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Abstract

Some boundary value problems yield anisotropic solutions, e.g. solutions with bound-

ary layers. If such problems are to be solved with the �nite element method (FEM),

anisotropically re�ned meshes can be advantageous.

In order to construct these meshes or to control the error one aims at reliable error

estimators. For isotropic meshes many estimators are known, but they either fail when

used on anisotropic meshes, or they were not applied yet. For rectangular (or cuboidal)

anisotropic meshes a modi�ed error estimator had already been found.

We are investigating error estimators on anisotropic tetrahedral or triangular meshes

because such grids o�er greater geometrical 
exibility. For the Poisson equation a

residual error estimator, a local Dirichlet problem error estimator, and an L

2

error

estimator are derived, respectively. Additionally a residual error estimator is presented

for a singularly perturbed reaction di�usion equation.

It is important that the anisotropic mesh corresponds to the anisotropic solution. Pro-

vided that a certain condition is satis�ed, we have proven that all estimators bound the

error reliably.
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Chapter 1

Introduction

Many models in science and engineering lead to partial di�erential equations. Some of

them, the boundary value problems, are written (in the so-called classical formulation) as

Find u : Lu = f in 
 ;

lu = g on �

D

= @
 :

Here L is the di�erential operator which is supposed to be self-adjoint and elliptic, and

l represents the operator of the boundary conditions. We restrict ourselves to bounded,

polygonal, three-dimensional or two-dimensional domains 
 � R

d

, i.e. d = 3 or 2. Varia-

tional analysis leads to the so-called variational (or weak) formulation

Find u 2 V : a(u; v) = (f; v) 8 v 2 V

with a symmetric, elliptic and continuous bilinear form a(� ; �) and a functional (f; �).

In chapters 3 and 4 (where we are dealing with the Poisson problem and a singularly

perturbed reaction di�usion equation, both with homogeneous Dirichlet boundary condi-

tions) the space V = H

1

o

(
) is appropriate. Then the �nite element method (FEM) can

be employed to solve this problem numerically. An approximate space V

o;h

� V yields

the FEM formulation

Find u

h

2 V

o;h

: a(u

h

; v

h

) = (f; v

h

) 8 v

h

2 V

o;h

:

To obtain the approximate space V

o;h

assume a family F = fT

h

g of triangulation T

h

of 
.

Then let V

o;h

be the space of continuous, piecewise linear functions over T

h

that satisfy

the homogeneous Dirichlet boundary conditions.

The �nite element method shall be accurate and e�cient. The accuracy is assessed

by the error u� u

h

in some suitable norm. The e�ciency is, roughly speaking, related to

the number of elements, the degree of the basis functions, the solution method etc.

Usually the search for an accurate (approximate) solution u

h

is an iterative procedure.

One constructs a sequence fu

h

g of FEM solutions whose error ku� u

h

k

�

decreases until

a prescribed accuracy is obtained. The well known adaptive process has the form:

1. Estimate the error locally for a solution on a given mesh.

2. Based on this information, construct a new mesh or perform a mesh re�nement.

3. Solve the arising �nite element system.

4
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The topic of our work is a special class of problems which can be solved very e�-

ciently by a non-classical �nite element method. Some boundary value problems (arising

e.g. from 
uid dynamics, weather simulation etc.) yield a solution which exhibits an al-

most one-dimensional behaviour, i.e. the solution varies signi�cantly only in one direction

but remains almost constant in other directions. Such solutions are called anisotropic.

Examples include solutions with a boundary or an interior layer.

One feature of the classical �nite element method is that the ratio of the diameters of

the circumscribed and inscribed spheres of a �nite element (e.g. rectangle, tetrahedron,

or cube) is bounded. Such meshes are referred to as isotropic meshes. But when an

anisotropic solution as mentioned above occurs it is sensible to violate this condition

and to use highly stretched elements instead. One hopes to capture in this way the

important features of the solution with much less elements. Numerical evidence con�rms

that problems with anisotropic solutions can indeed be solved much more e�ciently on

anisotropic meshes.

A (certainly incomplete) list of engineers and scientists dealing with such anisotropic

problems include Beinert and Kr�oner [10], Fr�ohlich, Lang and Roitzsch [16], Kornhu-

ber and Roitzsch [17], Nochetto [20], Peraire et al.[21], Rachowicz [22], Rick, Greza

and Koschel [24], Siebert [28], Vilsmeier, H�anel et al. [33], Zienkiewicz and Wu [35].

Anisotropic �nite element methods with emphasis on a priori error estimation have been

considered for example by Apel and Dobrowolski [3], Apel and Lube [4], Apel and Nicaise

[5], Miller, O'Riordan and Shishkin [18], Roos [26], Zhou and Rannacher [34]. But al-

though anisotropic �nite elements are used, its theoretical foundation is much weaker

than for isotropic elements.

An adaptive strategy that takes account of an anisotropic solution clearly involves the

following tasks.

1. Estimate the error for a solution on a given mesh.

2. Obtain information for a new, better mesh. This includes:

� Detect regions of anisotropic behaviour of the solution.

� Determine a (quasi) optimal aspect ratio and stretching direction of the �nite

elements.

� Determine the element size.

3. Based on this information, construct a new mesh or perform a mesh re�nement.

4. Solve the arising �nite element system.

Obviously, every adaptive process has to answer questions 1 and 2 in some form. Yet

explicit and analytically based error estimators or indicators (like in [28]) are rather rare;

often estimators/indicators are hidden behind some re�nement criterion or are derived by

heuristic considerations [10, 21, 22, 24].

Similarly, information of the anisotropic solution is often drawn from heuristic argu-

ments. This includes the analysis of the partial second derivatives [21, 24, 35], of the level

lines [17] or of the gradient (or gradient jump) of some values [10, 22, 28].

The next step, namely the remeshing, is done either by mesh re�nement and adjust-

ment (see, e.g. [10, 11, 16, 17, 22, 24]), or a new mesh generation (for example coupled

with a background mesh, or by means of a virtual transformation, [12, 24, 33]).
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Finally, the solution of the resulting system does not seem to be too di�cult compared

with these �rst three steps.

Our work focuses mainly on the �rst task, the a posteriori error estimators, although

some aspects related to the other steps are discussed occasionally.

On isotropic meshes the theory of error estimators is fairly well established (see e.g. [1,

7, 8, 9, 31, 36, 37]. On anisotropic meshes such estimators cannot be applied (e.g. because

an anisotropic element T cannot be described by a single element size h

T

), or they were

not investigated yet. To our knowledge, the only mathematically exact estimator is due to

Siebert [28]. He considers the Poisson equation, utilizes cuboidal, rectangular or prismatic

grids (triangulations) and modi�es the well known residual error estimator.

The aim of this work is threefold. Firstly we want to derive estimators for tetrahedral

and triangular grids because of their greater geometrical 
exibility. Understandably this

requires more e�ort than for cuboidal grids since tetrahedra do not have three natural

directions, and since they can not be aligned with the coordinate axes (in general).

Secondly several estimators (residual error estimators, local problem error estimators,

Zienkiewicz-Zhu like error estimators) and di�erent norms (energy norm, L

2

norm) are

considered.

Thirdly, several di�erential equations are investigated into. The Poisson equation,

being one of the simplest boundary value problems, is chosen to identify and study the

e�ects of anisotropic �nite elements. The singularly perturbed reaction di�usion equation

in chapter 4 further reveals properties due to the anisotropy but also features that are

related to the governing equation. Furthermore, this example shall show (or at least

indicate) that an anisotropic theory can be applied to (almost) real life problems.

The paper is organized as follows. At the end of this introduction a list of commonly

used symbols is given. In chapter 2 the notation is introduced and basic relations are

derived. Chapters 3 and 4 are devoted to the Poisson equation and a singularly perturbed

reaction di�usion equation, respectively. Numerical examples are brie
y discussed in

chapter 5. A summary completes this paper.
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List of Symbols

The list below comprises important notation accompanied by a brief explanation and

(where possible) the page number of its de�nition or �rst occurrence. A uni�ed notation

for the R

3

and the R

2

is used as far as it is unambiguous. Note however that some

meanings are di�erent (e.g. T denotes either a tetrahedron or a triangle).

Symbol page


 bounded polygonal domain in the R

3

(or the R

2

)

d dimension of 
(d = 2; 3)

�

D

= @
 Dirichlet boundary of 


e

i

unitary vectors of R

d

9

L

2

;H

1

;H

1

o

usual Sobolev spaces over 


(�; �) , (�; �)

!

L

2

(
) scalar product or L

2

(!) scalar product

a(� ; �) bilinear form 21, 59

k � k L

2

norm over 


k � k

!

; k � k

E

L

2

norm over a domain ! or a face E

k � k

R

3�3
spectral norm of a matrix 12

T

h

triangulation of 
 15

V

h

; V

o;h

�nite element spaces over T

h

21

P

m

(!) space of polynomials of degree � m over domain ! 17

T 2 T

h

tetrahedron (or triangle)

jT j volume meas

d

(T ) of T

p

i

special vectors of T , i = 1 : : : d 10

h

i

= h

i;T

length jp

i

j of vector p

i

10

h

min;T

:= minfh

i;T

g = h

d;T

10

h

i

(x) global function that has value h

i;T

over T 10

E;E

T

arbitrary face of T (or edge of a triangle T ) 10

jEj meas

d�1

(E) of E 10

h

E

; h

E;T

length of the height over E in a tetrahedron T 10

!

T

; !

E

auxiliary local subdomains 14

�

T;i

barycentric coordinates of T 18

b

T

element bubble function (related to T ) 18

special L

2

element bubble function 45

b

E

face bubble function (related to E) 18

special L

2

face bubble function 46

F

ext

extension operator F

ext

: P

0

(E)! P

0

(T ) 18

�

T standard tetrahedron (see de�nition) 11

^

T reference tetrahedron 11

F

A

a�ne linear mapping from standard tetrahedron

�

T onto T 11

F

C

a�ne linear mapping from reference tetrahedron

^

T onto T 11

A

T

; C

T

transformation matrices of the maps F

A

and F

C

11

C(x) global matrix function that coincides with C

T

over T 11

~

D

i

(unitary) directional derivative in the direction p

i

13
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Symbol page

H

1

T

(
);H

1

o;T

(
) sets of adapted functions 23

'

j

linear basis function of node a

j

, 27

'

j

(a

i

) = �

j

i

(Kronecker symbol)

R

o

Cl�ement interpolation operator H

1

o;T

(
) 7! V

o;h

30

P

L

2

L

2

projection onto piecewise constant functions 31

r

E

(v

h

) (scalar) gradient jump of a function v

h

2 V

h

across a face

E

32

r

T

(v

h

) element residual (problem dependent) 31, 63

D

h;m

(v

h

) discrete, mesh dependent norm representing the jump

residuals

32

@=@n directional derivative with respect to the outer normal unit

vector n

33

�

R;T

residual error estimator (energy norm), problem depen-

dent

32, 63

�

D;T

local Dirichlet problem error estimator (energy norm) 37

�

R;L

2

;T

L

2

residual error estimator 54

jjj�jjj energy norm jjj�jjj

2

= a(�; �) 60

Constants are denoted by c . They are generic constants, i.e. always independent of

the underlying triangulation or the function in question, and may have di�erent values at

di�erent occurrences. We write

x . y () x � c � y

x & y () x � c � y; c > 0

x � y () c � x � y � c � x; c > 0 :

The notation with an explicit constant c is used only when a dependence on some other

values is expressed (e.g. c




) or when further details are thus revealed. Also, the (sharper)

notation � is used instead of . wherever possible.



Chapter 2

Preliminaries

2.1 Notation

2.1.1 General notation

Let 
 � R

d

; d = 2; 3 be an open, bounded, polygonal domain over which the di�erential

equation is posed. The following spaces are frequently employed (with ! being an arbitrary

open domain).

C

k

(!) space of k times continuously di�erentiable functions

L

2

(!) space of square integrable functions

H

k

(!) Sobolev space of functions whose k

th

derivative is in L

2

(!)

H

k

o

(!) Sobolev space of functions of H

k

(!) satisfying the corresponding

homogeneous Dirichlet boundary conditions

P

k

(!) space of polynomials of order k or less.

All norms of functions are L

2

norms unless otherwise stated. A norm without subscript

denotes jj � k = k � k

L

2

(
)

, i.e. the L

2

norm over the whole domain 
. All vectors norms

are Euclidean norms, and norms of matrices are spectral norms. The unitary vectors of

R

d

are denoted by e

i

; i = 1 : : : d.

All considerations are made for the three-dimensional case. The application to the

easier two-dimensional case is readily possible.

2.1.2 Notation of the tetrahedron

Assume that a triangulation T

h

(also called a mesh or a grid) is given which satis�es

the usual conformity conditions (see Ciarlet [13], Chapter 2). Let T be an arbitrary

tetrahedron thereof. For this tetrahedron the following notation is introduced. The four

vertices of T are denoted by P

0

; : : : ; P

3

according to these three conditions:

� Let P

0

P

1

be the longest edge of T .

� There exist two triangles that contain the edge P

0

P

1

. The one with largest area is

denoted by 4P

0

P

1

P

2

.

� Let P

0

P

2

be the shortest edge of 4P

0

P

1

P

2

. This determines which vertex is P

0

and

P

1

, respectively. Let P

3

be the remaining vertex.

9
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This notation is not uniquely determined if, for instance, T has two edges which are

simultaneously the longest ones. However, it turns out that then either choice of the

notation �ts into the theory. Additionally we de�ne three vectors:

� p

1

:=

�!

P

0

P

1

.

� Let p

2

be that vector in the plane of P

0

P

1

P

2

that points to P

2

and that is perpen-

dicular to p

1

� Let p

3

be that vector to P

3

that is perpendicular to 4P

0

P

1

P

2

.

Hence p

1

: : :p

3

are mutually orthogonal. Figure 2.1 visualizes this notation.

p

1

p

2

p

3

P

3

P

2

P

1

P

0

Figure 2.1: Notation of tetrahedron T

The length of the vectors p

i

is denoted by h

i

= h

i;T

:= jp

i

j, i = 1; 2; 3. Because of the

de�nition of the P

i

we conclude immediately h

1

> h

2

� h

3

. We further de�ne

h

min;T

:= min

i=1:::d

fh

i;T

g = h

d;T

(in R

3

thus h

min;T

= h

3;T

holds). Furthermore a piecewise constant function h

i

(x) is

de�ned for almost all x 2 
 according to

h

i

(x) := h

i;T

for x 2 T ; i = 1 : : : d:

Analogouslyh

min

(x) is de�ned.

The boundary of a tetrahedron T consists of four faces (i.e. triangles). Such a face

is denoted by E, and its (d � 1) dimensional content is expressed by jEj := meas

d�1

(E).

The length of the height over such a face E will be denoted by h

E;T

= h

E

= 3jT j=jEj.
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2.1.3 Standard and reference tetrahedron, transformations and

their properties

Let T be an arbitrary but �xed tetrahedron. Mainly we will employ two a�ne linear

mappings F

A

and F

C

which will be de�ned as follows.

Let

!

P

0

be the (column) vector from the origin of the coordinate system to P

0

, and

let

�!

P

0

P

i

be the (column) vectors from P

0

to P

i

, i = 1; 2; 3. We de�ne the matrices

A

T

; C

T

2 R

3�3

by

A

T

:=

�

�!

P

0

P

1

;

�!

P

0

P

2

;

�!

P

0

P

3

�

and C

T

:=

�

p

1

;p

2

;p

3

�

: (2.1)

Sometimes we want to refer to the matrix C

T

not only on an actual tetrahedron T but

on a larger domain. Thus we introduce a matrix (or more precisely a matrix function)

C(x) which is de�ned globally for almost all x 2 
 and which coincides with C

T

on a

tetrahedron T :

C(x) := C

T

for x 2 T : (2.2)

Additionally a matrix H

T

is de�ned by

H

T

:= diag (h

1

; h

2

; h

3

) :

Let now the a�ne linear mappings be

F

A

:

�

T 7! T and F

C

:

^

T 7! T

F

A

: x(�) = A

T

� �+

!

P

0

F

C

: x(�) = C

T

� �+

!

P

0

with � = (�

1

; �

2

; �

3

)

T

.

De�nition 2.1 (Standard tetrahedron and reference tetrahedron) The standard

tetrahedron

�

T has vertices

�

P

0

= (0; 0; 0)

T

and

�

P

i

= e

T

i

; i = 1 : : : d. Enumerate the faces

�

E

i

of

�

T such that

�

E

i

:=

�

T \ fx

i

= 0g ; i = 1 : : : d and

�

E

0

:=

�

T \ fjxj

1

= 1g ;

i.e. face

�

E

i

is opposite the vertex

�

P

i

.

The reference tetrahedron

^

T is de�ned implicitly by the mapping F

C

, i.e.

^

T = F

�1

C

(T ).

The vertices of

^

T are

^

P

0

= (0; 0; 0)

T

,

^

P

1

= (1; 0; 0)

T

,

^

P

2

= (x̂

2

; 1; 0)

T

and

^

P

3

= (x̂

3

; ŷ

3

; 1)

T

because of the de�nition of F

C

. The conditions on the P

i

yield immediately 0 < x̂

2

; x̂

3

< 1

and �1 < ŷ

3

< 1. Figures 2.1 and 2.2 may illustrate this de�nition (the circumscribed

rectangular prisms shall facilitate the visualization).

Variables that are related to the standard tetrahedron

�

T and the reference tetrahedron

^

T are referred to with a bar and a hat, respectively (e.g.

�

r, v̂).

The determinants of both mappings are

jdet(A

T

)j = jdet(C

T

)j = h

1

� h

2

� h

3

= 6 � jT j :

The transformed derivatives satisfy

�

r�v = A

T

T

rv and

^

rv̂ = C

T

T

rv :

In order to bound the norms of some transformation matrix we state the following

simple lemma (see also [13]).
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^

P

1

^

P

0

^

P

2

^

P

3

�

2

�

1

�

3

�

P

0

�

P

1

�

P

2

�

P

3

Figure 2.2: Standard tetrahedron

�

T and reference tetrahedron

^

T

Lemma 2.1 (Bound of the norm of a transformation matrix) Let A be a lin-

ear transformation that maps the (closed) domain

^

G � R

d

onto G. The spectral norm of

the corresponding transformation matrix satis�es

kAk

R

d�d � d(G)=% (

^

G)

with d(G) := max

x;y2G

kx� yk

R

3
and % (

^

G) := diameter of the largest sphere S �

^

G.

Lemma 2.2 (Norms of some matrices) The following relations hold.







A

T

T

C

�T

T







R

3�3
=







C

�1

T

A

T







R

3�3
. 1 (2.3)







C

T

T

A

�T

T







R

3�3
=







A

�1

T

C

T







R

3�3
. 1 (2.4)







C

T

H

�1

T







R

3�3
=







H

T

C

�1

T







R

3�3
= 1 (2.5)







H

�1

T







R

3�3
=







C

�1

T







R

3�3
= h

�1

min;T

(2.6)







A

�1

T







R

3�3
� h

�1

min;T

(2.7)

Proof: Let T�

!

P

0

be the tetrahedron T shifted by �

!

P

0

. The mappings A

T

, C

�1

T

and

C

�1

T

A

T

act as follows:

�

T

A

T

7�! (T�

!

P

0

)

C

�1

T

7�!

^

T and thus

�

T

C

�1

T

A

T

7�!

^

T ;

i.e. C

�1

T

A

T

maps the standard tetrahedron

�

T onto the reference tetrahedron

^

T . The

lemma from above implies immediately (2.3) and analogously (2.4).

Because of C

T

T

� C

T

= H

2

T

from (2.1) we conclude (H

T

C

�1

T

)

T

� H

T

C

�1

T

= I and

(C

T

H

�1

T

)

T

� C

T

H

�1

T

= I . Thus (2.5) is derived. Note that kC

�1

T

H

T

k

R

3�3
6= 1.

The equality







H

�1

T







R

3�3
= h

�1

min;T

is obvious. Equality (2.6) follows immediately

from







C

�1

T







2

R

3�3

= �

max

�

C

�1

T

C

�T

T

�

= �

max

�

H

�2

T

�

.
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The inequalities







C

�1

T







R

3�3
=







C

�1

T

A

T

�A

�1

T







R

3�3
�







C

�1

T

A

T







R

3�3
�







A

�1

T







R

3�3

and kA

�1

T

k

R

3�3
= kA

�1

T

C

T

�C

�1

T

k

R

3�3
�







A

�1

T

C

T







R

3�3
�kC

�1

T

k

R

3�3
and (2.3){(2.6) �nally

imply (2.7).

Finally, a norm k � k

T

over an actual tetrahedron T is often transformed into a norm

over the standard tetrahedron

�

T or the reference tetrahedron

^

T . The following relations

hold. Let v 2 L

2

(T ) and T � R

3

. For a mapping F

A

(�) = A

T

� �+

!

P

0

one obtains

Z

T

v

2

(x)dx =

Z

�

T

�v

2

(�) � jdet A

T

j d� = 6jT j �

Z

�

T

�v

2

(�)d�

or kvk

T

=

p

6jT j � k�vk

�

T

and similarly kvk

T

=

p

6jT j � kv̂k

^

T

and kvk

E

=

q

jEj=j

�

Ej � k�vk

�

E

:

2.1.4 The directional derivative

~

D

i

In order to motivate the derivatives

~

D

i

consider rectangular or cuboidal �nite elements

(cf. [28]). There are three (or two) natural directions that correspond to the coordinate

axes. The partial derivatives that correspond to these axes too are thus su�cient for an

error analysis.

