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Abstract

This paper describes LAPACK-based Fortran 77 subroutines for the reduction of a

Hamiltonian matrix to square-reduced form and the approximation of all its eigenvalues

using the implicit version of Van Loan's method. The transformation of the Hamilto-

nian matrix to a square-reduced Hamiltonian uses only orthogonal symplectic similarity

transformations. The eigenvalues can then be determined by applying the Hessenberg

QR iteration to a matrix of half the order of the Hamiltonian matrix and taking the

square roots of the computed values. Using scaling strategies similar to those suggested

for algebraic Riccati equations can in some cases improve the accuracy of the computed

eigenvalues. We demonstrate the performance of the subroutines for several examples and

show how they can be used to solve some control-theoretic problems.
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HAMEV and SQRED 1

1 Introduction

This paper describes LAPACK-based Fortran 77 subroutines for the reduction of a Hamil-

tonian matrix to square-reduced form and the approximation of all its eigenvalues using the

implicit version of Van Loan's method. Many applications in linear quadratic and H

1

{control

theory require the computation of the eigenvalues of Hamiltonian matrices

H =

"

A G

Q �A

T

#

(1)

where A;G;Q 2 IR

n�n

and G, Q are symmetric. These include the computation of the H

1

{

norm of transfer matrices, see, e.g., [17, 8, 7] and the references given therein, and the problem

of calculating the real and complex stability radius of a matrix [14, 36]. Hamiltonian matrices

also have an intimate relationship to continuous-time algebraic Riccati equations (CARE) of

the form

0 = Q+ A

T

X +XA�XGX (2)

with A;G;Q as in (1) and X 2 IR

n�n

is the symmetric solution matrix. Often, a stabilizing

solution

^

X of (2) is required in the sense that all the eigenvalues of A� G

^

X are in the open

left half plane. If such a solution exists, these eigenvalues are exactly the stable eigenvalues

(i.e., those with negative real part) of the Hamiltonian matrix H in (1). If the Hamiltonian

matrixH has no eigenvalue with zero real part, then there exists an n-dimensional H-invariant

subspace corresponding to the n stable eigenvalues of H which is called the stable invariant

subspace of H . If this subspace is spanned by the columns of [V

T

; W

T

]

T

, V;W 2 IR

n�n

,

and V is invertible, then a stabilizing solution

^

X of (2) is given by

^

X = �WV

�1

. For a

detailed discussion of the relations of Hamiltonian matrices and continuous-time algebraic

Riccati equations as well as properties of solutions of the CARE (2) we refer to [21].

Knowledge of approximations to the eigenvalues of the corresponding Hamiltonian matrix is

crucial for some numerical solution methods for the CARE (2), e.g., for the multishift QR{like

methods proposed in [2, 3, 33] and the algorithm presented in [31]. As suggested in [34], they

can signi�cantly improve the convergence of the SR algorithm [10] when employed as shifts.

Van Loan's method uses the square-reduced form of a Hamiltonian matrix which will be

introduced in Section 2. Square-reduced Hamiltonian matrices are used by themselves in the

CARE solution methods given in [39, 40].

A Hamiltonian matrix is de�ned by the property HJ = (HJ)

T

where

J =

"

0 I

n

�I

n

0

#

2 IR

2n�2n

: (3)

It is easy to see that matrices with these properties must have the form (1). The eigenval-

ues of any matrix may be computed by the unsymmetric QR algorithm, see, e.g., [19]. But

Hamiltonian matrices have a lot more structure than general unsymmetric matrices and it

is desirable to exploit this structure in order to improve accuracy and to reduce computa-

tional cost as well as the required work space. A sound numerical procedure to compute

the eigenvalues of any structured matrix might use only similarity transformations that are

orthogonal and structure-preserving. For Hamiltonian matrices, structure is preserved by

symplectic transformations. A matrix S 2 IR

2n�2n

is called symplectic i� S

T

JS = J with

J as in (3). So far no algorithm has been found that computes the eigenvalues of a general
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Hamiltonian matrix by using only orthogonal symplectic similarity transformations. For the

special case that rankG = 1 or rankQ = 1, a Hamiltonian QR algorithm was presented in

[13]. A structure preserving QR-like algorithm using SR decompositions has been presented

in [10, 11, 34]. However, this algorithm su�ers from numerical instabilities since the used sym-

plectic transformations are not bounded in norm. Recently, an orthogonal symplectic method

for computing the eigenvalues of a Hamiltonian matrix has been proposed [6]. This method

is also based on the square-reduced form of a Hamiltonian matrix but uses non-similarity

transformations and does not compute this form explicitly. The method is numerically back-

ward stable at the price of a higher computational cost and higher workspace requirements

compared to Van Loan's method.

The method proposed by Van Loan [37] uses the properties of the square of a Hamiltonian

matrix. It is possible to reduce such a matrix to a Hessenberg-like form by structure-preserving

similarity transformations. That is, the eigenvalues of the squared Hamiltonian matrix are

computed by a strongly backward stable method.

1

Unfortunately, by taking the square roots

of the eigenvalues of the squared Hamiltonian matrix a loss of accuracy of O(

p

") is possible

for tiny eigenvalues (if any). (Here, " denotes the machine precision.) In [37], it is shown

that the eigenvalues computed by this method are exact eigenvalues of a Hamiltonian matrix

H + E where kEk � O(

p

")kHk.

In the sequel, we will make use of the following notation. Let A 2 IR

n�n

. By �(A) we denote

the set of eigenvalues or spectrum of a matrix A. The spectral norm of a matrix is given by

kAk

2

=

q

maxfj�j : � 2 �(A

T

A)g

and the Frobenius norm of A is de�ned by

kAk

F

=

v

u

u

t

n

X

i;j=1

a

2

ij

:

The notation C

�

, {IR, and C

+

, respectively, where { =

p

�1, corresponds to the partitioning

of the complex plane into the open left half plane, the imaginary axis, and the open right

half plane, respectively. The identity matrix of order n will be denoted by I

n

and the kth

unit vector is given by e

k

. Furthermore, we will make use of a notation also used in [19] for

refering to a block of a matrix, that is, A

k:`;p:q

will denote the submatrix of A de�ned by its

entries a

ij

, k � i � `, p � j � q.

The outline of the paper is as follows. In the next section we review Van Loan's square reduced

method and the necessary results for Hamiltonian matrices. In Section 3 we introduce some

scaling strategies which can in some cases improve the accuracy of the computed eigenvalues

and describe the details of the implementation. Numerical examples demonstrating the per-

formance of the method are presented in Section 4. In Section 5 we also demonstrate how to

use our subroutines for solving two problems from control theory: the distance-to-instability

problem and computing the H

1

{norm of a transfer matrix. Conclusions are drawn in Sec-

tion 6. In Appendices A and B, we describe the input/output parameters of the Fortran 77

subroutines SQRED and HAMEV, give example programs, and in Appendix C, we show how

to obtain the software.

1

A numerical algorithm is called (numerically) backward stable if the computed solution is the exact solution

for slightly perturbed initial data. It is said to be strongly backward stable if it is backward stable and the

perturbations have the same structure as the initial data [9].
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2 Van Loan's Square Reduced Method

At �rst we state some well-known results about Hamiltonian matrices which form the basis

for Van Loan's method. These results can be found in [37]. We therefore omit the proofs.

The spectrum of a Hamiltonian matrix has the following property.

Proposition 1 Let � 2 �(H) where H is a Hamiltonian matrix. If � 2 IR or � 2 {IR, then

�� 2 �(H). If � = � + {� 2 C and � 6= 0, � 6= 0, then ��;

�

�;�

�

� 2 �(H).

Therefore, the spectrum of any Hamiltonian matrix can be written as

�(H) = f�

1

; : : : ; �

n

;��

1

; : : : ;��

n

g; (4)

where Re (�

i

) � 0, i = 1; : : : ; n.

In many applications, the presence of purely imaginary eigenvalues of Hamiltonian matrices

or the lack thereof plays an important role.

Theorem 2 Let H be a Hamiltonian matrix as in (1) and assume there exist full-rank fac-

torizations G = BB

T

, Q = C

T

C. If (A;B) is stabilizable, i.e., rank [A � �I

n

; B] = n for all

� 2 C

+

[ {IR, and (A;C) is detectable, i.e, (A

T

; C

T

) stabilizable, then

a) Re(�) 6= 0 for all � 2 �(H).

b) The CARE (2) has a unique symmetric positive semide�nite stabilizing solution

^

X.

c) If �(H) is as in (4), then �(A� G

^

X) = f��

1

; : : : ;��

n

g.

In [27], the following condensed form of 2n� 2n matrices is derived:

Theorem 3 If L 2 IR

2n�2n

, then there exists an orthogonal symplectic matrix U 2 IR

2n�2n

such that

~

L = U

T

LU =

"

~

L

11

~

L

12

~

L

21

~

L

22

#

=

2

6

4

@@

@

3

7

5

; (5)

i.e.,

~

L

11

is an upper Hessenberg matrix and

~

L

21

is an upper triangular matrix.

In the sequel, we will refer to the form (5) of a matrix as Paige/Van Loan form or PVL form.

Now consider the square of a Hamiltonian matrix H as in (1),

K := H

2

=

"

A

2

+ GQ AG� GA

T

QA� A

T

Q (A

2

+ GQ)

T

#

=:

"

K

1

K

2

K

3

K

T

1

#

: (6)

Since the lower left and the upper right block of K are obviously skew-symmetric, their

diagonal is zero. Squared Hamiltonian matrices are skew Hamiltonian, i.e., satisfy (HJ)

T

=

�(HJ)

T

. It is easy to see that the structure of skew-Hamiltonian matrices is also preserved

by symplectic similarity transformations, i.e., if S 2 IR

2n�2n

is a symplectic matrix and H is

Hamiltonian, then S

�1

H

2

S is also a skew-Hamiltonian matrix. Therefore, using Theorem 3,

the PVL form of a skew-Hamiltonian matrix K = H

2

is given by

~

K = U

T

KU =

"

~

K

1

~

K

2

0

~

K

1

T

#

=

2

6

4

@@

@

@

3

7

5

: (7)
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The eigenvalues of K can thus be computed by applying the QR iteration to

~

K

1

. Hence,

according to (4), �(H) can be obtained by taking the positive and negative square roots of

the computed eigenvalues of

~

K

1

.

