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Notation

Below we list (most of) the symbols used in the text together with a brief explanation

of their meaning.

(V; E) A (undirected) graph with vertices V and edges E.

E = fe

i;j

j there is an edge between v

i

and v

j

g, the set

of edges.

V = fv

i

j i = 1; : : : ; ng, the set of vertices.

W

E

= fw

e

(e

i;j

) 2 N j e

i;j

2 Eg, weights of the edges in E.

W

V

= fw

v

(v

i

) 2 N j v

i

2 Vg, weights of the vertices in V.

deg(v

i

) =

�

�

fv

j

2 V je

i;j

2 Eg

�

�

the degree of vertex v

i

.

(The number of adjacent vertices)

L(G) The Laplacian matrix of the graph G = (V; E).

l

ij

=

8

>

>

<

>

>

:

�1 if i 6= j and e

i;j

2 E

0 if i 6= j and e

i;j

62 E

d(v

i

) if i = j

A(G) The adjacency matrix of the graph G = (V; E).

a

ij

=

(

�1 if i 6= j and e

i;j

2 E

0 otherwise

; the empty set.

j : j for X a set, jX j is the number of elements in X .
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Notation

k : k

p

for x 2 C

n

a vector, jxj is the p-norm of x,

kxk

p

= (

P

n

i=1

jx

i

j

p

)

1=p

.

k : k = k : k

2

, the Euklidian norm.

e = (1; 1; : : : 1)

T

.

O(f(n)) = f g(n) j there exists a C > 0 with jg(n)j � C �f(n) for all n � n

0

g,

the Landau symbol.

A

_

[B = A [ B with A \ B = ;, disjoint union. The dot just emphasizes

that the two sets are disjoint.

I

n

; I The identity matrix of size n. If the size is obvious from the

context, I is used.

�(A) spectrum of A.

diag(w) a diagonal matrix with the components of the vector w on the

diagonal.

iv



1 The problem

1.1 Introduction

While the performance of classical (von Neumann) computers has grown tremen-

dously, there is always demand for more than the current technology can deliver. At

any given moment, it is only possible to put so many transistors on a chip and while

that number increases every year, certain physical barriers loom on the horizon (sim-

ply put, an electron has to �t through each data path, the information has to travel a

certain distance in each cycle) that cannot be be surpassed by the technology known

today.

But while it is certainly important to pursue new methods and technologies that

can push these barriers a bit further or even break them, what can be done to get

bigger performance now?

Mankind has for eons used teamwork to achieve things that a single human being

is incapable of (from hunting as a group to building the pyramids). The same idea

can be used with computers: parallel computing. Invented or rather revived about

15 years ago, parallel computers achieve performances that are impossible or much to

expensive to achieve with single processor machines. Therefore parallel computers of

one architecture or another have become increasingly popular with the scienti�c and

technical community.

But just as working together as a team does not always work e�ciently (10 people

cannot dig a post-hole 10 times as fast as one) and creates new problems that do not

occur when one is working alone (how to coordinate the 10000 peasants working on the

pyramid), obstacles unknown to single processor programmers occur when working

on a parallel machine.

First, not all parts of a problem can be parallelized but some have to be executed

serially. This limits the total possible speedup (Ahmdal's law [1]) for a given problem

of constant size. Quite often though the sequential part of the work tends to be

independent from the size of the input and so for a bigger problem (adequate for

sharing the work among more processors) a higher speedup is possible. Problems of

this kind are called scalable [43].

Second, the amount of work done has to be distributed evenly amongst the pro-
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1 The problem

cessors. This is even more necessary if during the course of the computation some

data has to be exchanged or some process synchronized. In this case, some of the

processors have to wait for others to �nish. This load-balancing might be easy for

some problems but quite complicated for others. The amount of work per processor

might vary during the course of the computation, for example when some critical

point needs to be examined closer. So perfect balance in one step does not have to

mean balance in the next.

This could easily be avoided by moving some of the work to another, underutilized

processor. But this always means communication between di�erent processors. And

communication is, alas, time-consuming.

This brings us to the third obstacle. In almost all �real-life� problems, the proces-

sors regularly need information from each other to continue their work. This has two

e�ects. As mentioned above, these exchanges entail synchronization points, making

it necessary for some of the processors to wait for others. And of course communica-

tion itself takes some time. Depending on the architecture, exchanging even one bit

of information between two processors might be many times slower than accessing a

bit in the processor itself. There might be a high startup time such that exchanging

hundreds of bytes takes almost the same amount of time as exchanging one byte. It

might or might not be possible that exchanges between two disjoint pairs of processors

takes place at the same time.

While all this is highly machine-dependent, it is evident that it is desirable to

partition the problem (or the data) in such a way that not only the work is distributed

evenly but also that at the same time communication is minimized. As we will see, for

certain problems this will lead to the problem of partitioning a graph. In its simplest

form this means that we divide the vertices of a graph into equal sized parts such that

the number of edges connecting these parts is minimal.

1.2 Graph Partitioning

First, some notations (cf. [34,61]):

A graph (V; E) consists of a number of vertices V = fv

i

j i = 1; : : : ; ng, some

of which are connected by edges in E = fe

i;j

= (i; j) j there is an edge between

v

i

and v

j

g. Other names for vertices include nodes, grid points or mesh points.

In order to avoid excessive subscripts, we will sometimes equate i with v

i

and (i; j)

with e

i;j

if there is no danger of confusion .

Given a subset

�

V � V of vertices, the induced subgraph (

�

V;

�

E) contains all those

edges

�

E � E that join two vertices in

�

V.

Both vertices and edges can have weights associated with them.
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1.2 Graph Partitioning

W

E

= fw

e

(e

i;j

) 2 N j e

i;j

2 Eg are the weights of the edges and W

V

= fw

v

(v

i

) 2

N j v

i

2 Vg are the weights of the vertices.

The weights are non-negative integers. This often allows for a more e�cient analy-

sis or implementation of algorithms. For example, sorting a list of integers of restricted

size can be done using the bucket-sort algorithm with its O(n) performance. But this

restriction is not as big as it seems. For example, positive rational weights can easily

be mapped to N

+

by scaling them with the smallest common multiple of the denom-

inators. If no weights are given, all weights should be considered to be 1.

The simplest form of graph partitioning, unweighted graph bisection is this: given a

graph consisting of vertices and edges, divide the vertices in two sets of equal size such

that the number of edges between these two parts is minimized. Or, more formally:

Let G = (V; E) be a graph with jVj (the number of of elements in V) even.

Find a partition (V

1

;V

2

) of V (i.e., V

1

[ V

2

= V and V

1

\ V

2

= ;. This disjoint

union ist sometimes expressed by V

1

_

[V

2

= V) with

jV

1

j = jV

2

j

such that

jfe

i;j

2 E j v

i

2 V

1

and v

j

2 V

2

gj (1.1)

is minimized among all possible partitions of V with equal size.

A more general formulation involves weighted edges, weighted vertices and p dis-

joint subsets . Then the sum of weights of vertices in each of the subsets should be

equal while the sum of the edges between these subsets is minimized. Again, more

formally:

Let G = (V; E) be a graph with weights W

V

and W

E

(with

P

v

i

2V

w

v

(v

i

) divisible

by p).

Find a p�partition (V

1

;V

2

; : : : ;V

p

) of V, i.e.,

p

[

i=1

V

i

= V and V

i

\ V

j

= ; for all i 6= j

with

X

v(i)2V

j

w

v

(v

i

) equal for all j 2 f1; 2; : : : ; pg

such that

X

e

i;j

2E with

v

i

2V

p

; v

j

2V

q

and p6=q

w

e

(e

i;j

) (1.2)

is minimized among all possible partitions of V.
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1 The problem

(1.1) and (1.2) are also referred to as cut-size, implying the picture that one takes

the whole graph, �cuts� these edges and is left with the subgraphs induced by the

subsets of the vertices. Other names used include edgecut or cost of the partition.

As described above, we are looking for a small subset of edges that, when taken

away, separates the graph in two disjoint subsets. This is called �nding an edge

separator.

Instead of edges, one can also look for a subset of vertices, the so-called vertex

separator that separates the graph:

Given a graph G = (V; E), �nd three disjoint subsets V

1

;V

2

and V

S

with

� V

1

_

[V

2

_

[V

S

= V

� jV

S

j small

� jV

1

j � jV

2

j

� no edge joins V

1

and V

2

Depending on the application, either the edge separator or the vertex separator

is needed. Fortunately, it is easy to convert these two kinds of separators into each

other.

For example, assume we have an edge separator but need a vertex separator.

Consider the graph

�

G consisting only of the separating edges and their endpoints.

Any vertex cover of

�

G (that is, any set of vertices that include at least one endpoint

of every edge in G) is a vertex separator for the graph. Since

�

G is bipartite, we can

compute the smallest vertex cover e�ciently by bipartite matching.

1.3 Examples

In the following examples we assume that we have a parallel computer with distributed

memory, that is, each processor has its own memory. If it needs to access data in some

other processors memory, communication is necessary. Many of the parallel computers

of today are of this kind.

1.3.1 Partial Di�erential Equations

A lot of the methods for solving partial di�erential equations (PDEs) are grid-oriented,

i.e. the data is de�ned on a discrete grid of points, �nite elements or �nite volumes

and the calculation consists of applying certain operations on the data associated with

all the points, elements or volumes of the grid [61]. These calculations usually also

involve some of the data of the neighboring elements.
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Figure 1.1: Two partitions

c

c

c

c

c

c

c

c

c

c

c

c

c

�

�

�

�

�

�

A

A

A

�

�

�Q

Q

Q

Q

Q

�

�

�

�

�

H

H

H

H

H

HD

D

D

D

D

D

D

H

H

H

H

H

H

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

c

c

c

c

c

c

c

�

�

�

�

�

�

�

�

�

H

H

H

H

H

H

H

H

H

�

�

�

�

�

�

�

�

�A

A

A

A

A

A

@

@

@

�

�

�

�

�

�

�

�

�

�

�

@

@

@

@

@

�

�

�

�

�

�B

B

B

B

B

�

�

�

X

X

X

X

X

X�

�

�

�

�

�

A

A

A

@

@

@

c

@

@

@

�

�

�

�

�

1

2

3

4

5

6

7

8

9

10

11

12

13

14

v

3

v

5

v

8

v

9

v

11

v

13

v

14

v

10

v

12

v

7

v

6

v

1

v

4

v

2

Figure 1.2: A �nite element mesh and the corresponding dependency graph

Distributing the problem to parallel processors is done by partitioning the grid into

subgrids and solving the associated subproblems on the di�erent processors. Since the

elements on the �borders� of the subgrids need to access data on the other processors,

communication is necessary. Using the reasonable assumption that the amount of

communication between two neighbors is constant, one has to minimize the �border

length�, i.e. the number of neighbors in di�erent partitions. (cf. Figure 1.1)

To formulate the problem as a graph partitioning problem, we look at the so-called

dependency graph of the grid (cf. Figure 1.2).

