as <¢*t’su )a ( T |c(t)u b|1/,t—;7 an ana OgOUS Compu allon as above leads O

12¢ f. page 6



Ou,
ds 3, Ush T =gt ds T gatish T T g0 Jzc T asb)

and consequently

d <¢ us) _ di( (¢t5)) (¢t5) du,, OV} (¢t5) (causb

auta auta 8vb
(Lyu), = BN P v+ Utb—axi (2.30)
Linearization of tensor fields
The Taylor’s Theorem
d 1 [ d
t; =t, —t, | (1 — — | —t t—s)"+ ... 2.31
=tk () s (e e 231

(used for (¢ — s) sufficiently small) remains valid also for sufficiently smooth tensor fields
t over curves c(r) on manifolds, i.e. for t:=t,=t(c(r)) ([MH83]). So, according to (2.19)
and (2.3), the linearization t of such a tensor field t can be written as

t =t + gradygt, (2.32)

with the tangent vector u:=u,:=(t — s)v, to the curve ¢(s) on whitch t; is defined. With
(2.22) an alternative formulation

rT—Ss

t, = t, 4 lim (%(swm)) (t—s), (2.33)

usefull for farther computations, can be gained from (2.31).

3 Kinematics of Finite Deformations

In the following the positions of the material points of a body shall be described by its
reference configuration B C S. B has to be an open set in the Riemannian space S with
a piecewise smooth boundary. Material points in B are denoted by X = (X! ... XV),
while spatial points in S are denoted by x=(z',...,2"). The dimensions of B and S are
assumed to be the same (n = N). Any motion of a body B may be regarded as a time—
dependent family of configurations, defined as sufficiently smooth, orientation preserving
and invertible mappings ®; : B — § (i.e. x:=x, = ®(X,1):=®,(X) ) '*. According
to this definition, the identification of the body B with the reference configuration ®o(B)
makes sense (X = ®4(X)). Let additionally {X4} and {z%} denote coordinate systems
on Band §, respectively. Component wise representations will be assumed always with
respect to these coordinate systems in the following chapters.

13We denote the function ®(X, ) with ¢ fixed by ®;(X) and with X fixed by b (1)

9



Velocity and acceleration

The material velocity Vx (1) and the material acceleration Ax(t) at some point X are
defined via its motion x = ®x (1) in S:

Vx() = Sex(n) . Ax() = SVx(D). (3.1

They will be regarded as vectors based at the point x = ®x (¢) with components

d _ d a ay/by/c 14
Vi= Z0%() L A= VY (3.2)

The spatial velocity and spatial acceleration are defined as

vx(t) = V(I)}—(1(t)(t) , ax(t) := A(I)}—(1(t)(t) : (3.3)
Some calculus shows, that ax(t) is the material time derivative d%v of v:
d aVX
ax(t) = Etvx(t) =5 + grad v (3.4)

with the covariant derivative grad,v from (2.4) in the current configuration. The compo-
nents of v and a are

o ov?
v"=V* and a°= a—vt + Uﬁvb with UI% = a—i,b + Yo 0° - (3.5)

As in [Wri86] and using 1,& b= = &, P’ t,, the Lie derivative L,t from (2.23) of a tensor

t on S with respect to the veloczty v can be found as
d %
Lvt — Q*t Et (@ttt) . (36)

The displacements

Let 8:=8(X) : TxB — Tg,x)S be a shifter, ' transporting a vector emanating from X
to a vector emanating from x = ®,(X). Using the existence of local Cartesian coordinate
systems {z'} and {Z'} corresponding to {z°} and {X*} the components of S(X) are

dz® 9Z%
55— 20 (37)
0zt 0X
1 Note, that A% from (3.2) coincides with the material time derivative from (2.18) and (2.20), with the
only difference, that the term g)‘é“ cclltXA’ araising from (2.18) for a := V, disappears in (3.2) since

the reference configuration does not change in time
5In the notation of page 7 it reads S; ¢ with P, o= B(X,1).

10



with &} denoting Kronecker’'s symbol. Note, that S is orthogonal (ST =S~"). Now, on the
reference configuration, the displacements U can be defined as

U:=S"x, — X with components U* = §4z% — X4 (3.8)
In the current configuration the displacements u is
u:=x; — SX with components u® = z% — %X, (3.9)

In (3.8) and (3.9) no difference is made in descriptors for X € B and X € TxB and also
not for x; €8 and x; € Tg,(x)S . This is possible because of the supposed underlying local
Fucledian structure of B, implicating an isomorphism between B and Ty B.

The computation of the velocity and the acceleration using the displacements is possible,
but seems to make not so much sense, as can be seen in the following. On page 7 was

shown, that for a shifter SoT,t used here gtSf SA~¢e VP is valid. 1 The time derivative of

Sio can be found, taking into account ditSA = - 5558 d%SZB, as d%Sj = —5%7v%v°. So the
time derivative of displacements reads in components

iU A dUA _SAva_I_SA c Vb a _SA(Va avb c
dt - dt —~a ¢ Tba Z —~a +76c Z )
i a_i a a,bc__ a ¢ 0,0 VA a,bf ¢ QcyA) _ a a, b, .c
v =gt tnerut=v +54750° X+ (:1; S9X )— v Ay v’aC.

The deformation gradient

Another kind of mapping between TxB and Tg,(x)S is the deformation gradient F,
F:=F(X,t): Tx B+ Tp,x)S with components
. 00°

In terms of displacements the deformation gradient F, its inverse F~! and their components
can be expressed by

F=S(I+GRADU) | F'=8"(i—gradu)

Fi=Speg+UR) (I =56 —uj,)
with GRADU and gradu according to (2.5), Uﬁ and ulba from (3.5) and I, i denoting the
identity operator.

The transpose, or adjoint of F 7 is the linear transformation F7 : Ts,(x)S — T'x B such
that (FW,v) = (W, FTv) for all W € TxB and v € Ts,(x)S. Consequently Fl(x,1) is

given in components by

(3.11)

(FT)2 = g FRG*P. (3.12)

The deformation gradient and its adjoint play a fundamental role in the subsequent theory.

16This can also be seen by the following calculation, using (3 7 3 2,2.9):

doa_ 028 0XA N 9%2 o 0XA (T b Q7 A
S —di (6_ 621 62) 6l‘a6l‘bv 621 62 —PVabV ox® 621 S 7ba

and any other linear transformation A : Tx B— T3, (X)S
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The deformation tensors

On the reference configuration we define the right Cauchy—Green tensor C(X, 1), also called
Green deformation tensor, to be

C:=F'F | O} =guaG*F.F: (3.13)

If C is invertible, B := C™! is called the Piola deformation tensor. On the current
configuration the left Cauchy—Green tensor, also called Finger deformation tensor, b(x,t)
is defined as

b:=FF" | b =g.G*PFF} (3.14)
with the inverse ¢ := b™'. The material or Lagrangian strain tensor E is defined by

._1 A_1 A A
E:=_(C-D ., L= 5(OB — 54) (3.15)

and the spatial or Fulerian strain tensor e by

a

e:==(i—c) \ ey =

(60 — ey . (3.16)

[N

In terms of pull backs and push forwards the various deformation tensors (3.13)—(3.16) can
be redefined by:
C’:= &g B! .= &*g! E = &¢

3.17
¢ =®.G b =8.G" e =3FE. (3.17)
The material (or Lagrangian) rate of deformation tensor D is defined by
1d
D:=—— 3.18
2dt ( )

Using the formulation of the Lie derivative from (3.6), the associated material rate of
deformation tensor D’ can be found as

|-
D’ = 5P Lyg (3.19)

At last, the spatial (or Fulerian) rate of deformation tensor d can be defined using

d !

