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Abstract

Nonsteady Navier-Stokes equations represent a di�erential-algebraic

system of strangeness index one after any spatial discretization. Since

such systems are hard to treat in their original form, most approaches

use some kind of index reduction. Processing this index reduction it is

important to take care of the manifolds contained in the di�erential-

algebraic equation (DAE). For several discretization schemes for the

Navier-Stokes equations we investigate how the consideration of the

manifolds is taken into account and propose a variant of solving these

equations along the lines of the theoretically best index reduction.

Applying this technique, the error of the time discretisation depends

only on the method applied for solving the DAE.

Die Kunst besteht nicht darin, selbst wahnsinnig viele tolle Ideen zu haben.

Wichtig ist, die wahnsinnig vielen tollen Ideen anderer zu erkennen, einzuord-

nen und zu einem Gesamtbild zusammenzuf�ugen, das dann das Neue o�en-

bart.

1 Introduction

Computational 
uid dynamics (CFD) is a widely applied tool in modeling a

lot of technical problems. A typical example are the equations of gas dynam-

ics under the assumption of incompressibility. The resulting system is known

as the Navier-Stokes equations. It consists of as many di�erential equations

as the dimension of the model indicates and the condition of incompressibil-

ity, see e.g. [15]:

@u

@t

= �u � ru+ �4u�rp+ f : (1)

0 = r � u (2)

These equations, together with appropriate initial and boundary conditions,

are to be solved in 
 � [0; T ], where 
 is a bounded open domain in R

d

(d = 2 or 3 the dimension of the model) and T the endpoint of the time in-

terval. For reasons of simpli�cation we will restrict our considerations to the

two-dimensional case here. The results hold for a three-dimensional model

as well. Besides, the domain of reference shall be rectangular. This is indeed
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a restriction, but we will remark at the according places whether some tech-

nique may be generalized to other domains or not.

After applying the method of lines (MOL), i.e. carrying out a spatial dis-

cretization by �nite di�erence or �nite element techniques, these equations

can be written as the di�erential-algebraic system

M
_
u(t) = K(u)u(t)�Bp(t) + f(t) (3)

0 = B

T

u(t); (4)

see [2]. Here u(t); p(t) and f(t) are approximations to the time- and space-

dependent quantities u; p and f of (1), (2). The matrixM is symmetric and

positive de�nite (in the case of �nite di�erences or an at most bilinear �nite

element space, M is simply the identity). The quantity B stands for the

discrete gradient operator, while K(u) represents the linear and nonlinear

velocity terms.

The DAE (3), (4) is of higher index (i.e. non-decoupled), since the pressure p

does not appear in the algebraic condition. If we assume that B is of full col-

umn rank, then the di�erentiation index is two [2]. However, since p is only

determined up to an additive constant, B has in general a rank de�ciency

which causes the undeterminedness of at least one solution component. The

concept of the di�erentiation index [2] cannot be applied to such systems.

Kunkel and Mehrmann [12] have generalized the index concept to the case

of over- and underdetermined DAE's. Their so-called strangeness index (or

s-index) � is the number of additional block columns needed in the derivative

array [10] to be able to �lter out a strangeness free system by transformations

from the left. This system then represents a DAE of di�erentiation index one

with possibly undetermined components or a system of ordinary di�erential

equations. Therefore � is one lower than the di�erentiation index, if the sys-

tem is a DAE of at least di�erentiation index one without undeterminedness.

For ordinary di�erential equations (di�erentiation index zero), � is de�ned

as zero.

Within these settings, (3), (4) can be characterized as a DAE of strangeness

index � = 1. Several di�culties appear, when solving this system numeri-

cally, which will be outlined in Section 2. It is common to reduce the index

of (3), (4) aiming in the reformulation of the system as a strangeness free

DAE. Many �nite element (FE) and �nite di�erence (FD) solution methods

carry out such an index reduction, but not all of them take good care of the
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manifold (4) and the so-called hidden manifold