In contrast to this a tetrahedron or a triangle does not possess these natural directions.

However the (normalized) directions p

1

;p

2

; and p

3

that correspond to C

T

will prove to

be useful. This leads to the following de�nition.

De�nition 2.2 (Directional derivative) Let v be a function in H

1

(T ). The direc-

tional derivative

~

D

i;T

is de�ned by

0

@

~

D

1;T

v

~

D

2;T

v

~

D

3;T

v

1

A

:= H

�1

T

C

T

T

� rv ; v 2 H

1

(T ): (2.8)

Here this derivative

~

D

i;T

is de�ned for a �xed tetrahedron T . Hence we introduce a

derivative

~

D

i

which is de�ned globally for almost all x 2 
, and which coincides with

~

D

i;T

on a tetrahedron T :

~

D

i

v(x) :=

~

D

i;T

v(x) for x 2 T :

Note that this derivative

~

D

i

depends on the triangulation T

h

, and it is de�ned separately

over each tetrahedron T .

When considering each component in the de�nition above, the directional derivative

is equivalent to

~

D

i;T

v = h

�1

i

� (p

i

;rv) i = 1 : : : d

i.e.

~

D

i;T

is the (unitary) directional derivative along the direction p

i

.

The orthogonality of the vectors p

i

and the de�nition h

i

= jp

i

j implies that H

�1

T

C

T

T

is an orthogonal matrix. Thus
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d

X

i=1

(

~

D

i

v)

2

= jrvj

2

and

d

X

i=1

h

2

i

(

~

D

i

v)

2

= jC

T

T

rvj

2

or

kH

�1

T

C

T

T

rvk

T

= krvk

T

(2.9)

d

X

i=1

h

2

i

k

~

D

i;T

vk

2

T

= kC

T

rvk

2

T

: (2.10)

The last equations indicate that derivatives can be written either component-wise in

terms of

~

D

i

, or they can be written in the compact form of C

T

T

r.

In this work all results and proofs are given in this compact form since C

T

T

r on the

actual tetrahedron T is related (via F

C

) directly to

^

r on the reference tetrahedron

^

T .

Main results however are also given in terms of

~

D

i

for two reasons. Firstly this might

facilitate the understanding of the underlying principles, and secondly an extension to

rectangular or cuboidal �nite elements is then readily possible.

With the help of (2.9) and (2.10) any term involving derivatives can be expressed

easily in either form.

2.1.5 Auxiliary subdomains

Two auxiliary subdomains that occur in many estimates are de�ned now. Let T 2 T

h

be

an arbitrary tetrahedron. Let !

T

be that domain that is formed by T and all (at most

four) adjacent tetrahedra that have a common face with T :

!

T

:=

[

T

0

\T=E

T

0

:

Let E be an inner face (triangle) of T

h

, i.e. there are two tetrahedra T

1

and T

2

having the

common face E. Let the domain !

E

:= T

1

[ T

2

. Figure 2.3 depicts both domains for the

two-dimensional and the three-dimensional case.

T

E

T

E

Figure 2.3: Auxiliary domains !

T

(left) and !

E

(right) for 
 � R

2

and 
 � R

3
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2.2 Requirements on the mesh

Let a

1

; : : : ; a

N

be the nodes of the triangulation T

h

. In addition to the usual conformity

conditions of the mesh (see Ciarlet [13], Chapter 2) we demand the following assumptions.

1. The number of tetrahedra that contain the node a

j

is bounded.

2. The dimensions of adjacent tetrahedra must not change rapidly, i.e.

h

i;T

0

� h

i;T

8T; T

0

with T \ T

0

6= ; ; i = 1 : : : d : (2.11)

Remark 2.1 Assume that T and T

0

are adjacent tetrahedra. If in any inequality the

terms h

i;T

or h

i;T

0

occur then assumption (2.11) implies that both terms can be exchanged

mutually. The inequality constants are then still independent of T or T

h

. This feature is

exploited to some extend, e.g. for inequalities written component-wise.

Assumption (2.11) implies in particular that we can use a term h

i;T

= h

i

for describing

the dimension h

i

of a local subdomain like !

T

or !

E

. Additionally, for !

E

= T

1

[ T

2

we

can simply write h

E

instead of h

E;T

1

or h

E;T

2

. �

2.3 Basic tools

In this section some basic tools and inequalities are listed.

2.3.1 Anisotropic trace inequalities

The �rst trace inequality is readily obtained by standard scaling techniques.

Lemma 2.3 (First trace inequality) Let T be an arbitrary tetrahedron and E be a

face of it. For v 2 H

1

(T ) the trace inequality

kvk

2

E

. h

�1

E

�

kvk

2

T

+ kC

T

T

rvk

2

T

�

(2.12)

holds. The component-wise form is

kvk

2

E

. h

�1

E

�

 

kvk

2

T

+

d

X

i=1

h

2

i;T

k

~

D

i

vk

2

T

!

:

Proof: Consider the transformation F

A

, the standard tetrahedron

�

T , the face

�

E of

�

T ,

and the function �v := v � F

A

2 H

1

(

�

T ). The trace theorem gives

k�vk

2

�

E

. k�vk

2

H

1

(

�

T)

= k�vk

2

�

T

+ k

�

r�vk

2

�

T

:

The transformation into the actual tetrahedron (via F

A

) yields

jEj

�1

� kvk

2

E

. jT j

�1

�

kvk

2

T

+ kA

T

T

rvk

2

T

�

:

From (2.3) and (2.10)

kA

T

T

rvk

T

= kA

T

T

C

�T

T

� C

T

T

rvk

T

� kA

T

T

C

�T

T

k

R

3�3
� kC

T

T

rvk

T

. kC

T

T

rvk

T

can be derived. Utilizing 6 jT j = jEj � h

E

results in the trace inequality (2.12).
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The second, improved trace inequality in the isotropic version (i.e. on the standard

tetrahedron) is, to our knowledge, due to Verf�urth [32]. We state this inequality and, for

self-containment, repeat the proof.

Lemma 2.4 (Second trace inequality) Let T be an arbitrary tetrahedron and E be a

face of it. For v 2 H

1

(T ) the trace inequality

kvk

2

E

. h

�1

E

� kvk

T

�

�

kvk

T

+ kC

T

T

rvk

T

�

(2.13)

holds. The component-wise form is

kvk

2

E

. h

�1

E

� kvk

T

�

 

kvk

T

+

d

X

i=1

h

i;T

k

~

D

i

vk

T

!

:

Proof: Again standard scaling arguments will be used. Therefore consider �rst the

standard tetrahedron

�

T .

Let �v 2 H

1

(

�

T ) vanish on

�

E

0

. Then

k�vk

2

�

E

k

� 2 � k�vk

�

T

� k@�v=@x

k

k

�

T

holds for k = 1 : : : d. To derive this consider a �xed index k. Since �v vanishes on

�

E

0

we

obtain for all y 2

�

E

k

j�v(y)j

2

= j�v(y)j

2

� j�v(y+ (1� jyj

1

)e

k

)j

2

= �2

Z

1�jyj

1

0

�v(y + te

k

) �

@

@x

k

�v(y + te

k

)dt

since y + (1 � jyj

1

)e

k

2

�

E

0

. Integrating over

�

E

k

, invoking Fubini's theorem and the

Cauchy-Schwarz inequality establishes the desired estimate.

Consider now a function v 2 H

1

(

�

T ) that vanishes on an arbitrary face

�

E

i

; 0 � i � d.

Let

�

E be a face of

�

T . Then

kvk

2

�

E

. kvk

�

T

� krvk

�

T

:

To prove this assume

�

E 6=

�

E

i

since otherwise the inequality is trivial. We employ an a�ne

linear mapping F

i

which satis�es

F

i

: x(�) = F � � + �

0

F 2 R

d�d

F

i

:

�

T 7!

�

T and

�

E

0

7!

�

E

i

:

Assume that the face

�

E

k

is mapped onto

�

E, with k 6= 0. The function �v := v �F

i

vanishes

on

�

E

0

and thus the previous inequality implies

k�vk

2

�

E

k

� 2 � k�vk

�

T

� k@�v=@x

k

k

�

T

:

Lemma 2.1 yields readily kFk

R

d�d . 1, and j

�

Ej=j

�

E

k

j . 1 is obvious. The transformation

back to v results in the desired inequality

kvk

2

�

E

. kvk

�

T

� ke

T

k

F

T

rvk

�

T

� kvk

�

T

� ke

T

k

F

T

k

R

d � krvk

�

T

. kvk

�

T

� krvk

�

T

:
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Consider �nally an arbitrary function v 2 H

1

(

�

T ). Let

�

E be any of the faces of

�

T , and

enumerate the vertices of

�

T such that the vertices of

�

E are numbered �rst. Denote by

�

1

� � ��

d+1

the barycentric coordinates of

�

T . Then �

1

+ � � � + �

d

= 1 on

�

E, and thus

kvk

�

E

�

d

X

i=1

k�

i

� vk

�

E

.

d

X

i=1

k�

i

� vk

1=2

�

T

� kr(�

i

� v)k

1=2

�

T

since �

i

� v vanishes on

�

E

i

. The chain rule, the Cauchy-Schwarz inequality, the actual

representation of �

i

, and j�

i

j � 1 imply

kr(�

i

� v)k

2

�

T

=

d

X

j=1













v �

@�

i

@x

j

+ �

i

�

@v

@x

j













2

�

T

� 4 � kvk

2

�

T

+ 2 � krvk

2

�

T

yielding kvk

2

�

E

. kvk

�

T

� (kvk

�

T

+ krvk

�

T

) :

This constitutes the trace inequality on the standard tetrahedron

�

T . The transformation

onto the actual tetrahedron T is completely analogous to the proof of the �rst trace

inequality and therefore omitted here.

2.3.2 Inverse inequalities for �nite element functions

In several proofs the following inverse inequalities for a �nite element function v

h

2 V

h

(T )

are required. Let P

m

(!) be the space of polynomials of degree (at most) m over some

domain !.

Lemma 2.5 Let T be an arbitrary tetrahedron, E a face of it, and v

h

2 V

h

(T ) = P

1

(T )

a �nite element function over T . Then

kC

T

T

rv

h

k

T

. kv

h

k

T

(2.14)

kv

h

k

1;T

. jT j

�1=2

� kv

h

k

T

(2.15)

kv

h

k

1;E

. jEj

�1=2

� kv

h

k

E

(2.16)

hold. The component-wise form of (2.14) is

k

~

D

i

v

h

k

T

. h

�1

i;T

� kv

h

k

T

i = 1 : : : d:

Proof: The proofs are again based on the transformation technique. The norm inequality

k

�

r�v

h

k

�

T

. k�v

h

k

�

T

8 �v

h

2 V

h

(

�

T ) = P

1

(

�

T )

holds on the standard tetrahedron

�

T since both norms act on the �nite dimensional space

P

1

(

�

T ). The transformation via F

A

gives for an arbitrary v

h

2 V

h

kA

T

T

rv

h

k

T

. kv

h

k

T

:

From (2.4) we obtain

kC

T

T

rv

h

k

T

= kC

T

T

A

�T

T

�A

T

T

rv

h

k

T

� kC

T

T

A

�T

T

k

R

3�3
� kA

T

T

rv

h

k

T

. kA

T

T

rv

h

k

T

and thus the �rst inequality.
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The next two inequalities are derived analogously. From

kv

h

k

2

1;T

= k�v

h

k

2

1;

�

T

. k�v

h

k

2

�

T

= jdetA

T

j

�1

� kv

h

k

2

T

one readily obtains (2.15). For a face E one similarly derives

kv

h

k

1;E

. jEj

�1=2

� kv

h

k

E

:

Note that, strictly speaking, inequalities (2.15) and (2.16) constitute norm equivalences

(over �nite dimensional spaces) whereas (2.14) does not.

2.3.3 Bubble functions and their inverse inequalities

Bubble functions and the so-called inverse inequalities related to it play a vital role in

our �nite element error analysis. Of course di�erent bubble functions can (and have to

be) employed for di�erent classes of problems and norms involved. Nevertheless we de�ne

here the probably most versatile and commonly used bubble functions. The corresponding

inverse inequalities are given and proved.

Other bubble functions that are utilized for an L

2

estimate alone are introduced in

the appropriate section 3.4

Let T 2 T

h

be an arbitrary tetrahedron, and denote by �

T;1

; � � � ; �

T;4

its barycentric

coordinates. The element bubble function b

T

2 P

4

(T ) is de�ned by

b

T

:= 256�

T;1

� �

T;2

� �

T;3

� �

T;4

on T : (2.17)

Let E be an inner face (triangle) of T

h

, and let T

1

and T

2

be the two tetrahedra that

contain E. Enumerate the vertices of T

1

and T

2

such that the vertices of E are numbered

�rst. The face bubble function b

E

is then de�ned by

b

E

:= 27�

T

i

;1

� �

T

i

;2

� �

T

i

;3

on T

i

; i = 1; 2 : (2.18)

This de�nition is extended in the obvious way for boundary faces E � @
, i.e. b

E

is then

de�ned only on one tetrahedron. For simplicity assume that b

T

and b

E

are extended by

zero outside their original domain of de�nition. Note that b

E

is piecewise cubic on !

E

.

Both bubble functions satisfy

0 � b

T

(x); b

E

(x) � 1 ; max b

T

= max b

E

= 1 :

The following examples of the corresponding two-dimensional bubble functions give some

impression of their shape.

Let E be a face (triangle) of a tetrahedron T . An extension operator F

ext

: P

0

(E) !

P

0

(T ) is given by

F

ext

(')(�

T;1

; �

T;2

; �

T;3

; �

T;4

) := '(x) = const for any x 2 E : (2.19)

Then the following inverse inequalities hold.
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0

1

0

y

0

1

0
x

0

1

0

0

1

0

y
0

1

0

x

1

-1

Figure 2.4: Element bubble function b

T

and face bubble function b

E

(in R

2

)

Lemma 2.6 (Inverse inequalities for bubble functions)

Assume that '

T

2 P

0

(T ) and '

E

2 P

0

(E). Then

k'

T

k

T

� kb

1=2

T

� '

T

k

T

(2.20)

kr(b

T

� '

T

)k

T

. h

�1

min;T

� k'

T

k

T

(2.21)

k'

E

k

E

� kb

1=2

E

� '

E

k

E

(2.22)

kF

ext

('

E

) � b

E

k

T

. h

1=2

E

� k'

E

k

E

for E 2 T (2.23)

kr(F

ext

('

E

) � b

E

)k

T

. h

1=2

E

� h

�1

min;T

� k'

E

k

E

for E 2 T (2.24)

Proof: For all inequalities the transformation technique is applied.

Obviously kb

1=2

�

T

� k

�

T

and k � k

�

T

are equivalent norms on the �nite dimensional space

P

0

(

�

T ). The transformation from the unitary tetrahedron

�

T to the actual tetrahedron T

leads directly to (2.20). Inequality (2.22) is proven in exactly the same way.

Similar to (2.14) one obtains the inequality kC

T

T

r k

T

. k k

T

for all  2 P

4

(T ).

Together with (2.9) we derive

kr(b

T

� '

T

)k

T

= kH

�1

T

C

T

T

r(b

T

� '

T

)k

T

. h

�1

min;T

� kC

T

T

r(b

T

� '

T

)k

T

. h

�1

min;T

� kb

T

� '

T

k

T

:

This proves (2.21) since 0 � b

T

� 1. The inequality

kF

ext

('

E

) � b

E

k

2

T

= 6jT j � kF

ext

( �'

E

) � b

�

E

k

2

�

T

. 6jT j � k �'

E

k

2

�

E

= h

E

� k'

E

k

2

E

holds for all '

E

2 P

0

(E) since k � k

�

E

and kb

�

E

�F

ext

(�)k

�

T

are equivalent norms over a �nite

dimensional space of polynomials. Thus (2.23) is proven. Finally (2.24) is obtained using

the same techniques as for (2.21) and (2.23).

An even stronger result which will be useful occasionally is given in lemma 2.7.

Lemma 2.7 (Equivalence relations for bubble functions)

krb

T

k

T

� h

�1

min;T

� jT j

1=2

; (2.25)

krb

E

k

T

� h

�1

min;T

� jT j

1=2

8E 2 T : (2.26)
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Proof: Standard scaling arguments and C

T

T

� C

T

= H

2

T

imply

krb

T

k

2

T

= 6jT j � kC

�T

T

^

r

^

b

T

k

2

^

T

= 6jT j �

Z

^

T

^

r

T

^

b

T

� C

�1

T

C

�T

T

�

^

r

^

b

T

= 6jT j �

Z

^

T

^

r

T

^

b

T

�H

�2

T

�

^

r

^

b

T

> 6jT j � h

�2

min;T

�

Z

^

T

 

@

^

b

T

@ẑ

!

2

:

The reference tetrahedron

^

T is uniquely determined by its vertices (0; 0; 0)

T

, (1; 0; 0)

T

,

(x̂

2

; 1; 0)

T

, and (x̂

3

; ŷ

3

; 1)

T

, with 0 < x̂

2

; x̂

3

< 1 and jŷ

3

j < 1 (cf. section 2.1.3). De�ne the

compact set

S :=

n

(x̂

2

; x̂

3

; ŷ

3

) : 0 � x̂

2

; x̂

3

� 1 ; jŷ

3

j � 1

o

which covers all possible tetrahedra

^

T (and some more). Obviously k@

^

b

T

=@ẑk

^

T

varies

continuously over S and thus attains its minimum. This is positive since @

^

b

T

=@ẑ cannot

vanish everywhere on

^

T . Therefore

krb

T

k

2

T

& h

�2

min;T

� jT j

which, together with (2.21), implies the assertion. For b

E

proceed analogously.

Remark 2.2 Bubble functions b

T

or b

E

which are transformed via F

�1

A

become the cor-

responding bubble functions on the standard tetrahedron

�

T , respectively, i.e.

b

�

T

=

�

b

T

:= b

T

� F

A

and b

�

E

=

�

b

E

:= b

E

� F

A

:

A similar relation holds for the transformation F

C

. �



Chapter 3

The Poisson equation

3.1 Analytical Background

The classical formulation of the Poisson problem reads

Find u 2 C

2

(
) \ C(
) : ��u = f in 
 ;

u = 0 on �

D

= @
 :

Under suitable smoothness assumptions on the data (i.e. f and 
) it yields a unique

solution. In practice, however, the data are rarely as smooth as required. Then the

variational or weak formulation is more appropriate:

Find u 2 H

1

o

(
) : a(u; v) = (f; v) 8 v 2 H

1

o

(
) (3.1)

with a(u; v) :=

Z




r

T

u � rv = (ru;rv)

(f; v) =

Z




f � v

and H

1

o

(
) being the usual Sobolev space of functions from H

1

(
) whose trace on the

Dirichlet part �

D

of the boundary (here the whole of @
) vanishes.

The Lax-Milgram lemma [13] answers the question of the existence and uniqueness of

a solution to the positive provided that

� f 2 [H

1

o

(
)]

�

= H

�1

(
)

� a(� ; �) is elliptic, i.e. 9�

1

> 0 : a(v; v) � �

1

� kvk

2

H

1

o

(
)

8 v 2 H

1

o

(
)

� a(� ; �) is bounded, i.e. ja(v;w)j � �

2

� kvk

H

1

o

(
)

� kwk

H

1

o

(
)

8 v;w 2 H

1

o

(
) .

For the whole of our investigation we demand a stronger smoothness of the right-hand

side, namely

f 2 L

2

(
) ;

thus the �rst assumption is satis�ed. The second and third assumption are automatically

valid with a domain dependent constant �

1

= �

1

(
) and �

2

= 1.

For convex domains 
 the right-hand side f 2 L

2

(
) implies u 2 H

2

(
), but otherwise

one obtains u 2 H

1+�

(
) with 0 < � < 1 (in general).

Assume now a triangulation T

h

consisting of tetrahedra (3D) or triangles (2D). Let V

h

be the space of piecewise linear functions over T

h

. Let V

o;h

� V

h

be the subspace of those

21
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functions of V

h

with homogeneous Dirichlet boundary conditions, i.e. V

o;h

:= V

h

\H

1

o

(
).

The approximate or FEM solution u

h

is obtained via

Find u

h

2 V

o;h

: a(u

h

; v

h

) = (f; v

h

) 8 v

h

2 V

o;h

: (3.2)

The Poisson equation is one of the simplest boundary value problems, and error esti-

mators for it are long known and well established. Therefore this problem has been chosen

to investigate how error estimators perform (or have to be modi�ed) if one encounters an

anisotropic solution or utilizes an anisotropic mesh.

Let us specify the framework of this chapter. We try to bound the error u� u

h

in

� the energy norm jjjvjjj

2




:= a(v; v) = krvk

2

which coincides with the H

1

seminorm.

� the L

2

norm.

Furthermore di�erent error estimators are investigated. The residual error estimator

(section 3.2) and the local Dirichlet problem error estimator (section 3.3) estimate the

error in the energy norm. The L

2

error estimator (section 3.4) is self-explanatory.

A anisotropic Zienkiewicz-Zhu like error estimator which aims for the energy norm has

been derived as well. Unfortunately this estimator can only be applied to fairly simple

meshes of tensor product type (in the sense that the estimator fails to estimate the error

on non-tensor product type meshes). Despite much research we did not �nd an estimator

that meets our expectations. Therefore we discuss our estimator only brie
y in section

3.5.

