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Abstract

We reinvestigate the validity of mapping the problem of two onsite interacting

particles in a random potential onto an e�ective random matrix model. To

this end we �rst study numerically how the non-interacting basis is coupled by

the interaction. Our results indicate that the typical coupling matrix element

decreases signi�cantly faster with increasing single-particle localization length

than is assumed in the random matrix model. We further show that even for

models where the dependency of the coupling matrix element on the single-

particle localization length is correctly described by the corresponding random

matrix model its predictions for the localization length can be qualitatively

incorrect. These results indicate that the mapping of an interacting random

system onto an e�ective random matrix model is potentially dangerous. We

also discuss how Imry's block-scaling picture for two interacting particles is

in
uenced by the above arguments.
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I. INTRODUCTION

The interplay of disorder and many-body interactions in electronic systems has been

studied intensively within the last two decades.

1

For non-interacting electrons, the highly

successful \scaling hypothesis of localization" was put forward in 1979 by Abrahams et

al.,

2

but the role played by many-particle interactions is much less understood and still

no entirely consistent picture exists.

1

The recent discovery of a metal-insulator transition

in certain two-dimensional electron gases at zero magnetic �eld

3

has renewed the interest

in this problem, since in the samples considered the electron interaction is estimated to

be much larger than the Fermi energy.

3

Thus the observed transition may be due to an

interaction-driven enhancement of the conductivity.

The simplest version of the interacting disordered particle problem is perhaps the case

of just two interacting particles (TIP) in a random potential in one dimension (1D). For

a Hubbard on-site interaction this problem has recently also attracted a lot of attention

after Shepelyansky

4;5

argued that attractive as well as repulsive interactions between the

two particles (bosons or fermions) lead to the formation of particle pairs whose localization

length �

2

is much larger than the single-particle (SP) localization length �

1

.

6

Based on

a mapping of the TIP Hamiltonian onto an e�ective random matrix model (RMM) he

predicted

�

2

� (U=V )

2

�

2

1

(1)

at two-particle energy E = 0, with V the nearest-neighbor transfer matrix element and U

the Hubbard interaction strength. Shortly afterwards, Imry

7

used a Thouless-type block-

scaling picture (BSP) in support of this. The most surprising aspect of Eq. (1) is the fact

that in the limit of weak disorder the ratio �

2

=�

1

diverges. Thus, in the limit of weak

disorder the particle pair can travel in�nitely further than a SP. This should be contrasted

with renormalization group studies of the 1D Hubbard model at �nite particle density which

indicate that a repulsive onsite interaction leads to a strongly localized ground state.

8
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Subsequent analytical investigations further explored the mapped TIP problem as an

RMM problem.

9{12

Direct numerical approaches to the TIP problem have been based on

the time evolution of wave packets,

4

transfer matrix methods (TMM),

13

Green function

approaches,

14;15

or exact diagonalization

16

. In these investigations usually an enhancement

of �

2

compared to �

1

has been found but the quantitative results di�er both from the

analytical prediction in Eq. (1), and from each other. Furthermore, a check of the functional

dependence of �

2

on �

1

is numerically very expensive since it requires very large system sizes.

Following the approach of Ref. 13, two of us studied the TIP problem by a di�erent TMM

17

and found that (i) the enhancement �

2

=�

1

decreases with increasing system sizeM , (ii) the

behavior of �

2

for U = 0 is equal to �

1

in the limitM !1 only, and (iii) the enhancement

�

2

=�

1

also vanishes completely in this limit. Therefore it was concluded

17

that the TMM

applied to the TIP problem in 1D measures an enhancement of the localization length which

is entirely due to the �niteness of the systems considered.

In this paper we return the attention to the original mapping

4

of the TIP problem

onto an e�ective RMM. We argue that the mapping as in Ref. 4 is potentially dangerous

since (A) it overestimates the typical coupling matrix element and (B) it neglects phase

correlations which we believe to be essential, because it is known that interference e�ects are

responsible for Anderson localization to begin with. In order to establish that the mapping

procedure

4

can lead to incorrect results we �rst numerically investigate the interaction-

induced coupling matrix elements between the non-interacting basis states for various values

of the SP localization length. We �nd that the typical coupling matrix element decreases

signi�cantly faster with increasing SP localization length than assumed in Ref. 4. This alone

would lead to a signi�cantly smaller increase, if any, of the TIP localization length than in

Eq. (1). We further show that even if the RMM correctly described the dependency of the

coupling matrix element on the SP localization length, its results for the TIP localization

length cannot be trusted. To this end we present two simple physical examples, namely

Anderson models with additional perturbing random potentials for which the RMMmapping

yields the same enhancement of the localization length as for the TIP problem. However,

3



for our examples this enhancement is obviously incorrect. We also show that analogous

problems exist for the BSP.