0 = B

T

M

�1

K(u)u(t)�B

T

M

�1

Bp(t) +B

T

M

�1

f(t) (5)

which arises in pre-multiplying (3) by B

T

M

�1

and inserting the di�erenti-

ated incompressibility condition (4). Both the manifold (4) and the hidden

manifold (5) must be satis�ed by the solution (u; p) in order to ensure that

the solution re
ects the properties of the DAE also after index reduction. In

Section 3 we reveal this for a set of popular CFD solution techniques and

make a proposal how the Navier-Stokes equations can be solved in the sense

of a \correct" index reduction. This results in a system of s-index zero which

preserves both manifolds as described in [12]. Section 4 deals with problems

which must be taken into consideration when applying this particular index

reduction. It will be shown there that only Marker-and-Cell (MAC) meshes

are well-suited for forming the strangeness free system according to the pro-

posal mentioned above. The advantage of this strategy over all the other

ones is that the error of the time discretization is not in
uenced by the index

reduction. The numerical solution then produces an error in time which is

equal to the error of the time discretization method applied.

2 Problems in solving Navier-Stokes equations

An obvious, but not essential problem in solving the incompressible Navier-

Stokes equations (1), (2) is the non-uniqueness of the solution caused by the

pressure termwhich only appears as �rst derivative. Many di�erent strategies

have been developed to deal with this di�culty. They are designed to ensure

the discrete analogue of the condition on p,

Z




p dx = 0: (6)

Applying �nite di�erence methods, this condition can be satis�ed in the case

of regular grids by claiming

X

i2!

h

p

i

= 0: (7)

Another possibility is to de�ne the pressure in one single grid point explicitely.

There are also methods which do not set pressure components at all in ad-

vance. They achieve a unique solution to the pressure equation by solving

iteratively either a disturbed but regular pressure equation or the original
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equation with suitable initial values.

In the case of �nite element techniques, the condition (7) is posed on the

space of the test functions for p.

Considering the di�erential-algebraic system (3), (4) after an arbitrary MOL

discretization, the singularity of the solution may also be treated by solving

in the least squares sense. However, since this usually leads to a global de-

pendence of the solution on all time discretization points, other generalized

inverses are often better here, see [11].

The discussion which spatial discretization technique is most appropriate for

CFD is a more di�cult problem than the one caused by the non-uniqueness

of the solution. While FE methods became more and more popular during

the last decades and have been accepted in many �elds of mathematical mod-

eling, it is not clear whether they will prove superior for the discretization

of Navier-Stokes equations, too. This is particularly due to the opportunity

of a straightforward �nite di�erence discretization by means of the famous

MAC net which was introduced by Harlow and Welch [6] in 1965, see Figure

1.

Since this technique requires di�erent control volumina for each velocity

u

u

j �

1

2

j

j +

1

2

i�

1

2

i

i+

1

2

p reference point

u

1

reference point

u

2

reference point

Figure 1: Location of variables in a staggered grid

component and another one for the pressure, it is separate from �nite element

approaches. The most obvious advantage of the MAC (or staggered) grid is

that it works with a minimum of averaging operations [1] which is not the

case for semi-staggerd and non-staggered grids. While semi-staggered grids

have almost completely disappeared from practical CFD, the non-staggered

(or collocated) grid may perform better with respect to non-rectangular do-
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mains, and special techniques such as multigrid methods are easier to apply

than for staggered grids. However, there are some problems with respect

to pressure computation. Collocated grids require boundary conditions to

the pressure, in contrast to MAC meshes. Besides, a straightforward con-

struction of a Laplace operator for pressure computation out of the discrete

divergence and gradient operator leads to a disintegration of the solution. In

the case of two spatial dimensions, for instance, the solution vector p decou-

ples into four independent pieces. A so-called selective interpolation can be

used in order to avoid this unsatisfactory behavior. However, this produces

a second-order error in the solution for p, see [19].

Turning to FEM, the element of lowest possible degree is the Q

1

-P

0

-element

which corresponds to the semi-staggered grid. Thus all of the problems

known from FDM appear: The kernel of the discrete gradient operator has

two linear independent elements instead of the one caused by the nonunique-

ness of p [5]. This raises so-called checkerboard instabilities, i.e. p shows

an oscillating behavior. The inf-sup condition which is always important in

FEM approaches to Navier-Stokes equations is not uniformly satis�ed, but

depends on the mesh size h [5] :

sup

v2X

h

1

jvj

Z




q div v dx � Ch jjqjj

0;


8q 2M

h

:

Here X

h

and M

h

are appropriate discrete spaces for the velocity and pressure

vector, respectively.