Every grid-point (or �nite element) has a corresponding vertex on this graph. The

weight of the vertex is proportional to the amount of computational work done on

this grid point. (Quite often the weights of all vertices are equal).

For each pair of neighboring (or otherwise dependent) grid points the correspond-

ing vertices are connected by an edge. The weight of this edge is proportional to

the amount of communication between these two grid points. (Again, quite often the

weights of all edges are equal).
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1 The problem

For �nite element meshes (A mesh is a graph embedded into (usually) two� or

three�dimensional space so that the coordinates of the vertices are known.), the un-

weighted dependency graph is equal to the dual graph of the mesh.

Now the optimal grid partitioning can simply be found by solving the graph par-

titioning problem on the dependency graph and distributing the gridpoint or �nite

element to the j-th processor if its corresponding vertex is in the j-th partition of the

graph.

1.3.2 Sparse Matrix-Vector Multiplication

A sparse matrix is a matrix containing so many zero entries that savings in space

or computational work can be achieved by taking them into consideration in the

algorithm.

A fundamental operation in many matrix related algorithms is the multiplication

of the matrix A with a vector x. For example, in iterative methods for the solution

of linear system (like cg [25], QMR [22] or GMRES [57]), the amount of work spend

on this operation can dominate the total amount of work done.

Now we want to distribute the matrix on a parallel computer with p processors.

One of the ways that a sparse matrix can be distributed is row-wise, i.e. each row of

the matrix is distributed to one processor. If the i-th row of A is kept on a processor

then so is the i-th element x

i

of the vector x.

How should the rows be distributed amongst the processors for the workload to

be balanced and the necessary communication minimized?

Consider the workload: to calculate the i-th element of the vector y = Ax, we

need to calculate

y

i

=

n

X

j=1

a

ij

x

j

:

But, since A is sparse, it su�ces to calculate

y

i

=

X

j: a

ij

6=0

a

ij

x

j

: (1.3)

So, the amount of work to calculate y

i

is proportional to the amount of non-zero

elements in the i-th row of A.

But, as we see in (1.3), we not only need the values of the i-th row of A but also

of some of the x

j

, namely those where a

ij

6= 0. Now, if those values are stored on

the same processor, we are in luck. Otherwise, we have to communicate with the

processor where those values are stored.
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Figure 1.3: Distribution of matrix rows to processors

To minimize communication, we will have to try to store those values (and conse-

quently the associated rows) on the same processor. Thus we want to minimize the

occurrence of the following: the i-th row of A is stored on a processor, a

ij

6= 0 but

the j-th row of A is stored on another processor.

Figure 1.3 shows a bad (on the left side ) and a good (on the right) distribution of

matrix rows to processors. In each matrix, the �rst four rows are distributed to one

processor, the second four to the next and so on. Elements that cause communication

are shown by a �. Note that there are many more � in the left matrix. But note that

the right matrix is just the left matrix with permuted rows and columns and a di�erent

row-processor assignment. Permuting rows and columns and the matching processor

distribution does not change the amount of work and communication necessary. (It

is just easier to see rows 1�4 as belonging together than e.g. rows 1, 2, 5 and 12.) So,

the lesser number of � in the right matrix demonstrates how much communication

can be saved by the proper distribution.

Again, the problem can be reformulated as a graph partitioning problem. In order

to simplify the example, we will look at a structurally symmetricmatrix (i.e. if a

ij

6= 0

then so is a

ji

6= 0).

The graph of a matrix A 2 R

n�n

is de�ned as follows: It consists of n vertices

v

1

; : : : ; v

n

. There is an edge between v

i

and v

j

(with i 6= j) if a

ij

6= 0.

The degree of a vertex is the number of direct neighbors it has. For our purpose,

we de�ne the weight w

v

(v

i

) of a vertex v

i

as the degree of this vertex plus 1. Then

the weight of v

i

is equal to the number of non-zero elements of the i-th row of the

matrix and therefore proportional to the amount of work to calculate y

i

.

The edges all have unit weight. Each edge e

i;j

symbolizes a data dependency

between row i and row j and corresponding vector element x

j

and thus a possible

communication.
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Figure 1.4: Partitioned graphs of matrices in �gure 1.3.

Partitioning the weighted graph in p parts with the minimal amount of edges cut

allows us to �nd a good distribution of the sparse matrix on the parallel processors.

If v

i

is in the j-th subpartition, we store the i-th row of the matrix on processor j.

Since the weight of the vertices is proportional to the work and the partitions are

of equal weight, perfect load-balance is achieved. And since each cut edge stands for

necessary communication between two processors a minimized cut-size means that

communication is minimized.

In Figure 1.4 we show the partitioned graphs of to the matrices in Figure 1.3. The

numbers at the vertices correspond to the line/column number in the matrix. Each

cut edge corresponds to a � in Figure 1.3. It is now easy to see that both matrices

are essentially the same, just with permuted rows/columns leading to a di�erent row-

processor assignment.

1.3.3 Other Applications

While both detailed examples above stem from the area of parallelizing mathematical

algorithms graph partitioning is applicable to many other, quite di�erent problems

and areas as well. One of the �rst algorithm, the Kernigan�Lin algorithm was de-

veloped to assign the components of electronic circuits to circuit boards such that

the number of connections between boards is minimized [42]. This algorithm is, with

some modi�cations, still much in use and will be discussed in more detail in section

3.2.1.

Other applications include VLSI (Very Large Scale Integration) design, CAD

(Computer AidedDesign), decomposition or envelope reduction of sparse matrices, hy-

pertext browsing, geographic information services and physical mapping of DNA (De-

8



1.4 Time vs. Quality

oxyriboNucleic Acid, basic constituent of the gene), see, e.g., [38,53] [53] [27,50,52,56]

[2][6] [41] [33] and references therein.

1.4 Time vs. Quality

In the sections above we have always talked about �minimizing the cut-size� under cer-

tain conditions. But for all but some well-structured or small graphs real minimization

is infeasible because it will take to much time. Finding the optimal solution for the

graph partitioning problem is for all non-trivial cases known to be NP-complete [23].

Very simply put, this means that there is no known algorithm that is much faster

than trying all possible combinations and there is little hope that one will be found.

A little more exact (but still ignoring some fundamentals of the NP theory) it

means that graph bisection falls in a huge class of problems all of which can be

transformed into each other and for which there are no known algorithms that can

solve the problem in polynomial time in the size of the input.

Given a graph (V; E) without special properties and k = jVj + jEj it is suspected

that there exists no algorithm for solving the graph bisection problem which runs in

O(k

n

) time for any given n 2 N.

So, instead of �nding the optimal solution, we resort to heuristics. That is, we try

to use algorithms which may not deliver the optimal solution every time but which

will give a good solution at least most of the time.

As we will see, there often is a tradeo� between the execution time and the quality

of the solution. Some algorithms run quite fast but �nd only a solution of medium

quality while others take a long time but deliver excellent solutions and even others

can be tuned between both extremes.

The choice of time vs. quality depends on the intended application. For VLSI-

design or network layout it might be acceptable to wait for a very long time because

an even slightly better solution can save real money.

On the other hand, in the context of sparse matrix-vector multiplication, we are

only interested in the total time. Therefore the execution time for the graph parti-

tioning has to be less than the time saved by the faster matrix-vector multiplication.

If we only use a certain matrix once, a fast algorithm delivering only �medium qual-

ity� partitions might overall be faster than a slower algorithm with better quality

partitions. But if we use the same matrix (or di�erent matrices with the same graph)

often, the slower algorithm might well be preferable.

In fact, there are be even more factors to consider. Up to now we wanted the

di�erent partitions to be of the same weight. As we will see in section 2.2, it might be

of advantage to accept partitions of slightly di�erent size in order to achieve a better

9



1 The problem

cut-size.

All this should demonstrate that there is no single best algorithm for all situations

and that the di�erent algorithms described in the following chapters all have their

applications.

10



2 Miscellaneous Algorithms

2.1 Introduction

There are many di�erent approaches to graph bisection. Some of them depend on the

geometrical properties of the mesh and are thus only applicable for some problems

while others only need the graph itself and no additional information. Some take a

local view of the graph and only try to improve a given partition while others treat

the problem globally. Some are strictly deterministic, always giving the same result

while others use quite a lot of random decisions. Some apply graph-theoretic methods

while others just treat the problem as a special instance of some other problem (like

nonlinear optimization).

In this chapter we will survey some of these algorithms.

The selection of the algorithms in this chapter is somewhat arbitrary but we tried

to include both the more commonly used and the ones that are of a certain historical

interest. For some other summaries of algorithms, see [32,53,61].

In the interest of simplicity, the algorithms will be presented for unweighted graphs

wherever generalization to weighted graphs is easy. We also tend to ignore techni-

calities (like dealing with unconnected graphs) which have to be considered in real

implementations of these algorithms.

2.2 Recursive Bisection

As we will see, most of the algorithms are (at least originally) designed for bisection

only. But the general formulation of the graph partitioning problem involves �nding

a p�partition.

It turns out that in many �real-life� applications p is a power of 2, i.e. p = 2

k

. For

example, most parallel computers have 2

k

processors. So a natural idea is to work

recursively. First partition the graph in two partitions, then partition each of these

two in two subpartitions and so on (see Figure 2.1).

But even if we could �nd a perfect bisection, will this give a partition with (nearly)

the same cut-size as a proper p�way partition? As H. Simon and S. Teng have shown

in [59], the answer is: No, but : : : . In this section, we will recapitulate their re-

11



2 Miscellaneous Algorithms
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Figure 2.1: Recursive Bisection.
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Figure 2.2: Example of a graph with good 4�way partition but bad recursive bisection.

sults: Recursive bisection can deliver nearly arbitrarily bad cut-sizes compared to

p�partitions. But that might not be as bad as it sounds. For some important classes

of graphs recursive bisection works quite well. And if one does not insist on partitions

of exactly equal size, it is possible to use recursive bisection to �nd partitions that are

nearly as good as the ones found by p�way partitioning.

