
Technische Universit�at Chemnitz-Zwickau

Sonderforschungsbereich 393

Numerische Simulation auf massiv parallelen Rechnern

M. Jung and S.V. Nepomnyaschikh

�

Variable Preconditioning

Procedures for Elliptic Problems

Preprint SFB393/96-22

Abstract

For solving systems of grid equations approximating elliptic boundary value

problems a method of constructing variable preconditioning procedures is presented.

The main purpose is to discuss how an e�cient preconditioning iterative procedure

can be constructed in the case of elliptic problems with disproportional coe�cients,

e.g. equations with a large coe�cient in the reaction term (or a small di�usion coef-

�cient). The optimality of the suggested technique is based on �ctitious space and

multilevel decomposition methods. Using an additive form of the preconditioners,

we introduce factors into the preconditioners to optimize the corresponding conver-

gence rate. The optimization with respect to these factors is used at each step of

the iterative process.

The application of this technique to two-level p-hierarchical preconditioners and

domain decomposition methods is considered too.

Key words: Iterative methods, preconditioning operators, conjugate gradient

methods, additive Schwarz methods, domain decomposition, �nite elements

AMS(MOS) subject classi�cation: 65F10, 65N55, 65N30

�

This work was partially supported by the German Ministry for Education and

Research (BMBF) under the project X223.5 within the scienti�c cooperation with

Russia, by the Netherlands Organization for Scienti�c Research (NWO), dossiernr.

047.003.017, and by the Russian Basic Research Foundation (RBRF) under the

grant 96-01-01665

Preprint-Reihe des Chemnitzer SFB 393

SFB393/96-22 Dezember 1996



Authors' address:

Dr. Michael Jung

Faculty for Mathematics

Technical University Chemnitz-Zwickau

D - 09107 Chemnitz, Germany

e-mail: michael.jung@mathematik.tu-chemnitz.de

http://www.tu-chemnitz.de/�jung/jung.html

Dr. Sergej V. Nepomnyaschikh

Computing Center

Siberian Branch of Russian Academy of Sciences

Novosibirsk, 630090, Russia

e-mail: svnep@oapmg.sscc.ru



1 Introduction

Finite element discretizations of boundary value problems (BVP) lead, in general, to large

scale systems of algebraic �nite element equations. Usually, these systems are solved by

means of the preconditioned conjugate gradient (PCG) method. In recent years, very

e�cient preconditioners were developed such that the resulting PCG algorithms have a

convergence rate which is independent of the discretization parameter, and the cost of

arithmetical work per iteration step is proportional to the number of unknowns (see, e.g.,

[5, 6, 10, 14, 18, 22, 31, 32, 35]). All these preconditioners make use of a sequence of

discretizations of the BVP or at least of a sequence of triangulations of the domain in

which the BVP is considered. For some practical problems, as e.g. BVP's in domains with

a complicated geometry, it is impossible to construct such a sequence of triangulations

with a su�ciently coarse grid. Then, the known preconditioners lose their e�ciency. To

overcome this problem, in [28, 29] preconditioners based on �ctitious space and multilevel

decomposition methods were proposed. There, the original domain is embedded into a

rectangular domain for which a sequence of nested triangulations can be constructed easily.

These preconditioners require some mappings between the triangulation of the original

domain and the auxiliary meshes, as well as the application of BPX-like preconditioners on

the auxiliary meshes. Other techniques for constructing preconditioners on unstructured

meshes were proposed in [7, 11, 24, 26, 27, 33]. The construction of preconditioning

operators on non-hierarchical grids was considered in [21].

In this paper, we apply the technique described in [28, 29] to the construction of

preconditioners for the BVP

� div(p gradu) + qu = f in 
 ; u = 0 on @
 : (1)

The BPX-like preconditioners can be written in the additive form

C

�1

= �

1

C

1

+ : : :+ �

l

C

l

; (2)

where l denotes the number of triangulations (auxiliary meshes) used. For the Poisson

equation ��u = f the parameters �

k

, k = 1; 2; : : : ; l, are well-known [10, 14, 31]. In the

present paper, we de�ne these parameters for problem (1) analytically. For more general

elliptic problems it would be helpful if one had a possibility to compute the parameters �

k

numerically. To do this, we propose four CG-like procedures with preconditioners of the

type (2), where the parameters �

k

are variable, i.e. they are computed within each iteration

step automatically. Therefore, in each iteration step the preconditioner is changed. We

show that these CG-like methods have a convergence rate which is independent of the

discretization parameter h as well as of the parameters p and q.

Within each iteration step of the presented methods a set of search directions is com-

puted. This is similar as in the parallel conjugate gradient method analysed in [17].

The di�erence to our algorithms is that in [17] a �xed preconditioner is applied, and that

starting with a set of initial guesses in each iteration step a set of new iterates is computed.

In [4] also algorithms with variable preconditioners were considered. There, the pre-

conditioner is changed when one encounters a stagnation of the convergence rate in gener-

alized conjugate gradient minimum residual methods. However, the technique used there

is di�erent from our approach and thus, we will not discuss it further.

The paper is organized as follows: In Section 2, we describe the construction of the

additive preconditioner (2) with �xed parameters by means of the �ctitious space lemma

and multilevel techniques, and we show the optimality of this preconditioner. Section 3
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is devoted to the description and analysis of di�erent iterative processes with variable

preconditioners. In Section 4, implementation aspects of the proposed algorithms are

discussed, and the convergence properties of these algorithms are demonstrated by nu-

merical examples. Here, we apply the new algorithms to the systems of algebraic �nite

element equations which result from the discretization of problem (1). Furthermore, we

use the idea of variable preconditioners in connection with two-level p-hierarchical precon-

ditioners and preconditioners based on domain decomposition techniques. Finally, some

conclusions are given.

2 Multilevel preconditioning operators for elliptic

problems with parameters

Let 
 � R

2

be a bounded domain with a piecewise smooth boundary � which satis�es

the Lipschitz condition [34]. In the domain 
 we consider the boundary value problem:

�div(p gradu) + qu = f(x) ; x 2 
 ;

u(x) = 0 ; x 2 � ;

(3)

where

p = const � 0 ; q = const � 0 ; p+ q > 0 :

We introduce a bilinear form a(u; v) and a linear functional l(v) as follows:

a(u; v) =

Z




(p (ru;rv) + quv) d
 ; 8u; v 2

a

H

1

(
)

l(v) =

Z




fv d
 ; 8v 2

a

H

1

(
) :

Here, f 2 H

�1

(
) is assumed.

The generalized solution u 2

a

H

1

(
) of the problem (3) is, by de�nition, a solution to

the projection problem

u 2

a

H

1

(
) : a(u; v) = l(v) ; 8v 2

a

H

1

(
) : (4)

Let a positive parameter h be �xed (we always suppose that h is su�ciently small). Let




h

=

m

[

i=1

�

i

be a triangulation of the domain 
. We suppose that 


h

is a quasi-uniform triangulation

[12], i.e. there exist positive constants c; c, and � which are independent of h and satisfy

the conditions

c h � r

i

� c h ;

r

i

%

i

� � ; i = 1; 2; : : : ;m ;

where r

i

and %

i

are radii of the circumscribed and the inscribed circles for the triangle �

i

,

respectively. We also assume that the triangulation boundary �

h

approximates � with

an error O(h

2

) and � � R

2

n 


h

. For the triangulation 


h

we de�ne the space H

h

(


h

) of

real continuous functions which are linear on each triangle of 


h

and vanish at �

h

. We

extend these functions on 
 n 


h

by zero.
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The solution of the projection problem

u

h

2 H

h

(


h

) : a(u

h

; v

h

) = l(v

h

) ; 8v

h

2 H

h

(


h

) (5)

will be called an approximate solution of problem (4). Each function u

h

2 H

h

(


h

) is

put in standard correspondence with a real column vector u 2 R

N

whose components

are values of the function u

h

at the corresponding nodes of the triangulation 


h

. Then,

problem (5) is equivalent to the system of linear algebraic equations

Au = f

(Au; v) = a(u

h

; v

h

) ; 8u

h

; v

h

2 H

h

(


h

) ; (f; v) = l(v

h

) ; 8v

h

2 H

h

(


h

) ;

(6)

where u

h

and v

h

are the respective prolongations of the vectors u and v; (f; v) is the

Euclidean scalar product in R

N

.