When constructing the space V

h

of divergence free trial functions for u, the

technique presented in [5] for equidistant grids is not applicable for rectangu-

lar discretizations with variable mesh size or non-regular grids. As the space

V

h

is important for index reduction preserving the manifolds (4) and (5), this

non-transferability will be discussed in detail in Section 4.

A way to avoid the problematic Q

1

-P

0

-element is the use of trial functions

of higher degree. The simplest variant is the Mini-FE which is investigated

e.g. in [18], where a multigrid method is applied. However, this approach is

not well-suited for the unsteady case, since it causes restrictions to the time

discretization parameter.

In [4] a new �nite element along the lines of the �nite-volume strategy is

presented which makes modeling with the Q

2

-P

0

-element possible. But the

switch to trial spaces of higher degree creates additional di�culties which

make FE schemes harder to handle than �nite di�erences. For instance, the

matrixM of (3), (4) is no longer the identity which gives the hidden manifold
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(5) a more complicated form. Compared with this, the MAC discretization

seems to be a practicable way. According to [14], [13], this technique can be

generalized to other than rectangular domains as well.

Another di�culty in treating Navier-Stokes equations is the nonlinearity of

the velocity term in (3). However, this problem is well understood today,

and several strategies have been developed for the di�erent discretization

variants, e.g. upwind techniques, see [5]. With respect to a DAE approach,

the nonlinear case will not in
uence the index (neither di�erentiation nor

s-index), since we can linearize K(u) so that the system (3), (4) yields the

same structure.

3 Decoupling velocity and pressure compu-

tation by means of index reduction

As stated in Section 1, the system (3), (4) is of higher index, namely s-index

1. Solving such systems as they appear originally, one can get in di�cul-

ties because of the mingling of di�erential and algebraic components, the

so-called \strangeness" in the terminology of [12]. It is useful to �rst remove

this strangeness before solving the DAE. Most Navier-Stokes solution tech-

niques do so although not explicitely mentioning that an index reduction is

carried out. If the index reduction is omitted, the results may become un-

satisfactory, especially in the nonsteady case. For example, in [20] examples

are computed, where a steady state is reached, and it is stated that \satis-

factory smoothing" is achieved \by choosing 4t small enough." But this is

completely unpractical if long time computations are carried out.

We have already outlined that the concept of the s-index guarantees a char-

acterization also if no unique solution to the DAE exists. However, this is

not the main advantage of this approach over the usual concept of the di�er-

entiation index. The biggest progress seems to be that [12] provides a way to

reformulate the higher-index DAE as a strangeness free system of the same

dimension and with the same solution structure as the original system. In

other words, it is possible to rewrite a DAE of higher index in a so-called

normal form of s-index zero. This form not only re
ects the manifold in-

cluded in the original system but also all of the hidden manifolds. Thus,

using the strangeness free normal form, a consideration of all manifolds is

ensured, which makes this approach superior over other index reduction vari-
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ants. Moreover, the derivative term is not transformed, so that no errors in

time are caused by the index reduction, as it is the case for any other known

index reduction strategy for Navier-Stokes equations. This will be shown in

the following.

A straightforward index reduction is e.g. the one described in [2]. A DAE

of the original size arises replacing (4) by (5). But this leads to disregard of

the mass balance expressed by (4) which may cause inexact solutions after

numerical treatment.

Index reduction variants like the so-called penalty method are quite popular

in the FEM framework [5]. This method, which is a singular perturbation

approach, represents a regularization by adding a p-term to the incompress-

ibility condition (4) leading to

M
_
u = Ku�Bp+ f

0 = B

T

u� "p;

which is strangeness free, since the derivative of the second condition with

respect to p is nonsingular (see e.g. [2]). Rearranging this condition and

inserting into the �rst one gives

M
_
u = (K �

1

"

BB

T

)u+ f :

The solution of this problem should di�er from the one of the original sys-

tem in the magnitude of O("). As stated in [16], this is not true for time-

dependent problems: Here we have a an error of O(

p

"): Investigating this

error in more detail, a dependence of " and the time step according to O(�+")

is obtained. This implies restrictions for � , such that the method is not suited

for nonsteady problems.