7

We argue that the failure of the RMM approach in our toy

models is caused by neglecting the correlations between the coupling matrix elements. This

has already been made responsible

13;14

for quantitative di�erences between Eq. (1) and

numerical results for the TIP problem. We show, however, that neglecting the correlations

not only changes the quantitative predictions of the theory but can lead to qualitatively

incorrect results.

The paper is organized as follows. In section II we brie
y summarize the RMM approach

to the TIP problem. In section III we present our numerical results for the TIP coupling

matrix elements and their dependence on the SP localization length. The failure of the

RMM approach to correctly predict the localization length of two toy models is discussed

in section IV while section V shows the failure of the BSP for these toy models. We discuss

the relevance of our results for the original TIP problem and conclude in section VI.

II. THE RANDOM MATRIX MODEL APPROACH

Let us start by recalling the basic steps of the RMM approach

4

to TIP in a random

potential. The relevant energy scales are chosen such that the SP band width 4V is larger

than the (uniform) spread of the disorder W which in turn is supposed to be larger than the

interaction strength U . The basic idea is to represent the TIP Hamiltonian in the eigenbasis

of the non-interacting problem and then to replace the full Hamiltonian by a suitably chosen

random matrix.

The (non-interacting) SP eigenstates are approximately described by

 

n

(x) �

1

p

�

1

exp

�

�

jx� x

n

j

�

1

+ i�

n

(x)

�

; (2)

where x

n

is the localization center of the nth eigenstate and �

n

(x) is a phase which appears

to be random but contains all the information about interferences necessary for Anderson

localization. In the absence of interactions and neglecting symmetry considerations the

two-particle eigenstates are just products of two SP eigenstates,

4



 

nm

(x; y) �

1

�

1

exp

�

�

jx� x

n

j

�

1

�

jy � y

m

j

�

1

+ i�

n

(x) + i�

m

(y)

�

; (3)

where x and y are the coordinates of the �rst and second particle, respectively. Switching

on the Hubbard interaction U(x; y) = U�

xy

between the two particles induces transitions

between the eigenstates  

nm

of the non-interacting problem. To estimate the transition rates

it is �rst noted that the matrix element h 

nm

jU j 

n

0

m

0

i is exponentially small for jx

n

�y

m

j >

�

1

or jx

n

0

� y

m

0

j > �

1

or jx

n

� x

n

0

j > �

1

or jy

m

� y

m

0

j > �

1

. Thus, the interaction

couples each of the two-particle states (3) close to the diagonal in the 2D con�guration

space (jx

n

� y

m

j < �

1

) to O(�

2

1

) other such states. The interaction matrix element is

then the sum of �

1

contributions each with magnitude U�

�2

1

and approximately random

phases. Neglecting possible correlations among these contributions, Shepelyansky found the

magnitude u of the matrix element

u

nmn

0

m

0

= h 

nm

jU j 

n

0

m

0

i � U�

�3=2

1

; (4)

independent of the interaction being attractive, repulsive or even random. Eq. (4) is one of

the essential ingredients of the RMM. In section III we will present numerical data in order

to check its validity. We remark that the validity of Eq. (4) has recently been questioned in

Ref. 18 where the authors have computed a di�erent estimate taking into account the nearly

Bloch-like structure of the eigenstates for small W .

Shepelyansky

4;5

now replaced the full TIP Hamiltonian by an e�ective RMM for those

of the two-particle states that are coupled by the interaction. Thus the Hamiltonian matrix

becomes a banded matrix whose elements are independent Gaussian random numbers with

zero mean. The diagonal elements are drawn from a distribution of width V , because for

small disorder W the nearest-neighbor transfer V determines the band width of the SP

states. The distribution of the o�-diagonal elements has width jU j�

�3=2

1

within a band of

width �

1

.

In order to obtain results for the localization properties of such an RMM one has to

distinguish di�erent regimes, depending on the strength of the interaction. If the interaction

5



is strong enough to couple many non-interacting eigenstates, i.e., the inverse lifetime � of

a non-interacting state is large compared to the level spacing of the coupled states, Fermi's

golden rule can be applied. This regime was investigated in Ref. 4 and also gives the largest

enhancement of �

2

compared to �

1

. We note that in this regime the level-spacing distribution

of the non-interacting system cannot play a signi�cant role since the interactions couple a

large number of levels and lead to a decay into a quasi-continuum of �nal states. In the

opposite limit, i.e., if the interaction couples only few non-interacting eigenstates, Fermi's

golden rule cannot be applied. Instead, one �nds Rabi oscillations between the few coupled

states.

