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Abstract

Two e�cient methods for solving generalized Lyapunov equations and their implementa-

tions in FORTRAN 77 are presented. The �rst one is a generalization of the Bartels{Stewart

method and the second is an extension of Hammarling's method to generalized Lyapunov

equations. Our LAPACK based subroutines are implemented in a quite 
exible way. They

can handle the transposed equations and provide scaling to avoid over
ow in the solution.

Moreover, the Bartels{Stewart subroutine o�ers the optional estimation of the separation

and the reciprocal condition number. A brief description of both algorithms is given. The

performance of the software is demonstrated by numerical experiments.
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1 Basic Properties of Generalized Lyapunov Equations

Lyapunov equations play an essential role in control theory. In the past few years its generaliza-

tions, the generalized continuous{time Lyapunov equation (GCLE)

A

T

XE +E

T

XA = �Y (1)

and the generalized discrete{time Lyapunov equation (GDLE) or generalized Stein equation

A

T

XA � E

T

XE = �Y; (2)

have received a lot of interest. A, E, and Y are given real n� n matrices. The right hand side Y

is symmetric and so is the solution matrix X if the equation has a unique solution.

We can consider the GCLE and the GDLE as special cases of the generalized Sylvester equation

R

T

XS + U

T

XV = �Y; (3)

where in general, X and Y are n�m matrices. Since equation (3) is linear in the entries of X, it

can be written as a system of linear equations. To this end, the entries of X are usually arranged

in a vector by stacking the columns of X = (x

ij

)

n�m

. This is done by the mapping vec, which is

de�ned as

vec(X) = (x

11

; : : : ; x

n1

; x

12

; : : : ; x

n2

; : : : ; x

1m

; : : : ; x

nm

)

T

:

It can easily be shown that (3) is equivalent to

�

S

T


 R

T

+ V

T


 U

T

�

vec(X) = �vec(Y ); (4)

where 
 denotes the Kronecker product of two matrices, e.g. [13]. The order of this system is nm.

Therefore, it is not practicable to �nd X by solving the corresponding system of linear equations

unless n and m are very small.
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The solvability of (3) depends on the generalized eigenstructure of the matrix pairs (R;U ) and

(V; S). A matrix pencil �R��U is called regular i� there exists a pair of complex numbers (�

0

; �

0

)

such that �

0

R��

0

U is nonsingular. If �Rx = �Ux holds for a vector x 6= 0, the pair (�; �) 6= (0; 0)

is a generalized eigenvalue. Two generalized eigenvalues (�; �) and (
; �) are considered to be equal

i� �� = �
. The set of all generalized eigenvalues of the pencil �R��U is designated by �(R;U ).

The following theorem, e.g. [3], gives necessary and su�cient conditions for the existence and

uniqueness of the solution of (3).

Theorem 1 The matrix equation (3) has a unique solution if and only if

1. �R� �U and �V � �S are regular pencils and

2. �(R;U ) \ �(�V; S) = ;.

Let (�

i

; �

i

) denote the generalized eigenvalues of the matrix pencil �A � �E. For simplicity,

we switch to the more conventional form of a matrix pencil A � �E, whose eigenvalues are given

by �

i

= �

i

=�

i

with �

i

= 1 when �

i

= 0. Applying the above theorem to (1) and (2) gives the

following corollary.

Corollary 1 Let A� �E be a regular pencil. Then

1. the GCLE (1) has a unique solution if and only if all eigenvalues of A � �E are �nite and

�

i

+ �

j

6= 0 for any two eigenvalues �

i

and �

j

of A� �E,

2. the GDLE (2) has a unique solution if and only if �

i

�

j

6= 1 for any two eigenvalues �

i

and

�

j

of A� �E (under the convention 0 � 1 = 1).

As a consequence, singularity of one of the matrices A and E implies singularity of the GCLE

(1). If both A and E are singular, the GDLE (2) is singular too. Thus, for an investigation of the

unique solution of a generalized Lyapunov equation we may assume one of the matrices A and E

to be nonsingular. Since A and E play a symmetric role (up to a sign in the discrete{time case),

we expect E to be invertible. Under this assumption equations (1) and (2) are equivalent to the

Lyapunov equations

(AE

�1

)

T

X +X(AE

�1

) = �E

�T

Y E

�1

(5)

and

(AE

�1

)

T

X(AE

�1

) �X = �E

�T

Y E

�1

; (6)

respectively, and the classical result about the positive de�nite solution of the stable Lyapunov

equation [14] remains valid for the generalized equations.

Theorem 2 Let E be nonsingular and Y be positive de�nite (semide�nite).

1. If Re(�

i

) < 0 for all eigenvalues �

i

of A� �E, then the solution matrix X of the GCLE (1)

is positive de�nite (semide�nite).

2. If j�

i

j < 1 for all eigenvalues �

i

of A � �E, then the solution matrix X of the GDLE (2) is

positive de�nite (semide�nite).

There may be a de�nite solution in the discrete{time case even if E is singular. If j�

i

j < 1 for all

eigenvalues �

i

of E� �A, then the solution matrix X is negative de�nite (semide�nite). But this,

of course, means nothing but reversing the roles of A and E.

Finally, it should be stressed that the reduction of a generalized equation (1) or (2) to a stan-

dard Lyapunov equation (5) or (6), respectively, is mainly of theoretical interest. If E is possibly

ill{conditioned, this is not a numerically feasible approach to solve the generalized equation numer-

ically. In the sequel we present two methods which solve generalized Lyapunov equations without

inverting E.

2



2 Algorithms for Generalized Lyapunov Equations

2.1 A Generalization of the Bartels{Stewart Method

The algorithm described in this section is an extension of the Bartels{Stewart method [2] to

generalized Lyapunov equations (see also [3], [6], [12]). We restrict ourself to the GCLE. The

derivation of the algorithm for the GDLE is straightforward.

First the pencil A � �E is reduced to real generalized Schur form A

s

� �E

s

by means of

orthogonal matrices Q and Z (QZ{algorithm [8]):

A

s

= Q

T

AZ; (7)

E

s

= Q

T

EZ (8)

such that A

s

is upper quasitriangular and E

s

is upper triangular. De�ning

Y

s

= Z

T

Y Z;

X

s

= QXQ

T

(9)

leads to the reduced Lyapunov equation

A

T

s

X

s

E

s

+E

T

s

X

s

A

s

= �Y

s

; (10)

which is equivalent to (1).

Let A

s

, E

s

, Y

s

, and X

s

be partitioned into p by p blocks with respect to the subdiagonal structure

of the upper quasi-triangular matrix A

s

. Especially, the main diagonal blocks are 1� 1 or 2 � 2

matrices according to real eigenvalues or conjugate complex eigenvalue pairs of the pencil A

s

��E

s

,

respectively.

A

s

=

0

B

@

A

11

� � � A

1p

.

.

.

.

.

.

O A

pp

1

C

A

; E

s

=

0

B

@

E

11

� � � E

1p

.

.

.

.

.

.

O E

pp

1

C

A

;

Y

s

=

0

B

@

Y

11

� � � Y

1p

.

.

.

.

.

.

.

.

.