In FDM approaches, a pressure correction method (also known as method of

symmetrical approximation or operator splitting method) is often applied for

decoupling u- and p-computation [1]. Here a semi-implicit time discretization

is carried out in advance so that the system can be written

u

j+1

� u

j

�

= Ku

j

�Bp

j+1

+ f

j+1

B

T

u

j+1

= 0

where j+1 is the number of the current time step and � the time discretization

parameter. The momentum equation is then split into

~
u � u

j

�

= Ku

j

+ f

j+1

; (8)
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u

j+1

�
~
u

�

= �Bp

j+1

: (9)

Taking into account B

T

u

j+1

= 0 (this will guarantee that the solution at the

new time layer is divergence free), we obtain from (9) equations for p

j+1

and

u

j+1

:

�B

T

Bp

j+1

= B

T

~
u (10)

u

j+1

=
~
u� �Bp

j+1

: (11)

The system is solved integrating �rst the perturbed momentum equation (8)

where it is accepted that a non-divergence free solution
~
u is obtained. After

having integrated the Poisson equation (10), a re-projection to the manifold

(4) is possible computing u

j+1

by (11).

This strategy can be described by the system

"

I 0

0 0

# "

_
u

_p

#

=

"

K 0

�B

T

�B

T

B

# "

u

p

#

+

"

f

0

#

which is strangeness free as can be understood following the remarks of, e.g.,

[9], [12]. Also in this equation, a perturbation parameter (� ) occurs.

A disadvantage of this approach is that the accuracy of p depends not only

on the spatial discretization, but also on the time discretization parameter

� , that means the decoupling is not complete. To be more speci�c, the time

discretization error raised by the above decoupling is O(� ). Similiar variants

are possible which do not omit the whole pressure term from the momentum

equation. Then an error of O(�

2

) arises and therefore this method is more

practical than (8), (10), (11). Both techniques are investigated in more de-

tail in [1].

Hou and Wetton show in [8] that the pressure correction method is equiva-

lent to the one of [2] described above.

In [17] a pressure correction method is applied to the time-dependent MOL-

discretized Navier-Stokes equations which were obtained by a �nite element

spatial discretization. The results can be summarized, using our terminology,

as follows:

Theoretically, splitting methods are more e�cient than solving directly the

s-index-one system. They also require a lower total expense, although the

step sizes do not di�er considerably in both cases. The resulting matrices

are partially the same as for FDM/MAC discretizations, but FE techniques
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are easier to generalize to other than regular kinds of grids, and allow the

FEM error analysis. The solutions obtained from the s-index-one and the

strangeness free system are almost the same, even in a pointwise sense.

These results are the ones to be expected from a DAE point of view. It is

proposed in [17] to use the splitting technique for decoupling velocity and

pressure computations and a non-staggered grid for spatial discretisation,

but as we will see in the following, a better index reduction procedure is pos-

sible. Besides, if the MAC discretization is not applied, a loss of exactness

occurs and the boundary conditions are harder to describe, see Section 2.

There are strategies which avoid perturbations as in the foregoing examples

and therefore can take the manifolds into consideration more carefully. The

Glowinsky-Pironneau scheme (see e.g. [5]) for example carries out an index

reduction excluding (4) from the system, but a projection onto that manifold

after each iteration is part of the method. The manifold is even included in

the resulting system applying techniques like the FEM with divergence free

trial and test spaces. Heywood and Rannacher [7] make use of this approach

and determine error estimations for the Crank-Nicholson time discretization.

They prove that under appropriate assumptions the error of u and p behave

like O(�

2

) and O(� ), respectively. A disadvantage of this technique is that

the error constants depend on t.

The analogous approach in the FDM case is a variant presented by Dobrowol-

ski [3]. The momentum equation is multiplied from the left by a matrix P

whose columns form an orthogonal basis of kernelB

T

. Besides, a transforma-

tion of u according to u = Pw is carried out. Since P

T

B = 0, the pressure

term disappears, resulting in a condition to compute w,

P

T

P
_
w = P

T

KPw + P

T

f : (12)

Both approaches lead to a system consisting of the ODE (12) which contains

less conditions than the momentum equation (3) and an algebraic equation

to compute the pressure p. These conditions together form a strangeness

free DAE. Note that the resulting system is not of the same dimension as

the original system (3), (4).