Remark:

From an empirical point of view, the changes in the lenght of a line element during a
motion of a body B are a measure of deformation. Some computation gives

dS? — ds* = Gup dX4dXP — Gab dx®dz®.

12



From this we get
dS? —ds* = [Gap — g I F3 ] dXAdXP = Guo By dX*dXP
as well as

dS* —ds* = [ Gap (F7HE (FYHYE — gu | da®da® = gaees da"da’,

a

i.e., the deformation can completely be described in terms only related to the reference con-
figuration or to the current configuration by using E or e from above and the corresponding
metric tensors.

4 The stress tensor and balance of momentum

In the following we will assume that for a given sufficiently smooth motion ®(X,t) of a
body B C § = R" there exist

- a mass density function p(x,1),

- a continuous vector field r(x,t,n), called the Cauchy traction vector (representing
the force per unit area exerted on a surface element of 3®,(A) , oriented with unit
outward normal n) and

- an external force field 1(x,1) .

Then, the balance of momentum is satified, if for every sufficiently smooth open set A C B
the equation (4.1) is true:

d
Et/pvdv:/pldv—l—/rda. (4.1)

D;(A) D;(A) 0% (A)

If (4.1) and conservation of mass (d%p—l—pdivV: O) holds, there exists a unique'® symmetric

Cauchy stress tensor o =0 (x,1) satisfying

d
¥ and  p—v=pl+dive, (4.2)

r = (o,n) .

or, written in components?’,
rt = oc%gn’ , p (% + vﬁ)vb) =plt+(dive) , (dive) = U|bb“ ,

O.ba — aab“
b Ox®

18For a proof see page 31 in the appendix.

19Here and in the following we use the symbol (-, -), originally defined for the inner product, also in the
sense of the leftmost part of (4.3), since the components of the resulting vector may be regarded as
inner products of the ”columns” of o with n.

20Gee page 5 for a hint on how to derive the components of div o.

(4.3)
+ 0%l + oty

13



With the Jacobian (9.8) we define the Piola transform P(X,t) of & with components
Pt = J (FH o (4.4)

which is called the first Piola—Kirchhoff stress tensor. This tensor is related to the Cauchy
stress tensor o by means of the Piola Identity

DIVP = J dive | (4.5)

what can be proved by some calculus. Using the theorem of Gauss and Ostrogradski
(9.7), taking into account the underlying Fuclidean structure of ®4(A), the transformation
behaviour of domain integrals (9.5), (9.6) and making use of (4.5) it can be shown, that
the balance of momentum (4.1) is equivalent to

d
Et/pRer v = /pRefL v + /RdA (4.6)
A A A

with the density p,., :=p J in the reference configuration, N denoting the unit outward
normal to OA, L(X,t) = 1(®,(X),#) and R = (P,N) = P*4N, . The same analysis used
to deduce (4.2) from (4.1) gives (4.7) from (4.6):

d
Pres TV = pr L+ DIVP

in coordinates:
M a vac _ e PaA
Pres & + Ve = Pres + |A (4'7)
with
aA
Pt = OB 4 Py P 4 T P,
The second Piola—Kirchhoff stress tensor T(X,t) is defined by
748 = (FhdpeB, (4.8)

The symmetry of T follows from the symmetry of o. The first Piola—Kirchhoff stress
tensor is symmetric in the sense of

A A S (4.9)

On the current configuration it is also usefull to introduce a fourth stress tensor 7 called
Kirchhoff stress tensor, defined by

T:=Jo. (4.10)
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5 Balance of energy and principle of virtual work

Balance of momentum (4.1) explicitly uses the linear structure of R", because vector func-
tions are integrated. It is correct to interpret this equation component-by-component in
Cartesian coordinates {z'} but not in a general coordinate system, because the assumption
of total forces like ]l and r in (4.1) acting on a body doesn’t directly make sense, when the
containing space S is curved. However, energy balance is sensefull on manifolds and can
be used as a covariant basis for elasticity. Covariance may be explained in general terms
in the following:

Suppose we have a theory described by a number of tensor fields a, b, ... on some space
S, and the equations of our theory (partial differential equations, integral equations, ... )
take the form A(a,b,...) = 0. The equations are called covariant or form invariant, if for
any diffeomorphism *' ¢ : § — S the equation ¢*A(a,b,...) := A(¢p*a, ¢*b,...) = 0 holds
with the pull back ¢*a of some tensor a by the mapping ¢ as defined on page 5.

The balance of energy principle

We take into account only mechanical effects with functions p(x,t) , 1(x,?) and r(x,t,n) ,
given for x € ®,(B) and n € T,S, as they were described at the beginning of chapter 4.
Let e := e(x,t) be the density of internal energy. Then, the balance of energy principle is
satisfied if, for each sufficiently smoot A C B , the equation (5.1) holds:

d 1
< /p[e—|—§<v,v>] do=[ pvydo+ [ (r,v)da. (5.1)
D;(A) D;(A) 0% (A)

Superposed motions

Let the motion ®; , x := ®(X,t) of our body S be superposed by another motion or
a change of observer ¢, : S+ 8§ |, X 1= X; 1= p(x4,1) = @(Px(1),1) =: &)X(t) with
p(x,t0) = X4y = &)X(to) = ®x(to) = Xy. Under this superposed motion the metric
tensor g changes to

N ) . 5 -1 <9 —1\d
g = ¥.8 with Gab = (Saojja) (gj;b) ged - (52)

i 9. i 9. Aai god ¢ aod
To proof this, we start with (2.9) and get §qp := %g;b = %g%a g;d géb = g%a g‘;bgcd

with x=¢~!(X). According to (3.1), the velocity V of ® has the components

voin = (Laeim) = 9% 9¢"
x(t) = (dt(I)X(t)) = 0t lag) T 9 leg 1)

V(1. (5.3)

21a sufficiently smooth bijective mapping
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Using (3.3) and (2.12) we get the spatial velocity v as
de"

v(t) = o, vx(t) +&(t) with vt = 500" + & (5.4)
where & := dp is the velocity of x relative to x.
As proved on page 32, the spatial acceleration a reads
g — —
a= — d 2 grad 5.5
a=gpatortgrad £+2gra ((‘O*V)év (5.5)

with % + g?c;dgﬁ denoting the accelaration of X relative to x. Due to (3.2)—(3.5) and

(2.18), the components of a are

i ="+ Fo oot (5.6)
We assume, that the forces and the Cauchy stress vector transform as in (5.7):
1-a=¢,(1—-a) ) F=¢p,r. (5.7)
At time t = 1y equations (5.4-5.7) read
- ~ 0€
vV = v+ , a = a+ > +grad, &+ 2 grad
) 6 8t g 56 g v€ (58)
l — 5 = l —a F = r