Y

p1

� � � Y

pp

1

C

A

; X

s

=

0

B

@

X

11

� � � X

1p

.

.

.

.

.

.

.

.

.

X

p1

� � � E

pp

1

C

A

:

Now (10) can be solved by a block forward substitution, which is more complicated to derive than

that utilized in the Bartels{Stewart method for the standard Lyapunov equation. Since X

s

is

symmetric, only p(p+ 1)=2 Sylvester equations

A

T

kk

X

kl

E

ll

+ E

T

kk

X

kl

A

ll

= �

^

Y

kl

(11)

of order at most 2� 2 with right hand side matrices

^

Y

kl

= Y

kl

+

k;l

X

i=1;j=1

(i;j)6=(k;l)

�

A

T

ik

X

ij

E

jl

+E

T

ik

X

ij

A

jl

�

(12)

need to be solved. According to (4) the solution X

ij

is found by solving the corresponding system

of linear equations

�

E

T

ll


 A

T

kk

+A

T

ll


E

T

kk

�

vec(X

kl

) = �vec(

^

Y

kl

):

We determine the blocks in the upper triangle of X

s

in a row{wise order, i.e., we compute succes-

sively X

11

, ..., X

1p

, X

22

, ..., X

2p

, ..., X

pp

. Computing the matrices

^

Y

kl

by (12) would result in an

overall complexity O(n

4

). This can be avoided by a somewhat complicated updating technique

based upon the following expansion of equation (12)

^

Y

kl

= Y

kl

+

k

X

i=1

0

@

A

T

ik

0

@

l�1

X

j=1

X

ij

E

jl

1

A

+E

T

ik

0

@

l�1

X

j=1

X

ij

A

jl

1

A

1

A

+

k�1

X

i=1

�

A

T

ik

X

il

E

ll

+E

T

ik

X

il

A

ll

�

:
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We determine

^

Y

kl

in 2k � 1 sweeps

Y

(0)

kl

= Y

kl

;

Y

(2i�1)

kl

= Y

(2i�2)

kl

+A

T

ik

0

@

l�1

X

j=1

X

ij

E

jl

1

A

+ E

T

ik

0

@

l�1

X

j=1

X

ij

A

jl

1

A

; i = 1; : : : ; k;

Y

(2i)

kl

= Y

(2i�1)

kl

+A

T

ik

X

il

E

ll

+E

T

ik

X

il

A

ll

; i = 1; : : : ; k � 1;

^

Y

kl

= Y

(2k�1)

kl

:

Our implementation of the algorithm computes Y

(2i�1)

kl

(k � i) right before solving (11) for X

il

.

After X

il

is known, Y

(2i)

kl

(k > i) can be computed. What decreases the complexity to O(n

3

) is

that Y

(2i�1)

i;l

, ..., Y

(2i�1)

l;l

(the elements below the main diagonal are not of interest) can be updated

simultaneously, where we have to compute the terms

P

l�1

j=1

X

ij

E

jl

and

P

l�1

j=1

X

ij

A

jl

only once.

Note that the blocks of the strict lower triangle of X

s

appearing in each of both sums are given by

symmetry. Moreover, it is apparent that the updating technique described above can be realized

by operating on the array Y without the need for further workspace. Finally, the solution matrix

X is obtained from X

s

by (9).

Lyapunov equations whose coe�cient matrices A and E are replaced by its transposed matrices

can be solved in a similar fashion by block backward substitution.

2.2 Estimation of the Separation and the Condition Number

The software for the Bartels{Stewart method provides optional estimates for both the separa-

tion and the condition number of the Lyapunov operator. Especially the latter is important for

estimating the accuracy of the computed solution.

In the continuous{time case the separation is de�ned as

sep

c

= sep

c

(A;E) = min

jjXjj

F

=1

�

�

�

�

A

T

XE + E

T

XA

�

�

�

�

F

:

Due to the orthogonal invariance of the Frobenius norm, this quantity is not altered by the

transformations (7) and (8). Therefore, the estimate can be obtained from the reduced equation

(10) which lowers the computational cost signi�cantly. According to (4),

sep

c

=

1

�

�

�

�

K

�1

c

�

�

�

�

2

;

if K

c

= E

T

s


 A

T

s

+ A

T

s


 E

T

s

is invertible. The quantity

�

�

�

�

K

�1

c

�

�

�

�

is estimated by an algorithm

due to Higham [11] based on Hager's method [9]. Actually, this method yields an estimate for the

1{norm. This is a quite good approximation of

�

�

�

�

K

�1

c

�

�

�

�

2

, since it deviates from

�

�

�

�

K

�1

c

�

�

�

�

1

by no more

than a factor n. The algorithm, which is available as routine DLACON in LAPACK [1], requires

the solution of a few (say 4 or 5) generalized Lyapunov equations A

T

s

X

s

E

s

+ E

T

s

X

s

A

s

= �Y

s

or

A

s

X

s

E

T

s

+ E

s

X

s

A

T

s

= �Y

s

.

Finally, an estimate for the condition number of the generalized Lyapunov operator, which is

represented by the corresponding matrix K

c

, is provided by

cond(K

c

) �

2 jjA

s

jj

F

jjE

s

jj

F

sep

c

:

Again, note that jjAjj

F

= jjA

s

jj

F

and jjEjj

F

= jjA

s

jj

F

.

The separation of the discrete{time Lyapunov operator is

sep

d

= sep

d

(A;E) = min

jjXjj

F

=1

�

�

�

�

A

T

XA � E

T

XE

�

�

�

�

F

=

1

�

�

�

�

K

�1

d

�

�

�

�

2

with K

d

= A

T

s


A

T

s

�E

T

s


E

T

s

. After approximating sep

d

by the reciprocal estimate for

�

�

�

�

K

�1

d

�

�

�

�

1

an estimate for the condition number is gained from

cond(K

d

) �

jjA

s

jj

2

F

+ jjE

s

jj

2

F

sep

d

:
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2.3 A Generalization of Hammarling's Method

The method due to Hammarling is an alternative to the Bartels{Stewart method in case the

Lyapunov equation to be solved is stable and its right hand side is semide�nite. In [10] Hammarling

suggested that his method can be extended to generalized Lyapunov equations. We will present

such a generalization in the sequel.

We assume the pencil A � �E to be stable, i.e., its eigenvalues must lie in the open left half

plane in the continuous{time case or inside the unit circle in the discrete{time case. If these

conditions are met, the solutions X of the GCLE

A

T

XE +E

T

XA = �B

T

B (13)

and the GDLE

A

T

XA � E

T

XE = �B

T

B (14)

are positive semide�nite (see Theorem 2). In general, B is a real m � n matrix, while A, E, and

X are real square matrices of order n. The Cholesky factor U of the solution X = U

T

U can be

found without �rst computing X and without forming the matrix product B

T

B. We focus on the

continuous{time equation (13) and give a note about the di�erences in the discrete{time case.

Similar to the Bartels{Stewart method, the algorithm consists of three parts. First the equa-

tion is transformed to a reduced form by means of the orthogonal matrices resulting from the

generalized Schur factorization. After solving the reduced equation, the solution is retrieved by

back transformation.