10

We note that in this regime the level spacing distribution of the non-interacting

states becomes important. In the following we will only consider the golden rule regime.

The localization length of the e�ective RMM can be determined by several equivalent

methods. Here we follow Shepelyansky:

5

Calculating the decay rate � of a non-interacting

eigenstate by means of Fermi's golden rule gives � � U

2

=�

1

V . Since the typical hopping

distance is of the order of �

1

the di�usion constant is D � U

2

�

1

=V . Within a time � the

particle pair visits N � U�

3=2

1

V

�1=2

�

1=2

states. Di�usion stops when the level spacing of the

visited states is of the order of the frequency resolution 1=� . This determines the cut-o� time

�

�

and the corresponding pair-localization length is obtained as �

2

�

p

D�

�

� (U=V )

2

�

2

1

in agreement with Eq. (1). Applicability of Fermi's golden rule requires � � V=�

2

1

which

is equivalent to U

2

�

1

=V

2

� 1. This is exactly the condition for an enhancement of �

2

compared to �

1

.

Let us recapitulate: The mapping of the TIP problem onto the RMM described above

relies on two assumptions: (A) the non-interacting wavefunctions can be described by a

decaying amplitude with �nite localization length and a random phase which leads to the

U=�

3=2

1

behavior in Eq. (4) and (B) any correlations between the matrix elements in the

Hamiltonian can be neglected. In the next two sections we will closer analyze the validity

of these two assumptions.
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III. NUMERICAL RESULTS FOR THE MATRIX ELEMENTS

In this section we present results for the interaction-induced coupling matrix elements

in order to check whether they follow the �

�3=2

1

power law (4) as assumed in Ref. 4. Since

�

1

deviates from the simple power-law prediction

6

�

1

� 104=W

2

at E = 0 already for

�

1

. 4 (W & 5), we have �rst computed �

1

by TMM

6

in 1D with 0:1% accuracy for

all W � 0:3 (�

1

� 1156). We next exactly diagonalize the SP Hamiltonian and obtain

the eigenstates. We then compute the \center-of-mass" (CM) of these eigenstates as x

n

=

P

x

xj 

n

(x)j=

P

x

j 

n

(x)j. For hard wall boundary conditions, we have checked that using

this de�nition of the CM we can reproduce the disorder dependence of �

1

from the decay of

the SP wave function  

n

via 1=�

1

= � lim

jx�x

n

j!1

ln j 

n

(x)j=jx� x

n

j to within 10% up to

�

1

= 104 (W = 1) for 50 samples of length M = 1200. For periodic boundary conditions,

we use a suitably generalized de�nition for the CM. We next calculate the matrix elements

h 

nm

jU j 

n

0

m

0

i for all states with appropriate CM, i.e., jx

n

� y

m

j � �

1

, jx

n

0

� y

m

0

j � �

1

,

jx

n

� x

n

0

j � �

1

and jy

m

� y

m

0

j � �

1

. Since the interaction strength U appears only as a

multiplicative prefactor in the matrix elements, we choose U = 1 in all of what follows. We

emphasize that the bottleneck in such a computation is not the system size M , but rather

the exponentially growing number of overlapping matrix elements for increasing �

1

.

In Fig. 1 we show the unnormalized probability distributions P

d/o

(u) of diagonal and

o�-diagonal coupling matrix elements. P

d/o

(u) was computed at disorder W = 2 where the

enhancement of �

2

with respect to �

1

is expected to be large.

13{15

We have averaged over

50 di�erent disorder con�gurations forM = 200. For a more detailed inspection we plot the

data on a doubly logarithmic scale in Figs. 2 and 3. As already discussed before

13;14;19

we

note that (i) the diagonal elements are non-negative, (ii) P

o

(u) is symmetric around u = 0.

The deviation from symmetry for juj & 0:02, i.e., P

o

(juj) > P

o

(�juj), is most likely due to

the �nite size of the samples. More importantly, (iii) P

o

(u) is strongly non-Gaussian. We

remark that a �t to a Lorentzian distribution does also not describe the data. (iv) apart

from a peak at u � 0, P

d

(u) is approximately Gaussian, (v) P

o

(u) and P

d

(u) have rather

7



long tails, (vi) the total distribution of matrix elements P (u) is dominated by P

o

(u) (as in

any matrix) and thus P (u) is strongly non-Gaussian with long tails.

