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1 Introduction 1

1 Introduction

Anisotropy The solution of elliptic boundary value problems may have anisotropic be-
haviour near certain manifolds M C Q. That means that the solution varies significantly
only perpendicularly to M. Examples include the Poisson problem in domains with concave
edges M and singularly perturbed convection diffusion reaction problems where M is part
of the boundary or an internal manifold. In such cases it is an obvious idea to reflect this
anisotropy in the discretization by using anisotropic meshes with a small mesh size in the
direction of the rapid variation of the solution and a larger mesh size in the perpendicular
direction.

Consider an elliptic boundary value problem posed over a polyhedral domain Q C IR,
d = 2,3. We study the discretization error of the finite element method on a family of meshes
T, = {e} with the usual admissibility conditions (see, for example, Conditions (7,1)—(73,5)
in [15, Chapter 2]). Denote by h. the diameter of the finite element e, and by g, the diameter
of the largest inner ball of e. Then it is assumed in the classical finite element theory that
he < e, for the definition of < see the end of this Introduction. This assumption is no longer
valid in the case of anisotropic meshes. Conversely, anisotropic elements e are characterized

by
. he
lim— — oo
Oc
where the limit can be considered as of h — 0 (see the application to the Poisson equation in
[2, 8] or Section 6) or ¢ — 0 where ¢ is some (small perturbation) parameter of the problem

(see the singularly perturbed problems in [4, 5]).

Interpolation Let Vj, := {v, € W"3(Q) : v,|. € Py, for all e € 7;,} be the finite element
space, a space of piecewise polynomial functions (Py. . is introduced at Page 4) on the family
of meshes under consideration. Then the estimation of the finite element error is reduced
by Ceéd’s lemma to a general approximation problem of the exact solution u in Vj. For
Lagrangian finite elements, the simplest approximate is the nodal interpolant

=Y u(Xi)ei(x) (1.1)

i€l
where X; are the nodes and ¢;(x) are the nodal basis functions:
QQZ(X]) = 52']‘, Z,j - ] (12)

Because I, is defined locally on every element the interpolation error u —I,u can be estimated
elementwise. Before we discuss the drawback of the nodal interpolant we shall recall the
anisotropic interpolation error estimates. We denote error estimates as anisotropic if they
are sharp enough to reflect the different mesh sizes and not only the largest diameter.

For simplicity in this Introduction consider a triangle or a tetrahedron e C IR? with mesh
sizes hy,...,hg as given in Figure 1. That means that the element e has d edges of length
h; which are parallel to the corresponding coordinate axes. Then for linear elements the
following estimates hold [2, 24]:

lu = Tw; LP(e)ll < Y hIDw; L (e)]l, p € 1,00, (1.3)
|or|=2

=T WH2(e)| < ) hD u; W(e)], d=2or p € (2,00]. (1.4)
|or|=1

For the notation see the end of this Introduction.
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Figure 1: Illustration of the simplest anisotropic finite elements

In the sequel, we will call an estimate to be of type (m,n) if certain m-th derivatives
(left hand side) are estimated against n-th derivatives of the solution. In this sense Estimate

(1.3) is of type (0,2).

Quasi-interpolation The aim of this paper is to investigate (several slightly different)
more general approximates Qpu € V), (sometimes called quasi-interpolants) which shall not
have some of the disadvantages of I,u. This includes:

1. Quu shall be defined (at least) for u € W'?(1) where pointwise values may not be
well-defined.

2. The restriction p > 2 for d = 3, see (1.4), shall not be necessary in the approximation
error estimate of type (1,2).

3. Qnu shall allow estimates of type (0,1) and, if possible, of type (1,1).
Of course, some favourable properties of I;u should be preserved:

4. Qpu shall be defined locally. This means, that (Qpu)(x) with @ € e shall depend only
on the values of u in a small neighbourhood S, of e, where S, consists of a finite number
(independent of h) of elements of 7j,. (For the interpolant we had in particular S, = e.)

5. Qp, shall reproduce piecewise polynomials: Qpuy = uy for all uy, € Vj,.

For isotropic meshes such operators have been studied in the literature. For an introduc-
tion, denote by ¢; € V;, the nodal basis functions in V}, and define

Qpu = Zaicpi (1.5)

el

with real numbers q; still to be specified. Note that Q, =1, if a; = u(X;) for all ¢ € I.
In order to treat non-smooth functions the idea is to consider subdomains o; C € (their
choice will be discussed later), to define an L*-projection operator

I,, : L*(0:) — P, (1.6)

and to choose

a; = (Ily,u)(X;), (1.7)

for more details see (2.1)—(2.3). The numbers a; can be considered as averaged values of v in
X;. Different authors chose different o; resulting in different quasi-interpolation operators.
We will now introduce three of them. For unambiguous reference we distinguish them by
different symbols, Cp, Oy, and Zj.
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Clement [16] uses 7; := | J.5x. € The resulting operator Cj,
(Cru)(e) = Y (Io,u)(X0) - pilw),
€]

is even defined for u € L*(2) and allows estimates of type (m, () for all 0 <m < ¢ <k +1,
k > 1 is defined below. However, the operator Cj; in this original form does not satisfy
Property 5, but this can be corrected by defining

I,, : L*(o;) — Vj,

(1.8)

A modification of the Clement operator is discussed by Oswald [23]. For defining o;, he fixes
just one (arbitrary) element e =: o; with X; € €. The resulting operator Oy, allows the same
estimates as Cj, but we have V}|,, = Pi,,. Some more details on C, and Oy, are given at
the end of Section 2 when more notation has been introduced and more ideas have been

developed.

The disadvantage of both Cp and Oy, is that Cpu and Opu do not satisfy the same Dirichlet
boundary conditions as u does. For this reason, Scott and Zhang [25] modified again the
choice of o; and used not only d-dimensional subdomains o; but also (d—1)-dimensional ones.
In particular, they chose o; C 90 if X; € 9f). Because we exploit this idea in this paper we
will introduce the resulting operator Zp in more detail in Section 2. Using lower-dimensional
subdomains o; we are able to define in Sections 3-5 further operators Sy, Ly, and E;, and
to prove estimates of type (m,() for anisotropic meshes. Some of the results were derived
independently by Becker [12].

Elements of tensor product type Let é be a reference element. In the cases of triangles
(6 := {(#1,22) € IR* : 0 < &1 < 1,0 < 29 < 1 — 21}), rectangles (¢ := {(21,2) € IR* :
0 < 21,29 < 1}), pentahedra (& := {(21,29,23) € IR* : 0 < #1,23 < 1,0 < 23 < 1 — 21}),
and hexahedra (& := {(#1,29,23) € IR® : 0 < &y, &9, 73 < 1}) it is sufficient to consider one
unique é. Only for tetrahedra we consider two reference elements: ¢ := {(&, 2y, %3) € IR® :
0<a <1,0<2y<1—31,0< 23 <1—237— 2y} for elements with a face parallel to the
z1, vo-plane and é 1= {(&1,%9,23) € IR’ : 0 < 2, < 1,0 < 39 < 1 — 21,21 < #3 < 1 — &5} for
elements without such a face.

In this paper, we treat affine finite elements of tensor product type, that means, the
transformation of a reference element é to the element e shall have (block) diagonal form,

L1 _ ihl,e 0 1 —
() = (M 2 (2 )n wranz w

A~

“ B.i 0 o
T = | ......... Ty | +b. ford=3, (1.10)
x,?) 0 :i:hde [%3

where b, € IR? and B. € IR**? with
|det Bl ~ Y., || Be|l ~ b, ||[BZY| ~ Ay (1.11)

1,e

In this way the element sizes hq, ..., hg. are implicitly defined. Note that (1.11) yields Ay . ~
he for three-dimensional elements. Up to now we did not assume a relation between £, . and
hq.. But in Section 3 we will consider the case hy . < hg. (interesting is hy . = o(hq.)) and in
Sections 4 and 5 we will examine hg,. < hy .. Note further that under these assumptions the

triangles/tetrahedra can be grouped into pairs/triples which form a rectangle/pentahedron
of tensor product type. We will use this property in Section 3.
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We demand that there is no abrupt change in the element sizes, that means, the relation
hie~ hio forall ¢ with €N e # 0 (1.12)

holds for 2 =1,...,d.
The set of shape functions Py,

Pre D Pl = Z anx”; x=(a1,...,2q) , (1.13)

|| <k

is defined as usual, that means, Py, = P{ for the simplicial elements, Py, = (PL)? for
quadrilateral and hexahedral elements, and Py, = P? x P} for pentahedral elements. The
multi-index notation used in (1.13) is explained at the end of this section. Moreover, for a
simple notation later on we define P2, := {0}.