This gives rise to the following algorithm.

Algorithm 4 (Square reduced method | explicit version)

Input: A Hamiltonian matrix H =

"

A G

Q �A

T

#

2 IR

2n�2n

.

Output: �(H) = f�

1

; : : : ; �

2n

g, an orthogonal symplectic Matrix U such that U

T

H

2

U

has the form (7).

1. Compute K = H

2

=

"

A

2

+ GQ AG� GA

T

QA� A

T

Q (A

2

+ GQ)

T

#

.

2. Compute the PVL form of K, i.e., determine U 2 IR

2n�2n

orthogonal and symplectic

such that

U

T

KU =

"

~

K

1

~

K

2

0

~

K

1

T

#

=

2

6

4

@@

@

@

3

7

5

:

3. Compute �(

~

K

1

) = f�

1

; : : : ; �

n

g using the Hessenberg QR algorithm.

4. Set �

i

=

p

�

i

, �

n+i

= �

p

�

i

for i = 1; : : : ; n.

END

If the algorithm is used to approximate the eigenvalues of H only, it is not necessary to

accumulate the similarity transformations. This is the case, for instance, in some H

1

{control

applications [17, 8, 7] or the distance-to-instability problem [14, 36].

If, for any reason, the Hamiltonian matrix cannot be overwritten by K, the algorithm requires

an additional workspace of size 2n

2

+ O(n). This is the case when the eigenvalues of the

Hamiltonian matrix are used as shifts in CARE solution methods as in [2, 3, 31, 33] since

the original Hamiltonian matrix (or a similar Hamiltonian matrix) is needed in following

steps of the algorithm. This additional workspace can be avoided using the implicit version

of the algorithm as given in [37]. That is, the orthogonal symplectic matrix U from Step

2. of Algorithm 4 is computed without explicitly forming K and is applied to the original

Hamiltonian matrix H using

U

T

KU = (U

T

HU)

2

:

The Hamiltonian matrix U

T

HU obtained in this way is said to be in square-reduced form. In

other words, a square-reduced Hamiltonian matrix H satis�es

H

2

=

2

6

4

@@

@

@

3

7

5

as in (7). Since U

T

HU is a Hamiltonian matrix similar to H , the abovementioned algorithms

can proceed with U

T

HU instead of H and thus need no additional workspace to save the
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original Hamiltonian matrix. Using this approach, it is necessary to accumulate the orthogonal

symplectic similarity transformations. The workspace and computational cost for this can

essentially be halved using the following proposition [27].

Proposition 5 If U 2 IR

2n�2n

is orthogonal and symplectic, then

U =

"

U

1

U

2

�U

2

U

1

#

where U

i

2 IR

n�n

, i = 1; 2.

It should further be noted that from Algorithm 4, the real Schur form of a skew-Hamiltonian

matrix can be computed. Applying the Hessenberg QR algorithm to

~

K

1

(Step 3. of Algorithm

4), we obtain an orthogonal matrix

~

V 2 IR

n�n

such that T

1

=

~

V

T

~

K

1

V is in real Schur form.

Observing that the block diagonal matrix

V =

"

~

V 0

0

~

V

#

is again orthogonal and symplectic, we obtain the skew-Hamiltonian Schur form by

^

K = V

T

U

T

KUV =

"

T

1

T

2

0 T

T

1

#

: (8)

The skew-Hamiltonian Schur form is used in the CARE solution methods proposed in [39, 40].

Before stating the implicit version of Algorithm 4, we have to take a closer look at orthogonal

symplectic matrices. These can essentially be described by two classes of matrices, i.e.,

symplectic Householder and symplectic Givens matrices

2

[27]. These two matrix types can

be de�ned as follows. Let P = P (v) = I

n

� 2

vv

T

v

T

v

, v 2 IR

n

, be a Householder matrix, then a

symplectic Householder matrix is given by

P

s

(v) =

"

P (v) 0

0 P (v)

#

: (9)

A Givens rotation matrix is symplectic, i� the rotation is performed in planes k, n + k,

1 � k � n. A symplectic Givens matrix is thus de�ned by

G

s

(k; c; s) =

"

C �S

S C

#

; (10)

where c; s 2 IR, c

2

+ s

2

= 1, and C = I

n

+ (c� 1)e

k

e

T

k

, S = se

k

e

T

k

.

Using the well-known abilities of Householder re
ections and Givens rotations to annihilate a

speci�c part of a vector (see, e.g., [19, 27]), and remembering Proposition 5, it is now possible

to state the implicit version of Van Loan's algorithm.

2

Note that this notation is somewhat misleading: whereas a symplectic Givens matrix is also a Givens

rotation matrix in the classical sense, a symplectic Householder matrix is not a standard Householder matrix

but the direct sum of two n � n Householder matrices.
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Algorithm 6 (Square reduced method | implicit version)

Input: A Hamiltonian matrix H =

"

A G

Q �A

T

#

2 IR

2n�2n

and an orthogonal symplectic

matrix U =

"

U

1

U

2

�U

2

U

1

#

.

Output: �(H), an orthogonal symplectic Matrix U transforming H to square-reduced form.

H is overwritten by its square-reduced form U

T

HU .

1. FOR k = 1; : : : ; n� 1

(a) IF k � n � 2 THEN

w (QA�A

T

Q)

k+1:n;k

Compute a Householder re
ection P such that Pw = �kwk

2

e

1

.

Update the Hamiltonian matrix via

A PAP , G PGP , Q PQP .

Accumulate the re
ection (if required) via

U

1

 U

1

P , U

2

 U

2

P .

END IF

(b) x (A

2

+ GQ)

k+1;k

, y  (QA�A

T

Q)

k+1;k

.

Compute a symplectic Givens rotation de�ned by c; s 2 IR such that

"

c s

�s c

# "

x

y

#

=

"

�

p

x

2

+ y

2

0

#

and C = I

n

+ (c� 1)e

k

e

T

k

, S = se

k

e

T

k

. Update the Hamiltonian matrix via

A CAC + SQC + CGS � SA

T

S,

G CGC � SA

T

S � CAS � SQS,

Q CQC � SAC � SGS � CA

T

S.

Accumulate the rotation (if required) via

U

1

 U

1

C + U

2

S, U

2

 U

2

C � U

1

S.

(c) IF k � n � 2 THEN

w (A

2

+GQ)

k+1:n;k

Compute a Householder re
ection P such that Pw = �kwk

2

e

1

.

Update the Hamiltonian matrix via

A PAP , G PGP , Q PQP .

Accumulate the re
ection (if required) via

U

1

 U

1

P , U

2

 U

2

P .

END IF

END FOR

2. W  A

2

+GQ

3. Compute � (W ) = f�

1

; : : : ; �

n

g by Hessenberg QR iteration.

4. �

i

 

p

�

i

for i = 1; : : : ; n and set � (H) = f�

1

; : : : ; �

n

; ��

1

; : : : ;��

n

g

END
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The algorithm as stated above needs the following work space.

2n

2

+ n for the Hamiltonian matrix H ,

n

2

as dummy work space for w and W ,

2n

2

for the orthogonal symplectic transformation matrix U .

total 5n

2

+ n

The workspace for U is of course not required if only the eigenvalues of the Hamiltonian

matrix H are to be computed.

As it is obvious from this formulation of the implicit SQRED algorithm, the symplectic

Householder and Givens transformation matrices need not be computed explicitly. Updating

and accumulating is straightforward and uses well-known techniques, e.g., [19, 38].

Using 
op

3

counts and estimates from [19], we get the following estimate for the computational

cost of Algorithm 6.

4n

3


ops for implicitly computing the columns of H

2

,

3n

2

+ O(n) 
ops for generating Householder re
ections and Givens rotations,

16n

3

+ O(n

2

) 
ops for updating the Hamiltonian matrix,

8n

3

+ O(n

2

) 
ops for accumulating the orthogonal symplectic transformations,

2n

3

+ O(n

2

) 
ops for forming W = A

2

+GQ,

7n

3

+ O(n

2

) 
ops for the Hamiltonian QR iteration,

n 
ops for the square roots in Step 4.

total 37n

3

+ O(n

2

) 
ops

As for the work space, the computational cost for accumulating the similarity transformations

can be saved if only eigenvalues are required. Thus, computing only the eigenvalues of the

Hamiltonian matrix requires about 29n

3


ops which is a little more than one third of the

computational cost of about 80n

3


ops for the standard Hessenberg QR algorithm (as given,

e.g., in [19]) applied to the Hamiltonian matrix H .

Another important issue is the accuracy of the computed eigenvalues. Let � 2 �(H) and let

~

� be the analogue computed by either Algorithm 4 or Algorithm 6. Then Van Loan proves

in [37] that

~

� 2 � (H +E);

where E 2 IR

2n�2n

satis�es

kEk

2

� c

p

"kHk

2

:

Here, c is a small constant and " denotes the machine precision.

Remark 7 The perturbation E can be considered as a structured perturbation, that is, if the

algorithm is implemented carefully, E is a Hamiltonian matrix.

Using some heuristic, the following result for a simple eigenvalue computed by Algorithm

SQRED (implicit or explicit version) is derived in [37].

j��

~

�j � min

(

"kHk

2

2

s(�)j�j

;

p

"kHk

2

s(�)

)

= "

kHk

2

s(�)

�min

�

kHk

2

j�j

;

1

p

"

�

(11)

where s(�), the reciprocal condition number of �, is the cosine of the acute angle between the

left and right eigenvectors of H corresponding to �.

3

Following [19], we de�ne each 
oating point arithmetic operation together with the associated integer

indexing as a 
op.
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The estimate (11) can be interpreted using the standard estimate for eigenvalues �

QR

com-

puted by the Hessenberg QR iteration [38],

j�� �

QR

j � "

kHk

2

s(�)

;

as follows:

� If kHk

2

=� � 1, then

~

� is as accurate as �

QR

,

� If kHk

2

=j�j > 1, then the error in

~

� can be up to 1=

p

" times larger than the error in

�

QR

.

Thus, if relatively small eigenvalues of a Hamiltonian matrix are required with high accuracy,

it is not advisable to use Van Loan's method to compute the eigenvalues. However, if the

approximate eigenvalues are used, for example, as shifts, the highest possible accuracy is not

the matter. In the mentioned multishift and related algorithms [2, 3, 33, 31], more accurate

eigenvalues can be obtained during the iteration. Sometimes, accurate shifts may even lead

to forward instability, see [29]. For a discussion of the problem of eigenvalues close to the

imaginary axis (including \small" eigenvalues) see Section 3.2.

