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Abstract. We present a comparative study of the application of modern eigenvalue algorithms to

an eigenvalue problem arising in quantum physics, namely, the computation of a few interior eigenval-

ues and their associated eigenvectors for the large, sparse, real, symmetric, and inde�nite matrices of the

Anderson model of localization. We compare the Lanczos algorithm in the 1987 implementation of Cul-

lum and Willoughby with the implicitly restarted Arnoldi method coupled with polynomial and several

shift-and-invert convergence accelerators as well as with a sparse hybrid tridiagonalization method. We

demonstrate that for our problem the Lanczos implementation is faster and more memory e�cient than the

other approaches. This seemingly innocuous problem presents a major challenge for all modern eigenvalue

algorithms.
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1 Introduction

In this paper we present a comparative study of the application of modern eigenvalue algo-

rithms to an eigenvalue problem arising in quantum physics. The task is to compute a few

(5{10) interior eigenvalues and the associated eigenvectors of a family of structured large,

sparse, real, symmetric, inde�nite matrices. The o�-diagonal elements are equal to the o�-

diagonal elements of the 7{point central di�erence approximation to the three-dimensional

Poisson equation on the unit cube with periodic boundary conditions. The matrices di�er

from each other only in the diagonal entries, which are suitably chosen random numbers.

Previously this problem was often solved by using the 1987 Cullum and Willoughby

implementation of the Lanczos algorithm [6, 7], in the following called CWI. But in the last

10 years several new eigenvalue methods have been developed and implemented as software

packages, that seem, at least at �rst glance, more appropriate than CWI, see, e.g., the

recent survey and comparison given in [19]. We apply these new codes to the described

family of matrices and check whether they are faster and more memory e�cient than CWI.

To our surprise, none of the tested codes is consistently better than CWI. As we show

below, we �nd only a single new code which is at least as fast as CWI. But this code needs

two orders of magnitude more memory than CWI. We therefore believe that the described

family of matrices will present an important new benchmark example and will hopefully

lead to modi�cations and improvements for the current methods.
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The paper is organized as follows. In x 2 we describe the underlying quantum physics

problem, i.e., the Anderson model of localization, and introduce the parameters used in our

study. In x 3 we brie
y review the Cullum/Willoughby version of the Lanczos method that

has been previously used in the simulations for this model. We then give in x 4 a brief survey

of more recent eigenvalue methods. In x 5 we present comparative results for the di�erent

methods and show that CWI is faster and needs less memory than all other approaches.

2 The Anderson model of localization

The Anderson model of localization [1] is a convenient model for the investigation of elec-

tronic properties of disordered systems. Although it represents a severe simpli�cation of

amorphous materials and alloys, it has nevertheless become a paradigmatic model and is

currently widely used in the theoretical description of quantum mechanical e�ects of disor-

der such as, e.g., spatial localization of electronic wave functions with increasing strength

of disorder and the corresponding metal-insulator transitions [18, 21, 35]. The quantum

mechanical problem is represented by a Hamilton operator in the form of a real symmetric

matrix A and the quantum mechanical wave functions are simply the eigenvectors of A, i.e.,

�nite vectors x with real entries. E.g., for a simple cubic lattice with M = N �N �N sites,

we have to solve the eigenvalue equation Ax = �x, which is given in site representation as

x

i�1;j;k

+ x

i+1;j;k

+ x

i;j�1;k

+ x

i;j+1;k

+ x

i;j;k�1

+ x

i;j;k+1

+ "

i;j;k

x

i;j;k

(1)

= �x

i;j;k

;

with i; j; k denoting the cartesian coordinates of a site. The o�{diagonal entries of A cor-

respond to hopping probabilities of the electrons from one site to a neighboring site. For

simplicity, we have set them all to unity in (1). The disorder is encoded in the random

potential site energies "

i;j;k

on the diagonal of the matrix A. We consider only the case

of "

i;j;k

being uniformly distributed in the interval [�w=2;+w=2]. This is a common sim-

pli�cation, usually used in the studies of the Anderson model of localization with typical

values of w ranging from 1 to 30. The boundary conditions are usually taken to be periodic,

but hard wall and helical [28] boundary conditions are sometimes also used. According

to the Gersgorin circle theorem [13] every such matrix A has eigenvalues in the interval

[�w=2� 6;+w=2 + 6]. Possible generalizations of the Anderson model include anisotropic

[21] or even random hopping [9] and various choices of the distribution function of the site

energies [14]. However, the graph of the matrix remains the same.