The main goal of this section is to construct a symmetric positive de�nite precondi-

tioning operator B for problem (6) such that the inequalities

c

1

(Bu; u) � (Au; u) � c

2

(Bu; u) ; 8u 2 R

N

; (7)

are ful�lled with positive constants c

1

and c

2

which are independent of the parameters h,

p, and q. The multiplication of a vector by B

�1

should be easy to implement. To do it,

we completely follow [28]. The preconditioning operator B in (7) is constructed on the

basis of the �ctitious space lemma [27]. We introduce a �ctitious (auxiliary) space and

the corresponding operators. To end this, we embed the domain 
 in a square �.

Let K

i

denote the union of triangles in the triangulation 


h

which have a common

vertex z

i

and let d

i

be the maximal radius of the circle inscribed in K

i

. In the square �

we introduce an auxiliary grid �

h

with a step size

�

h such that

�

h <

1

p

2

min

i

d

i

: (8)

Let us assume that

�

h = 2

�l

s holds, where s is the length of the sides of � and l is a

positive integer. We denote the nodes of the grid �

h

by Z

i;j

Z

i;j

= (x

i

; y

j

) ; i; j = 0; 1; : : : ; l ;

and the cells of �

h

by D

ij

D

ij

= f(x; y) j x

i

� x < x

i+1

; y

j

� y < y

j+1

g ; �

h

=

l�1

[

i;j=0

D

ij

:

Let Q

h

denote the minimal �gure that consists of cells D

ij

and contains 


h

: 


h

� Q

h

,

D

ij

\ 


h

6= ;; let S

h

be the set of boundary nodes of Q

h

. Using cell diagonals, we

triangulate Q

h

and �

h

; hereafter, the designations Q

h

and �

h

refer to triangulations too.

Let H

h

(Q

h

) be the space of real continuous functions which are linear on the triangles of

Q

h

and vanish at the nodes of S

h

. The space H

h

(Q

h

) will be used as the �ctitious space

[28]. Furthermore, we introduce

a

Q

(U; V ) =

Z

Q

h

(p (rU;rV ) + qUV ) dQ

h

; 8U; V 2

a

H

1

(Q

h

) : (9)

We de�ne now the restriction operator R

R : H

h

(Q

h

)! H

h

(


h

) ;
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the extension operator T

T : H

h

(


h

)! H

h

(Q

h

) ;

and an easily invertible operator in the space H

h

(Q

h

). Let us begin with the operator R.

For a given mesh function

U

h

(Z

i;j

) 2 H

h

(Q

h

)

we de�ne a function u

h

2 H

h

(


h

) as follows. Let z

l

be a vertex in the triangulation 


h

;

assume that z

l

2 D

ij

. We put

u

h

(z

l

) = (RU

h

)(z

l

) = U

h

(Z

i;j

) :

The function u

h

is equal to zero at nodes z

l

2 �

h

.

Then, let us de�ne the operator T . For a given function u

h

2 H

h

(


h

) we de�ne a

function U

h

2 H

h

(Q

h

). The function U

h

is equal to zero at nodes Z

i;j

2 S

h

. At the other

nodes U

h

is de�ned as follows: If a cell D

ij

contains a vertex z

l

(according to (8) it can

be only one vertex of the triangulation 


h

) we put

U

h

(Z

i;j

) = (Tu

h

)(Z

i;j

) = u

h

(z

l

) :

For each of the remaining nodes Z

i;j

2 Q

h

we �nd the closest vertex z

l

of the triangulation




h

(if there are several closest vertices, we can choose any of them) and put

U

h

(Z

i;j

) = (Tu

h

)(Z

i;j

) = u

h

(z

l

) :

To de�ne an easily invertible operator in the space H

h

(Q

h

) which generates an equivalent

norm to a

Q

(U

h

; U

h

) we consider in �

h

the sequence of grids

�

h

1

; �

h

2

; : : : ; �

h

l

� �

h

with the step sizes

h

1

= 2

�1

s; h

2

= 2

�2

s; : : : ; h

l

= 2

�l

s �

�

h :

We triangulate these grids and consider the corresponding �nite element spaces

W

h

1

� W

h

2

� � � � �W

h

l

� H

h

(�

h

) :

Using the nodal basis f�

(k)

i

g

N

k

i=1

of the spaces W

h

k

, k = 1; 2; : : : ; l, we de�ne operators

C

k

U

h

=

X

supp�

(k)

i

�Q

h

(U

h

;�

(k)

i

)

L

2

(Q

h

)

�

(k)

i

; B

k

= RC

k

R

T

; k = 1; 2; : : : ; l ;

C

�1

= �

1

C

1

+ : : :+ �

l

C

l

; B

�1

= RC

�1

R

T

= �

1

B

1

+ : : :+ �

l

B

l

(10)

with

�

k

=

�

p+

q

2

2k

�

�1

;

and R

T

is the transposed matrix of R.

Here and in the following we use the same notation for the operators (C

k

, B

k

, R) and

their matrix representation.

Theorem 2.1 There exist positive constants c

1

and c

2

independent of h, p, and q, such

that

c

1

(A

�1

u; u) � (B

�1

u; u) � c

2

(A

�1

u; u) ; 8u 2 R

N

:
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Proof: It is obvious that

RTu

h

= u

h

; 8u

h

2 H

h

(


h

) :

Using the well-known equivalence of norms and seminorms in the spaces H

h

(


h

) and

H

h

(Q

h

) [30], as well as the di�erence counterparts of these we get

c

3

ku

h

k

2

L

2

(


h

)

�

X

�

i

2


h

h

2

((u

h

(z

i

1

))

2

+ (u

h

(z

i

2

))

2

+ (u

h

(z

i

3

))

2

)

� c

4

ku

h

k

2

L

2

(


h

)

; 8u

h

2 H

h

(


h

) ;

c

3

kU

h

k

2

L

2

(Q

h

)

�

X

D

ij

2Q

h

h

2

((U

h

(Z

i;j

))

2

+ (U

h

(Z

i+1;j

))

2

+ (U

h

(Z

i;j+1

))

2

+ (U

h

(Z

i+1;j+1

))

2

)

� c

4

kU

h

k

2

L

2

(Q

h

)

; 8U

h

2 H

h

(Q

h

) ;

c

3

kru

h

k

2

L

2

(


h

)

�

X

�

i

2


h

((u

h

(z

i

1

)� u

h

(z

i

2

))

2

+ (u

h

(z

i

2

)� u

h

(z

i

3

))

2

+(u

h

(z

i

3

)� u

h

(z

i

1

))

2

)

� c

4

kru

h

k

2

L

2

(


h

)

; 8u

h

2 H

h

(


h

) ;

c

3

krU

h

k

2

L

2

(Q

h

)

�

X

D

ij

2Q

h

((U

h

(Z

i+1;j

)� U

h

(Z

i;j

))

2

+ (U

h

(Z

i;j+1

)� U

h

(Z

i;j

))

2

+(U

h

(Z

i+1;j+1

)� U

h

(Z

i+1;j

))

2

+ (U

h

(Z

i+1;j+1

)� U

h

(Z

i;j+1

))

2

)

� c

4

krU

h

k

2

L

2

(Q

h

)

; 8U

h

2 H

h

(Q

h

) ;

where z

i

1

, z

i

2

, z

i

3

are the vertices of the triangle �

i

2 


h

. Furthermore, we have the

following estimates

a(RU

h

; RU

h

) � c

R

a

Q

(U

h

; U

h

) ; 8U

h

2 H

h

(Q

h

) ;

c

T

a

Q

(Tu

h

; Tu

h

) � a(u

h

; u

h

) ; 8u

h

2 H

h

(


h

) :

Here c

3

, c

4

, c

R

, and c

T

are independent of h, p, and q; a

Q

(:; :) is de�ned in (9). Using the

�ctitious space lemma, multilevel techniques [8, 28, 31, 32], and the obvious estimate

a

Q

(U

h

; U

h

) � p kU

h

k

2

H

1

(Q

h

)

+ qkU

h

k

2

L

2

(Q

h

)