As it was observed in [14], it is safe to use Van Loan's square reduced method when computing

the stability radius of a real matrix. The same argument can also be applied for the application

of Algorithm 6 to the H

1

{norm computation, see Section 5.



HAMEV and SQRED 9

3 Implementation

For the actual implementation we chose the implicit version of the algorithm in order to

avoid the need of explicitly computing the square of the Hamiltonian matrix. The subroutine

SQRED implements the �rst step of Algorithm 6, i.e., computes the square-reduced Hamil-

tonian and, if required, the orthogonal symplectic transformation matrix. The subroutine

HAMEV performs steps 2.-4. of Algorithm 6 using subroutine SQRED. We chose to separate

these steps in order to make it possible to use the square-reduced Hamiltonian matrix itself.

The implementation and documentation of all subroutines follow the standards proposed for

the Subroutine LIbrary in Control and Systems Theory SLICOT (see [25]). Besides the

subroutines described below we used the DOUBLE PRECISION versions of the BLAS (levels

1 and 2) [23, 16] and LAPACK [4].

We will now describe some implementation details and how the subroutines are used.

3.1 Scaling

It is possible to scale or balance a matrix by a diagonal similarity transformation to make all

row norms and all columns (approximately) equal. Balancing tends to reduce the ill-e�ects

of rounding error in subsequent eigenvalue calculations [30, 26]. However, the balancing

procedure described in [30] destroys Hamiltonian structure. We need a strategy that uses

symplectic similarity transformations only. Diagonal symplectic matrices take the form

D

s

=

"

D 0

0 D

�1

#

(12)

where D is diagonal. In this section we describe some balancing strategies.

A simple strategy is to balance A using a diagonal matrix D = D

A

computed by a packaged,

unstructured balancing subroutine like DGEBAL from LAPACK [4]. The diagonal similarity

transformations D

A

can then be extended to a symplectic diagonal similarity D

s

as in (12).

Of course, the choice of D

s

ignores G and Q, so it is unlikely to be optimal.

Another possibility is to use a scaling strategy known to improve the accuracy of solution

methods for the CARE (2). Here, the diagonal matrix D in (12) is chosen as D

�

= I

n

=

p

�

for some scalar � 6= 0. This strategy results in a Hamiltonian matrix

~

H :=

"

A

~

G

~

Q �A

T

#

:=

"

D

�

�1

0

0 D

�

# "

A G

Q �A

T

# "

D

�

0

0 D

�

�1

#

(13)

where

~

G = �G and

~

Q = Q=�. It was observed in [32] that scaling H such that kAk = kGk =

kQk is optimal in the sense that it minimizes the error bounds for the numerical solution

of the CARE (2). The choice � =

p

kQk=kGk gives k

~

Gk = k

~

Qk, but, in general, it is not

possible to choose � to achieve the \optimal" scaling kAk = k

~

Gk = k

~

Qk.

Both ideas can be combined. We will refer to this two-step scaling as symplectic scaling

since the scaling is performed by a similarity transformation with a symplectic matrix. The

resulting Hamiltonian matrix is

~

H =

"

D

�1

A

AD

A

�D

�1

A

GD

�1

A

1

�

D

A

QD

A

�D

A

A

T

D

�1

A

#

(14)
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where � =

q

kD

A

QD

A

k

1

=kD

�1

A

GD

�1

A

k

1

.

Closely related to the above scaling via D = �I is the strategy proposed in [20, 28] for

stabilizing the Schur vector method for the solution of CAREs (2). Consider the CARE

0 = Q+ (

1

�

A)

T

(�X) + (�X)(

1

�

A)� (�X)(

1

�

2

G)(�X):

The corresponding Hamiltonian matrix is

^

H =

"

^

A

^

G

Q �

^

A

T

#

where

^

A = A=� ,

^

G = G=�

2

, and � 2 �(H) if and only if

^

� = �=� 2 �(

^

H). This strategy is

equivalent to scaling the Hamiltonian matrix H by the real scalar 1=� and then performing

a symplectic similarity transformation with D

s

from (12) where D =

p

�I

n

. We will refer to

this scaling strategy as norm scaling.

In order not to introduce rounding errors by scaling, we choose in both scaling strategies the

parameters � and � among the set of numbers �

�

where � denotes the base of the 
oating

point number system and � is a signed integer. Note that the LAPACK subroutine DGEBAL

is not implemented in this fashion such that rounding errors may well be introduced when

scaling A in our symplectic scaling strategy.

The special case in which Q is of small magnitude arises naturally during defect correction of

solutions of the CARE [24]. In this case, Q tends to su�er from subtractive cancelation and is

known only to low relative error. The diagonal balancing strategy tends to exaggerate the ill-

e�ect of the errors in a small magnitude, low accuracy Q. To avoid this the balancing strategies

bound � and � from below by 1 and from above to prevent over
ow in the computation of

�G and � .

In Step 3. of Algorithm 6, the usual balancing as proposed in [30] of a matrix can be applied

to W . This can be achieved, as mentioned above, using the LAPACK subroutine DGEBAL.

This type of scaling will be called Hessenberg scaling since it is applied to the upper left

Hessenberg block of the squared Hamiltonian matrix.

When calling HAMEV, the following choices for the input parameter JOBSCL are possible:

A { symplectic scaling and Hessenberg scaling,

B { norm scaling and Hessenberg scaling,

N { no scaling.

For any other choice, only Hessenberg scaling is performed.

3.2 Eigenvalues on or close to the imaginary axis

An important issue in many applications of the Hamiltonian eigenproblem are eigenvalues on

or close to the imaginary axis. Algorithms for the computation of the H

1

{norm of transfer

matrices [8, 7, 17] or the stability radius of real and complex matrices [14, 36] have to decide

whether there are eigenvalues on the imaginary axis or not. The knowledge of the spectrum

of H also gives information about the solution of the CARE (2). Clearly, if the Hamiltonian

matrix corresponding to the CARE has eigenvalues on the imaginary axis, then no stabilizing

solution can exist. On the other hand, if all Jordan blocks corresponding to eigenvalues on the
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imaginary axis have even size, then a real n{dimensional H{invariant Lagrangian

4

subspace

corresponding to eigenvalues �, Re(�) � 0, exists and under additional assumptions, an

almost stabilizing solution

~

X of the CARE can be computed, that is, �(A�G

~

X) � C

�

[ {IR.

For a discussion of the relation of the spectra of Hamiltonian matrices to the existence and

uniqueness of solutions of the CARE we refer to [21]. CARE Solution methods that require

an a priori knowledge of the spectrum of H can therefore use this information to decide if a

solution of (2) exists before trying to compute it. This is the case, e.g., for the multishift and

related algorithms [2, 3, 33, 31].

The subroutine HAMEV can be used to decide if a Hamiltonian matrix has eigenvalues on

the imaginary axis in the following way. If the input argument ORDER is set to 'O' or 'o', then

all eigenvalues satisfying

jRe(�)j � tol � j�j (15)

(where tol is a user-de�ned tolerance) are placed at the end of f�

1

; : : : ; �

n

g. That is, if npi is

the number of computed eigenvalues satisfying condition (15), then this number is returned

by HAMEV and those eigenvalues within the given relative tolerance to the imaginary axis

are returned as �

n�npi+1

; : : : ; �

n

(and ��

n�npi+1

; : : : ;��

n

, respectively). The �nal decision

which of these eigenvalues is considered to be purely imaginary is still left to the user. This

decision can, for instance, be made by the choice of tol. In Section 5 we will give an example

how this can be used when computing the stability radius of a real matrix or the H

1

{norm

of a transfer matrix.

As default tolerance we choose tol =

p

" where " is the machine precision. This is only used

if on input to HAMEV, we have for the corresponding argument TOL < 0. This tolerance is

inspired by the error estimate given in (11). A worst case analysis shows that the real part of

the computed analogue of a purely imaginary eigenvalue can have a real part of order O(

p

").

3.3 Usage

The subroutine SQRED computes the square-reduced form of a Hamiltonian matrix, i.e., if

~

H is the Hamiltonian matrix returned by SQRED, then (in exact arithmetic)

~

H

2

=

"

K

1

K

2

0 K

T

1

#

=

2

6

4

@@

@

@

3

7

5

:

SQRED can be used by itself to reduce a Hamiltonian matrix H to square-reduced form and

is also used by the subroutine HAMEV. The subroutine is called as follows:

CALL SQRED(N, A, LDA, GP, QP, U, LDU, RWORK, COMPU, IERR)

For a complete description of input and output arguments see Appendix A. The Hamiltonian

matrix is provided by its blocks A, G, and Q, where the symmetric matrices G and Q are

stored in the arrays GP, QP using lower packed storage mode (see [4]). That is, only the lower

triangles of G and Q are stored columnwise.

If required (as de�ned by COMPU), the orthogonal symplectic transformations are accumulated

in a matrix U . The argument U contains the �rst n rows of this matrix which completely

de�ne the orthogonal symplectic matrix U due to Proposition 5.

4

An n-dimensional subspace V � IR

2n

is called Lagrangian if x

T

Jy = 0 for all x; y 2 V and J as in (3).
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The subroutine HAMEV computes the eigenvalues of the Hamiltonian matrix. It is possi-

ble to obtain all 2n eigenvalues or the n eigenvalues with nonnegative real parts (unstable

eigenvalues) or nonpositive real parts (stable eigenvalues).

The calling sequence is

CALL HAMEV(N, A, LDA, GP, QP, U, LDU, SCALE, NPI, WR, WI, RWORK,

$ TOL, COMPU, JOBEV, JOBSCL, ORDER, IERR)

For a complete description of input and output arguments see Appendix B. After a possi-

ble symplectic or norm scaling as proposed in Section 3.1, the Hamiltonian matrix and the

orthogonal symplectic transformations are treated exactly as in SQRED. That is, after re-

turning from HAMEV, the Hamiltonian matrix is the square-reduced Hamiltonian computed

by SQRED. The eigenvalues are returned in WR (real parts) and WI (imaginary parts). The

arguments NPI, TOL, and ORDER refer to the ordering of the eigenvalues as explained in Sec-

tion 3.2 whereas JOBSCL de�nes which of the scaling strategies of Section 3.1 is used. The

argument SCALE provides all necessary scaling parameters to retrieve the Hamiltonian input

matrix from the output matrix. Note that the eigenvalues of the Hamiltonian input matrix

are returned. If norm scaling is performed, these are not the eigenvalues of the Hamilto-

nian output matrix. In that case, the eigenvalues of the Hamiltonian output matrix

^

H are

^

�

i

= (WR(I) + {WI(I))=SCALE(1) and the Hamiltonian matrix corresponding to the returned

eigenvalues can be retrieved by setting H = SCALE(1)�

^

H.