A continuation of these ideas with only divergence free test space or only

multiplication from the left by P

T

supplies the strangeness free normal form

as will be shown in Section 4. The resulting matrices loose their banded

structure then, but the system re
ects all manifolds in the right way. The

great advantage of this approach is that no restrictions to � occur, thus
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allowing the application of any time discretization technique, e.g. Runge-

Kutta or backward-di�erencing methods of any desirable order, see [12].

Summarizing these considerations, we can state that setting up a strangeness

free normal form is essentially the only method to yield time discretizations

of arbitrary order. In the following we will call this procedure the normal

form approach. In Table 1 an overview over the error orders in time is given

for the index reduction methods described in this section.

Method Error order in time for u

a) Penalty method � + "

b) Pressure correction methods

� Using velocity equation (8) �

� Improved variant �

2

c) Divergence-free test and trial spaces �

2

with Crank-Nicholson

d) Normal form approach �

q

, q the order of the time

discretization method

4 The normal form approach

A linear di�erential-algebraic system of arbitrary s-index �,

E(t)
_
x(t) = A(t)x(t) + f(t);

can, under suitable assumptions (see [10]), be transformed into strangeness

free normal form by means of at most � �3+2 rank decisions. The procedure

is described in [12].

Consider the case of the MOL-discretized Navier-Stokes equations (3), (4).

For a linear (Stokes equations) or linearized matrix K (see Section 2) we

have

E =

"

M 0

0 0

#

; A =

"

K �B

B

T

0

#

; (13)

which form a semi-explicit DAE if M = I as it is the case when applying

FDM or a FEM with Q

1

-P

0

-element. Here the index reduction can be carried

out in an easy way. De�ning P as in the previous section as a matrix whose

columns form an orthogonal basis for kernel B

T

and letting

~

B

T

be obtained

from B

T

by leaving out as many rows as the rank defect of B indicates (one

row at staggered and non-staggered grids), we can multiply the momentum

10



equation by the nonsingular matrix

"

P

T

~

B

T

#

without loss of information. This together with the hidden manifold (5)

results in a strangeness free system

P

T

_
u = P

T

Ku+ P

T

f (14)

0 =

~

B

T

u (15)

0 = B

T

Ku +B

T

Bp+B

T

f : (16)

The �rst two equations together form a strangeness free DAE and there-

fore can be used for the computation of u in a suitable way. In (16) we

have returned to B

T

instead of

~

B

T

which is possible according to [12]. This

equation then can serve for pressure computation. Thus, the system is com-

pletely decoupled into one part for velocity computation and another one for

deriving the pressure. This means, that it is possible to compute just the

velocity at each time step. The pressure may be determined by (16) at any

optional point. The matrix B

T

K must be formed only once in the case of

linear Navier-Stokes equations.

This approach is somehow like the one of Dobrowolski [3] with the di�erence

that we have multiplication by P only from the left. It corresponds to a FEM

with divergence free test functions v 2 V

h

, but non-reduced trial space X

h

.

It is expressed by (15) that u is divergence free.

As the hidden manifold (5), which explicitely occurs in the strangeness free

normal form, contains the matrix M

�1

, it may be di�cult to derive the sys-

tem (14)-(16) in the case of �nite elements with trial functions of higher

degree. As outlined in [15], the matrix M is diagonalizable without distur-

bance of the method, at least for a uniform mesh of bilinear elements. In

order to avoid the occurence of M , one could try the Q

1

-P

0

-element. Girault

and Raviart [5] specify the construction of the divergence free space V

h

in the

case of an equidistant rectangular mesh. However, for meshes with varying

step size, this technique fails:

The divergence is approximated at semi-staggered grids according to

(divu)

ij

=

k

i

2

[u

or

+ u

ur

� (u

ol

+ u

ul

)] +

h

j

2

[v

or

+ v

ol

� (v

ur

+ v

ul

)];

where u and v are the �rst and second component of u in a two-dimensional

model, h

j

and k

i

stand for the horizontal and vertical mesh size of the mesh

11



(i; j), respectively, and o; u; r; l denote the upper, lower, right and left bound-

aries of the mesh. For instance, or is the upper right corner, see Figure 2.

