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1 Introduction

The mathematical treatment of many physical phenomena and engineering problems leads to

direct problems as solving (nonlinear) partial di�erential equations or optimization problems

including partial di�erential equations. On the other hand, the determination of parameters

(or the optimal parameters) in such equations (for example material properties) is often the

scope of interest. These so called inverse problems require numerous iterations of solving the

direct problems above. In any case a fast solver for the applied problems depends on the fast

solving of the linear(ized) partial di�erential equations and therefore after a discretization,

here via the �nite element method, on the availability of a fast solver for large linear systems

of equations.

During the last decade various ideas for parallel solving �nite element equation systems

were developed. Our report is based on parallel iterative solvers using a non-overlapping

domain decomposition and parallel computers with distributed memory (distributed data)

[9, 10, 19]. After mapping the subdomains to the processors this class of algorithms requires

some small amount of a special type of communication for updating the values of the nodes

on the boundaries between two or more processors, in the following called accumulation.

The time needed for accumulation could be minimized by an optimal distribution of the

n �nite elements on the p processors. This is by no means a trivial problem:

� The optimal distribution depends on the hardware and on the software, in particular

on the data structure. That means the functional to be minimized is not clear.

� The number of possible distributions grows exponentially with n; the optimization

problem is NP hard.

Nevertheless, there are many attempts to model key features of the accumulation [11].

It is assumed that the time depends essentially on the quantity of data which has to be

exchanged and on the length of the path on which each information has to be transferred. In

this sense, the distribution problem can be (but needs not to be) decoupled in a partitioning

problem and an assignment problem.

These models and other heuristics led to a variety of algorithms (including recursive

coordinate bisection, recursive inertial bisection [23, 24], recursive spectral bi-, quadri-,

octasection [14, 15], Kernighan-Lin [17], terminal propagation [6, 8]) and combinations of

them. The preference of one of the algorithms depends strongly on the application, for

example on the size of p and n, time constraints, and the frequency of redistribution. The

aim of this study is to suggest an algorithm for our application, the parallel �nite element

code SPC-PMPo3D [1, 3].

In Version 3, SPC-PMPo3D can solve the Poisson equation and the Lam�e system of

linear elasticity with in general mixed boundary conditions of Dirichlet and Neumann type

on a variety of (in general curved) domains. The program has been developed for MIMD

computers; it has been tested on Parsytec machines (GCPowerPlus{128 with Motorola

Power PC601 processors and GCel{192 on transputer basis) and on workstation clusters.

We point out that the implementation is based on a special data structure which allows that

all components of the program run with almost optimal performance (O(n) or O(n ln n)).

The data representation and the accumulation algorithm are described in [2, 3]. Because

of their relevance for our study and to keep this paper self-contained, we review some main

points in Section 2.

In Section 3 we present the results of our study. For the computation of the element

distributions compared here, the package Chaco [12] was used. This program contains
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many of the algorithms mentioned above for the partitioning of �nite element meshes. Our

report is completed with a short �nal section where we summarize our results.

The importance of this study is based on two arguments. First, other parallel �nite

element codes work on similar principles; our results should extend to these codes. Second,

the tests carried out are the starting point for our ongoing research into adaptive �nite

element methods in three dimensions which is still a challenge on a parallel computer.

The authors know about a similar study [18] where dynamic load balancing is considered

in the context of the parallel multilevel �nite element code ug [4, Chapter 4]. This report

[18] goes beyond our study because the far more di�cult dynamic load balancing case is

examined. On the other hand, the study is limited to two dimensional problems. But

e�ective accumulation becomes more important for three dimensional problems. To see

this, let N be the typical problem size (for example the number of unknowns) then the

amount of data to be accumulated is O(N

1=2

) for two dimensional problems but O(N

2=3

)

in three dimensions.

2 The software environment

2.1 Main algorithms

In the �nite element method, we consider a family fT

k

g

1

k=0

of meshes. A mesh is a subdivi-

sion of the domain 
 � IR

3

into �nite elements. A hierarchy of meshes is de�ned if T

k+1

is

a re�nement of T

k

(k = 0; 1; 2; : : :). T

0

is called coarse mesh. Up to Version 3 of our �nite

element package SPC-PMPo3D the simplest case of a hierarchy is realized where T

k+1

is

obtained by a uniform subdivision of all elements of T

k

into 8 smaller elements of equal

volume.