Y

If the transformation ¢ is not a rigid body motion, ¢ changes the metric (cf. (5.2))
and influences the acceleration (cf. (5.5)). Therefore, the internal energy e must depend
parametrically on the metric g, and it is natural to suppose the transformation

= e (2,1, 6°) (5.9)
Then, as proved in the appendix page 33, the time derivative of € at =tg where ¢ =identity
can be found as

d d OJe d OJe
) = Loy %8 _ L. g 1
Qﬁhod;+%ww£m et oo Ly (5.10)

with the autonomous Lie derivative L¢g from (2.27). Comparing the balance of energy
principle in the original and in the transformed state, on page 33 the identity

q)t(/A) [(%P—l—p divv) <%<€,€>+<v,§>) +p(§—; 2£gg—|—<a—l,€>)] dv;ﬁj,gda (5.11)

is proved. Introducing the Cauchy stress tensor r = (o,n) from (4.2) and applying the

divergency theorem??

div(o, &) = (div e, &) + o:w] + %0' t Leg
(5.12)
with the Spiﬂ wz, Weab = % ((gacfc)w - (gbcfc)hz) = % (gacfrb - gcbfra) )

22For a proof see page 31 in the appendix.
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and div o from (4.3) to the right hand side of (5.11) it reads

/

D (A)

1

d . 1 86 b .
(Jtp—l-pdwv) <§€+V,€>—|- (p 8_g_§ ) Leg—owit(pa—pl—dive,§)|dv = 0.

(5.13)
Since A is arbitrary, (5.13) results in a differential equation in & at any point. This violates
the assumption of the arbitraryness of €, unless the whole term to be integrated vanishes
in each point. So (5.13) is valid only if we have

conservation of mass

d%p + pdivv =0

conservation of momentum

—
pa—pl—dive =0 =

(5.14)
—
—

o is symmetric conservation of moment of momentum

Doyle—Ericksen—Formula.

So we see, that the conservation of mass, the conservation of momentum and the conserva-
tion of moment of momentum, as assumed in the previous chapter, can be shown to follow
from balance of energy and the principle of covariance.

The principal of virtual work

Inserting the Doyle—FEricksen—Formula and the conservation of momentum from (5.14) into
(5.11) with A = B we get the principal of virtual work

/ o2 + pla—1,6)] do — / (r, €)da = 0 (5.15)

D4 (B) 8%, (B)

with dz := 1L.g according to (3.20). Pulling back (5.1) to the reference configuration, it
yields to

%Zﬁw [E + %(V,V>] v :ZpRef<L,V> v Zi((P, N, V) dA, (5.16)

the analogon to (5.1), with £ := ®"e = e(@t(X),t,fI)*Cb) = E(X,t,Cb), as sketched on
page 34. From this we get the equation (5.17):

/

2pRef —b
2 0C

OF
( —T) :Dg—T:Qg+<pRefA—pRefL—DJVP,E>] dV=0. (5.17)
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Following the argumentation used to derive (5.14) from (5.13) we see, that

ProA — pp L—DIVP =0,

T is symmetric and (5.18)
— or

T - QpRefw .

Inserting the last line of (5.18) into (9.25) we finally get the principle of virtual work on
the reference configuration :

/(T:DE-I—pRef(A—L, ) av - / () dA =0 (5.19)
B
with R := (P, NN).

6 The second law of thermodynamics

In thermodynamics of irreversible processes, one of the important objectives is to relate the
change of specific entropy n to the various irreversible phenomena which may occur inside
the system. The second law of thermodynamics is introduced by the ad-hoc dissipation

dt /pndv>/—dv—|— / — da, (6.1)

8<I>t(A)

inequality

for each sufficiently smoot A C B, with the heat supply per unit mass s(x,t), the heat flux
(across a surface with normal n) A(x,?,n) and the absolute temperature ¥(x,t). The first
law of thermodynamics, as given in (5.1), doesn’t reflect the influence of thermal effects as
introduced now. So it has to be rewritten as

i / [e+;<v v>] do= [ pllv) sl dot [ [ev) 4] da. (62)
(A4) Pe(A) 9P (A)

Assume, that there exists a heat flur vector q(x,t) with h(x,?,n) = —{(q(x,1),n) and that
conservation of mass holds. Then

d ps 1
g2 5 =0 (§) =5 5 [ a - Gtav) (63)
and p
pjte—a:db—ps—l—divq:() (6.4)

can be shown ?* to follow from (6.1) and (6.2). Combining (6.3) and (6.4) we get

d d .1
—0: — <
[dt ﬂdtn] o:d + 5(q, V) <0,

Z3¢f. page 37
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and with the specific free energy ( := e — Uy the reduced dissipation inequality

q,VJ) <0 (6.5)

d. d 1
- Y| —o:d + -
p[dtc—l_ndt] od 4

follows.
Pulling back ** (6.1) and (6.2), the second and the first law of thermodynamics on the
reference configuration are obtained as

dt/pRefs v >/"Ref v +/—dA (6.6)

dﬁt%pw [E—|—%<V,V>] dV:ZpRef (L, V)+5] dV—|—/[<R,V>—|—H] A, (67)

with £(X,1,C", T):=n(®,(X),1,.C°, )2 T (X, 1) :=0(®,(X), 1), S(X,1): :3(<I>t(X) 1,
H(thvN) = _<Q(X7t)7N>7Q = JF_I'qv R(thvN) = <P( t)v > = ‘]F o. Fol-
lowing the ideas sketched on page 37, the localized forms of (6.6) and (6.7) can be found
as

do_ PrysS Q
d
Pres 2 = T D' —p. S+DIVQ=0, (6.9)
and the reduced dissipation inequality with Z := F — T & reads
deiely T-Db+l<Q VT) <0 (6.10)
Pres |at™ ™ < dt e = '

The inequalities (6.5) and (6.10) are also called spatial and material Clausius—Duhem in-
equality, respectively.

7 Linearization of nonlinear elasticity

Applying (2.33) and (2.21) to the deformation gradient F defined in (3.10) we get

d L 90! oo
Fi= Fi + lim [dr ((Sw)b aXA)](t_S):FA—I_ IxXA + AV F = FL+ Wy, (T

with ¢ .= %Q)i(t — s) and assuming s ~ ¢ (cf. page 7), or, in a more compact notation,

F =F + GRADW. (7.2)

Hgpecially using (9.5) and (9.6), for details see page 34 and the definitions made there.

5demanding the principle of covariance to apply to the second law of thermodynamics, the specific
entropy 1 is not permitted to depend on the metric [MH83], so we must write £(X,t,7) :=n(P:(X), t, V).
But this doesn’t infer the following theory.
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We saw that, assuming an infinitesimal deformation W imposed on the finite deformation
®,, the deformation gradient changes to (7.2).