At present the author is investigating a local problem estimator which bounds the

error in the L

2

norm.

Last but not least it should be mentioned here that certain interpolation error esti-

mates play a vital role in our analysis. The kind of the interpolation estimate is apparently

strongly related to the FEM error estimate to be obtained. Yet our interpolation error

estimate does not hold for arbitrary functions. Roughly speaking, it holds only when the

anisotropic mesh corresponds in some way to the anisotropic solution (or more precisely,

to the error u� u

h

). This condition is supported by heuristic arguments | it seems sen-

sible that the tetrahedra are stretched along that direction where the solution varies little

(i.e. when the solution shows an almost lower-dimensional behaviour). Sections 3.2.1,

3.2.2 and 3.4.3, 3.4.4 are devoted to this topic.

Despite this knowledge we are still not able to guarantee this condition by some com-

putable values since it involves the (unknown) exact solution u. Nevertheless numerical

experiments indicate that a `sensible' mesh yields useful error estimators.
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3.2 Residual error estimator

Residual error estimators have been known for a long time, and they were probably the

�rst estimators ever to be analysed [7]. Since then much work has been devoted to this

type of error estimator for various problem classes. Verf�urth [29] derived lower bounds of

the error.

Residual error estimators suitable for anisotropic meshes have been �rst investigated

into by Siebert [28]. There cuboidal and prismatic grids were considered.

The estimator presented here works on tetrahedral and triangular grids which are more

di�cult to deal with. Moreover, Siebert's estimator is improved slightly (cf. remark 3.5

on page 36).

Because of some (possibly not only technical) reasons the anisotropic error estimator

can not be applied to an arbitrary mesh with an arbitrary solution. The mesh and the

solution have to correspond in some way. Section 3.2.1 is devoted to this topic.

In order to derive an upper bound of the error, anisotropic interpolation estimates

play a vital part. They are derived in section 3.2.2.

Finally, in section 3.2.3 the anisotropic error estimator is de�ned, and lower and upper

bounds on the error are proven.

3.2.1 The set H

1

T

(
) of adapted functions

In order to derive interpolation estimates on anisotropic meshes we have to assume that

the function to be interpolated corresponds to that mesh. More precisely, terms of the

form

h

i;T

h

min;T

k

~

D

i

vk

T

have to be bounded although the aspect ratio h

i;T

=h

min;T

can be

arbitrarily large. The set H

1

T

(
) is introduced to achieve this.

De�nition 3.1 (Adapted function) Let c

a

> 1 be a �xed constant. Similarly to [28]

the mesh (or the triangulation T

h

) is said to be adapted to the function v 2 H

1

(
) i�

X

T2T

h

h

�2

min;T

� kC

T

T

rvk

2

T

� c

a

� krvk

2

(3.3)

holds. The component-wise form reads as

X

T2T

h

d

X

i=1

h

2

i;T

h

2

min;T

� k

~

D

i

vk

2

T

� c

a

�

X

T2T

h

d

X

i=1

k

~

D

i

vk

2

T

:

We also say that the function v is adapted to the mesh (or the triangulation). For a family

F of triangulations fT

h

g the set of adapted functions is denoted by H

1

T

(
).

Let H

1

o;T

(
) := H

1

T

(
)\H

1

o

(
) be the corresponding set of functions with homogeneous

Dirichlet boundary conditions.

Remark 3.1 Note that although H

1

T

(
) is a set of functions it does not constitute a

subspace itself since the di�erence of two adapted functions is not necessarily an adapted

function again. Furthermore it seems that (3.3) is not only a technical condition. �
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3.2.2 Anisotropic interpolation estimates

Interpolation estimates are a major tool in the error analysis performed here. Since

the interpolation has to act on functions v 2 H

1

T

(
) we cannot use the usual Lagrange

interpolation. Therefore the interpolation operator introduced in this section follows the

lines of Cl�ement [14] instead. All estimates, however, are derived for the use on anisotropic

meshes.

A local L

2

projection, along with approximation estimates, will be presented �rst.

Then the Cl�ement interpolation operator is constructed. Finally it is modi�ed in such a

way that homogeneous Dirichlet boundary conditions will be preserved.

The local L

2

projection

Consider a node a

j

. A so-called macro element M

j

of this node a

j

is de�ned by

M

j

:=

[

T3a

j

T ;

i.e. M

j

consists of all tetrahedra containing a

j

. For simplicity the subscript j will be

omitted in the next lemma and proof.

Lemma 3.1 Let a be a node of T

h

and M the corresponding macro element. Let V

h

(M)

be the space V

h

restricted to M . Let the local L

2

projection P : H

1

(M) 7! P

0

(M) be

de�ned by

Z

M

(v � Pv) � ' = 0 8' 2 P

0

(M) :

Then the relations

kv � Pvk

M

� kvk

M

(3.4)

kv � Pvk

M

. kC

T

(x)rvk

M

(3.5)

kC

T

(x)r(v� Pv)k

M

= kC

T

(x)rvk

M

(3.6)

hold. The component-wise form of (3.6) is

k

~

D

i

(v � Pv)k

M

. h

�1

i;M

�

d

X

k=1

h

k;M

k

~

D

k

vk

M

i = 1 : : : d ;

with h

i;M

explained in remark 2.1 on page 15.

Proof: The �rst inequality is readily obtained using the projection orthogonality:

kv � Pvk

2

M

=

Z

M

(v � Pv)(v � Pv) =

Z

M

(v � Pv) � v � kv � Pvk

M

� kvk

M

since Pv 2 P

0

(M).

The second inequality requires a closer investigation. A continuous mapping F

B

that

maps a reference domain

�

M 2 M onto the macro elementM will play an important role

in the proof. Furthermore, the setM of reference domains shall be �nite. For a start we

will construct the reference domains

�

M .

Assume that the macro element M is the union of K tetrahedra T

1

: : : T

K

. Let the

nodes of M be a

1

: : : a

L

(apart from node a), where L is bounded because of the mesh

requirements. Two macro elementsM and M

0

are said to belong to the same class i�
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� they consist of the same number of tetrahedra, i.e. K = K

0

,

� the tetrahedra and the nodes can be numbered such that for all i = 1 : : :K the fol-

lowing holds: If the tetrahedron T

i

has the nodes a; a

j

1

; a

j

2

; a

j

3

then the tetrahedron

T

0

i

has the nodes a

0

; a

0

j

1

; a

0

j

2

; a

0

j

3

.

This condition implies that the triangulations of both macro elements are topologically

equivalent. The number of such topologies is bounded since K is bounded. Therefore the

number of classes of macro elements is bounded as well. For a �xed class an arbitrary

macro element will be chosen whose node a coincides with the coordinate origin. This

macro element is said to be the reference domain of this class. All reference domains

form the (�nite) setM. Note that a condition on the size of the reference domains is not

necessary.

Let now M be an arbitrary macro element and

�

M be the corresponding reference

domain. Because of the construction of the reference domain there exists a continuous,

piecewise linear mapping F

B

that satis�es

F

B

:

�

M 7!M

F

B

= F

i

: x(�) = B

i

�+ a on

�

T

i

; B

i

2 R

d�d

;a 2 R

d

with F

i

:

�

T

i

7! T

i

a�ne linear, i = 1 : : : K :

Temporarily

�

T

i

and T

i

shall denote the i-th tetrahedron of

�

M and M , respectively, and

a denotes the vector corresponding to node a. Variables that are related to the reference

domain will be denoted by a � (small check).

The Poincar�e inequality holds for the domain

�

M . Its inequality constant can be chosen

independent of

�

M since the number of reference domains

�

M 2 M is bounded. Thus for

�u 2 H

1

(

�

M)

Z

�

M

j�uj

2

.

�

�

�

�

Z

�

M

�u

�

�

�

�

2

+

Z

�

M

j

�

r�uj

2

:

For a function v 2 H

1

(M) de�ne an averaging operator I : H

1

(M) ! P

0

(M) by

Iv := j

�

M j

�1

�

K

X

i=1

Z

T

i

v � jdetB

i

j

�1

= const:

Set �v := v � F

B

2 H

1

(

�

M ) . The de�nition of I gives

Z

�

M

`

Iv= j

�

M j � Iv =

K

X

i=1

Z

T

i

v � jdetB

i

j

�1

=

Z

�

M

�v

and

�

r(

`

Iv) = 0 :

Inserting now �u := �v�

`

Iv in the Poincar�e inequality results in

Z

�

M

j�v�

`

Iv j

2

.

Z

�

M

j

�

r�vj

2

:

Obviously c � j

�

T

i

j � �c since the number of reference domains

�

M is bounded, and each

�

M consists only of a bounded number of tetrahedra

�

T

i

. Hence

jdetB

i

j = jT

i

j=j

�

T

i

j � h

1;T

i

h

2;T

i

h

3;T

i

:
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Since the h

i;T

cannot change rapidly one obtains

jdetB

i

j � jdetB

j

j 8T

i

; T

j

�M :

Applying the transformation F

B

:

�

M 7!M gives

Z

M

(v � Iv)

2

=

K

X

i=1

Z

T

i

(v � Iv)

2

=

K

X

i=1

Z

�

T

i

(�v�

`

Iv)

2

� jdetB

i

j

. max

i=1:::K

fjdetB

i

jg �

Z

�

M

(�v�

`

Iv)

2

. max

i=1:::K

fjdetB

i

jg �

Z

�

M

j

�

r�vj

2

.

K

X

i=1

Z

�

T

i

j

�

r�vj

2

� jdetB

i

j

=

K

X

i=1

Z

T

i

jB

T

i

rvj

2

=

K

X

i=1

Z

T

i

�

�

B

T

i

C

�T

T

i

� C

T

T

i

rv

�

�

2

�

K

X

i=1







B

T

i

C

�T

T

i







2

R

3�3

�

Z

T

i

�

�

C

T

T

i

rv

�

�

2

:

Lemma 2.1 on page 12 is now utilized to bound the norm of B

T

i

C

�T

T

i

. Let T

i

� a be the

tetrahedron T

i

shifted by �a. By de�nition the mappings B

i

and C

�1

T

i

act as follows:

�

T

i

B

i

7�! (T

i

� a)

C

�1

T

i

7�!

^

T

i

;

�

T

i

C

�1

T

i

B

i

7�!

^

T

i

:

The number of tetrahedra

�

T

j

�

�

M is bounded. Hence the diameters of the inscribed

spheres of all tetrahedra

�

T

i

can be bounded uniformly from below, i.e. % (

�

T

i

) & 1 . The

longest edge of

^

T

i

is bounded from above by

p

6 (see de�nition of the mapping C

T

i

).

Lemma 2.1 yields readily







B

T

i

C

�T

T

i







R

3�3
=







C

�1

T

i

B

i







R

3�3
� d(

^

T

i

) = % (

�

T

i

) . 1

and further

Z

M

(v � Iv)

2

.

K

X

i=1

Z

T

i

�

�

C

T

T

i

rv

�

�

2

= kC

T

(x)rvk

2

M

:

The orthogonality property of the projection and Pv � Iv 2 V

h

then imply

kv � Pvk

2

M

=

Z

M

(v � Pv)(v � Pv) =

Z

M

(v � Pv)(v � Iv)

� kv � Pvk

M

� kv � Ivk

M

and kv � Pvk

M

� kv � Ivk

M

. kC

T

(x)rvk

M

�nishing the second part of the proof. Recall that C(x) is the global matrix function

de�ned in (2.2).

The last inequality is obvious since Pv 2 P

0

(M).
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Remark 3.2 In the case 
 � R

2

the reference domains can be chosen easily. Assume

that the macro element consists of K triangles. When a is a inner node then choose

�

M

to be a regular K-polygon with the midpoint in the coordinate origin. Figure 3.1 may

serve for visualization.

�

M M7�!

T

i

�

T

i

�

T

i 7�!

T

i

F

B

F

i

Figure 3.1: Continuous, piecewise a�ne linear mapping F

B

for 
 � R

2

If a is a boundary node then let

�

M be the union of thoseK (congruent) triangles whose

vertices have the polar coordinates (0; 0) ; (1; (i� 1)�=2K) and (1; i�=2K), i = 1 : : : K.

The regular polygon is chosen here only for the convenience of the description, but

otherwise completely arbitrary. Any other reference domain could serve the same purpose.

The case 
 � R

3

is more di�cult since generally no regular polyhedra exist. Thus we

had to utilize the more technical de�nition of the reference domains here. �

The H

1

interpolation operator

Now the Cl�ement interpolation operator is constructed. Let P

j

be the aforementioned

local L

2

projection over the macro elementM

j

of a node a

j

. The interpolation operator

R is de�ned by

Rv :=

N

X

j=1

(P

j

v)(a

j

) � '

j

with '

j

being the (piecewise a�ne linear) basis function related to node a

j

. Then the

following theorem holds.

Lemma 3.2 The interpolation operator R : H

1

(
) 7! V

h

satis�es

kv �Rvk . kvk 8 v 2 H

1

(
) :

If additionally the mesh is adapted to v, i.e. v 2 H

1

T

(
) then

kh

�1

min

(x) � (v �Rv)k =

 

X

T2T

h

h

�2

min;T

kv �Rvk

2

T

!

1=2

. krvk

kh

�1

min

(x) � C

T

(x)r(v�Rv)k =

 

X

T2T

h

h

�2

min;T

kC

T

T

r(v �Rv)k

2

T

!

1=2

. krvk
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hold. The component-wise form of the last inequality is













h

i

(x)

h

min

(x)

~

D

i

(v �Rv)













=

 

X

T2T

h

h

2

i;T

h

2

min;T

k

~

D

i

(v �Rv)k

2

T

!

1=2

. krvk

for all i = 1 : : : d.

Proof: Let T be an arbitrary tetrahedron, and denote the set of its nodes by N

T

. Let a

k

be an arbitrary but �xed node of N

T

. Then R can be represented over T as

Rv

�

�

�

T

=

X

a

j

2N

T

(P

j

v)(a

j

) � '

j

�

�

�

T

= P

k

v

�

�

�

T

+

X

a

j

2N

T

(P

j

v � P

k

v)(a

j

) � '

j

�

�

�

T

;

since P

k

v

�

�

�

T

=

X

a

j

2N

T

(P

k

v)(a

j

) � '

j

�

�

�

T

:

The inverse inequality (2.15) and the triangle inequality imply

j(P

j

v � P

k

v)(a

j

)j � kP

j

v � P

k

vk

1;T

. jT j

�1=2

� kP

j

v � P

k

vk

T

� jT j

�1=2

�

�

kv � P

j

vk

T

+ kv � P

k

vk

T

�

:

The bound k'

j

k

T

� jT j

1=2

gives

k(P

j

v � P

k

v)(a

j

) � '

j

k

T

= j(P

j

v � P

k

v)(a

j

)j � k'

j

k

T

.

�

kv � P

j

vk

T

+ kv � P

k

vk

T

�

:

Applying this inequality to the representation of R leads to

kv �Rvk

T

� kv � P

k

vk

T

+










X

a

j

2N

T

(P

j

v � P

k

v)(a

j

) � '

j










T

. kv � P

k

vk

T

+

X

a

j

2N

T

�

kv � P

j

vk

T

+ kv � P

k

vk

T

�

.

X

a

j

2N

T

kv � P

j

vk

T

�

X

a

j

2N

T

kv � P

j

vk

M

j

:

The local approximation inequality (3.4) results in

kv �Rvk

T

(3:4)

.

X

a

j

2N

T

kvk

M

j

� kvk

M(T )

with M(T ) :=

S

a

j

2N

T

M

j

=

S

T

0

\T 6=;

T

0

. This holds since every tetrahedron T

0

is contained

in at most four macro elementsM

j

. Then

kv �Rvk

2

=

X

T2T

h

kv �Rvk

2

T

.

X

T2T

h

kvk

2

M(T )

� kvk

2

because every tetrahedron T appears only a bounded number of times in the sum. Hence

the �rst inequality is obtained.
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For the second inequality we apply (3.5) instead of (3.4) and obtain

kv �Rvk

T

(3:5)

.

X

a

j

2N

T

kC

T

(x)rvk

M

j

� kC

T

(x)rvk

M(T )

:

Similarly this yields

kh

�1

min

(x) � (v �Rv)k

2

=

X

T2T

h

h

�2

min;T

kv �Rvk

2

T

.

X

T2T

h

h

�2

min;T

kC

T

(x)rvk

2

M(T )

�

X

T2T

h

h

�2

min;T

� kC

T

T

rvk

2

T

since h

min;T

0

does not change rapidly for T

0

�M(T ).

In order to bound this last sum we have to assume v 2 H

1

T

(
). Recalling the de�nition

of this set (cf. (3.3)) yields

kh

�1

min

(x) � (v �Rv)k

2

.

X

T2T

h

h

�2

min;T

� kC

T

T

rvk

2

T

. krvk

2

:

Thus the second result is proven.

The last part is derived similarly, and for this reason only major inequalities are given

here. As before

C

T

T

rRv

�

�

�

T

= C

T

T

rP

k

v

�

�

�

T

+

X

a

j

2N

T

(P

j

v � P

k

v)(a

j

) � C

T

T

r'

j

�

�

�

T

:

Recalling the inverse inequality (2.14)







C

T

T

r'

j







T

. k'

j

k

T

� jT j

1=2

leads to







(P

j

v � P

k

v)(a

j

) � C

T

T

r'

j







T

= j(P

j

v � P

k

v)(a

j

)j �







C

T

T

r'

j







T

.

�

kv � P

j

vk

T

+ kv � P

k

vk

T

�

analogously as before. Similarly to the second part one obtains







C

T

T

r(v �Rv)







T

�







C

T

T

r(v � P

k

v)







T

+










X

a

j

2N

T

(P

j

v � P

k

v)(a

j

) � C

T

T

r'

j










T

(3:6)

.







C

T

(x)rv







M

k

+







C

T

(x)rv







M(T )

.







C

T

(x)rv







M(T )

and hence

X

T2T

h

h

�2

min;T

kC

T

T

r(v �Rv)k

2

T

.

X

T2T

h

h

�2

min;T

kC

T

(x)rvk

2

M(T )

�

X

T2T

h

h

�2

min;T

kC

T

T

rvk

2

T

:

Utilizing v 2 H

1

T

(
) results immediately in

kh

�1

min

(x) � C

T

(x)r(v �Rv)k . krvk :
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The H

1

o

interpolation operator

The interpolation operator R introduced above has the disadvantage that it does not pre-

serve homogeneous Dirichlet boundary conditions. This is remedied in the next theorem.

De�nition 3.2 (Cl�ement interpolation operator) Let N

I

be the set of all inner nodes

of the triangulation. The Cl�ement interpolation operator R

o

: H

1

o

(
) 7! V

o;h

is de�ned by

R

o

v :=

X

a

j

2N

I

(P

j

v)(a

j

) � '

j

: (3.7)

The following anisotropic interpolation estimates are valid.

Theorem 3.3 The interpolation operator R

o

: H

1

o

(
) 7! V

o;h

satis�es

kv �R

o

vk . kvk 8 v 2 H

1

o

(
) : (3.8)

If additionally the mesh is adapted to v 2 H

1

o

(
), i.e. v 2 H

1

o;T

(
) then

kh

�1

min

(x) � (v �R

o

v)k . krvk (3.9)

kh

�1

min

(x) � C

T

(x)r(v�R

o

v)k . krvk (3.10)

hold. The component-wise form of the last inequality is













h

i

(x)

h

min

(x)

~

D

i

(v �R

o

v)













. krvk

for all i = 1 : : : d.

Proof: The de�nition of the interpolation operator R

o

implies

R

o

v = Rv �

X

a

j

2�

D

(P

j

v)(a

j

) � '

j

:

Since we want to utilize the previous lemma it is su�cient to bound terms of the form

k(P

j

v)(a

j

) � '

j

k

T

and k(P

j

v)(a

j

) � C

T

T

r'

j

k

T

for boundary nodes a

j

2 �

D

Thus let a

j

2 �

D

be �xed. Let T �M

j

be an arbitrary (but �xed) tetrahedron with

a boundary face E 3 a

j

. The inverse inequality (2.15) yields

j(P

j

v)(a

j

)j � kP

j

vk

1;E

. jT j

�1=2

� kP

j

vk

T

� jT j

�1=2

� (kvk

T

+ kv � P

j

vk

T

) :

The estimate of the local L

2

projection, and k'

j

k

T

� jT j

1=2

give

k(P

j

v)(a

j

) � '

j

k

T

. kvk

M

j

8T �M

j

:

Applying this estimate results in










X

a

j

2�

D

(P

j

v)(a

j

) � '

j










2

=

X

T\�

D

6=;










X

a

j

2T\�

D

(P

j

v)(a

j

) � '

j










2

T

� 4

X

a

j

2�

D

X

T�M

j

k(P

j

v)(a

j

) � '

j

k

2

T

.

X

a

j

2�

D

kvk

2

M

j

� kvk

2
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following the same arguments as in the previous proof. Finally the �rst inequality is

obtained:

kv �R

o

vk � kv �Rvk +










X

a

j

2�

D

(P

j

v)(a

j

) � '

j










. kvk :

The second inequality is derived similarly and thus only major estimates are given.