The main steps of the �nite element code include

1. the distribution of the elements of T

0

to the processors,

2. the re�nement of the mesh,

3. the assembling the local sti�ness matrices K

s

and the local right hand sides f

s

, s =

0; : : : ; p� 1, and

4. the solving of the system of equations.

Observe that each element belongs to exactly one processor, but nodes can belong to several

processors. Such nodes are called coupling nodes.

The steps 2 and 3 are executed in parallel without any communication. This implies

that the vector f (the global right hand side) is of additive type, that means that the correct

value at the coupling nodes would be obtained only after the accumulation (adding) of the

partial values which are contributed by the corresponding processors. This can be expressed

in mathematical terms by de�ning f as

f =

p�1

X

s=0

A

T

s

f

s

;

where A

s

are Boolean connectivity matrices. In the same way there holds for the global

sti�ness matrix K

K =

p�1

X

s=0

A

T

s

K

s

A

s

;

but neither f nor K are actually accumulated.
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Algorithm 1

Initialization:

r

s

:= K

s

u

s

� f

s

,

calculate w

s

= A

s

w from w := C

�1

r,




s

:= w

T

s

r

s

, 
 :=

p�1

P

s=0




s

, q

s

:= w

s

.

Iteration:

v

s

:= K

s

q

s

, �

s

:= v

T

s

q

s

, � :=

p�1

P

s=0

�

s

, � := �
=�,

u

s

:= u

s

+ �q

s

, r

s

:= r

s

+ �v

s

,

calculate w

s

= A

s

w from w := C

�1

r,




s

:= w

T

s

r

s

, 
̂ :=

p�1

P

s=0




s

, � := 
̂=
, 
 := 
̂, q

s

:= w

s

+ �q

s

.

The counterpart of vectors of additive type are vectors of overlapping type, that means

that the correct values are stored on each processor:

u

s

= A

s

u:

With these de�nitions we are prepared to introduce our method for solving the system

of equations, the parallelized preconditioned conjugate gradient method (PPCG) [19] for

solving C

�1

Ku = C

�1

f , see Algorithm 1. The vectors u, w, and q are of overlapping type,

and f , r, and v are of additive type. Note that this choice leads to the elegant realization

of the scalar products � := v

T

q and 
̂ := w

T

r,

v

T

q =

 

p�1

X

s=0

A

T

s

v

s

!

T

q =

p�1

X

s=0

v

T

s

A

s

q =

p�1

X

s=0

v

T

s

q

s

;

and of the matrix vector multiplication,

v = Kq =

p�1

X

s=0

A

T

s

K

s

A

s

q =

p�1

X

s=0

A

T

s

K

s

q

s

=

p�1

X

s=0

A

T

s

v

s

with v

s

:= K

s

q

s

:

Each PPCG iteration contains communication in form of two global sums of single

numbers (� :=

P

p�1

s=0

�

s

, 
 :=

P

p�1

s=0




s

) and in form of a change of the type of vectors in the

preconditioning step w := C

�1

r. Even without preconditioning (C = I) this step includes

accumulation, that means the realization of

w

s

= A

s

w := A

s

r = A

s

p�1

X

i=0

A

T

i

r

i

:

This step is the most expensive part in the PPCG in comparison with a one processor

variant. It must be treated with much care, which is re
ected in the choice of the data

structure and the expense for a favourable distribution of the elements to the processors.

Details about the implementation of preconditioners are omitted here; they can be found

for example in [3, 19].
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index contents of the vector at position index

1 pointer, smallest number of a node in the Kette

2 length of the Kette

3 communication identi�er PathId

4 { 7 global identi�cation of the Kette (KettenId)

Table 1: De�nition of the vector describing a Kette .

2.2 Accumulation

Before we describe the part of the data representation which is necessary to understand the

accumulation algorithm we want to clarify some notation which may be used in a slightly

di�erent manner by other authors.