First the bad news: We will demonstrate it by an example: We give a graph with n

vertices that has a constant cut-size of 12 using a 4�way partition but where recursive

bisection produces a cut-size of size O(n

2

).

Consider the graph sketched in Figure 2.2. Its eight subgraphs A

i

; B

i

; (i =

1; 2; 3; 4) are cliques (i.e., totally connected graphs) with A

i

having (1=8+"

i

)n vertices

and B

i

having (1=8� "

i

)n vertices (with i = 1; 2; 3; 4), where the "

i

have the following

properties:

1. �1=8 + � � "

i

� 1=8 � �; with � > 0 �xed and "

i

6= 0,

12



2.2 Recursive Bisection

a) 8 parts, cut-size 128
b) 8 parts, cut-size 116

Figure 2.3: Real-life Counterexample for recursive bisection

2. "

1

+ "

2

+ "

3

+ "

4

= 0,

3. "

i

+ "

j

6= 0 for all i; j 2 f1; 2; 3; 4g,

4. (1=8 � "

i

)n 2 N for i 2 f1; 2; 3; 4g .

(One possible combination would be "

1

= 1=9, "

2

= 1=11, "

3

= 1=13 and

"

4

= �("

1

+ "

2

+ "

3

) and n = 8 � 9 � 11 � 13.)

The optimal 4�way partition decomposes the graph into A

i

[ B

i

, (i = 1; 2; 3; 4).

The total cut-size is obviously 12.

In contrast, the recursive bisection �rst decomposes the graph into

S

4

i=1

A

i

and

S

4

i=1

B

i

. But then, in the next recursion level at least one of the A

i

and one of the

B

i

will have to be cut. This is because condition 3 ensures that it is not possible

to combine any A

i

; A

j

(B

i

; B

j

) to the proper size. Since the A

i

and B

j

are cliques,

cutting even one vertex out of them will increase the cut-size by at least (1=8 � "

i

)n

(the number of vertices in A

i

resp. B

i

). So the cost of the partition is O(n

2

) (at least

2(�n)

2

+ 4).

This example can be easily adjusted for general p�partitions. And Figure 2.3

shows that this problem does not only occur in contrived examples. Partitioning a

32� 32 grid into 8 parts using (perfect) recursive bisection (Figure 2.3a) will lead to

an cut-size of 128 while the optimal 8-partition (Figure 2.3b) has an cut-size of only

116. (Note that in Figure 2.3a, the cuts into 2 and 4 parts are optimal.)

Now for the good news. For some of the more common graphs, it is proved in [59]

that recursive bisection is not much worse than real p-partitioning. (In this section,

13



2 Miscellaneous Algorithms

we assume that p�partition and bisection deliver the optimal solution and are not

some heuristics.)

A planar graph is a graph that can be drawn on a piece of paper so that no edges

cross each other. Discretizations of 2�dimensional structures are often planar.

In the �nite element method, the domain of the problem is subdivided into a mesh

of polyhedral elements. A common choice for an element is a d-dimensional simplex

(i.e. a triangle in two dimensions). In classical �nite element methods, it is usually a

requirement for numerical accuracy that the triangulation is uniformly regular, that

is that the simplices are �well shaped� [12]. A common shape criteria used in mesh-

generation is an upper bound on the aspect ratio of the simplices. This term has

many de�nitions which are roughly equivalent [46]. For the following theorem, the

aspect ratio of a simplex T is the radius of the smallest sphere containing T divided

by the radius of the largest sphere that can be inscribed in T .

For planar graphs, it is shown in [59, Theorem 4.3] that the solution found by

recursive bisection will have a cut-size that is, in the worst case, only O(

p

n=p) times

bigger than that of the p�partition (with n = jVj). With a factor of O((n=p)

1�1=d

),

the same statement holds for well shaped meshes in d dimensions.

Now what happens if we do not insist on partitions of exactly the same size but

allow for some imbalance?

A (1+"; p)-way partition (" > 0) is a p�partition where we allow the subpartitions

V

i

to be a little bigger than jVj=p, e.g. jV

i

j � (1 + ")jVj=p.

Then Theorem 5.5 in [59] states among other things that if the cut-size of the

optimal p�partition is C then one can �nd a (1 + "; p)�partition with an cut-size of

size O(C log p) using recursive partitioning. This is a more theoretical result, since

the execution time may be exponential in n. But the theorem also shows that there is

an algorithm using recursive partitioning that runs in polynomial time and that will

�nd a (1 + "; p)�partition with an cut-size of size of O(C log p log n)

This shows that by allowing a little imbalance in the partition size, one can con-

tinue to use recursive bisection without paying to much of a penalty in the cut-size

compared to real p-partitioning.

2.3 Partitioning with geometric information

Sometimes there is additional information available that may help to solve the prob-

lem. For example, in many cases (like in the solution of PDEs, cf. section 1.3.1) the

graph is derived from some structure in two- or three-dimensional space, so geometric

coordinates can be attached to the vertices and therefore the �geometric layout� of

the graph is known. In this case, the graph is also called a mesh.
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Figure 2.4: Problems with Coordinate Bisection.

The algorithms described in this section implicitly assume that vertices that are

close together physically are close together in the mesh (i.e. connected by a short

path). In fact, they make no use of the information about the edges at all. This limits

their applicability to problems where such geometric information is both available and

meaningful. It also implies that these algorithms cannot easily be extended to graphs

with weighted edges.

But for these problems, geometrical partitioning techniques are cheap methods

that nevertheless produce acceptable partitions.

All of these methods work by �nding some structure that divides the underlying

space into two parts in such a way that each part contains half of the points (or, for

weighted vertices, half of the weight). If some of the points lie on the structure, some

tie-breaking mechanism will have to be used. Often this structure is a hyperplane (i.e.

a plane in two dimensions, a line in two dimensions) but it can also be some other

structure like a sphere.

2.3.1 Coordinate Bisection

Coordinate Bisection is the simplest coordinate-based method. It simply consists of

�nding the hyperplane orthogonal to a chosen coordinate axis (e.g. the y-axis) that

divides the points in two equal parts. This is done by only looking at the y-coordinates

and �nding a value �y such that half of the points have a y-value of less than �y and

half of the points have a y-value bigger than �y. The separating structure in this case

is the hyperplane orthogonal to the y-axis containing the point (0; �y) (resp. (0; �y; 0)).

Recursive application of this technique can be done in two ways.

Always choosing the same axis will lead to thin strips and is usually undesir-

able, since it leads to long boundaries and thus (probably) to a high cut-size (see

Figure 2.4.a).
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Figure 2.5: Inertial Bisection in 2D.

A better way is to alternately bisect the x-, y- (and z-) coordinates. This leads to

a better aspect-ratio and (hopefully) to a lower cut-size (see Figure 2.4.b).

One of the problems of coordinate bisection is that it is coordinate-dependent.

Hence in another coordinate system, the same structure may be partitioned quite

di�erently (see Figure 2.4.c). The so-called Inertial Bisection described in the next

section tries to remedy this problem by choosing its own coordinate system.

2.3.2 Inertial Bisection

The basic idea of Inertial Bisection (e.g., [32,53] and references therein) is the follow-

ing: instead of choosing a hyperplane orthogonal to some �xed coordinate axis one

chooses an axis that runs through �the middle� of the points.

Mathematically, we choose the line L in such a way that the sum of the squares

of the distance of the mesh points to the line is minimized.

The physical interpretation is that the line is the axis of minimal rotational inertia.

If the domain in nearly convex, this axis will align itself with the overall shape of the

mesh and the mesh will have a small spatial extend in the directions orthogonal to

the axis. This hopefully minimizes the footprint of the domain in the hyperplane and

therefore the cut-size.

We state the algorithm in two dimensions. The generalization to three dimensions

and to weighted vertices is easy.

Let P

i

= (x

i

; y

i

); i = 1; : : : ; n be the position of the points.

Let the line L be given by a point

�

P = (�x; �y) and a direction u = (v;w) with

kuk

2

=

p

v

2

+ w

2

= 1 such that L = f

�

P + �u j� 2 Rg (see also Figure 2.5).
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2.3 Partitioning with geometric information

Since L is supposed to be the line that minimizes the sum of the squares of the

distance from the mesh points to the line it is easy to see that the �center of mass�

(i.e. the point that minimizes the sum of the squares of the distance from the mesh

points to a single point) lies on L. So we can simply choose

�x =

1

n

n

X

i=1

x

i

; �y =

1

n

n

X

i=1

y

i

:

It remains to choose u so that the following quantity is minimized:

n

X

i=1

d

2

i

=

n

X

i=1

(x

i

� �x)

2

+ (y

i

� �y)

2

�

�

v(x

i

� �x) + w(y

i

� �y)

�

2

= (1� v

2

)

n

X

i=1

(x

i

��x)

2

+ (1� w

2

)

n

X

i=1

(y

i

��y)

2

+ 2vw

n

X

i=1

(x

i

��x)(y

i

��y)

= (1� v

2

)S

xx

+ (1� w

2

)S

yy

+ 2wvS

xy

= w

2

S

xx

+ v

2

S

yy

+ 2wvS

xy

= u

T

�

S

yy

S

xy

S

xy

S

xx

�

u

=: u

T

Mu

where S

yy

, S

yy

and S

xy

are the summations in the previous line.

M is symmetric and hence we can choose u to be the normalized eigenvector

corresponding to the smallest eigenvalueM in order to minimize this expression (This

follows from, e.g., [25, Theorem 8.1.2]).

2.3.3 Geometric Partitioning

Another, rather more complicated method to partition meshes was introduced in [47].

In its original form and for certain graphs it will �nd a vertex separator that (with a

high probability) has an �asymptotically optimal� size and divides the graph in such

a way that the sizes of the two partitions are not too di�erent.

Definition 2.1 A k-ply neighborhood system in d dimensions is a set fD

1

;D

2

;

: : : ;D

n

g of closed disks in R

d

such that no point of R

d

is strictly interior to more

than k disks.
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Figure 2.6: a. A regular mesh as a (1; 1) overlap graph.

b. Bisecting a 3 dim. cube.

Definition 2.2 An (�; k) overlap graph is a graph de�ned in terms of a k-ply neigh-

borhood system fD

1

;D

2

; : : : ;D

n

g and a constant � � 1.