Outline In Section 2 we will recall the original Scott-Zhang operator Zj, derive some
anisotropic estimates of type (0,0), 1 < ¢ < k + 1, and show that the operator 7, has
to be modified for error estimates of type (1,(). Sections 3-5 are devoted to the study of
operators Sy, Ly, and Ep which are different modifications of Z;. These operators allow
stability and approximation estimates of type (m, () for different ranges of m and (. There
are also differences in the applicability of these operators concerning the types of elements
and the ability to satisty Dirichlet boundary conditions. We will summarize this in Section 7.

Before, in Section 6, we shall apply the operators S; and E; and derive finite element
error estimates for the Poisson problem in certain domains with edges. The result can not
be obtained using the nodal interpolation operator I,. This underlines the importance of
this study.

Some notation Let d be the space dimension, @ = (x1,...,24) the global Cartesian
coordinate system, and hy, ..., hq. the element sizes, see (1.9)—(1.11). In view of (1.12) and
because most considerations in this paper are local, we will often omit the second subscript.
Moreover, we denote uniformly in the whole paper by

e a finite element,

Se  the patch of elements around e, see (2.6),

X; the nodes of the mesh, ¢ € I,

@;  the nodal shape functions, ¢;(X;) = é;j,

o;  asubdomain related to X; (different for Cyp,, Oy, Zp, Sy, Ly, and E;),
k the degree of the shape functions in the sense of (1.13),

II,, the projection operator L*(o;) — Pk,

I,  the nodal interpolation operator,

Qn  a general quasi-interpolation operator,

Cn  the Clement operator,

O  the quasi-interpolation operator introduced by Oswald,

Zn  the original Scott-Zhang operator,

Sy, the modified Scott-Zhang operator using short edges(2D)/faces(3D),
Ly the modified Scott-Zhang operator using long edges(2D)/faces(3D),
En  the modified Scott-Zhang operator using long edges (3D).

We use a multi-index notation with « := (aq,...,a4), a; non-negative integers,
: g 9o
o . a ., pa1 ., |L%d e
la] := E a;, hY = h hyt, and D := 525 Bgo
=1 1 d
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[
o
a) X, is an interior point of an element. b) X, is an interior point of an edge.
P P g
o
(c¢) X; is a vertex within the domain (d) X; is a vertex at the boundary
(here: 6 possibilities for o;). (2 possibilities for o).

Figure 2: Choice of o; in dependence on X; for the definition of Zj.
Wh(e) ({ € INg, p € [1,00]) are the Sobolev spaces with

oW == 3 [10op, WP = Y [ Dol

jal<t 7€ jal=

for p < oo and the usual modification for p = oco.

The notation @ < b and a ~ b means the existence of positive constants €y and Cj
(which are independent of 7}, and of the function under consideration) such that ¢ < Csb
and C16 < a < ()b, respectively.

2 The original Scott-Zhang operator 7,

In this section we will recall the operator Zj defined by Scott and Zhang [25] and examine to
what extend anisotropic error estimates can be derived by simply carrying out the transfor-
mations more carefully. We will see that estimates of type (0, () are valid, but modifications
of the operator are necessary for estimates of derivatives of the approximation error.

As introduced in Section 1 we define Zpu via numbers a; = (Il,,u)(X;), where II,, is a
projection operator with respect to a certain subdomain o;, ¢+ € I. The subdomains o; are
chosen by the following rules (see also Figure 2 for the case of triangles).

o If the node X; is an interior point of an element eq C 7, then o; := eq.

o Otherwise X; is a boundary point of one or more elements e C 7, and o, is chosen as
some (d — 1)-dimensional edge/face ¢ of one of these elements:

— If there is an edge/face ¢ so that X; is an interior point of ¢, then o; is uniquely
determined by o; := .
— Ifnot, then oy is taken as one of the edges/faces with X; € <. However, we restrict
this choice in the case X; € 92 by demanding o; C 9€) then.
The L*(o;)-projection I1,,u € Vj|,, is defined by

Ju — M Lo = min [lu - o3 L(o)]] (2.1)

UEVh|o—i
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Figure 3: Illustration of S, in a two-dimensional example.

An explicit representation of (Il,,u)(X;) can be given by introducing the (unique) function

v € Vh|gi with
/ 77/)2'99]‘ = 52']‘ for ELH] € I. (22)
Then one finds easily that
(Lo u)(X5) = / u;. (2.3)
To see this recall that a projection operator P : X — Y C X can be defined via Pu =
> i(u, i) x ¢ where {¢;} is a basis in Y and {t;} is the corresponding biorthogonal basis

with respect to the scalar product (.,.)x in X. As already mentioned in Section 1, see (1.5)
and (1.7), the Scott-Zhang operator Zj, is now defined as

Zow =Y (Hou)(X;)-gi= (/ wi) L. (2.4)

7 7

Though II,,, is defined by (2.1) for u € L*(a;), this approach can be extended to functions
u € L'(o;) because the polynomial function ; is from L>(o;) such that the integral in (2.3)
is finite. That means that the approximation operator Z; : W*?(2) — Vj, can be defined for

1
(>1 forp=1, { > — otherwise. (2.5)
p

The restrictions to ¢ and p in (2.5) follow from a trace theorem and guarantee that u|,, €
L'(c;) also for (d — 1)-dimensional o;. In this paper, we consider only integer ¢, therefore
(2.5) is equivalent to

(>1, pell, 0]

Note further that the approximation operator Zj; does not only preserve homogeneous
Dirichlet boundary conditions but also inhomogeneous conditions u = ¢ on 9 (at least in
the sense of L'(09)) if g € V|aq.

Denote by

Se=int| {1 ¢ € Tp, e nE £ 0} (2.6)

the patch of elements around ¢ and note that o; C S, for all + with X; € €, see also the
illustration in Figure 3. (The mesh in the figure is not of tensor product type but in [25]
this was not required.) For isotropic simplicial elements e (hy ~ ... ~ hy) Scott and Zhang
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/I/ o

Figure 4: Illustration of the counterexample.

proved the following stability and approximation result [25]: If 1 < { < k+ 1 and p € [1, 0]
then the estimates

¢

Znws W) < Y b fus WH(S))| (2.7)
7=0

= Zpus W (e)| S BT us WHP(S,)] (2.8)

hold for 0 < m < (. Recall that k corresponds to the degree of the polynomials, see (1.13).
The anisotropic estimate corresponding to (2.8) would be

u— T W) 5 ST D (S, (29)
|a|=f—m

which obviously does not hold for m > 1 in the general setting of o; as introduced above,
see Example 1. But we will prove in Theorem 3 that (2.9) holds for m = 0.

Example 1 In this example we will show that (2.9) does in general not hold in the case
m = k = 1 and the whole range of ¢, namely ¢ = 1,2. Consider the situation as illustrated
in Figure 4, and let © = u(x1) be any function which is independent of the variable x5. This
leads to a; # aj, where a; and a; are independent of hs, that means

azhu
81'2

= h2_1f(u7 L1, hl)

€

with a certain function f. In view of 887“2 = 0 we obtain

lu — Zopu; WHP(e)] >

S rDr WIS = b

|o|=£-1

Consequently, for f(u,x1, k1) # 0 (which is the case in general) and hy = h§ with sufficiently
large s (depending on u) Estimate (2.9) can not be satisfied.

Before we formulate Theorem 3 we will prove a lemma which is useful not only in the
proof of Theorem 3 but also in the next sections. The lemma has similarities to the Bramble-
Hilbert theory which was developed in [13, 14] for isotropic elements and extended in [2] to
anisotropic elements. Here, the difference is that (in general) S, can not be transformed by
an affine mapping to a reference configuration S. The isotropic version of Lemma 1 is proved
in [25] using results from [17] and can easily be generalized to our case.
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Lemma 1 For any u € WP(S,) there exists a polynomial w € P, such that
Y RPN u—w) WS S Y R DTu WE(S, )],
|o|<l—m |a|=f—m

forallm=20,... (.

Proof By the change of variables x; = #;h; we transform S, to S.. According to (1.12)
and the tensor product character of our mesh we realize that S, has a diameter of order one.
Moreover, S, is star-shaped with respect to a ball B; with diam By ~ 1, or S, is at least the
union of a finite collection of (overlapping) domains 567] that are star- shaped with respect

to a balls B; with diam B; ~ 1. Let B C S, be any ball with diam B ~ 1, choose a function
¢ € C5°(B) with integral one, and define

= > [ow-wram Eoay e,
|or|<-1 )

T = (T1,..,24), ¥ = (J1,.--,74), a! = 1!+ aql. We can now apply Theorem 4.2 of [17]
with A = {a € IN? : |a| < (}, and obtain for all 3 with |3|=m, 0 <m < {—1,

1D7(a — @); W HP (S| S [DPa WP(S, ).