Applying the QZ{algorithm to the pencil A � �E yields orthogonal matrices Q and Z such

that A

s

= Q

T

AZ is upper quasitriangular and E

s

= Q

T

EZ is upper triangular. This leads to the

reduced equation

A

T

s

U

T

s

U

s

E

s

+E

T

s

U

T

s

U

s

A

s

= �B

T

s

B

s

; (15)

where the n�n upper triangular matrix B

s

on the right hand side is formed as follows. If m � n,

the matrix B

s

is obtained from the rectangular QR{factorization

BZ = Q

B

�

B

s

0

�

;

where Q

B

is an orthogonal matrix of order m. Otherwise, we partition BZ as

BZ =

�

^

B

1

^

B

2

�

;

where

^

B

1

is an m �m matrix with the QR{factorization

^

B

1

= Q

B

^

B

3

:

Thus, B

s

is given by

B

s

=

�

^

B

3

Q

T

B

^

B

2

0 0

�

:

To solve the reduced equation (15), we partition the involved matrices as

A

s

=

�

A

11

A

12

0 A

22

�

; E

s

=

�

E

11

E

12

0 E

22

�

;

B

s

=

�

B

11

B

12

0 B

22

�

; U

s

=

�

U

11

U

12

0 U

22

�

:

The upper left blocks are p � p matrices (p = 1; 2), where p = 2 i� the pencil A

11

� �E

11

has a

pair of complex conjugate eigenvalues.

Provided that U

11

is nonsingular, the above partitioning leads to the following formulas

A

T

11

U

T

11

U

11

E

11

+ E

T

11

U

T

11

U

11

A

11

= �B

T

11

B

11

; (16)

A

T

22

U

T

12

+ E

T

22

U

T

12

M

1

= �B

T

12

M

2

� A

T

12

U

T

11

�E

T

12

U

T

11

M

1

; (17)

A

T

22

U

T

22

U

22

E

22

+ E

T

22

U

T

22

U

22

A

22

= �B

T

22

B

22

�B

T

12

B

12

�(A

T

12

U

T

11

+A

T

22

U

T

12

)(U

11

E

12

+ U

12

E

22

)

�(E

T

12

U

T

11

+ E

T

22

U

T

12

)(U

11

A

12

+ U

12

A

22

)

= �B

T

22

B

22

� yy

T

(18)
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with the auxiliary matrices

M

1

= U

11

A

11

E

�1

11

U

�1

11

; (19)

M

2

= B

11

E

�1

11

U

�1

11

; (20)

y = B

T

12

� (E

T

12

U

T

11

+ E

T

22

U

T

12

)M

T

2

:

As mentioned in Section 1 the matrix E is nonsingular so that the inverse of E

11

exists. Moreover,

it can be proved that U

11

is nonsingular as well if B

11

6= 0.

The above equations enable the entries of U

s

to be determined recursively. The block U

11

is gained from the stable Lyapunov equation (16). Afterwards, the matrices M

1

and M

2

are

determined. Solving (16) for the case p = 2 is described later in an extra paragraph.

After computing U

11

, M

1

, and M

2

, the generalized Sylvester equation (17) is solved for U

T

12

.

If U

11

is nonsingular, the existence of a unique solution U

T

12

is guaranteed by Theorem 1.

It remains to �nd the Cholesky factor

~

B

22

of the right hand side matrix of equation (18)

B

T

22

B

22

+ yy

T

=

~

B

T

22

~

B

22

:

The upper triangular matrix

~

B

22

is cheaply obtained from the QR{factorization of

�

B

22

y

T

�

= Q

~

B

�

~

B

22

0

�

;

where Q

~

B

is an orthogonal matrix and 0 is the zero matrix which consists of p rows. The resulting

equation

A

T

22

U

T

22

U

22

E

22

+ E

T

22

U

T

22

U

22

A

22

= �B

T

22

B

22

has the same structure as (15) but its size is lowered by p. Hence, all entries of U

s

can be

determined recursively.

After the reduced equation (15) is solved, we �nd the upper triangular solution matrix U of

equation (13) by the QR{factorization of

U

s

Q

T

= Q

U

U

with the orthogonal matrix Q

U

. Of course, the latter need not be accumulated.

The next part of this section is addressed to the problems caused by the non{real eigenvalues

of the pencil A

11

��E

11

when p = 2. The procedure for solving the 2� 2 Lyapunov equation (16)

is similar to that described above for the equation of order n. For an explanation of the algorithm

we make use of complex computation. Nevertheless, in our implementation complex operations

are emulated by real ones. First the pencil A

11

� �E

11

is reduced to Schur form by means of

unitary matrices

^

Q and

^

Z such that

^

Q

H

A

11

^

Z =

^

A

11

=

�

a

11

a

12

0 a

22

�

;

^

Q

H

E

11

^

Z =

^

E

11

=

�

e

11

e

12

0 e

22

�

:

Let B

11

^

Z =

^

Q

B

^

B

11

be the QR{factorization of B

11

^

Z with an unitary matrix

^

Q

B

, for which the

entries on the main diagonal of the upper triangular matrix

^

B

11

are real and non{negative. Now

the reduced form of (16) can be written as

^

A

H

11

^

U

H

11

^

U

11

^

E

11

+

^

E

H

11

^

U

H

11

^

U

11

^

A

11

= �

^

B

H

11

^

B

11

:

After partitioning

^

B

11

and

^

U

11

as follows

^

B

11

=

�

b

11

b

12

0 b

22

�

;

^

U

11

=

�

u

11

u

12

0 u

22

�

;

we �nd the entries of

^

U

11

from

�

1

=

p

��a

11

e

11

� �e

11

a

11

;

u

11

=

b

11

�

1

;
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u

12

= �

b

12

�

1

+ (�a

11

e

12

+ a

12

�e

11

)u

11

a

22

�e

11

+ e

22

�a

11

;

�

2

=

p

��a

22

e

22

� �e

22

a

22

;

y =

�

b

12

�

�

1

�e

11

(�e

12

u

11

+ �e

22

�u

12

);

u

22

=

1

�

2

q

b

2

22

+ jyj

2

:

Finally, the upper triangular solution U

11

of (16) is obtained by the QR{factorization

^

U

11

^

Q = Q

U

U

11

;

where Q

U

is a unitary matrix.

It should be stressed that if p = 2 care is needed when computing the auxiliary matrices M

1

and M

2

since U

11

may be ill conditioned. This is the case when the pair (E

�T

11

A

T

11

; E

�T

11

B

T

11

) is

near to an uncontrollable one. For a further discussion of this issue we refer to Section 6 in [10].

In our implementation we followed the procedure proposed there.