The combination of (5.18) and (4.8) gives P = ZpRefF% with £ = E(X,1,C"), showing
us that, in the general case, the stresses P = P(F(¢), E) depend on the deformation F
as well as on space and time. Assuming the investigated material to be homogeneous in

space and time means, that P is assumed to be a tensorial function of F only, and using
the linear terms of (2.31) the first Piola—Kirchhoff stress tensor P can be found as

oP
P = P o GRADY . (7.3)

Taking into account the linearization of V

~a a b d d a d a C a d ‘
Ve=V —|—11_rg [%((SH){) 0 — ¢ )](t—s) 1% —I_th} —I—’ybc\Il Ve=V* + (dtw) (7.4)
the linearization of the equation of motion (4.7) will be
d d P
Pres [dt (V + dt‘Il) L] = DIV (P + Z—F GRAD\II) : (7.5)
As the next step we have to compute ag :
With Cug = gaijFJbg from (3.13) and (3.17), we get
oC
a;; = Gus (F50008 + FE8262) = 29, F46268 = 290 1468 (7.6)

due to the symmetry of g and C. Since E depends on F only by C we have

08 _ OB 0Csc _, OB 0
OF% ~ 0Cpe 0F%  9Cpc ™' B

8E
aCﬁB

gabe (77)

Combining (5.18) and (4.8) we get

or

P =2p, FE_——. 7.8
pRef OaCAO ( )
From (7.7) and (7.8) we get Jee peb _ Multiplying this by ¢% supplies for the
pRef aFE
components of P, pRefgde% = §1PP = P So we find the first expression for ?Tg :
apr 0*FE

8—F}§ = Pres 9 m . (7-9)
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. PE _ 0 9b _ 6<6E d)_
Using (7.7) and (7.6) helps us to compute TILOF; ~ OF 0L _ngdex mFO =

isc_OF i 0*E  0Cpgp)\ _ OE *L d pre
20v1 (4205 5l + P L) = vt + A9t g iy PP - st

ing this into (7.9) we get the second expression for ?Tg :

oA 02 Ay 0L
pRefg

ac . 4
80,439 bt aCACaCDB

gr = e FEFS ) . (7.10
aFg pRefg aFgaFﬁ g dgb C D) ( )

opP

A third representation for T introducing the components of the elasticity tensor C, is

gained from (4.8) and (7.6):

Pe 0 FaTAO a 0 0T oC a a fc
Due to %Fb = (aCF]bB ) = TABSE + chc 8FDbE TABSE + 220 G FEFR we
have
opd oTAC
CpBA = i =2 T FEFhge + THAPS] (7.11)
B

Using the widely in common use notation i e FAFE =: oT FFg and TAB5“ =:T®1
g y OCpp " C1DYe =8 5oyt EE
with (1); := é7, equation (7.5) becomes

d(s  d T
Pres ldt(Ver\Il) L] :DIV[P—I—(Zw-F-F-g—I—T@@l):GRAD\II] . (T12)

Next we linearize (4.2): From (3.3), (7.4) and ¢ = ¥(®7'(x)) we get

d
vV = —) . A
v=v+ dt¢ (7.13)

1
Due to (4.4) we have o = jFP and therefore

1 -
o= —FP 7.14
&= (7.14)

with P from (7.3). From (4.2) we see, that p (d—V — l) = div & , and the insertion (7.13),

di
(7.14) and (7.3) supplies

d 1_0P
ldt( + lb) ] = dwv [O'—I—JFa—F GRAD \Il] ) (7.15)

For the infinitesimal deformation ¥ (X) = ¢ (®(X)) we have
a awa a C a/;ba aQb a C a/;ba a C a
|B:aX—B+%c‘I’ FEZWaX—B‘F%&/} Fp= (W‘Wbcﬂ/} Fp=Fpii, .
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Using the above equation and (7.10) we get the components of the inverse Piola transform

of ?Tg :GRADW as

op*4 op*4 or 0*FE
FA D% \I’|B JFA D% FB¢|d pRefFA(QaCAB 5b+4aCA060DngngFB Fé@/’fd-
(7.16)
Supposing the internal energy to satisty the principle of covariance, as done in the previous
chapters, we have ®*¢(x,1,8)= F(X,1, Cb) and consequently

oF Oe 0*°F 0%e
5C 9g an 5C” oe? (7.17)

Inserting (7.17) with (9.2) into (7.16) we can write

opA de d%e
F — A g | VD,
4 a17B B -7 ( ag b—l— agcaaged ) ¢|d
Finally, from (5.14) and (4.10) we get ZpTae — 0 as well as 2,02 — 1 O™
’ ' ' Ged agcaaged PRef aged ’
ending up with
op4 2 gt
_FC \I; cd ga . 7.18
7 AR ( b‘|‘Ja gb)¢|d (7.18)

Inserting (7.18) into (7.15), we get the desired linearization of (4.2) with notation explained
n (7.12) and (7.18):

l;lt( + ¢) ]:dw[ +(3ZT g—|—0'®1) :grad@b]. (7.19)

8 Multiplicative Elastoplasticity at Finite Strains

The following theory is founded on the basic assumptlon of the multzphcatwe split (cf.
[Sim93]) of the deformation gradient F in an elastic part F and a plastic part F

F=F.F , Fi=p"rs (8.1)

where the plastic part f‘ is obtained by elastic unloading all infinitesimal neighbourhoods
of the body. This has the effect of introducing a new configuration with coordinates {3}
and the metric g into the formulation, commonly termed the intermediate configuration.
Obviously, the inverse tensor to (8.1) has the components

(F—l);4 = (Fe—l)j (ﬁ—l)A : (8.2)

[}
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Under the above assumption and heeding (9.1), the right Cauchy —Green tensor from (3.17)
can be found as

* a b Ror pﬁ o b Pa pﬁ 5
CAB:(Q g)AB:FAFBgab:FAFBgabFaF :FAFBCozﬁ (83)
or P € [} € €
C'=2C |,  Cupi=gullF}, (8.4)
and the left Cauchy—Green tensor from (3.17) reads
ab e e P e e
bt = (8.GH)" = FiFsGAP = U G IS PG = LR b (8.5)
or
bi=d. bt |, .= gaBle (8.6)

According to (3.18), the associated material rate of deformation tensor is given by

1| p, pgd e e podp dp
Dap == |[F3 PSS Copt Cop [ F3 P8 + PEEFS 8.7
AB Q[ABdt st B(AdtB—l' Bfa )| (8.7)
and consequently, with (see e.g. [Hac92])
e 1de
D :=--C 8.8
2 dt (8:8)
we may write
p_ e P le dp gdp
D’ = & D'+ D', with Dyp := 5Cap (FA dFB iy thA) (8.9)

Combining (3.19) and (3.20) we see that d” = ®,D’, and together with (8.9) we get the

spatial rate of deformation tensor

d=d+d with & :=8.8D =&.D and d :=.D’ . (8.10)