s

s

s

s

s

s

s

s

s

c

c

c

c

ol

ul

or

ur

j-1 j j+1

i-1

i

i+1

s

c

p reference point

u reference point

Figure 2: Semi-staggered grid with divergence free function v

ij

For a non-equidistant spatial discretization, we de�ne divergence free func-

tions v according to [5]. The function located in the cell (i; j), e.g. , takes

the values

"

2=k

i

2=h

j

#

in ol,

"

�2=k

i

2=h

j

#

in ul,

"

2=k

i

�2=h

j

#

in or and

"

�2=k

i

�2=h

j

#

in ur. In all other points, it is de�ned to be zero. The divergence of this

function indeed vanishes in the cell (i; j):

(divv

ij

)

ij

=

2k

i

2k

i

[1� 1 � (1 � 1)] +

2h

j

2h

j

[1� 1 � (1 � 1)] = 0

For the neighbouring meshes, however, we have

(divv

ij

)

i�1;j�1

=

2k

i�1

2k

i

�

2h

j�1

2h

j

=

k

i�1

k

i

�

h

j�1

h

j

which only vanishes if k

i

= k

i�1

; h

j

= h

j�1

: Forming the divergence in

the other neighbouring meshes, similiar results are obtained which force the

condition that all horizontal and vertical mesh sizes, respectively, must be

equal in order to guarantee that the functions v are divergence free. That

is, there is no straightforward approach for the construction of the matrix P

in semi-staggered grids in the non-equidistant case.

It should be noted that a similiar result is obtained in the case of collocated

12



grids. Since we are not going to consider this type of grid in more detail, the

proof is left out here.

Investigating the procedure for the MAC-net, one can see in an easy way at

which places the divergence free elements must be located: The dimension

of the space V

h

is the number of columns of the matrix P which equals,

according to (14)-(16), the length of the vector u, lowered by the rank of B.

Let m and n be the vertical and horizontal mesh numbers, respectively, in a

two-dimensional model. We then obtain the dimension of V

h

by

m(n� 1) + n(m� 1) � (mn� 1) = mn�m� n + 1 = (m� 1)(n � 1):

The result suggests, that each of the (m � 1)(n � 1) points of intersection

of the velocity grid is assigned to one divergence free function. The values

of a vector v 2 V

h

, which equals a column of P , are as shown in Figure 3

(zero in all other points). These functions are indeed divergence free which
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Figure 3: Marker-and-Cell net with divergence free function v

is shown in [3] also for �-connected grids with regular cells where � is the

number of \holes" in the domain. Thus, methods using staggered grids seem

to be best suited for a normal form approach to solve nonsteady Navier-

Stokes equations. So we can state that the use of the MAC mesh allows the

index reduction (14)-(16) which takes all the manifolds into consideration and

therefore makes the application of higher-order time discretization techniques

convenient.
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5 Conclusion

The cleanest index reduction techniques for the solution of Navier-Stokes

equations are those that keep both the manifold (4) and the hidden manifold

(5). Among them one can count the strategy of Dobrowolski [3] and FE

techniques with divergence free test and trial spaces. The advantage of these

methods is the banded structure of the determining matrices of the DAE

which is lost in the strangeness free normal form. But error estimates of at

most second order can be achieved here.

The index reduction process of [3] should be replaced by switching to the

strangeness free normal form aiming in an explicit representation of both

manifolds. This supplies a system of the same dimension as (3), (4) and with

the same solution vector in contrast to the approach of [3] where a retrans-

formation from w to u is necessary. Such a procedure yields an error of the

solution which only depends on the time discretization method. Numerical

solutions of higher than second order become possible then.

Since higher-order FE spaces require a higher e�ort because of the occurence

of the matrix M

�1

and semi- or non-staggered grids do not allow a suit-

able construction of the matrix P (among other di�culties), it is easier to

use �nite di�erence (or �nite volume, respectively) methods for spatial dis-

cretization. Since the Marker-and-Cell scheme is, among other advantages,

most appropriate for the normal form approach, we suggest to apply this

technique in numerical CFD simulations.
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