For such a non-Gaussian P (u) the average of the absolute matrix elements u

abs

= hjuji,

with h�i denoting the average over u according to P (u), is strongly in
uenced by rare events

in the tails of the distribution. This is even more so when using the mean-square value

p

hu

2

i. However, in the physical problem considered here these rare large couplings lead to

oscillations of the system between the corresponding two TIP states but not to delocalization.

The typical value u

typ

is thus better de�ned as the logarithmic average u

typ

= exp[hlog(juj)i].

We have calculated both u

abs

and u

typ

for di�erent values of W and 50 samples for

M � 200 and 30 samples for M = 250. As shown in Fig. 4, the dependence of u

abs

on �

1

for �

1

> 5 follows u

abs

/ �

��

1

. A �t for 20 � �

1

� 111 yields � = �1:5� 0:1 as predicted in

Ref. 4. However, the typical TIP matrix element u

typ

decreases much faster with increasing

�

1

. Fitting the u

typ

data to a power law for 20 � �

1

� 111, we obtain � = 1:95 � 0:10.

Furthermore, for the largest �

1

the numerical data deviate| albeit weakly| from the above

power law showing a slight downward curvature in the double-logarithmic representation.

In fact, if we only consider the data points from the large chains with M = 250, we already

�nd � = 2:02 � 0:10. This indicates that asymptotically the dependence is even stronger

than �

�1:95

1

.

In Fig. 5, we show u

abs

and u

typ

for the diagonal matrix elements only. For 20 � �

1

� 111

the data can be �tted by u

d,abs

/ �

�0:9�0:1

1

and u

d,typ

/ �

�1:0�0:1

1

. Thus as expected u

d,abs

and u

d,typ

behave similarly since P

d

(u) may be approximated by a Gaussian distribution.

Furthermore, � = 1 is in agreement with Eq. (21) of Ref. 18.

Repeating the RMM calculation of section II with a dependence u

typ

� U�

��

1

instead of

Eq. (4), we obtain

�

2

� (U=V )

2

�

�2�+5

1

: (5)

If we use now use � = 1:95 � 0:10 we �nd �

2

� �

1:1�0:2

1

. However, as discussed above the

true asymptotic dependence of u

typ

on �

1

is likely to be even stronger than �

�1:95

1

which

8



in turn results in an even weaker enhancement of �

2

. We emphasize that the enhancement

predicted by Shepelyansky

4;5

will vanish for � = 2 in the limit �

1

!1. A value of � > 2

will in fact correspond to even stronger localization of the TIP.

In order to further explore the validity of assumption (A) we compute P

d/o

(u) for a

site-dependent random onsite interaction U(x) 2 [�U;+U ], averaging as before over 50

samples. If assumption (A) is correct, the resulting distribution of the coupling matrix

elements should qualitatively be similar to the one obtained for the original TIP problem.

But as shown in Figs. 2 and 3, we �nd that the randomness of the interaction already leads

to a signi�cant decrease of the long-range nature of P (u). E.g., at juj = 0:02, there is a

reduction in P

d/o

(0:02) by a factor of approximately 10 for diagonal and approximately 5

for o�-diagonal matrix elements when compared to P

d/o

(0:02) of the original TIP problem.

We further compute P (u) for states with the same CM as previously, but otherwise chosen

according to Eq. (3) with uncorrelated random phases and exponentially decaying envelope.

The disorder averaging is again over 50 samples. As shown in Fig. 1, P

d

(u) now has a

maximum at �nite u. For these states P

o

(u) is well approximated by a Gaussian just

as expected by Shepelyansky.

4;5

The double-logarithmic plot of Fig. 3 shows deviations

from the symmetry P

o

(u) = P

o

(�u) for juj & 0:008, i.e., P

o

(juj) > P

o

(�juj). As for the

TIP problem, we attribute this to the �nite size of the samples considered. Again, we

note that when compared to P

o

(u) for the TIP problem, the present distribution of matrix

elements decreases much faster and at juj = 0:02 is about one order of magnitude smaller.

Furthermore, for juj > 0:008 the distribution P

o

(u) is also smaller than that for the model

with random interaction. Thus assumption (A) clearly oversimpli�es the problem and the

neglect of phase correlations leads to a wrong P

d/o

(u). In Fig. 4, we show u

abs

and u

typ

for the arti�cial states of Eq. (3). In complete agreement with our previous discussion, we

�nd that for �

1

> 20 both the average and the typical matrix element vary as u / �

�1:4�0:1

1

compatible with � = 3=2.