For the discrete{time equation (14) most of the algorithm is similar to that for the continuous{

time equation. An essential di�erence is the solution of the reduced equation

A

T

s

U

T

s

U

s

A

s

� E

T

s

U

T

s

U

s

E

s

= �B

T

s

B

s

: (21)

Here the recursion is based on the formulas

A

T

11

U

T

11

U

11

A

11

�E

T

11

U

T

11

U

11

E

11

= �B

T

11

B

11

(22)

A

T

22

U

T

12

M

1

�E

T

22

U

T

12

= �B

T

12

M

2

+ E

T

12

U

T

11

� A

T

12

U

T

11

M

1

A

T

22

U

T

22

U

22

A

22

�E

T

22

U

T

22

U

22

E

22

= �B

T

22

B

22

� yy

T

;

where M

1

and M

2

are de�ned as in (19) and (20), respectively. The matrix y is given by

y =

�

B

T

12

A

T

12

U

T

11

+ A

T

22

U

T

12

�

C;

where C is a matrix which ful�ls

M

3

= I

2p

�

�

M

2

M

1

�

�

�

M

2

M

1

�

T

= CC

T

:

From (19), (20), and (22) we obtain M

T

2

M

2

+M

T

1

M

1

= I

p

which leads to M

2

3

= M

3

. Hence, the

symmetric matrix M

3

is the orthogonal projector onto span((M

T

2

M

T

1

)

T

)

?

. Thus, the 2p � 2p

matrixM

3

is actually positive semide�nite and has rank p. Consequently, the factor C is a 2p� p

matrix and the matrix y consists of only p columns.

3 Software Implementation

Our routines for solving the generalized Lyapunov equation possess some new features that should

be mentioned here. Both Hammarling's method and the Bartels{Stewart method are implemented

in a way that enables the transposed equations to be solved without transposing the involved

matrices explicitly. Furthermore, our routines can bene�t from Schur factorizations of the pencil

A��E, which have been computed prior to calling the routine. To keep storage requirements low,

the input right hand side and the output solution share the same array. This, of course, results in

the loss of the right hand side matrix. An output parameter for scaling of the solution is provided

to guard against over
ow.

For the Bartels{Stewart method the symmetric right hand side matrix Y may be supplied as

upper or lower triangle. In any case the full solution matrix is returned. Moreover, an optional

estimation of the separation and the reciprocal condition number is provided. Of course, when

solving the generalized Lyapunov equation via Hammarling's algorithm the condition estimator

in the Bartels{Stewart routine can be utilized to detect ill{conditioning in the equation.

The number of 
ops required by the routines is given by the following table. It strongly depends

on whether the generalized Schur factorization of the pencil A��E is supplied (FACT = .TRUE.)

or not, when calling one of both main routines. The 
op estimate 66n

3

for the QZ{algorithm, which

delivers this factorization, is taken from [8]. We split up the 
op count for the Bartels{Stewart
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method into the three possible cases, where the solution (JOB='X'), the separation (JOB='S'),

or both quantities (JOB='B') are to be computed. Note that we count a single 
oating point

arithmetic operation as one 
op. The quantity c is an integer number of modest size (say 4 or 5).

Method FACT=.TRUE. FACT=.FALSE.

JOB='B' (26 + 8c)=3 � n

3

(224 + 8c)=3 � n

3

Bartels{Stewart JOB='S' 8c=3 � n

3

(198 + 8c)=3 � n

3

JOB='X' 26=3 � n

3

224=3 � n

3

(13n

3

+ 6mn

2

(211n

3

+ 6mn

2

Hammarling

m � n

+6m

2

n� 2m

3

)=3 +6m

2

n� 2m

3

)=3

m > n (11n

3

+ 12mn

2

)=3 (209n

3

+ 12mn

2

)=3

Number of 
ops required by the routines.

Our implementation of the Bartels{Stewart algorithm is backward stable if the eigenvalues of

the pencil A � �E are real. Otherwise, linear systems of order at most 4 are involved into the

computation. These systems are solved by Gauss elimination with complete pivoting. The loss

of stability in such eliminations is rarely encountered in practice. To our knowledge, there are no

backward stability results for Hammarling's method for the standard Lyapunov equation.

The source code is implemented in FORTRAN 77 and it meets the programming standards

of the Working Group on Software [15]. It makes use of BLAS{routines and routines available in

LAPACK 2.0 [1]. Although BLAS{routines of level 3 are used the algorithms are basically of level

1 and 2. The type COMPLEX is not used. Complex computation is avoided or emulated by real

operations.

The remainder of this section gives a brief survey of the subroutine organization. An interface

speci�cation of both main routines is enclosed in the appendix.

Bartels{Stewart method

DGLP Main routine. To be called by the user.

DGLPRC Solves the reduced continuous{time equation (10).

DGLPRD Solves the reduced discrete{time equation.

DGELUF LU{factorization of a square matrix with complete pivoting.

DGELUS Back substitution for linear systems whose coe�cient matrix has been factorized by

DGELUF. Provides scaling.

DMTRA Transposes a matrix.

DZTAZ Computes Z

T

AZ or ZAZ

T

for a symmetric matrix A.

Hammarling's method

DGLPHM Main routine. To be called by the user.

DGHRC Computes the Cholesky factor of the solution of the reduced continuous{time equation

(15).

DGHRD Computes the Cholesky factor of the solution of the reduced discrete{time equation

(21).

DGHNX2 Solves the matrix equation A

T

XC + E

T

XD = Y or AXC

T

+ EXD

T

= Y for the

n�m matrix X (m = 1; 2). Provides scaling.

DGH2X2 Hammarling's method for the 2 � 2 Lyapunov equation in case the matrix pencil has

complex conjugate eigenvalues. Provides scaling.

DCXGIV Computes parameters for the complex Givens rotation.
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DGELUF LU{factorization of a square matrix with complete pivoting.

DGELUS Back substitution for linear systems whose coe�cient matrix has been factorized by

DGELUF. Provides scaling.

Note that the subroutines DGELUF and DGELUS are contained in LAPACK 2.1 under the

names DGETC2 and DGESC2, respectively.

4 Numerical Experiments

In this section we demonstrate the performance of our software applied to two sample problems.

Both depend on a scale parameter t which a�ects the condition number of the equation. We

compare the results obtained by the Bartels{Stewart subroutine DGLP and the Hammarling

subroutine DGLPHM with those of the established subroutines SYLGC and SYLGD [7]. The

tests were carried out on a HP Apollo series 700 workstation under IEEE double precision and

machine precision � � 2:22 � 10

�16

.

Example 1 [7]: The matrices A and E are de�ned as

A = (2

�t

� 1)I

n

+ diag(1; 2; 3; : : :; n) + U

T

n

E = I

n

+ 2

�t

U

n

in the continuous{time case and

A = 2

�t

I

n

+ diag(1; 2; 3; : : :; n) + U

T

n

E = I

n

+ 2

�t

U

n

in the discrete{time case, where I

n

is the n � n identity matrix and U

n

is an n � n matrix with

unit entries below the diagonal and all other entries zero. These systems become increasingly

ill{conditioned as the parameter t increases. In all cases Y is de�ned as the n � n matrix that

gives a true solution matrix X of all unit entries.

We generated the above problems for a medium size (n = 100) and various values of the

parameter t. The following table shows the relative errors jj

^

X � Xjj

F

= jjXjj

F

, where X is the

known true solution and

^

X is the computed solution a�ected by roundo�. Since the pencil A��E

is in general not stable, the Hammarling subroutine is not applied to this example.