There is a vertex for each disk D

i

. The vertices i and j are connected by an edge if

expanding the radius of the smaller of D

i

and D

j

by a factor � causes the disks to

overlap, i.e.

E =

�

e

i;j

�

�

D

i

\ �D

j

6= 0 and �D

i

\D

j

6= 0

	

Overlap graphs are good models of computational meshes because every well

shaped mesh in two or three dimensions and every planar graph are contained in

some (�; k)-overlap graph (for suitable � and k).

For example, a regular n-by-n mesh is a (1; 1)-overlap graph (see Figure 2.6.a).

We have the following theorem:

Theorem 2.1 ([47])

Let G = (V; E) be an (�; k)-overlap graph in d dimensions with n nodes. Then there

is a vertex separator V

S

so that V = V

1

_

[V

S

_

[V

2

with the following properties:

1. V

1

and V

2

each have at most n(d+ 1)=(d + 2) vertices, and

2. V

S

has at most O(�k

1=d

n

(d�1=d)

) vertices.

It is easy to see that for regular meshes in simple geometric shapes (like balls,

squares or cubes, cf. Figure 2.6.b ), the separator size given in the theorem is �asymp-

totically optimal�.
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2.3 Partitioning with geometric information

a) The mesh.
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b) The scaled points.

Figure 2.7: Geometric Bisection I

The proof for this theorem is rather long and involved but it leads to a randomized

algorithm running in linear time that will �nd, with high probability, a separator of

the size given in the theorem.

The separator is de�ned by a d-dimensional sphere. The algorithm randomly

chooses the separating circle from a distribution that is constructed so that the sepa-

rator will satisfy the conclusions of the theorem with high probability.

To describe the algorithm, we will introduce some terminology:

A stereographic projection is a mapping of points in R

d

to the unit-sphere centered

at the origin in R

d+1

. First, a point p 2 R

d

is embedded in R

d+1

by setting the d + 1

coordinate to 0. It is then projected on the surface of the sphere along a line passing

through p and the �north pole� (0; : : : ; 0; 1).

The centerpoint of a given set of points in R

d

has the property that every hyper-

plane through the centerpoint divides the set into two subsets whose sizes di�er by at

most a ratio of 1:d. Note that the centerpoint does not have to be one of the original

points.

With these de�nitions, the algorithm is as follows (see also Fig. 2.7 � 2.9):

Algorithm 2.1 (Geometric Bisection)

Project up: Stereographically project the vertices from R

d

to the unit-sphere

in R

d+1

.
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Figure 2.8: Geometric Bisection II

Find centerpoint z of the projected points.

Conformal Map: Conformally map the points on the sphere such that the

centerpoint now lies at the origin. This is done in the following way: First,

rotate the sphere around the origin so that the centerpoint has the coordinates

(0; : : : 0; r) for some r. Second, dilate the points so that the (new) centerpoint

lies in the origin. This can be done by projecting the rotated points back on the

R

d

�plane (using the inverse of the stereographic projection), scaling the points

in R

d

by a factor of

p

(1� r)=(1+ r), and then stereographically projecting the

points back on the sphere.

Find a great circle by intersecting the R

d+1

�sphere with a random d�

dimensional hyperplane through the origin.

Unmap the great circle to a circle C in R

d

by inverting the dilation, the rotation

and the stereographic projection.

Find separator: A vertex separator is found by choosing all those vertices

whose corresponding disk (cf. Def. 2.2), magni�ed by a factor of � intersects

C.

While implementing this algorithm, the following simpli�cations (suggested in [24])

can be made.

Instead of �nding a vertex separator, it is easier to �nd an edge-separator by

choosing all those edges cut by the circle C. This has the advantage that one does

not have to know the neighborhood system for the graph.
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2.3 Partitioning with geometric information
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a) Separating circle projected back

on the plane.

b) The edge separator induced by

the separating circle.

Figure 2.9: Geometric Bisection III

The theorem only guarantees a ratio of 1 : d+ 1 between the two partitions while

for bisection we want the two partitions to be of the same size (possibly up to a

di�erence of one vertex). To achieve this, the hyperplane is moved along its normal

vector until it divides the points evenly. Thus the separator is a circle, but not a great

circle, on the unit-sphere in R

d+1

; its projection to the R

d

plane is still a circle (or

possibly a line).

The centerpoint can be found by linear programming and although this is done

in polynomial time it is still a slow process. So, instead of using the real centerpoint,

one can use a heuristic to �nd an approximate centerpoint. This can be done in linear

time using a randomized algorithm.

To speed up the computation even more, only a randomly chosen subset of points

is used to compute the centerpoint.

A random great circle has a good possibility to induce a good partition. But

according to [24] experiments showed that it is worthwhile to generate di�erent cir-

cles and choose the one that delivers the best result. One can further improve the

algorithm by modifying this selection such that the normal vector of the randomly

generated great circles are biased in the direction of the moment of inertia of the

points (see also Section 2.3.2: Inertial Bisection).
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2 Miscellaneous Algorithms
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3 Partitioning without geometric

information

3.1 Introduction

All of the methods mentioned above work quite well on some meshes but they have a

couple of disadvantages. First, they assume that connected vertices are in some sense

geometrically adjacent. While this is certainly the case for some applications, it does

not hold in general. Secondly, these methods require geometric information about the

mesh points. Even in cases where the �rst condition is satis�ed, the layout of the

mesh may not be available.

Consequently, methods that do not use geometric information but only consider

the connectivity information of the graph are applicable for a wider range of problems.

3.2 Graph Growing and Greedy Algorithms

When thinking about partitioning algorithms, one obvious idea is the following:

Choose one starting vertex and in some way add vertices to it until the partition

is big enough. These algorithms can be classi�ed as �greedy�� and �graph-growing�

� type algorithms.

In greedy-algorithms (e.g., [11]), the next vertex added is one that is �best� in

some sense (e.g., it increases the cut-size by the least amount) while in graph-growing

algorithms, the vertices are added in such a way that the resulting subgraph grows in

a certain way (e.g., breadth��rst). Other graph-growing algorithms may for example

start with several starting vertices at the same time and grow the subgraphs in parallel

or may have some preference to grow in a certain direction.

Since the above describes a whole family of algorithms, we will describe some

examples a bit more closely.

First consider the following greedy approach:
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3 Partitioning without geometric information

Algorithm 3.1 (Greedy Partitioning)

Unmark all vertices.

Choose a pseudo-peripheral vertex (one of a pair of vertices that are approxi-

mately at the greatest distance from each other in the graph, cf. [58]) as starting

vertex, mark it and add it to the �rst partition.

For the desired number of partitions do

� repeat

� Among all the unmarked vertices adjacent to the current partition,

choose the one with the least number of unmarked neighbors.

� Mark it and add it to the current partition.

until the current partition is big enough.

� If there are unmarked vertices left, choose one adjacent to the current

partition with the least number of unmarked neighbors as starting vertex

for the next partition.

Note that by choosing new vertices only adjacent to the current partition, this

algorithm tries to keep the subpartitions connected and thus also does some kind of

graph growing.

Another well-known algorithm that is often called �greedy� is the Farhat�algo-

rithm ([17]). A closer look reveals that it is a graph growing algorithm which only

chooses the starting vertices of each partition in a greedy way.

Adapted to work on a graph (the original works on nodes and elements of a FEM

mesh) it can be described as follows:

Algorithm 3.2 (Farhat's Algorithm)

Unmark all vertices.

For the desired number of partitions do

� Among all the vertices chosen for the last partition, choose the one with the

smallest nonzero number of unmarked neighbors, mark all these neighbors

and add them to the current partition. (For the �rst vertex, one could

again choose a pseudo-peripheral vertex, mark it and add it to the current

partition.)

� repeat

For each vertex v in the current partition do

� For each unmarked neighbor v

n

of v do

� Add v

n

to the current partition.

� mark v

n

.

until the current partition is big enough.
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3.2 Graph Growing and Greedy Algorithms

These algorithms, in particular the graph growing ones, are very fast.They also

have the additional advantage of being able to divide the graph into the desired

number of partitions directly, thereby avoiding recursive bisection. Therefore their

running time is essentially independent of the desired number of subpartitions.

The ability to divide the graph into any number of partitions is also attractive if

the desired number is not a power of 2.

On the downside, the quality of the partitions (measured in cut-size) is not always

great and when partitioning complicated graphs into several subpartitions the last

subpartitions tend to be disconnected (see e.g., [61]). They also tend to be sensitive

to the choice of the starting vertex (but since they are quite fast, one can run the

algorithms with di�erent starting vertices and simply choose the best result).

3.2.1 Kernigan�Lin Algorithm

The Kernigan�Lin algorithm [42], often abbreviated as K/L, is one of the earliest

graph partitioning algorithms and was originally developed to optimize the place-

ment of electronic circuits onto printed circuit cards so as to minimize the number of

connections between cards.

The K/L algorithm does not create partitions but rather improves them iteratively

(there is no need for the partitions to be of equal size). The original idea was to take a

random partition and apply Kernigan�Lin to it. This would be repeated several times

and the best result chosen. While for small graphs this delivers reasonable results, it

is quite ine�cient for larger problem sizes.

Nowadays, the algorithm is used to improve partitions found by other algorithms.

As we will see, K/L has a somewhat �local� view of the problem, trying to improve

partitions by exchanging neighboring nodes. So it nicely complements algorithms

which have a more �global� view of the problem but tend to ignore local characteristics.

Examples for these kinds of algorithms would be inertial partitioning and spectral

partitioning (see sections 2.3.2 and 3.3 resp.).

Important practical advances were made by C. Fiduccia and R. Mattheyses in [18]

who implemented the algorithm in such a way that one iteration runs inO(jEj) instead

of O(jVj

2

log jVj). We will �rst describe the original algorithm and later discuss these

and other improvements.

Let us introduce some notation: It is actually easier to describe the algorithm for

a graph with weighted edges; so let (V; E;W

E

) be a graph with given subpartitions

V

A

_

[V

B

= V.

The di��value of a vertex v is the amount the cut-size will decrease if it is moved
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3 Partitioning without geometric information

to the other partition, i.e., for v 2 V

A

:

di�(v) = di�(v;V

A

;V

B

) :=

X

b2V

B

w

e

(e

v;b

)�

X

a2V

A

w

e

(e

v;a

)

Note that if a vertex is moved from one subpartition to the other, only its di��value

and the di��values of its neighbors change.