In Fig. 4, we show also TIP data for chain lengthsM = 100. We note that deviations due

to the small system size lead to a smaller slope for u

abs

and thus may give rise to an apparent

9



enhancement of �. As can be seen in the �gure, this decreasing of the slope happens for

M = 100 already at �

1

& 20 (W . 2:3). A power-law �t for 30 � �

1

� 57 yields u

abs

/

�

�1:39�0:10

1

. The �nite-size deviations for u

typ

are di�erent. A power-law �t for 7 � �

1

� 30

gives u

typ

/ �

�1:77�0:10

1

whereas for 30 � �

1

� 57 we �nd u

typ

/ �

�2:06�0:10

1

. Thus �rst there

is a decrease of � followed by a �nite-size increase of �. For still larger �

1

� M=2 the

�nite-size deviations of u

abs

and u

typ

become very large even resulting in a positive slope.

This �nite-size e�ect may be at least partially responsible for the enhancement observed in

Refs. 13 and 17 for this value of M .

In Fig. 6, we show u

abs

and u

typ

for M = 100 with hard wall and periodic boundary

conditions. Up to �

1

� 10, the data for both boundary conditions agree quite well. For

10 � �

1

� 25, the slope for the data with periodic boundaries is slightly smaller than for the

data with hard wall boundaries. Lastly, around �

1

�M=2, the data for periodic boundaries

shows a very fast decrease of u. Thus the data for periodic boundaries is in
uenced by the

�nite size of the sample already earlier than the data for hard wall boundaries. Nevertheless,

except for these �nite size e�ects, our results for both boundary conditions are similar and

we will restrict ourselves to the hard wall boundaries in the following. We remark that most

numerical studies of the TIP problem also use this type of boundaries.

13{17

IV. FAILURE OF THE RMM APPROACH FOR TOY MODELS

In this section we show that even an RMM which contains the correct dependence of

the coupling matrix elements on the SP localization length may give qualitatively incorrect

results. To this end we consider two toy models, viz. Anderson models of localization with

additional perturbing random potentials. By a procedure analogous to that of section II we

map these models onto RMMs and then show that these RMMs give erroneous enhancements

of the localization length.

10



A. 2D Anderson model with perturbation on a line

The �rst example is set up to lead to the same RMM as the TIP problem. It consists

of the usual 2D Anderson model of localization perturbed by an additional weak random

potential of strength U at the diagonal x = y in real space. Since this increases the width

of the disorder distribution at the diagonal we expect the localization length to decrease.

We now map onto an RMM as in Refs. 4, 5. As above, the eigenstates of the unperturbed

system are localized with a localization length �

1

and approximately given by

 

n

(x; y) �

1

�

1

exp

�

�

jr� r

n

j

�

1

+ i�

n

(r)

�

(6)

where r = (x; y)

T

is the coordinate vector of the particle and � is again a phase which is

assumed to be random. The Hamiltonian of this model di�ers from the TIP Hamiltonian

in two points: (i) the diagonal elements are independent random numbers instead of being

partially correlated as in the TIP problem and (ii) the interaction potential U(x; x) 2 [�U;U ]

at each site of the diagonal is random instead of having a de�nite sign and modulus U as

in the TIP problem. However, none of these points enters the mapping procedure outlined

above. Thus, applying exactly the same arguments as for the TIP problem in section II

we �nd that the perturbation couples each state close to the diagonal (jx

n

� y

n

j < �

1

) to

O(�

2

1

) other such states. The interaction matrix element is again a sum of O(�

1

) terms of

magnitude U=�

2

1

and random phases giving a typical value of U�

�3=2

1

. Consequently, our toy

model is mapped onto exactly the same RMM as TIP in a random potential.

As for the TIP case we now numerically check the relation between the coupling matrix

element and the SP localization length �

1

. We �rst note that the disorder dependence of

�

1

in the 2D Anderson model is no longer approximated by the simple power law cited in

section III.

20

In fact, �

1

is usually much larger in the 2D case for the same value of W . Thus

we compute estimates �

1

(M) as a function of W for quasi-1D strips of �nite strip width M

with 1% accuracy by TMM. We remark that due to the self-averaging

20

of 1=�

1

(M) this is

equivalent to computing �

1

(M) for many samples of M �M disordered squares. In Fig.

11



7, we show data of �

1

(M) as a function of W . We take �

1

(50) to compute the coupling

matrix elements. Since �

1

(50) is always larger than for smaller system size, this choice

only means that we sum over a few additional but very small terms when computing u.

Next, we calculate both u

abs

and u

typ

for di�erent values of W and various M �M squares.