Although the above matrix seems to be fairly simple, the intrinsic physics is surprisingly

rich. For small disorder (w � 16:5), the eigenvectors are extended, i.e., x

i;j;k

is 
uctuating

from site to site but the envelope jxj is approximately a non-zero constant. For large disorder

(w � 16:5), all eigenvectors are localized, i.e., the envelope jx

n

j of the nth eigenstate may

be approximately written as exp[�j~r � ~r

n

j=l

n

(w)] with ~r = (i; j; k)

T

and l

n

(w) denoting

the localization length of the eigenstate at the speci�ed strength w of the disorder. In

Fig. 1, we show examples of such states for the Anderson model in one spatial dimension.

Since extended states can contribute to electron transport, whereas localized states cannot,

the Anderson model thus describes a metal-to-insulator transition: In three-dimensional

samples at w = w

c

� 16:5, the extended states at � � 0 vanish and no current can 
ow.

The eigenvector properties are also connected with the statistical properties of the spectrum

�(A) of A. In the extended regime one �nds level repulsion, while in the localized regime the

eigenvalues are uncorrelated resulting in level clustering. These results agree quantitatively

with random matrix theory [18]. Directly at w

c

there is a so-called critical regime where

the eigenvectors are multifractal entities [21, 29] showing characteristic 
uctuations of the
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Figure 1: Extended (dashed line) and localized (thick solid line) eigenstate for a single

realization of the Anderson model in one spatial dimension with N = 200 sites and periodic

boundary conditions. For the localized eigenstate, we also show the exponential envelope

with localization length l � 12 (thin lines) according to x 2.
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Figure 2: Histogram n(�) of eigenvalues for a single system with N

3

= 48

3

sites and w = 10

(2), 16:5 (�), and 20 (�). The bin width is 0:05. The lines are obtained by consecutively

averaging 20 bins.

amplitude on all length scales. In order to numerically distinguish these three regimes,

namely localized, critical and extended behavior, one needs to (i) go to extremely large

system sizes and (ii) average over many di�erent realizations of the disorder, i.e., compute

eigenvalues or -vectors for many matrices with di�erent diagonals.

In the present paper we concentrate on the computation of a few eigenvalues and cor-

responding eigenvectors for the physically most interesting case of critical disorder w

c

and

in the center of �(A), i.e., at � = 0, for system sizes as large as possible. In Fig. 2, we

show a histogram of �(A) for di�erent disorders. Note the high density of states at � = 0

in all cases. Therefore we have the further numerical challenge of distinguishing clearly the

eigenstates in this high density region.

3 The Lanczos algorithm and the Cullum/Willoughby

implementation

As outlined in the last section, each of the matrices A is sparse, symmetric and inde�nite.

Furthermore, the matrix-vector multiplication Ax can be written explicitly as in (1) and is

thus easily implemented. An ideal candidate for an algorithm taking advantage of nearly

all these properties is the Lanczos algorithm [13]. This algorithm iteratively generates

a sequence of orthogonal vectors v

i

, i = 1; : : : ; K, such that V

T

K

AV

K

= T

K

, with V =
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fv

1

; v

2

; � � � ; v

K

g and T

K

a symmetric tridiagonal K �K matrix. One obtains the recursion

�

i+1

v

i+1

= Av

i

� �

i

v

i

� �

i

v

i�1

; (2)

where �

i

= v

T

i

Av

i

and �

i+1

= v

i+1

Av

i

are the diagonal and subdiagonal entries of T

K

,

v

0

= 0 and v

1

is an arbitrary starting vector. For K = M in exact arithmetic this is an

orthogonal transformation to tridiagonal form that needs M matrix-vector multiplications.

The eigenvalues of the tridiagonal matrix T

K

, also known as Ritz values, are then simply

the eigenvalues of the matrix A and the associated Ritz vectors yield the eigenvectors [6, 7,

13, 22, 25].