The gain�value of a pair a 2 V

A

; b 2 V

B

of vertices is the amount the cut-size

changes if we swap a into subpartition V

B

and b into V

A

. One can easily see that

gain(a; b) = gain(a; b;V

A

;V

B

) := di�(a) + di�(b)� 2w

e

(e

a;b

):

With this, we will now describe one pass of the algorithm:

Algorithm 3.3 (Kernigan�Lin)

Given two subpartitions V

A

;V

B

Compute the di��value of all vertices.

Unmark all vertices.

Let k

0

= cut-size.

For i = 1 to min(jV

A

j; jV

B

j) do

� Among all unmarked vertices, �nd the pair (a

i

; b

i

) with the biggest gain

(which might be negative).

� mark a

i

and b

i

.

� For each neighbor v of a

i

or b

i

do

Update di�(v) as if a

i

and b

i

had been swapped, i.e.,

di�(v) := di�(v) +

(

2w

e

(e

v;a

i

)� 2w

e

(e

v;b

i

) for v 2 V

A

2w

e

(e

v;b

i

)� 2w

e

(e

v;a

i

) for v 2 V

B

� k

i

= k

i�1

+ gain(a

i

; b

i

), i.e., k

i

would be the cut-size if a

1

; a

2

; : : : ; a

i

and

b

1

; b

2

; : : : ; b

i

had been swapped.

Find the smallest j such that k

j

=min

i

k

i

.

Swap the �rst j pairs, i.e.,

V

A

:= V

A

�fa

1

; a

2

; : : : ; a

j

g[fb

1

; b

2

; : : : ; b

j

g

V

B

:= V

B

�fb

1

; b

2

; : : : ; b

j

g[fa

1

; a

2

; : : : ; b

j

g

Continue these iterations until no further cut-size improvement is achieved.
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3.2 Graph Growing and Greedy Algorithms

So, in each phase, K/L swaps pairs of vertices chosen to maximize the gain. It

continues doing so until all vertices of the smaller subpartition are swapped. The

important part is that the algorithm does not stop as soon as there are no more

improvements to be made. Instead it continues, even accepting negative gains in the

hope that later gains will be large and that the overall cut-size will later be reduced.

This ability to climb out of local minima is a crucial feature. (See also Figure 3.1,

taken from [15]).
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Figure 3.1: The Kernigan�Lin algorithm at work

As mentioned above, the algorithm implemented in [18] takes O(jEj) time for one

iteration. The reduction is partly achieved by choosing single nodes to be swapped

instead of pairs. Furthermore, the di��values of the vertices are bucket-sorted and

the moves associated with each gain value are stored in a doubly linked list. Choosing

a move with the highest di��value involves �nding a nonempty list with the highest

di��value, while updating the di��value of a vertex is done by deleting it from one

doubly linked list and inserting it into another (this can be done in constant time).

There are many variations of the Kernigan�Lin algorithm ([31,39,44,54,67]) often

trading execution time against quality or generalizing the algorithm to more than two

subpartitions. Some examples are:
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3 Partitioning without geometric information

� Instead of exchanging all vertices, limit the exchange to some �xed number or

allow only a �xed number of exchanges with negative gain. This is based on the

observation that often the largest gain is achieved early on.

� Use only a �xed number of inner iterations (often only one).

� Only evaluate di��values of vertices near the boundary since it is unlikely that

moving inner nodes will be helpful.

3.3 Spectral Bisection

The spectral bisection algorithm described in this section is quite di�erent from all

the other algorithms described so far. It does not use geometric information yet it

does not operate on the graph itself but on some mathematical representation of

it. While the other algorithms use (almost) no �oating point calculations at all, the

main computational e�ort of the spectral bisection algorithm are standard vector

operations on �oating point numbers. The decision about each vertex is based on the

whole graph, so it takes a more global view of the problem.

The method itself is quite easy to explain but why the heuristic works is not at

all obvious.

Definition 3.1 Let G = (V; E) be a graph with n = jVj vertices numbered in some

way and with deg(v

i

) the degree of vertex i (i.e., the number of adjacent vertices).

The Laplacian matrix L(G) (or only L if the context is obvious) is an n�n symmetric

matrix with one row and column for each vertex. Its entries are de�ned as follows:

l

ij

=

8

>

>

<

>

>

:

�1 if i 6= j and e

i;j

2 E

0 if i 6= j and e

i;j

62 E

deg(v

i

) if i = j

The same matrix with a zero diagonal is often called the adjacency matrix A(G)

of G.

Since a permutation of the vertex numbering will lead to a di�erent matrix it is

sloppy to speak of the Laplacian of a graph. But since matrices induced by di�erent

vertex numberings can be derived from each other by permuting rows and columns

they share most properties, so we will continue to speak of the Laplacian unless a

closer distinction is necessary.

The Laplacian has some nice properties (cf. e.g., [19,45]):
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3.3 Spectral Bisection

Theorem 3.1

1. L(G) is real and symmetric, its eigenvalues �

1

� �

1

� � � � � �

n

are therefore

real and its eigenvectors are real and orthogonal.

2. All eigenvalues �

j

are nonnegative and hence L(G) is positive semide�nite.

3. With e := (1; 1; : : : ; 1)

T

, L(G)e = 0�e, so �

1

= 0 with e an associated eigenvector.

4. The multiplicity of the zero eigenvalue is equal to the number of connected

components of G. In particular:

�

2

6= 0 , G is connected. (3.1)

Proof. 1. and 3. are trivial and 2. follows from the Gershgorin Circle Theorem

([25, Theorem 7.2.1]) together with the simple fact (from the de�nition of L) that

n

X

i=1

i 6=j

jl

ij

j = l

jj

> 0 for all j 2 f1; : : : ; ng

and so all Gershgorin circles have nonnegative real parts. Since all eigenvalues are

real, they are all nonnegative. This also shows that �

n

� 2max

i

(deg(v

i

)) � 2(n� 1).

For part 4, we �rst show that �

2

6= 0 if G is connected. Note that G is connected

if and only if L(G) is irreducible and if L is irreducible then so is the nonnegative

matrix

~

L = 2nI �L. Also, �

i

is an eigenvalue of L if and only if

~

�

n�i

= 2n� �

i

is an

eigenvalue of

~

L. In particular, the largest eigenvalue

~

�

n

of

~

L and all other eigenvalues

of

~

L are positive.

The Perron�Frobenius theorem ([5, Theorem 2.1.4]) applied to

~

L implies that if

~

L

is connected,

~

�

n

is a simple eigenvalue and hence so is �

1

. Therefore �

2

> �

1

= 0.

Now assume that G not connected but that it consists of k connected components

G

1

; : : : ;G

k

. By �rst numbering the vertices of G

1

, then of G

2

and so on, L(G) has block-

diagonal form with L(G

1

); : : : ; L(G

k

) as diagonal blocks. So �(L(G)) =

S

k

i=1

�(L(G

i

))

and since each of the �(L(G

i

)) contains one 0, the �rst k eigenvalues of L(G) are 0.

We have thus shown that G is connected if and only if �

2

6= 0.

But what if �

1

= �

2

= � � � = �

k

= 0? Then G cannot be connected and con-

sequently consists of at least two unconnected components G

1

and G

2

. As above we

see that �(L(G)) = �(L(G

1

)) [ �(L(G

2

)) and if k > 2, at least one of the submatri-

ces has more than one zero-eigenvalue and is therefore disconnected. Repeating this

argument, we see that G has k connected components.

Equation (3.1) also motivates the following:

Definition 3.2 �

2

(L(G)) is called the algebraic connectivity.
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3 Partitioning without geometric information

The corresponding eigenvector is often called Fiedler vector. It was named to

honor Miroslav Fiedler's pioneering work on these objects [19,20]. One of his discov-

eries, which serves as a �rst (very) small motivation for the following algorithm, is

the following

Theorem 3.2 ([20])

Let G = (V; E) (with V = fv

1

; v

2

; : : : ; v

n

g) be a connected graph and let u be its

Fiedler vector. For any given real number r � 0, de�ne V

1

:= fv

i

2 V j u

i

� �rg.

Then the subgraph induced by V

1

is connected.

Similarly, for a real number r � 0, the subgraph induced by V

2

:= fv

i

2 V j u

i

� �rg

is also connected.

Note that the theorem is independent of the length and sign of the Fiedler vector.

This theorem does not imply anything about a good bisection but it does imply

that the Fiedler vector does somehow divide the vertices in a �sensible� way. After

all, it guarantees at least one connected partition. This is much more than what wo

would achieve by choosing just a random subset.

This leads us to the idea of using the Fiedler vector to bisect the graph. We will

�rst describe the algorithm and then later try to explain why it works.

Algorithm 3.4 (Spectral Bisection)

Given a connected graph G, number the vertices in some way and form the

Laplacian matrix L(G).

Calculate the second-smallest eigenvalue �

2

and its eigenvector u.

Calculate the median m

u

of all the components of u.

Choose V

1

:= fv

i

2 V j u

i

< m

u

g, V

2

:= fv

i

2 V j u

i

> m

u

g, and, if some ele-

ments of u equal m

u

, distribute the corresponding vertices so that the partition

is balanced.

But why does this algorithm work? There are some very di�erent approaches that

try to answer this question. In addition to the graph-theoretic approach (cf. Theorem

3.2), one can look at graph bisection as a discrete optimization problem (in [3,29]) or

as a quadratic assignment problem (in [53]), look at several physical models (like a

vibrating string or a net of connected weights) (in [30, 51]) or examine the output of

a certain neural net trained to bisect a graph (in [21]).

Among all of these, the following approach via the discrete optimization formula-

tion is (in the authors opinion) the most convincing derivation of the spectral bisection

algorithm.

30



3.3 Spectral Bisection

We have a graph G = (V;E) (with n := jVj even) which we want to partition into

two equal sized parts V

1

and V

2

. To designate which vertex belongs to which part, we

use an index vector x 2 f�1g

n

such that

x

i

=

(

1 if v

i

2 V

1

�1 if v

i

2 V

2

(3.2)

Notice that the function

f(x) :=

1

4

X

(i;j)2E

(x

i

� x

j

)

2

denotes the number of cut edges since x

i

� x

j

= 0 if both v

i

and v

j

lie in the same

subpartition. On the other hand, if v

i

and v

j

lie in di�erent partitions, they have a

di�erent sign and thus (x

i

� x

j

)

2

= 4.