By transforming this estimate to S, and summing up over all 3 we conclude

Yo BT —wh LS s Y kD LS,
|o|<l—m—1 |a|=f—m

Y DN w—wi WSS Y A D s WS,
|o|<l—m—1 |a|=f—m

Because of D7w = 0 for |y| = £ the sum on the left hand side can be extended to |o| < {—m.
O

Corollary 2 Let my + ma = m < (. For any u € WH5P(S,) there exists a polynomial
w € PL_| such that

Z Z ho‘+ﬁ|Do‘+ﬁ(u—w);Wmhp(Se” < Z Z hoé+ﬁ|Da+ﬁu;Wm1,p(Se)|-
jal<ms |6 <t—m ol otz

Proof We reformulate the left hand side and split it in two terms.

Yo D BT —w) WS~ Y D (= w) WR(S, )|

| <ma |B]<l=m |8]<b—rmy
M RIDu—w) WS+ Y BD (= w); WR(S))
[6]<me ma<|5|<b—my
In view of my = m — mq, the first term can be estimated via Lemma 1. The second

term contains only derivatives of order higher than m, that means that w plays no role.
Consequently, w can be chosen such that

>3 DT = WS
|| <ma |B]<l—m

S DY D WS+ Y R D us WR(S,)]

~

[6]=m ma<|8|<b—my
S Y RDT WS+ Y Y A W (s, ),
lor|=m2 la|=ma 1<|8|<l-m

and the corollary is proved. a
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Theorem 3 On anisotropic meshes of tensor product type the Scott-Zhang approzimation
operator 7y, satisfies the following stability and approximation error estimates of type (0,0):

7o 13(E)| 5 (mease) 0 3 0 D%; 19(5,)], (2.10)
o<t

o Zuws I 5 (mease) 10 S b0 27(S,) 2.01)
|or|=¢

(=1,....,k+1, provided that u € W*P(S.). For (2.11) the numbers p,q € [1,00] and [ € IN
must be such that W5 (e) — L%(e).

Proof We start by concluding from fg, with; = 1 and ||@;; L™ (0;)|| = 1 that
|14s; L>(;)]| ~ (meas ;). (2.12)

Using the definition of Zju we find with (2.12) that

|z L) < Y

€l

oo [ woa o
< (meas e)l/q Z

/ U%"
i€l 17

< (meas e)l/q Z(meas o)) Hu; L (oy)]|,
il

where I, is the set of nodes contained in €. If o; has the same dimension as e (that means
X, is an inner node of e and o; = ¢) then we use the Holder inequality and find

[ L (o)

(meas )~ [u; L7 (o))

<
< measo; (meas e)_l/pHu;Lp(Se)H. (2.13)

If o; has lower dimension we use the trace theorem W5P(S,) — Wht(¢') — L'(a;) (¢/ C S.

is an element with o; C ?) in the form

|lu; L' ()| < meas o;(meas e)_l/p Z R D™y LP(Se)|| (2.14)
o<

which holds for ¢ > 1. Combining the last three estimates we obtain the stability estimate
(2.10). From this we derive for any w € P | C Pi

Ju—Znu; Li(e)|| < flu = w; L(e)|| + |Zn(u — w); L (e

S (mease)/17P N R D (w —w); L7(S.)|
o] <2
where we used the embedding W*?(e) — L%(¢). With Lemma 1 we conclude (2.11). O

In the remaining part of this section we will discuss to what extend the previous results
carry over to the operators C, and O which were considered by Clement [16] and Oswald
[23] for isotropic meshes. Recall from the Introduction that the difference between 7, Cy,
and Oy, is only in the definition of the subdomains o;. In particular, o; is d-dimensional for

Cy, and Oy, and for all 7 € 1.
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For Oj one can verify easily that all results in this section remain true, except that
Dirichlet boundary conditions are not satisfied. Moreover, Condition (2.5) can even be
omitted; the operator is defined for all u € L'(Q). Therefore Estimates (2.7), (2.8), (2.10),
and (2.11) hold for £ = 0 as well. Example 1 can be modified in the obvious way. (Z;, has to
be substituted by Oy, in all relations.)

For the Clement operator Cj, one has to decide whether 11, should be defined as in (1.6)
or (1.8). In both cases the same estimates as for O, can be proved. Note that we used in the
proof only Cpw = w for w € P which is satisfied. As discussed already in the Introduction,
Chrvp = vy 1s in general not satisfied for vy € Vj,.

Siebert [26] and Kunert [19] derived also some results for the operator C;, for anisotropic
meshes. However, they considered only the case k = 1, p = 2, and only subsets HX(Q2) C
W2(Q) of so-called mesh adapted functions. This allows them to prove global results of the
form

AN

Yoo = Cro, ()] 5 o WHA(R)],

AN

(0= o). (e)| S WL =1,

0
ox

Z hi,ege_l

where p, ~ min;—y, 4h;.. Using these estimates they prove asymptotic properties of a-
posteriori error estimators. For v they insert the (exact) finite element error u — w;,. Unfor-
tunately, the condition u — uj, € HX(2) can not be proved/tested in general.

To satisfy Dirichlet boundary conditions all the authors [16, 19, 26] considered modifica-
tions of Cp near the boundary which is small enough to keep the approximation order.

3 The operator S;,: A modification of 7, by choosing
small sides

3.1 Stability and approximation in classical Sobolev spaces

Example 1 showed that anisotropic estimates of type (1,¢) are not valid for the Scott-Zhang
operator in its general form. But for this example the following points were essential:

1. Long edges are chosen for o;.

2. X, and X, have the same x;-coordinate but the projections of o; and o; on the zq-axis
are different.

Because we have some freedom in the choice of o; we will investigate the operator in the
cases where one of these points is avoided. In this section we will use short edges (2D) or
small faces (3D) as o;. Large sides with identical projection are chosen in Section 4. The
resulting operators will be denoted by S;, (small sides) and L; (large sides).

Because the definition of the o; is different from that in Section 2 we will clarify this
here: o; is (not necessarily uniquely) determined according to the following three properties,
compare Figure 5.

(P1) o, is parallel to the xq-axis/xy, z5-plane.

(P3) There exists a face ¢ of some element e such that the projection of ¢ on the -
axis/x1, xo-plane is identical with the projection of o;.
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T2 T2

T 1
(a) Points where o; is uniquely determined. (b) Points where o; can be chosen
(here one choice).

Figure 5: Choice of o; in dependence of X; in the case of operator S;, k = 3.

In connection with (P3) we have to note that o, is not necessary an edge/face of one
element, see also Figure 5. Nevertheless, o; together with 77,?_1 or (P1)?!is a Lagrangian
finite element of dimension d — 1, which follows from the tensor-product character of the
elements e. For simplicity, we will use the terminology “o; is an edge/face”. We remark
in particular that in the case of simplicial elements and & > 2 there is no d-dimensional
finite element ¢/ C S, such that o; C ¢/. This implies that Py,, # Vil|,, and in general
I, vy # vils, for vy € V). That means that we lose Property 5 of Page 2. However, we need
in the proofs only Il,,w = w for w € Py ,, which is of course satisfied.

Because o; is said to be a short edge/face this implies
h]‘Shd in Se (jzl,,d) (31)

Note that in three dimensions and according to (1.10), (1.11), only elements with hy ~ hy <
hs can be treated. But this is sufficient to handle edge singularities, see Section 6.

We will see that for the operator S, anisotropic estimates of type (m,0), m < { < k+1,
can be derived. The main difficulty is to prove the stability estimate. The approximation
property follows then easily using Lemma 1 from Page 8. To elucidate the different techniques
for derivatives in x1- and x4-direction we first formulate and prove two lemmata. Then we
establish the main theorem of this section. Finally, we give an example which shows that
estimates of type (m,m), 1 <m <k + 1, are impossible.

Lemma 4 The derivative in x4-direction satisfies an (1,1)-estimate. The relation

H—Shu Li(e)|| < (mease)/77VP |u; WEP(S,)|

8:1;d

holds for w € WY(S,) and all p,q € [1,o0].

Proof Using the definition of the operator S;, compare (2.4), the Holder inequality, Estimate
(2.12), and the trace theorem (2.14), we obtain for all w € Pg

-z g 7 _ g
Hal’dShu LY ‘ Hal'dSh (u—w); L(e) ‘
dei .,
se )| [ =
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S hy'(mease)' /Ty flu—w; L (o)) |lvhi; L (00)|
iel.
< h;'(meas e)/a Z(meas o;)(meas ¢) 1P Z R D% (u — w); LP(S.)||(meas o) ™"
iele |OZ|S1
< hy'(mease) /7PN T R D (u = w); LP(SC)]|.
lor|<1
Using Lemma 1 with m = 0, £ = 1, and relying on (3.1) we obtain the assertion. a

Lemma 5 The derivative in xq-direction satisfies an (1,2)-estimate. The relation
a—Shu Li(e)|| < (mease)t/s1/P Z R Du; WHP(S,)|

o<1

‘ 0

holds for w € W*2(S,) and all p,q € [1,c0].