In �nite precision arithmetic, however, the Lanczos vectors v

i

loose their orthogonality

after a small number of Lanczos iterations. Consequently, there appear so called \spurious"

or \ghost" eigenvalues in �(T

K

), which do not belong to �(A).

There are several solutions to this problem: total reorthogonalization of all Lanczos

vectors against each other, selective reorthogonalization [23], or distinguishing between good

and spurious eigenvalues. While the reorthogonalization leads to an increase in memory

requirements and computing time, since all or several of the v

i

need to be stored and

reorthogonalized, the solution implemented in CWI [7] uses a simple and highly successful

procedure to identify the spurious eigenvalues, thereby avoiding reorthogonalization. It

thus only uses two Lanczos vectors in each iteration step and consequently the memory

requirements are very small. An eigenvalue of T

K

is identi�ed as being spurious if it is also

an eigenvalue of the matrix T

0

K

which is constructed by deleting the �rst row and column of

T

K

. Still, the good eigenvalues produced may not yet have converged properly for a given

K. So we further use the fact that good eigenvalues will be replicated in �(T

K

) if K is

large enough. We only accept eigenvalues as being good eigenvalues after they have been

replicated at least once in �(T

K

). Hence we usually need at least K � 2M . Finally, in order

to obtain the eigenvectors corresponding to these good eigenvalues of A, all Lanczos vectors

must be computed a second time, again doubling the computational e�ort.

The convergence of the Lanczos algorithm is very fast for the eigenvalues close to

min �(A) and max �(A). This is especially true if these eigenvalues are well separated.

However, for eigenvalues in the interior of �(A) and for eigenvalues which are not well sep-

arated the convergence is slow. Furthermore, the tridiagonal matrix T

K

becomes very large

for an iteration in the interior of �(A). Nevertheless, the CWI has been used to study the

Anderson model of localization even at � = 0 successfully for years [27, 29, 18, 14, 21, 35]

and eigenstates for matrices with N = 100 can be obtained within a few weeks of computing

time [34].

We also remark that most of the computational e�ort in the Lanczos algorithm is spent

on the iteration of (2), i.e., on matrix-vector multiplications and vector additions. These

can be easily parallelized and thus the CWI is well suited for parallel architectures. For

example, the eigenspectra presented in Fig. 2 have been obtained by such a parallel version

of CWI running for about 60 hours for each realization using 16 processors of a Parsytec

GCC Power Plus.

4 Modern approaches

Lately there has been much progress in eigenvalue methods mostly concentrating on non-

symmetric matrices. We refer to [19] for a recent survey. The symmetric problem is usually

assumed to be taken care of implicitly. But although our symmetric eigenvalue problem

is well-conditioned [13], the fact that the eigenvalues are clustered in the neighborhood

of � = 0, our region of interest, creates di�culties for all numerical methods. Promising



6 U. ELSNER, V. MEHRMANN, F. MILDE, R. R

�

OMER AND M. SCHREIBER

choices for possible replacements of the Cullum and Willoughby approach are the implicitly

restarted Arnoldi method [19] and the hybrid tridiagonalization (HTD) algorithm of Cavers

[4]. Another new approach is the Jacobi-Davidson method [3]. In the following we will pay

special attention to the Arnoldi approach, since it allows the easy use of the shift-and-invert

technique. We expect this to overcome the above mentioned clustering problem at � = 0.

4.1 Modifying the eigenproblem

The problem of slow convergence in the interior of �(A) can be overcome by computing

eigenvalues and eigenvectors for a modi�ed eigenvalue problem f(A)x = f(�)x. The func-

tion f is chosen such that the desired point � in � is mapped onto or close to the minimum

or maximum of �(f). Furthermore, one should choose f , such that �(f) has well separated

eigenvalues at min �(f) and max �(f).

Among the many possible choices for f(A), we shall consider in the following: (i) polyno-

mial convergence accelerators, where f(A) is chosen as a polynomial which has its maximum

(or minimum) at �. This moves � to max �(f(A)) (or min �(f(A)) resp.). We remark that

occasionally these convergence accelerators are somewhat misleadingly called precondition-

ers. (ii) shift-and-invert with f(A) = (A � �I)

�1

and I the M � M identity matrix.