All nodes of the coarse mesh T

0

are called crosspoints; the edges and faces of T

0

are called

coupling edges/faces, respectively. The numbers of crosspoints and of coupling edges/faces

are constant for all meshes of the family. In each mesh T

k

the crosspoints have the same

enumeration. After distributing the data over the processors each processor possesses a

smaller number of local crosspoints. As a global information there is a vector which maps

the local crosspoint numbers to the global crosspoint numbers.

During the mesh re�nement (Step 2 in Algorithm 1) additional nodes are introduced

at the coupling edges/faces and in the interior of the elements of T

0

. The latter are called

inner nodes, their number grows with 2

3k

� h

�3

. Note that inner nodes belong to only one

processor, that means they do not contribute to the communication.

All nodes at the coupling edges/faces may belong to several processors. Because their

number is of the order 2

k

� h

�1

and 2

2k

� h

�2

, respectively, we shall avoid expensive

searches during the communication process by demanding from the mesh generator that

the nodes of each edge/face are numbered consecutively, and in the same manner on all

corresponding processors. Thus these nodes are identi�ed by a pointer to the �rst node, the

number of nodes at this edge/face, and a characterization of this edge/face. We denote such

a sequence by Kette, the German word for chain. Note that the coupling edges/faces can

be characterized by a global edge/face number (if available) or by their global crosspoint

numbers. We remark also that this data structure is convenient for a preconditioner related

to the coupling edges/faces as described in [7] for two dimensional problems. In the program,

each Kette is described by a vector of integer type and of dimension 7, see Table 1 for an

explanation. These vectors are stored in an array Kette.

The accumulation is divided into two steps, the accumulation of the data at crosspoints

and of Kette data. For both steps we assume that the parallel computer has at least a logical

hypercube topology, for an introduction to hypercubes see [21, 22]. Notice that physically

neighboured subdomains may be placed on processors which are not adjacent physically or

logically.

The accumulation of data at crosspoints is performed via Algorithm 2. It needs an

auxiliary array H and one global communication.

It would be easy to modify Algorithm 2 for the accumulation of the data at the coupling

edges/faces, but there are strong disadvantages: First, a large auxiliary array is necessary.

And second, a large amount of useless information is exchanged, its part is increasing with

the number of processors. So we try to use the model `hypercube' in a speci�c way. We will

explain the idea in an example.
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Algorithm 2

Initialize H with 0 and write the values of the local crosspoints to the appropriate

places.

Perform a cube sum for H.

Get the accumulated values for the local crosspoints out of H.

Consider a Kette that belongs to the three processors with the numbers

p

1

= 11 = 000L0LL;

p

2

= 17 = 00L000L;

p

3

= 65 = L00000L:

If we break Link 0 of all processors then the hypercube of dimension ncube is split in two sub-

hypercubes of dimension ncube�1. The last bit in the binary representation of the number

of the processor indicates the sub-hypercube the processor belongs to. In our example, all

three processors belong to the same sub-hypercube, that means the data exchange via Link

0 is useless. Obviously, the same is valid for Links 2 and 5.

However, Links 1, 3, 4, and 6 cannot be broken, otherwise the processors would belong

to di�erent subcubes. The minimal sub-hypercube for our example can be characterized by

an integer PathId

PathId = L0LL0L0;

L means that the corresponding link is necessary, 0 indicates that a communication via this

link is without use. This integer is calculated once and stored in the third column of the

array Kette, compare Table 1. We remark that 1) Kettes that belong to one processor only,

and 2) Kettes of length 0 need not to be communicated. This is indicated by PathId = 0.

Our aim is to realize the accumulation in a way that the communication of the Kette is

performed by a speci�c subcube sum, here in a four-dimensional sub-hypercube. Note that

13 of the 16 processors which are engaged in the communication, do not possess the Kette

themselves. Algorithm 3 realizes the approach described in the example. It needs three

auxiliary bu�ers Wait, Send, and Recv to store Kettes. They are initially empty, Send is

always empty after step 2, Recv always after step 3, and Wait at the end of the algorithm.