� c

5

a

Q

(U

h

; U

h

) 8U

h

2 H

h

(Q

h

) ;

then we get the assertion of Theorem 2.1. 2

Remark 2.1 The cost of arithmetical work for the action of R or R

T

on a vector is

proportional to the number of nodes N

l

in the mesh domain. The arithmetical cost for

the action C

�1

on a vector depends on the kind of implementation: If we apply each

operator C

k

, k = 1; 2; : : : ; l, to a vector r individually, the arithmetical cost is of the

order O(N

l

logN

l

). If we need only the vector w = C

�1

r and not the vectors w

k

= C

k

r,

k = 1; 2; : : : ; l, we can implement the action C

�1

on a vector in such a way that the

arithmetical cost is of the order O(N

l

).
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Remark 2.2 In the case of Neumann boundary conditions in (3) and positive q, we can

de�ne corresponding preconditioning operators C

�1

N

and B

�1

N

as follows:

C

�1

N

= �

0

C

0

+ C

�1

; B

�1

N

= RC

�1

N

R

T

; �

0

= q

�1

;

C

0

U

h

=

(U

h

;�

(0)

)

L

2

(Q

h

)

(�

(0)

;�

(0)

)

L

2

(Q

h

)

�

(0)

; �

(0)

(x) � 1 ; x 2 Q

h

;

where C

�1

is de�ned in (10). Then, Theorem 2.1 holds for this case too.

Remark 2.3 Optimal preconditioning operators can also be constructed using the tech-

nique from [29] for locally re�ned grids.

3 Iterative processes with variable preconditioners

In the previous section, the additive preconditioning operator B for iterative solvers was

constructed. For example, we can use the following preconditioned gradient method [23]

for solving the system of equations (6):

u

(k+1)

= u

(k)

� �

(k+1)

(�

1

B

1

+ : : :+ �

l

B

l

)(Au

(k)

� f) ; k = 0; 1; : : : ; u

(0)

2 R

N

; (11)

where �

(k+1)

is de�ned from the minimization problem:

�

(k+1)

= arg min

�

(k+1)

2R

kx

(k+1)

k

2

with

x

(k)

= A

1=2

z

(k)

; z

(k)

= u

(k)

� u ; kx

(k)

k

2

= kz

(k)

k

A

:

Then, we get with D = A

1=2

B

�1

A

1=2

�

(k+1)

=

(Dx

(k)

; x

(k)

)

(Dx

(k)

;Dx

(k)

)

=

(B

�1

Az

(k)

; Az

(k)

)

(AB

�1

Az

(k)

; B

�1

Az

(k)

)

:

It follows from Theorem 2.1 that the convergence rate of the iterative process (11) is

independent of the parameters h, p, and q. To get this optimal convergence rate we used

the explicit form of the elliptic problem (3), and we de�ned the factors �

k

, k = 1; 2; : : : ; l,

analytically. For more general elliptic problems the optimal choice of the factors �

k

in

preconditioners of additive form is not obvious. In this situation, it is quite natural to

consider, instead of (11), the following gradient-like iterative procedure with a variable

preconditioner.

Algorithm 3.1 De�ne a sequence fu

(k+1)

g as follows:

u

(k+1)

= u

(k)

� (�

(k+1)

1

B

1

+ : : :+ �

(k+1)

l

B

l

)(Au

(k)

� f) ; k = 0; 1; : : : ; u

(0)

2 R

N

; (12)

where �

(k+1)

1

, : : :, �

(k+1)

l

are de�ned from the minimization problem

f�

(k+1)

1

; : : : ; �

(k+1)

l

g = arg min

�

(k+1)

i

2R; i=1;:::;l

kx

(k+1)

k

2

:

6



Then, �

(k+1)

1

, : : :, �

(k+1)

l

satisfy the following system of equations

Q

0

B

B

B

B

B

B

B

@

�

(k+1)

1

�

(k+1)

2

.

.

.

�

(k+1)

l

1

C

C

C

C

C

C

C

A

=

0

B

B

B

B

B

B

@

(D

1

x

(k)

; x

(k)

)

(D

2

x

(k)

; x

(k)

)

.

.

.

(D

l

x

(k)

; x

(k)

)

1

C

C

C

C

C

C

A

; (13)

where the matrix Q is the Gram-Schmidt matrix

0

B

B

B

B

B

B

@

(D

1

x

(k)

;D

1

x

(k)

) (D

2

x

(k)

;D

1

x

(k)

) � � � (D

l

x

(k)

;D

1

x

(k)

)

(D

1

x

(k)

;D

2

x

(k)

) (D

2

x

(k)

;D

2

x

(k)

) � � � (D

l

x

(k)

;D

2

x

(k)

)

.

.

.

.

.

.

.

.

.

.

.

.

(D

1

x

(k)

;D

l

x

(k)

) (D

2

x

(k)

;D

l

x

(k)

) � � � (D

l

x

(k)

;D

l

x

(k)

)

1

C

C

C

C

C

C

A

;

D

i

= A

1=2

B

i

A

1=2

;

i = 1; 2; : : : ; l:

Remark 3.1 In general, the matrix Q can be singular, but the system (13) is consistent

and any solution of (13) gives a solution of the minimization problem.

Using the well-known motivation [23], we have the following Theorem.

Theorem 3.1 Let A, B

i

, �

(k+1)

i

, i = 1; 2; : : : ; l, be from (6), (10), (12), and (13), respec-

tively. Then, there exists a constant � < 1 independent of h, p, and q such that

ku

(k)

� uk

A

� �

k

ku

(0)

� uk

A

; k = 0; 1; 2; : : : :

Here, u

(k)

is the k-th iterate in the iterative process (12).

Proof: Let u

(k)

be the k-th iterate from (12). If we put in (11)

� = �

(k+1)

�

2

c

1

+ c

2

;

where c

1

, c

2

are from Theorem 2.1, and de�ne

~u

(k+1)

= u

(k)

� �B

�1

(Au

(k)

� f) ;

then we get from the minimization property and from the convergence estimate for the

gradient method (11) the following inequalities

ku

(k+1)

� uk

A

� k~u

(k+1)

� uk

A

�

c

2

� c

1

c

2

+ c

1

ku

(k)

� uk

A

which give the assertion of Theorem 3.1. 2

Now we consider generalizations of a conjugate gradient method with variable precon-

ditioners. For the sequence fx

(k)

g,

x

(k+1)

= x

(k)

� (�

(k+1)

1

D

1

+ : : :+ �

(k+1)

l

D

l

)x

(k)

;

we have the representation

x

(n)

= (I � (�

(n)

1

D

1

+ : : :+ �

(n)

l

D

l

)) � � � (I � (�

(1)

1

D

1

+ : : :+ �

(1)

l

D

l

))x

(0)

: (14)

7



By analogy to the classical conjugate gradient method with a �xed preconditioner we can

de�ne nl parameters �

(k)

i

, i = 1; 2; : : : ; l, k = 1; 2; : : : ; n, from the global minimization

problem through n iterations:

f�

(k)

i

g

i=1;2;:::;l; k=1;2;:::;n

= arg min

�

(k)

i

2R;1�k�n; 1�i�l

kx

(n)

k

2

; (15)

where x

(n)

is de�ned in (14).

Problem (15) is strongly nonlinear. To simplify it, we de�ne the following formalism.