3.4 Subroutine organization

The basis for the subroutines SQRED and HAMEV are the BLAS and LAPACK [23, 16, 4].

Table 1 shows the necessary functions and subroutines from these subroutine libraries.

BLAS routines LAPACK routines

Level 1 Level 2 auxiliary computational

DAXPY DGEMV DLABAD DLANSP DLASET DGEBAL

DCOPY DSPMV DLACPY DLANV2 DLASSQ DHSEQR

DDOT DGER DLAHQR DLAPY2 DRSCL

DNRM2 DSPR2 DLAE2 DLARFX ILAENV

DROT DLAMCH DLARFG LSAME

DSCAL DLANGE DLARTG XERBLA

DSWAP DLANHS DLASCL

IDAMAX

Table 1: Necessary BLAS and LAPACK routines

Besides the BLAS and LAPACK routines, we need the following subroutines:

CROOT : Computes the square root of a complex number using real arithmetic. The root

is chosen such that the real part is nonnegative. This subroutine was adapted

from the EISPACK [35] subroutine CSROOT.

SYREF : Performs a similarity transformation of a symmetric matrix given in lower

packed storage mode with a Householder matrix as proposed in [38].
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HAMGIV : This subroutine performs a similarity transformation of a Hamiltonian matrix

supplied by its blocks A, G, and Q as described in Section 3.3 with a symplectic

Givens rotation matrix G

s

(k; c; s) as in (10).

Givens rotations were generated by DLARTG and applied to H by HAMGIV whereas accu-

mulating the orthogonal symplectic transformations uses DROT. Householder re
ections were

generated by DLARFG and applied to A by DLARFX and to G, Q by SYREF. Accumulating

the re
ections was done by DLARFX. Figure 1 shows the subroutine hierarchy.

HAMEV

SQRED

CROOT SYREF HAMGIV

m

LAPACK

BLAS 1,2

H

H

H

H

H

H

H

H

H

H

H

HY

�

�

�

�

�

�

�

�

�1

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Xy

A

A

A

A

A

AK

�

�

�

�

�

�

�

�

�3

@

@

@I

�

�

�

�

�

��

@

@

@

@

@

@I

�

�

�

�

�

�

�

�

�

�

�

�

�

�:

�

�

�

�

�

�*

H

H

H

H

H

HY

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Xy

Figure 1: Subroutine hierarchy
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4 Numerical Examples

We tested our subroutines for all Hamiltonian matrices from the benchmark collection for

continuous-time algebraic Riccati equations [5], the examples given in [37], and some ran-

domly generated examples. Here, we present the most interesting results obtained by these

experiments.

The numerical tests were performed using IEEE double precision arithmetic with machine

precision " � 2:2204�10

�16

on Hewlett Packard apollo series 700 workstations with operating

system HP-UX 9.0x (for several values of x) and on a SUN SPARCstation 10 with operating

system SunOS 4.1. The compilers were the HP-UX and SUN Fortran 77 compilers invoked

by f77 and only low level optimization was allowed.

We compared our subroutines with the LAPACK driver routine DGEEVX for computing

the eigenvalues of an unsymmetric matrix using the QR algorithm. In all given tables,

HAMEV(X) denotes calling HAMEV with the scaling strategy X as given in Section 3.1.

(Here, 'H' will denote Hessenberg scaling.)

Example 1 [37, Example 2] Let

A = diag(1; 10

�2

; 10

�4

; 10

�6

; 10

�8

):

Then a Hamiltonian matrix H is obtained by

H = U

T

"

A 0

0 �A

T

#

U;

where U 2 IR

2n�2n

is an orthogonal symplectic matrix randomly generated by �ve sym-

plectic rotations and �ve re
ectors. Thus, �(H) = f�1;�10

�2

;�10

�4

;�10

�6

;�10

�8

g. Ta-

ble 2 shows the absolute errors in the eigenvalue approximations computed by HAMEV and

DGEEVX. In this example, choosing the scaling parameters from the set of integer powers

of the machine base results in scaling parameters all equal to one. Thus, the results for all

scaling strategies in this example were the same.

� HAMEV DGEEVX

1 1:2 � 10

�15

1:4 � 10

�15

10

�2

1:0 � 10

�17

2:9 � 10

�17

10

�4

1:3 � 10

�14

1:8 � 10

�18

10

�6

1:7 � 10

�14

1:7 � 10

�18

10

�8

4:3 � 10

�11

8:0 � 10

�18

Table 2: Example 1, absolute errors j��

~

�j

Here, the loss of accuracy of order kHk

2

=j�j for Van Loan's method is obvious. DGEEVX

computes all eigenvalues to full accuracy. Repeating the computations for several randomly

chosen matrices U , the results for HAMEV varied by about one order of magnitude for the

smaller eigenvalues. The values given above can be considered as the geometrical mean of the

absolute errors for these test runs.
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Example 2 [37, Example 3] The Frank matrix A 2 IR

n�n

is de�ned by

A =

2

6

6

6

6

6

6

6

6

6

6

6

6

4

n n � 1 n� 2 : : : : : : 2 1

n � 1 n� 1 n� 2 : : : : : : 2 1

0 n � 2 n� 2 : : : : : : 2 1

0 0 n� 3

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

2 1

0 0 : : : 0 1 1

3

7

7

7

7

7

7

7

7

7

7

7

7

5

:

All its eigenvalues are real and positive. The eigenvalue condition number becomes worse

for the smaller eigenvalues. A Hamiltonian matrix having the same eigenvalues as the Frank

matrix together with their negative counterparts is generated as in Example 1,

H = U

T

"

A 0

0 �A

T

#

U;

with U 2 IR

2n�2n

orthogonal symplectic randomly generated by n symplectic rotations and

n re
ectors.

We tested our subroutines for n = 12. Since exact eigenvalues are not known, we compare

the values computed by HAMEV with those obtained by DGEEVX (denoted by �

QR

). The

results are given in Table 3 where only the results for the 5 eigenvalues of smallest absolute

value (and worst condition number) are shown.

� � s(�) HAMEV(A) HAMEV(B) HAMEV(H) HAMEV(N)

0.2847 1:8 � 10

�6

9:1 � 10

�10

3:5 � 10

�8

9:1 � 10

�10

1:7 � 10

�10

0.1436 1:8 � 10

�6

5:8 � 10

�9

1:0 � 10

�6

5:8 � 10

�9

6:7 � 10

�8

0.0812 3:8 � 10

�8

1:2 � 10

�7

7:0 � 10

�6

1:2 � 10

�7

5:4 � 10

�7

0.0495 2:6 � 10

�8

3:9 � 10

�7

1:4 � 10

�5

3:9 � 10

�7

1:4 � 10

�6

0.0310 5:5 � 10

�8

3:4 � 10

�7

8:7 � 10

�6

3:4 � 10

�7

1:0 � 10

�6

Table 3: Example 2, j�

HAMEV

� �

QR

j

Here, all scaling parameters for symplectic scaling are equal to one and thus, the results for

HAMEV(A) are equal to those for HAMEV(H). Denoting the minimum singular values of

A�

~

�I for the computed eigenvalues

~

� by ~�

min

, we obtain ~�

min

� 10" for DGEEVX, whereas

for HAMEV(X) (X = A,H,N), ~�

min

is at most one order of magnitude larger whereas for

HAMEV(B), ~�

min

is up to two orders of magnitude larger than for DGEEVX. This shows

that for very sensitive eigenvalues, norm scaling can decrease the accuracy of the computed

eigenvalues.

Example 3 [5, Eample 11] Let

A =

"

3 1

4 2

#

; G =

"

1 1

1 1

#

; Q =

"

�11 �5

�5 �2

#

:
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The spectrum of H =

"

A G

Q �A

T

#

is f�jg with algebraic multiplicity two and geometric

multiplicity one. The computed eigenvalues are

� for HAMEV with symplectic scaling,

f+ :8407319236349208E� 08� :1000000000000000E+ 01i

� :8407319236349208E� 08� :1000000000000000E+ 01i g,

� for HAMEV with norm scaling,

f 0� :9999999480808375E+ 00i;

0� :1000000051919159E+ 01i g,

� for HAMEV with Hessenberg scaling,

f 0� :9999999913700510E+ 00i;

0� :1000000008629949E+ 01i g,

� for HAMEV without any scaling,

f 0� :9999999913700510E+ 00i;

0� :1000000008629949E+ 01i g,

� for DGEEVX,

f+ :3682987155528838E� 07� :1000000016020978E+ 01i;

� :3682986875631206E� 07� :9999999839790201E+ 00i g.

The di�erent scaling strategies for HAMEV result in di�erent perturbations of the eigenval-

ues. For symplectic scaling, the imaginary part is computed correctly. For the other scaling

strategies, the computed eigenvalues have real part exactly zero whereas the imaginary part

is perturbed. The QR algorithm as implemented in DGEEVX computes eigenvalues that

are perturbed along the real axis as well as along the imaginary axis. In particular, they do

not appear in plus-minus pairs as the exact eigenvalues do. Also, the errors are one order of

magnitude larger than for the eigenvalues computed by HAMEV (except for norm scaling).

We can conclude that in this example, symplectic scaling yields the best result since it returns

the right pairing and algebraic multiplicity of the eigenvalues and the eigenvalues closest to

the correct ones.

Example 4 [5, Example 6], [15] This example comes from a control problem for a J|100 jet

engine as special case of a multivariable servomechanism problem. The system is described

by

_x(t) = Ax(t) + Bu(t) for t > 0; x(0) = x

0

;

y(t) = Cx(t)

where the state vector x contains the state of the jet engine, the actuators, and the sensors.