This choice of f requires the additional solution of a linear system with A � �I in each

step of the eigenvalue iteration [13, 25]. For the solution of this linear system there are

again two alternatives: (ii.a) direct sparse solvers for A � �I. Unfortunately, not many

direct solvers exist which can make e�cient use of the sparseness for inde�nite problems.

(ii.b) iterative solvers using only matrix-vector multiplications with A � �I. The iterative

methods promise to make large matrix sizes possible, since they bene�t in an optimal way

from sparsity. Memory requirements and computational cost of a matrix-vector multiplica-

tion are proportional to the number of non-zeros and therefore proportional to M for our

present problem. However, we note that in our case (A��I) is inde�nite which will lead to

slow convergence for most iterative solvers. Since the convergence of the iterative solver is

dominated by the condition number of the linear system, one may employ preconditioners

to accelerate its convergence [13].

All these approaches result in a competition between smaller numbers of Lanczos or

Arnoldi iterations and increased costs for each such iteration step. For this reason it is not

a priori clear whether they will indeed give a net reduction in computation time.

4.2 The implicitly restarted Arnoldi method

In a recent comparison [19] of di�erent Arnoldi based packages ArPack [20] was found to

be the fastest and most reliable of the compared codes.

When applied to symmetric eigenvalue problems, the main di�erence between the tech-

niques in ArPack based on the Arnoldi iteration and the Lanczos iteration is an implicit

restart technique. The Arnoldi method stores a number of Ritz vectors produced by the

iterations and after a small number of steps initiates a restart which uses an implicit QR{

algorithm for the small eigenvalue problem to create a new starting vector and to maintain

orthogonality among the Ritz vectors. In contrast to the Lanczos algorithm more vectors

have to be stored but spurious eigenvalues are avoided.

TheArPack implementation further allows the easy use of additional acceleration meth-

ods such as polynomial convergence acceleration and shift-and-invert as outlined above. So

ArPack is probably the best choice for a replacement of CWI.
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4.3 Other approaches

We have also studied the use of the HTD method [4] and the Jacobi/Davidson method

[3]. The HTD method is a direct tridiagonalization method speci�cally designed for sparse

matrices. This makes it an interesting approach for our purposes. However, it is not

explicitly designed to compute only few interior eigenvalues and associated eigenvectors.

The Jacobi/Davidson method appears to be another promising future direction if it can

be properly accelerated. The current version is designed for complex unsymmetric problems

and to report comparative results would not be fair to this interesting new development.

We intend to further study this method in the future.

5 Results

After a short discussion of the speci�c implementations and parameters, we now present the

results of our comparison. The tests are performed on Hewlett-Packard HP9000 735/125

workstations for N

3

� 24

3

and on a HP9000 K460 with the fast PA8000 processor for

N

3

� 24

3

. The latter machine allows us to use up to 1.9 GB RAM and is about 3.5 times

faster. In order to obtain a fair comparison we always require that the eigenresidual of the

computed eigenvalue/eigenvector pair satis�es jAx��xj � 10

�8

. The CPU times have been

measured using the Unix time command of the tcsh shell. Even for the largest system sizes

considered, we have usually taken at least 5 di�erent realizations of disorder and averaged

the resulting CPU times. Sometimes, when the CPU times for a given algorithm 
uctuate

widely, we report the range of times instead of a simple average. We remark that the use of

time introduces a further uncertainty into the results such that we always have an error of

about 10%. The random number generators used are ran2 from [24] and the rand command

from Matlab.

5.1 The standard approach

For our particular problem we can reach M = 80

3

= 512000 with CPU times of about

two weeks on the K460 machine using CWI. However, keeping in mind the con�gurational

averaging necessitated by the underlying physical problem, a reasonable upper limit for the

matrix size is M = 50

3

= 125000.

In Table 1 we show the CPU times obtained for CWI in the center and at the edge of

�(A). Note that the computing times are nearly independent of the disorder parameter W ,

but, as expected, CWI is much faster at the edges of �(A) than at � = 0. In Table 2, we

show the results for CWI at � = 0 in dependence on the matrix size M .