Let � be a multi-index

� = (�

1

�

2

: : : �

j

) ; �

i

2 f1; 2; : : : ; lg :

We denote the length of the multi-index � by j�j:

j�j = j

and de�ne

D

�

= D

�

1

D

�

2

� � �D

�

j

:

Obviously, we have

D

�

D

�

= D

��

; �� = (�

1

�

2

: : : �

j

�

1

�

2

: : : �

m

) ; j�j = j ; j�j = m;

D

T

�

= D

��

; �� = (�

j

�

j�1

: : : �

1

) :

Instead of (14), let us consider the relation

x

(n)

=

�

I +

n

X

j=1

X

j�j=j

a

(n)

�

D

�

�

x

(0)

(16)

with arbitrary numbers a

(n)

�

2 R. We de�ne the (l

n+1

� 1)=(l � 1) � 1 parameters a

(n)

�

from the following minimization problem

fa

(n)

�

g

j�j=1;2;:::;n

= arg min

a

(n)

�

2R;1�j�j�n

kx

(n)

k

2

; (17)

where x

(n)

is given by the relation (16). It is obvious that we have in (17) an extended set of

parameters compared to problem (15). Consequently, the parameters determined by (15)

give a kx

(n)

k

2

which is not smaller than in the minimization problem (17). Problem (17)

is equivalent to the system of equations

@kx

(n)

k

2

2

@a

(n)

�

= 2

�

n

X

i=1

X

j�j=i

a

(n)

�

(D

�

x

(0)

;D

�

x

(0)

) + (x

(0)

;D

�

x

(0)

)

�

= 0 8� : (18)

Lemma 3.1 Let x

(n)

be de�ned by relation (16). Then, the numbers a

(n)

�

, 1 � j�j � n,

give a solution of problem (17) if and only if

(D

�

x

(n)

; x

(k)

) = 0 ; 1 � j�j � n� k ; k = 0; 1; : : : ; n� 1 : (19)

Proof: From (18) it is easy to see that condition (17) is equivalent to

(x

(n)

;D

�

x

(0)

) = 0 ; 1 � j�j � n : (20)

8



Obviously, relations (20) follow from (19). Since

(D

�

x

(n)

; x

(k)

) =

�

x

(n)

;D

��

�

x

(0)

+

k

X

j=1

X

j�j=j

a

(k)

�

D

�

x

(0)

��

=

�

x

(n)

;D

��

x

(0)

+

k

X

j=1

X

j�j=j

a

(k)

�

D

��

D

�

x

(0)

�

= (x

(n)

;D

��

x

(0)

) +

k

X

j=1

X

j�j=j

a

(k)

�

(x

(n)

;D

���

x

(0)

)

and j���j = j�j+ j�j we get from (20) the relations (19). 2

To perform the iterative scheme (16), we can solve system (18) and compute x

(n)

or

the iterate u

(n)

by

u

(n)

= u

(0)

+

n

X

j=1

X

j�j=j

a

(n)

�

B

�

(Au

(0)

� f) ; B

�

= B

�

1

AB

�

2

A � � �AB

�

j

: (21)

Some numerical results for the application of (21) are presented in Subsection 4.3. But

in practice the solution of system (18) and the computation of u

(n)

by the formula (21)

is very expensive. We do not know a low cost implementation of (21) which solves the

optimization problem (17). This is an open question for us. Below we give CG-like

iterative procedures with variable additive preconditioners. These procedures do not

satisfy all conditions (19) and, consequently, do not solve the minimization problem (17),

but these procedures can be useful in practice.

Algorithm 3.2 We de�ne sequences fx

(k)

g, fp

(k)

1

g, : : : ,fp

(k)

l

g as follows:

x

(0)

2 R

N

; p

(1)

i

= D

i

x

(0)

; i = 1; 2; : : : l ;

x

(1)

= x

(0)

� (�

(1)

1

p

(1)

1

+ : : :+ �

(1)

l

p

(1)

l

) ;

f�

(1)

i

g

i=1;2;:::;l

= arg min

�

(1)

i

2R;1�i�l

kx

(1)

k

2

; (22)

p

(k+1)

i

= D

i

x

(k)

+ �

(k+1)

i

p

(k)

i

; i = 1; 2; : : : ; l ;

x

(k+1)

= x

(k)

� (�

(k+1)

1

p

(k+1)

1

+ : : :+ �

(k+1)

l

p

(k+1)

l

) ; k = 1; 2; : : :

f�

(k+1)

i

; �

(k+1)

i

g

i=1;2;:::;l

= arg min

�

(k+1)

i

2R; �

(k+1)

i

2R;1�i�l

kx

(k+1)

k

2

: (23)

The minimization problem (23) is equivalent to the system of linear equations

0

@

Q

x

Q

xp

Q

px

Q

p

1

A

0

@

a

x

a

p

1

A

=

0

@

b

x

b

p

1

A

(24)

of the order 2l, where

Q

x

= [(D

i

x

(k)

;D

j

x

(k)

)]

l

i;j=1

; Q

p

= [(p

(k)

i

; p

(k)

j

)]

l

i;j=1

; Q

xp

= [(p

(k)

i

;D

j

x

(k)

)]

l

i;j=1

; Q

px

= Q

T

xp

a

x

= [�

(k+1)

i

]

l

i=1

; a

p

= [�

(k+1)

i

�

(k+1)

i

]

l

i=1

;

9



b

x

= [(x

(k)

;D

i

x

(k)

)]

l

i=1

; b

p

= [(x

(k)

; p

(k)

i

)]

l

i=1

:

Using the same idea as in the proof of Theorem 3.1, i.e. considering

�

(k+1)

i

= 2=(c

1

+ c

2

) �

i

; �

(k+1)

i

= 0 ; i = 1; 2; : : : ; l; k = 0; 1; : : :

Theorem 3.2 can be proven.

Theorem 3.2 Let A, B

i

, �

(k+1)

i

, �

(k+1)

i

, i = 1; 2; : : : ; l, be from (6), (10), (22), and (23),

respectively. Then, there exists a constant � < 1 independent of h, p, and q such that

kx

(k)

k

2

� �

k

kx

(0)

k

2

; k = 0; 1; : : : :

Here x

(k)

is de�ned by Algorithm 3.2.

Next, we modify Algorithm 3.2 slightly, i.e. we use fewer parameters, and obtain Algo-

rithm 3.3.

Algorithm 3.3 We de�ne sequences fx

(k)

g and fp

(k)

g as follows:

x

(0)

2 R

N

; p

(1)

= �

(1)

1

D

1

x

(0)

+ : : :+ �

(1)

l

D

l

x

(0)

;

x

(1)

= x

(0)

� p

(1)

;

f�

(1)

i

g

i=1;2;:::;l

= arg min

�

(1)

i

2R;1�i�l

kx

(1)

k

2

; (25)

p

(k+1)

= (�

(k+1)

1

D

1

x

(k)

+ : : :+ �

(k+1)

l

D

l

x

(k)

) + �

(k+1)

p

(k)

; i = 1; 2; : : : ; l ;

x

(k+1)

= x

(k)

� p

(k+1)

; k = 1; 2; : : : ;

f�

(k+1)

i

; �

(k+1)

g

i=1;2;:::;l

= arg min

�

(k+1)

i

2R; �

(k+1)

2R;1�i�l

kx

(k+1)

k

2

: (26)

This minimization problem is equivalent to the system of linear equations

0

@

Q

x

Q

xp

Q

px

Q

p

1

A

0

@

a

x

a

p

1

A

=

0

@

b

x

b

p

1

A

of the order l + 1, where

Q

x

= [(D

i

x

(k)

;D

j

x

(k)

)]

l

i;j=1

; Q

p

= (p

(k)

; p

(k)

) ; Q

xp

= [(p

(k)

;D

i

x

(k)

)]

l

i=1

; Q

px

= Q

T

xp

a

x

= [�

(k+1)

i

]

l

i=1

; a

p

= �

(k+1)

;

b

x

= [(x

(k)

;D

i

x

(k)

)]

l

i=1

; b

p

= (x

(k)

; p

(k)

) :

Using the same ideas as in the proof of Theorem 3.1 we get the following Theorem.

Theorem 3.3 Let A, B

i

, �

(k+1)

i

, �

(k+1)

, i = 1; 2; : : : ; l, be from (6), (10), (25), and (26),

respectively. Then, there exists a constant � < 1 independent of h, p, and q such that

kx

(k)

k

2

� �

k

kx

(0)

k

2

; k = 0; 1; : : :

with x

(k)

from Algorithm 3.3.