Using the equations from above, their components can be easyly found as

p 1 e dp e 1 ¢ e d e ©
o= S0 PP GBS and o= L () s

Analogically to (3.6) we define the “elastic” Lie derivative

e e e
L, g:= (I)*Et <<I> g) (8.12)
and see from (9.1) that
e 1 e
d’ = 5Ly (8.13)

holds.
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The yield criterion

Let II' be a set of k contravariant tensors of any rank, describing the hardening, and let

the Stress space of {T, Hﬁ} be defined to be the space R™, where m complies to the sum

of the number of components in T and in all the llIﬁ ‘s, counting symmetrical components
only once. For the sake of shortness and without lack of generality, we will restrict to
k =1 and drop the index ¢ in the sequel. Let‘s assume, that the stress level of the second
Piola—Kirchhoff stress tensor T, at which plastic deformation begins, is determined by a
convex hyperplane

T(T, %) =0 (8.14)

in the stress space. For stress levels with T(T, Hﬁ) < 0 the material is regarded to behave
hyperelastic, that is the last line of (5.18) is assumed to hold, and T(T, Hﬁ) > 0 will be for-

1
bidden. From (4.4) and (4.8) we get T = J®" o and therefore o = j(I)*T holds. According

to this we define the internal variables describing hardening in the spatial formulation by

1
x= — . II" . (8.15)
J
With v(a, n") := Y(J® o, J® ') the correlating yield criterion in the spatial formulation
reads

v(o,mh) =0. (8.16)

The principle of maximal dissipation

Since plastic deformation is an irreversible process, the internal energy as discussed on page
15 does not fully describe the appearing phenomena. Energy will be dissipated, the entropy
of the system increases, although thermal effects further on are assumed to be neglectable.
This can be taken into consideration by the free energy as follows from thermodynamics
(cf. ch. 6).

As already stated on pages 1719, the internal energy E and the entropy £ in the gen-
eral case depend on X, ¢ and C’. Restricting to homogeneous and stationary isothermal
problems, we have for the free energy Z=FE—-TE&, Z = Z(Cb). Here we introduce some
additional internal variables ®° explained below?®, the specific free energy in the material
formulation may depend on:

Z2=2(C"0). (8.17)

Since the intermediate configuration is an appropriate configuration [Hac92] for describing
the material behaviour, it is suggestive to formulate the free energy function

) (8.13)

26¢f. (8.20).
Tk T SN Fd b L b b b
" Z(C',0) = 2(8,C",8,0") = Z(C",0")



e —_— P 1%
with €' = 8.C" from (8.4) and (@ ),y = (8.0"), 5= (F~)A--- (F)EO, 4 .

In the spatial configuration we have

(=®.2 = Z($°g,9°0") = ((g,0") (8.19)
with (8"),.p := (8.0°), , = (F )2 (F )P0, 5.

a
Now we require the covariant tensors II* and 7 from the previous section to be conjugate

to @ and 0", respectively:

0z ¢
. -
I’ .= _pRef@ 5 Wﬁ = _pﬁ . (820)

A.B . — a¢
In components, this reads 11 _pRefﬁ and 7% 1= T
Combining (8.15) with (8.19), the transformatlbns

0 0z
= —pJ & — :

0~ e
can be found. So the assumptions (8.20) are in correspondence to each other.
The Drucker postulate or the principle of maximal dissipation implies, that the local dissi-
pation function
b d b d

Dy =T:D —pRede>0 , Ds:=o:d _pEtCZO (8.21)
will become maximal during plastic deformation. Note, that (8.21) is the restriction of the
reduced dissipation inequalities (6.10), (6.5) to isothermal processes.

inee OZ_ _ 02 0Cas _ 9Z (po1yap-1yB 0z b 02
Since = —% =92 (F 4 F holds, we have %= = FLF .
oy = Lo = e s s =Fbg,

o thi JZ_dE_ 9Z dCup | 9E dO,
Using this, we get 5 + == =
dt T dt oC.s dt 90,5 dt

oz dCaﬁ 0Z d b 2 9z DZ &+ d
ﬁﬁBm Sl ﬁBﬁdt(i’Q) (‘I’ ac)‘ dt+a@b(1’dt

This and an analogous calculation gives

(®.0").

iz IZ\ o 0Z.[2.d (p b)
= =2 (cp ac) D o [<I> - <<I>*® ] (8.22)
n o a¢ . e d
a6 _ 5060 % Na @ a=ph
R [Q*dt<<1> o )] . (8.23)

with D’ from (8.8) and d’ from (8.13).
Although it doesn’t coincide with the Lie derivative from (3.6) or (8.12), we define

d
I S (c}f’*@b) . (8.24)



Using this, (8.20), (8.9) and the evident identity T:(CII;*Ie)b) = (CIF;*T):Ie)b, the left part of
(8.21) reads

zZ e
Dy = [‘Ig* (T—QpRef%)] D'+ T: D +IL, O (8.25)

The same way, including (8.10), (8.20) and 2V0b = CI(;*% <<Ie>*0b) % the right part of (8.21)

reads

0 e e
Dy = (O'—Zpa—g) &t od + L0 (8.26)

Taking into account that, if no plastic deformation occours, also no dissipation should take

place, e.g. Ds = Dyy = 0. Then

0z (¢
= ZpRefw and o = Zpa—g (8.27)

T

hold and (8.27) replaces the Doyle—FEricksen—Formula in (5.14) and (5.18) for plasticity
problems. Now suppose, that (8.27) holds. Then, (8.25) and (8.26) reads

oy i h b 5 1S b
Dy=T:D' + T, © and Ds=o:d +x'L 0" . (8.28)

Now suppose, that the yield criterions (8.14) and (8.16) are fullfilled, and that the stresses

. . ﬁ . .« . . .
and internal variables T,y , Opaw , II' . and 7t adopt values, maximizing the dissi-

pation (8.28). Then, as necessary conditions,

0 0
GFAT-Du)=0 . (AT -Dy)=0. (8.29)
O w—Ds)=0 and -2 (\o—Ds)=0 8.30
55 A= Ds)=0 and o (tv—Ds)= (8.30)

must be fullfilled. Holding I%b, ,F/‘:V@b, (Fz)lb, 2V0b tight, the extrem of (8.27) is described by

the equations

D'=Ajs . L@ =Ao (8.31)
pb . aU € b aU

and the dissipation will be maximal if and only if the yield surface is convex, as assumed
on page 24.

Z8Note, that this complies to (3.6) and (8.12).
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The evolution of stresses

0Z
Applying (8.22) for ETed instead of Z, the material time derivative of the second

Piola—Kirchhoff stress tensor (8.27) can be found as

dT P?Z p.d(r PZ rpd/r
9= 2 (9.C )+ ——_ @ (9.0)] , 8.33
it~ s [acbz dt( ) T cee dt( )] (8:33)

and therefore the Lie derivative of the Kirchhoff stress tensor reads

dger dT 9% e d <. 9% e d/e.