For a simple description we denoted the set of Kettes that the processor possesses itself,

by Own. Note that only the main point is explained in Algorithm 3, namely our use of

hypercubes. Indeed, our code contains two modi�cations to avoid some useless operations:

1. Kette s which belong to faces are communicated to only one (at most) processor. That

means each intermediate processor sends it only once. So one can reduce the range of

the loops in Steps 1 and 3.

2. Step 3 contains some searches (IF Kette IN Own/Wait). The time for this is reduced

by recording the actions in the �rst iteration and using this record in all subsequent

iterations of the PCCG algorithm.

For details see [2].

We will complete this section with the remark that the dimensions of the sub-hypercubes

depend on an intelligent distribution of the subdomains to the processors. Consider a

quadratic 4 � 4 grid with edges at the vertices, directed in the third dimension. The
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Algorithm 3

TestBit := 1

DO nrlink:=1 TO ncube

1. FORALL Kette IN Own/Wait DO

IF PathId^ TestBit THEN Copy Kette to Send.

DONE

2. Send bu�er Send to the neighbouring processor via link nrlink and

store the data received from the same processor in the bu�er Recv.

3. FORALL Kette IN Recv DO

IF (Kette IN Own)

THEN Accumulate Values in Own.

ELSE IF (PathId� 2

nrlink

)

THEN IF (Kette IN Wait)

THEN Accumulate Values in Wait.

ELSE Add Kette at the end of bu�er Wait.

END IF

END IF

END IF

DONE

4. Compress Wait by deleting each Kette with PathId< 2

nrlink

.

5. TestBit:=TestBit*2

DONE
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following two examples of the processor distribution are constructed using the Gray code

[21].

(a)

� � �
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(b)
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14

5 11
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15 1

7

9 2 12

� boundary edges with two

adjacent subdomains

� inner edges with four ad-

jacent subdomains

In the case (a), the dimension of the subcube is 1 for faces and boundary edges and

2 for inner edges, because the numbers of the processors of adjacent subdomains di�er in

exactly one bit. In case (b) they di�er in (ncube � 1) bits. Consequently, the complete

hypercube is necessary for the accumulation of each inner 1D-Kette . Note that the example

easily extends to a higher hypercube dimension. That means, an intelligent distribution of

the subdomains is achieved when the numbers of adjacent subdomains di�er in few bits only.

These considerations are su�cient for (hardwired) hypercubes. In the case of other

topologies (for example under PARIX) one should also keep in mind that the data exchange

via links with low numbers nrlink may be faster than via higher links depending on the

mapping of hypercube links to the PARIX grid. For the PVM workstation cluster the only

restriction will be to avoid any useless communication with respect to the large setup time.

3 Comparison of several partitioning algorithms

3.1 The test examples and the metrics

In the following we will denote a set of elements assigned to one processor as a partition.

The process of dividing a mesh into n subsets and mapping it to the processors we will call

partitioning and its result decomposition.

If we consider a graph (V; E), we mean always the dual graph of the mesh: the elements

of the mesh are the vertices of that graph and edges between vertices are introduced if the

corresponding elements share a common face.

Our tests are performed on two FE-meshes, cube768 (Figure 1) and spc3-123 (Figure 2).

While the �rst one is very regular the second one is quite unstructured. [t]

For the evaluation of a computed decomposition Chaco provides 7 di�erent metrics. We

will use only four of them. For their description let V

i

be a subset of vertices, v

i

a vertex,

E

i

a subset of edges, e

ij

the edge between the vertices v

i

and v

j

, and E

V

i

V

j

:= fe

`m

: v

`

2

V

i

; v

m

2 V

j

g � E the set of cut edges between subset V

i

and V

j

.

Set Size: The total weight of the vertices in a set. Since all our vertices have weight 1 the

interesting values are:

min

i

jV

i

j; max

i

jV

i

j:

In a balanced decomposition the maximal and minimal value should be as close as

possible.

Edge Cuts: The weight of those edges which connect a vertex in one set to vertices in
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Figure 1: FE-mesh cube768 with 768 tetrahedral elements.