By introducing additionally some orthogonality conditions we obtain Algorithm 3.4.
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Algorithm 3.4 We de�ne sequences fx

(k)

g and fp

(k)

1

g, : : : , fp

(k)

l

g as follows:

x

(0)

2 R

N

; ~p

(1)

i

= D

i

x

(0)

; i = 1; 2; : : : ; l :

Then, we orthogonalize the vectors ~p

(1)

i

:

p

(1)

1

= ~p

(1)

1

p

(1)

i

=

i�1

X

j=1

�

(i)

j

p

(1)

j

+ ~p

(1)

i

; �

(i)

j

= �

(~p

(1)

i

; p

(1)

j

)

(p

(1)

j

; p

(1)

j

)

; i = 1; 2; : : : ; l ;

and we put

x

(1)

= x

(0)

� (�

(1)

1

p

(1)

1

+ : : :+ �

(1)

l

p

(1)

l

) ; �

(1)

i

=

(x

(0)

; p

(1)

i

)

(p

(1)

i

; p

(1)

i

)

: (27)

For k = 1; 2; : : : we de�ne

~p

(k+1)

i

= D

i

x

(k)

+

�

�

(k+

k

k

)

i

1

p

(k)

1

+ : : :+ �

(k+

k

k

)

i

l

p

(k)

l

�

+

�

�

(k+

k�1

k

)

i

1

p

(k�1)

1

+ : : :+ �

(k+

k�1

k

)

i

l

p

(k�1)

l

�

+ : : : +

�

�

(k+

1

k

)

i

1

p

(1)

1

+ : : :+ �

(k+

1

k

)

i

l

p

(1)

l

�

;

with

�

(k+

s

k

)

i

j

= �

(D

i

x

(k)

; p

(s)

j

)

(p

(s)

j

; p

(s)

j

)

; s = k; k � 1; : : : ; 1 ; i; j = 1; 2; : : : ; l : (28)

Then, using the Gram-Schmidt procedure we de�ne

p

(k+1)

1

= ~p

(k+1)

1

p

(k+1)

i

=

i�1

X

j=1

�

(i)

j

p

(k+1)

j

+ ~p

(k+1)

i

; �

(i)

j

= �

(~p

(k+1)

i

; p

(k+1)

j

)

(p

(k+1)

j

; p

(k+1)

j

)

; i = 1; 2; : : : ; l :

We put

x

(k+1)

= x

(k)

� (�

(k+1)

1

p

(k+1)

1

+ : : :+ �

(k+1)

l

p

(k+1)

l

) ; �

(k+1)

i

=

(x

(k)

; p

(k+1)

i

)

(p

(k+1)

i

; p

(k+1)

i

)

; i = 1; 2; : : : ; l :

(29)

Within the Algorithm 3.4 we have the following orthogonalities

(x

(k+1)

; p

(s)

i

) = 0 ; i = 1; 2; : : : ; l ; s = 1; 2; : : : ; k + 1

(p

(s)

i

; p

(t)

j

) = 0 ; js� tj+ ji� jj 6= 0 ; s; t = 1; 2; : : : ; k + 1 ; i; j = 1; 2; : : : ; l :

(30)

These orthogonalities are of the same type as in the usual conjugate gradient method

with a �xed preconditioner.
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Theorem 3.4 Let A, B

i

, �

(k+1)

i

, �

(k+1)

i

, i = 1; 2; : : : ; l, be from (6), (10), (28), (27) and

(29), respectively. Then, there exists a constant � < 1 independent of h, p, and q such

that

kx

(k)

k

2

� �

k

kx

(0)

k

2

; k = 0; 1; 2; : : : :

Here, x

(k)

is the k-th iterate in Algorithm 3.4.

Proof: The orthogonality conditions (30) lead to the following minimization property

kx

(k+1)

k

2

2

=








x

(k)

�

l

X

i=1

�

(k+1)

i

p

(k+1)

i










2

2

= min

�

(k+1)

i

;1�i�l








x

(k)

+

l

X

i=1

�

(k+1)

i

p

(k+1)

i










2

2

= min

�

(s)

i

; 1�i�l; 1�s�k+1

�








x

(k)

+

l

X

i=1

�

(k+1)

i

p

(k+1)

i










2

2

+

k

X

s=1

l

X

i=1

(�

(s)

i

p

(s)

i

; �

(s)

i

p

(s)

i

)

�

= min

�

(s)

i

; 1�i�l; 1�s�k+1








x

(k)

+

k+1

X

s=1

l

X

i=1

�

(s)

i

p

(s)

i










2

2

:

(31)

Let �

(k+1)

i

2 R, i = 1; 2; : : : ; l, be arbitrary parameters. Using the representation

p

(k+1)

i

= D

i

x

(k)

+

i�1

X

j=1




(i)

j

D

j

x

(k)

+

k

X

s=1

l

X

i=1

�

(s)

i

p

(s)

i

for p

(k+1)

i

, we can de�ne numbers ~�

(s)

i

such that

k+1

X

s=1

l

X

i=1

~�

(s)

i

p

(s)

i

=

l

X

i=1

�

(k+1)

i

D

i

x

(k)

:

Therefore, the relations

kx

(k+1)

k

2

2

= min

�

(k+1)

i

; 1�i�l; 1�s�k+1








x

(k)

+

k+1

X

s=1

l

X

i=1

�

(s)

i

p

(s)

i










2

2

�








x

(k)

+

k+1

X

s=1

l

X

i=1

~�

(s)

i

p

(s)

i










2

2

= min

�

(k+1)

i

; 1�i�l








x

(k)

+

l

X

i=1

�

(k+1)

i

D

i

x

(k)










2

2

(32)

hold. Then, using the proof of Theorem 3.1, we get the assertion of this theorem. 2

Simplifying Algorithm 3.4, i.e. using fewer parameters, we get the next iterative

scheme.

Algorithm 3.5 We de�ne sequences fx

(k)

g and fp

(k)

1

g, : : :, fp

(k)

l

g as follows:

x

(0)

2 R

N

; ~p

(1)

i

= D

i

x

(0)

; i = 1; 2; : : : ; l :

Then, using the Gram-Schmidt orthogonalization procedure, we de�ne

p

(1)

1

= ~p

(1)

1

p

(1)

i

=

i�1

X

j=1

�

(i)

j

p

(1)

j

+ ~p

(1)

i

; �

(i)

j

= �

(~p

(1)

i

; p

(1)

j

)

(p

(1)

j

; p

(1)

j

)

; i = 1; 2; : : : ; l ;
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and we put

x

(1)

= x

(0)

� (�

(1)

1

p

(1)

1

+ : : :+ �

(1)

l

p

(1)

l

) ; �

(1)

i

=

(x

(0)

; p

(1)

i

)

(p

(1)

i

; p

(1)

i

)

: (33)

For k = 1; 2; : : : we de�ne

~p

(k+1)

i

= D

i

x

(k)

+ �

(k+1)

i

1

p

(k)

1

+ : : :+ �

(k+1)

i

l

p

(k)

l

; �

(k+1)

i

j

= �

(D

i

x

(k)

; p

(k)

j

)

(p

(k)

j

; p

(k)

j

)

; (34)

j = 1; 2; : : : ; l ; i = 1; 2; : : : ; l :

Using again the Gram-Schmidt procedure we de�ne

p

(k+1)

1

= ~p

(k+1)

1

p

(k+1)

i

=

i�1

X

j=1

�

(i)

j

p

(k+1)

j

+ ~p

(k+1)

i

; �

(i)

j

= �

(~p

(k+1)

i

; p

(k+1)

j

)

(p

(k+1)

j

; p

(k+1)

j

)

; i = 1; 2; : : : ; l ;

and we put

x

(k+1)

= x

(k)

� (�

(k+1)

1

p

(k+1)

1

+ : : :+ �

(k+1)

l

p

(k+1)

l

) ; �

(k+1)

i

=

(x

(k)

; p

(k+1)

i

)

(p

(k+1)

i

; p

(k+1)

i

)

: (35)

A simple calculation shows that the following orthogonality conditions

(x

(k+1)

; p

(k+1)

i

) = 0 ; (p

(k+1)

i

; p

(k)

j

) = 0 ; i; j = 1; 2; : : : ; l ; (36)

and the relations

(p

(k+1)

i

; p

(k+1)

j

) = �

ij

(p

(k+1)

i

; p

(k+1)

i

) ; i; j = 1; 2; : : : ; l (37)

hold.

Theorem 3.5 Let A, B

i

, �

(k+1)

i

, �

(k+1)

i

, i = 1; 2; : : : ; l, be from (6), (10), (34), (33), and

(35), respectively. Then, there exists a constant � < 1 independent of h, p, and q such

that

kx

(k)

k

2

� �

k

kx

(0)

k

2

; k = 0; 1; 2; : : :

holds, where x

(k)

is the k-th iterate of Algorithm 3.5.