For the system matrices A 2 IR

30�30

, B 2 IR

30�3

, C 2 IR

5�30

we refer to [5, 15]. The

corresponding Hamiltonian matrix is

H =

"

A BB

T

C

T

C �A

T

#

:

We know the exact values only for four of the eigenvalues of H which are 33:3 and a triple

eigenvalue at 20:0. We give absolute errors for these eigenvalues as computed by HAMEV
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(Table 4) as well as the di�erence between the values computed by HAMEV (denoted by

�

HAMEV

) and DGEEVX (denoted by �

QR

) for the eigenvalues of smallest and largest modulus

(Table 5).

� = HAMEV(A) HAMEV(B) HAMEV(H) HAMEV(N) DGEEVX

33.3 1:1 � 10

�9

5:4 � 10

�10

3:4 � 10

�11

3:5 � 10

�11

0

20.0 1:4 � 10

�9

1:2 � 10

�11

6:2 � 10

�10

5:9 � 10

�10

0

20.0 1:4 � 10

�9

1:2 � 10

�11

6:2 � 10

�10

5:9 � 10

�10

0

20.0 1:9 � 10

�10

6:3 � 10

�12

6:5 � 10

�11

1:6 � 10

�12

0

Table 4: Example 4, absolute errors for exact eigenvalues

� � HAMEV(A) HAMEV(B) HAMEV(H) HAMEV(N)

577.036 1:6 � 10

�12

4:3 � 10

�11

4:0 � 10

�11

4:1 � 10

�11

0.182 8:6 � 10

�13

3:2 � 10

�15

1:3 � 10

�10

1:3 � 10

�10

Table 5: Example 4, j�

HAMEV

� �

QR

j

Tables 4, 5 show that norm scaling can in some cases improve the accuracy of eigenvalues

computed by the square reduced method signi�cantly. Symplectic scaling also improves the

accuracy for the eigenvalues of smallest and largest modulus.

Example 5 [22, Example 5], [5, Example 15], [37, Example 1] The Hamiltonian matrix in

this problem comes from the position and velocity control problem for a string ofN high-speed

vehicles and is given by

A =

2

6

6

6

6

6

6

6

6

6

6

6

4

A

11

A

12

0 : : : 0

0 A

22

A

23

0 : : : 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 A

N�2;N�2

A

N�2;N�1

0

0 A

N�1;N�1

"

0

�1

#

0 : : : 0 0 �1

3

7

7

7

7

7

7

7

7

7

7

7

5

where

A

k;k

=

"

�1 0

1 0

#

; 1 � k � N � 1; and A

k;k+1

=

"

0 0

�1 0

#

; 1 � k � N � 2:

The o�-diagonal blocks are given by

G = diag(1; 0; 1; 0; : : : ; 1; 0; 1);

Q = diag(0; 10; 0; 10; : : : ; 0; 10; 0):
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The Hamiltonian matrix is

H =

"

A G

Q �A

T

#

2 IR

2n�2n

with n = 2N � 1. For all � 2 �(H) and for all tested orders N = 5k, k = 1; : : : ; 20, the

eigenvalues computed by HAMEV for all scaling strategies satis�ed

j�

QR

� �

HAMEV

j � "kHk

where �

QR

denotes the eigenvalues computed by LAPACK subroutine DGEEVX. All eigen-

values are well conditioned and kHk

2

=j�j = O(1) for all � 2 �(H).

In Table 6 we give the CPU times used by HAMEV and DGEEVX on a SUN SPARCsta-

tion 10. The timings for HAMEV are similar for all scaling strategies and we therefore give

only the values obtained by performing only Hessenberg scaling.

N 25 50 75 100

HAMEV 0.28 1.80 5.09 11.42

DGEEVX 1.34 8.53 29.47 60.24

Table 6: Example 5, CPU times (seconds)

From Table 6 we see that HAMEV is signi�cantly faster than DGEEVX. For increasing N ,

the CPU times used by HAMEV tend to be less than 20% of that of DGEEVX. This is even

faster than predicted by the 
op count. In all the tested computing environments, matrix-

vector products where some blocks in the matrix or vector are zero perform much faster than

for arbitrary matrices/vectors. Since in this example, GQ = 0, QA�A

T

Q is tridiagonal, and

A

2

= A

2

+ GQ is already in upper Hessenberg form, many of the operations in Algorithm 6

are products involving zero blocks. Therefore, the unexpected speed-up in HAMEV can be

explained by this e�ect due to the e�cient implementation of multiplication with zeros on

the tested computers.

Example 6 We tested our subroutines for randomly generated Hamiltonian matrices with

entries distributed normally in the interval [�1; 1 ]. Since the eigenvalue distribution for these

examples usually behaves nicely, the eigenvalues computed by HAMEV are as accurate as for

DGEEVX. We give the CPU times for 2n� 2n examples for several sizes of n. For each size

of n, we computed 100 examples. The values given in Table 7 are the mean values of the

CPU times measured on a SUN SPARCstation 10.

n 25 50 75 100 125 150 175 200

HAMEV 0.10 0.65 2.08 4.63 8.77 14.78 22.85 33.49

DGEEVX 0.26 1.59 4.97 11.28 21.83 37.73 59.25 87.43

Table 7: . Example 6, CPU times (seconds)

Table 7 shows that the speed up of HAMEV compared with DGEEVX is a little smaller

than expected from the 
op counts. This is due to the more complicated data structure,
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memory access, and index handling of SQRED. For growing n, the computational time used

by HAMEV tends to be about 38% of that required by DGEEVX (as opposed to the expected

36% from the 
op count).

Besides the faster computation of the eigenvalues HAMEV returns the right pairing of the

eigenvalues as��

i

, i = 1; : : : ; n. Since DGEEVX treats a Hamiltonian matrix like an arbitrary

unsymmetric matrix, small perturbations can cause computed eigenvalues with small real

parts to cross the imaginary axis. For example, the number of stable eigenvalues returned by

DGEEVX for n = 100 varied between 95 and 104.
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5 Applications

To show some possible applications for our subroutines we chose two problems from control

theory. These are considered in Examples 7 and 8. Another possible application is to use

HAMEV to approximate the eigenvalues of a Hamiltonian matrix and to use them as shifts

in a solver for CAREs (2) such as the methods proposed in [2, 3, 31, 33, 34]. In [1] it will be

reported how our subroutines are used during the numerical solution of the CARE (2) by the

multishift algorithm as prosposed in [2].

Example 7 The real stability radius of a real matrix [14]

Given a stable matrix A 2 IR

n�n

(i.e., �(A) � C

�

), it is often important to know how near

A is to an unstable matrix. In other words, how large must a perturbation be to make A

unstable? The distance of A to the unstable matrices can be measured by

�(A) = minfkEk : �(A+ E) \ {IR 6= ;g:

In [14], a bisection method for measuring �(A) is presented which is based on the following

observation:

Let � � 0. Then the Hamiltonian matrix

H = H(�) =

"

A ��I

n

�I

n

�A

T

#

has an eigenvalue on the imaginary axis if and only if � � �(A).

The following algorithm estimates �(A) within a factor of 10 or indicates that �(A) is less

than a small tolerance.

Algorithm BISEC

Input: A 2 IR

n�n

and a tolerance tol > 0.

Output: �; 
 2 IR such that either




10

� � � �(A) � 
 or 0 � �(A) � 
 � 10tol.

Set � = 0 and 
 = kA+A

T

k

F

=2.

WHILE 
 > 10maxftol; �g DO

Set � =

p


maxftol; �g

IF �(H(�))\ {IR 6= ; THEN

set 
 = �

ELSE

set � = �

END IF

END WHILE

END

Note that kA+A

T

k

F

=2 is a simple upper bound for �(A). If tol = 10

�p

kA +A

T

k

F

=2, then

at most dlog

2

pe bisection steps will be required. We used Algorithm BISEC with p = 12

such that at most four bisection steps were required. The eigenvalues of H(�) were computed

by HAMEV and DGEEVX and the decision if there exist purely imaginary eigenvalues was

based on the relative tolerance

Re (�) < 10"kH(�)k

F

j�j =: tol

�

: (16)
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Let

A = U

T

2

6

6

6

6

6

6

6

6

4

100

99

.

.

.

3

! 1

�1 !

3

7

7

7

7

7

7

7

7

5

U

where U = I

n

� 2

uu

T

u

T

u

and u = [1; 2; : : : ; 100]

T

. Thus, �(A) = minf3; !g. We computed

the upper and lower bounds for �(A), i.e., � and 
, once by BISEC using HAMEV and

once by BISEC using DGEEVX. The number of computed purely imaginary eigenvalues with

respect to tol

�

is returned by HAMEV if the subroutine is called with ORDER = 'O' and

TOL = 10"kH(�)k

F

. In the version using DGEEVX, the criterion (16) is checked for the

returned eigenvalues. Table 8 shows the computed values for � and 
 as well as the required

CPU times on a SUN SPARCstation 10 for several values of !.

HAMEV DGEEVX

! � 
 CPU time � 
 CPU time

10

�1

1:84 � 10

�2

1:03 � 10

�1

20.30 1:84 � 10

�2

1:03 � 10

�1

39.73

10

�3

5:82 � 10

�4

3:27 � 10

�3

19.57 5:82 � 10

�4

3:27 � 10

�3

40.52

10

�5

3:27 � 10

�6

1:84 � 10

�5

19.92 3:27 � 10

�6

1:84 � 10

�5

40.23

10

�7

1:84 � 10

�8

1:03 � 10

�7

19.62 1:84 � 10

�8

1:03 � 10

�7

41.61

10

�9

0.0 3:27 � 10

�9

19.41 0.0 3:27 � 10

�9

41.54

Table 8: Example 7, �, 
, and CPU times (seconds)

The computed bounds for �(A) are independent of the chosen method for the decision if

H(�) has eigenvalues on the imaginary axis. Note that in [14] it was shown that it is safe

to base the decision if H(�) has eigenvalues on the imaginary axis on any method preserving

the Hamiltonian structure of H(�) which Van Loan's method does as observed in Remark 7.

Here, the method using HAMEV is about twice as fast as the method using DGEEVX. This

is a little less than for the randomly generated examples.