Proof Let w = w(xy4) € P}. Then we get in analogy to the proof of Lemma 4

< h7(meas ¢)?(meas o;) Z lu — w; L (oy)]|-
€1

_S Lq
H 8:1;1 it

Introduce now k + 1 (simply connected) (d — 1)-dimensional domains (; C S. such that for
all o; (¢ € I.) there exists a (; D o,. Note that (; (j =0,...,k) is isotropic with a diameter
of order hy. Consequently, we obtain

H—Shu Li(e < hl_l(mease)l/q (measo;)” ZHu—w LY(¢)||

8:1;1

< hy'(meas e) (measo;)” Z Z R D™ (u — w); L' ()|

7=0 |a|<1
aqg=0

Observe now that w = w; = const. on ;. On the other hand, because the (; have different
x4-coordinate, we can define w from given w; (j = 0,...,k). So we can use the (d — 1)-
dimensional analogon of Lemma 1 to choose w; € PJ~! such that

D DN (= wp)s LG S Y D s L)
<1 =
aqg=0 aqg=0

and to conclude with the trace theorem (2.14) (applied for each (;)

Ha—thhu Li(e < (meas e)l/q(measm z; l; [ D%w; L (¢ (3.2)
J aqg=0
< (mease) /77PN TN RP| D LP(SL)|. (3.3)
jal=1 |5]<1
Xg=
Thus the proposition is proved. a

By analogy we can treat the derivative with respect to x5 in the three-dimensional case.
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Theorem 6 Assume that h; < hg (7 =0,...,d). Then the modified Scott-Zhang operator Sy,
satisfies on anisotropic meshes of tensor-product type the following estimates of type (m,():

[Shu; W™(e)] < (mease)/*7P N " b D%u; WR(SL)], (3.4)
|or| <l

lu— Spu; W™i(e)| < (mease)/171P Z R D%y W™P(S,)|, (3.5)
lo|=t—m

0<m<(—1<k, provided that u € W*P(5.). For (3.5) the numbers p,q € [1,00] must be
such that W5 (e) — W™i(¢e). For m > 2 we exclude triangular and tetrahedral elements.

Proof Consider first the stability estimate (3.4). For m = 0, (3.4) can be proved as (2.10).
For m =1, (3.4) is proved in Lemmata 4 and 5. Let m > 2. Consider a multi-index v with
|v] = m and define my := 44, m; = m —my. For arbitrary w; € 77d !, x P} (that is why we
exclude simplicial elements) and w, € P%_| we obtain in analogy to the proof of Lemma 5

1D Spu; LA e)|| = HDWSh((U—wz) —wi); L(e)]
< h7"(meas €)'/ (meas o;)” Z |lu — wy — wi; L' (a;)]|
€1
k
< h7"(meas €)'/ (meas o;)” Z Z RN D (u — wy — wi); L'(E)]|-

] =0 |a|<my
ag=0

Then we determine w; € P21 (j =0,...,k) such that

mi— 1

Y RDN(w = —wi)i LGN S Y AIID (w = wa)s LN

|a|<mq |a|=mq
aq=0 aq=0

Note that the w; depend on (u — ws) and wy is still to be chosen. The polynomial wy is now
determined by the w; (5 =0,..., k) such that the estimate can be continued by

|D”Spu; L(e)|] < by m2(mease)1/q (measo;)” Z Z | D% (v — wa); LNEG)|- (3.6)

J=0 lal=mq
ad:O

Thus the factor h7™" is eliminated. We proceed now as in the proof of Lemma 4. Using the
trace theorem (2.14) for all j, o and with { —my; > ¢ —m > 1 instead of ¢ we conclude

ID7Spus Li(e)|| < hy™(mease) V"2 N N RP[D (1 — wy); L7(S. )|
lal=m1 |8]<{—m1
ad=0
< hgm(mease)l/q_l/p Z Z hﬁ+5|Dﬁ+5(u—wg);Wml’p(Seﬂ.

[8]<t=m |B|<me
Using Corollary 2 (Page 8) we obtain

ID7Spus L (e)|| S hy™(mease) /77PN " N RO DOy (S, )|

|6]<l—m |Bl=ma

(meas ¢ )41/ Z R | Dou; WP (S,)).

18] <t—m

AN
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T2

—h 0 h 1

Figure 6: Illustration of Example 2.

Thus (3.4) is proved. Estimate (3.5) is a consequence of (3.4): For all w € P¢ | we have

u = Spus W(e)] < Ju—w; W™(e)| + |Sh(u — w); W™(e)]
S (mease) 7YY T BID (u—w0); W (S

] <t—m

and with Lemma 1 the proposition is proved. a

Finally, we want to give an example that
[Shus WH(e)] S flus WH(Se) | (3.7)

does not hold for general u € W'?(S.).

Example 2 Consider £ = 1 and a triangle with the vertices X; = (0,0), X5 = (h,0), and

X3 =1(0,1), and let o4 = (—h,0) x {0}, 02 = (0, h) x {0}, compare Figure 6. For u = r* sing

(r, 0 are here polar coordinates) we obtain

h
u|01 = |x1|6 = Hcr1u Xl :/ ( _> ~ hsv

Uy, =0 = (Hyu)(X2)=0.
Consequently,

8Shu
~ hs—l
8:1;1 ’

1Spu; Wh2(e)| > h*(mease)? = AY2 &

forh—>0,€<%. But

1
Jus WH2(S,))? < / / Usin £)2 rdfdr ~ / 2D r < oo
0

for € > 0. Thus (3.7) does not hold.
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3.2 Stability in weighted Sobolev spaces

We have seen in Example 2 that Spu does not satisfy an estimate of type (1,1). However,
Sy can be applied in some situations where u ¢ W?*?(S,) for some p we are interested in.

We restrict ourselves to the three-dimensional case, consider an arbitrary domain G' C IR®
and introduce cylindrical coordinates via x; = rcosf, x5 = rsinf. Define for { € I[Ny,
p € [1,00], # € IR, the weighted Sobolev space

VING) = {0 € DI(G): o VTG < oo}, (3.8)
los Vi (G o= Z/ A=t peg P, (3.9)
v <2

Such spaces are relevant in the treatment of singular functions of the type v = r*sin A\d or
v =r1r"cos M, XA € (0,1). Notice that

v € W*2(G) = s<1H4A

veVIHE) Vs>0 = p>s—1-\

For our application in Section 6 we need the stability of the modified Scott-Zhang operator
in these weighted spaces.

Lemma 7 Let m be an integer and 3,p,q be real numbers with 0 < m < k, § < 2 — %,

B <1, pqg € [1,00], and assume that the xsz-axis proceeds through S.. Then for u €
Wme(S.)N Vﬁm“’p(se) the stability estimate

[Snu; W9(e)| < (meas )/ PRI N N BT [D s V(S| (3.10)
|a|l=m—1 |t|=1

holds. For m > 2 we exclude tetrahedral elements.

Proof We start with Estimate (3.6) which was obtained in the proof of Theorem 6. Let ~
be a multi-index with |y| = m, m; = m — 73, and w,; € P%_,. Then there holds

|DYSpus; Li(e)|| < hy ™ (mease) /q (measo;)” Z Z | D% (u — wy); LEG)- (3.11)

7=0 la|=m—y3
a3 =0

Let v3 > 0, then we can continue, similar to the proot of Theorem 6, with the trace
theorem because we assumed u € W”P(S,).

1D Spus; Li(e)|| < b3 (mease) 771N N B DH (u = w,); LP(S)]

lal=m—a |§]<~s
az=0 -

Using Corollary 2 we obtain
1D Spu; Li(e)l| < h3 ™ (mease) 0N N b0 DH s LP(S, )|
|0<|:771573 |6|="3

< (mease) /7P N | DYu; LP(S, )| (3.12)

|ar|=m
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We estimate the right hand side via the trivial embeddings Vﬁl’p(Se) — Vﬁoipl(Se) — LP(S,),

$ < 1, which leads with (3.1) to

S D u LS~ > Y D LP(SL)||
lal=m

|a|l=m—1 |t|=1

< RPN D s (S,
|a|l=m—1 |t|=1
< AT Y R V(S

|a|l=m—1 |t|=1

which is the desired result.