Figure 2: FE-mesh spc3-123 with 1398 tetrahedral elements.

another set (cut edges). All our edges have weight 1 and so we are interested in:

X

i 6=j

jE

V

i

V

j

j:

Hypercube Hops: A measure in which each cut edge is multiplied by the architectural

distance between the two processors owning its vertices. This metric models commu-

nication time often better than Edge Cuts does because it takes into account network

congestion. In our special case this could be represented by:

X

i 6=j

h

ij

jE

V

i

V

j

j;

where h

ij

is the number of bits that are di�erent in the binary representation of i and

j.

Internal Vertices: The total weight of all the vertices in a set which have no edges con-

necting them to vertices in other sets. As discussed in 3.4, the presence of such vertices

may allow for an overlap of communication with computation. In a short form this

will be represented by:

X

i

jfv

`

2 V

i

: 8e

`m

is v

m

2 V

i

gj:
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Figure 3: Computing times of di�erent decompositions for hypercube dimension d = 1; : : : ; 6.

cube768

random linear RSB

Set Size (max./min.) 12/12 12/12 12/12

Edge Cuts 1390 544 584

Hypercube Hops 4181 736 1130

Internal Vertices 0 68 118

spc3-123

random linear RSB

Set Size (max./min.) 22/21 22/21 22/21

Edge Cuts 2232 655 526

Hypercube Hops 6778 1834 926

Internal Vertices 0 470 682

Table 2: Metrics of the random and linear decomposition and of the recursive spectral bisec-

tion for a distribution among 64 processors.

For a performance test of the decompositions we have measured the total execution time

of the PPCG. This is the critical part in our code with most of the communication, other

expensive parts like assembling the sti�ness matrix are fully parallel without communication.

Note that the measured time is the total time, a composition of user and system time and

the maximum over all processors.

3.2 Spectral bisection

The spectral bisection from Pothen, Simon, and Liou [20] is probably the best known par-

titioning algorithm of spectral type. It provides good results but it is expensive. Therefore

the spectral bisection and their recursive application (RSB) is suited only for small meshes

(about 1000 elements). Our meshes are from the right size (recall that we distribute only

T

0

) and so we �rst test the RSB against random and linear partitioning.

In the linear scheme, vertices are assigned to the processors according to their numbering

in the original graph. In our case of an unweighted graph with n vertices divided into p

sets, the �rst n=p vertices would be assigned to set 0, the next n=p to set 1, etc. This

mostly produces surprisingly good results because data locality is often implicit in the

vertex numbering. In the random scheme, vertices are assigned randomly to sets in a way

that preserves balance.

Our tests start with a comparison between a random decomposition as the worst case,

the linear decomposition as the simplest case, and the recursive spectral bisection. The

computing times are shown in Figure 3. In Table 2 we give the metrics for the case d = 6.

As expected we obtain an extreme computation time for the random scheme. For the

linear algorithm we get an interesting result. The left part of Figure 3 shows a better time

for the linear decomposition than for the recursive spectral bisection. But this result seems

to be mesh speci�c and not the general case as shown clearly in the right part of Figure 3.

The very good outcome of the linear decomposition on partitioning cube768 results �rst

from the number of elements as a multiple of 64 and second from the regular mesh and

its advantageous numbering. On a very irregular mesh like spc3-123 the recursive spectral
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mesh

cut planes

mesh

cut planes

Figure 4: Tetrahedral mesh with 1800 elements partitioned into 8 parts by recursive spectral

bisection. Left: Normal RSB. Right: RSB with local KL re�nement.

RSB RSB+KL

Edge Cuts 165 142

Hypercube Hops 244 217

Table 3: Metrics for a tetrahedral mesh with 1800 elements.

bisection shows its superiority because of its independence from the shape of the domain

and numbering of the mesh.

Hendrickson and Leland [13] have generalized the recursive spectral bisection to a re-

cursive spectral quadri- and octasection. We also made tests with these algorithms but we

could not �nd improvements against the bisection so we will not mention the quadri- and

octasection case further.

3.3 Kernighan-Lin re�nement

The heuristic of Kernighan and Lin [17] (KL) is an iterative algorithm that tries to reduce

the number of edges cut by the decomposition by moving vertices between sets. It is mainly

a local optimization strategy and so a start distribution must be given. Doing this in the

original way with a random distribution at start the algorithm can not really satisfy. On

the other hand, the spectral bisection introduced in 3.2 computes very good global results

but its local performance is rather poor. Boundaries between two sets are usually rough and

not optimal so it seems to be advantageous to use the KL for a local re�nement of every

bisection.