Proof: From the orthogonality conditions (36) and the relations (37) we have the follow-

ing minimization property

kx

(k+1)

k

2

2

=








x

(k)

�

l

X

i=1

�

(k+1)

i

p

(k+1)

i










2

2

= min

�

(k+1)

i

;1�i�l








x

(k)

+

l

X

i=1

�

(k+1)

i

p

(k+1)

i










2

2

= min

�

(s)

i

; 1�i�l; k�s�k+1

�








x

(k)

+

l

X

i=1

�

(k+1)

i

p

(k+1)

i










2

2

+

l

X

i=1

(�

(k)

i

p

(k)

i

; �

(k)

i

p

(k)

i

)

�

= min

�

(s)

i

; 1�i�l; k�s�k+1








x

(k)

+

k+1

X

s=k

l

X

i=1

�

(s)

i

p

(s)

i










2

2

:

(38)
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Let �

(k+1)

i

2 R, i = 1; 2; : : : ; l, be arbitrary parameters. Using the following representation

for p

(k+1)

i

:

p

(k+1)

i

= D

i

x

(k)

+

i�1

X

j=1




(i)

j

D

j

x

(k)

+

l

X

i=1

�

(k)

i

p

(k)

i

;

we can de�ne numbers ~�

(s)

i

such that

k+1

X

s=k

l

X

i=1

~�

(s)

i

p

(s)

i

=

l

X

i=1

�

(k+1)

i

D

i

x

(k)

:

The rest of the proof is analogous to the proof of Theorem 3.4. 2

Remark 3.2 The suggested methods can be used for an arbitrary symmetric positive de�-

nite matrix A when B

�1

has an additive form. In the next section we examine numerically

some two-level preconditioners for elliptic problems and domain decomposition methods.

4 Numerical experiments

In this section, we demonstrate the convergence properties of the iterative methods pro-

posed in the previous section on numerical examples. We concentrate our experiments on

the Algorithms 3.1 { 3.5. We assume that the triangulations 


h

and the auxiliary grids

�

h

coincide. In this case the operator R in (10) is the identity operator.

We present numerical results for the iterative schemes applied to problem (3). Fur-

thermore, we use our schemes for additive preconditioners which arise from domain de-

composition methods and �nite element discretizations with two-level p-hierarchical basis

functions.

Let us �rst discuss some implementation details of the new methods with variable

preconditioners.

4.1 Some implementation aspects

In Section 3, the Algorithms 3.2 { 3.5 are formulated in terms of sequences fx

(k)

g and

fp

(k)

1

g, : : : ,fp

(k)

l

g. This formulation is convenient for the theoretical investigations but

not for an implementation. For that reason, we write down these algorithms in terms of

sequences fu

(k)

g, fr

(k)

g, and fs

(k)

1

g, : : : ,fs

(k)

l

g. Then, Algorithm 3.2 can be implemented

in the following way:

We de�ne sequences fu

(k)

g, fr

(k)

g, and fs

(k)

1

g, : : : ,fs

(k)

l

g as follows:

u

(0)

2 R

N

; r

(0)

= Au

(0)

� f ; s

(1)

i

= B

i

r

(0)

; i = 1; 2; : : : l ;

u

(1)

= u

(0)

� (�

(1)

1

s

(1)

1

+ : : :+ �

(1)

l

s

(1)

l

) ;

r

(1)

= r

(0)

� (�

(1)

1

As

(1)

1

+ : : :+ �

(1)

l

As

(1)

l

) ;

f�

(1)

i

g

i=1;2;:::;l

= arg min

�

(1)

i

2R;1�i�l

kz

(1)

k

A

;
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s

(k+1)

i

= B

i

r

(k)

+ �

(k+1)

i

s

(k)

i

; i = 1; 2; : : : ; l ;

u

(k+1)

= u

(k)

� (�

(k+1)

1

s

(k+1)

1

+ : : :+ �

(k+1)

l

s

(k+1)

l

) ;

r

(k+1)

= r

(k)

� (�

(k+1)

1

As

(k+1)

1

+ : : :+ �

(k+1)

l

As

(k+1)

l

) ; k = 1; 2; : : :

f�

(k+1)

i

; �

(k+1)

i

g

i=1;2;:::;l

= arg min

�

(k+1)

i

2R; �

(k+1)

i

2R;1�i�l

kz

(k+1)

k

A

:

From Section 3 it is known that the last minimization problem is equivalent to the system

of linear equations (24). In terms of r

(k)

and s

(k)

the entries of the submatrices Q

x

, Q

p

,

and Q

xp

have the form:

Q

x

= [(AB

i

r

(k)

; B

j

r

(k)

)]

l

i;j=1

; Q

p

= [(As

(k)

i

; s

(k)

j

)]

l

i;j=1

;

Q

xp

= [(As

(k)

i

; B

j

r

(k)

)]

l

i;j=1

; Q

px

= Q

T

xp

;

and for the right-hand side (b

x

b

p

)

T

we get

b

x

= [(r

(k)

; B

i

r

(k)

)]

l

i=1

; b

p

= [(r

(k)

; s

(k)

i

)]

l

i=1

:

It is obvious that the other algorithms can be written in an analogous manner.

In Section 3, convergence estimates for the CG-like Algorithms 3.2 { 3.5 were given.

These estimates are not the typical estimates for CG methods, they are more similar to the

estimates which we get for the usual gradient method with a �xed preconditioner. How-

ever, our numerical experiments will show that in many cases the new CG-like algorithms

have better convergence properties than the CG method with a �xed preconditioner.

Taking into consideration the di�erent cost of arithmetical work per iteration step of the

methods presented and of the usual CG method, it arises the question whether the new

methods or the usual CG method give the best algorithm with respect to the CPU-time

needed. The answer depends on the problem (see the presented numerical results). If we

use a �xed preconditioner with the right scaling of the summands in the additive form,

the usual CG method will be in general faster than the new methods, since one iteration

step of the new methods is more expensive than in the usual CG method.

Let us analyse the arithmetical cost for each iteration step more precisely. Within

each step we have to compute scalar products, matrix by vector multiplications, vector

operations of the type y := �x + y (called DAXPY operations), and the application of

the preconditioner B. In Table 1 we summarize the amount of these operations. Note

that in Algorithm 3.4 the amount of arithmetical operations per iteration step is growing

with the number k of the iteration step. This is caused by the increasing cost of the

orthogonalization process for the vectors p

(k)

i

or s

(k)

i

, respectively.

Additionally, within Algorithm 3.2 and within Algorithm 3.3, the computation of the

iteration parameters in each iteration step requires to solve a system of linear equations

of the order 2l and of the order l + 1, respectively.

Table 1 shows that for large l the cost of arithmetical work of the new methods is much

more higher than that of the usual CG method with �xed preconditioners. But we can also

see that we have to perform in all algorithms the application of the preconditioner B only

once. In some cases, as for example preconditioners on the basis of domain decomposition

ideas (see Subsection 4.4), the application of the preconditioning operator B is relatively

expensive. In such cases, the better convergence properties of the proposed methods in

comparison to the usual CG method implies fewer applications of the operator B. This

can lead to faster algorithms.
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number of

method

scalar products matrix by vector DAXPY actions of B

usual CG method 2 1 3 1

Algorithm 3.2 l(2l+ 3) l l

2

+ 3l 1

Algorithm 3.3 (l + 1)(l+ 4)=2 l l+ 3 1

Algorithm 3.4 l((2k+ 1)l� 3)=2 l kl

2

+ 3l + l(l� 1)=2 1

Algorithm 3.5 3l(l+ 1)=2 l l

2

+ 3l+ l(l� 1)=2 1

Table 1: Arithmetical cost per iteration step

4.2 BPX preconditioner with variable parameters

As the �rst example we consider problem (3) with p = 1 and q = s

2

, s being an arbitrary

real number. We compare the algorithms with variable preconditioners and the CG

method with the �xed preconditioner (10). Problem (3) is solved in the unit square (0; 1)�

(0; 1). Starting from a coarse mesh with 32 congruent right isosceles triangles, a sequence

of nested �nite element triangulations is generated. Corresponding to each triangulation

we de�ne the �nite element subspaces spanned by the usual piecewise linear functions.