Disorder averaging is over 20 samples and we study u

abs

and u

typ

as functions of �

1

(M). We

emphasize that instead of the well-known extrapolations of �

1

(M) to in�nite system size by

means of �nite-size scaling,

20

we take the �nite-size approximants �

1

(M) on purpose, since

we compute �

2

also for comparable �nite sizes only.

In Fig. 8 we show the computed distributions P

d/o

(u) for the present model. As for the

TIP model the diagonal elements are non-negative and P

d

(u) has a large peak at u = 0;

P

o

(u) is again strongly non-Gaussian. The results for u

abs

and u

typ

are presented in Fig.

9. The dependence of u

abs

on �

1

(M) for 2 � �

1

(M) � 12 follows u

abs

/ �

1

(M)

�1:6�0:1

in

agreement with our above prediction. Furthermore, here we also have u

typ

/ �

1

(M)

�1:5�0:1

.

As before, we note that the slopes of u

abs

and u

typ

become smaller for �

1

(M) � M=2 due

to the �nite sample sizes. This �nite-size e�ect is just the same as for TIP and thus further

supports our use of the �nite-size values �

1

(M). We remark that if instead of �

1

(M), we use

�

1

(50) for plotting the u

abs

and u

typ

data, that is irrespective of the system sizes for which

they had been computed, we obtain u

abs

/ �

�1:54�0:10

1

and u

typ

/ �

�1:47�0:10

1

. Thus both

choices of �

1

show that u

abs

and u

typ

vary as �

�1:5

1

within the accuracy of the calculation.

Since our toy model is mapped onto the same RMM as the TIP problem the resulting

localization length along the diagonal is also given by Eq. (1). We thus arrive at the sur-

prising conclusion, that adding a weak random potential at the diagonal of a 2D Anderson

model leads to an enormous enhancement of the localization length along this diagonal,

in contradiction to the expectation expressed above, viz. that increasing disorder leads to

stronger localization.

12



B. 1D Anderson model with perturbation

An even more striking contradiction can be obtained for a 1D Anderson model of lo-

calization. The eigenstates are again given by Eq. (2) with �

1

known from second order

perturbation theory

21

and numerical calculations

6

to vary as �

1

� V

2

=W

2

for small dis-

order. We now add a weak random potential of strength U at all sites. Since the result

is obviously a 1D Anderson model with a slightly higher disorder strength the localization

length will be reduced, �

1

(U) � V

2

=(W

2

+ U

2

). Now we map onto an RMM according

to Refs. 4, 5. The additional potential leads to transitions between the unperturbed eigen-

states  

n

. Each such state is now coupled to O(�

1

) other states by coupling matrix elements

h 

n

jU j 

n

0

i with magnitude u � U�

�1=2

1

since we sum over �

1

contributions with magnitude

U=�

1

and supposedly random phases.

Again we numerically check the relation between u

abs

and u

typ

as functions of �

1

. In Fig.

10, we show results obtained for chains with various lengths and 50 disorder con�gurations

for each W . �

1

is computed by TMM as in section III. In Fig. 11 we show the distributions

P

d/o

(u). We note that P

o

(u) is non-Gaussian as for the TIP model and the perturbed 2D

Anderson model. P

d

(u) is similar to the previous models, but the 
uctuations are much

larger. For 10 � �

1

� 250, u

abs

varies as �

�0:48�0:10

1

as we predicted above. u

typ

varies as

�

�0:59�0:10

1

. Both variations are compatible with � = 1=2. Again we need at least �

1

&M=2

in order to suppress the e�ects of the �nite chain lengths.

In analogy to section II the application of Fermi's golden rule in this 1D case leads to

a di�usion constant D � U

2

�

2

1

=V . The number of states visited within a time � is now

N � U�

1

V

�1=2

�

1=2

. Again, di�usion stops at a time �

�

when the level spacing of the states

visited equals the frequency resolution. This gives �

�

� U

2

�

2

1

=V

3

. The localization length �

of the perturbed system thus reads � �

p

D�

�

� U

2

�

2

1

as in Eq. (1), in clear contradiction

to the correct result.
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V. FAILURE OF THE BSP FOR TOY MODELS

We now discuss the relation of our results to Imry's BSP

7

for the TIP problem. In

this approach one considers blocks of linear size �

1

and calculates the dimensionless pair

conductance on that scale,

g

2

�

u

2

�

2

; (7)

where u represents the typical interaction-induced coupling matrix element between states

in neighboring blocks and � � V=�

2

1

is the level spacing within the block. If the typical

coupling matrix element depends on �

1

as u � U�

��

1

the pair conductance obeys

g

2

� (U=V )

2

�

4�2�

1

: (8)

Again, an estimate analogous to Shepelyansky's (4) gives � = 3=2 which leads to a strong

enhancement of the pair conductance g

2

� �

1

as compared to the SP conductance g

1

which

is of order unity on scale �

1

. In contrast, the numerical data of section III suggest that

the pair conductance increases much less, viz. g

2

� (U=V )

2

�

0:1�0:2

1

for the �tted exponent

� = 1:95 � 0:10. Asymptotically for large �

1

the pair conductance is likely to be enhanced

even less than that. The behavior will be close to or even smaller than the marginal case

g

2

� g

1

. All this is in complete agreement with our corresponding considerations for the

RMM.