As an illustration we show in Figure 4 an example with a nearly two dimensional do-

main, in the third direction we use only one layer of elements. In the left part we see the

partitioning result of the standard RSB with very rough boundary. The right decomposi-

tion was found via RSB and local KL re�nement and has a much smoother boundary. This

observation is also proved by Table 3.

Also in our two test examples we get a good improvement of the decomposition. Figure 5

shows the reduction of computing time by the local KL re�nement and Table 4 contains the

corresponding metrics.

3.4 Post-processing

In this section we want to discuss three post-processing strategies. Post-processing means

that a full decomposition is already given and we only want to improve it. Contrary to this

the local KL re�nement is applied in each step of the (spectral) bisection; therefore it was

described separately.
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Figure 5: Computation times for recursive spectral bisection with and without local KL

re�nement on hypercube dimension d = 1; : : : ; 6.

cube768

RSB RSB+KL

Edge Cuts 584 516

Hypercube Hops 1130 978

Internal Vertices 118 115

spc3-123

RSB RSB+KL

Edge Cuts 526 458

Hypercube Hops 926 708

Internal Vertices 682 659

Table 4: Metrics for the recursive spectral bisection with and without local KL re�nement

for a distribution to 64 processors.

The �rst strategy is to try to improve (re�ne) the mapping (RM) of the sets (parti-

tions) to the processors. The sets themselves remain unchanged. To achieve this the code

determines how the hypercube hop metric would change if we swap any two sets which are

adjacent in the hypercube. The swap with the maximal improvement is performed and the

process goes on until no further improvement is possible. Note that all other metrics remain

constant during this algorithm.

The positive practical result is shown in Figure 6 and Table 5. The computation time

is shortened with a decreasing number of hypercube hops, not proportionally however.

The reason for the positive in
uence is surely our realization of the communication, see

Subsection 2.2. Thus we recommend to apply this post-processing always.

Note that partitioning and mapping can also be interwoven, but this is postponed to

Subsection 3.5.

The second post-processing strategy consists in increasing the number of internal vertices

(IV). This can make sense in two ways: There is no need for communication across internal

vertices and only local data are required to process them. This can reduce the total amount

of communication and may allow for overlapping communication and computation since the

computation associated with an internal vertex can be performed while waiting for data

from other processors to arrive (but this is not exploited yet).

To accomplish this the procedure �rst determines the number of internal vertices in each

set. Then the set with the fewest internal vertices receives vertices from other sets to make

some of its own vertices to internal ones, and it gives back other vertices to preserve the

balance.

The results of our tests are shown in Figure 7 and in Table 6. The success of this post-

processing clearly depends on the implementation of the communication and it is obvious

that our test application SPC-PMPo3D is not able to pro�t from this idea. For other

applications this result may be completely di�erent depending on the possibility to overlap

communication and computation.



12 3. COMPARISON OF SEVERAL PARTITIONING ALGORITHMS

0

2

4

6

8

10

12

14

4 8 16 32 64

T

i

m

e

i

n

s

Number of processors

RSB+KL

RSB+KL+RM

10

20

30

40

50

60

70

4 8 16 32 64

T

i

m

e

i

n

s

Number of processors

RSB+KL

RSB+KL+RM

(cube768) (spc3-123)

Figure 6: Computation time of the recursive spectral bisection with local KL re�nement with

and without improved mapping (RM) for hypercube dimension d = 2; : : : ; 6.

cube768

Proc. RSB+KL RSB+KL+RM

4 76 76

8 180 150

16 384 317

32 660 561

64 978 875

spc3-123

Proc. RSB+KL RSB+KL+RM

4 52 52

8 93 93

16 206 177

32 395 331

64 708 615

Table 5: Hypercube-Hop-Metrics of the recursive spectral bisection with local KL re�nement

with and without improved mapping.
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Figure 7: Computation times for the local KL re�ned recursive spectral bisection with and

without increasing the number of internal vertices.