The inverse inequality (2.16) and the trace inequality (2.12) yield

j(P

j

v)(a

j

)j � kP

j

vk

1;E

. jEj

�1=2

kP

j

vk

E

= jEj

�1=2

kv � P

j

vk

E

since v = 0 on E

. jT j

�1=2

�

kv � P

j

vk

T

+ kC

T

T

r(v � P

j

v)k

T

�

:

Recalling the estimates (3.5) and (3.6) of the local L

2

projection leads to

j(P

j

v)(a

j

)j . jT j

�1=2

� kC

T

(x)rvk

M

j

and k(P

j

v)(a

j

) � '

j

k

T

. kC

T

(x)rvk

M

j

8T �M

j

as in the lines above. Applying this estimate results in










h

�1

min

(x)

X

a

j

2�

D

(P

j

v)(a

j

) � '

j










2

� 4

X

a

j

2�

D

X

T�M

j

h

�2

min;T

k(P

j

v)(a

j

) � '

j

k

2

T

.

X

a

j

2�

D

h

�2

min;M

j

� kC

T

(x)rvk

2

M

j

�

X

T2T

h

h

�2

min;T

� kC

T

T

rvk

2

T

. krvk

2

and and thus the second inequality is proven.

In order to derive the last part of the theorem we proceed analogously. From







C

T

T

r'

j







T

. k'

j

k

T

� jT j

1=2

we obtain







(P

j

v)(a

j

) � C

T

T

r'

j







T

. kC

T

(x)rvk

M

j

for a boundary tetrahedron T . The remainder of the proof is similar to the lines above

and the previous proof and thus it will be omitted here.

Remark 3.3 Note that v 2 H

1

o;T

(
) is required for the last two interpolation estimates

(3.9) and (3.10) but not for (3.8). �

3.2.3 Anisotropic residual error estimator

Consider a tetrahedron T . Let P

L

2

be the L

2

projection from L

2

(
) onto the space of

piecewise constant functions over the triangulation.

De�nition 3.3 (Element and jump residual) Let v

h

2 V

o;h

be an arbitrary �nite

element function. The element residual over a tetrahedron T is de�ned by

r

T

(v

h

) := P

L

2

f + �v

h

: (3.11)
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The gradient jump or jump residual of a function across some (interior) face E is

de�ned as

r

E

(v

h

)(x) := lim

t!+0

�

@

@n

E

v

h

(x+ tn

E

) �

@

@n

E

v

h

(x� tn

E

)

�

; (3.12)

with n

E

? E being any of the two unitary normal vectors and x 2 E.

For the convenience of the notation a discrete, mesh dependent norm is de�ned by

D

h;m

(v

h

) :=

 

X

E2


h

2m

min;T

h

E

� kr

E

(v

h

)k

2

E

!

1=2

m = 1; 2 (3.13)

where h

min;T

is from one of the two tetrahedra that contain E (cf. remark 2.1 on page 15).

Obviously r

T

(v

h

) = P

L

2

f holds for piecewise linear basis functions as considered

here. The de�nition above however allows to extend this theory readily to quadratic basis

function. Moreover, this residual of v

h

is related to the strong form of the di�erential

operator and as such problem dependent.

De�nition 3.4 (Residual error estimator)The local residual error estimator �

R;T

(u

h

)

for a tetrahedron T is de�ned by

�

R;T

(u

h

) := h

min;T

�

0

@

kr

T

(u

h

)k

2

T

+

X

E2@Tn�

D

h

�1

E

� kr

E

(u

h

)k

2

E

1

A

1=2

: (3.14)

Theorem 3.4 (Residual error estimator) Let u 2 H

1

o

(
) be the exact solution and

u

h

2 V

o;h

be the FEM solution.

Then the error is bounded locally from below by

�

R;T

(u

h

) . kr(u� u

h

)k

!

T

+ h

min;T

� kf � P

L

2

fk

!

T

(3.15)

for all T 2 T

h

.

Assume further that the mesh is adapted to the error u � u

h

, i.e. u � u

h

2 H

1

o;T

(
).

Then the error is bounded globally from above by

kr(u� u

h

)k .

 

X

T2T

h

�

2

R;T

(u

h

) +

X

T2T

h

h

2

min;T

� kf � P

L

2

fk

2

T

!

1=2

(3.16)

or, alternatively

kr(u� u

h

)k . kh

min

(x) fk + D

h;1

(u

h

) :

Proof: Firstly, estimate (3.15) will be proven. We start with the norm kr

T

(u

h

)k

T

of

the element residual r

T

= r

T

(u

h

) := P

L

2

f + �u

h

. Since we use linear ansatz functions

r

T

2 P

0

(T ) holds. For x 2 T let

w(x) := r

T

(u

h

)(x) � b

T

(x) 2 P

4

(T ) \H

1

o

(T ) :
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Integration by parts yields

Z

T

r

T

� w =

Z

T

(f +�u

h

) � w +

Z

T

(P

L

2

f � f) �w

=

Z

T

r

T

(u� u

h

) � rw +

Z

T

(P

L

2

f � f) � w

�

�

�

�

Z

T

r

T

� w

�

�

�

�

� kr(u� u

h

)k

T

� krwk

T

+ kf � P

L

2

fk

T

� kwk

T

:

Recalling (2.20), (2.21), and 0 � b

T

� 1 gives the following bounds

�

�

�

�

Z

T

r

T

� w

�

�

�

�

= kb

1=2

T

� r

T

k

2

T

& kr

T

k

2

T

krwk

T

= kr(b

T

� r

T

)k

T

. h

�1

min;T

� kr

T

k

T

kwk

T

= kb

T

� r

T

k

T

� kr

T

k

T

9

>

>

=

>

>

;

(3.17)

that result in

kr

T

k

2

T

. kr(u� u

h

)k

T

� h

�1

min;T

� kr

T

k

T

+ kf � P

L

2

fk

T

� kr

T

k

T

and h

2

min;T

� kr

T

k

2

T

. kr(u� u

h

)k

2

T

+ h

2

min;T

� kf � P

L

2

fk

2

T

:

Now we aim for a bound of the norm kr

E

(u

h

)k

E

of the gradient jump across some inner

face (triangle) E. Since we use linear ansatz functions r

E

2 P

0

(E) holds. Let T

1

and T

2

be the two tetrahedra that E belongs to. Assume that the right hand side f = ��u is

in L

2

(
). Integration by parts yields for any function w 2 H

1

o

(!

E

)

0 =

Z

!

E

r

T

wru �

Z

!

E

w � f

and �

Z

E

w � r

E

(u

h

) =

2

X

i=1

Z

@T

i

w �

@u

h

@n

=

2

X

i=1

�

Z

T

i

r

T

wru

h

+

Z

T

i

w ��u

h

�

=

2

X

i=1

�

Z

T

i

r

T

wru

h

+

Z

T

i

w � (r

T

i

� P

L

2

f)

�

=

2

X

i=1

�

Z

T

i

r

T

wr(u

h

� u) +

Z

T

i

w � (r

T

i

+ f � P

L

2

f)

�

:

Let now the function w 2 H

1

o

(!

E

) be de�ned by

w := F

ext

(r

E

(u

h

)) � b

E

;

with F

ext

being the extension operator of (2.19). Because of wj

E

= r

E

� b

E

j

E

we conclude

�

�

�

�

Z

E

r

2

E

� b

E

�

�

�

�

�

2

X

i=1

�

kr(u� u

h

)k

T

i

� krwk

T

i

+ (kr

T

i

k

T

i

+ kf � P

L

2

fk

T

i

) � kwk

T

i

�

:

The function w is piecewise cubic on !

E

. The inverse inequalities (2.22) { (2.24) imply

�

�

�

�

Z

E

r

2

E

� b

E

�

�

�

�

= kb

1=2

E

� r

E

k

2

E
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E

k

2

E
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T

i

= kr (F
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(r

E

) � b

E

)k

T

i

. h

1=2

E

h

�1

min;T

i

� kr

E

k

E

and kwk

T

i

= kF

ext

(r

E

) � b

E

k

T

i

. h

1=2

E

� kr

E

k

E
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and subsequently lead to

kr

E

k

2

E

.

2

X

i=1

�

kr(u� u

h

)k

T

i

� h

1=2

E

h

�1

min;T

i

kr

E

k

E

+

+ (kr

T

i

k

T

i

+ kf � P

L

2

fk

T

i

) � h

1=2

E

kr

E

k

E

�

:

The dimensions h

E

= h

E;T

i

and h

min;T

i

cannot change rapidly for adjacent tetrahedra.

Recalling the bound of kr

T

k

T

from above we conclude

kr

E

k

E

. h

1=2

E

h

�1

min;T

1

�

�

kr(u� u

h

)k

!

E

+ h

min;T

1

kf � P

L

2

fk

!

E

�

:

For a �xed tetrahedron T = T

1

we sum up over all (inner) faces E � @T n �

D

and obtain

X

E�@Tn�

D

h

2

min;T

h

E

� kr

E

(u

h

)k

2

E

.

�

kr(u� u

h

)k

2

!

T

+ h

2

min;T

kf � P

L

2

fk

2

!

T

:

This accomplishes the proof of (3.15).

Secondly, in order to derive (3.16) we utilize the orthogonality property of the error

(r(u� u

h

);rv

h

) = 0 8 v

h

2 V

o;h

:

Integration by parts gives for all v 2 H

1

o;T

(
)

(r(u� u

h

);rv) = (r(u� u

h

);r(v �R

o

v))

=

X

T2T

h

(f +�u

h

; v �R

o

v)

T

�

X

E2


(r

E

(u

h

); v �R

o

v)

E

=

X

T2T

h

h

(f +�u

h

; v �R

o

v)

T

�

1

2

X

E2@Tn�

D

(r

E

(u

h

); v �R

o

v)

E

i

�

X

T2T

h

h

kf +�u

h

k

T

� kv �R

o

vk

T

+

1

2

X

E2@Tn�

D

kr

E

(u

h

)k

E

� kv �R

o

vk

E

i

�

X

T2T

h

h

h

min;T

kf +�u

h

k

T

� h

�1

min;T

kv �R

o

vk

T

+

1

2

X

E2@Tn�

D

h

min;T

h

1=2

E;T

kr

E

(u

h

)k

E

�

h

1=2

E;T

h

min;T

kv �R

o

vk

E

i

:

Applying the Cauchy-Schwarz inequality yields

(r(u� u

h

);rv) �

�

�

X

T2T

h

h

2

min;T

kf +�u

h

k

2

T

�

1

2

�

�

X

T2T

h

h

�2

min;T

kv �R

o

vk

2

T

�

1

2

+

+

1

2

�

X

T2T

h

X

E2@Tn�

D

h

2

min;T

h

E;T

kr

E

(u

h

)k

2

E

�

1

2

�

�

X

T2T

h

X

E2@Tn�

D

h

E;T

h

2

min;T

kv �R

o

vk

2

E

�

1

2

:
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The second root term is readily bounded by means of the H

1

o

interpolation theorem 3.3

kh

�1

min

(x) � (v �R

o

v)k =

 

X

T2T

h

h

�2

min;T

kv �R

o

vk

2

T

!

1=2

. krvk :

In order to bound the last term the trace inequality (2.12) is applied to kv�R

o

vk

E

giving

X

E2@Tn�

D

h

E;T

h

2

min;T

kv �R

o

vk

2

E

. h

�2

min;T

�

kv �R

o

vk

2

T

+ kC

T

T

r(v �R

o

v)k

2

T

�

:

Recalling again the H

1

o

interpolation theorem results in

X

T2T

h

X

E2@Tn�

D

h

E;T

h

2

min;T

kv �R

o

vk

2

E

. kh

�1

min

(x) � (v �R

o

v)k

2

+ kh

�1

min

(x) �C

T

(x)r(v �R

o

v)k

2

. krvk

2

:

Combining all inequalities yields

(r(u� u

h

);rv) .

�

X

T2T

h

h

2

min;T

kf +�u

h

k

2

T

+ D

2

h;1

�

1

2

� krvk :

Substituting v := u � u

h

2 H

1

o;T

(
) gives the second formulation of the upper bound

of the error. Note that �u

h

= 0 on T since we are using linear basis functions, but this

notation indicates how to modify the estimator for higher order basis functions.

Finally, utilizing the triangle inequality kf + �u

h

k

T

� kr

T

(u

h

)k

T

+ kf � P

L

2

fk

T

results in the �rst upper bound of the error.

Remark 3.4 The term P

L

2

f appears both in the de�nition of the element residual

r

T

(u

h

) as well as in inequalities (3.15) and (3.16).

Assume for the moment that this term is replaced by an arbitrary function from

L

2

(
) . Then one would obtain an upper bound of the error similar to (3.16) but (3.15)

would no longer hold. Choosing f instead of P

L

2

f would, for example, result in

kr(u� u

h

)k

2

.

X

T2T

h

�

2

R;T

(u

h

)

with r

T

(u

h

) := f

�

�

�

T

which is exactly the second formulation of the upper bound.

There are two reasons for using P

L

2

f . Firstly, this term (or a similar one) is required

to derive a lower bound of the error.

Secondly, it may be di�cult to evaluate exactly the norm kr

T

k or the integrals over

f , respectively. If f is suitably smooth (e.g. f 2 L

2

\ C

0

(T )) then Pf may represent a

quadrature rule. For example, the midpoint quadrature rule is equivalent to P : L

2

(T ) \

C

0

(T )! P

0

(T ) ; P f(x) := f(x

midpoint

) on T . The term kf � Pfk then assesses

the quality of the quadrature error.

The main feature of all quadrature rules is that Pf always maps into a �nite dimen-

sional space. The proofs for di�erent quadrature rules would be similar to the one here.

Hence the L

2

projection serving as P = P

L

2

may su�ce. �
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Remark 3.5 Siebert [28] proposes a similar error estimator for rectangular or cuboidal

�nite elements. There the factor of the gradient jump in the de�nition of the error

estimator equals h

E

instead of h

2

min

=h

E

as in our work (cf. (3.14)). Thus Siebert has to

impose an additional condition on u

h

to give a reliable lower bound of the error. This

renders our estimator slightly more general. �

Remark 3.6 The condition u� u

h

2 H

1

o;T

(
) is discussed in more detail in section 5.2.1

on page 70. �
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3.3 A local Dirichlet problem error estimator

3.3.1 Introduction and de�nition

Local problem error estimators have been known for a long time [8, 9, 30, 31]. In this

section we demonstrate on the example of a local Dirichlet problem that these error

estimators can be applied to anisotropic meshes as well. As far as we know this is the

�rst rigorous analytical investigation into this type of anisotropic error estimator.

The basic idea is to solve a local problem with a higher accuracy. The di�erence to the

�nite element solution serves as error estimator. The remainder of this section is devoted

to the de�nition of the local problem and to the estimator. Then theorem 3.6 states the

equivalence of this local problem error estimator �

D;T

and the residual error estimator

�

R;T

. Lower and upper bounds are given as well. The proofs conclude that section.

Finally, in section 3.3.3 it is shown that the local Dirichlet problem is well{conditioned.

Recall that a(�; �) = (r�;r�) is the bilinear form associated with the weak formulation

of the Poisson problem. Again, u and u

h

denote the exact and the FEM solution, respec-

tively. Let T be an arbitrary but �xed tetrahedron. Recall that the domain !

T

is formed

by T and all (at most four) adjacent tetrahedra that have a common face with T . The

true error e = u� u

h

then satis�es

a(e; v) = a(u� u

h

; v) =

Z

!

T

f � v �

Z

!

T

r

T

u

h

rv 8 v 2 H

1

o

(!

T

) :

A straightforward approximation of the space H

1

o

(!

T

) by some local, �nite dimensional

space V

T

leads to the problem:

Find e

T

2 V

T

: a(e

T

; v

T

) = a(u� u

h

; v

T

) 8 v

T

2 V

T

or, equivalently,

Z

!

T

r

T

e

T

rv

T

=

Z

!

T

f � v

T

�

Z

!

T

r

T

u

h

rv

T

8 v

T

2 V

T

:

Then kre

T

k

!

T

could serve as error estimator.

From the isotropic error analysis (e.g. [31]) it is known that the local space

V

T

:= spanfb

T

0

; b

E

: T

0

� !

T

; E � @T n �

D

g � H

1

o

(!

T

)

is well{suited, with b

T

and b

E

being the element and face bubble function de�ned in (2.17)

and (2.18), respectively.

Finally, for reasons that were explained in remark 3.4 on page 35 we want to use P

L

2

f

instead of f . Thus the local problem and the estimator are de�ned as follows.

De�nition 3.5 (Local problem error estimator) Find a solution e

T

2 V

T

of the lo-

cal problem

Z

!

T

r

T

e

T

rv

T

=

Z

!

T

P

L

2

f � v

T

�

Z

!

T

r

T

u

h

rv

T

8 v

T

2 V

T

or, equivalently, a(e

T

; v

T

) = a(u� u

h

; v

T

) +

Z

!

T

(P

L

2

f � f) � v

T

8 v

T

2 V

T

:

Then

�

D;T

:= kre

T

k

!

T

(3.18)

is said to be the local Dirichlet problem error estimator.



38 CHAPTER 3. THE POISSON EQUATION

The weak formulation in the de�nition above can be seen as the discrete analogue of

the local Dirichlet problem

��' = P

L

2

f in !

T

' = u

h

on @!

T

which is solved on the manifold u

h

+ V

T

.

3.3.2 Equivalence and bounds of the local problem error esti-

mator

Consider an arbitrary tetrahedron T . Let the four tetrahedra of !

T

n T be denoted by

T

1

: : : T

4

. Denote the faces of T by E

i

:= T \T

i

. The modi�cations for T being a boundary

tetrahedron are obvious. The next lemma facilitates the proof of the actual theorem.

Lemma 3.5 The following inequalities hold for all v

T

2 V

T

.

kv

T

k

!

T

. h

min;T

� krv

T

k

!

T

(3.19)

kv

T

k

E

i

. h

�1=2

E

i

� h

min;T

� krv

T

k

T

i

: (3.20)

Proof: Let us start with inequality (3.19). Assume that v

T

2 V

T

is represented as

v

T

= �

0

� b

T

+

4

X

i=1

�

i

� b

T

i

+

4

X

i=1

�

i

� b

E

i

�

i

; �

i

2 R:

We split the domain !

T

in !

T

=

4

S

i=1

T

i

[ T . The following table outlines the two kinds

of subdomains of !

T

, the corresponding representation of v

T

and the estimates that we

want to prove. Note that, on the subdomain T , the norms of the left-hand side and the

right-hand side are taken over di�erent domains (cf. also remark 3.7 on page 41).

subdomain of !

T

representation of v

T

estimates

T

i

v

T

�

�

�

T

i

= �

i

� b

T

i

+ �

i

� b

E

i

�

�

�

T

i

kv

T

k

T

i

. h

min;T

� krv

T

k

T

i

T v

T

�

�

�

T

= �

0

b

T

+

4

P

i=1

�

i

� b

E

i

�

�

�

T

k�

i

� b

E

i

k

T

. h

min;T

� krv

T

k

T

i

k�

0

� b

T

k

T

. h

min;T

� krv

T

k

!

T

) kv

T

k

T

. h

min;T

� krv

T

k

!

T

Let us �rst consider a tetrahedron T

i

over which v

T

is reduced to

v

T

�

�

�

T

i

= �

i

� b

T

i

+ �

i

� b

E

i

�

�

�

T

i

:

Without loss of generality a scaling �

2

i

+ �

2

i

= 1 is assumed here.

In this proof the transformation from the reference tetrahedron

^

T

i

onto T

i

is utilized.

The reference tetrahedron

^

T

i

is uniquely determined by its vertices (0; 0; 0)

T

, (1; 0; 0)

T

,
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(x̂

2

; 1; 0)

T

, and (x̂

3

; ŷ

3

; 1)

T

, with 0 < x̂

2

; x̂

3

< 1 and jŷ

3

j < 1 (cf. section 2.1.3). De�ne the

compact set

S :=

n

(x̂

2

; x̂

3

; ŷ

3

; �

i

; �

i

) : 0 � x̂

2

; x̂

3

� 1 ; jŷ

3

j � 1 ; �

2

i

+ �

2

i

= 1

o

:

Let @=@ẑ be the partial derivative corresponding to the third coordinate axis. Obviously

kv̂

T

k

^

T

i

= k�

i

�

^

b

T

i

+ �

i

�

^

b

E

i

k

^

T

i

and













@

@ẑ

v̂

T













^

T

i

=













�

i

�

@

@ẑ

^

b

T

i

+ �

i

�

@

@ẑ

^

b

E

i













^

T

i

vary continuously over S and thus attain their maximum and minimum, respectively. The

terms @

^

b

T

i

=@ẑ and @

^

b

E

i

=@ẑ are polynomials of order 3 and 2, respectively. Thus @v̂

T

=@ẑ

could only vanish everywhere in

^

T

i

if v̂

T

� 0. This is impossible since �

2

i

+ �

2

i

= 1, and

therefore the minimum of k@v̂

T

=@ẑk

^

T

i

over S is positive. Hence

kv̂

T

k

^

T

i

.