In the ArPack implementation of Lehoucq et al. [20] one has to set the parameter NCV

which is the largest number of basis vectors that will be used in the implicitly restarted

Arnoldi process. In normal mode and in the interior of �(A) we �nd that the actual value

of NCV heavily in
uences computing time as shown in Table 3. This dependence on NCV

becomes less pronounced for eigenvalues close to min �(A) and max �(A) as shown in Table

4. However, since we do not know of any strategy to choose NCV optimally, this is a severe

restriction of ArPack. Furthermore, as shown in Table 1, ArPack, working in normal

mode, is much slower than CWI both in the center and at the edge of �(A). It becomes too

slow for practical use already at M = 12

3

= 1728 as shown in Table 2.

In Tables 1 and 2 we also include CPU times for the HTD method. Note that we

only show the CPU times needed to transform A to tridiagonal form. Nevertheless, we

�nd that HTD is much slower than CWI. We remark that when we use CWI to compute
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M W CWI ArPack HTD

1000 10.0 2.4 240 { 2200 22

1000 16.5 2.5 230 { 1400 22

1000 20.0 2.4 140 { 1300 23

1728 10.0 7.9 1700 { 12000 170

1728 16.5 7.8 410 { 12000 170

1728 20.0 7.6 1100 { 20000 160

4096 10.0 43 2600

4096 16.5 40 2500

4096 20.0 40 2500

1000 10.0 0.71 0.78 22

1000 16.5 0.77 0.85 22

1000 20.0 0.80 0.89 23

1728 10.0 0.94 1.5 170

1728 16.5 1.0 1.7 170

1728 20.0 1.1 1.8 160

13824 10.0 9.4 57

13824 16.5 9.2 57

13824 20.0 9.3 71

Table 1: CPU times in seconds to compute 5 eigenvectors with CWI, ArPack, and HTD.

The upper part of the table corresponds to eigenvalues in the interior of �(A) at � � 0, the

lower part corresponds to the 5 largest eigenvalues.

CWI+ ArPack+

M CWI

conv. acc.

ArPack

conv. acc.

HTD

1000 2.5 5.6 230 { 1400 4.9 22

1728 7.8 11 410 {12000 10 170

4096 40 59 66 2500

13824 770 1700 1700

13824 220 550

27000 1000 3500

91125 20000

110592 35000

Table 2: CPU times in seconds to compute at w = 16:5 the eigenvectors corresponding to

the 5 eigenvalues closest to � = 0 with CWI, CWI with Chebyshev-polynomial acceleration,

ArPack in normal mode, ArPack with Chebyshev-polynomial acceleration and HTD for

various matrix sizes M . The CPU times in the upper (lower) part of the table have been

measured on the HP 735 (HP K460).

NCV

90 110 130

1 2577 4337 9455

2 2011 2267 3455

3 4190 1935 3635

4 411 755 1204

5 2435 1811 11620

6 8188 4704 2506

Table 3: CPU times in seconds to compute 5 eigenvectors with ArPack for 6 di�erent

diagonals and 3 choices of NCV for M = 1728 and w = 16:5 at � = 0.
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NCV

w = 10 w = 16:5 w = 20

15 20 15 20 15 20

1 41 44 63 62 56 58

2 65 65 43 47 49 55

3 57 60 54 64 44 47

4 62 62 44 49 49 55

5 72 76 72 68 76 71

6 44 45 56 62 87 85

7 81 70 72 88 108 90

8 52 60 49 51 70 66

9 42 48 58 68 99 75

Table 4: CPU times in seconds to compute the eigenvectors corresponding to the 5 largest

eigenvalues of A with ArPack for 9 di�erent diagonals and 2 choices of NCV with M =

13824.

the full spectrum as in Fig. 2, it is still faster than HTD except for small system sizes

M � 12

3

= 1728.