Cont.{time Eq. Discr.{time Eq.

t DGLP SYLGC DGLP SYLGD

0 7.478E{13 2.304E{12 1.267E{13 2.274E{13

10 4.042E{12 4.248E{12 1.304E{12 1.010E{11

20 1.113E{08 1.940E{09 2.172E{09 3.995E{09

30 9.136E{07 4.947E{06 7.732E{06 1.501E{06

40 1.460E{03 4.042E{03 7.613E{03 {

Example 1. n = 100. Relative error.

For t = 40 the subroutine SYLGD returned an error 
ag.

For problems of a smaller size (n = 10) we compare the estimates for the separation SEP and

the reciprocal condition number RCOND with the 'true' values computed applying the singular

value decomposition (SVD) to the corresponding Kronecker product matrix. Note that SYLGC

and SYLGD do not return estimates for the separation.

Cont.{time Eq. Discr.{time Eq.

t DGLP true DGLP true

0 3.685E{01 1.481E{01 2.492E+00 1.149E+00

10 1.952E{03 4.879E{04 3.909E{03 9.767E{04

20 1.907E{06 4.768E{07 3.815E{06 9.537E{07

30 1.863E{09 4.657E{10 3.725E{09 9.313E{10

40 1.818E{12 4.547E{13 3.637E{12 9.095E{13

Example 1. n = 10. Estimates for the separation.
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Cont.{time Eq. Discr.{time Eq.

t DGLP SYLGC true DGLP SYLGD true

0 1.198E{03 1.083E{03 3.813E{03 4.119E{03 7.104E{03 1.987E{02

10 1.699E{05 1.597E{05 4.537E{05 8.882E{06 2.852E{06 1.375E{05

20 1.660E{08 1.589E{08 4.441E{08 8.670E{09 2.817E{09 1.339E{08

30 1.621E{11 1.551E{11 4.337E{11 8.467E{12 2.751E{12 1.308E{11

40 1.582E{14 1.513E{14 4.231E{14 8.266E{15 2.689E{15 1.286E{14

Example 1. n = 10. Estimates for the reciprocal condition number.

Example 2: This example is generated in a way that enables setting the eigenvalues of the pencil

A��E, which is advantageous for two reasons. In contrast to the previous example it is guaranteed

that the pencil has both real and conjugate complex eigenvalues. On the other hand stable pencils

can easily be constructed to include the Hammarling subroutine into the comparison. If n = 3q

we choose the n� n matrices A and E as

A = V

n

diag(A

1

; : : : ; A

q

)W

n

; A

i

=

0

@

s

i

0 0

0 t

i

t

i

0 �t

i

t

i

1

A

E = V

n

W

n

;

where V

n

and W

n

are n � n matrices containing only zeroes and ones. The unit entries of V

n

are

on and below the anti{diagonal, those of W

n

are on and below the diagonal. The parameters s

i

and t

i

determining the eigenvalues of the pencil are chosen as s

i

= t

i

= t

i

in the continuous{time

case and s

i

= 1� 1=t

i

, t

i

= �

p

2s

i

=2 in the discrete{time case. The semide�nite right hand side

is formed as the normal matrix

Y = B

T

B; B = (1; 2; : : : ; n):

The drawback of this example is that the true solution is not known. Therefore, the accuracy of the

computed solution

^

X is measured by the relative residual de�ned as jjA

T

^

XE+E

T

^

XA+Y jj

F

= jjY jj

F

in the continuous{time case and jjA

T

^

XA�E

T

^

XE+Y jj

F

= jjY jj

F

in the discrete{time case. But this,

of course, is a worse criterion compared to the relative error in case the equation is ill{conditioned.

The following results were obtained for problems of size n = 99.

Cont.{time Eq. Discr.{time Eq.

t DGLP DGLPHM SYLGC DGLP DGLPHM SYLGD

1.0 2.982E{13 6.564E{14 3.681E{14 1.716E{13 1.720E{13 5.755E{15

1.2 1.661E{13 1.028E{13 7.749E{14 1.850E{11 1.844E{11 4.412E{12

1.4 8.829E{12 3.285E{11 3.960E{12 2.857E{09 2.252E{09 9.921E-10

1.6 3.985E{10 4.047E{10 2.423E{10 3.328E{05 1.400E{07 4.732E{08

1.8 6.686E{09 5.559E{09 9.351E{09 { { {

Example 2. n = 99. Relative residual.

For t = 1:8 in the discrete{time case each of the subroutines returned an error 
ag.

Finally, the CPU{times obtained by means of the LAPACK{subroutine SECOND are com-

pared for the parameters n = 99 and t = 1:2. They are split up into the times required for the

three main stages of the computation, the transformation of the equation to the reduced form (T),

the solution of the reduced equation (RE), and the back transformation of the solution (BT).

Cont.{time Eq. Discr.{time Eq.

DGLP DGLPHM SYLGC DGLP DGLPHM SYLGD

T 9.71 9.33 58.61 10.30 9.63 67.64

RE 1.68 1.66 3.90 1.97 1.96 3.81

BT 0.42 0.24 4.83 0.45 0.23 4.84

Total 11.81 11.23 67.34 12.72 11.82 76.29

Example 2. n = 99. t = 1:2. CPU{times in seconds.
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Concerning the accuracy of the computed solutions for both examples the involved subrou-

tines do not di�er signi�cantly. The estimates of the condition number obtained by DGLP and

SYLGC/SYLGD are of comparable size as well. A distinct merit of our subroutines are the

shorter CPU{times. This is mainly caused by the fact that SYLGC/SYLGD make use of several

older LINPACK [4] and EISPACK [5] subroutines. Especially, the QZ{subroutine DGEGS from

LAPACK invoked by our subroutines is often faster than the modi�ed EISPACK subroutines

QZHESG, QZITG, and QZVALG utilized by SYLGC/SYLGD by a factor 6.
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routines DGELUF and DGELUS written by Bo K�agstr�om and Peter Poromaa.

11



A Subroutine Description

A.1 Bartels{Stewart Method

A.1.1 Purpose

To solve for X either the generalized continuous{time Lyapunov equation

op(A)

T

X op(E) + op(E)

T

X op(A) = �scale Y (23)

or the generalized discrete{time Lyapunov equation

op(A)

T

X op(A) � op(E)

T

X op(E) = �scale Y (24)

where op(M ) is either M or M

T

for M = A;E and the right hand side Y is symmetric. A, E, Y ,

and the solution X are N by N matrices. scale is an output scale factor, set to avoid over
ow in

X.

An estimation of the separation and the reciprocal condition number of the Lyapunov operator

is provided.

A.1.2 Speci�cation

SUBROUTINE DGLP( JOB, DISCR, FACT, TRANS, N, A, LDA, E, LDE,

* UPPER, X, LDX, SCALE, Q, LDQ, Z, LDZ, IWORK,

* RWORK, LRWORK, SEP, RCOND, IERR )

A.1.3 Argument List

Arguments In

N { INTEGER.

The order of the matrix A.

N � 0.

A { DOUBLE PRECISION array of DIMENSION (LDA,N).

If FACT= .TRUE., then the leading N by N upper Hessenberg part of this array must contain

the generalized Schur factor A

s

of the matrixA. A

s

must be an upper quasitriangular matrix.

The elements below the upper Hessenberg part of the array A are not referenced.