Consequently using (8.9), (8.11), (8.20),

il
a _,or (D Db)+§—TE @, or X _ 9T (D Db) YL} e, (8.33)

dt aC”’ e vV T aC’” aC’
or P or or P 0K ©
cor =297, (db—db) L0 or Ly =22 (db—db) 2% g $.36
vT = Ja Y or T = Ja Jg ©v ( )
) 0
can be shown, with & := Jr! = —P e agb 29,

The plastic spin

As easy can be seen, the set of equations describing the plastic material behaviour in the
material configuration (8.31) (8.35) and in the spatial configuration (8.32) (8.36) is not
entirelly complete, additional assumptions are necessary with respect to the plastic spin

p P e

0, W’ to construct the plastic and elastic Lie derivative ,F/‘:V(Bb and ,Cveb. Following the
strategie splitting the rate of deformation tensor (cf. page 23) in an elastic and a plastic
part, the skew symmetric spin Q' := Skew(Db) can be splitted by:

1 d d
Qg = —qgu | FI—F% — FL—F°
AB QQb(AdtB Bdt A)

1 poz pﬁ eadeb ebdea eaeb pozdpﬁ pﬁdpoz
P, Pge p
Or in a more compact notation

Q=30+, (8.37)

Dlike 7 := Jo = 20 pe; gé
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with O 45 (Fa dp Fﬁg ) , Qo =L, (F by fr s )

And using w” := ®.£° one finds

1 ¢ _pd ¢ _ipd ¢ 14 1A\ & d R
“ab _§l( < bthﬁ ch adFﬁ +(9MF e a)FathA ’
W= W (8.38)
with
p 1 dp e 1 d e e .d
b= = (gacF 7Y — g el pe P acF—W P — gal'™ 164 pe
w 2(9 — Yecb ) ozdt A Wab 2(9 bdt Geb adtﬁ

P, P

The simpliest assumptions is to let the plastic spin €°,w’ to be zero (see [Hac92]) until
more information is available.

A more detailled discussion of this subject, beside other modells where the plastic spin is

not explicitely included (e.g. [Sim93]), can be found in [MG98].

9 Appendix

Pull back, push forward and the deformation gradient

On several places of this article we use a representation of the pull back and the push
forward of some tensors in terms of the deformation gradient (3.10).

Let t and T two tensors of type ( ) and r and R of type ( ) without any special physical

meaning in this chapter but connected by T = ®*t, t = ®,T, R=®"r and r = ®,R .
Then, from the formulas given on page 5 we derive

TAB _ (F‘l)A (F‘l)f tab | geb = papbTAB

2 (F7Y)) Rap .

9.1
Rap = F{Fhray ;o ra = (F7Y), .

In the same way for t and T of type (3) with T = &t and t = ®, T we have
ABCD N\ -1\ =1\ -1\ abed abed _ pra b e d ABCD
T = (F1) (F7Y), (B (F7Y) e and 4 = FAFRFEFAT . (9.2)

For 7 two—point-tensors” W of type ((1) (1)) with components W%, acting from TxB x T, M

to R, the push forward’s components are
(B.W)j = (F7);] W (9.3)

and it’s pull back is
(@"W)p = (I ) W, (9.4)

a
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Domain integrals

As well known [MKT70], volume integrals transform under change of coordinate systems

{51} = {a"} as
/f(z) dz —/f det(
AZ

because, assuming the {z°} to be Carthesian coordinates we have

det(gap) = \Idet(gz g; ) = det(gxz;) )

Therefore, in general coordinates, the volume element can be written as

) oda” —/f Jdet(gu) da'- - -da,

dv = \/det(gap) da'- - -dz".

The same way, considering the transformation behaviour of a volume integral under a
motion ®,, we may write

/h(x) dat - -de" :Zh(cﬁt(X)) det(aaf;i) dX. - dX",

or, for h(x) := f(x)\/det(gas),

_ det(gas) HPe
@t/A{(X) dv_Zf(chs(X)) e Con) d t(aXA) dv. (9.5)

The surface integral of 2. kind

Ll
921 |l g
/<b( /det a.p O
944 04z 92! o ap"
apn T°°° apn—l

over some vector b with components & related to {z'} transforms to

51 ﬂn

ozt 8:1;7; Ny
[ ba(x)).n / da| 07 a? det( a;) dq'- - -dg"™",
A% 8:1; 9

aqn 1 aqn—l
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with g := a—‘z(zbi related to {#*}. This follows from the transformation of volume integrals

as stated above, from the matrix product

51 - ﬂn bl R 2
dzt Oan , 921 02"
opt opt oz _ ap' op'
oo ox* oo
ozt Qx" ozt 0"
apn—l apn—l apn—l apn—l
and the relation
ﬁl e ﬂn ﬁl e ﬂn
o' o ort o |
det op op = det 04 04 det( q')‘
S Lo o'
ozt Qx" ozt Oa”
apn—l apn—l aqn—l aqn—l

So, in general coordinates, the surface element reads

da := y/det(gq) dg'- - -dg" ',

and with B := ®*b, the transformation behaviour of a surface integral under a motion ®;
can be written as

Mﬁ)b,m da :8£<B,N> dii(é’zi) det(aaf;Z) e (9.6)

Using the same calculus as above, the theorem of Gauss and Ostrogradski can be written

in the form
/dw b dv = /<b,n> da. (9.7)
®(A) 50,(A)

The time derivative of the Jacobian J

det a @ det a
= (92) det(aq)A) - 9) er(e) (9.8)
det(GAB) aX det(GAB)
can be found using the identities
0 A 0
oF ——det (F'}) = det (F'}) (F_l)a and o det (gap) = det (gap) 9™ (9.9)

Since G 4p doesn’t depend on t, we have

fokiy

det

dJ 1 1 (a XA) d ( 09" )
- = —det Gap) + 1/det(g, det

dt [det(Gap) 2 det(gq) dt (e0) ( b) ax4

_ pd N 8XAi 0, B l b 0Gab ‘L v
29 dtg“b a9zt dtoxA| ~ 7|29 9act T gan
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A a A a a
due to ditg“b = %%;cv and %Xa cclltaag;f“ = %{ga 8?(’4 dg)t = g;a Inserting (2.10) and
(2.11), we get

0
a] Jdivv . (9.10)

Proof of equation (4.2)

Due to the theorem of Gauss and Ostrogradski (9.7), taking into account the underlying

Fuclidean structure of ®,(A) the equation [ div o dv= [ (o,n)da holds® component-by-
De(A) 90 (A)

component for every sufficiently smooth tensor o, and o can be choosen to be symmetric

and to fulfill {(o,n) = r. Applying the transport theorem (9.11) to the left hand side of

(4.1) and using the conservation of mass ( d%p +pdivv = 0) we get

dt /dev_/

D (A) D (A)

d d
dtv—l—v(dp—l—pdwv)] dv—q)(/)p v dv.

So (4.1) can be stated as [ pd%vdv = [ [pl+ divo]dv. Since o has to satisfy
Dy (A) D (A)

div o = p(iv—l) as well as (o,n) =r we have 6 conditions to determine the compo-

nents of o. Due to the required symmetry of o, the number of those components is

reduced to 6. So o is unique.