cube768

Proc. RSB+KL+RM RSB+KL+RM+IV

4 628 631

8 522 525

16 342 360

32 213 245

64 115 148

spc3-123

Proc. RSB+KL+RM RSB+KL+RM+IV

4 1303 1305

8 1236 1238

16 1100 1098

32 903 908

64 659 679

Table 6: Number of internal vertices for a local KL re�ned recursive spectral bisected parti-

tioning with improved mapping with and without increasing internal vertices.
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Figure 8: Illustration of global KL re�nement. Left: Initial decomposition. Middle: One

step of global re�nement. Right: Two steps of global re�nement.
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Figure 9: Computation times for the recursive spectral bisection local KL re�ned with

improved mapping and with di�erent number of iteration steps on hypercube dimensions

d = 2; : : : ; 6.

The last post-processing strategy is called re�ne partition (RP). The idea is the following:

In the recursive generation of a decomposition, some information is lost with each recursion

level. For example, a KL re�nement is performed between only a fraction of the total number

of adjacent sets. That why Chaco provides the possibility to perform a local re�nement

between all pairs of sets. To do so, �rst the number of edges between each pair of sets is

determined. Kernighan-Lin re�nement is then performed between each pair in descending

order from the pair with the largest number of edges to that with the smallest.

The result of such a global re�nement is shown in Figure 8. The recursive spectral

bisection does not provide an optimal result (left picture). The number of edge cuts is

here 50. In the middle we see the result of recursive spectral bisection with one step global

re�nement. The quality is clearly better, namely only 40 edge cuts. The picture on the right

hand side shows the result of recursive spectral bisection with two steps global re�nement.

Now the optimal decomposition with 30 edge cuts is reached.

The practical use of this strategy is shown in Figure 9. Obviously the success is very

little. The decrease in computation time is barely visible. Because the algorithm is cheap

in comparison with the whole partitioning and it may improve the decomposition it makes

sense to use it. The number of steps should depend on the number of mesh elements. Up

to 1000 elements 2 or 3 steps are enough, for more elements some further steps could be

advantageous. But we doubt that more that 10 steps are useful.

3.5 Terminal propagation

As we have seen in Subsection 3.4, not only the number of edge cuts is important for the

quality of a decomposition but also an intelligent mapping. Post-processing is suited to

improve our decomposition, but the result may still be not optimal. For an illustration

consider Figure 10: A mesh is distributed to eight processors. We connected those proces-

sors by a line which contain adjacent subdomains. The dotted lines represent links in the
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Figure 10: Inter processor relations for a distribution of a 4 � 4 � 2 hexahedral mesh to 8

processors. Left: standard RSB, Middle: RSB with KL re�nement and improved mapping.

Right: RSB with terminal propagation.

hypercube. The left picture shows the result with standard RSB, the direct links are badly

used. Improved mapping (RM) can help (middle). But if some subdomains have more than

three (the hypercube dimension) adjacent ones, post-processing will never be able to create

a decomposition which matches perfectly the hypercube, as in the right picture. Better

distributions can only be found by a coupling of the dividing and the mapping. A technique

which is able to do this is the terminal propagation [5, 16].

Assume we are in an intermediate stage of a recursive bisection algorithm. We have

just bisected the �rst half of the graph and will now process the other half. The idea

behind terminal propagation is to enhance the graph model of the actual subproblem by

introducing two new vertices called terminals representing the two partitions of the �rst half

and restricted to V

0

and V

1

respectively. Now we introduce new terminal edges re
ecting

edges between the parts of the �rst half and the vertices of the actual subproblem. The

terminal edges are weighted with a value of preference. This is the preference of the normal

vertex to be assigned to either V

0

or V

1

. Now the problem is solved for this enhanced graph.

There are several ways to do this, in the implementation of Chaco Hendrickson and Leland

use an extended eigenproblem Ax = �x+g with a preference vector g to model the minimal

problem for the enhanced graph.

For a test of the e�ectiveness of this method we compare the RSB with terminal propa-

gation with the best method hitherto. The results are shown in Figure 11 and Table 7. As

we have guessed the application of terminal propagation produces in general better results

than all other methods and post-processings till now.