If FACT = .FALSE., then the leading N by N part of this array must contain the matrix A.

Note: this array is overwritten if FACT = .FALSE..

LDA { INTEGER.

The leading dimension of the array A as declared in the calling program.

LDA � N.

E { DOUBLE PRECISION array of DIMENSION (LDE,N).

If FACT = .TRUE., then the leading N by N upper triangular part of this array must contain

the generalized Schur factor E

s

of the matrix E. The elements below the upper triangular

part of the array E are not referenced.

If FACT = .FALSE., then the leading N by N part of this array must contain the coe�cient

matrix E of the equation.

Note: this array is overwritten if FACT = .FALSE..

LDE { INTEGER.

The leading dimension of the array E as declared in the calling program.

LDE � N.

X { DOUBLE PRECISION array of DIMENSION (LDX,N).

If JOB = 'B' or 'X', then the leading N by N part of this array must contain the right hand

side matrix Y of the equation. On entry, either the lower or the upper triangular part of

this array is referenced (see mode parameter UPPER).
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If JOB = 'S', X is not referenced.

Note: this array is overwritten if JOB = 'B' or 'X'.

LDX { INTEGER.

The leading dimension of the array X as declared in the calling program.

LDX � N.

Q { DOUBLE PRECISION array of DIMENSION (LDQ,N).

If FACT = .TRUE., then the leading N by N part of this array must contain the orthogonal

matrix Q from the generalized Schur factorization.

If FACT = .FALSE., Q need not be set on entry.

LDQ { INTEGER.

The leading dimension of the array Q as declared in the calling program.

LDQ � N.

Z { DOUBLE PRECISION array of DIMENSION (LDZ,N).

If FACT = .TRUE., then the leading N by N part of this array must contain the orthogonal

matrix Z from the generalized Schur factorization.

If FACT = .FALSE., Z need not be set on entry.

LDZ { INTEGER.

The leading dimension of the array Z as declared in the calling program.

LDZ � N.

Arguments Out

A { DOUBLE PRECISION array of DIMENSION (LDA,N).

The leading N by N part of this array contains the generalized Schur factor A

s

of the matrix

A. (A

s

is an upper quasitriangular matrix.)

E { DOUBLE PRECISION array of DIMENSION (LDE,N).

The leading N by N part of this array contains the generalized Schur factor E

s

of the matrix

E. (E

s

is an upper triangular matrix.)

X { DOUBLE PRECISION array of DIMENSION (LDX,N).

If JOB = 'B' or 'X', then the leading N by N part of this array contains the solution matrix

X of the equation.

If JOB = 'S', X has not been referenced.

SCALE { DOUBLE PRECISION.

The scale factor set to avoid over
ow in X (0 < SCALE � 1).

Q { DOUBLE PRECISION array of DIMENSION (LDQ,N).

The leading N by N part of this array contains the orthogonal matrix Q from the generalized

Schur factorization.

Z { DOUBLE PRECISION array of DIMENSION (LDZ,N).

The leading N by N part of this array contains the orthogonal matrix Z from the generalized

Schur factorization.

SEP { DOUBLE PRECISION.

An estimate for the separation of the Lyapunov operator.

RCOND { DOUBLE PRECISION.

An estimate for the reciprocal condition number of the Lyapunov operator.
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Work Space

IWORK { INTEGER array at least of DIMENSION (N��2).

If JOB = 'X', this array is not referenced.

RWORK { DOUBLE PRECISION array at least of DIMENSION (LRWORK).

On exit, if IERR = 0, RWORK(1) contains the optimal workspace.

LRWORK { INTEGER.

The dimension of the array RWORK. The following table contains the minimal work space

requirements depending on the choice of JOB and FACT.

JOB FACT LRWORK

'X' .TRUE. N

'X' .FALSE. 7N

'B', 'S' .TRUE. 2N

2

'B', 'S' .FALSE. max(2N

2

; 7N)

Note: For good performance, LRWORK must generally be larger.

Tolerances

None.

Mode Parameters

JOB { CHARACTER�1.

Speci�es if the solution is to be computed and if the separation (along with the reciprocal

condition number) is to be estimated.

JOB = 'X', (Compute the solution only);

JOB = 'S', (Estimate the separation only);

JOB = 'B', (Compute the solution and estimate the separation).

DISCR { LOGICAL.

Speci�es which type of equation is to be solved.

DISCR = .FALSE., (Continuous{time equation (23));

DISCR = .TRUE., (Discrete{time equation (24)).

FACT { LOGICAL.

Speci�es whether the generalized real Schur factorization of the pencil A � �E is supplied

on entry or not.

FACT = .FALSE., (The generalized real Schur factorization is not supplied);

FACT = .TRUE., (The generalized real Schur factorization is supplied).

TRANS { LOGICAL.

Speci�es whether the transposed equation is to be solved or not.

TRANS = .FALSE., (op(A)=A, op(E)=E);

TRANS = .TRUE., (op(A)=A

T

, op(E)=E

T

).

UPPER { LOGICAL.

Speci�es whether the lower or the upper triangle of the array X is referenced.

UPPER = .FALSE., (Only the lower triangle is referenced);

UPPER = .TRUE., (Only the upper triangle is referenced).
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Warning Indicator

None.

Error Indicator

IERR { INTEGER.

Unless the routine detects an error (see next section), IERR contains 0 on exit.

A.1.4 Warnings and Errors detected by the Routine

IERR = 1:

On entry, N < 0,

or LDA < N,

or LDE < N,

or LDX < N,

or LDQ < N,

or LDZ < N,

or JOB 62 f'B', 'b', 'S', 's', 'X', 'x'g.

IERR = 2:

LRWORK too small.

IERR = 3:

FACT = .TRUE. and the matrix contained in the upper Hessenberg part of the array A is

not in upper quasitriangular form.

IERR = 4:

FACT = .FALSE. and the pencil A � �E cannot be reduced to generalized Schur form.

LAPACK routine DGEGS has failed to converge.

IERR = 5:

DISCR = .TRUE. and the pencil A � �E has a pair of reciprocal eigenvalues. That is,

�

i

= 1=�

j

for some i and j, where �

i

and �

j

are eigenvalues of A � �E. Hence, equation

(24) is singular.

IERR = 6:

DISCR = .FALSE. and the pencil A � �E has a degenerate pair of eigenvalues. That is,

�

i

= ��

j

for some i and j, where �

i

and �

j

are eigenvalues of A��E. Hence, equation (23)

is singular.

A.2 Hammarling's Method

A.2.1 Purpose

To compute the Cholesky factor U of the matrixX = op(U )

T

op(U ), which is the solution of either

the generalized c{stable continuous{time Lyapunov equation

op(A)

T

X op(E) + op(E)

T

X op(A) = �scale

2

op(B)

T

op(B) (25)

or the generalized d{stable discrete{time Lyapunov equation

op(A)

T

X op(A) � op(E)

T

X op(E) = �scale

2

op(B)

T

op(B) (26)

without �rst �nding X and without the need to form the matrix op(B)

T

op(B).

op(K) is either K or K

T

for K = A;B;E; U . A and E are N by N matrices, op(B) is an M

by N matrix. The resulting matrix U is an N by N upper triangular matrix with non{negative

entries on its main diagonal. scale is an output scale factor set to avoid over
ow in U .