@

@ẑ

v̂

T













^

T

i

8 v

T

2 V

T

:

The transformation F

C

:

^

T

i

7! T

i

results in

kv

T

k

T

i

. ke

T

3

� C

T

T

i

� rv

T

k

T

i

� kC

T

i

� e

3

k

R

3
� krv

T

k

T

i

8 v

T

2 V

T

:

Because of kC

T

i

� e

3

k

R

3
= kp

3

k

R

3
= h

min;T

i

� h

min;T

we obtain

kv

T

k

T

i

. h

min;T

� krv

T

k

T

i

8 v

T

2 V

T

; 8 i = 1 : : : 4 : (3.21)

This last inequality does not hold for T instead of T

i

(cf. remark 3.7 below), and the

arguments from above cannot be utilized. This is due to the fact that @v̂

T

=@ẑ can vanish

(everywhere in

^

T ) over a set S de�ned similarly. Hence a more sophisticated investigation

is necessary.

The representation of v

T

over T is

v

T

�

�

�

T

=

4

X

i=1

�

i

� b

E

i

�

�

�

T

+ �

0

� b

T

:

The terms �

i

� b

E

i

�

�

�

T

and �

0

� b

T

are dealt with separately.

In order to bound the �rst term we apply exactly the same arguments as above for

(3.21) and obtain on the tetrahedron T

i

k�

i

� b

E

i

k

T

i

. h

min;T

� kr(�

i

� b

T

i

+ �

i

� b

E

i

)k

T

i

= h

min;T

� krv

T

k

T

i

for all v

T

2 V

T

. The estimate

k�

i

� b

E

i

k

T

. k�

i

� b

E

i

k

T

i

. h

min;T

� krv

T

k

T

i

8 v

T

2 V

T

(3.22)

is readily obtained since kb

E

i

k

T

i

=

p

27=280 � jT

i

j

1=2

and jT j � jT

i

j. Note that the left

norm is over T but the right one over T

i

.

Secondly we want to prove that

k�

0

� b

T

k

T

. h

min;T

� krv

T

k

!

T

8 v

T

2 V

T

: (3.23)

The case �

0

= 0 is trivial so we assume �

0

= 1 without loss of generality. We distinguish

two cases.
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1. 8 i : j�

i

j � c

0

=

256

1485

p

55 .

We consider the compact set

S :=

n

(x̂

2

; x̂

3

; ŷ

3

; �

1

; �

2

; �

3

; �

4

) : 0 � x̂

2

; x̂

3

� 1 ; jŷ

3

j � 1 ; j�

i

j � c

0

o

:

Obviously k�

0

�

^

b

T

k

^

T

is constant. The term k@v̂

T

=@ẑk

^

T

varies continuously over S

and thus attains its minimum. Furthermore @

^

b

T

=@ẑ and @

^

b

E

i

=@ẑ are polynomials of

order 3 and 2, respectively. Thus @v̂

T

=@ẑ does not vanish everywhere in

^

T if �

0

6= 0.

Hence the minimum of the norm k@v̂

T

=@ẑk

^

T

is positive which results in

k�

0

�

^

b

T

k

^

T

.













@

@ẑ

v̂

T













^

T

:

The transformation onto T is as before and yields

k�

0

� b

T

k

T

. h

min;T

� krv

T

k

T

8 v

T

2 V

T

:

Thus the desired result is obtained.

2. 9i : j�

i

j > c

0

=

256

1485

p

55 .

Here the compactness argument cannot be applied. But a straightforward calcula-

tion gives

k

^

b

T

k

^

T

=

64

3465

p

77 and k

^

b

E

i

k

^

T

=

3

140

p

35

and thus

k�

0

�

^

b

T

k

^

T

= c

0

� k

^

b

E

i

k

^

T

< k�

i

�

^

b

E

i

k

^

T

:

The transformation and the application of the previous result (3.22) yield

k�

0

� b

T

k

T

< k�

i

� b

E

i

k

T

. h

min;T

� krv

T

k

T

i

8 v

T

2 V

T

and hence the desired inequality.

Recalling inequalities (3.21) { (3.23) and the representation of v

T

results in

kv

T

k

2

!

T

=

4

X

i=1

kv

T

k

2

T

i

+ k�

0

� b

T

+

4

X

i=1

�

i

� b

E

i

k

2

T

�

4

X

i=1

kv

T

k

2

T

i

+ 5 k�

0

� b

T

k

2

T

+ 5

4

X

i=1

k�

i

� b

E

i

k

2

T

. h

2

min;T

� krv

T

k

2

!

T

:

Hence inequality (3.19) is proven.

Inequality (3.20) follows from

kv

T

k

E

i

= k�

i

� b

E

i

k

E

i

= 3 � h

�1=2

E

i

� k�

i

� b

E

i

k

T

i

and k�

i

� b

E

i

k

T

i

. �h

min;T

� krv

T

k

T

i

8 v

T

2 V

T

which was proven above.

Finally it is easily veri�ed that both inequalities also hold if T is a boundary tetrahe-

dron.
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Remark 3.7 Note that in inequality (3.19) the norm over the whole domain !

T

is nec-

essary. Especially the inequality

kv

T

k

T

. h

min;T

� krv

T

k

T

8 v

T

2 V

T

does not hold.

Consider for example a tetrahedron T with vertices P

0

= 0, P

1

= e

1

, P

2

= e

2

, and

P

3

= h � e

3

with h ! 0. Choose v

T

:= b

E

1

+ b

E

2

, with b

E

1

= 27xy(1 � x � y � z=h) and

b

E

2

= 27xyz=h being two face bubble functions. Then

kv

T

k

T

=

p

27=560 � h

1=2

and h

min;T

� krv

T

k

T

=

p

81=35 �

h

3=2

p

1 + 2h

2

:

Thus the abovementioned inequality does not hold with a multiplicative constant inde-

pendent of h. Note also that the corresponding isotropic estimates are much easier to

derive. �

Remark 3.8 If one knows that the domain !

T

is contained in a rectangular prism with

minimal side length l � h

min;T

then (3.19) coincides with the Friedrichs inequality. But

we have not shown such a geometrical condition and thus had to proceed in the way

described above. �

Now the main theorem will be stated and proven.

Theorem 3.6 (Local problem error estimator) The local problem error estimator is

equivalent to the residual error estimator �

R;T

in the following sense:

�

D;T

.

X

T

0

�!

T

�

R;T

0

(3.24)

�

R;T

. �

D;T

: (3.25)

The lower bound of the error is

�

D;T

(u

h

) � kr(u� u

h

)k

!

T

+ c � h

min;T

� kf � P

L

2

fk

!

T

: (3.26)

Finally assume that the mesh is adapted to the error, i.e. u � u

h

2 H

1

o;T

(
). Then the

error is bounded globally from above by

kr(u� u

h

)k .

 

X

T2T

h

�

2

D;T

+

X

T2T

h

h

2

min;T

� kf � P

L

2

fk

2

T

!

1=2

: (3.27)

Proof: Let T be an arbitrary but �xed tetrahedron throughout the proofs.

For the �rst inequality recall the de�nition (3.18) of �

D;T

and r

T

(u

h

). By integration

by parts we obtain

�

2

D;T

= kre

T

k

2

!

T

(3:18)

=

Z

!

T

P

L

2

f � e

T

�

Z

!

T

r

T

u

h

re

T

=

X

T

0

�!

T

Z

T

0

(P

L

2

f +�u

h

) � e

T

�

X

E�@Tn�

D

Z

E

r

E

(u

h

) � e

T

�

 

X

T

0

�!

T

kr

T

0

(u

h

)k

2

T

0

!

1=2

� ke

T

k

!

T

+

X

E�@Tn�

D

kr

E

(u

h

)k

E

� ke

T

k

E

:



42 CHAPTER 3. THE POISSON EQUATION

Now ke

T

k

!

T

and ke

T

k

E

are bounded using lemma 3.5 on page 38 which results in

�

2

D;T

. h

min;T

�

0

@

X

T

0

�!

T

kr

T

0

(u

h

)k

T

0

+

X

E�@Tn�

D

h

�1=2

E

kr

E

(u

h

)k

E

1

A

� kre

T

k

!

T

:

Recalling �

D;T

= kre

T

k

!

T

proves the desired inequality (3.24)

�

D;T

.

X

T

0

�!

T

�

R;T

0

:

For the proof of the second inequality we require bounds of �

R;T

, and thus of kr

T

0

k

T

0

and kr

E

k

E

. Let T

0

� !

T

be an arbitrary tetrahedron. Recall de�nition (2.17) of the

bubble function b

T

0

and set v

T

0

:= b

T

0

� r

T

0

2 V

T

. Inverse inequality (2.20) and integration

by parts imply

kr

T

0

k

2

T

0

. kb

1=2

T

0

� r

T

0

k

2

T

0

=

Z

T

0

r

T

0

� v

T

0

=

X

T

00

�!

T

Z

T

00

(P

L

2

f +�u

h

) � v

T

0

since v

T

0

2 H

1

o

(T

0

)

=

Z

!

T

P

L

2

f � v

T

0

�

Z

!

T

r

T

u

h

� rv

T

0

(3:18)

=

Z

!

T

r

T

e

T

� rv

T

0

� kre

T

k

!

T

� krv

T

0

k

!

T

:

The inverse inequality (2.21) states

krv

T

0

k

T

0

= kr(b

T

0

� r

T

0

)k

T

0

. h

�1

min;T

0

� kr

T

0

k

T

0

:

Combining both inequalities yields

kr

T

0

k

T

0

. h

�1

min;T

� �

D;T

8T

0

2 !

T

since h

min;T

0

does not change rapidly across adjacent tetrahedra T

0

.

The bound of kr

E

k

E

is obtained similarly. Recall the de�nitions (2.18) and (2.19)

of the bubble function b

E

and the extension operator F , respectively, and set v

E

:=

b

E

� F (r

E

) 2 V

T

. Inverse inequality (2.22) and integration by parts imply

kr

E

k

2

E

. kb

1=2

E

� r

E

k

2

E

=

Z

E

r

E

� v

E

=

X

T

0

�!

E

Z

@T

0

@u

h

@n

� v

E

=

X

T

0

�!

E

Z

@T

0

�u

h

� v

E

+

Z

!

E

r

T

u

h

� rv

E

(3:18)

=

X

T

0

�!

E

Z

@T

0

r

T

0

� v

E

�

Z

!

E

r

T

e

T

� rv

E

�

X

T

0

�!

E

kr

T

0

k

T

0

� kv

E

k

T

0

+ kre

T

k

!

T

� krv

E

k

!

E

:

The inverse inequalities (2.23) and (2.24) imply

kv

E

k

T

0

= kb

E

� F (r

E

)k

T

0

. h

1=2

E

� kr

E

k

E

krv

E

k

T

0

= kr(b

E

� F (r

E

))k

T

0

. h

1=2

E

� h

�1

min;T

0

� kr

E

k

E
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The last three estimates and the previous bound of kr

T

0

k

T

0

result in

kr

E

k

E

. h

1=2

E

� h

�1

min;T

� �

D;T

since h

min;T

0

does not change rapidly across adjacent tetrahedra T

0

. Finally the desired

estimate (3.25) is obtained:

�

2

R;T

= h

2

min;T

�

0

@

kr

T

k

2

T

+

X

E�@Tn�

D

h

�1

E

� kr

E

k

2

E

1

A

. �

2

D;T

:

In order to prove the third estimate, recall again that

�

2

D;T

= kre

T

k

2

!

T

(3:18)

=

Z

!

T

P

L

2

f � e

T

�

Z

!

T

r

T

u

h

re

T

=

Z

!

T

r

T

(u� u

h

) � re

T

+

Z

!

T

(P

L

2

f � f) � e

T

� kr(u� u

h

)k

!

T

� kre

T

k

!

T

+ kf � P

L

2

fk

!

T

� ke

T

k

!

T

:

Applying estimate (3.19) of lemma 3.5 on page 38 to e

T

2 V

T

results now readily in

�

2

D;T

(u

h

) � kr(u� u

h

)k

2

!

T

+ c � h

2

min;T

� kf � P

L

2

fk

2

!

T

:

Note that here the only constant appears at approximation term.

Finally inequality (3.27) follows immediately from (3.16) and (3.25).

3.3.3 Condition number of the FEMmatrix of the local problem

The error estimator �

D;T

requires the solution of a local �nite element problem. It can

be shown easily that this problem is well-behaved, i.e. the condition number of the corre-

sponding FEM matrix is bounded independently of the aspect ratio of the elements under

consideration.

Let T be an interior tetrahedron. An arbitrary function v

T

2 V

T

can be written as

v

T

= �

0

� b

T

+

4

X

i=1

�

i

� b

T

i

+

4

X

i=1

�

i

� b

E

i

�

i

; �

i

2 R :

For the remainder of this section, de�ne

v := (�

0

; �

1

; �

2

; �

3

; �

4

; �

1

; �

2

; �

3

; �

4

)

T

2 R

9

:

By means of the FEM isomorphism

v

T

2 V

T

 ! v 2 R

9

one obtains

a(v

T

; w

T

) = (K

T

v;w) 8v

T

; w

T

2 V

T

:

Here K

T

2 R

9�9

is the usual FEM sti�ness matrix which is symmetric and positive

de�nite.
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Theorem 3.7 (Condition number) The condition number �(K

T

) of the local problem

sti�ness matrix K

T

is bounded independently of T :

�(K

T

) . 1 8T 2 T

h

:

Proof: We start with

(K

T

v;v) = a(v

T

; v

T

) = krv

T

k

2

!

T

:

Lemma 2.7 on page 19 states

krb

E

i

k

!

T

� krb

T

k

!

T

� krb

T

i

k

!

T

� h

�1

min;T

� jT j

1=2

since jT

i

j � jT j for adjacent tetrahedra. Thus

krv

T

k

2

!

T

� k�

0

� rb

T

k

2

!

T

+

4

X

i=1

k�

i

� rb

T

i

k

2

!

T

+

4

X

i=1

k�

i

� rb

E

i

k

2

!

T

. h

�2

min;T

� jT j � kvk

2

R

9

:

On the other hand one has from (3.19)

krv

T

k

!

T

& h

�1

min;T

� kv

T

k

!

T

:

Decompose the domain !

T

=

4

S

i=1

T

i

[ T as above. A straightforward calculation yields

kv

T

k

2

T

i

= k�

i

� b

T

i

+ �

i

� b

E

i

k

2

T

i

= 6jT

i

j �







�

i

�

�

b

T

i

+ �

i

�

�

b

E

i







2

�

T

i

= 6jT

i

j �

�

4096

155925

�

2

i

+

16

525

�

i

�

i

+

9

560

�

2

i

�

& jT j � (�

2

i

+ �

2

i

) :

(Alternatively, a similar compactness argument as before could be employed.) Analo-

gously

kv

T

k

2

T

= k�

0

� b

T

+

4

X

i=1

�

i

� b

E

i

k

2

T

= 6jT j � k�

0

�

�

b

T

+

4

X

i=1

�

i

�

�

b

E

i

k

2

�

T

� 6jT j �

331 547 � 17

p

33 671 493

9 979 200

�

 

�

2

0

+

4

X

i=1

�

2

i

!

:

(The constants have been evaluated using a computer algebra system.) Together with

jT

i

j � jT j one eventually obtains

krv

T

k

2

!

T

& h

�2

min;T

�

 

kv

T

k

2

T

+

4

X

i=1

kv

T

k

2

T

i

!

& h

�2

min;T

� jT j � kvk

2

R

9

and thus

h

�2

min;T

� jT j � kvk

2

R

9

. krv

T

k

2

!

T

= (K

T

v;v) . h

�2

min;T

� jT j � kvk

2

R

9

which implies the bounded condition number of K

T

. The case of T being a boundary

tetrahedron is dealt with analogously.
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3.4 L

2

error estimator

An L

2

error estimator for non-uniform isotropic meshes has been derived by Eriksson and

Johnson [15]. Here we will propose an L

2

error estimator that is suitable for anisotropic

meshes. Some ideas of the aforementioned work have been utilized and extended to our

case. To our knowledge, an anisotropic L

2

error estimator has not been analysed before.

The framework of the proofs is similar to the one of the residual error estimator of

section 3.2. Special bubble functions which are required to prove the lower bound of the

error are introduced in section 3.4.1. For these bubble functions inverse estimates similar

to (2.20) { (2.24) are desired. This leads to an additional assumption on the mesh which

will be discussed in section 3.4.2. This mesh requirement might be purely technical and

be due to the techniques used here. Nevertheless it seems to be fairly natural from a

heuristic point of view. Section 3.4.3 is devoted to the relation between the anisotropic

mesh and the anisotropic solution. Interpolation error estimates are derived in section

3.4.4. The L

2

error estimator is given in section 3.4.5. Firstly, however, some useful

notation is introduced.

Let M := (m

i;j

)

d

i;j=1

be a matrix of L

2

functions m

i;j

2 L

2

(!) . Let kMk

2

!

:=

d

P

i;j=1

km

i;j

k

2

!

be the usual L

2

norm of M , and de�ne jM j

2

:=

d

P

i;j=1

jm

i;j

j

2

. Let D

2

v :=

�

@

2

v

@x

i

@x

j

�

d

i;j=1

.

Finally, note that in sections 3.4.1 and 3.4.5 special bubble functions are used that

di�er from the general bubble functions de�ned previously in section 2.3.3. For simplicity

the same notation b

T

and b

E

is used here.

3.4.1 Special L

2

bubble functions

For the proof of the lower bound of the error we utilize bubble functions of a higher

smoothness, i.e. we now demand b

T

2 H

2

o

(T ) and b

E

2 H

2

o

(!

E

).

Let T 2 T

h

be an arbitrary tetrahedron, and denote by �

T;1

; � � � ; �

T;4

its barycentric

coordinates. The element bubble function b

T

2 P

8

(T ) \H

2

o

(T ) is de�ned by

b

T

:= 4

8

� �

2

T;1

� �

2

T;2

� �

2

T;3

� �

2

T;4

on T : (3.28)

We also need a bubble function b

E

de�ned on !

E

= T

1

[ T

2

. The technical de�nition

is due to the smoothness requirement b

E

2 H

2

o

(!

E

) . More precisely, we will construct

(a whole class of) bubble functions b

E

that depend on a guide vector a

E

associated with

the face E. The following de�nition of the (class of) bubble functions is given for general

guide vectors a

E

. The 
exibility in the choice of the guide vector is exploited in the next

section when the guide vector will be speci�ed.

Consider an arbitrary inner face (triangle) E of T

h

and the domain !

E

= T

1

[ T

2

.

The bubble function is de�ned separately on each tetrahedron; so let T be any of the

two tetrahedra. Via the transformation A

�1

T

it is mapped onto the unitary tetrahedron

�

T with a face

�

E. Let the barycentric coordinates of

�

T be numbered such that the ones

associated with the three nodal points of

�

E are �

1

: : : �

3

.

Firstly we de�ne three cut-o� functions b

i

2 H

2

(

�

T ), i = 1 : : : 3, by

b

i

= b

i

(�

1

; �

2

; �

3

; �

4

) :=

�

�128�

3

i

+ 48�

2

i

if �

i

� 1=4

1 if �

i

> 1=4

:
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A function b

0;

�

E

2 H

2

(

�

E) is de�ned by

b

0;

�

E

:=

(

12

6

� (�

1

�

1

4

)

2

� (�

2

�

1

4

)

2

� (�

3

�

1

4

)

2

if �

1

; �

2

; �

3

� 1=4

0 otherwise

:

Let a

E

2 R

3

be a so-called guide vector with ^(a

E

; E) 6= 0. De�ne the transformed

and normalized vector
�
a := A

�1

T

(a

E

)=

�

�

A

�1

T

(a

E

)

�

�

R

3
. (Note that

�
a depends on a

E

and T .)

A function b

0

2 H

2

(

�

T ) is then de�ned by

b

0

(x

�

E

+ t �
�
a) := b

0;

�

E

(x

�

E

) x

�

E

2

�

E ; t 2 R such that x

�

E

+ t �
�
a 2

�

T :

A bubble function on the unitary tetrahedron

�

T is de�ned by

�

b

E;T

:= b

0

� b

1

� b

2

� b

3

:

By means of the coordinate transformation with A

T

we obtain a bubble function b

E;T

=

F

A

(

�

b

E;T

on the actual tetrahedron T .

Finally consider the two tetrahedra T

1

[ T

2

= !

E

, and de�ne the face bubble function

b

E

2 H

2

o

(!

E

) by

b

E

(x) :=

�

b

E;T

1

(x) if x 2 T

1

b

E;T

2

(x) if x 2 T

2

: (3.29)

In order to visualize the construction of the face bubble function in the two-dimensional

case, �gure 3.2 shows a cut-o� function b

1

as well as b

0

and b

E

. They are depicted on the

standard tetrahedron with the choice a

E

= (2; 1)

T

.

1

y
0

1

0
x

0

1

0

1

y
0

1

0
x

0

1

0

1

y
0

1

0
x

0

1

0

Figure 3.2: Functions b

1

, b

0

and b

E

(on a single triangle)

Note that (although not re
ected by the notation) b

E

depends on the guide vector

a

E

. Strictly speaking, one had to write b

E;a

E

instead of b

E

. The actual choice of a

E

is

discussed in the next section.

To end o�, it is easily seen that

0 � b

T

; b

E

� 1 and max

x2T

b

T

(x) = max

x2!

E

b

E

(x) = 1

holds.

Remark 3.9 To use the same guide vector a

E

on T

1

and T

2

guarantees continuity of the

derivative of b

0

and b

E

across E which implies b

E

2 C

1

(!

E

) \ H

2

o

(!