Example 8 H

1

{norm of a transfer matrix

The computation of the H

1

{norm kGk

H

1

of a transfer matrix

G(s) := C(sI �A)

�1

B +D =:

"

A B

C D

#

where A 2 IR

n�n

is stable, B 2 IR

n�m

, C 2 IR

p�n

, and D 2 IR

p�m

, plays a central role in

H

1

{control problems (see, e.g., [18, 17]). Here,

kGk

H

1

= supf kG({s)k

2

: s 2 IR g:

Let � 2 IR such that � > �

max

(D) where �

max

(D) denotes the largest singular value of D

and de�ne

F (�) = A +B(�

2

I �D

T

D)

�1

D

T

C;
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R(�) =

1

�

2

B(�

2

I �D

T

D)

�1

B

T

;

Q(�) = �C

T

(I +D(�

2

�D

T

D)

�1

D

T

)C;

H(�) =

"

F (�) R(�)

Q(�) �F (�)

T

#

:

Obviously, H(�) is Hamiltonian. The following result (e.g., [41]) can be used to approximate

kGk

H

1

.

kGk

H

1

< �() �

max

(D) < � and �(H(�))\ {IR = ;

This result indicates that an upper and lower bound for kGk

H

1

can be computed via Al-

gorithm BISEC of Example 7. To get closer bounds, we also have to modify the stopping

criterion in Algorithm BISEC. To obtain an interval with 
 � k�, the stopping criterion is

modi�ed to 
 � kmaxftol; �g. A similar bisection method was proposed in [8]. The initial

search interval [�; 
] can naively be chose to be [ �

max

(D); 


ub

] where 


ub

is the upper bound

proposed in [8], i.e.,




ub

= �

max

(D) + 2

q

n � trace(W

c

W

o

)

and W

c

, W

o

are the solutions of the controllability and observability Lyapunov equations

AW

c

+W

c

A

T

+ BB

T

= 0;

A

T

W

o

+W

o

A+ C

T

C = 0:

As an example we computed upper and lower bounds for kGk

H

1

for the state-space system

given in Example 4 with D = 0. For this example, kGk

H

1

� 2275:03. The decision if H(�)

has eigenvalues on the imaginary axis was based on the eigenvalues computed by HAMEV

analogous to Example 7. Using k = 1:001 (i.e., a relative accuracy of 0.1%), we obtained

2273:2 � kGk

H

1

� 2275:1 after 15 iterations (1.24 seconds on a HP 712).

In [7], a quadratically convergent algorithm for the computation of the H

1

-norm is given that

requires the computation of all the purely imaginary eigenvalues of H(�) in each iteration

step. Thus, our subroutines can also be used in this algorithm.
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6 Conclusions

We have presented Fortran 77 subroutines that transform Hamiltonian matrices to square-

reduced form and approximate its eigenvalues as described in [12, 37]. Numerical experiments

on computers with conventional architecture con�rm the theoretical expectation that these

subroutines do less than half the work and �nish in less than half the time of the QR algorithm

as implemented in LAPACK [4].

Rounding error analysis and numerical experiments also con�rm the observation in [12, 37]

that eigenvalues of larger magnitude are computed as accurately as their condition numbers

suggest, but that tiny eigenvalues may be perturbed by a square root of the unit round.

Sometimes scaling improves accuracy, but an error of order of the square root of machine

precision can not always be avoided.
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A The Fortran 77 Subroutine SQRED

This section describes the subroutine SQRED and gives an example program showing how

to use SQRED. The description and example program text follow the SLICOT subroutine

documentation standard [25].

A.1 Subroutine description

1. Purpose

To transform a Hamiltonian matrix

H =

"

A G

Q �A

T

#

(17)

into a square-reduced Hamiltonian matrix

^

H =

"

^

A

^

G

^

Q �

^

A

T

#

(18)

by an orthogonal symplectic similarity transformation

^

H = U

T

HU where

U =

"

U

1

U

2

�U

2

U

1

#

: (19)

2. Speci�cation

SUBROUTINE SQRED(N, A, LDA, GP, QP, U, LDU, RWORK, COMPU,

1 IERR)

INTEGER N, LDA, LDU, IERR

DOUBLE PRECISION A(LDA,N), GP(N*(N+1)/2), QP(N*(N+1)/2), U(LDU,2*N),

1 RWORK(2*N)

CHARACTER COMPU

3. Argument List

3.1. Arguments In

N { INTEGER.

The order of the matrices A, G, and Q.

N � 1.

A { DOUBLE PRECISION array of DIMENSION (LDA,N).

The leading N�N part of this array contains the upper left block A of the

Hamiltonian matrix H in (17).

Note that this array is overwritten.

LDA { INTEGER.

The leading dimension of array A as declared in the calling program.

LDA � N.
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GP, QP { DOUBLE PRECISION arrays of DIMENSION at least N�(N+1)/2.

Array GP contains the upper right symmetric block G and array QP the lower

left symmetric block Q of the Hamiltonian matrix H in (17) in lower packed

storage mode, i.e., the lower triangles of the symmetric matrices are stored by

columns.

Note that these arrays are overwritten.

U { DOUBLE PRECISION array of DIMENSION (LDU,udim).

If COMPU = 'A' or 'a' or 'F' or 'f', then udim � 2�N. Otherwise, udim � 1.

If COMPU = 'A' or 'a', the leading N�2N part of this array must contain the

�rst N rows of an orthogonal symplectic matrix. Otherwise U is not referenced

on input.

Note that this array is overwritten if COMPU = 'A' or 'a' or 'F' or 'f'.

LDU { INTEGER.

The leading dimension of array U as declared in the calling program.

If COMPU = 'A' or 'a' or 'F' or 'f', then LDU � N. Otherwise, LDU � 1.

3.2. Arguments Out

A { DOUBLE PRECISION array of DIMENSION (LDA,N).

The leading N�N part of this array contains the upper right block

^

A of the

square-reduced Hamiltonian matrix

^

H in (18).

GP, QP { DOUBLE PRECISION arrays of DIMENSION at least N�(N+1)/2.

Array GP contains the upper right symmetric block

^

G and array QP the lower

left symmetric block

^

Q of the square-reduced Hamiltonian matrix

^

H in (18) in

lower packed storage mode, i.e., the lower triangles of the symmetric matrices

are stored by columns.

U { DOUBLE PRECISION array of DIMENSION (LDU,udim).

If COMPU = 'A' or 'a' or 'F' or 'f', then udim � 2�N. Otherwise, udim � 1.

If COMPU = 'F' or 'f', then array U contains the �rst N rows of the orthogonal

symplectic matrix U in (19).

IF COMPU = 'A' or 'a', then array U contains the �rst N rows of the product

~

UU of an orthogonal symplectic input matrix

~

U and U from (19).

Otherwise, U is not referenced.

3.3. Work space

RWORK { DOUBLE PRECISION array of DIMENSION at least 2�N.

3.4. Tolerances

None.

3.5. Mode Parameters

COMPU { CHARACTER.

Indicates whether the orthogonal symplectic matrix U of (19) is returned or ac-

cumulated into an orthogonal symplectic matrix or if the transformation matrix

is not required.
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COMPU = 'A' or 'a', (The orthogonal symplectic similarity transformations are

accumulated in U , i.e., U is the product of an orthogonal

symplectic input matrix and the similarity transformation

matrix of (19). On input, array U must contain the �rst

N rows of an orthogonal symplectic 2N�2N matrix);

COMPU = 'F' or 'f', (The matrix U in (19) is formed, i.e., the �rst N rows of

the orthogonal symplectic similarity transformation are

returned in U);

Otherwise, (The transformation matrix is not required and U is not

referenced).

3.6. Warning Indicator

None.

3.7. Error Indicator

IERR { INTEGER.

Unless the routine detects an error (see next section), IERR contains 0 on exit.

4. Warnings and Errors detected by the Routine

IERR = 1

On input, N < 1,

or LDA < N

or LDU < 1

or LDU < N and (COMPU = 'A' or 'a' or 'F' or 'f').
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A.2 Example program

To transform the Hamiltonian matrix H to square-reduced form

^

H = S

T

HS where

H =

"

A G

Q �A

T

#

and

A =

2

6

4

1:0 2:0 3:0

4:0 5:0 6:0

7:0 8:0 9:0

3

7

5

; G =

2

6

4

1:0 1:0 1:0

1:0 2:0 2:0

1:0 2:0 3:0

3

7

5

; Q =

2

6

4

7:0 6:0 5:0

6:0 8:0 4:0

5:0 4:0 9:0

3

7

5

:

Program Text

* SQRED EXAMPLE PROGRAM TEXT.

*

* .. Parameters ..

INTEGER NIN, NOUT

PARAMETER (NIN = 5, NOUT = 6)

INTEGER NMAX

PARAMETER (NMAX = 20)

INTEGER LDA, LDU, LDGQ

PARAMETER (LDA = NMAX, LDGQ = NMAX*(NMAX+1)/2, LDU = NMAX)

INTEGER LRWORK

PARAMETER (LRWORK = 2*NMAX)

DOUBLE PRECISION ZERO, ONE

PARAMETER (ZERO = 0.0D0, ONE = 1.0D0)

* .. Local Scalars ..

INTEGER I, IERR, IJ, J, K, KJ, N, NSYM

CHARACTER COMPU

* .. Local Arrays ..

DOUBLE PRECISION A(LDA,NMAX), G(LDGQ), Q(LDGQ), U(LDU,NMAX),

$ RWORK(LRWORK)

* .. External Subroutines ..

EXTERNAL DCOPY, DGEMM, DGEMV, DSCAL, DSPMV, SQRED

* .. Executable Statements ..

*

WRITE (NOUT,FMT=99999)

* Skip the heading in the data file and read the data.

READ (NIN,FMT='()')

READ (NIN,FMT=*) N, COMPU

IF (N .LE. 0 .OR. N .GT. NMAX) THEN

WRITE (NOUT, FMT=99998) N

ELSE

NSYM = N*(N+1)/2

READ (NIN,FMT=*) ((A(I,J),J=1,N),I=1,N)

READ (NIN,FMT=*) (G(I),I=1,NSYM)
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READ (NIN,FMT=*) (Q(I),I=1,NSYM)

ENDIF

* .. square reduce by symplectic orthogonal similarity ..

CALL SQRED(N, A, LDA, G, Q, U, LDU, RWORK, COMPU, IERR)

IF (IERR.NE.0) THEN

WRITE (NOUT,FMT=99997) IERR

ELSE

* .. show the square-reduced Hamiltonian ..