A.2.2 Speci�cation

SUBROUTINE DGLPHM( DISCR, FACT, TRANS, N, M, A, LDA, E, LDE, B,

* LDB, SCALE, Q, LDQ, Z, LDZ, RWORK, LRWORK,

* IERR )
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A.2.3 Argument List

Arguments In

N { INTEGER.

The order of the matrix A.

N � 0.

M { INTEGER.

The number of rows in the matrix op(B).

M � 1.

A { DOUBLE PRECISION array of DIMENSION (LDA,N).

If FACT= .TRUE., then the leading N by N upper Hessenberg part of this array must contain

the generalized Schur factor A

s

of the matrixA. A

s

must be an upper quasitriangular matrix.

The elements below the upper Hessenberg part of the array A are not referenced.

If FACT = .FALSE., then the leading N by N part of this array must contain the matrix A.

Note: this array is overwritten if FACT = .FALSE..

LDA { INTEGER.

The leading dimension of the array A as declared in the calling program.

LDA � N.

E { DOUBLE PRECISION array of DIMENSION (LDE,N).

If FACT = .TRUE., then the leading N by N upper triangular part of this array must contain

the generalized Schur factor E

s

of the matrix E. The elements below the upper triangular

part of the array E are not referenced.

If FACT = .FALSE., then the leading N by N part of this array must contain the coe�cient

matrix E of the equation.

Note: this array is overwritten if FACT = .FALSE..

LDE { INTEGER.

The leading dimension of the array E as declared in the calling program.

LDE � N.

B { DOUBLE PRECISION array of DIMENSION (LDB,N1).

If TRANS = .TRUE., the leading N by M part of this array must contain the matrix B and

N1 � MAX(M,N).

If TRANS = .FALSE., the leading M by N part of this array must contain the matrix B and

N1 � N.

Note: this array is overwritten.

LDB { INTEGER.

The leading dimension of the array B as declared in the calling program.

If TRANS = .TRUE., then LDB � N.

If TRANS = .FALSE., then LDB � MAX(M,N).

Q { DOUBLE PRECISION array of DIMENSION (LDQ,N).

If FACT = .TRUE., then the leading N by N part of this array must contain the orthogonal

matrix Q from the generalized Schur factorization.

If FACT = .FALSE., Q need not be set on entry.

LDQ { INTEGER.

The leading dimension of the array Q as declared in the calling program.

LDQ � N.
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Z { DOUBLE PRECISION array of DIMENSION (LDZ,N).

If FACT = .TRUE., then the leading N by N part of this array must contain the orthogonal

matrix Z from the generalized Schur factorization.

If FACT = .FALSE., Z need not be set on entry.

LDZ { INTEGER.

The leading dimension of the array Z as declared in the calling program.

LDZ � N.

Arguments Out

A { DOUBLE PRECISION array of DIMENSION (LDA,N).

The leading N by N part of this array contains the generalized Schur factor A

s

of the matrix

A. (A

s

is an upper quasitriangular matrix.)

E { DOUBLE PRECISION array of DIMENSION (LDE,N).

The leading N by N part of this array contains the generalized Schur factor E

s

of the matrix

E. (E

s

is an upper triangular matrix.)

B { DOUBLE PRECISION array of DIMENSION (LDB,N1).

The leading N by N part of this array contains the Cholesky factor U of the solution matrix

X of the problem.

SCALE { DOUBLE PRECISION.

The scale factor set to avoid over
ow in U (0 < SCALE � 1).

Q { DOUBLE PRECISION array of DIMENSION (LDQ,N).

The leading N by N part of this array contains the orthogonal matrix Q from the generalized

Schur factorization.

Z { DOUBLE PRECISION array of DIMENSION (LDZ,N).

The leading N by N part of this array contains the orthogonal matrix Z from the generalized

Schur factorization.

Work Space

RWORK { DOUBLE PRECISION array at least of DIMENSION (LRWORK).

On exit, if IERR = 0, RWORK(1) contains the optimal workspace.

LRWORK { INTEGER.

The dimension of the array RWORK.

If FACT = .TRUE., then LRWORK � MAX(6�N-6,1).

If FACT = .FALSE., then LRWORK � MAX(7�N,1).

Note: For good performance, LRWORK must generally be larger.

Tolerances

None.

Mode Parameters

DISCR { LOGICAL.

Speci�es which type of equation is to be solved.

DISCR = .FALSE., (Continuous{time equation (25));

DISCR = .TRUE., (Discrete{time equation (26)).
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FACT { LOGICAL.

Speci�es whether the generalized real Schur factorization of the pencil A � �E is supplied

on entry or not.

FACT = .FALSE., (The generalized real Schur factorization is not supplied);

FACT = .TRUE., (The generalized real Schur factorization is supplied).

TRANS { LOGICAL.

Speci�es whether the transposed equation is to be solved or not.

TRANS = .FALSE., (op(K)=K, K = A;B;E; U );

TRANS = .TRUE., (op(K)=K

T

, K = A;B;E; U ).

Warning Indicator

None.

Error Indicator

IERR { INTEGER.

Unless the routine detects an error (see next section), IERR contains 0 on exit.

A.2.4 Warnings and Errors detected by the Routine

IERR = 1:

On entry, N < 0,

or M < 1,

or LDA < N,

or LDE < N,

or LDB < N,

or LDQ < N,

or LDZ < N,

or (TRANS = .FALSE. and LDB < M).

IERR = 2:

LRWORK too small.

IERR = 3:

FACT = .TRUE. and the matrix contained in the upper Hessenberg part of the array A is

not in upper quasitriangular form.

IERR = 4:

FACT = .FALSE. and the pencil A � �E cannot be reduced to generalized Schur form.

LAPACK routine DGEGS has failed to converge.

IERR = 5:

FACT = .TRUE. and there is a 2 by 2 block on the main diagonal of the pencil A

s

� �E

s

with real eigenvalues.

IERR = 6:

DISCR = .FALSE. and the pencil A� �E is not c{stable.

IERR = 7:

DISCR = .TRUE. and the pencil A� �E is not d{stable.

IERR = 8:

DISCR = .TRUE. and the LAPACK routine DSYEVX has failed to converge during the

solution of the reduced equation. This error is unlikely to occur.
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B Example Programs

Two sample programs are enclosed to demonstrate the usage of the routines DGLP and DGLPHM.

B.1 Bartels{Stewart Method

Example

To �nd the solution matrixX, the separation, and the reciprocal condition number of the equation

A

T

XE +E

T

XA = �Y;

where

A =

0

@

3:0 1:0 1:0

1:0 3:0 0:0

1:0 0:0 2:0

1

A

; E =

0

@

1:0 3:0 0:0

3:0 2:0 1:0

1:0 0:0 1:0

1

A

; and Y =

0

@

64:0 73:0 28:0

73:0 70:0 25:0

28:0 25:0 18:0

1

A

:

Program Text

* DGLP EXAMPLE PROGRAM TEXT

*

* .. Parameters ..