Using this discretization we get the systems of algebraic �nite element equations (6).

Since we want to measure the norm kz

(k)

k

A

in each iteration step we need the exact

solution u of the system of algebraic equations (6). We choose in the BVP (3) the right-

hand side f � 0, and therefore, the exact solution of the system (6) is the zero-vector.

The initial guess for the iterative processes is the vector whose components correspond

to the values of the function x

3

(1�x)y(1� y)

5

in the nodes of the �nite element meshes.

The iterative methods are terminated when the relative error kz

(k)

k

A

=kz

(0)

k

A

� 10

�4

is

achieved. In Table 2 the number of iterations for the CG method preconditioned by the

BPX method with the �xed factors �

k

= (p + 2

�2k

q)

�1

, k = 1; 2; : : : ; l, (see Section 2) is

presented. In all tables, N denotes the number of unknowns.

s 0 10 20 30 40 50 60 70 80 90 100

l N number of iterations

2 81 11 6 6 8 9 10 11 12 13 13 14

3 289 13 9 7 7 8 9 10 11 11 12 12

4 1089 14 12 8 7 6 7 7 8 8 9 10

5 4225 15 15 11 9 8 7 7 6 6 6 7

6 16641 16 16 13 11 10 9 8 8 7 7 7

Table 2: CG (preconditioned by BPX with �xed factors)

In the Tables 3 { 7 we give the number of iterations for Algorithm 3.1, i.e. the gradient

method with the variable preconditioner, and the Algorithms 3.2 { 3.5.

Tables 4 { 7 show that the CG-like algorithms with variable preconditioners have better

convergence properties than the CG method with the �xed preconditioner. However, in

all these experiments the CPU time needed for the new methods was higher than that for

the old one.
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s 0 10 20 30 40 50 60 70 80 90 100

l N number of iterations

2 81 32 9 5 5 6 8 9 11 12 13 14

3 289 37 13 8 5 4 4 5 5 6 6 6

4 1089 40 18 12 9 7 5 3 3 3 4 4

5 4225 43 22 16 12 10 8 7 6 5 4 3

6 16641 44 25 19 15 13 11 10 8 7 7 6

Table 3: Gradient method with l parameters (Algorithm 3.1)

s 0 10 20 30 40 50 60 70 80 90 100

l N number of iterations

2 81 12 6 4 5 5 6 7 7 8 8 9

3 289 13 8 6 4 4 4 4 4 4 5 5

4 1089 14 10 7 6 5 4 3 3 3 3 3

5 4225 14 11 9 7 6 6 5 4 4 4 3

6 16641 15 12 10 8 7 6 6 6 5 5 4

Table 4: Application of Algorithm 3.2

s 0 10 20 30 40 50 60 70 80 90 100

l N number of iterations

2 81 12 6 4 5 5 6 7 7 8 8 9

3 289 14 8 6 4 4 4 4 4 5 5 5

4 1089 16 10 8 6 5 4 3 3 3 3 3

5 4225 16 11 9 7 6 6 5 5 4 4 3

6 16641 16 12 10 8 8 7 6 6 5 5 4

Table 5: Application of Algorithm 3.3

s 0 10 20 30 40 50 60 70 80 90 100

l N number of iterations

2 81 10 6 4 5 5 6 7 7 8 8 9

3 289 11 8 6 4 4 4 4 4 4 5 5

4 1089 12 9 7 6 5 4 3 3 3 3 3

5 4225 13 10 8 7 6 5 5 4 4 3 3

6 16641 13 11 9 8 7 6 6 5 5 5 4

Table 6: Application of Algorithm 3.4
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s 0 10 20 30 40 50 60 70 80 90 100

l N number of iterations

2 81 11 6 4 5 5 6 7 7 8 8 9

3 289 13 8 6 4 4 4 4 4 4 5 5

4 1089 14 10 8 6 5 4 3 3 3 3 3

5 4225 15 11 9 7 6 6 5 4 4 3 3

6 16641 16 12 10 8 7 7 6 6 5 5 4

Table 7: Application of Algorithm 3.5

Finally, in Table 8, we present the number of iterations if we use the preconditioner B

in (10) with the factors �

k

= 1, k = 1; 2; : : : ; l. The bad convergence properties in this case

show that it is important to know some a-priori information of the corresponding boundary

value problem or to compute suitable factors within the iterative process automatically

as it is made in the Algorithms 3.1 { 3.5.

s 0 10 20 30 40 50 60 70 80 90 100

l N number of iterations

2 81 11 9 8 11 13 14 15 16 16 17 17

3 289 13 12 13 14 15 17 18 19 20 20 21

4 1089 14 13 15 17 19 20 20 21 22 24 24

5 4225 15 13 15 18 20 22 24 25 26 28 29

6 16641 16 14 16 19 20 22 25 27 28 30 32

Table 8: Application of the BPX preconditioner with factors equal to 1

4.3 Two-level p-hierarchical preconditioners

In this section, we apply the presented algorithms to systems of �nite element equations

arising from the discretization with two-level p-hierarchical ansatz functions.

We consider two problems, namely problem (3) (with p = 1, q = 0, and f = 0) in the

domain 
 = (0; 1)� (0; 1), and a plane linear elasticity problem (state of the plane stress)

in the same domain but with the boundary conditions

u = (u

1

; u

2

)

T

= 0 on �

1

= f(x; y) : 0 � x � 1 ; y = 0g ;

�

ij

n

j

= 0 on @
 n �

1

(i; j = 1; 2);

where u = (u

1

; u

2

)

T

denotes the displacement vector, �

ij

are the components of the

stress tensor, and n = (n

1

; n

2

)

T

is the vector of the outer normal on the boundary @
.

Furthermore, we use a Poisson's ratio � = 0:3 in the elasticity problem.

As in Subsection 4.2, the discretization process is started with a coarse triangulation

of the domain 
 which consists of 32 congruent right isosceles triangles. The �ner tri-

angulations are generated by a successive re�nement process where we generate in each

triangle four congruent subtriangles by connecting the midpoints of the edges. In the

�nest triangulation we de�ne on each edge of the triangles the midpoint such that we get

triangles with 6 nodes. The �nite element subspaces on the coarse meshes are spanned
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by the usual piecewise linear �nite element functions, and on the �nest mesh the �nite

element subspace is spanned by so-called two-level p-hierarchical functions. These func-

tions are the usual piecewise linear functions and piecewise quadratic functions which are

equal to one in exactly one midpoint and are equal to zero in all other nodes. Numbering

�rst the vertex nodes and then the midpoint nodes in the �nest triangulation, the system

of �nite element equations has the following block structure

 

A

vv

A

vm

A

mv

A

mm

! 

u

v

u

m

!

=

 

f

v

f

m

!

; (39)

where "v" and "m" correspond to the vertex nodes and the midpoint nodes, respectively.

It is well-known [2, 3, 20] that the matrix

~

B =

 

A

vv

0

0 A

mm

!

is spectrally equivalent to the sti�ness matrix in (39). From the matrix

~

B we derive the

preconditioner

B =

 

B

vv

0

0 B

mm

!

;

where B

vv

stands for the usual BPX preconditioner [10, 31], and for B

mm

we choose

the diagonal part of the matrix A

mm

, i.e. B

mm

= diag(A

mm

). In this way we get a

preconditioner B which is spectrally equivalent to the sti�ness matrix in (39) (see, e.g.,

[2, 3, 10, 19, 31]). It is obvious that the preconditionerB is of additive form, and therefore,

we can apply the algorithms described in Section 3.

In Table 9 we present the number of iterations of the Algorithms 3.1 { 3.5 and of the

usual CG method.

Furthermore, we made some experiments with a preconditioner B

mm

= � diag(A

mm

)

with di�erent values of � (The corresponding algorithms are denoted by CG-�.). The

results show that a wrong scaling factor � in
uences the convergence rate of the usual CG-

method essentially, but the convergence behaviour of the new algorithms is not disturbed

by such a wrong factor. Using Algorithm 3.1, i.e. the gradient method with variable

preconditioner, we can compute the optimal scaling factor �. This optimal parameter

�

opt

is also applied in the usual CG method.