WRITE (NOUT,FMT=99996)

IJ = 1

DO 20 I = 1, N

CALL DCOPY(N, A(I,1), LDA, RWORK(1), 1)

CALL DCOPY(N-I+1, G(IJ), 1, RWORK(N+I), 1)

KJ = I

DO 10 J = 1, I-1

RWORK(N+J) = G(KJ)

KJ = KJ + N - J

10 CONTINUE

WRITE (NOUT,FMT=99994) (RWORK(J),J=1,2*N)

IJ = IJ + N - I + 1

20 CONTINUE

IJ = 1

DO 40 I = 1, N

CALL DCOPY(N, A(1,I), 1, RWORK(N+1), 1)

CALL DSCAL(N, -ONE, RWORK(N+1), 1)

CALL DCOPY(N-I+1, Q(IJ), 1, RWORK(I), 1)

KJ = I

DO 30 J = 1, I-1

RWORK(J) = Q(KJ)

KJ = KJ + N - J

30 CONTINUE

WRITE (NOUT,FMT=99994) (RWORK(J),J=1,2*N)

IJ = IJ + N - I + 1

40 CONTINUE

* .. show the square of H ..

WRITE (NOUT,FMT=99995)

IJ = 1

DO 80 I = 1, N

CALL DGEMM('N', 'N', 1, N, N, ONE, A(I,1), LDA, A, LDA, ZERO,

$ RWORK, 1)

CALL DCOPY(N-I+1, G(IJ), 1, RWORK(N+I), 1)

KJ = I

DO 50 J = 1, I-1

RWORK(N+J) = G(KJ)

KJ = KJ + N - J

50 CONTINUE

CALL DSPMV('L', N, ONE, Q, RWORK(N+1), 1, ONE, RWORK(1), 1)
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CALL DSPMV('L', N, ONE, G, A(I,1), LDA, ZERO, RWORK(N+1), 1)

CALL DGEMV('N', N, N-I+1, -ONE, A(1,I), LDA, G(IJ), 1, ONE,

$ RWORK(N+1), 1)

DO 70 J = 1, N

KJ = I

DO 60 K = 1, I-1

RWORK(N+J) = RWORK(N+J) - A(J,K)*G(KJ)

KJ = KJ + N - K

60 CONTINUE

70 CONTINUE

WRITE (NOUT,FMT=99994) (RWORK(J),J=1,2*N)

IJ = IJ + N - I + 1

80 CONTINUE

IJ = 1

DO 120 I = 1, N

CALL DGEMV('N', N, N, ONE, A, LDA, A(1,I), 1, ZERO,

$ RWORK(N+1), 1)

CALL DCOPY(N-I+1, Q(IJ), 1, RWORK(I), 1)

KJ = I

DO 90 J = 1, I-1

RWORK(J) = Q(KJ)

KJ = KJ + N - J

90 CONTINUE

CALL DSPMV('L', N, ONE, G, RWORK(1), 1, ONE, RWORK(N+1), 1)

CALL DSPMV('L', N, ONE, Q, A(1,I), 1, ZERO, RWORK(1), 1)

CALL DGEMV('T', N-I+1, N, -ONE, A(I,1), LDA, Q(IJ), 1, ONE,

$ RWORK(1), 1)

DO 110 J = 1, N

KJ = I

DO 100 K = 1, I-1

RWORK(J) = RWORK(J) - A(K,J)*Q(KJ)

KJ = KJ + N - K

100 CONTINUE

110 CONTINUE

WRITE (NOUT,FMT=99994) (RWORK(J),J=1,2*N)

IJ = IJ + N - I + 1

120 CONTINUE

END IF

STOP

*

99999 FORMAT (' SQRED EXAMPLE PROGRAM RESULTS',/1X)

99998 FORMAT (/' N is out of range.',/' N = ',I5)

99997 FORMAT (' IERR on exit from SQRED = ',I2)

99996 FORMAT (/' The square-reduced Hamiltonian is ')

99995 FORMAT (/' The square of the square-reduced Hamiltonian is ')

99994 FORMAT (1X,8(F10.4))

END
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Program Data

SQRED EXAMPLE PROGRAM DATA

3 N

1.0 2.0 3.0

4.0 5.0 6.0

7.0 8.0 9.0

1.0 1.0 1.0 2.0 2.0 3.0

7.0 6.0 5.0 8.0 4.0 9.0

Program Results

SQRED EXAMPLE PROGRAM RESULTS

The square-reduced Hamiltonian is

1.0000 3.3485 .3436 1.0000 1.9126 -.1072

6.7566 11.0750 -.3014 1.9126 8.4479 -1.0790

2.3478 1.6899 -2.3868 -.1072 -1.0790 -2.9871

7.0000 8.6275 -.6352 -1.0000 -6.7566 -2.3478

8.6275 16.2238 -.1403 -3.3485 -11.0750 -1.6899

-.6352 -.1403 1.2371 -.3436 .3014 2.3868

The square of the square-reduced Hamiltonian is

48.0000 80.6858 -2.5217 .0000 1.8590 -10.5824

167.8362 298.4815 -4.0310 -1.8590 .0000 -33.1160

.0000 4.5325 2.5185 10.5824 33.1160 .0000

.0000 .0000 .0000 48.0000 167.8362 .0000

.0000 .0000 .0000 80.6858 298.4815 4.5325

.0000 .0000 .0000 -2.5217 -4.0310 2.5185
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B The Fortran 77 Subroutine HAMEV

This section describes the subroutine HAMEV and gives an example program showing how

to use HAMEV. The description and example program text follow the SLICOT subroutine

documentation standard [25].

B.1 Subroutine description

1. Purpose

To approximate the eigenvalues of a Hamiltonian matrix

H =

"

A G

Q �A

T

#

(20)

by Van Loan's square reduced method [37]. Here, A, G, and Q are N�N matrices where G

and Q are symmetric. The Hamiltonian matrix H is transformed to square-reduced form via

a similarity transformation

^

H :=

1

�

U

T

D

�1

HDU =:

"

^

A

^

G

^

Q �

^

A

T

#

(21)

where U is orthogonal and symplectic, D = diag(D

0

; D

�1

0

) is a symplectic diagonal matrix,

and � is a real scalar. The eigenvalues of H are computed as the positive and negative square

roots of the eigenvalues of

^

A

2

+

^

G

^

Q.

2. Speci�cation

SUBROUTINE HAMEV(N, A, LDA, GP, QP, U, LDU, SCALE, NPI, WR, WI,

1 RWORK, TOL, COMPU, JOBEV, JOBSCL, ORDER, IERR)

INTEGER N, LDA, LDU, NPI, IERR

DOUBLE PRECISION A(LDA,N), GP(N*(N+1)/2), QP(N*(N+1)/2), U(LDU,2*N),

1 SCALE(N+1), WR(N), WI(N), RWORK(N*(N+1))

CHARACTER COMPU, JOBEV, JOBSCL, ORDER

3. Argument List

3.1. Arguments In

N { INTEGER.

The order of the matrices A, G, and Q.

N � 1.

A { DOUBLE PRECISION array of DIMENSION (LDA,N).

The leading N�N part of this array contains the upper left block A of the

Hamiltonian matrix H in (20).

Note that this array is overwritten.

LDA { INTEGER.

The leading dimension of array A as declared in the calling program.

LDA � N.
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GP, QP { DOUBLE PRECISION arrays of DIMENSION at least N�(N+1)/2.

Array GP contains the upper right block G, array QP the lower left block Q of

the Hamiltonian matrix H in (20) in lower packed storage mode, i.e., the lower

triangles of the symmetric matrices are stored by columns.

Note that these arrays are overwritten.

U { DOUBLE PRECISION array of DIMENSION (LDU,udim).

If COMPU = 'A' or 'a' or 'F' or 'f', then udim � 2�N. Otherwise, udim � 1.

If COMPU = 'A' or 'a', the leading N�2N part of this array must contain the

�rst N rows of an orthogonal symplectic matrix.

Note that this array is overwritten if COMPU = 'A' or 'a' or 'F' or 'f'.

LDU { INTEGER.

The leading dimension of array U as declared in the calling program.

If COMPU = 'A' or 'a' or 'F' or 'f', then LDU � N. Otherwise, LDU � 1.

3.2. Arguments Out

A { DOUBLE PRECISION array of DIMENSION (LDA,N).

The leading N�N part of this array contains the upper left block

^

A of the square-

reduced Hamiltonian matrix

^

H of (21).

GP, QP { DOUBLE PRECISION arrays of DIMENSION at least N�(N+1)/2.

Array GP contains the upper right block

^

G and array QP the lower left block

^

Q

of the square-reduced Hamiltonian matrix of (21) in lower packed storage mode,

i.e., the lower triangles of the symmetric matrices are stored by columns.

U { DOUBLE PRECISION array of DIMENSION (LDU,udim).

If COMPU = 'A' or 'a' or 'F' or 'f', then udim � 2�N. Otherwise, udim � 1.

If COMPU = 'F' or 'f', then array U contains the �rst N rows of the orthogonal

symplectic matrix of (21).

IF COMPU = 'A' or 'a', then array U contains the �rst N rows of the product

of an orthogonal symplectic input matrix and the orthogonal symplectic matrix

U of (21).

Otherwise, U is not referenced.

SCALE { DOUBLE PRECISION array of DIMENSION at least scldim.

If JOBSCL = 'A' or 'a', then scldim � N+1. Otherwise, scldim � 1.

On output, SCALE contains all information to form the symplectic diagonal

matrix D = diag(D

0

; D

�1

0

) of (21).

If JOBSCL = 'A' or 'a', then

D

0

=

1

p

SCALE(N + 1)

� diag(SCALE(1); : : : ; SCALE(N))

and � = 1:0. Otherwise, D

0

=

p

SCALE(1) � I

N

where I

N

denotes the N�N

identity matrix, and � = SCALE(1).

NPI { INTEGER.

The number of returned eigenvalues having real part zero with respect to the

relative tolerance TOL (see Section Tolerances). This number is only computed

if ORDER = 'O' or 'o'. Otherwise, NPI is not referenced.
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WR, WI { DOUBLE PRECISION arrays of DIMENSION at least nev.

If JOBEV = 'S' or 's' or 'U' or 'u', then nev = N, i.e., only stable ('S', 's') or

unstable ('U', 'u') eigenvalues are returned. Otherwise, nev = 2�N, and all the

eigenvalues of the Hamiltonian matrix H of (20) are returned.

WR contains the real parts, WI the imaginary parts of the required eigenvalues.