Proof of equation (5.12)

Due to (2.11) and (4.3) we have div{eo,§) = (grad{o,&)); = ﬂ?”ﬁ?a + 7§b<0',€>b =

a

a % [ ac a C aca C ac Ca,a a [
a2 et ) | o gaet = v, (—%@;a +vabob) + ot s = (%i,a +o" iy to %b) +

X

UGC% — l/caab’y;b with the substitution v. := ¢4.£% Introducing (4.3) and hereafter

(2.2) and (2.7) we get div{o, &) = v.(dive)® + o (% "}/acl/d) = (dive, &) + 0"V,

The last addend is equal to Uabe|a = UabVa|b = 20“b ( Valb — Vbla T Vola + l/a|b) =
o Wg + lo-ab (Vb|a + Va|b) = 0. wg + lo_ab (gbcgga ‘I’gacgfb —I_f (agbc + aagac - Q’ijgcd))‘

Including (2.27), for the first line of (5.12), it remains to show, that % + agac —27% geq =

%, and this is just (2.10). For the second line of (5.12), some snnple computation

gives guc&, — gaéf, = gacgfb - gbcérf + £ Gacsy — 9e75a) and (gac)p — (986 ) 0 =

3%%ee the footnote on page 13
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¢ afa+€d(agad %gxbd)

gaca 5~ ey ). Extracting the terms common to both expressions we

see, that the proof is complete when % — % = GacViy — 9ebV5, has been shown, and

this again is a consequence of (2.10).

The transport theorem
d
For any function f;(x) we have —q) (/A{dv dt/ft (P4( ))Jt(X)dV:J (%J—I—ft ) dV=

d
/ (%J + fi— ) J~tdv with ng{ = %t] Jdiv v from (9.10). This gives the transport
Dy (A)

theorem
d d
- / fido = / (£ + f, div v) dv (9.11)

D;(A) D (A)

with v denoting the velocity of the motion ®;.
For superposed motions ¢, we have

/ F(x) do= /f(got(x))jt(x) do with Ji(x)=1 ¥x and Wt (9.12)
et (P:(A)) . (A)

—1\a —1\a
bocase we et det(a) = det(gaydet (P Yaer LEEV) fom (5277, teadiog vo

Ji= Zzggab;dt(git):det (a(g;) )dt(gif) dt(a(a c) gif) det (87) = 1.

Using (9.12) and then (9.11) we find the transport theorem for superposed motions

d - dfi(e, - .
= / Ji(x%) df;:/ (W—kﬁ(@t(x))dwv) dv | (9.13)
et (P (A)) D (A)

Proof of equation (5.5)

Using (5.4), (3.1) and (3.5), we get for the material acceleration A the equation
Ax(h=4Vx(1) dt[<®ﬂ+ivb) ] with 4, =7;, ({—+ivd) 8. (ct. (2.18))

b
and therefore we get (%sot——k %@—bvb) dite“ = 3¢ (f 4 _,“Q_Vd) ({b _99_ e) &,. Since
d (9 D" et et dv | OC 1y %0 e dET_0C fbaxc
dtﬁi*axv)_ rtom df Tor" Tagor Vo dr = ar top\E oY

31Note, that this doesn’t apply to motions ® because these are mappings between different spaces.
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95

and Vb %5‘%‘/6 the material acceleration A in the transformed state will be

— b
A — [8 dvb ( 899 8 82 )vae:| é, +

griar t \Fegir o t 5

(%5 + e (e + 25) +2 (e + 25) G2ov] e
Due to the transformation behaviour of the Christoffel symbols ** we substitute

D" Do b 9’0" 0 D (dV e " a
vbcff T+ 5T = acpd%f Note, that 580_< eV Vf)zﬁ%Ad:(so*A) due

to (2.18) and (2.12). According to (2.4) we introduce (¢, V)* (8{ +y2 & ) (g?c;d( V)é) :
@,
Finally we get

g — —
A=¢p A+ e + gradgﬁ +2 grad((p*v)f : (9.14)

Proof of equation (5.10)

We have dte = % 88:1;6 ¢+ a%eb %i“fvc, since the metric doesn’t depend explicitly on

time. Starting from (5.9) we find for the material time derivative of the internal energy in
the transformed state

d - de | de o, e D D _d de 0Gap

(%G)HO <7+ax —I_agab dt (6:1; Ozb ng))HO_ di° ™ Dgap D" +
de (00 00 DG ~ e oS a¢e ©° _
2o (5202 Ut a5 (D554 o)+ 05 (St b)) 2

ccd 09 g, L0 ¢
ffte+ aae (5 of agd( “+{)— g bv +9ed [5“656—'_5 af D ffte+ aage (Leg)ab 5

cf.(2.27).

Proof of equation (5.11)

First we show identity (9.15):
1 d

5 Et<v,v> = (a,Vv) (9.15)

Using (3.5) we get (a,v) := g(a,v) = gupa®’ = gu0° (Q% + %vc + ’ygdvdvc).
Since %%(V,W = (Q% %vc) vPga + %v“vbvc% holds, it remains to check, that

Gapyvlviod = %%vbvcvd, and this can be done by means of (2.10). Next, we compare

32 FA 6X [FD 6)~(E 6)~(F + @2XD~
BC T oxDP I BFgXB 9xX@ " 9XBoXC©
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the balance of energy on ®,(A) and on ¢, (®;(A)) at t = £5. On ®;(A) equation (5.1)
combined with (9.11) and (9.15) leads to

/ (e+%<v,v>) (d%p—l—pdivv)—l—p (%e—l—(a—l,ﬂ)]dv :/<)r,v> da.  (9.16)

3.(A) A%, (A

The analogon to (9.16) for the superposed motion is

1 d d ~
/ <€—|- 5(?,i7>) (Jt p+p divv) +p (Etg—l—ﬁ—l,ﬂ) ] dv = [ (¥,V) da . (9.17)
D (A) 0% (A)
To prove (9.17), we formulate (5.1) on ¢,(®:(A)):
d U N T r e o~y g
= [ (e—|—§<v,v>) W= [ 9+ [ Evda. (9.18)
@(®:(A)) @(®:(A)) Fp(Pe(A))

Due to (9.12), the first term on the right of (9.18) is equal to /ﬁ(l,ﬂdv. To transform
Dy (A)
the second term on the right we apply Gaussian formula (cf. page 31) getting an integral
over o (®,(A)), use (9.12) and apply Gaussian formula again on ®,(A) to get /(f, V)da.
59, (A)
After applying the transport theorem (9.13) to the integral on the left of (9.18) and using
(9.15), taken in the transformed state, the equation (9.17) is proved by recombining the
araising expressions. Due to (5.7)=(5.9) the balance of energy (9.17) for the superposed

motion at ¢t =ty reads
(+1< +¢ g)ﬁ di 4 itanl d—/ da . (9.19
oot vt &) (St pdiov) 4o St (a-Lv )| do = [(r.v i €)da . (9.19)

/ i

D (A) 0% (A)

Finally we subtract (9.16) from (9.19), regard (5.10) and get
de

/ (%ﬂ+p divv) (%<€,€>+<v,€>) +"(a_g : L‘gg+<a—l,€>)] dv =/<r,€>da - (9:20)

D;(A) 0% (A)

Proof of equations (5.16) and (5.17)

Equation (5.1) with r= (o, n) reads

& olerstv] o= [ouv a4 [ tlov)m) da,
D;(A) D (A) 0% (A)
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where we used, that ((o,n),v) = ({(o,v),n), what can be understood from simple com-
putation. Applying (9.5) and (9.6) to this equation we get

d 1 «
< J e [ 50|, _ gV J a0V, _ g Y +8/ (®(0,v),N}J dA

with p(®4(X))J = py,, from (4.6), J from (9.8) and
E:=®"e(x,1,8)=e(®(X), 1, D, (D*g)) =e(®,(X), 1, ®,C") = E(X,1,C")

Y

due to (5.8), (5.9) and (3.17). Since e _ @ (;)V (section 3) and 1(®,(X), 1) = L(X,1) as
X = t

n (4.6), this equation is equivalent to

dﬁtj oy [E 4 5V V)] av :JpRef<L,V> WVt [ (18 (o, v),N) dA.