In the case of problem (3), the initial guess for the iterative processes is the vector

whose components correspond to the values of the function x

3

(1�x)y(1�y)

5

in the nodes

of the �nite element meshes. For the elasticity problem we use that vector whose compo-

nents correspond to the values of the function x

3

(1� x)y(1� y)

5

for the u

1

displacement

and to the values of the function x(1�x)

5

y

3

(1�y) for the u

2

displacement. The iterative

methods are terminated when the relative error kz

(k)

k

A

=kz

(0)

k

A

� 10

�4

is achieved.

From Table 9 we can see that the scaling factors 1:0, which are used in the usual CG

method, are not so far from the right scaling. Consequently, the algorithms presented in

Section 3 can not lead to an essential reduction of the number of iterations.

In this section, we also show an experiment with the iterative process (21). As men-

tioned in Section 3, this iterative process is very expensive. For that reason we solved only

a very small problem, i.e. a problem with 81 and 162 unknowns in the cases of the Pois-

son's equation and the elasticity problem, respectively. In Table 10 we present for each

iteration step k the relative error kz

(k)

k

A

=jz

(0)

k

A

. As preconditioner we use the matrix

 

A

vv

0

0 diag(A

mm

)

!

:
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Poisson's equation elasticity problem

N 289 1089 4225 16641 578 2178 8450

solver number of iterations number of iterations

usual CG 15 15 15 14 25 25 24

Algorithm 3.1 34 34 32 29 83 85 81

Algorithm 3.2 14 14 13 12 25 24 21

Algorithm 3.3 15 15 14 14 24 25 23

Algorithm 3.4 13 13 12 11 21 20 19

Algorithm 3.5 14 14 13 12 23 22 20

CG{�

opt

14 14 13 12 23 23 23

�

opt

0.65 0.55 0.47 0.39 0.72 0.62 0.69

CG{10 26 25 23 20 43 40 36

CG{100 48 53 51 47 100 103 98

Table 9: Number of iterations of the di�erent methods

Table 10 shows that the iterative process (21) has better convergence properties than

the other methods. But in the case of the elasticity problem we can see that this iterative

process can be unstable or even not converge.

Poisson's problem elasticity problem

iteration step relative error kz

(k)

k

A

=jz

(0)

k

A

relative error kz

(k)

k

A

=jz

(0)

k

A

1 0.4903 0.4571

2 0.1134 0.3288

3 0.4674e-01 0.1886

4 0.1848e-01 0.8071e-01

5 0.3446e-02 0.2762e-01

6 0.6385e-03 0.1089e-01

7 0.1345e-04 0.5054e-02

8 0.9596e-03

9 0.3404e-03

10 0.3404e-03

Table 10: Application of the iterative process (21)

4.4 Preconditioners in domain decomposition methods

In this section, we apply our algorithms to the Poisson's equation, i.e. to problem (3) with

p = 1 and q = 0. Here, we want to study the convergence behaviour of the algorithms

presented in Section 3, when we use a preconditioner based on a non-overlapping domain

decomposition (DD) strategy.
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The starting point for the DD method is a decomposition of the domain 
 into non-

overlapping subdomains 


i

, i = 1; 2; : : : ; p. A well-known way for de�ning DD precondi-

tioners is the following: First, we consider the system of algebraic �nite element equations

in the exact discrete harmonical basis [15, 16]. In this basis, the sti�ness matrix has, by

a suitable numbering of the nodes, a block structure, where one block is the Schur com-

plement matrix and the other blocks are that parts of the sti�ness matrix in the nodal

basis which correspond to the inner nodes of each subdomain. Then, the preconditioning

matrix

B =

 

�

C

B

C

0

0 �

I

B

I

!

; B

I

= blockdiagfB

I;i

g

i=1;2;:::;p

; (40)

is spectrally equivalent to the sti�ness matrix in the exact discrete harmonical basis

if B

C

and B

I

are spectrally equivalent to the Schur complement and to the sti�ness

matrix corresponding to the problems in the subdomains, respectively. Examples for such

preconditioners are given in [15].

In general, transformations into the exact discrete harmonical basis are too expensive.

Therefore, one utilizes an approximate discrete harmonical basis. In [15, 16] it is shown

that also in this case the matrix (40) is a spectrally equivalent preconditioner supposed

that the matrices B

C

and B

I

are chosen in an appropriate way. Because of the additive

form of the preconditioning matrix (40) we can use this preconditioner within our iterative

solvers.

Usually, one does not perform the iterative methods for the system of �nite element

equations in the approximate discrete harmonical basis. One applies the algorithms to

the systems of �nite element equations in the nodal basis and utilizes the transformation

to the approximate discrete harmonical basis within the preconditioner. This results in

the DD-preconditioner V

T

BV with a matrix V which describes the change from the nodal

basis to the approximate discrete harmonical basis.

In the following, we consider problem (3) (p = 1, q = 0, f = 0) in the square (0; 4) �

(0; 4). The domain 
 is decomposed into 16 subdomains. We generate in each subdomain

a sequence of nested triangulations such that we get an admissible triangulation for the

whole domain 
. Corresponding to this sequence of triangulations, a sequence of systems

of �nite element equations is de�ned by using the usual piecewise linear functions.

As initial guess for the iterative solvers, a vector is used whose components correspond

to the values of the function x

3

(4�x)y(4� y)

5

in the nodes of the �nite element meshes.

The iterative methods are terminated when the relative error kz

(k)

k

A

=kz

(0)

k

A

� 10

�4

is

achieved.

As matrixB

C

we apply a BPS-preconditioner [9] using ideas from [1, 13, 25] on the cou-

pling boundary, i.e. on the boundary of the subdomains, and a global cross-point system.

The preconditioner B

I

is de�ned implicitly, i.e. for solving the problems corresponding

to the subdomains a multigrid V-cycle with one pre- and one post-smoothing step of

Gauss-Seidel type is employed. The basis transformation V makes use of a hierarchical

extension technique described in [16].

The numerical experiments presented in Table 11 are performed on 16 processors of a

multiprocessor system GC/PP-128.

Table 11 shows that in the most cases the Algorithms 3.2 { 3.5 are faster than the usual

PCG method with the preconditioner (40) and �

C

= �

I

= 1. Within each iteration step of

the algorithms implemented on a parallel computer we have to perform communication

between the processors. On the multiprocessor system GC/PP-128 the communication

power is relatively slow in comparison to the processing power. Therefore, the higher
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N 497 2001 8081 32529 130577 523281

solver CPU-time [sec] (number of iterations)

CG 0.37 (14) 0.57 (20) 0.95 (26) 2.66 (34) 10.71 (42) 48.42 (50)

Algorithm 3.1 0.76 (38) 1.25 (55) 2.84 (89) 11.39 (142) 64.81 (225) 400.38 (359)

Algorithm 3.2 0.29 (14) 0.40 (17) 0.74 (21) 2.39 (27) 11.38 (35) 59.42 (47)

Algorithm 3.3 0.26 (13) 0.36 (15) 0.68 (20) 1.91 (23) 8.44 (28) 39.75 (34)

Algorithm 3.4 0.34 (13) 0.49 (16) 0.93 (20) 3.30 (23)

Algorithm 3.5 0.33 (13) 0.42 (15) 0.79 (20) 2.23 (24) 9.54 (29) 45.36 (36)

�

c

=�

I

0.86 0.71 0.47 0.37 0.28 0.26

Table 11: Iterative algorithms with DD preconditioner

arithmetical cost in each iteration step in the Algorithms 3.2 { 3.5 compared with the

usual PCG method is less important.

The ratio �

c

=�

I

in Table 11 is computed by using Algorithm 3.1. This ratio indicates

that for the problems with a small number of unknowns the scaling of B

C

and B

I

with

�

C

= �

I

= 1 (which is usually used) is relatively good.

5 Conclusions

We have presented iterative schemes which are especially designed for the application of

additive preconditioners. The algorithms allow to compute the scaling factors for each

summand in the preconditioner automatically. Numerical examples show that the new

algorithms can be faster than the usual CG method, in particular, when the scaling factors

are not known a-priori.
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