5.2 Polynomial convergence acceleration

As outlined above, polynomial convergence acceleration is usually a convenient choice to

speed up the computation of eigenvalues and -vectors corresponding to a small region of

�(A). Here, we test a polynomial provided by D. Sorensen, one of the authors of ArPack,

and C. Sun [31]. It is based on a Chebyshev-type polynomial given by the following recursion:

p

1

(x) = 1

p

2

(x) = a + bx

2

p

n+1

(x) = 2(a+ bx

2

)p

n

� p

n�1

(3)

where a = (x

2

1

+ x

2

2

)=(x

2

1

� x

2

2

) and b = 2=(x

2

2

� x

2

1

). Also, p

n

is symmetric with a local

maximum p

n

(0) > 1 at zero, jp

n

(x)j � 1 in the intervals [x

1

; x

2

] and [�x

2

;�x

1

], and p

n

grows

rapidly for jxj > x

2

as shown, e.g., in Fig. 3 for n = 20. In general, one would like to have x

1

and x

2

chosen automatically in order to obtain a suitable function f as described in x 4. In

all our present calculations we use n = 50 with (x

1

)

2

= 0:005 and (x

2

)

2

= 1:1 [max �(A)]

2

according to [31]. This polynomial convergence acceleration speeds up ArPack immensely

as one can see in Table 2. Since � = 0 is now mapped to max �(p

50

(A)), the actual value

of NCV is less important. We found NCV = 50 to be a good choice to make the execution

times faster, although this requires more memory. Still CPU times are about a factor

of two larger than for CWI without any convergence acceleration. Unfortunately, CWI

itself is not made faster by the use of this accelerator as also shown in Table 2. Although

the number of Lanczos vectors needed to achieve convergence is reduced remarkably, the

additional computational e�ort now required for every Lanczos step becomes very large. At

the end one needs even slightly more matrix-vector multiplications than without convergence

acceleration.

5.3 Shift-and-invert with direct solvers

We now discuss the use of the shift-and-invert mode of ArPack together with a direct

solver for the linear system (A � �I)y = b. We �rst note that although our matrix A is
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Figure 3: Chebyshev polynomial p

20

(x) with x

1

= 1 and x

2

= 10.
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ArPack+ ArPack+

M CWI

conv. acc.

HTD

LU BKP SuperLU MA27 MA27+HB

1000 0.24 0.6 1.4 7.4 10 7.8 0.8 0.4

1728 0.43 1.2 6.7 18 22 19 2.2 0.9

4096 1.0 2.3 13 80 81 92 8.6 2.9

13824 3.4 6.6 70 22

27000 6.5 15 200 68

91125 22 1300 500

110592 27 2600 600

Table 5: Memory requirements in MB to compute at w = 16:5 the eigenvectors correspond-

ing to the 5 eigenvalues closest to � = 0 for the di�erent diagonalizers (Names as in the

text, HB indicates hard wall boundary conditions)

ArPack+

M CWI

LU BKP SuperLU MA27 MA27+HB

1000 2.5 39 74 8.8 1.3 0.88

1728 7.8 150 300 28 5.0 2.0

4096 40 1200 1900 220 39 9.8

13824 770 740 140

13824 220 260 58

27000 1000 1300 250

91125 20000 19000 4900

Table 6: CPU times in seconds to compute at w = 16:5 the eigenvectors corresponding to

the 5 eigenvalues closest to � = 0 with shift-and-invert ArPack and di�erent direct solvers.

For easier comparison, we also include CWI. The CPU times in the upper (lower) part of

the table have been measured on the HP 735 (HP K460).

symmetric, it is not positive de�nite and thus we cannot use a sparse Cholesky decompo-

sition. Unfortunately, there are only few packages available for sparse symmetric inde�nite

problems [8]. Therefore we also investigated several packages for general sparse matrices.

Meschach [32] is a freely available mathematical package written in C. There are

three sparse factorization methods implemented in Meschach: Cholesky, LU, and Bunch-

Kaufmann-Parlett (BKP). Cholesky factorization does not work due to the inde�niteness of

A. LU and BKP are supposed to take advantage of the sparseness of our problem. However,

we �nd that they have huge memory requirements of the order of M

2

as shown in Table 5.

So they are inapplicable for large system sizes. And even for small systems they turn out

to be much too slow as shown in Table 6.

The Harwell Subroutine Library [16] contains the sparse symmetric inde�nite solver

MA27. As shown in Table 6, ArPack with MA27 is about as fast as CWI. In fact, MA27

seems to become faster than CWI for M � 45

3

= 91125. Unfortunately we could not test

this because of the huge memory requirements of MA27 as shown in Table 5.