(3.13)

For 43 = 0 we use (3.11) with wy = 0 and estimate the L'((;)-norms against weighted

norms via the Hélder inequality:

los LI < Mlr=5 LG - [lros L)

(3.14)

with p’ from ;—) + ]% = 1. The L?(¢;)-norm of =¥ is finite if and only if p'8 < 2 which is

equivalent to § < 2 — %. Using measo; ~ meas(; ~ h for all i and j, and r < hy we get

=25 LG S AT~ (meas o) PR,

(3.15)

The application of W1#(S,) — L?((;) to r’v implies the trace theorem Vﬁl’p(Se) — Vﬁo’p(fj)

which leads to

1705 L2(G)|| £ (meas :) /7 (meas )7 Y~ by ™FIhe 7B Do 12(S, ).

|s|<1

Combining these estimates we obtain

Jos L(G)) | < meas o (meas )7y 37 B o141 pros 1o(S, )|

|s|<1

and thus with (3.11)

k
|1D7Spu; L (e)]| < (mease)?(meas o) Z Z |D%u; LY(¢)||
:0 :
< (mease)l/q_l/phl_ﬁ Z Z } |h5HTﬁDa+SU;Lp(Se)H'

lal=m |s|<1

The last step to derive (3.10) is done in analogy to (3.13) using

STS R e Dt (5|

[tl=1 |s|<1
= D D RID T us LS 4+ Y bl D s LS|
lt|=1|s|]=1 lt|=1
S DD RO LS 4+ Y b T D LS, )|
lt|=1|s|]=1 |s|=1
~ Y RD s V(S]]
|s|=1
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T2 °. °.
L1
(a) Points where o; is uniquely determined.
L2
L1
L2
L]
L]
L1

(b) Two choices for o; for points on vertical mesh lines.

Figure 7: Choice of o; in dependence of X, in the case of operator Lj.

4 The operator L;: A modification of Z; by choosing
long sides with a projection property

In contrast to Section 3 we will now employ large edges/faces and denote the resulting
operator by Lj. The notation is used as follows: We keep Properties (P1), (P2), and (P3)
from Page 10 and simply turn the relation (3.1):

h]‘Zhd in Se (jzl,,d) (41)

But in correspondence with Item 2 at the beginning of Section 3, we do not have so much
freedom for the choice of the o; as in the case of 5. We must assume the following projection
property (P4), compare also Figure 7.

P4) If the projections of any two points X; and X, on the xi-axis/x{, zo-plane coincide
pProj y P J ) P
then so do the projections of o; and o;.

We can prove the results of Theorem 6 for this case as well. Moreover, these results
extend to the case m = (. But in contrast to the needle elements of Section 3 the three-
dimensional elements are now flat, oy ~ hy > hs. The idea for this choice of o; was found
in [12, Chapter 5] where the special case of rectangular and brick elements was considered
for k =1, p = g = 2. We extend this theory to more element types and to general k € IV,
p,q € [1,00]. Our proof differs from that in [12].

We start as in Section 3 with the separate consideration of the stability of first derivatives
of Lyu. This time the derivative in x;-direction is the simpler one.

Lemma 8 The estimate of type (1,1)

E

Lpu; Li(e)|| < (meas e)l/q_l/p|u; WP(S), n=1,...,d. (4.2)

ox,,

holds.

Proof For n =1,...,d — 1 the proof can be carried out with the same arguments as the
proof of Lemma 4. The only difference is that the role of x4 and hy is now played by x,, and
.
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For the case n = d we will reformulate L,u. For this consider first a one-dimensional
situation, that means a single finite element formed by an interval (£,7n). Let ¢;, 0 =0,..., k,
be the nodal basis functions in (&, 7). We change now to a new basis

7=0
Consequently,
k k-1
Y aidi =) (@i —ama)yi + a,
=0 =0
where we also used that Ef:o ¢; = 1. Note further that
i L=EmIl S 1 I L&l S =€ (4.3)

We use this kind of a new basis in the case of a rectangular element e = (&1,71) X (&2, 72).
The nodal basis functions are (for simplicity with a double index)

S‘Qi,j(xhl?) = qﬁi(xl)gbj(x?)v 6, =0,....k, (4'4)

where ¢' and ¢; are the nodal basis functions with respect to (&1, 7;) and (&2, 72), respectively.
Thus

k k
Lyu = Zzaiﬁi(%)%(@)
o -
= Z ¢Z(x1) ( 4 (a” a”.|_1)X](l'2) + a; k) )
ST
0—:1:2Lh“ = . ¢'(x1) 4 (ai; — aijt1)X;(2). (4.5)

Because of Property (P4) the subdomains o, ; belonging to the node (¢,7) depend only on .
We can write

dij = / %/)51?1 wlvy])dxlv

y]‘l‘l au
;5 — Ui jp1 = / Yy :1;1/ 5 — (&1, y) dyday, (4.6)
Yy L2

k—1
M lai; —aii| <
7=0

where y; is the value of the x9-coordinate of points X; ;. The proof of (4.2) is now standard:

Du
281'2 ’

P kook—1 '
ozt £ 33 lows —awsal- I )
=0 7=0
< h (mease)l/qzk:/ 77/)%
1=0 e
: Ju
< hy'(meas e)l/q"'l_l/pZ(meas o) ‘ a—xz;[/p(se)

=0
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o A

M2 1

&1

é1 77:1 11
Figure 8: Illustration of the case of an triangle.

For pentahedral and hexahedral elements the proof is similar. We only replace (4.4) by
@i (71, T, 3) = ¢ (w1, 29)bi(x3), i=0,....K, j=0,...,k

with appropriate basis functions ¢'(x1, ) and
i 5 i k+2
K =(k+1)"—=1 for hexahedra, K = 5 — 1 for pentahedra. (4.7)

In the case of simplicial elements we have to modify these considerations slightly. We
will explain it in the two-dimensional case. Consider an element e with nodes Xj ;,

© T {(xth)iflelth €2 <y <y — ( 51)772 gj}

Xi; = <§1 + %(771 —&1), &+ ( fz)) )

and nodal basis functions ¢; ;, ¢ =0,...,k, J =0,...,k — ¢, as illustrated in Figure 8. The
new basis functions are

J
Xiyjzz@i757 ZZO,,k7]:O77k_Z
5=0

We get
ki ko fh—io1
Lyu = ZZ%% = Z ( (aij — aijy1)xij + ai,k—iXi,k—i) ,
=0 j=0 =0 7=0
OLpu LN 195%
h ik
|5 o) ( Z o5 = gl | s 176 + o] | ;Lq<e>H) -

To conclude (4.2) with the same arguments as above it remains to show that

aXi,k—i
81'2

For this we observe that y;_; is uniquely determined by

Nik—i(Xs,j) = {

Thus yix_i = ¢'(x1) with ¢° in the sense of (4.4), and (4.8) is proved.

The proof for tetrahedral elements is analogous. O

=0 forallz=0,... k. (4.8)

1 fors=1u, j=0,....k—1,
0 else.
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Theorem 9 Assume that h; > hq (j =0,...,d). On anisotropic meshes of tensor-product
type the modified Scott-Zhang operator Ly, satisfies the following estimates:

[Luu; W™i(e)| S (mease) /172 lus W2(S, )], (4.9)
= Lyus W(e)| < (mease) /777N " h | Dou Wr(S,)), (4.10)
|a|=f—m

0<m< (1< (<k+1, provided that u € W5P(S,). For (4.10) the numbers p,q € [1, o0]
must be such that W5P(e) — W™ (e).

Proof Estimate (4.10) follows from (4.9) via Lemma 1 as it was done for S, in the proof of
Theorem 6. So the main point is to prove (4.9). For m = 0, this can be done as in the proof
of (2.10). The case m =1 is treated in Lemma 8.

Let m > 2. Consider a multi-index v with |y| = m and define my := ~4, my := m — mo.
In the proof of Lemma 8, we made for the case ms = 1 a transformation of the nodal basis
@i; to a basis y;; in order to obtain differences of first order:

6 K k-1
Bes Z Z Gigia = 7= 2 P (05 = )X

=0 5=0

=0 7=0 7

This process is repeated until differences of order ms, are created: For simplicity consider
again the one-dimensional situation. We define recursively coeflicients agn) and functions

Xgn)7Z':()’_”’k_n?n:07,..,m2,by

al = a, agnﬂ) = agn) —agi)l, 1 =0,....k—n,
X? = @, Xgn-l—l) = Xgn)7 Z :0,...,k,
5=0
and obtain .
am2 am2 —— (m2) (m2)
Do ;m% = Som ; a;" ;" (4.11)

We get this by induction in analogy to the proof of Lemma 8. The only point is to prove
that

n+1
;+1X(+)—0 forn=0,...,my— 1.
xn
This can be shown for any fixed n via X£n+1) = Eizo (2 5+”)X§, ) (proof by induction) which

yields Xgﬂ'l) = Ef:o (k_:"”)cps, Xgﬂ'l)(XT) = (k_:;"'”), r=0,...,k, Xgﬂ_l) € PL. From
(n+1) (n+1) (n)

A = )\ this gives by induction " € P for i = k,k —1,...,k —n. Thus
aaxnji XEHH) =0fore=k—mn,..., k.