E

) . The functions

b

1

: : : b

3

act as cut-o� functions to meet the zero boundary conditions of H

2

o

on @T nE. �
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3.4.2 Additional mesh requirement for the lower error bound

and inverse inequalities

The lower bound of the error relies heavily on the use of bubble functions. The smoothness

assumption b

E

2 H

2

o

(!

E

) lead to the technical de�nition of the bubble function b

E

in the

section above. Eventually we want to employ inverse inequalities similar to (2.20) { (2.24).

For that reason a further requirement on the mesh is necessary.

Consider an inner face E and !

E

= T

1

[ T

2

. Let the bubble function b

E

be de�ned as

above. Both tetrahedra T

1

and T

2

are now transformed, each one via the corresponding

matrix A

T

i

. Thus the guide vector a

E

(which is the same for T

1

and T

2

in the original

space) is transformed into two di�erent guide vectors on

�

T

1

and

�

T

2

of the transformed

spaces. For unambiguous reference, denote the transformed and normalized guide vectors

A

�1

T

(a

E

)=

�

�

A

�1

T

(a

E

)

�

�

R

3
on T

1

and T

2

by
�
a

T

1

and
�
a

T

2

. Consider the angles ^(
�
a

T

i

;

�

E)

between
�
a

T

i

and

�

E, i = 1; 2. The additional mesh requirement then reads as follows.

Additional mesh requirement (analytic form)

Consider an inner face E and !

E

= T

1

[T

2

. There has to be a guide vector

a

E

such that ^(
�
a

T

1

;

�

E) and ^(
�
a

T

2

;

�

E) are both bounded from below by some

angle �

0

> 0. This has to be satis�ed for all inner faces E of T

h

, with the

same smallest angle �

0

.

(3.30)

In the proof of lemma 3.9 it will be shown that this additional mesh requirement ensures

that there exists always a bubble function b

E

satisfying inverse inequality (3.37). Firstly,

however, this mesh requirement will be closer investigated into.

It would be desirable to have not only an analytic condition on T

h

which just demands

the existence of some guide vectors. Thus we seek an equivalent condition which can be

veri�ed. The following geometric condition turns out to be su�cient for (3.30) but it may

not be necessary. Nevertheless it seems to be fairly close to a necessary condition (at least

from heuristic arguments). We have to start with some additional (temporary) notation.

Consider an inner face E, and denote its midpoint by M . Denote by A and B the

vertices of T

1

and T

2

which are not in E, respectively. The upper part of �gure 3.3 depicts

this notation.

Consider the plane " that contains A, B and M (if A;B, and M are on a straight

line then any plane " can be chosen, and (3.30) and (3.31) are naturally satis�ed). Its

intersection with !

E

is depicted in the lower part of �gure 3.3. Let Q

1

and Q

2

be the

intersection points of " and the boundary of the face (triangle) E, respectively. Enumerate

Q

1

and Q

2

such that Q

2

is closer to AB. De�ne C := AB \ Q

1

Q

2

. Let A

1

and B

1

be

those points that satisfy A

1

B

1

k AB;M 2 A

1

B

1

, and A

1

2 AQ

1

; B

1

2 BQ

1

.

The geometrical mesh requirement then reads as follows.

Additional mesh requirement (geometric form)

With the notation from above we demand

jQ

1

M j

jQ

1

Cj

� c

0

> 0 ;

with jQ

1

M j being the length of the line segment Q

1

M . This has to be

satis�ed for all inner faces E of T

h

, with the same c

0

.

(3.31)

Lemma 3.8 The geometric assumption (3.31) implies the analytic assumption (3.30).
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B

B

A

A

M

Q

2

Q

1

B

1

A

1

C

M

T

2

T

1

Figure 3.3: Notation of !

E

= T

1

[ T

2

, and intersection of !

E

and "

Proof: Consider any of the two tetrahedra, say T

1

. The transformation via A

�1

T

1

(or more

precisely, via F

�1

A

) maps T

1

onto the standard tetrahedron

�

T

1

. Assume, without loss of

generality, that A is mapped onto the vertex

�

A = (1; 0; 0)

T

, and E is mapped onto the

opposite face

�

E. The transformed point

�

M is still the midpoint of

�

E, the points

�

Q

i

lie

on the boundary of

�

E, and

�

A

1

2

�

A

�

Q

1

is situated somewhere on the boundary @T

1

n

�

E.

Figure 3.4 may visualize this.

Choose now the guide vector a

E

in the direction

�!

MA

1

. The radius of the inscribed

circle of

�

E is %(

�

E) = 1=(2 +

p

2). The distance between

�

A

1

and

�

E equals

dist(

�

A

1

;

�

E) =

dist(

�

A

1

;

�

E)

dist(

�

A;

�

E)

=

j

�

Q

1

�

A

1

j

j

�

Q

1

�

Aj

=

jQ

1

A

1

j

jQ

1

Aj

=

jQ

1

M j

jQ

1

Cj

� c

0

> 0

since the linear transformation A

�1

T

1

preserves above's ratios of line segments, and because

of the similarity theorem (cf. �gures 3.3 and 3.4).

Basic geometry then implies

tan^(
�
a

T

1

;

�

E) �

dist(

�

A

1

;

�

E)

%(

�

E)

� (2 +

p

2) � c

0

^(
�
a

T

1

;

�

E) � �

0

:= arctan((2 +

p

2) � c

0

)

i.e. the angle ^(
�
a

T

1

;

�

E) is bounded from below by some angle �

0

> 0. The other three

cases where A is mapped onto an other vertex of

�

T are treated completely analogously.

A similar consideration veri�es ^(
�
a

T

2

;

�

E) � �

0

. Thus a

E

satis�es the analytic mesh

requirement (3.30).



3.4. L

2

ERROR ESTIMATOR 49

�

Q

1

�

Q

2

�

A

�

A

1

�

M

�x

1

�x

2

�x

3

�

E

Figure 3.4: Mapped standard tetrahedron

�

T

1

Remark 3.10 In the two-dimensional case the condition and the proof are similar. Then

the lower part of �gure 3.3 may be utilized if Q

1

and Q

2

are replaced by both endpoints

of E. �

Let now T

h

be a triangulation where either the analytic mesh requirement (3.30) or

the geometric mesh requirement (3.31) is satis�ed. Then one can �x appropriate guide

vectors a

E

for all inner faces E. Each of these guide vectors determines a concrete bubble

function from the whole class of functions de�ned by (3.29).

From now on, we consider these very bubble functions. All inequalities and constants

hereafter are such that they do not depend on the actual choice of the bubble functions

(or guide vectors, respectively) but only on the (global) minimal angle �

0

of (3.30).

Several inverse inequalities are comprised in the lemma below.

Lemma 3.9 (Inverse inequalities) Let either the analytic mesh requirement (3.30) or

the geometric mesh requirement (3.31) be satis�ed. Let F

ext

be the extension operator of

(2.19). The following inverse inequalities hold for all '

T

2 P

0

(T ) and '

E

2 P

0

(E).

k'

T

k

T

� kb

1=2

T

� '

T

k

T

(3.32)

kb

T

� '

T

k

T

� k'

T

k

T

(3.33)

k�(b

T

� '

T

)k

T

. h

�2

min;T

� k'

T

k

T

(3.34)

k'

E

k

E

� kb

1=2

E

� '

E

k

E

(3.35)

kF

ext

('

E

) � b

E

k

T

. h

1=2

E

� k'

E

k

E

for E 2 T (3.36)

k�(F

ext

('

E

) � b

E

)k

T

. h

1=2

E

� h

�2

min;T

� k'

E

k

E

for E 2 T (3.37)

Proof: The inequalities (3.32) and (3.35) are derived analogously to inequalities (2.20)

and (2.22) of lemma 2.6. Inequality (3.33) results immediately from 0 � b

T

� 1.
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In order to prove (3.34) we utilize the transformation technique which yields for general

w 2 H

2

(T )

k�wk

2

T

� 3 � kD

2

wk

2

= 3

Z

T

jA

�T

T

�A

T

T

�D

2

w �A

T

�A

�1

T

j

2

. kA

�1

T

k

4

R

3�3

�

Z

T

jA

T

T

�D

2

w �A

T

j

2

= kA

�1

T

k

4

R

3�3

� jdetA

T

j �

Z

�

T

j

�

D

2

�wj

2

:

For x 2 T set now

w(x) := '

T

(x) � b

T

(x) 2 P

8

(T ) \H

2

o

(T ) :

The bound kA

�1

T

k

R

3�3
. h

�1

min;T

of (2.7) and the equivalence of norms over the �nite

dimensional space P

0

(

�

T ) 3 �'

T

imply

k

�

D

2

�wk

�

T

= k

�

D

2

('

T

� b

T

)k

�

T

. k �'

T

k

�

T

and k�wk

T

. h

�2

min;T

� jdetA

T

j

1=2

� k �'

T

k

�

T

= h

�2

min;T

� k'

T

k

T

:

Thus (3.34) is obtained.

Inequality (3.36) utilizes the facts that 0 � b

E

� 1 and that '

E

2 P

0

(E) is a constant

function. This yields

kF

ext

('

E

) � b

E

k

T

� jT j

1=2

� j'

E

(x)j . h

1=2

E

� k'

E

k

E

and the desired estimate is obtained.

Inequality (3.37) requires a closer investigation. Let E be a face of T and a

E

be a

guide vector. The transformation via A

�1

T

maps T onto the unitary tetrahedron

�

T . Again,

denote by

�

E and
�
a the transformed face and (normalized) guide vector, respectively.

Let l

1

and l

2

be two orthogonal unitary vectors in that plane that contains

�

E, i.e. jl

i

j =

1 ; l

1

? l

2

;

�

E � span(l

1

; l

2

) . The transformed guide vector has been de�ned such that

j
�
aj

R

3
= 1. The three vectors l

1

; l

2

and
�
a form the basis of a coordinate system which is

denoted by (l

1

; l

2

;
�
a).

We now investigate the function b

0

. Its de�nition from above yields

�

�

�

�

@

2

b

0

@l

i

@l

j

(x)

�

�

�

�

. 1 i; j = 1; 2 and

@b

0

@
�
a

= 0

where @

2

=@l

i

@l

j

denotes the second partial directional derivatives with respect to l

i

and

l

j

. Thus the matrix D

2

(l

1

;l

2

;�a)

b

0

of the second derivatives (with respect to the system

(l

1

; l

2

;
�
a) ) is bounded for all x 2

�

T , i.e. all matrix entries are bounded.

We introduce a second coordinate system with the basis (l

1

; l

2

; l

3

) and l

3

:= l

1

� l

2

.

Note that jl

3

j = 1 and l

3

?

�

E. The bases of both coordinate systems are linked via

(l

1

; l

2

;
�
a) = (l

1

; l

2

; l

3

) � B

with B :=

0

@

1 0 (
�
a; l

1

)

0 1 (
�
a; l

2

)

0 0 (
�
a; l

3

)

1

A

and (
�
a; l

i

) = cos^(
�
a; l

i

) being the usual R

3

scalar product of two vectors.
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The analytic mesh requirement (3.30) (or the geometric mesh requirement (3.31) to-

gether with lemma 3.8) guarantees that the angle ^(
�
a;

�

E) between the transformed guide

vector
�
a and

�

E is bounded from below by some angle �

0

> 0. Thus we conclude

j^(
�
a; l

3

)j � �=2� �

0

j(
�
a; l

3

)j = j cos^(
�
a; l

3

)j � sin�

0

> 0

kB

�1

k

R

3�3
=



















0

@

1 0 �(
�
a; l

1

)=(
�
a; l

3

)

0 1 �(
�
a; l

2

)=(
�
a; l

3

)

0 0 1=(
�
a; l

3

)

1

A



















R

3�3

.

1

j(
�
a; l

3

)j

. 1 :

The matrices of the second derivatives with respect to both coordinate systems are

related according to

D

2

(l

1

;l

2

;l

3

)

b

0

= B

�T

� D

2

(l

1

;l

2

;�a)

b

0

� B

�1

:

Because of

jD

2

(l

1

;l

2

;l

3

)

b

0

j . kB

�1

k

2

R

3�3

� jD

2

(l

1

;l

2

;�a)

b

0

j . 1

the matrix D

2

(l

1

;l

2

;l

3

)

b

0

of the second derivatives (with respect to the system (l

1

; l

2

; l

3

) ) is

also bounded for all x 2

�

T . A rotation of the coordinate system does not change the sum

of the squared second derivatives. Thus we can switch from (l

1

; l

2

; l

3

) to the standard

coordinate system of

�

T and obtain for all x 2

�

T

jD

2

(l

1

;l

2

;l

3

)

b

0

j = j

�

D

2

b

0

j . 1 :

Analogously j

�

D

1

b

0

j . 1 is derived, and b

0

� 1 is obvious. Additionally the cut-o�

functions b

1

; b

2

; b

3

and their �rst and second derivative are bounded, i.e. for all x 2

�

T

jb

i

j � 1 ; j

�

D

1

b

i

j . 1 ; j

�

D

2

b

i

j . 1 i = 1; 2; 3 :

All this implies

j

�

D

2

(b

0

� b

1

� b

2

� b

3

)j = j

�

D

2

�

b

E

j . 1

for all x 2

�

T .

Let now w := F

ext

('

E

) � b

E

. Since '

E

2 P

0

(E) is a constant function we conclude

k

�

D

2

�wk

�

T

= k

�

D

2

(F

ext

('

E

) �

�

b

E

)k

�

T

= j'

E

(x)j � k

�

D

2

�

b

E

k

�

T

. k �'

E

k

�

E

:

Now we utilize an inequality of the proof of (3.34) from above giving

k�wk . kA

�1

T

k

2

R

3�3

� jdetA

T

j

1=2

� k

�

D

2

�wk

�

T

. h

�2

min;T

� jdetA

T

j

1=2

� k �'

E

k

�

E

= h

�2

min;T

� h

1=2

E

� k'

E

k

E

:

Thus the desired estimate is proven.
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3.4.3 The set H

2

T

(
) of L

2

adapted functions

For the error estimator we require that the anisotropy of the solution of the dual problem

is re
ected in the mesh in some way. This leads to the following

De�nition 3.6 (L

2

adapted function) Let c

b

> 1 be a �xed constant. Then a function

v 2 H

2

(
) is said to be L

2

adapted to the mesh if

X

T2T

h

h

�4

min;T

� kC

T

T

�D

2

v � C

T

k

2

T

� c

b

� kD

2

vk

2




(3.38)

holds. Denote the set of L

2

adapted functions by H

2

T

(
).

3.4.4 Anisotropic interpolation estimates

The imbedding theorem for Sobolev spaces implies H

2

(
) ,! C

0

(
) . Hence for a function

v 2 H

2

(
) the Lagrange interpolate Int(v) 2 C

0

(

�


) is well-de�ned.

First we state well-known interpolation estimates on the unitary tetrahedron

�

T .

Lemma 3.10 Let �v 2 H

2

(

�

T ). The following estimates hold:

k�v � Int �vk

�

T

. k

�

D

2

�vk

�

T

k

�

r(�v � Int �v)k

�

T

. k

�

D

2

�vk

�

T

:

Note that all derivatives are with respect to the reference coordinate system.

Using scaling arguments we now obtain interpolation estimates for an L

2

adapted

function on the actual tetrahedron T .

Lemma 3.11 Let v be an L

2

adapted function, i.e. v 2 H

2

T

(
). The interpolation esti-

mates

X

T2T

h

h

�4

min;T

� kv � Intvk

2

T

. kD

2

vk

2




X

T2T

h

h

�4

min;T

� kC

T

T

r (v � Intv)k

2

T

. kD

2

vk

2




hold with a constant c independent of v or T

h

.

Proof: The transformation technique yields

kv � Intvk

2

T

= jdetA

T

j � k�v � Int �vk

2

�

T

. jdetA

T

j � k

�

D

2

�vk

2

�

T

:

The second derivative is transformed via

�

D

2

�v = A

T

T

�D

2

v �A

T

resulting in

jdetA

T

j � k

�

D

2

�vk

2

�

T

= jdetA

T

j �

Z

�

T

j

�

D

2

�vj

2

=

Z

T

jA

T

T

�D

2

v �A

T

j

2

=

Z

T

jA

T

T

C

�T

T

� C

T

T

�D

2

v � C

T

� C

�1

T

A

T

j

2

. kC

�1

T

A

T

k

4

R

3�3

�

Z

T

jC

T

T

�D

2

v � C

T

j

2

(2:3)

. kC

T

T

�D

2

v � C

T

k

2

T

:
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Recalling v 2 H

2

T

(
) completes the �rst part of the proof:

X

T2T

h

h

�4

min;T

� kv � Int vk

2

T

.

X

T2T

h

h

�4

min;T

� kC

T

T

�D

2

v � C

T

k

2

T

. kD

2

vk

2




:

The second part of the proof utilizes (2.4) giving

kC

T

T

� r(v � Int v)k

2

T

= kC

T

T

A

�T

T

�A

T

T

� r(v � Int v)k

2

T

� kC

T

T

A

�T

T

k

2

R

3�3

� kA

T

T

� r(v � Intv)k

2

T

(2:4)

. jdetA

T

j � k

�

r(�v � Int �v)k

2

�

T

. jdetA

T

j � k

�

D

2

�vk

2

�

T

. kC

T

T

�D

2

v � C

T

k

2

T

as above. Recalling v 2 H

2

T

(
) we conclude

X

T2T

h

h

�4

min;T

� kC

T

T

r (v � Intv)k

2

T

.

X

T2T

h

h

�4

min;T

� kC

T

T

�D

2

v � C

T

k

2

T

. kD

2

vk

2




analogously to the �rst part of the proof.

Lemma 3.12 Let v be an L

2

adapted function, i.e. v 2 H

2

T

(
) \H

1

o

(
). The estimates

j(f; v � Intv)j .

 

X

T2T

h

h

4

min;T

� kfk

2

T

!

1=2

� kD

2

vk




8 f 2 L

2

(
)

j(rw

h

;r(v � Intv))j .

 

X

E2


h

4

min;T

h

E

� kr

E

(w

h

)k

2

E

!

1=2

� kD

2

vk




8w

h

2 V

o;h

hold.

Proof: The �rst result is readily obtained by Cauchy's inequality and lemma 3.11.

j(f; v� Int v)j =

�

�

�

�

�

X

T2T

h

Z

T

f � (v � Int v)

�

�

�

�

�

�

X

T2T

h

h

2

min;T

kfk

T

� h

�2

min;T

kv � Int vk

T

�

 

X

T2T

h

h

4

min;T

kfk

2

T

!

1=2

�

 

X

T2T

h

h

�4

min;T

kv � Int vk

2

T

!

1=2

.

 

X

T2T

h

h

4

min;T

kfk

2

T

!

1=2

� kD

2

vk




:

To prove the second estimate we integrate by parts and apply Cauchy's inequality to

conclude for any g 2 H

1

o

(
)

(rw

h

;rg) =

X

T2T

h

Z

T

r

T

w

h

� rg =

X

T2T

h

Z

@T

@w

h

@n

� g =

X

E2


Z

E

r

E

(w

h

) � g

�

X

E2


h

2

min;T

h

1=2

E

kr

E

(w

h

)k

E

�

h

1=2

E

h

2

min;T

kgk

E

� D

h;2

(w

h

) �

 

X

E2


h

E

h

4

min;T

kgk

2

E

!

1

2

:
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Utilizing the trace inequality (2.12)

kgk

2

E

. h

�1

E

�

kgk

2

T

+ kC

T

T

rgk

2

T

�

and rewriting the sum over all faces E as a sum over all tetrahedra T implies

X

E2


h

E

h

4

min;T

kgk

2

E

.

X

T2T

h

h

�4

min;T

�

kgk

2

T

+ kC

T

T

rgk

2

T

�

:

Substituting g := v � Intv 2 H

1

o

(
), recalling v 2 H

2

T

, and applying lemma 3.11 results

immediately in

X

E2


h

E

h

4

min;T

kgk

2

E

. kD

2

vk

2




:

Thus the desired estimate is proven.

3.4.5 Anisotropic L

2

error estimator

De�nition 3.7 (L

2

error estimator) For an arbitrary tetrahedron T let the L

2

error

estimator �

R;L

2

;T

(u

h

) be de�ned by

�

R;L

2

;T

(u

h

) :=

0

@

h

4

min;T

� kr

T

(u

h

)k

2

T

+

X

E2@Tn�

D

h

4

min;T

h

E

� kr

E

(u

h

)k

2

E

1

A

1=2

: (3.39)

In order to obtain an upper bound of the L

2

error we utilize the Aubin-Nitsche trick

[6, 19]. The following theorem is valid.

Theorem 3.13 (L

2

error estimator) Let u 2 H

1

o

(
) be the exact solution and u

h

2

V

o;h

be the FEM solution.

If the additional mesh requirement (3.31) is satis�ed then the error (in the L

2

norm)

is bounded locally from below by

�

R;L

2

;T

(u

h

) .

�

ku� u

h

k

2

!

T

+ h

4

min;T

� kf � P

L

2

fk

2

!

T

�

1=2

(3.40)

for all T 2 T

h

.

Assume that 
 is a convex polygonal domain. Let v

D

2 H

2

(
) be the solution of the

dual problem

��v

D

= u� u

h

in 
; v

D

= 0 on @
:

Suppose that v

D

is an L

2

adapted function, i.e. v

D

2 H

2

T

(
) . Then the error (in the L

2

norm) is bounded globally from above by

ku� u

h

k .