A noteworthy fact is that MA27 is much better for hard wall boundary conditions (HB).

This can be explained by the fact that the bandwidth of the matrix is O(N

2

) instead of

O(N

3

) as for periodic boundary conditions. However, on physical grounds, a calculation

with HB is expected to be much more in
uenced by the �nite size of the cubes considered.

So although we can obtain larger system sizes here, the results for the interesting physical

quantities may not be as reliable. Nevertheless, ArPack with MA27 for matrices with

HB is faster than CWI for matrices with periodic boundary conditions. MA27 with HB
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ArPack+

M CWI

QMRX QMRL CPX

1000 2.5 68 93 85

1728 7.8 239 320 330

4096 40 1600 2300

13824 770 35000

13824 220 12000

27000 1000

91125 20000

Table 7: CPU times in seconds to compute at w = 16:5 the eigenvectors corresponding

to the eigenvalues closest to � = 0 with shift-and-invert ArPack and the iterative solvers

fromQMRPack. For easier comparison, we also include CWI. The CPU times in the upper

(lower) part of the table have been measured on the HP 735 (HP K460).

is also faster than CWI with HB, since for CWI there is only a negligible di�erence in

computing time between HB and periodic boundary conditions coming from the matrix-

vector multiplication.

SuperLU is a package by Demmel et al. [8] doing a sparse LU decomposition. Com-

pared with CWI and MA27, SuperLU is much slower as shown in Table 6. Furthermore,

it needs about one order of magnitude more memory than MA27 as shown in Table 5. Su-

perLU allows the input of di�erent preorderings in addition to the default minimum-degree

ordering. We have tested a symmetric minimum degree ordering from theMatlab program

and a nested dissection ordering computed by the Chaco package [17]. For some choices of

diagonals we derive small savings in run time and/or memory but these are not consistent,

i.e., the same kind of ordering speeds up the program for one choice of N and slows it down

for N + 1.

5.4 Shift-and-invert with iterative solvers

Considering the recent advances in iterative solvers, we initially hoped that ArPack in

shift-and-invert mode coupled with a modern iterative method for the solution of linear

systems would be quite e�cient. As we will show below, this is not the case.

The quasi-minimal-residual (QMR) technique should be one of the best iterative solvers

for symmetric matrices that works using only matrix-vector multiplications if no precondi-

tioning is used [12]. However, as shown in Fig. 2, our matrices are inde�nite with a nearly

symmetric eigenvalue distribution around zero. This results in a very bad iteration count

of about 2M for the solution of a single linear system of size M . The times and itera-

tion numbers from three variants implemented in QMRPack [11], namely, QMR based

on three-term Lanczos with and without look-ahead (QMRL/QMRX) and QMR based on

coupled two-term Lanczos without look-ahead (CPX) are not very di�erent as shown in

Table 7. For all three methods the iteration count is rather high. Consequently, we �nd

that ArPack in shift-and-invert mode coupled with QMRPack as iterative solver is about

20 times slower than CWI. The ArPack input parameter NCV was set to 15. We also �nd

that the implementation of QMR based on coupled two-term Lanczos with look-ahead does

not converge for larger systems within 50000 iterations.

In order to check if other iterative methods are perhaps more e�cient than QMR for

our family of matrices, we have also tried several such iterative solvers using the Matlab

programming environment. In addition to QMR, we have considered the conjugate-gradient-

squared method (CGS) [30], the BiConjugate-Gradient method (BiCG) [10], its stabilized
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M QMR CGS Bi-CG Bi-CGSTAB

512 796 { 999 843 { n.c. 809 { 980 1006 { n.c.

1000 1705 { n.c. 1762 { n.c. 1701 { n.c. n.c.

1728 2918 { n.c. n.c. 2932 { n.c. n.c.

2744 4809 { n.c. n.c. 4775 { n.c. n.c.

4096 7270 { n.c. n.c. 7401 { n.c. n.c.

M GMRES GMRES(5N) QMR+jac QMR+tri

512 511{ 512 n.c. 813 { n.c. 295 { 569

1000 995{1000 n.c. n.c. 1389 { n.c.