Consider now rectangular elements (d = 2) and transfer this basis transformation to the
xo-direction. We derive (again by induction) from (4.11)

am2 k k— mo
ZZ%% - o > A (4.12)
=0 7=0 =0 ;5=0
The so created differences agzﬂ) = agz) — agi)m are used now to establish an integral repre-

sentation; compare (4.6):

)
- / i) / O gy + m) dd,
04 0 al’d
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0 = y;+1 — y; 1s assumed to be independent of 7. We continue recursively and obtain

a / ¢x1 [/ 6 :1?1,y]+771 dny — /8 51?179]+1+771)d771 day

/ Pi( / / 52 le,yy+n1+nz)dmdnzdx1,
agz) _ (—1)”/ ¢Z(x1)/ / W(l'l,yj‘F?h‘|‘"“|‘77n)d771“‘d77nd$1-
04 0 0 Ly
—_——

n times

Using (2.12) and 6 ~ hy we obtain

la{)] < (meas o) A

Replace now o; by ¢ := min;—_g
(4.12) we conclude that

.....

1D Lyu; Lie) || = [[D"La(u — w); L (e)]]
k k—m2
< 22 Mo el
=0 ;=0
k k—m2
< h77(meas e)l/qz Z |a£?2)|
=0 ;=0
- 1/ Ctymae || O 1
< h77(mease) /! (measo)” b} 527 (u—w); L'(S)
Lq
am?
< RTVRAT2(mease) /TP W(u —w); LP(S,) (4.13)
Lq
am?
< hT™ (meas e)/e7P Z R || D R (u—w); LP(S,)

ol <m—ms

Via Corollary 2, (4.1), and m = my + my we obtain

ame
1D s Li(e)|| S A7 (mease)' /=ty = pe D“angj;m(se)
|o|=m—ma2
< (mease)l/q_l/p Z gx?’[p(se)

|o|=m—ma2

< (meas e)V TPy WS,

and (4.9) is proved for rectangular elements. The proof for all other types of elements is
similar using the ideas explained in the proof of Lemma 8. O
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5 The operator E;: Choosing long edges in the three-
dimensional case

5.1 Stability and approximation in Sobolev spaces

As already mentioned in Section 4 we will now investigate the general three-dimensional
situation of independent mesh sizes hy, hy, and hz. In order to obtain in Subsection 5.2 a
notation which is compatible with that in Subsection 3.2 we let

hy < hy < hs. (5.1)

Assume, for simplicity, tensor product meshes in the sense that transformation (1.10) is
reduced to

T, = hiﬁi}i, (Z == 1,2,3) (52)

The investigation of the operators S, and L, was based on taking o; as isotropic faces,
that means that hy is of the same order as hy or hz. In [12] it was suggested to overcome
this restriction by taking one-dimensional o; but this was not elaborated thoroughly. We
will now investigate which estimates can be obtained in this case. We assume the following
properties which are analogous to the ones in Section 4.

(P1") o, is parallel to the x3-axis.

(P3’) There exists an edge ¢ of some element e such that the projection of ¢ on the x3-axis
is identical with the projection of o;.

(P4’) If the projections of any two points X; and X; on the w3-axis coincide then so do the
projections of o; and o;.

The corresponding operator is denoted by E, : W5?(Q2) — Vj. Note that it is defined
only for u € W*P(Q) with

2
(>2 forp=1, { > — otherwise, (5.3)
p

to guarantee that ul|,, € L'(o;). Condition (5.3) can be reformulated to
(>2, pefl,o] or (=1, p€ (2, (5.4)
Theorem 10 Assume that (5.1) and (5.2) are fulfilled. Then the operator Ey satisfies for
all g € [1,00] the following estimates:
|Epu; W™(e)| < (meas ) /1717 Z R D%y WTP(S,)| (5.5)
o<1
ifm>1orp>2 and
[Enus; L(e)||  (mease) /7717y b D%us L7(S,)| (5.6)
o<
with ( and p satisfying (5.4). The approximation error estimate
lu — Epu; W™(e)| < (meas ) /177 Z R D%y WTP(S,)| (5.7)
|a|=f—m

holds if 0 < m < { —1 < k, p satisfies (5.4), q is such that W*P(e) — W™i(e), and
u € Wh(S,).
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We will see in the proof that for certain derivatives DVE,u the stability estimate (5.5)
can still be improved.
Proof We prove the theorem for brick elements. Other element types are treated similarly,
see the discussion in the proof of Lemma 8. We have to consider different cases separately.
First, let 4 be a multi-index with |y| = m and v # 0, 72 # 0. We use the difference
technique developed in the proof of Theorem 9 for both directions x; and x,. In analogy to
(4.13) we obtain for all w € P2 _,

D" Exu, Li(e)|| = [|D"En(u —w), L*(e)]
o g
Oz 0x)

< h;wz(mease)l/q—l/p Z ho‘|Dau;W71+W2’p(Se)|'

< ATVATRY (meas e) /4P

(u —w); L(Se)

lor|<vs
Using Corollary 2 and (5.1) we conclude
|D"Epu, L(e)|| < h3™(mease)t/s71/P Z R D% u; Wht2r(S )|

lel=3

< (meas e)V TP WS,

In a second case we assume v, # 0, n =1 or n = 2, but 93—, = 0, 73 # 0. Then we can
use the difference technique only within some faces f; (¢ = 0,..., k) which are parallel to the
2., x3-plane. Defining f := Uf:o fi we find as above that for all w € P2 _,

[D"Epu, Lie)| = [D7"En(u — w), L*(e]]]

AN

h=7 R (meas ¢)Y/?(meas f)~L/?

Tt (. 6

Using the trace theorem W?(S,) — LP(f) and again Corollary 2 as well as (5.1) we obtain
|07 By, ()] € K™ (meas )10 S B D (u — )y (S,
lor|<vs
h3 ™ (meas ) /171 Z R D%y WP(S, )]

lel=3

< (meas )Py WS, ).

AN

Consider now the remaining pure derivatives. Let first be v, = m, n = 1 or n = 2,
73 = 0. Estimate (5.8) holds in this case as well. By using p = 1 and w = 0 it reads now

1D Eq, L2(e)]] S (meas e)/4(meas £)~ | 07w ()]l (5.9)

With the trace theorem W'?(S,) — L'(f) for all p € [1, 00] we conclude the assertion (5.5).
Finally, for 43 = m, 1 = 72 = 0, the proof of the stability is completely analogous to the
proof of Lemma 4. We have for all w € P2 _,

|D"Epu, L(e)|| < h3™(meas e)/ Z(meas o)) Hu — w; LYoy
il
The trace theorem W™ t1P(S,.) < L'(o;) (which is the reason for the assumption m > 1 or

p > 2) and Corollary 2 yield

|07 B, L) S b3 (mease) /=7 ST ST R DM (u — w): L7(S,)|

o] <m |8]<1
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S by (mease) /PN TN et DBy 7S,
lo|=m |8]<1
< (mease)t/e71/P Z B2 DPw; W™ (S,)].

I31<1

Note that in this last case (y5 = m) for m > 2 and for m =1, p > 2, it can even be proved
that
|D" By, L1(e)]| < (meas )= 7]u; WS,

because then W™(S,) — L'(o;) holds.

Estimate (5.6) is trivial since

[, L(e)] S (meas )73 (meas ;)™ [lus L' (03]
el

and the embedding W*?(S.) — L'(o;) holds just for ¢, p satisfying (5.4).
Estimate (5.7) is concluded from (5.5) and (5.6) as in the proof of Theorem 6. O

It is interesting to point out that the proof shows that
|D"Epu, L(e)]| < (meas e)l/q_l/p|u; Wm™P(S)| (5.10)

holds for v with |y| = m if at most one of the numbers 77,72, 73 vanishes. OQur way of proof
does not work for pure derivatives. Consider for example the case v = (1,0,0). To prove
(5.10) with p > 2 (Eju is defined only for u € W?(Q) with p > 2.) one would have to skip
the trace on f and to use a trace theorem in the form (2.14). But this leads to

1D, ()| b (meas )97 37 %[ D% s L2(5,)]

o<1

with some diverging terms at the right hand side. The case v = (1,0,0) would be tractable
only if
| DBy, L(e)]] £ (meas €)/1=7 D7 L7(S.)|

was valid. It is not clear whether this estimate holds.