 

X

T2T

h

�

2

R;L

2

;T

(u

h

) +

X

T2T

h

h

4

min;T

kf � P

L

2

fk

2

T

!

1=2

(3.41)

or, alternatively

ku� u

h

k . kh

2

min

(x) fk + D

h;2

(u

h

) :
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Proof: Firstly, estimate (3.40) will be proven.

We start with the norm kr

T

(u

h

)k

T

of the element residual r

T

= r

T

(u

h

) := P

L

2

f+�u

h

.

Since we use linear ansatz functions r

T

2 P

0

(T ) holds. For x 2 T let

w(x) := r

T

(u

h

)(x) � b

T

(x) 2 P

8

(T ) \H

2

o

(T ) :

Integration by parts and w 2 H

2

o

(T ) then results in

Z

T

r

T

� w =

Z

T

(f +�u

h

) � w +

Z

T

(P

L

2

f � f) � w

=

Z

T

(u

h

� u) ��w +

Z

T

(P

L

2

f � f) � w

�

�

�

�

Z

T

r

T

� w

�

�

�

�

� ku� u

h

k

T

� k�wk

T

+ kf � P

L

2

fk

T

� kwk

T

:

Recalling the inverse estimates (3.32) { (3.34) we conclude

kr

T

k

2

T

. ku� u

h

k

T

� h

�2

min;T

� kr

T

k

T

+ kf � P

L

2

fk

T

� kr

T

k

T

and h

4

min;T

� kr

T

k

2

T

. ku� u

h

k

2

T

+ h

4

min;T

� kf � P

L

2

fk

2

T

:

Now we aim for a bound of the norm kr

E

(u

h

)k

E

of the gradient jump across some

inner face (triangle) E. Since we use linear ansatz functions r

E

2 P

0

(E) holds. Let T

1

and T

2

be the two tetrahedra that E belongs to. The additional mesh requirement (3.31)

and lemma 3.9 on page 49 imply that there exists a bubble function b

E

which satis�es the

inverse inequalities (3.35) { (3.37). Let the function w 2 H

2

o

(!

E

) be de�ned by

w := F

ext

(r

E

(u

h

)) � b

E

;

with F

ext

being the extension operator of (2.19). Assume that the right hand side f =

��u is in L

2

(
). Integration by parts yields

�

Z

E

w � r

E

(u

h

) =

Z

!

E

r

T

wr(u

h

� u) +

2

X

i=1

Z

T

i

w � (r

T

i

+ f � P

L

2

f)

=

Z

!

E

�w � (u� u

h

) +

2

X

i=1

Z

T

i

w � (r

T

i

+ f � P

L

2

f) :

Because of wj

E

= r

E

� b

E

j

E

we conclude

�

�

�

�

Z

E

r

2

E

� b

E

�

�

�

�

�

2

X

i=1

�

ku� u

h

k

T

i

� k�wk

T

i

+ (kr

T

i

k

T

i

+ kf � P

L

2

fk

T

i

) � kwk

T

i

�

:

Utilizing the inverse inequalities (3.35) { (3.37) results in

kr

E

k

2

E

.

2

X

i=1

�

ku� u

h

k

T

i

� h

1=2

E

h

�2

min;T

i

kr

E

k

E

+

+ (kr

T

i

k

T

i

+ kf � P

L

2

fk

T

i

) � h

1=2

E

kr

E

k

E

�

:
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The dimensions h

E

= h

E;T

i

and h

min;T

i

cannot change rapidly for adjacent tetrahedra.

Recalling the bound of kr

T

k

T

from above we conclude

kr

E

k

E

. h

1=2

E

h

�2

min;T

1

�

�

ku� u

h

k

!

E

+ h

2

min;T

1

kf � P

L

2

fk

!

E

�

:

For a �xed tetrahedron T = T

1

we sum up over all (inner) faces E � @T n �

D

and obtain

X

E�@Tn�

D

h

4

min;T

h

E

� kr

E

(u

h

)k

2

E

. ku� u

h

k

2

!

T

+ h

4

min;T

kf � P

L

2

fk

2

!

T

:

This accomplishes the proof of (3.40).

Secondly, in order to derive (3.41) we integrate by parts, utilize the dual solution

v

D

2 H

2

T

(
) , and apply lemma 3.12 yielding

ku� u

h

k

2

= (u� u

h

;��v

D

) = (r(u� u

h

);rv

D

) = (r(u� u

h

);r(v

D

� Intv

D

))

= (f; v

D

� Int v

D

) � (ru

h

;r(v

D

� Int v

D

))

.

0

@

 

X

T2T

h

h

4

min;T

� kfk

2

T

!

1=2

+ D

h;2

1

A

� kD

2

v

D

k

.

0

@

 

X

T2T

h

h

4

min;T

� kfk

2

T

!

1=2

+ D

h;2

1

A

� ku� u

h

k

since kD

2

v

D

k � c




� k�v

D

k = c




� ku � u

h

k holds. This corresponds to the second

formulation of the upper bound of the error. Utilizing the triangle inequality kfk

T

�

kP

L

2

fk

T

+ kf � P

L

2

fk

T

results in the �rst upper bound of the error.

Remark 3.11 The problem in applying this error estimation lies clearly in verifying the

assumption v

D

2 H

2

T

(
) for the solution of the dual problem.

Additionally one may argue that the dual solution procedure is inappropriate for an

anisotropic solution where probably even singularities occur. �
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3.5 An anisotropic Zienkiewicz-Zhu like error esti-

mator

An (isotropic) error estimator that is based on an averaged gradient has been proposed

�rst by Zienkiewicz and Zhu [36]. The analysis shows this estimator to be equivalent to

a modi�ed residual error estimator. (Strictly speaking, one has to show �rst that the

modi�ed residual `error estimator' is an estimator indeed.) Later the estimator has been

improved by the `superconvergent patch recovery' [37]. We tried to derive an anisotropic

version of the earlier estimator but failed for the general case. Because of that we present

only the results of the anisotropic version of the original estimator and do not consider

the latter one.

3.5.1 Cuboidal or rectangular mesh

Although cuboidal meshes do not �t into the framework of this paper we will present the

results for two reasons. Firstly, no anisotropic Zienkiewicz-Zhu like error estimator has

been derived so far, and secondly, the structure of this estimator might give some clue for

tetrahedral meshes.

An analysis of this estimator for an isotropic mesh which consists of rectangles (2D)

and bilinear basis functions is done by Rank and Zienkiewicz [23]. The extension to

rectangular prisms (3D) and trilinear basis functions is obvious.

The modi�cation of the estimator for anisotropic rectangular or cuboidal meshes is

almost straightforward. In order to get some impression of the kind of these modi�cations

our result is stated here.

Assume a rectangular prism T whose edges are aligned with the coordinate axes.

Denote the edge lengths by h

1;T

; h

2;T

; h

3;T

, and de�ne H

T

:= diag(h

1;T

; h

2;T

; h

3;T

). Let

h

min

:= minfh

1;T

; h

2;T

; h

3;T

g.

De�ne the recovered gradient r

R

u

h

as the trilinear Lagrange interpolate at the nodes

of the mesh. The nodal value at x is given by

r

R

u

h

(x) :=

1

8

X

T3x

ru

h

�

�

�

T

:

(For a boundary node set the recovered derivative which is normal to the boundary equal

to the true derivative). Now de�ne the anisotropic Zienkiewicz-Zhu error estimator by

�

Z;T

(u

h

) := h

min;T

� kH

�1

T

�

r

R

u

h

�ru

h

�

k

T

and the modi�ed residual error estimator by

�

~

R;T

(u

h

) := h

min;T

�

0

@

X

E2@Tn�

D

h

�1

E

� kr

E

(u

h

)k

2

E

1

A

1=2

;

i.e. only the jump residuals are utilized here, and the element residual is omitted. Sim-

ple algebra shows the anisotropic Zienkiewicz-Zhu like estimator to be equivalent to the

modi�ed residual error estimator, i.e.

�

Z;T

� �

~

R;T

which is also true when suitable di�erent weights (non-negative and bounded away from

0) of the recovered gradient are used.
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3.5.2 Tetrahedral mesh of tensor product type

For isotropic triangular grids (in two dimensions) a proof completely di�erent from above

is given by Rodriguez [25]. We have extended his ideas to the isotropic three-dimensional

case and arbitrary non-negative weights of the recovered gradient, and corrected a minor

mistake.

Unfortunately we failed to obtain an error estimator for general tetrahedral, anisotro-

pic meshes. Only tensor product type meshes can be considered, i.e. where six tetrahedra

can be found that form a rectangular prism. Hence we do not achieve the geometri-

cal 
exibility that we were aiming for by using tetrahedral elements. Because of this

unsatisfactory result we omit the derivation and only present the estimator.

For the remainder of this section assume a tetrahedral mesh of tensor product type.

Assume further that the tensor product mesh is aligned with the coordinate axes (i.e. each

circumscribing rectangular prism). Denote by

~

h

1;T

;

~

h

2;T

;

~

h

3;T

the side lengths of the cir-

cumscribing rectangular prisms of a tetrahedron T . Set

~

H

T

:= diagf

~

h

1;T

;

~

h

2;T

;

~

h

3;T

g.

De�ne the modi�ed residual error estimator and the estimator based on a recovered

gradient by

�

2

~

R;T

(u

h

) :=

X

E2@Tn�

D

h

2

min;T

h

E

� kr

E

(u

h

)k

2

E

�

Z;T

(u

h

) := h

min;T

�










~

H

�T

T

�

r

R

u

h

�ru

h

�










T

;

respectively. For the proof we require node-related quantities which can be derived easily.

With N

T

denoting the set of nodes of T , one has

�

2

Z;T

(u

h

) = h

2

min;T

�










~

H

�T

T

�

r

R

u

h

�ru

h

�










2

T

� h

2

min;T

� jT j �

X

x2N

T










~

H

�T

T

�

r

R

u

h

�ru

h

�

(x)










2

R

3

;

implying the de�nition

�

2

Z;x

:=

X

T :x2N

T










~

H

�T

T

�

r

R

u

h

�ru

h

�

�

�

T

�

(x)










2

R

3

:

From

�

2

~

R;T

(u

h

) =

X

E2@Tn�

D

h

2

min;T

h

E

� kr

E

(u

h

)k

2

E

= 3jT j

X

E2@Tn�

D

h

2

min;T

h

2

E

� r

2

E

(u

h

)

one easily identi�es the node related quantity as

�

2

~

R;x

(u

h

) :=

X

E3x

E 6��

D

h

�2

E

� r

2

E

(u

h

) :

Theorem 3.14 Assume a tetrahedral, tensor product type mesh which is aligned with the

coordinate axes. Then the following relations hold.

�

Z;x

� �

~

R;x

;

X

T2T

h

�

2

Z;T

�

X

T2T

h

�

2

~

R;T

;

�

Z;T

.

X

T

0

\T 6=;

�

~

R;T

0

and �

~

R;T

.

X

T

0

\T 6=;

�

Z;T

0

:



Chapter 4

A singularly perturbed

reaction{di�usion equation

4.1 Analytical Background

Important real life problems where anisotropic solutions can occur include di�usion-

convection-reaction problems, for example convection dominated problems or singularly

perturbed problems. There so-called interior layers or boundary layers (of di�erent kind)

with strong anisotropic behaviour can evolve. In order to decide if error estimators can

be applied in conjunction with anisotropic meshes, we have chosen the following model

problem.

Let us consider the singularly perturbed reaction di�usion equation whose classical

formulation reads

Find u 2 C

2

(
) \ C(
) : �"�u+ u = f in 
;

u = 0 on �

D

= @
 :

(4.1)

The positive parameter " is supposed to be very small, " � 1, and has much in
uence

on the solution. Under suitable smoothness assumptions on the data (i.e. f and 
) the

di�erential equation (4.1) yields a unique solution. The corresponding variational or weak

formulation is

Find u 2 H

1

o

(
) : a(u; v) = (f; v) 8 v 2 H

1

o

(
) (4.2)

with a(u; v) :=

Z




" � r

T

urv + u v

(f; v) =

Z




f � v :

The Lax-Milgram lemma ensures that there exists a unique solution of (4.2) provided that

� f 2 [H

1

o

(
)]

�

= H

�1

(
)

� a(� ; �) is elliptic, i.e. a(v; v) � �

1

� kvk

2

H

1

o

(
)

8 v 2 H

1

o

(
)

� a(� ; �) is bounded, i.e. ja(v;w)j � �

2

� kvk

H

1

o

(
)

� kwk

H

1

o

(
)

8 v;w 2 H

1

o

(
) .

For the whole of our investigation we demand a stronger smoothness of the right-hand

side, namely

f 2 L

2

(
) ;

59
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thus the �rst assumption is satis�ed. The second and third assumption are automatically

valid with constants �

1

= " and �

2

= 1.

The �nite element method is exactly the same as in section 3.1, i.e.

Find u

h

2 V

o;h

: a(u

h

; v

h

) = (f; v

h

) 8 v

h

2 V

o;h

: (4.3)

Note that the energy norm is de�ned by the bilinear form and depends on ":

jjjvjjj

2

:= a(v; v) = "krvk

2

+ kvk

2

:

The model problem (4.1) is of interest since one can usually expect boundary layers

when a non-vanishing right-hand side f meets homogeneous Dirichlet boundary condi-

tions. Inside 
 and su�ciently far away from boundary the solution in usually smooth

provided f is smooth enough too. Thus the boundary layers mark the domain of interest,

and their resolution requires increased numerical e�ort. Note however that (4.1) is only

a model problem insofar as

� the di�erential operator is still symmetric and elliptic.

� it can be solved using standard FEM, i.e. no modi�cations like the Galerkin least

squares method or the streamline di�usion method are necessary.

For a more detailed introduction to the analysis and numerical treatment of singularly

perturbed di�erential equations (convection-di�usion and 
ow problems) see Roos, Stynes

and Tobiska [27], and the literature cited therein. Miller, O'Riordan and Shishkin [18]

investigate singularly perturbed problems with emphasis on numerical methods and a

priori estimates.

We are interested in error estimators in particular. Isotropic estimators for di�usion-

convection-reaction problems can be roughly divided into two major classes. A priori

error estimators (in conjunction with adapted numerical methods) are known for some

time.

For a posteriori error estimators, however, the knowledge has been unsatisfactory for

a long time. Most estimators yield upper and lower bounds on the error that are not

asymptotically equivalent. By this we mean that the upper and lower bound di�er by a

factor that increases, for example, as the discretization parameter h ! 0, or as " ! 0

in the case of a singularly perturbed problem. The �rst a posteriori error estimate with

asymptotically equivalent upper and lower bound on the error is, to our knowledge, due

to Angermann [2]. He measures the error in the somewhat strange norm

kvk

V

0

:= sup

v2V

0

a(v; v)

kvk

H

1

which is weaker than the energy norm, i.e.

p

" jjjvjjj � kvk

V

0

. jjjvjjj. Angermann himself

stated that estimates in this norm are mainly of theoretical interest.

Only recently Verf�urth [32] derived the �rst a posteriori error estimator in the energy

norm for the model problem (4.1) where upper and lower bounds are asymptotically

equivalent.

In the remainder of this chapter an a posteriori error estimator for model problem (4.1)

is derived that can applied to anisotropic meshes. The upper and lower error bounds

involve the same terms and are asymptotically equivalent. Our estimator is partially

in
uenced by Verf�urth's isotropic version.
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4.2 Residual error estimator

4.2.1 Special face bubble functions

In this section special face bubble functions are de�ned, and the corresponding inverse

inequalities will be derived. The de�nition and the proof are given �rst for the standard

tetrahedron

�

T and then for the actual tetrahedron T .

Consider the standard tetrahedron

�

T and the face

�

E

1

thereof. For a real number

� 2 (0; 1] de�ne a linear mapping F

�

: R

d

7! R

d

by

F

�

(x

1

; : : : ; x

n

) := (� � x

1

; x

2

; : : : ; x

n

)

T

or F

�

(x) = B

�

� x with B

�

= diagf�; 1; : : : ; 1) 2 R

d�d

:

Obviously this yields

jdetB

�

j = � and kB

�1

�

k

R

d�d = �

�1

:

Set

�

T

�

:= F

�

(

�

T ), i.e.

�

T

�

is the tetrahedron with the face

�

E

1

and a vertex at � � e

1

.

Let

�

b

E

1

be the usual face bubble function of

�

E

1

on

�

T (cf. (2.18)). De�ne the special

face bubble function

�

b

�

by

�

b

�

=

�

b

E

1

;�

:=

�

b

E

1

� F

�1

�

i.e.

�

b

�

is the usual face bubble function of the face

�

E

1

on the tetrahedron

�

T

�

. For clarity

we recall

�

b

�

= 0 on

�

T n

�

T

�

.

Then the following inverse inequalities hold.

Lemma 4.1 (Inverse inequalities on the standard tetrahedron)

Assume �' 2 P

0

(

�

E

1

), and let F

ext

be the extension operator of (2.19). The following

inverse inequalities hold.

k

�

b

�

� F

ext

( �')k

�

T

. �

1=2

� k �'k

�

E

1

kr(

�

b

�

� F

ext

( �'))k

�

T

. �

�1=2

� k �'k

�

E

1

Proof: We employ standard scaling techniques via F

�

and utilize the inverse inequalities

(2.23) and (2.24) on

�

T . Hence the desired estimates

k

�

b

�

� F

ext

( �')k

�

T

= k

�

b

�

� F

ext

( �')k

�

T

�

= jdetB

�

j

1=2

� k

�

b

E

1

� F

ext

( �')k

�

T

(2:23)

. jdetB

�

j

1=2

� h

1=2

�

E

1

;

�

T

� k �'k

�

E

1

= �

1=2

� k �'k

�

E

1

and kr(

�

b

�

� F

ext

( �'))k

�

T

= kr(

�

b

�

� F

ext

( �'))k

�

T

�

= jdetB

�

j

1=2

� kB

�T

�

� r(

�

b

E

1

� F

ext

( �'))k

�

T

. �

1=2

� kB

�1

�

k

R

d�d � kr(

�

b

E

1

� F

ext

( �'))k

�

T

(2:24)

. �

�1=2

� h

1=2

�

E

1

;

�

T

� h

�1

min;

�

T

� k �'k

�

E

1

� �

�1=2

� k �'k

�

E

1

are obtained.

Remark 4.1 All inverse inequalities of this previous lemma are valid for any face

�

E of

�

T (i.e. not only for

�

E

1

) if the face bubble function

�

b

�

is de�ned correspondingly. �
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Consider now an actual tetrahedron T . The special face bubble function b

�

= b

E;�

2

H

1

(T ) of a face E of T is de�ned by

b

�

= b

E;�

:=

�

b

E;�

� F

�1

A

: (4.4)

Lemma 4.2 (Inverse inequalities on the actual tetrahedron)

Let E be an arbitrary face of T . Assume '

E

2 P

0

(E). The following inverse inequalities

hold.

kb

�

� F

ext

('

E

)k

T

. �

1=2

� h

1=2

E

� k'

E

k

E

(4.5)

kr(b

�

� F

ext

('

E

))k

T

. �

�1=2

� h

1=2

E

� h

�1

min;T

� k'

E

k

E

(4.6)

Proof: Standard scaling arguments and the previous lemma readily imply

kb

�

� F

ext

('

E

)k

2

T

= 6jT j � k

�

b

�

� F

ext

( �'

E

)k

2

�

T

. 6jT j � � � k �'

E

k

2

�

E

= � � h

E

� k'

E

k

2

E

:

The other inequality is derived completely analogously and thus left to the reader.

4.2.2 Anisotropic interpolation estimates

The interpolation estimates sought contain the energy norm jjj�jjj on the right-hand side.

For this reason the term " (which is related to the di�erential operator and not to the

interpolation operator) enters the left-hand side. More precisely, de�ne the auxiliary term

�

T

:= minf1; "

�1=2

� h

min;T

g : (4.7)

The following lemma is valid.

Lemma 4.3 Let R

o

be the Cl�ement interpolation operator de�ned in (3.7). Assume that

the mesh is adapted to v, i.e. v 2 H

1

o;T

(
). Then the interpolation estimates

X

T2T

h

�

�2

T

� kv �R

o

vk

2

T

. jjjvjjj

2

(4.8)

"

1=2

X

T2T

h

X

E2@Tn�

D

�

�1

T

�

h

E;T

h

min;T

kv �R

o

vk

2

E

. jjjvjjj

2

(4.9)

hold.

Proof: The de�nition of �

T

implies

�

�1

T

= max

�

1; "

1=2

� h

�1

min;T

	

:

The anisotropic interpolation estimates of theorem 3.3 on page 30 result in

X

T2T

h

�

�2

T

� kv �R

o

vk

2

T

=

X

T2T

h

1�"�h

�2

min;T

kv �R

o

vk

2

T

+

X

T2T

h

1<"�h

�2

min;T

"h

�2

min;T

� kv �R

o

vk

2

T

� kv �R

o

vk

2

+ " � kh

�1

min

(x) � (v �R

o

v)k

2

. kvk

2

+ " � krvk

2

= jjjvjjj

2

which proves the �rst inequality.
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For the second estimate the trace inequality (2.13) is invoked giving

h

E;T

� kv �R

o

vk

2

E

. kv �R

o

vk

T

�

�

kv �R

o

vk

T

+ kC

T

T

r(v �R

o

v)k

T

�

:

Utilizing the �rst result (4.8), the Cauchy{Schwarz inequality, and theorem 3.3 on page 30

results in

"

1=2

X

T2T

h

X

E2@Tn�

D

�

�1

T

�

h

E;T

h

min;T

kv �R

o

vk

2

E

.