For the 2D Anderson model considered in the last section, the BSP can be applied ana-

loguously. Again, we consider blocks of linear size �

1

and compute the typical perturbation-

induced matrix elements between these blocks as in section IVA. We then �nd that accord-

ing to the BSP the conductance of a 2D Anderson model with additional weak perturbing

potential along the diagonal is given by Eq. (7). Using � = 1:5� 0:1 as obtained in section

IVA from the numerical data for u

abs

and u

typ

, we then have g

2

� (U=V )

2

�

1

. Thus the BSP

yields the same unphysical result as the RMM approach of section IVA.

Let us also apply the BSP to the 1D toy example. The level spacing in a 1D block of

size �

1

is � � V=�

1

, and the coupling matrix element between states in neighboring blocks

14



is t � U�

�1=2

1

. Thus, the conductance of the perturbed system on a scale �

1

is obtained as

g

p

� (U=V )

2

�

1

. For large �

1

this again contradicts the correct result, viz. a decrease of the

conductance compared to the unperturbed system.

Thus, the BSP applied to the two toy models introduced in section IV gives the same

qualitatively incorrect results for the localization properties as the RMM. This is not sur-

prising since the only ingredients of the BSP are the intra-block level spacing � � V=�

2

1

and the inter-block coupling matrix elements u which also enter the RMM and have been

discussed in section IV.

VI. CONCLUSIONS

To summarize, we have reinvestigated the RMM approach to the problem of TIP in

a random potential. We have shown that this kind of mapping an interacting disordered

system onto an e�ective random matrix model is potentially dangerous since (A) it may

overestimate the typical coupling matrix element and (B) it neglects correlations between

the matrix elements.

In the �rst part of the paper we investigated the dependence of the matrix elements

entering the RMM on the SP localization length �

1

. We found the dependence of the

typical matrix element u

typ

to be signi�cantly stronger than for the averaged absolute value

u

abs

which is used in Refs. 4, 5, 7, 10, 12. If the RMM approach of section II is modi�ed

by using the numerically determined relation between u

typ

and �

1

instead of Eq. (4) the

resulting enhancement of �

2

with respect to �

1

becomes much weaker. We showed that

the di�erence between u

typ

and u

abs

is due to the over-simpli�ed assumption (A) that the

wave functions behave according to Eq. (2). Moreover, our data for u

typ

show systematic

deviations from power-law behavior indicating that the true asymptotic dependence of u

typ

on �

1

is likely to be very close to or stronger than the marginal case u

typ

� �

�2

1

. If the

asymptotic dependence is stronger than u

typ

� �

�2

1

the Shepelyansky enhancement vanishes

in the limit of large �

1

even within the RMM approach.
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In the second part of this paper we showed that there are physical situations where

mapping onto an RMM as in Ref. 4 gives qualitatively incorrect results, e.g., an increase of

the localization length in physical situations where it should rather decrease. This failure

occurs even if the RMM contains the correct dependence of u

typ

on �

1

. This shows in

contrast to assumption (B) that in general the correlations between the matrix elements

cannot be neglected since they contain information essential for the interference leading

to Anderson localization. Note that the approach of Ref. 18, while correcting assumption

(A), still includes a mapping onto an RMM and thus is plagued by the same problems as

assumption (B). Analogously, in Ref. 22 the decay rate � is calculated numerically, avoiding

assumption (A). However, the formula �

2

=�

1

� ��

2

1

=V employed in Ref. 22 is also based on

an assumption similar to (B).

Let us comment on the relevance of this work for the original problem of TIP in a random

potential. None of our results constitute, of course, a proof that the enhancement of the

TIP localization length �

2

predicted in Ref. 4 does not exist. However, in our opinion,

the toy counter examples to the RMM approach introduced in section IV let the analytical

arguments giving Eq. (1) appear much weaker. Taking the RMM approach seriously but

using the numerical results for the typical coupling matrix element presented in section III

we �nd that the dependence of the enhancement factor �

2

=�

1

on �

1

is signi�cantly weaker

than in Eq. (1). Nevertheless, an enhancement of the pair localization length for TIP as

compared to �

1

may still exist, although the underlying mechanism should then be di�erent.