1728 1723{1728 n.c. n.c. n.c.

2744 2736{2744 n.c. n.c. n.c.

4096 n.c. n.c. n.c.

Table 8: Number of iterations needed inMatlab in order to solve the linear system Ay = b.

The abbreviations for the di�erent algorithms are explained in the text. The runs are

aborted when the number of iterations is more than 2M . This case of no convergence is

indicated by \n.c.".

variant (Bi-CGSTAB) [33] and the generalized-minimal-residual (GMRES(k)) method [26].

Furthermore, several general purpose preconditioners [2], i.e., the Jacobi (jac) precondi-

tioner, the ILU(0) preconditioner and also the three main diagonals as the preconditioning

matrix (tri) have been tested. Since the performance of Matlab programs cannot directly

be compared to compiled programs, we only give the iteration count of each algorithm. One

such iteration requires at least one matrix-vector multiplication and two inner products and

is thus at least as expensive as one Lanczos step. We always use the built-in implementations

of these algorithms as in Matlab v5.1.

In Table 8, we show results obtained for various matrix sizes M . The ranges re
ect

the variations corresponding to 12 di�erent realizations of disorder on the diagonal of the

matrices. Note that for the same M we use the same 12 diagonals for all algorithms.

We always choose x

0

= 0 as initial vector. The iteration count represents the number of

iterations needed to solve the matrix equation Ax = y up to a relative accuracy of 10

�8

. We

always stop the algorithms if after 2M iterations this accuracy has not been achieved. For

practical restart values k � 200, GMRES(k) does not converge at all within our iteration

limit. With no restarts, GMRES needed M or slightly less iterations. But note that both

memory and computing-time requirements for M steps of pure GMRES exceed those of a

non-sparse direct solver.

None of the tested preconditioners is consistently e�ective. The Jacobi preconditioner

in fact increases the iteration count most of the time. The ILU(0) preconditioner returns

a singular matrix and consequently appears inapplicable. The tridiagonal preconditioner is

more e�ective, in some cases reducing the iteration count by up to 50%. But again there

are examples where it fails to do anything. We remark that in general the iteration count is

consistent with the results from QMRPack. To sum up, we �nd that all of these iterative

algorithms do not perform better that the QMR algorithm and consequently are no real

alternative.

Another idea is to work with the matrix A

2

instead of A. Since it is symmetric and

positive de�nite, we can now use the conjugate gradient method. But this squares the

condition number of the linear system, which is already usually very large for A [15]. Hence

more e�ort has to be invested into the development of a good preconditioner. We �nd for

our matrices that while the iteration count is in general a bit less than for the methods
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mentioned above and the preconditioners are more consistently e�ective we still need of the

order ofM steps with at least two matrix-vector multiplications for the solution of one linear

system. And since the shift-and-invert ArPack still needs to solve several linear systems,

all the iterative methods working on A

2

were no match for CWI.

6 Summary

We have tested several modern methods to compute a few inner eigenvectors of a very

large sparse matrix corresponding to the Anderson model of localization motivated within

theoretical physics. Particularly the implicitly restarted Arnoldi method in connection with

polynomial convergence acceleration and in shift-and-invert mode with several direct and

iterative solvers for systems of linear equations is compared to the Cullum/Willoughby

implementation of the Lanczos method. Despite the recent progress in linear system solvers

we �nd all considered modern methods to be inapplicable for very large system sizes, because

either the computation times or the memory requirements are much to large. To sum up,

we �nd that CWI Lanczos is currently still the most e�cient method for the matrix type

we are interested in. We emphasize that the CWI Lanczos, with our slight modi�cations

as outlined in x 3, is a reliable tool for our problem. In particular, the problem of spurious

eigenvalues which plague the original Lanczos algorithm, can be handled safely.

Since large scale diagonalizations are widely used in theoretical physics | and also

theoretical chemistry [5] | we would be happy to learn about any algorithm that does

better than CWI for our matrices. We are especially interested in a preconditioner for the

iterative methods which is suitably adapted to our problem. Certainly improved direct

methods for our matrix type are also of great importance. We hope to have convinced

the reader that it may be worthwhile to rethink seemingly easy problems like the present

eigenproblem for real and symmetric matrices.
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