We rewrite

X

(i;j)2E

(x

i

� x

j

)

2

=

X

(i;j)2E

(x

2

i

+ x

2

j

)�

X

(i;j)2E

2x

i

x

j

and note that

�

X

(i;j)2E

2x

i

x

j

=

X

v

i

2V

X

v

j

2V

x

i

A

ij

x

j

= x

T

Ax

with A the adjacency matrix and

X

(i;j)2E

(x

2

i

+ x

2

j

) =

X

(i;j)2E

2 = 2jEj =

n

X

i=1

deg(v

i

) = x

T

D x

with D = L � A a diagonal matrix with the vertex degrees on the diagonal, i.e.,

D = diag

i

(deg(v

i

)) and so (cf. De�nition 3.1)

f(x) =

1

4

x

T

Lx (3.3)

Now the graph bisection problem can be formulated as:

Minimize f(x) =

1

4

x

T

Lx

subject to x 2 f�1g

n

(3.4)

x

T

e = 0

where again e = (1; 1; : : : ; 1). The third condition, x

T

e = 0 forces the sets to be of

equal size.
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3 Partitioning without geometric information

Graph partitioning is NP-complete and (3.4) is just another formulation, so we

cannot really solve this problem either. But we can relax the constraints a bit: instead

of choosing discrete values for the x

i

we look for a real vector z which has the same

(Euclidean) length as x and ful�lls the other conditions:

Minimize f(z) =

1

4

z

T

Lz

subject to z

T

z = n (3.5)

z

T

e = 0

As we will see, this problem is easy to solve. Since the feasible set of the continuous

problem (3.4) is a subset of the feasible set of the discrete problem (3.5), every solution

of (3.5) will give us a lower bound for (3.4) and we hope that the continuous solution

will give us a good approximation to the solution of (3.4).

From Theorem 3.1 we know that the eigenvectors u

1

; u

2

; : : : ; u

n

of L are orthonor-

mal (and therefore span R

n

) and that u

1

=

p

ne. We can thus decompose every

z 2 R

n

into a linear combination z =

P

n

i=1

�

i

u

i

of these vectors.

In order to to meet the restrictions, we have to place some conditions on the �

i

.

We want z

T

e = 0 and since

z

T

e =

�

n

X

i=1

�

i

u

i

�

T

u

1

=

n

X

i=1

(�

i

u

i

)

T

u

1

= �

1

u

T

1

u

1

= �

1

we need to have �

1

= 0. For z

T

z = n, we need

z

T

z =

�

n

X

i=1

�

i

u

i

�

T

�

n

X

i=1

�

i

u

i

�

=

n

X

i=1

n

X

j=1

�

i

�

j

u

T

i

u

j

=

n

X

i=1

�

2

i

= n

Furthermore, we have

4f(z) = z

T

Lz =

�

n

X

i=1

�

i

u

i

�

T

L

�

n

X

i=1

�

i

u

i

�

=

�

n

X

i=1

�

i

u

i

�

T

�

n

X

i=1

�

i

�

i

u

i

�

=

n

X

i=1

n

X

j=1

�

i

�

j

�

j

u

T

i

u

j

=

n

X

i=1

�

2

i

�

i

=

n

X

i=2

�

2

i

�

i

� �

2

n

X

i=1

�

2

i

= �

2

n (3.6)
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3.3 Spectral Bisection

where (3.6) holds since �

1

= 0 and the inequality follows from 0 < �

2

� �

i

for

i = 3; : : : ; n . Since we can achieve 4f(z) = �

2

n by choosing z =

p

nu

2

, we �nd

that the correctly scaled Fiedler vector

p

nu

2

(which satis�es both constraints) is a

solution of the continuous optimization problem (3.5). In fact, if �

3

> �

2

the solution

is unique up to a factor of �1(cf. also [35, p. 178]). In addition,

n

4

�

2

is a lower bound

for the cut-size of a bisection of V.

Having found the solution of the continuous problem (3.5), we need to map it

back to a discrete partition and hope that the result is a good approximation to the

solution of the discrete problem (3.4).

There seem to be two �natural� ways to do this. The �rst method ([10]) places

more importance on the sign of the result and just map x

i

= sign(z

i

), dealing with

zero elements of x in some way (e.g., assigning them all to one partition). Its drawback

is that the partitions need not be balanced. Consequently, some additional work is

necessary.

The second (and more often used) method (e.g., [29, 51, 61]) places its emphasis

on the balance and assigns the largest n=2 elements of z to one partition and the rest

to the other partition. This can easily be done by computing the median �z of the z

i

,

setting

x

i

=

(

�1 if z

i

< �z

1 if z

i

> �z

and distributing the elements z

i

= �z in such a way that the balance is preserved.

T. Chan, P. Ciarlet and W. Szeto showed in [9] that the vector x formed that way

is closest in any �-norm to z amongst all balanced �1-vectors, i.e.,

x = arg min

p2f�1g

n

; p

T

e=0

kp� zk

�

Note that in both cases, it is not necessary to compute the eigenvector to a high

degree of accuracy. If we use an iterative method (like the Lanczos algorithm [25,

Ch. 9] or the Rayleigh quotient iteration (RQI) ([25, Sec. 8.2.3])), we can stop iterating

once the result is su�ciently accurate to either decide on the sign of the elements or

to recognize the n=2 largest elements. This can be much cheaper than computing the

exact eigenvector.

3.3.1 Spectral Bisection for weighted graphs

It is easy to generalize the spectral bisection algorithm to handle weighted graphs.

33



3 Partitioning without geometric information

Given a graph G = (V; E) with weighted edges W

E

, one can de�ne the weighted

Laplacian L = (l

ij

)

ij

with

l

ij

=

8

<

:

�w

e

(e

i;j

) if i 6= j and e

i;j

2 E

0 if i 6= j and e

i;j

62 E

P

n

k=1

w

e

(e

i;k

) if i = j

With this de�nition and x as above (see equation (3.2)),

1

4

x

T

Lx still denotes the

weight of the cut edges and so we can proceed as above.

If the graph has weighted vertices W

V

, the subsets have equal weights if w

T

x = 0

with w = (w

v

(v

i

))

n

i=1

the vector of the vertex weights. Using V = diag(w) (a diagonal

matrix with the components of w on the diagonal), we reformulate this condition as

x

T

V e = 0. We therefore have to solve the problem

Minimize f(x) =

1

4

x

T

Lx

subject to x 2 f�1g

n

(3.7)

x

T

V e = 0

Again we relax the constraints a bit: instead of choosing discrete values for the x

i

we now look for a real vector z which has the same (weighted) length as x, i.e.,

z

T

V z = e

T

V e(=

P

n

i=1

w

v

(v

i

)) (note that the feasible solutions of the discrete problem

(3.7) satisfy this condition) and ful�lls the other conditions:

Minimize f(z) =

1

4

z

T

Lz

subject to z

T

V z = e

T

V e (3.8)

z

T

V e = 0

A solution for the relaxed equation (3.8) is the eigenvector corresponding to the

second smallest eigenvalue of the generalized eigenproblem Lx = �V z. But since V

is diagonal with positive elements on the diagonal, the problem can be reduced to

an ordinary eigenproblem by substituting y = V

1=2

z. This leads to Ay = �y with

A = V

�1=2

LV

�1=2

. The new matrix A is also positive semide�nite with the same

structure as L.

3.3.2 Spectral Quadri� and Octasection

As seen in section 2.2, it can be advantageous to divide a graph into more than two

parts at once, so it would be interesting to �nd a spectral algorithm doing this. Rendl

and Wolkowitz describe one such technique in [55]. While their algorithm allows the

decomposition of a graph in p parts, it requires the calculation of p eigenvectors and
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3.3 Spectral Bisection

is thus expensive. But as we will see, the spectral bisection idea described above can

be also adapted to divide a graph into more than two parts at once. Hendrickson and

Leland [30,34] developed a way to partition a graph into four (or eight) partitions of

equal size at once using two (or three) eigenvectors, i.e., spectral quadrisection (resp.

octasection). R. Van Driessche [61] later generalized the quadrisection algorithm to

divide the graph into partitions of unequal size.

Contrary to spectral bisection, these algorithms do

e e

e e

e

e

00 01

10 11

w = 1

w = 2

w = 1

Figure 3.2: Hypercube hop

metric in 2D

not minimize the cut-size but a closely related size,

the hypercube hop or Manhattan metric. In this, the

weight of each cut edge is multiplied by the number w

of bits that di�er in the binary representation of the

subset numbers (see Figure 3.2). This models the per-

formance of parallel communication on hypercube and

2- or 3-dimensional mesh topologies (cf. [28]). In these

topologies, w can be interpreted as the number of wires

a message must take while being transfered between the

respective processors.

We will describe only the derivation of the quadri-

section. For the similar but slightly more complicated

octasection, see [30] or [34].

To distinguish between the four subpartitions V

0

; : : : ;V

3

, we will use two index

vectors x; y 2 f�1g

n

with

x

i

= �1 and y

i

= �1 () v

i

2 V

0

x

i

= �1 and y

i

= +1 () v

i

2 V

1

x

i

= +1 and y

i

= �1 () v

i

2 V

2

x

i

= +1 and y

i

= +1 () v

i

2 V

3

Using considerations similar to the ones that that lead to (3.3), we �nd that

f(x; y) =

1

4

(x

T

Lx+ y

T

Ly)

gives us the hop weight of the partition induced by x and y. Assuming that n is a

multiple of 4, the constraints that all V

i

are to be of the same size can be expressed
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3 Partitioning without geometric information

as

X

i

(1 � x

i

)(1 � y

i

) = (e� x)

T

(e� y) = n

X

i

(1� x

i

)(1 + y

i

) = (e� x)

T

(e+ y) = n

X

i

(1 + x

i

)(1 � y

i

) = (e+ x)

T

(e� y) = n

X

i

(1 + x

i

)(1 + y

i

) = (e+ x)

T

(e+ y) = n

which (after expanding and solving a small linear system) simpli�es to

e

T

x = 0 e

T

y = 0 x

T

y = 0:

Therefore we want to solve the following discrete minimization problem

Minimize f(x; y) =

1

4

(x

T

Lx+ y

T

Ly)

subject to e

T

x = e

T

y = x

T

y = 0 (3.9)

x; y 2 f�1g

n

(3.9.a)

Again, since this problem is too di�cult to solve, we relax the discreteness condi-

tion (3.9.a) and only demand that the solutions z;w 2 R

n

have the same Euclidean

length (

p

n) as x; y. We then get

Minimize f(z;w) =

1

4

(z

T

Lz + w

T

Lw)

subject to e

T

z = e

T

w = z

T

w = 0 (3.10)

z

T

z = w

T

w = n (3.10.a)

Using an argument similar to the one in the bisection case (p. 32 �.), we see that

the scaled eigenvectors z =

p

nu

2

and w =

p

nu

3

belonging to the second- and third-

smallest eigenvalues �

2

and �

3

are a solution of the continuous problem (3.10) and

n

4

(�

2

+ �

3

) is a lower bound on the number of hops induced by any quadrisection of

G.