Complex conjugate pairs of eigenvalues appear consecutively if their real part is

not zero. If all the eigenvalues are required, then the �rst N components of WR,

WI contain the stable eigenvalues, followed by the unstable ones, i.e.,

(WR(N+I),WI(N+I)) = �(WR(I),WI(I)), 1 � I�N.

As a consequence, if H has a purely imaginary eigenvalue of odd multiplicity, say

(WR(I),WI(I)), then its conjugate complex partner is �(WR(N+I),WI(N+I)).

3.3. Work space

RWORK { DOUBLE PRECISION array of DIMENSION at least 2�N.

3.4. Tolerances

TOL { DOUBLE PRECISION.

A tolerance used for deciding if a computed eigenvalue � is considered to be

purely imaginary.

jRe(�)j � TOL � j�j =) � is purely imaginary.

If on input, TOL is less than zero, then TOL is set to the default value 10:0�

p

"

(here, " denotes the machine precision). This is inspired by the error analysis

for eigenvalues computed by SQRED (see [12] and [37]).

TOL is only used if ORDER = 'O' or 'o' (see next section). Otherwise, TOL is

not referenced.

3.5. Mode Parameters

COMPU { CHARACTER.

Indicates whether the orthogonal symplectic matrix U of (21) is returned or

accumulated into an input matrix or if the transformation matrix is not required.

COMPU = 'A' or 'a', (The orthogonal symplectic similarity transformations are

accumulated in U, i.e., array U contains the �rst N rows of

the product of an orthogonal symplectic input matrix and

the similarity transformation matrix of (21). On input,

array U must contain the �rst N rows of an orthogonal

symplectic 2N�2N matrix);

COMPU = 'F' or 'f', (The matrix U of (21) is formed, i.e., the �rst N rows of

the orthogonal symplectic similarity transformation are

returned in U);

Otherwise, (The transformation matrix is not required and S is not

referenced).

JOBEV { CHARACTER.

Indicates whether the stable, unstable, or all the eigenvalues are required.

JOBEV = 'S' or 's', (Only the stable eigenvalues are required, i.e., N eigenvalues

with nonpositive real parts are returned);
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JOBEV = 'U' or 'u', (Only the unstable eigenvalues are required, i.e., N eigen-

values with nonnegative real parts are returned);

Otherwise, (All the eigenvalues are required).

JOBSCL { CHARACTER.

Indicates which scaling strategy is used as follows, for details see Section 3.1.

JOBSCL = 'A' or 'a', (Symplectic scaling);

JOBSCL = 'B' or 'b', (Norm scaling);

JOBSCL = 'N' or 'n', (No scaling).

For any input value di�erent from 'N' or 'n', the rows and columns of

^

A

2

+

^

G

^

Q

are equilibrated in norm as far as possible using LAPACK subroutine DGEBAL

[4] before computing its eigenvalues.

ORDER { CHARACTER.

Indicates whether the computed eigenvalues are ordered.

ORDER = 'O' or 'o', (If purely imaginary eigenvalues are detected with respect

to TOL, (see Section Tolerances), they are placed at the

end of WR, WI (or the end of each half of WR, WI if

all the eigenvalues are returned). If possible, they are

grouped as complex conjugate pairs).

Otherwise, the eigenvalues are returned in the order they are computed.

3.6. Warning Indicator

None.

3.7. Error Indicator

IERR { INTEGER.

Unless the routine detects an error (see next section), IERR contains 0 on exit.

4. Warnings and Errors detected by the Routine

IERR = 1

On input, N < 1,

or LDA < N

or LDU < 1

or LDU < N and (COMPU = 'A' or 'a' or 'F' or 'f').

IERR > 10

On input to DGEBAL, the (IERR�10)th argument had an illegal value.

IERR = �J

If the limit of 30�N iterations is exhausted while the J{th eigenvalue is being

sought, see LAPACK subroutines DLAHQR or DHSEQR.
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B.2 Example program

To compute the eigenvalues of

H =

"

A G

Q �A

T

#

;

where

A =

2

6

4

2:0 0:0 0:0

0:0 1:0 2:0

0:0 �1:0 3:0

3

7

5

; G =

2

6

4

1:0 0:0 0:0

0:0 2:0 3:0

0:0 3:0 4:0

3

7

5

; and Q =

2

6

4

�2:0 0:0 0:0

0:0 0:0 0:0

0:0 0:0 0:0

3

7

5

:

Program Text

* HAMEV EXAMPLE PROGRAM TEXT.

*

* .. Parameters ..

INTEGER NIN, NOUT

PARAMETER (NIN = 5, NOUT = 6)

INTEGER NMAX

PARAMETER (NMAX = 20)

INTEGER LDA, LDGQ, LDU

PARAMETER (LDA = NMAX, LDGQ = NMAX*(NMAX+1)/2, LDU = NMAX)

INTEGER LRWORK

PARAMETER (LRWORK = NMAX*(NMAX+1))

* .. Local Scalars ..

DOUBLE PRECISION TOL

INTEGER I, IERR, J, N, NPI, NSYM

CHARACTER COMPU, JOBEV, JOBSCL, ORDER

* .. Local Arrays ..

DOUBLE PRECISION A(LDA, NMAX), G(LDGQ), Q(LDGQ), SCALE(NMAX+1),

$ U(LDU,2*NMAX), WR(2*NMAX), WI(2*NMAX),

$ RWORK(LRWORK)

* .. External Functions

LOGICAL LSAME

EXTERNAL LSAME

* .. External Subroutines ..

EXTERNAL HAMEV

* .. Executable Statements ..

*

WRITE (NOUT,FMT=99999)

* Skip the heading in the data file and read the data.

READ (NIN,FMT='()')

READ (NIN,FMT=*) N, TOL, COMPU, JOBEV, JOBSCL, ORDER

IF (N .LE. 0 .OR. N .GT. NMAX) THEN

WRITE (NOUT,FMT=99998) N

ELSE

NSYM = N*(N+1)/2

READ (NIN,FMT=*) ((A(I,J),J=1,N),I=1,N)
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READ (NIN,FMT=*) (G(I),I=1,NSYM)

READ (NIN,FMT=*) (Q(I),I=1,NSYM)

IF (LSAME(COMPU,'A')) READ (NIN,FMT=*) ((U(I,J),J=1,2*N),I=1,N)

* Compute the eigenvalues.

CALL HAMEV(N, A, LDA, G, Q, U, LDU, SCALE, NPI, WR, WI, RWORK,

$ TOL, COMPU, JOBEV, JOBSCL, ORDER, IERR)

*

IF (IERR .NE. 0) THEN

WRITE (NOUT,FMT=99997) IERR

ELSE

* Show number of purely imaginary eigenvalues.

IF (LSAME(ORDER,'O')) THEN

WRITE (NOUT,FMT=99996) TOL

WRITE (NOUT,FMT=99995) NPI

END IF

* Show the computed eigenvalues.

WRITE (NOUT,FMT=99994)

DO 10 I = 1, N

WRITE (NOUT,FMT=99993) WR(I), ' + (', WI(I), ')i'

10 CONTINUE

IF (LSAME(JOBEV,'A')) THEN

DO 20 I = 1, N

WRITE (NOUT,FMT=99993) WR(N+I), ' + (', WI(N+I), ')i'

20 CONTINUE

END IF

END IF

END IF

STOP

*

99999 FORMAT (' HAMEV EXAMPLE PROGRAM RESULTS',/1X)

99998 FORMAT (/' N is out of range.',/' N = ',I5)

99997 FORMAT (' IERR on exit from HAMEV = ',I2)

99996 FORMAT (/' Relative tolerance TOL for small imaginary parts :',

$ G10.3)

99995 FORMAT (' Number of purely imaginary eigenvalues w.r.t. TOL:',I3)

99994 FORMAT (/' The eigenvalues are ')

99993 FORMAT (1X,F8.4,A,F8.4,A)

END
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Program Data

HAMEV EXAMPLE PROGRAM DATA

3 .1D-11 'N' 'A' 'H' 'O'

2.0 0.0 0.0

0.0 1.0 2.0

0.0 -1.0 3.0

1.0 0.0 0.0 2.0 3.0 4.0

-2.0 0.0 0.0 0.0 0.0 0.0

Program Results

HAMEV EXAMPLE PROGRAM RESULTS

Relative tolerance TOL for small imaginary parts : .100E-11

Number of purely imaginary eigenvalues w.r.t. TOL: 0

The eigenvalues are

-1.4142 + ( .0000)i

-2.0000 + ( -1.0000)i

-2.0000 + ( 1.0000)i

1.4142 + ( .0000)i

2.0000 + ( 1.0000)i

2.0000 + ( -1.0000)i
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C How to Obtain the Software

The codes corresponding to this paper may be obtained via anonymous ftp at TU Chemnitz-

Zwickau. Proceed as follows.

> ftp ftp.tu-chemnitz.de

> Name: anonymous

> Password: your complete e-mail address

> cd /pub/Local/mathematik/Benner

> binary

Observe the capital \L" in Local !

You can obtain the complete set of source codes (hamev.f, sqred.f, croot.f, hamgiv.f, syref.f )

by

> get hamev.tar.gz

or just the codes for the reduction to square-reduced form (sqred.f, hamgiv.f, syref.f ) by

> get sqred.tar.gz

where the su�x .gz is optional. Without this su�x, you obtain the tar-�les hamev.tar,

sqred.tar whereas using the su�x .gz, the tar �les are compressed using gzip.

Both tar �les contain the source codes, the example programs given in Appendices B.2 and A.2

together with the data and resulting output �les. Also included are introductory README

�les and validation programs.

After exiting ftp, extracting the �les (after possibly uncompressing using gunzip) is achieved

by

> tar xf hamev.tar

or

> tar xf sqred.tar

In both cases, a directory is created containing all required �les. For hamev.tar, this directory

is called hamev and for sqred.tar, it will be sqred.

If you are using an MS DOS or MS WINDOWS environment and a tar command is not

available on your sytem, you can obtain tar.exe at the same ftp site from directory

/pub/tex/tools/tar/msdos

Fortran 77 �les for compressing a symmetric or triangular matrix to packed storage mode and

for uncompressing an array in packed storage mode are also available at the same location by

> get sysp.tar.gz

If any problems occur in obtaining or running the codes, please send an e-mail message to

benner@mathematik.tu-chemnitz.de
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