—1\A
Equation (2.13) combined with (4.3) and (4.4), gives J (®" (o, V>) =J (2, ) (o, v))" =
J(F Yo% gt = P4g, VP =((P,V))4. So, the equation
d 1
s [F 3V V]V = [p vy av 4 [(PVIN e (92
A A A

with ((P,V),N) = ((P,NN), V) is obtained, and this is exactly (5.16). To prove (5.17), we

permute differentiation and integration®, include (9.15) and are led to

/pRef(%E L{A—L,V))dV = / ((P,N), V) dA. (9.22)
A

As on page 34, we formulate the analogon to (9.22) for an arbitrary superposed motion

with the material velocity Z:= %0 &

From (5.3) and (5. 4) we use V= ¢ V+E. Like above we have F(X,t) = i)*é(fc,t,g)
= H(®(X), 1, BB F)) = &(B:(X), 1, 8.C") = B(X,,C) with €' 1= &g, cf. (3.17) and
L(X 1) = l(i)t(X) t). The definition (3.3) gives A(X 1) = a(<I>t(X) t), and from (5.7)
we deduce L-A=1l-a=¢,(l-a)=¢,(L—A). With (4.4) we have P = J® ¢ and

P = J® & with J = J as shown near (9.12). With those preliminaries we note (9.22) for
the superposed motion as

/pRef (ﬁE (A t,\?>) dv = [((P.N),V)dA (9.23)

33In contrast to (5.1), here is no need to heed (9.11), since .4 does not depend on the time.

35



Subtracting (9.22) from (9.23) and selecting the time #, for which ®,, = ®,, holds, we get

d = =
[ e (%(E—E)) +(A-LE) |V = [((P,N),Z)dA, (9.24)
4 o A
since (A—L)| = A—L,\Nf| =V+E, and from (4.2), (5.8) we get 6'| = o, delivering
0

P| " = P. For the term ccllt(E E)= Q% Q%—I—%%CAB rdtCAB we see, that

OE _ OF oL oF _
G = ar and JCa5 = 0Can for t = 1y holds.

So we get d%(E—E)

It

|t0 a%A d(CAB|t0_CAB) a% (DAB|t _DAB) Due to (3 19)

we have f)b|t —D" = 1g* ((L‘ﬁg)h —L’ug) =1®"L.g = Dbg , cf. (2.29). So the equation
0 0

2
(9.25) is proven:

/pRef(z% DL+ (A~ L,E))dV = / (P,N),E) dA . (9.25)
A

To continue, we need an analogon to the divergency theorem (5.12) formulated in the
reference configuration. This reads

DIV (P,

[1]

) = (DIVP.E) + (P-F'): Q%+ (P-F'): DL (9.26)

with the spin QbE defined by

1

1
A —c b —c a\ __ —c b
QEAB -—5((gbc~ )|AFB_(gaC‘—‘ )|BFA) - §(gbc~|AFB_gac~|BFA) ) (927)

the rate of deformation DbE with components
1 —C a
DEAB =: §(gbc:|AFg+gac~|BF ) 5 (928)

and (PF™)AB = ped(p—1)B = TAB with T48 from (4.8). This shall be proved in the
sequal:

Following the proof on page 31, including (4.7) and introducing the temporary substitution
N, = gab:b we get

aA
DIV(P,E) = A, (%fj(A —|—FABP“B) + paa gjﬁ = N, (%1;(14 +PeATE, —|—ychAP“A)

+ P g)/(vA N.F5q8) = N, (DIVP)* 4 PNy, = (DIVP,E) + P N,4 with
Nipa = D= PNy = P08y o, = G PN, = Fy (2 — o)
= F5N,., and therefore DIV(P.E) = (DIVP,E) + P F5N, .. To verify (9.26), it re-
mains to show, that P4 F{Ny. = (P-F_l) : (QbE + DbE) and that the identity inside (9.27)
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is true.
To start with the latter, we state, that = H|A = FgEfb follows from simple computations. So,

rearranging the terms, we get gbcﬂAFB Jac=igl’h = gabEi’c(FﬁFg — FgF%) . In a similar
manner the following transformations (gpe=© )|AF]b3—(gacEc)|BFj =

NojaFg—Nupls = PNy g —FgNo Py = (FEFJ%—F]%F,i)("b%irgab?Tff—%fcgde?) =
(FiFg— FéFj)(Eb% -I-gab:f — 72,0002 — 72 g4.=%) are obtained and it remains to verify,
that = (% — GadV% — gdb’yac) 0, what is a straight consequence of (2.10).

To complete the proof to (9.26) we compute (Qi + DbE)AB = gbcETAFJbg and
(P-F~):(QL + DL) = P*Agy Z5, Fp (F)) = PP gy Ef 8L = P*Ag, B3y = P g, 2, F and
compare it to PbAFC./\/|C PMFC (% ’ybc./\/) PMFC (%Ha‘ﬂlabr VioGad= ) —

PbAFfl (gabEf‘c + =4 (%%;df — VpeGad — vﬁdgab)) :PbAFflgabEf‘c. Applying Gauss’ formula to
P,N),E)dA = P,E),N)dA = [ DIV(P,E)dV and the divergency theorem (9.26
g
A A

oA
0 (9.25), we end at (5.17).

Proof of equations (6.3), (6.4)
Equation (6.1) with h(x,?,n) = —(q(x,?),n), reads
ps {a(x,1),n)
dt / pn dv > / dv —M/A) 5 da . (9.29)

Applying the transport theorem (9.11) to the left of (9.29) and the Gauss theorem (9.7) to
the second term on the right, we get

d d
- — > ().
q)(/A){ dtn 19—|—dw<19)—I—U[dtp—l—pdwv]}dv_()

with d%p—l— pdivv vanishing due to the supposed conservation of mass. Taking into account
the arbitraryness of A, the first part of (6.3) is found. The second part of (6.3) follows
from simple calculus.

In a similar way, using (4.2), the divergency theorem (5.12), the conservation of mass (5.14),
(9.7), (9.11) and (9.15), from (6.2) we get

/{ d%e—l-< (a—l)—diva,V>—%0’:L’Vg—a:wi{—ps—|—div q}dv:(),
3, (A)

According to the symmetry of o we have U:wi[ = 0, and the conservation of momentum
from (5.14) gives (p(a—1)—div o ,v) = 0. Inserting the definition of the spatial rate of

37



deformation tensor d” from (3.20), we find

!

and the arbitraryness of A supplies (6.4).

a:db—ps—l—div q| dv=20,

Pgte—
Py

)
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