But any orthonormal pair �z; �w from the subspace spanned by �

2

and �

3

(i.e., �z =

p

nu

2

cos �+

p

nu

3

sin � and �w = �

p

nu

2

sin �+

p

nu

3

cos �) are also solutions of (3.10).

The question now remains which of the solutions to choose. One idea is to choose �

in such a way that the resulting values closest to the discrete values �1 that we were

originally looking for, i.e., choose a �

0

that minimizes g(�) =

P

i

(1� �z

2

i

)

2

+ (1� �w

2

i

)

2

for � 2 [0; 2�).

g(�) reduces to a quartic expression in sin(�) and cos(�). After constructing g(�)

(at a cost of O(n)), the cost of evaluating (and thus minimizing) g(�) is independent
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3.3 Spectral Bisection

of n and usually insigni�cant compared to calculating the eigenvectors. In [30] it is

recommended to use a local minimizer with some random starting points.

But of course originally we were looking for an approximative solution to the

discrete problem (3.9). So the last hurdle is the assignment of the continuous points

(z

i

; w

i

) to discrete points (�1;�1). Since we need to adhere to the restrictions given

in (3.9), i.e., the partitions need to have the same size, we cannot simply use the

median method we used for the bisection case. If we de�ne a distance function from

continuous points (z

i

; w

i

) to discrete points (�1;�1), distributing the points evenly

while minimizing the sum of the distance is known as the minimum cost assignment

problem. According to [29] there exist e�cient algorithms to solve the problem.

3.3.3 Multilevel Spectral Bisection

For the above algorithms, we have to compute the Fiedler-vector or the eigenvector

associated with the third-smallest eigenvalue (and, for octasection, the forth-smallest)

of a sparse, symmetric matrix. First choice for such an algorithm is some variation of

the Lanczos-algorithm ([25, Ch. 9]). But it turns out that compared to other graph

partitioning algorithms, spectral bisection using the Lanczos-algorithm is extremely

slow.

But how to speed up the calculation of the eigenvector(s) and thus the spectral

bisection algorithm? Luckily, we do not need to calculate the eigenvectors of just any

sparse matrix but only those of the Laplacian of a graph. In [3], S. Barnard and H.

Simon found a clever way to pro�t from the connections between the eigenvectors and

the graph. We will present their idea in this section.

The basic idea is quite simple. Given a graph G

(0)

, we try to contract it to a

new graph G

(1)

that is in some sense similar to G

(0)

but with fewer vertices. Since

the new graph (and consequently its Laplacian) is smaller, it is cheaper to calculate

the Fiedler-vector u

(1)

2

of the new graph. We then use u

(1)

2

as a starting point to

calculate the Fiedler-vector u

(0)

2

of the original graph. This process has also been

termed coarsening the graph and the smaller graph is also called coarser.

Of course, we can use this idea recursively, constructing ever smaller graphs

G

(2)

;G

(3)

; : : : to calculate u

(1)

2

, u

(2)

2

and so on. These di�erent sized graphs lead to

the name of this algorithm: Multilevel Spectral Bisection or MSB.

So the �rst, rough draft of the eigenvector calculation for MSB looks like this

(again, we present it only for an unweighted graph; generalization to the case with

weighted edges is quite straightforward):
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3 Partitioning without geometric information

Algorithm 3.5 (Multilevel Fiedler-vector calculation )

Function Fiedler(G)

If G is small enough then

Calculate f = u

2

using the Lanczos algorithm

else

Construct the smaller graph G

0

and (implicitly) the corresponding Laplacian

L

0

.

f

0

= Fiedler(G

0

)

Use f

0

to �nd an initial guess f

(0)

for f.

calculate f from the initial guess f

(0)

.

endif

Return f

Of course, we have left out three rather important details: How to construct the

smaller graph, how to �nd an initial guess f

(0)

for f and how to e�ciently calculate

f using f

(0)

.

Constructing the smaller graph

First, we need the following de�nitions:

Definition 3.3 Given a graph G = (V; E), a subset V

0

� V is called an independent

set with respect to V if no two elements of V

0

are connected by an edge.

Definition 3.4 V

0

is called a maximal independent set with respect to V if adding

any vertex from V n V

0

to V

0

would no longer make it an independent set.

(Note that there is another de�nition of a maximal independent set that requires

the independant set to be of maximal size, i.e., V

0

is a maximal independent set with

respect to V if there does not exist an independant subset V

00

of V with jV

0

j < jV

00

j.

The two de�nitions are not equivalent.)

It is easy to see that an independent set V

0

� V is maximal if and only if every

node from V n V

0

is adjacent to a node in V.

A maximal independent set can easily and e�ciently be found by using a greedy

algorithm and while they are by no means unique, di�erent maximal independent sets

typically have a similar size.

So, to coarsen a graph G = (V; E) to a new, smaller graph G

0

= (V

0

; E

0

), we do the

following:
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3.3 Spectral Bisection

- Choose a maximal independent subset V

0

of V and use it as the vertex set of

the new graph. (any subset of V would do, but a maximally independent set is

guaranteed to be evenly distributed over G.)

- Grow domains in G around the vertices in V

0

and add an edge e

0

ij

to E

0

whenever

the domains around v

0

i

and v

0

j

intersect

Growing a domain around a vertex is done by repeatedly adding all neighbors

of vertices already in the domain. If the starting set is maximal independent, two

cycles of domain growth are enough to cover the whole graph and therefore determine

E

0

. In that case, two vertices in V

0

are connected exactly if there exists a path with

4 vertices or less connecting the corresponding vertices in V. It is also easy to see

that the resulting graph is connected if and only if the original one was connected as

well [4] (Note that contrary to what is stated in [4], two growth cycles are enough

since (using the notation in [4]) G

[k]

�shortcuts� all paths of length 2

k

instead of the

claimed k + 1).

Finding an initial guess

Having calculated the Fiedler vector f

0

of the smaller graph, we now face the problem

of how to use it to approximate the Fiedler vector f of the bigger graph. Here we use

our knowledge about the relationship between G and G

0

. First we assign the values

f

i

to the appropriate elements of f . In mathematical terms: Let m(i) be a mapping

between the vertices of the condensed graph and the vertices of G such that i is the

index of the vertex in V

0

that corresponds to the m(i)th vertex in V. Then let

f

m(i)

= f

0

i

for i = 1; : : : ; jV

0

j

Finally, for the components j of f corresponding to vertices in V n V

0

, we assign

the average of the values corresponding to those vertices in V

0

adjacent to v

j

. The

mathematical formulation of this is:

f

j

=

X

i:v

i

2G

0

e

i;j

2E

f

i

.

X

i: v

i

2G

0

e

i;j

2E

1 for all j with v

j

2 V n V

0

Since V

0

is maximal independent, every element in V nV

0

has at least one neighbor in

V

0

. With the above we have thus assigned a value to each component of f

(0)

.

One should note that this operation is similar to the prolongation operation in

classical multigrid methods for linear systems [7].
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3 Partitioning without geometric information

Calculating the Fiedler-vector using the estimate f

(0)

The last detail to solve is: how to calculate the Fiedler-vector f using the estimate f

(0)

.

While the Lanczos-algorithm is the usual favorite for extreme eigenpairs of symmetric

sparse matrices, it does not e�ectively take advantage of an initial guess. In [3], the

Rayleigh quotient iteration (RQI) ([25, Sec. 8.2.3]) was choosen to re�ne the initial

guess f

(0)

. Since we already have a good approximation and our accuracy demands

are rather low, RQI will usually take only very few iterations to converge.

Algorithm 3.6 (Rayleigh quotient iteration)

Given an initial guess (f

(0)

; �

(0)

) for an eigenpair (f; �), set v = f

(0)

=kf

(0)

k and

repeat

� := v

T

Lv

Solve (L � �I)x = v

v := x=kxk

until � is �close enough� to �

A closer look at the RQI algorithm reveals that we have to solve a linear equation

with L��I in each step. Since this matrix is sparse, symmetric but probably inde�nite

and ill-conditioned, the method of choice is the SYMMLQ iteration [48]. According

to [3] the total number of matrix-vector operations in all RQI steps combined is

generally less than 10.

In experiments (described in [3]), the MSBwith RQI and SYMMLQ has turned out

to be very e�cient. Compared with the normal spectral bisection using the Lanczos

algorithm, it usually is at least an order of magnitude faster.

3.3.4 Algebraic Multilevel

In the MSB algorithm described above, the smaller graph was constructed solely out

of the larger graph and only then the corresponding Laplacian matrix was (implicitly)

build and its Fiedler-vector computed.

But the problem can also be approached in another way, more in tune with the

classical multilevel algorithms for linear systems [7]. That is: given a Laplacian matrix

L 2 R

x�n

, we construct a restriction operator R 2 R

n�n

0

and a prolongation operator

P 2 R

n

0

�n

and study the relation between (prolongated) solution of the smaller,

restricted problem and the original problem. In [61], R. Van Driessche did just that.

We will report some of his results in this section.

Also choosing a maximal independent subset of V, the matrix equivalent of the

interpolation method above (in section 3.3.3) was used as prolongation operator P .
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3.3 Spectral Bisection

Further two restriction operators were choosen, R

P

= P

T

and R

I

a simple injection

operator (r

I

ij

= �

m(i);j

) for i = 1; : : : ; n

0

and j = 1; : : : ; n.

It turns out that usingR

I

leads to another eigenproblemwith a matrix L

0

= R

I

LP .

L can be interpreted as the Laplacian matrix of a new, smaller graph with weighted

edges. This new graph can be shown to be connected, so we can repeat the procedure

recursively.