Remark 1 Our motivation for introducing the operator E; was to be able to treat the
general case of three independent mesh sizes hy < hy < hs. Of course this includes the special
case hy ~ hy. We point out that in this case the transformation (5.2) can be generalized
to (1.10), (1.11). To see that then the statement of Theorem 10 is still true consider an
arbitrary element e € 7, and denote its projection into the xy, zo-plane by (. Because 7}, is
of tensor product type, and because all o; are perpendicular to the xq, x5-plane, it suffices
to choose S. such that its projection to the a1, zy-plane is again ( (and o; C S.), compare
Figure 9. Via the transformation

L1 -1 : Ty Ty
KB, 10 v T

To =1 ... L9 =B L9 5

T3 0 o1 5/’3 JN/’3

B. from (1.10), the domains e and S, can be mapped to € and S. = S: which satisfy (locally)
the assumptions made at the beginning of this section. That means that Theorem 10 holds
true with respect to the coordinate system i, %5, z3. By observing that

det B~1, |[B]~1, [|B7Y~1

we find that Theorem 10 extends to the meshes described above.
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Figure 9: Illustration of the possible choice of a smaller S, in the case of Ej, (three element
types).
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5.2 Stability in weighted Sobolev spaces

As in Subsection 3.2 we do not have an estimate of type (1, 1) for Ej,. Therefore we consider
a stability estimate for functions from weighted Sobolev spaces V;’p(se). These spaces were
introduced in (3.8), (3.9). To be able to apply the transformation (5.2) to the weight we will
restrict the consideration to the case hy ~ hy. However, we can then relax (5.2) to (1.10),
see Remark 1.

Lemma 11 Let m be an integer and [3,p,q be real numbers with 0 < m < k, p,q € [1,00],
B <2— %, B < 1. Then foru e W™P(S. )N Vﬁmﬂ’p(s@) the stability estimate

[Epu; W (e)| < (mease) V9P RPN " N TR DF 0 VIS (5.11)

|a|l=m—1 |t|=1
holds if m > 1 orp > 2.
Proof Observe that the relations

[[o; LY(Se)| 7= LY (S| lrPv; L (S, (5.12)
Hr_ﬁ; Lp/(Se)H (meas Se)l_l/phl_ﬁ (5.13)

(compare (3.14), (3.15)) lead to the embedding

<
S

2
Vﬁmﬂ-Lp(SS) N ‘/Om+171(56) N Wm—l—l’l(se), ﬂ < 2 ———
p

that means v € W™tH1(S,). Therefore we can apply Theorem 10 (see also Remark 1) with
p=1:
|Enu; W(e)| < (meas )71y~ o[ D%u; W™(S,)| (5.14)

o<1
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Notice further that (5.12), (5.13) lead to the estimate
2
o3 NSNS (meas 8.Vl o; 17(S,)), 8 <2 — 2.
p

So we get

DD kD e LS|

lo|<1 |t|=1

< (meas S TR N TR rf Dt LS| 4 Y hallr? T DR LP(S.)|

lo|=1 |t]=1 [t|=1
< (meas S)' VPR TR Do V(S
|s|=1
Together with (5.14) the assertion (5.11) is concluded. O

6 Application to the Poisson problem in a domain with
an edge

Consider the Poisson problem with in general mixed boundary conditions in a three-dimen-
sional polyhedral domain €. It is well known that the solution has in general singularities
near corners and edges and near the lines where the type of the boundary condition changes.
As a result, the finite element method on quasi-uniform meshes loses accuracy. The rate
of convergence is smaller in comparison with that for problems with smooth solutions. To
compensate this, specially adapted numerical methods have been developed. The singular
function method which is well developed for two-dimensional problems is used for three-
dimensional problems in [11, 20]. However, mesh refinement techniques seem to be easier to
handle. Refined isotropic meshes were considered in [3, 9, 21] for the finite element method
and the boundary element method but this approach leads to overrefinement near edges.
This overrefinement can be avoided by using anisotropic meshes in the neighbourhood of
the edges [2, 8, 24].

In [2, 8] we considered the Dirichlet problem for the Poisson equation over a prismatic
domain

N=Gx1 (6.1)

where G C IR? is a bounded polygonal domain and I := (0, z) C IR is an interval. This re-
striction was made there because we wanted to focus on edge singularities, and such domains
do not introduce additional corner singularities [27]. The finite element meshes in [2, 8] were
of tensor product type, graded perpendicularly to the edge and quasi-uniform in the edge
direction. Pentahedral meshes seem to be natural but in that papers the pentahedra were
divided into three tetrahedra each. Pentahedral elements were used in [7], an unpublished
version of the paper [8]. Note that this class of domains and the meshes exactly match the
assumptions made in Section 1 for the present paper.

The estimation of the finite element error in the energy norm can be reduced to a general
approximation problem due to the projection property of the finite element method. In the
previous papers the interpolation error was investigated and it was shown that the family
of meshes considered there is suited for the treatment of edge singularities. However, two
points are still insufficient: First, the assumptions on the regularity of the right hand side
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| of the Poisson equation were quite high in [2]. This drawback was partially removed in
[8], but the case f € L*(Q) is still not treated. This is deficient because Nitsche’s method
for obtaining an L?({))-estimate of the finite element error is not applicable. Second, the
refinement condition in [8] is slightly stronger than in [2]; this seems to be unnecessary. The
aim of this section is to prove optimal estimates of the finite element error in the W*'?(€)-
and the L?(2)-norm for f € L*(Q) and the weaker refinement condition of [2]. This is now
possible due to the local anisotropic estimates for the quasi-interpolation operators.

The plan of this section is the following. First we pose two model problems which differ
in their boundary conditions. Then we introduce the family of finite element meshes. The
global quasi-interpolation error is estimated in the W'?(2)-seminorm. Because in general
the operators do not preserve Dirichlet boundary conditions the model problems are chosen
such that in one case S, and in the other case Ej are appropriate and no modification of
the operator is necessary near the boundary. The main result of this section can then be
concluded, namely the finite element error estimates. Some remarks on other than the model
problems complete this section.

Consider a prismatic domain  as described in (6.1) and denote I'g := {x € 990 : 25 =
0oras = zo} and I'yy := {o € 00 : 0 < 23 < 2} = IQ\ I's. Then we treat the mixed
boundary value problems

—Au=finQ, u=0onIp, g_u =0 on I'y, (6.2)
n
) du
—Au=finQ, u=0on Iy, ™ =0 on I's, (6.3)
n

with f € L*(Q). We assume that the cross-section G has only one corner with interior angle
w > 7 at the origin; thus { has only one “singular edge” which is part of the xs-axis. The
case of more than one singular edge introduces no additional difficulties because the edge
singularities are of local nature.

Let Vo € W12(Q) be the space of all Wh?*(Q)-functions which vanish at the Dirichlet
part of the boundary (different for problems (6.2) and (6.3)), and introduce the bilinear
form a(.,.): Vo x Vo — IR and the linear form (f,.) : Vo — IR by

wo)i= [ Vo (foy= [ 1o

The variational form of problems (6.2) and (6.3) is given by
Find u € Vg such that a(u,v) = (f,v) for all v € V. (6.4)

The existence of a unique variational solution u follows from the Lax-Milgram lemma.
The properties of the solution v can be described favourably using the weighted Sobolev
spaces V;’p introduced in Subsection 3.2.

Lemma 12 The solutions u of both problems (6.2) and (6.3) satisfy

ou ou , 7

o, € V9, H—, VA S I L@, i=1.2 8>1- — (6.5)
ou ou

e, |2 ol (66)

Proof The edge singularities can be described by (6.5), (6.6), see for example [18, §26 and
§30] or [8, Section 2]. Corner singularities are not present which can be shown by mirror
techniques, compare also [27]. O
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L—]

B/

Figure 10: Example for an anisotropic mesh.

We define now a family of meshes 7, = {e} of tensor product type by introducing in G
the standard mesh grading for two-dimensional corner problems, see for example [22]. Let
{n} be a regular isotropic triangulation of G; the elements are triangles. With A being the
global mesh parameter, u € (0,1] being the grading parameter, r, being the distance of  to
the corner,

rpi= min (2?4 22)/2,
(z1,@2)€7

and some constant R > 0, we assume that the element size h, := diamn satisfies

pe for r, =0,
by ~ hr}f” for 0 <r, <R,
h for r, > R.

This graded two-dimensional mesh is now extended in the third dimension using a uniform
mesh size h. In this way we obtain a pentahedral or, by dividing each pentahedron, a
tetrahedral triangulation of €, see Figure 10 for an illustration. Note that the number of
elements is of the order 472 for the full range of . The notation is extended to the three-
dimensional case as follows. Let r. be the distance of an element e to the edge (x3-axis).
Then the element sizes satisfy

ht/e for r. =0,
hien~hye~< hrlmt for0<r.<R, hze~h. (6.7)
h for r. > R.

We introduce now the finite element space Vg, := V;, NVy where V), is defined in Section 1.
The finite element solution uy is determined by

Find uy, € Voi, such that a(up,vy) = (f,vn) for all v, € Vop. (6.8)

Remember that Vp;, is adapted to the Dirichlet boundary condition and therefore different
for Problems (6.2) and (6.3).