At last we want to test if we can improve the result by using the possibility to scale

the preference vector in order to model the relative importance of generating a new edge

cut versus increasing the interprocessor distance associated with an existing edge cut. This

controls the tradeo� between importance of communication volume and communication

locality. In Chaco the vector is scaled by setting the parameter CUT TO HOP COST to a real

value. The default is 1.0.

Figure 12 shows the results. It is clearly to be seen that local minima in the hypercube

hop curve lead to local minima in the computing time. But it is also shown that this kind of

tuning is very sensitive and the optimal parameter is mesh speci�c. It has to be determined

for every mesh by making a test series. But it is questionable if such a high expense for

relative small improvements against the default value 1.0 makes sense.
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Figure 11: Comparison of the computing times for the decomposition with recursive spec-

tral bisection with terminal propagation or with recursive spectral bisection with improved

mapping and 10 iterations global KL re�nement. Both methods with local KL re�nement.

cube768

RSB+KL RSB+KL

+RM+10*RP +TP

Edge Cuts 501 555

Hypercube Hops 873 661

spc3-123

RSB+KL RSB+KL

+RM+10*RP +TP

Edge Cuts 454 508

Hypercube Hops 625 544

Table 7: Comparison between the metrics for a recursive spectral bisection with local KL

re�nement, REFINE MAP and REFINE PARTITION=10 and that for a RSB with terminal prop-

agation for a distribution among 64 processors.
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Figure 12: E�ect of the parameter CUT TO HOP COST. Above: Metrics, Below: Communica-

tion and computation times. Left: Example cube768, Right: Example spc3-123.
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4 Summary

Before we summarize our tests we have to note two things.

First, the measured times are showing only a tendency, they re
ect the approximate

computing time. An exact time measurement up to a hundredth of a second is unrealistic

and meaningless in practice. The execution times for one distribution can vary between

some tenth of a second because our application is no stand alone version but it works with

the Parix operating system which needs more or less time too. Therefore time di�erences

less than 1% between distributions have to be neglected in this context.

Second, all tested partitioning algorithms were computed on a MC68040 based machine.

Comparisons with other systems like Sun, HP, or Pentium-PCs have shown that the re-

sults from Chaco are system dependent. On request Bruce Hendrickson con�rmed that

the computations in Chaco are in
uenced by machine dependent values like the machine

epsilon. Also the generation of random numbers is important for the algorithms in Chaco

and this is machine dependent too. With respect to this it may possible to obtain slightly

di�erent results on other machines. An individual test on at least two di�erent machines

and a comparison of the results by the obtained metrics could make sense.

Nevertheless, neglecting this limitation, we can derive some conclusions from the tests.

First there is no doubt that in general the recursive spectral bisection computes much better

results than the random and linear scheme, see 3.2. Furthermore, it was obvious that the

local re�nement with Kernighan-Lin results always in better decompositions. The time

saving runs to an average of 18%.

The improvement of the mapping to �t the hypercube was very useful, see 3.4. We

obtain a further decrease in the computing time between 5 and 7 percent.

The improvement procedure is not necessary if we use terminal propagation. This en-

hancement of the ordinary spectral bisection results always in the best decompositions,

see 3.5. Against the spectral bisection with local KL re�nement and improved mapping the

computing time consumption could be reduced by 8{15%. A further tuning of this algo-

rithm is possible by variation of the parameter CUT TO HOP COST, but this is expensive and

probably not worth the expense. Nevertheless, we could measure in the test an improvement

up to 7.8%.

The global KL re�nement as post{processing could also improve the decomposition,

see 3.4. The test shows a shortening of the computing time by about 2% which is very close

to the measurement precision. Since the procedure is less expensive some iteration steps as

post{processing may be useful.

The increase of the number of internal vertices was rather counterproductive in the test,

see 3.4. But as already explained this might be di�erent for other applications.

To summarize our case study we could give the following recommendations: As the best

algorithm we found the recursive spectral bisection with terminal propagation and local

KL re�nement. Also 2{3 iterations global KL re�nement as post-processing are reasonable.

This should in general result in very good decompositions. Improvements, resulting from

other algorithms or further post-processing, are certainly mesh speci�c, therefore a more

detailed recommendation for general meshes is not possible.
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