. "

1=2

X

T2T

h

h

�

�1

T

� kv �R

o

vk

T

� h

�1

min;T

�

�

kv �R

o

vk

T

+ kC

T

T

r(v �R

o

v)k

T

�

i

. "

1=2

�

 

X

T2T

h

�

�2

T

� kv �R

o

vk

2

T

!

1=2

�

�

�

kh

�1

min

(x) � (v �R

o

v)k

2

+ kh

�1

min

(x) � C

T

(x)r(v �R

o

v)k

2

�

1=2

. "

1=2

� jjjvjjj � krvk � jjjvjjj

2

:

Hence the second estimate is proven.

4.2.3 Anisotropic residual error estimator

Let the element residual over a tetrahedron T be de�ned by

r

T

(v

h

) := P

L

2

f � (�" ��v

h

+ v

h

) : (4.10)

Obviously this residual of v

h

is related to the strong form of the di�erential operator.

Therefore the de�nition of r

T

is problem dependent and in particular di�erent to the

de�nition for the Poisson equation.

De�nition 4.1 (Residual error estimator)The local residual error estimator �

R;T

(u

h

)

for a tetrahedron T is de�ned by

�

R;T

(u

h

) :=

0

@

�

2

T

� kr

T

(u

h

)k

2

T

+ "

3=2

� �

T

�

X

E2@Tn�

D

h

min;T

h

E

� kr

E

(u

h

)k

2

E

1

A

1=2

: (4.11)

Theorem 4.4 (Residual error estimator) Let u 2 H

1

o

(
) be the exact solution and

u

h

2 V

o;h

be the FEM solution. Then the error is bounded locally from below by

�

R;T

(u

h

) .

�

jjju� u

h

jjj

2

!

T

+ �

2

T

� kf � P

L

2

fk

2

!

T

�

1=2

(4.12)

for all T 2 T

h

.

Assume further that the mesh is adapted to the error u� u

h

, i.e. u � u

h

2 H

1

o;T

(
).

Then the error is bounded globally from above by

jjju� u

h

jjj .

 

X

T2T

h

�

2

R;T

(u

h

) +

X

T2T

h

�

2

T

� kf � P

L

2

fk

2

T

!

1=2

: (4.13)
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Proof: The proof of the �rst estimate (4.12) employs some standard techniques already

utilized for the Poisson equation. A more detailed investigation can be found there.

We start with the norm kr

T

(u

h

)k

T

of the element residual r

T

= P

L

2

f + " ��u

h

� u

h

).

Since we use linear ansatz functions r

T

2 P

0

(T ) holds. For x 2 T let

w(x) := r

T

(u

h

)(x) � b

T

(x) 2 P

4

(T ) \H

1

o

(T ) ;

with b

T

being the usual bubble functions introduced in section 2.3.3. Integration by parts

yields

Z

T

r

T

� w =

Z

T

(f + " ��u

h

� u

h

) � w +

Z

T

(P

L

2

f � f) � w

=

Z

T

" � r

T

(u� u

h

) � rw + (u� u

h

) � w +

Z

T

(P

L

2

f � f) � w

�

�

�

�

Z

T

r

T

� w

�

�

�

�

� " � kr(u� u

h

)k

T

� krwk

T

+ ku� u

h

k � kwk

T

+ kf � P

L

2

fk

T

� kwk

T

:

Bounds of

�

�

R

T

r

T

� w

�

�

; krwk

T

and kwk

T

have already been derived in (3.17). Hence one

readily obtains

kr

T

k

2

T

. "

2

� h

�2

min;T

� kr(u� u

h

)k

2

T

+ ku� u

h

k

2

T

+ kf � P

L

2

fk

2

T

�

2

T

� kr

T

k

2

T

. minf" � h

�2

min;T

; 1g � " � kr(u� u

h

)k

2

T

+

+�

2

T

� ku� u

h

k

2

T

+ �

2

T

� kf � P

L

2

fk

2

T

� " � kr(u� u

h

)k

2

T

+ ku� u

h

k

2

T

+ �

2

T

� kf � P

L

2

fk

2

T

= jjju� u

h

jjj

2

T

+ �

2

T

� kf � P

L

2

fk

2

T

: (4.14)

Now we aim for a bound of the norm kr

E

(u

h

)k

E

of the gradient jump across some inner

face (triangle) E. Since we use linear ansatz functions r

E

2 P

0

(E) holds. Let T

1

and T

2

be the two tetrahedra that E belongs to. Assume that the right hand side f = �"�u+u

is in L

2

(
). Integration by parts yields for any function w 2 H

1

o

(!

E

)

0 =

Z

!

E

"r

T

urw + u �w � f � w

�"

Z

E

r

E

(u

h

) � w = "

2

X

i=1

Z

@T

i

w �

@u

h

@n

= "

2

X

i=1

Z

T

i

�

r

T

u

h

rw + �u

h

� w

�

=

2

X

i=1

Z

T

i

�

"r

T

u

h

rw + (r

T

i

� P

L

2

f + u

h

) � w

�

=

2

X

i=1

Z

T

i

�

"r

T

(u

h

� u)rw + (u

h

� u) �w + (r

T

i

+ f � P

L

2

f) � w

�

since "�u

h

= r

T

i

� P

L

2

f + u

h

on T

i

. Let now the function w be de�ned by

w :=

�

b

E;�

1

� F

ext

(r

E

(u

h

)) on T

1

b

E;�

2

� F

ext

(r

E

(u

h

)) on T

2

;

with F

ext

being the extension operator of (2.19) and b

E;�

i

being the special face bubble

functions de�ned above. The real numbers �

i

will be chosen later.
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Note that w 2 H

1

o

(!

E

) since b

E;�

1

�

�

�

E

= b

E;�

2

�

�

�

E

= b

E

�

�

�

E

. Hence we conclude

" kb

1=2

E

�r

E

k

2

E

�

2

X

i=1

�

"kr(u�u

h

)k

T

i

�krwk

T

i

+ (ku�u

h

k

T

i

+kr

T

i

k

T

i

+kf�P

L

2

fk

T

i

)�kwk

T

i

�

:

The inverse inequalities (4.5) and (4.6) are used to bound kwk

T

i

and krwk

T

i

, respectively,

and subsequently imply

kr

E

k

E

.

2

X

i=1

h

1=2

E

�

�

h

�1

min;T

i

� �

�1=2

i

� kr(u� u

h

)k

T

i

+

+ "

�1

� �
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i

� (ku� u

h

k

T

i

+ kr

T

i

k

T

i

+ kf � P

L

2

fk

T

i

)

�

:

Now we choose �

i

:= "

1=2

� h

�1

min;T

i

� �

T

i

� 1 and insert estimate (4.14) which provides a

bound of kr

T

i

k

T

i

. One obtains

"
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� �
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�

h

min;T

h

E
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E

(u
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2

E

�

.

2
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" � kr(u� u
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2
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+ jjju� u
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2
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i

� kf � P
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. jjju� u
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!
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2

T

� kf � P
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2
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2

!

E

since h

min;T

i

and �

T

i

do not change rapidly across adjacent tetrahedra, and since �

T

i

� 1.

Summing up over all faces E of T , recalling the de�nition of �

R;T

(u

h

) and applying (4.14)

�nishes the proof of the lower error bound (4.12).

Secondly, in order to derive (4.13) we utilize the orthogonality property of the error

a(u� u

h

; v

h

) = 0 8 v

h

2 V

o;h

:

Integration by parts gives for all v 2 H
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The Cauchy-Schwarz inequality and the interpolation estimate (4.8) yield

X

T2T

h

�

T

(kr

T

(u

h

)k

T

+ kf � P

L

2

fk

T

) � �

�1

T

kv �R

o

vk

T

�

�

�

2

X

T2T

h

�

2

T

�

kr

T

(u

h

)k

2

T

+ kf � P

L

2

fk

2

T

�

�

1=2

�

�

X

T2T

h

�

�2

T

kv �R

o

vk

2

T

�

1=2

.

�

X

T2T

h

�

2

T

�

kr

T

(u

h

)k

2

T

+ kf � P

L

2

fk

2

T

�

�

1=2

� jjjvjjj

since v 2 H
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). Analogously
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is derived with the help of interpolation estimate (4.9). Combining these estimates results

in

a(u� u

h

; v) .

�

X

T2T

h

h

�

2

T

�

kr

T

(u

h

)k

2

T

+ kf � P

L

2

fk

2

T

�

+

+ "

3=2

�

T

X

E2@Tn�

D

h

min;T

h

E;T

kr

E

(u

h

)k

2

E

i

�

1=2

� jjjvjjj :

Substituting v := u� u

h

2 H

1

o;T

(
) �nishes the proof.



Chapter 5

Numerical examples

5.1 Scope of and introduction to the numerical ex-

periments

After the introductory words of chapter 1, the reader certainly expects an example where

an adaptive anisotropic strategy and its superiority is demonstrated. Hopefully the reader

is not too disappointed that we will not proceed that way. In order to justify this, recall

the steps of an adaptive anisotropic strategy, namely

1. Estimate the error for a solution on a given mesh.

2. Obtain information for a new, better mesh. This includes:

� Detect regions of anisotropic behaviour of the solution.

� Determine a (quasi) optimal aspect ratio and stretching direction of the �nite

elements.

� Determine the element size.

3. Based on this information, construct a new mesh or perform a mesh re�nement.

4. Solve the arising �nite element system.

We have investigated task 1 and will test our error estimators numerically.

The second step, the extraction of mesh information, is much less clear. As far as

we know only heuristic considerations are invoked. For example, the analysis of the par-

tial second derivatives is frequently employed (cf. [21, 24, 35]). In practice however, this

partially yields unrealistic and unpractically high optimal aspect ratios, and therefore an

arti�cial maximum aspect ratio has to be speci�ed. Other approaches su�er similar draw-

backs, e.g. it is not clear how to extend the use of Lagrange multipliers (see e.g. Rachowicz

[22]) in order to obtain the stretching direction.

The third task is to construct or re�ne an anisotropic mesh. It requires much pro-

gramming e�ort and a sophisticated and e�cient data structure. We could not a�ord to,

and did not want to dedicate the whole energy to this remeshing. Also, we did not have

access to an anisotropic mesh construction tool (which might be a topic of future work or

collaboration). Mainly because of these reasons we do not present an adaptive strategy

but focus mainly on error estimators instead.

Finally, the FEM system is solved using a standard FEM package, and not much

thought is devoted to this step yet.
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Based on the scope of and our ability for numerical validation we have chosen two

examples. They include the following tasks and tests.

1. Utilize two anisotropic meshes which were constructed on a priori knowledge.

2. Test if the condition u� u

h

2 H

1

o;T

(
) is satis�ed.

3. Test the lower and upper bound on the error for

� the residual error estimator �

R;T

,

� the local Dirichlet problem error estimator �

D;T

,

� the L

2

residual error estimator �

R;L

2

;T

.

The following two-dimensional Poisson problem is chosen as test problem.

��u = f in 
 = [ 0; 1]� [ 0; 1] ;

u = 0 on �

D

= @
 :

The exact solution u is prescribed to be

u(x; y) :=

�

1� e

��x

� (1 � e

��

)x

�

� 4 y (1 � y)

with a parameter � = 1000. The right-hand side f is chosen accordingly. The exact

solution exhibits an exponential layer with an initial steepness of � = 1000 along the

boundary at x = 0. Figure 5.1 shows a rough image of u.

1

0

y
0

1

0 x0
1

0

Figure 5.1: Exact solution u

We also have to mention the present shortcomings of the tests in order to distinguish

between what the numerical experiments can tell us and what still remains hidden. The

shortcomings are:

� Some three-dimensional experiments were carried out but they are not shown here.

� We do not consider a family F of triangulations T

h

but only one given mesh at a

time.

� The error estimator for the singularly perturbed problem is not investigated.
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� Since the exact solution u is known a priori, the condition u � u

h

2 H

1

o;T

(
) can

be tested numerically. Usually this is not possible. Furthermore, the assumption

v

D

2 H

2

T

(
) for the L

2

error estimator can not be tested since the dual solution is

not known.

We are aware that our two very limited examples give no numerical validation of our

estimator but we did not aim at that at present. More precisely, we want to show that

error estimators can be applied to anisotropic meshes, despite the theoretical shortcoming

u � u

h

2 H

1

o;T

(
) or v

D

2 H

2

T

(
) , respectively. Thus further research in this topic is

justi�ed.

5.2 Two numerical examples

Let us consider the two meshes depicted in �gure 5.2. The adaption to the boundary

layer can be seen clearly.

Mesh 1 (the left one) is an unstructured mesh and has been designed to give a small

error in theH

1

seminorm. The largest interior angle of its triangles is about 179.77 degree.

Mesh 2 is a structured, tensor product type mesh and shall result in a small error in the

L

2

norm.

Figure 5.2: Mesh 1 and mesh 2

The following table displays some additional details of both meshes.

Mesh 1 Mesh 2

Number of elements 7796 8192

Number of nodes 4020 4225

Maximum aspect ratio 1091.9 210.3

Nodal L

1

error 7.767E-3 1.614E-3
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5.2.1 The condition on u � u

h

If the residual error estimator (for both the Poisson problem and the singularly perturbed

reaction di�usion problem) or the local Dirichlet problem error estimator is to be applied

in order to obtain reliable upper bounds on the error, one has to assume u�u

h

2 H

1

o;T

(
).

In explicit writing, the inequality

X

T2T

h

h

�2

min;T

� kC

T

T

r(u� u

h

)k

2

T

� c

a

� kr(u� u

h

)k

2

has to hold with a bounded constant c

a

. (Recall that, strictly speaking, this has to hold

for a family F of triangulations).

For real life problems this condition can not be tested since the exact solution u is not

known. Therefore we have spent much time to �nd a computable assumption that implies

the condition above. Unfortunately, however, we failed despite much research.

Our investigations and several examples strengthened our impression that the con-

dition re
ects indeed how good the anisotropic mesh is adapted to (or matches) an

anisotropic solution. In particular, heuristic considerations (for the stretching direction,

the aspect ratio etc.) usually lead to anisotropic meshes where error estimators pro-

vide acceptable and useful error bounds. In this sense we are aware that the condition

u � u

h

2 H

1

o;T

(
) cannot be tested numerically but we equally think that nevertheless

error estimators should be applied.

For our examples, the smallest possible constant c

a

has been evaluated by dividing

the left-hand side of above's inequality by kr(u� u

h

)k

2

. The constants equal

Mesh 1 : c

a

= 3:351 ;

Mesh 2 : c

a

= 2:702 :

Since c

a

is always larger than 1, one can certainly state that c

a

is not too large and thus

u� u

h

2 H

1

o;T

(
) is satis�ed.

5.2.2 Error bounds in the energy norm

The condition u � u

h

2 H

1

o;T

(
) is satis�ed for our meshes, as we have seen. Then the

upper bound of the error for the residual error estimator or the local Dirichlet problem

error estimator are both of the form

kr(u� u

h

)k .

 

X

T2T

h

�

2

�;T

(u

h

) +

X

T2T

h

h

2

min;T

� kf � P

L

2

fk

2

T

!

1=2

where �

�;T

is either �

R;T

or �

D;T

, respectively. For the validation of the error bound we

computed the following quantities.

Term Formula Mesh 1 Mesh 2

Exact error kr(u� u

h

)k 0.3863 0.4923

Residual error estimate

�

P

T2T

h

�

2

R;T

(u

h

)

�

1=2

1.8774 2.5020

Local problem error estimate

�

P

T2T

h

�

2

D;T

(u

h

)

�

1=2

0.6130 0.7947

Approximation error

�

P

T2T

h

h

2

min;T

� kf � P

L

2

fk

2

T

�

1=2

0.1798 0.0487
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These numbers show that, for both examples, the error is bounded from above indeed.

More precisely, the error is overestimated. The approximation term plays a minor role

although the right-hand side f is very large in the boundary layer.

The lower bounds on the error hold unconditionally, and they are of the form

�

R;T

(u

h

) . kr(u� u

h

)k

!

T

+ h

min;T

� kf � P

L

2

fk

!

T

and �

D;T

(u

h

) � kr(u� u

h

)k

!

T

+ c � h

min;T

� kf � P

L

2

fk

!

T

:

Therefore we consider the following ratios which have to be bounded from above, and also

give the range of its value over all elements T .

Ratio Mesh 1 Mesh 2

�

R;T

kr(u� u

h

)k

!

T

+ h

min;T

� kf � P

L

2

fk

!

T

0:34 : : : 3:6 0:24 : : : 3:2

�

D;T

kr(u� u

h

)k

!

T

+ h

min;T

� kf � P

L

2

fk

!

T

0:15 : : : 1:0 0:20 : : : 1:0

These values clearly validate the lower bounds of the error.

5.2.3 Error bounds in the L

2

norm

In order to obtain an upper bound on the error, the condition v

D

2 H

2

T

(
) on the dual

solution v

D

has to be satis�ed. This condition can not be tested but it appears that

both meshes re
ect the anisotropic solution well enough. Thus we hope that the error

estimator yields realistic bounds. The upper bound is of the form

ku� u

h

k .

 

X

T2T

h

�

2

R;L

2

;T

(u

h

) +

X

T2T

h

h

4

min;T

� kf � P

L

2

fk

2

T

!

1=2

:

For the validation of the error bound we computed the following quantities.

Term formula Mesh 1 Mesh 2

Exact error ku� u

h

k 3.768E-03 3.285E-04

L

2

error estimate

�

P

T2T

h

�

2

R;L

2

;T

(u

h

)

�

1=2

4.234E-02 2.567E-03

Approximation error

�

P

T2T

h

h

4

min;T

� kf � P

L

2

fk

2

T

�

1=2

7.279E-04 2.292E-05

These numbers show that the error is again overestimated. The approximation error is

negligible compared with the exact error.

The lower bound on the error holds if the additional mesh requirement (3.30) is sat-

is�ed, which is the case for both meshes. The error bound then reads

�

R;L

2

;T

(u

h

) . ku� u

h

k

!

T

+ h

2

min;T

� kf � P

L

2

fk

!

T

Therefore we consider the following ratio which has to be bounded from above, and also

give the range of its value over all elements T .
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Ratio Mesh 1 Mesh 2

�

R;L

2

;T

ku� u

h

k

!

T

+ h

2

min;T

� kf � P

L

2

fk

!

T

0:16 : : : 24 0:05 : : : 16

Although the lower bound is validated, the range of the corresponding ratios is much

larger now.

5.3 Conclusions

The �rst test has been aiming at the condition u � u

h

2 H

1

o;T

(
) which is satis�ed for

both meshes. This means that this condition can be satis�ed. Moreover, what is done

heuristically by anisotropic mesh generation seems to correspond to (or be re
ected by)

this condition.

Secondly, the energy error estimators show the anticipated behaviour. The local

Dirichlet problem error estimator performs better than the residual error estimator. This

coincides with the di�erent quality of the lower bounds on the error, cf. (3.15) and (3.26).

Note however, that the local problem estimator requires more computational e�ort.

Lastly, the L

2

residual error estimator yields less sharp bounds. This might be partially

due to the fact that the energy norm is naturally related to the di�erential equation but

the choice of the L

2

norm is somewhat arbitrary.



Chapter 6

Summary

This work has been aiming at error estimators suitable for anisotropic tetrahedral or

triangular grids, respectively.

Several estimators known from the isotropic case have been investigated as to whether

they can be modi�ed for and applied to simplicial anisotropic meshes. The anisotropic

residual error estimator has been derived and proven to be equivalent to the error. The

condition u� u

h

2 H

1

o;T

(
) has been discussed in section 5.2.1.

Several more estimators have been devised for the Poisson problem. The local Dirichlet

problem error estimator has been shown to be equivalent to the residual error estimator

and thus, to the error too. A general Zienkiewicz-Zhu like error estimator could not be

derived; only special cases have been considered and proven. An L

2

error estimator

is given as well. The conditions to guarantee the L

2

error bounds are, however, rather

di�cult.

As promised in the introduction, a singularly perturbed reaction di�usion equation has

been investigated into too, and an anisotropic residual error estimator has been found.

It is apparent that the error estimator (and the proofs of the error bounds, of course)

depend rather strongly on the underlying di�erential equations.

Two simple numerical examples have shown that error estimators can be applied

successfully to anisotropic meshes. Hence further research is, in our opinion, justi�ed.

6.1 Open points and future work

The present state of research suggests that the following topics could be investigated in

the future. Partially they are already under consideration.

1. It would be very desirable to �nd means to guarantee the condition u�u

h

2 H

1

o;T

(
).

If not possible, this condition should be tested thoroughly numerically.

It could be sensible to approximate the term r(u� u

h

) appearing in the condition

by some heuristically chosen value, for example by means of a recovered gradient

r

R

u

h

�ru

h

.

2. Other boundary conditions (i.e. Neumann and Robin boundary conditions) have

already been considered but not been applied yet.

3. At present a local problem error estimator for the L

2

norm is investigated into.
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4. All estimators will be tested extensively (including 3D).

5. An adaptive strategy would be desirable. For this, mesh information have to be

extracted, and a remeshing is necessary.

6. Investigations on error estimators based on the complementary energy principle

could possibly yield upper bounds on the error with a constant 1.
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