Theorem 13 Let u be the solution of (6.2). Then the estimate
u = Shus WHQ)] S L f L2 Q)]

holds if p < Z.
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Proof We reduce the estimation of the global error to the evaluation of the local errors and
distinguish between the elements far from the edge M and the elements close to M.

For all elements ¢ with S. N M = @ we can use Theorem 6 with m = k& = 1 and
= Su; W) < Y A D u WHA(S))
Icvl—1
1 2 du 1,2
th er (55) + h35 Y ‘/07 (56) (69)
' 81’3
for any # > 1 — Z. Here, we have used the fact that r. < dist (5., M) holds, which follows
from

re < dist (Se, M) + hy o ~ dist (S., M) + h[dist (S., M)

for sufficiently small A, compare also Figure 3 for an illustration. We apply now the assump-
tion (6.7) and obtain for r. < R and 3 = 1 — u the relation h; .r=¢ ~ hrl=#=F = h (s = 1,2).
The choice 3 = 1 — p is admissible due to the refinement condition p < Z. — In the case
r. > R we have h; .r-% < hR=? ~ h. Combining this with (6.9) we obtain

ou

1,2
Tt Vo (55

lu — Spu; Wh(e |<hz‘6“ Vi2(5e) (6.10)

1]

Consider now the elements e with S, M # (). We use the triangle inequality and Lemma
Twithm=k=1,p=208¢c(1-ZI,1):
u = Spus WH(e)] 5 Jus WH(e)| + |Shu‘W1’2(€)|
< Y D L) + b2 D R ID u, VIS (6.11)

|or|=1 |or|=1

For the first term we use that » < hy. in e and 1 — > 0 and obtain

2
e 9
St ol s Y S < m e
lo|=1 =1
du 1,2 du 1,2
<
S h; 5o Ve ()H+hHax Vi (e)]|- (6.12)

We also used that h}_f ~ hU=A/ = p for B = 1 — p. The second term is treated with
similar arguments:

2

_ o e gl Ou ou
T WA LR EREATRES wiivl P e tS | RA T FERPRES
jof=1 i=1
< a“ V(S +hH§“ V,h2(S.) (6.13)
Z

The last term was estimated using % < hfe.

Inserting (6.12) and (6.13) in (6.11) we find that (6.10) (with full norms instead of
seminorms at the right hand side) holds for elements with S. " M # § as well. Summing up
over all elements we obtain

2

du du

_ 112 < el 1,2
[ = Spu; W <ﬂ>|Nh; s o Vo @)

-V;’Q(Q)H +hH
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B=1-pc(1—-=,1). Here we used that only a finite number (independent of A) of patches
Se overlap. By applying Lemma 12 the theorem is proved. a

Theorem 14 Let u be the solution of (6.3). Then the estimate
u — Epus WHQ)] S A Lf L2 Q)]
holds if p < Z.

Proof The theorem can be proved in the same way as Theorem 6.2. Note that we used
only the following properties of Sp:

= Su; WH )| < > A D u WS,
|or|=1
S W) 5 Al Y 1D VRS-
|or|=1
Both estimates hold true for E; as well, see Theorem 10 and Lemma 11. O

Corollary 15 Let u be the solution of (6.2) or (6.3) and let uy, be the finite element solution
defined by (6.8). Assume that the mesh is refined according to yp < =. Then the finite element
error can be estimated by

0 — s W)
[l = un; LA(Q)]]
Proof The first estimate follows from Theorems 13 and 14 via the projection property of

the finite element method. Note that S,u € Vg, in the case of problem (6.2) and Eju € Vo
for (6.3). The L?*(Q)-estimate is obtained by Nitsche’s method. O

L5 L)),
LS5 LA

S
S

By analogy one can prove for = < u <1 that

lu — up; WH(Q)]
|w — wp; L2 (Q)]]

pr/e)= Hf L*()],

S
s w2 ),

for arbitrary small ¢ > 0. That means that we get for the unrefined mesh (x = 1) only an
approximation order  — e (W'?(Q)-norm) or 2(Z — ¢) (L?*(Q)-norm). We conjecture that
the € can be omitted. But this needs another way of proof, for example using the theory of
interpolation spaces, compare [10] for the two-dimensional case. However, one can show by
an example that these estimates cannot be improved further [1]. Numerical tests support
the results, see [2, 6, 7].

In the same way as above on can treat certain other boundary conditions. Conditions
of third kind impose no further difficulties. Moreover, we can treat cases where Dirichlet
boundary conditions are given only on a part of either I'gy or I'yy. In particular, if the type
of the boundary condition changes at the edge M we have to substitute the expression = by
5= in the whole text. Note further that for w > 7 the solution is not any more contained in
W3/2+22(Q) which implies that the interpolation operator I, is not applicable to w.

However, if Dirichlet boundary conditions are given on (parts of) both I'y and I'y; then
neither Spu € Vg, nor Eju € Vg, In such cases we have to modify Sy, or Ej near the Dirichlet
boundary, as it was done by Clement for C;, [16]. But we will not develop this here.



7 Summary

31

OI’thhQZhg

tensor product
hi, ha, hs indepen-

7, Sy, Ly Ey
2D | tensor product tensor product tensor product
hi, hy arbitrary hi < hy hi > hy
3D | tensor prod. type | tensor prod. type | tensor prod. type | tensor prod. type
hy ~ hy < hs hy ~ hy < hs hy ~ hy > hs hy ~ hy < hs

tensor product
hi < hy < hs

dent
Table 1: Tractable finite elements.
7, Sy, Ly Ey
m = 0<m<i-1 0<m</ 1<m</i-—1
1<i<k+1 1<i<k+1 1<i<k+1 1<i<k+1
p:q € [L, 00] p:q € [L, 00] p:q € [L, 00] p:q € [1,00]
for m > 2 ftrian- m =10
gles and tetrahe- 2<ti<k+1
dra are excluded p,q € [1,00]
m=0,0=1
p € (2, 00]
q € [1,00]

Table 2:

Conditions for the stability and error estimates.

7  Summary

The starting point of our investigation was the quasi-interpolation operator 7 introduced by
Scott and Zhang [25]. We have seen in Section 2 that anisotropic estimates of type (m, () are
valid for m = 0 but in general not for m > 1. Therefore we introduced three modifications
and investigated the resulting operators Sy, Ly, and Ej, for the definitions see pages 10, 17,
and 22. To summarize and to compare the different Scott-Zhang type quasi-interpolation
operators we give a tabular overview. In Table 1 we find the element types which the operator
is applicable for. Note the slight difference of tensor product type and tensor product elements
in three dimensions. Tensor product type corresponds to transformation (1.10), (1.11), and
tensor product means the restriction to transformation (5.2).
Table 2 compares the conditions for which the stability estimate

|Qru; W™4(e)| < (mease)t/a7L/P Z R D%y WTP(S,)|

] <t—m

holds, Qpn € {Zn,Sh, Ln, Ex}. In the case of S, and E; we additionally proved stability in
weighted Sobolev spaces. The estimate

Quss W ()] < (meas )V en? 3T ST R D V(S|

|a|l=m—1 |t|=1

holds under the conditions given in Table 3.
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L, Sh Ly Ey,
not treated 0<m<k not treated 1<m<k
p.q € [1, 0] p.q € [1,00]
p<2-28<1 p<2-25<1
for m > 2 trian- m =10
gles and tetrahe- p € (2,00]
dra are excluded q € [1, 0]
p<2-25<1

Table 3: Conditions for the stability in weighted Sobolev spaces.

7, Sy, Ly Ey
only m =0 m = { excluded m = { excluded
only m =0,1 restrictions on
for simplices l,p,qg form =20
in 3D only needle | in 3D only flat
elements elements

Table 4: Restrictions in the applicability of the operators.

The approximation error estimate

lu — Qpu; W™1(e)| < (meas e)l/q_l/p Z R D% u; WTP(S,)|

|a|=f—m

holds if the conditions of Table 2 are satisfied and the parameters ¢, p, m, ¢ are such that the
embedding W*?(¢) — W™4(¢e) holds.

Some shortcomings of the operators are given in Table 4. Additionally, we state that
Dirichlet boundary conditions u = ¢ € Vj |, on I'y can be satisfied on any part of 92 for Zj,
on parts of the boundary which are parallel to the zq-axis/z, x3-plane for S, and L, and
on parts of d€) which are perpendicular to the xq, x5-plane for Ej,.

Finally, we mention that S; and E; have been successfully applied in the study of the
Poisson problem in a domain with an edge where the singularity was treated with anisotropic
mesh refinement, see Section 6. The operator L, was applied by Becker [12] to show the
stability and an approximation error estimate of the stabilized @)1/Qo-element pair in the
context of the Stokes equation.
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