Results supporting such an enhancement have been obtained by Green function methods

14

together with �nite-size scaling arguments.

15

The most recent data obtained in Ref. 15 �nds

an exponent � = 1:45� 0:2 for U = 1.
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FIG. 1. Unnormalized distribution P

d/o

(u) of the diagonal (left panel) and o�-diagonal (right

panel) coupling matrix elements u with bin width � = 0:0003 for �

1

= 26 (W = 2) and M = 200.

Circles and solid lines indicate TIP data, triangles and dashed lines indicate matrix elements

computed using Eq. (3). The symbols mark the data for the 20 smallest juj.
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FIG. 2. Double-logarithmic plot of the unnormalized distribution P

d

(u) of the diagonal coupling

matrix elements u for �

1

= 26 (W = 2) and M = 200 as in Fig. 1. Solid, short-dashed, and

long-dashed lines correspond to the TIP problem, the TIP problem with random interaction, and

Eq. (3), respectively. Circles, diamonds and triangles mark the data for the 10 smallest u in each

case, only three of which are larger than 10

�1

for the triangles. The vertical lines on the u-axis

indicate u

abs

(right) and u

typ

(left) as computed from the total distribution P (u).
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FIG. 3. Double-logarithmic plot of the unnormalized distribution P

o

(u) of the o�-diagonal

coupling matrix elements u for �

1

= 26 (W = 2) and M = 200 as in Fig. 1. Solid, short-dashed,

and long-dashed lines correspond to the TIP problem, the TIP problem with random interaction,

and Eq. (3), respectively. Circles, diamonds and triangles mark the data for the 10 smallest juj in

each case. The vertical lines on the u-axis indicate u

abs

(right) and u

typ

(left) as computed from

the total distribution P (u).
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FIG. 4. Dependence of u

abs

(2, N) and u

typ

(�, H) on �

1

for the TIP eigenstates (open symbols)

and states chosen according to Eq. (3) (�lled symbols) for M = 200. The small (bold) symbols

indicate u

abs

and u

typ

forM = 100 (M = 250). The solid lines represent the power laws u

abs

� �

�1:5

1

and u

typ

� �

�1:95

1

.
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FIG. 5. Dependence of u

d,abs

(2, N) and u

d,typ

(�, H), i.e., for diagonal matrix elements only,

on �

1

for the TIP eigenstates (open symbols) and states chosen according to Eq. (3) (�lled symbols)

for M = 200. The bold symbols indicate u

d,abs

and u

d,typ

for M = 250. The solid lines represent

the power laws u

d,abs

� �

�0:9

1

and u

d,typ

� �

�1:0

1

.
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FIG. 6. Dependence of u

abs

(2, +) and u

typ

(�, �) on �

1

for the TIP eigenstates for hard wall

(2,�) and periodic (+, �) boundary conditions and size M = 100.
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FIG. 7. Dependence of �

1

(M) on disorder W for the 2D Anderson model at E = 0 for

M = 10; 25; 30; 35 and 50 indicated by increasing symbol size. We use the M = 50 data, em-

phasized by the solid line, as �nite-size estimate of �

1

.
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FIG. 8. Unnormalized distribution for the diagonal (left panel) and o�-diagonal (right panel)

coupling matrix elements u with bin width � = 0:0015 for the perturbed 2D Anderson model with

�

1

= 3:1 (W = 12) and M = 25. The circles indicate the 20 smallest u (largest P

o

(u)) for diagonal

(o�-diagonal) data.
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FIG. 9. Dependence of u

abs

(squares) and u

typ

(circles) on �

1

(M) for the perturbed 2D Ander-

son model and M = 10; 25; 30 and 35 indicated by increasing symbol size. The solid lines represent

the power laws u

abs

� �

�1:6

1

and u

typ

� �

�1:5

1

.
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FIG. 10. Dependence of u

abs

(squares) and u

typ

(circles) on �

1

for the perturbed 1D Anderson

model andM = 200; 300; 500 and 800 indicated by increasing symbol size. The solid lines represent

the power laws u

abs

� �

�0:48

1

and u

typ

� �

�0:59

1

.
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FIG. 11. Unnormalized distribution for the diagonal (left panel) and o�-diagonal (right panel)

coupling matrix elements u with bin width � = 0:0015 for the perturbed 1D Anderson model with

�

1

= 26 (W = 2) and M = 200. The circles indicate the 20 smallest u (largest P

o

(u)) for the

diagonal (o�-diagonal) data.
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