R

P

does not have these nice properties. Using it leads to a generalized eigenprob-

lem. L

0

= R

P

LP is again the Laplacian of a weighted graph but that graph cannot

be guaranteed to be connected and the weights of the edges might not be positive.

A repeated application may therefore not be possible. Finally, the solution of the

generalized eigenproblem is computationally more expensive.

In [61], the prolongations v

I

i

and v

P

i

of the second, third and fourth eigenvector

of the contracted graph were compared with the corresponding eigenvectors u

j

; (j =

2; 3; 4) of the original graph. This was done by examining the absolute values of the

inner products of the (normalized) vectors. Notable results were:

� The prolongations v

I

i

; v

P

i

were quite rich in u

i

(i = 2; 3; 4), that is the absolute

value of the inner product was quite big (well above 0.95 for j = 2; 3 and above

0.8 for j = 4).

� The contributions of the other eigenvectors (i.e., for i 6= j) were much smaller

(most of the time les than 0.1).

This means that the prolonged eigenvectors are good approximations of the eigen-

vector of the original graph and are thus good starting vectors for the Rayleigh quo-

tient iteration.

Further �ndings included:

� The method using R

P

delivered better eigenvector approximations. But this

does not o�set the more expensive solution of the generalized eigenproblem and

so the other method (using R

I

) may often be faster in delivering the �nal result.

� The quality of the eigenvector approximation is not only determined by the

eigenvalue approximation but also by the gap between its eigenvalue and neigh-

boring eigenvalues.

Other implementations of MSB use even other methods of constructing the smaller

meshes (Chaco ([33]) for example uses one of the algorithms described in section 3.4)

but report similar �nal results so it seems that the choice of the coarsening method

is not critical.
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3 Partitioning without geometric information

PSfrag replacements

coarsen graph

partition graph

project and refine graph

Figure 3.3: Multilevel graph partitioning

3.4 Multilevel Partitioning

The multilevel spectral bisection algorithm described in section 3.3.3 has turned out

to be very e�cient. Since the multilevel approach obviously has a lot of merit, can it

be applied in some other way as well?

In MSB, we transfer approximate information about the second eigenvector of the

original graph between levels, improve this information on each level and �nally, use

this eigenvector to partition the graph. A more direct way would be to simply transfer

information about the partitions itself between levels and improve the partitions on

each level. And this is, in a rough outline, the description of one of the most successful

algorithms, the multilevel graph partitioning.

Algorithm 3.7 (Multilevel graph bisection)

Function ML-Partition(G)

If G is small enough then

Find partition (V

1

;V

2

) of G in some way.

else

Construct a smaller approximation G

0

(V

0

1

;V

0

2

) = ML-Partition(G

0

)

(

~

V

1

;

~

V

2

) = Project-partition-up (V

0

1

;V

0

2

)

(V

1

;V

2

) = Re�ne-partition (

~

V

1

;

~

V

2

)

endif
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Figure 3.4: Coarsening a graph

Return (V

1

;V

2

)

In algorithm 3.7, we bisect the graph but the same idea can be used to partition

the graph into p parts at once. Actually there is a whole family of slightly di�erent

multilevel graph partitioning algorithms which di�er in the three generic parts �con-

struct smaller approximation�, �project partition up� and �re�e projected partition�

and in the way the smallest graph is partitioned. We will describe some of the so-

lutions implemented in software packages like Chaco ([33]), METIS ([40]) or WGPP

([26]).

All of the following coarsening algorithms lead to graphs with edge and vertex

weights so we might as well start with a weighted graph (V; E).

3.4.1 Coarsening the graph

In all of the following methods, the coarser graph is constructed in similar ways. First,

we �nd a maximal matching. A matching is a subsetM� E of edges no two of which

share an endpoint. A matching is maximal if no other edges from E can be added.

Given the matching M, the new graph is constructed in the following way: for

each edge e

i;j

2 M, we contract its endpoints v

i

and v

j

into a new vertex v

n

. Its

weight equals the sum w

v

(v

i

) + w

v

(v

j

) of the weights of v

i

and v

j

. Its neighbors are

the combined neighbors of v

i

and v

j

with accumulated edge-weights, i.e., w

e

(e

n;k

) =

w

e

(e

i;k

) + w

e

(e

i;k

) (where the weight on nonexistent edges is assumed to be 0). The

edge e

i;j

disappears. (See also Figure 3.4).
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3 Partitioning without geometric information

The main di�erence between the di�erent implementations is the construction

of the maximal matching. The simplest method (suggested by B. Hendrickson and

R. Leland in [31]) is randomized matching (RM) which randomly selects �tting edges

until the matching is maximal:

Algorithm 3.8 (Randomized Matching (RM))

Unmark all vertices and set M = ;.

While there are unmarked vertices left

Randomly select unmarked vertex v

i

Mark v

i

If v

i

has unmarked neighbors

Randomly choose unmarked neighbor v

j

of v

i

(?)

Mark v

j

Add edge e

i;j

to M

If we look at the way the coarser graph is constructed, we notice that the edges in

the matching �disappear� from the lower levels. The total edge-weight of the coarser

graph equals the edge-weight of the original graph minus the weight of the edges in

the matching. In [39] it is suggested that by decreasing the total edge-weight of the

coarser graph one might lower its cutsize and also the cutsize of the original graph.

Experiments con�rmed this assumption and also showed that this choice accelerated

the re�nement process.

To achieve this, G. Karypis and V. Kumar use a slight modi�cation of the RM

algorithm called heavy edge matching (HEM). Instead of choosing a random neighbor

(in line (?) of Algorithm 3.8), they simply select the unmarked neighbor which is

connected to v

i

by the heaviest edge.

The problem with this approach is that it might miss some heavy edges. If in

Figure 3.5 vertex v

i

is selected �rst, the edge with weight 3 will be selected. Conse-

quently the heavier edge with weight 7 will not be selected. To avoid this, A. Gupta

suggests in [27] to sort the edges by weight and then to choose the heaviest permissible

edge �rst (ties are broken randomly). He calls this method is heaviest edge matching.

Is usually done only in the later stages of the coarsening process when the graphs

are considerably smaller and thus the sorting is cheap. Furthermore, heaviest edge

matching is particularly e�cient when the graph has edges with very di�erent weights.

This weight inequilibrium will often appear after some coarsening steps.
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3.4 Multilevel Partitioning

These basic strategies can be coupled with other methods to further improve the

coarser graph.

G. Karypis and V. Kumar try to decrease the average degree of the coarser graph,

arguing that fewer edges lead to a higher average edge-weight which in turn will help

the HEM to �nd heavier edges. This modi�ed heavy edge matching (HEM

�

) is done

by choosing the appropriate edge amongst all permissible edges with maximal weight.

Using his heavy-triangle matching (HTM), A. Gupta

v

v

vm

�

�

�

�

�

�@

@

@

@

@

@

i

j

3

2 7

Figure 3.5: Missing a

heavy edge

also tries to contract three vertices into one, again try-

ing to maximize the weight of the connecting edges.

Additionally, he tries to keep the weights of the coars-

ened vertices balanced by using a modi�ed edge-weight

~w

e

(e

i;j

) = �w

e

(e

i;j

) + �(w

v

(v

i

) + w

v

(v

j

))

�1

which also

takes the vertex-weights into account. For this, the

graph is regarded as completely connected with the ad-

ditional edges having zero weight. This simpli�es the

bisection of the �nal graph.

3.4.2 Partitioning the smallest graph

Once the graph is coarse enough (usually when jV

0

j is less than say 50 or 100 or when

further coarsening steps only reduce the graph a little), it needs to be partitioned.

To do this, one can use any of the other methods mentioned above. Since the graph

to be partitioned is very small, e�ciency is not important. One can even try several

methods (or the same randomized method multiple times) and choose the best result.

Methods normally used include graph-growing, spectral bisection or just Kernigan�

Lin with random starting partitions.

But this very small graph will have vertices with (sometimes very) di�erent

weights. So it might be impossible to divide the vertices into p partitions of equal

weight. And even if it is possible, doing so might cause a high cutsize. So it is

advisable to allow some imbalance in order to improve the quality of the cut. This

imbalance can then be reduced during the re�nement steps.

The WGPP program ([26]) uses a clever way to eliminate the need for additional

code to partition the smallest graph. Since its coarsening method tries to keep the

weights of the coarsened vertices balanced, it simply coarsens the graph down to p

(normally 2) vertices and then uncoarsens and re�nes it up to q (with p < q � n).

It then saves this partition, coarsens it again down to p vertices (remember that this

coarsening is randomized) and repeats this process, always saving the currently best

partition. The quality of the partition should also take the partition size imbalance

into consideration. Since q is small, the process can be cheaply repeated a couple of
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3 Partitioning without geometric information

times and the best result is chosen.

3.4.3 Projecting up and re�ning the partition

Given the partition of the coarser graph, we now need to �nd a good partition of the

�ner graph. First, we �project up� the partition of the coarser graph to the �ner one.

Each vertex of the �ner graph can be traced to exactly one vertex in the coarser graph:

either it (together with one (or more) other vertices) is contracted into a new coarser-

level vertex or it is simply copied to the coarser level. So having partitioned the

coarser graph, we can simply assign the vertices on the �ner graph to the appropriate

partitions.

But on the �ner graph we now have more �degrees of freedom� to �nd a better

partition (with a lower cutsize), so we need to re�ne the graph, improving both the

cutsize and the balance (since the partitions might be of di�erent weight).

The re�nement is usually done by using one of the variants of the Kernigan�Lin

algorithm described in section 3.2.1. The Fiduccia�Mattheyses variant [18] in par-

ticular can easily be modi�ed to improve the balance at the same time by adding

some term describing the imbalance into the cost-function used to �nd the next ver-

tex to move. Other changes include using only one inner pass and considering only

�boundary-vertices�.

3.5 Other methods

In the sections above, we have described the more common methods for graph par-

titioning. But there are many other methods as well, both geometrically oriented

and graph based, which we will only cite here ([8, 14, 16, 55, 63, 65�67]). Some of the

methods are specialized for �nite element meshes for PDEs ([13,60,62]). Others have

tried to apply general optimization techniques like simulated annealing or genetic al-

gorithms to the partitioning problem ([36, 37, 61, 68]). And �nally, in addition to the

software libraries mentioned above, there are other programs available as well, for

example Jostle ([64]), Party ([54]) and Scotch ([49]).
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