INTEGER NIN, NOUT

PARAMETER (NIN=5, NOUT=6)

INTEGER NMAX

PARAMETER (NMAX=20)

INTEGER LDA, LDE, LDQ, LDX, LDZ

PARAMETER (LDA=NMAX, LDE=NMAX, LDQ=NMAX, LDX=NMAX,

+ LDZ=NMAX)

INTEGER LIWORK, LRWORK

PARAMETER (LIWORK=NMAX**2, LRWORK=MAX(2*NMAX**2,7*NMAX))

* .. Local Scalars ..

CHARACTER JOB

DOUBLE PRECISION RCOND, SCALE, SEP

INTEGER I, IERR, J, N

LOGICAL DISCR, FACT, TRANS, UPPER

* .. Local Arrays ..

INTEGER IWORK(LIWORK)

DOUBLE PRECISION A(LDA,NMAX), E(LDE,NMAX), Q(LDQ,NMAX),

+ RWORK(LRWORK), X(LDX,NMAX), Z(LDZ,NMAX)

* .. External Subroutines ..

EXTERNAL DGLP

* .. Executable Statements ..

*

WRITE (NOUT,FMT=99999)

* Skip the heading in the data file and read the data.

READ (NIN,FMT='()')

READ (NIN,FMT=*) N, JOB, DISCR, FACT, TRANS, UPPER

IF (N.LE.0 .OR. N.GT.NMAX) THEN

WRITE (NOUT,FMT=99993) N

ELSE

READ (NIN,FMT=*) ((A(I,J),J=1,N),I=1,N)

READ (NIN,FMT=*) ((E(I,J),J=1,N),I=1,N)

IF (FACT) THEN

READ (NIN,FMT=*) ((Q(I,J),J=1,N),I=1,N)

READ (NIN,FMT=*) ((Z(I,J),J=1,N),I=1,N)

END IF

READ (NIN,FMT=*) ((X(I,J),J=1,N),I=1,N)

* Find the solution matrix X and the scalars RCOND and SEP.
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CALL DGLP(JOB,DISCR,FACT,TRANS,N,A,LDA,E,LDE,UPPER,X,LDX,SCALE,

+ Q,LDQ,Z,LDZ,IWORK,RWORK,LRWORK,SEP,RCOND,IERR)

*

IF (IERR.NE.0) THEN

WRITE (NOUT,FMT=99998) IERR

ELSE

IF (JOB.EQ.'B'.OR.JOB.EQ.'S') THEN

WRITE (NOUT,FMT=99997) SEP

WRITE (NOUT,FMT=99996) RCOND

END IF

IF (JOB.EQ.'B'.OR.JOB.EQ.'X') THEN

WRITE (NOUT,FMT=99995) SCALE

DO 20 I = 1, N

WRITE (NOUT,FMT=99994) (X(I,J),J=1,N)

20 CONTINUE

END IF

END IF

END IF

STOP

*

99999 FORMAT (' DGLP EXAMPLE PROGRAM RESULTS',/1X)

99998 FORMAT (' IERR on exit from DGLP = ',I2)

99997 FORMAT (' SEP = ',F8.4)

99996 FORMAT (' RCOND = ',F8.4)

99995 FORMAT (' SCALE = ',F8.4,//' The solution matrix X is ')

99994 FORMAT (20(1X,F8.4))

99993 FORMAT (/' N is out of range.',/' N = ',I5)

END

Program Data

DGLP EXAMPLE PROGRAM DATA

3 B F F F T

3.0 1.0 1.0

1.0 3.0 0.0

1.0 0.0 2.0

1.0 3.0 0.0

3.0 2.0 1.0

1.0 0.0 1.0

64.0 73.0 28.0

0.0 70.0 25.0

0.0 0.0 18.0

Program Results

DGLP EXAMPLE PROGRAM RESULTS

SEP = .2867

RCOND = .0055

SCALE = 1.0000

The solution matrix X is

-2.0000 -1.0000 .0000

-1.0000 -3.0000 -1.0000

.0000 -1.0000 -3.0000

20



B.2 Hammarling's Method

Example

To �nd the Cholesky factor U of the solution X = U

T

U of the equation

A

T

XE +E

T

XA = �B

T

B;

where

A =

0

@

�1:0 3:0 �4:0

0:0 5:0 �2:0

�4:0 4:0 1:0

1

A

; E =

0

@

2:0 1:0 3:0

2:0 0:0 1:0

4:0 5:0 1:0

1

A

; and B =

�

2:0 �1:0 7:0

�

:

Program Text

* DGLPHM EXAMPLE PROGRAM TEXT

*

* .. Parameters ..

INTEGER NIN, NOUT

PARAMETER (NIN=5, NOUT=6)

INTEGER NMAX

PARAMETER (NMAX=20)

INTEGER LDA, LDB, LDE, LDQ, LDZ

PARAMETER (LDA=NMAX, LDB=NMAX, LDE=NMAX, LDQ=NMAX,

+ LDZ=NMAX)

INTEGER LRWORK

PARAMETER (LRWORK=MAX(7*NMAX,6*NMAX-6,1))

* .. Local Scalars ..

DOUBLE PRECISION SCALE

INTEGER I, IERR, J, N, M

LOGICAL DISCR, FACT, TRANS

* .. Local Arrays ..

DOUBLE PRECISION A(LDA,NMAX), B(LDB,NMAX), E(LDE,NMAX),

+ Q(LDQ,NMAX), RWORK(LRWORK), Z(LDZ,NMAX)

* .. External Subroutines ..

EXTERNAL DGLPHM

* .. Executable Statements ..

*

WRITE (NOUT,FMT=99999)

* Skip the heading in the data file and read the data.

READ (NIN,FMT='()')

READ (NIN,FMT=*) N, M, DISCR, FACT, TRANS

IF (N.LT.0 .OR. N.GT.NMAX) THEN

WRITE (NOUT,FMT=99995) N

ELSEIF (M.LT.1 .OR. M.GT.NMAX) THEN

WRITE (NOUT,FMT=99994) M

ELSE

READ (NIN,FMT=*) ((A(I,J),J=1,N),I=1,N)

READ (NIN,FMT=*) ((E(I,J),J=1,N),I=1,N)

IF (FACT) THEN

READ (NIN,FMT=*) ((Q(I,J),J=1,N),I=1,N)

READ (NIN,FMT=*) ((Z(I,J),J=1,N),I=1,N)

END IF

IF (TRANS) THEN

READ (NIN,FMT=*) ((B(I,J),J=1,M),I=1,N)

ELSE

READ (NIN,FMT=*) ((B(I,J),J=1,N),I=1,M)

END IF

* Find the Cholesky factor U of the solution matrix.

CALL DGLPHM(DISCR,FACT,TRANS,N,M,A,LDA,E,LDE,B,LDB,SCALE,Q,LDQ,
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+ Z,LDZ,RWORK,LRWORK,IERR)

*

IF (IERR.NE.0) THEN

WRITE (NOUT,FMT=99998) IERR

ELSE

WRITE (NOUT,FMT=99997) SCALE

DO 20 I = 1, N

WRITE (NOUT,FMT=99996) (B(I,J),J=1,N)

20 CONTINUE

END IF

END IF

STOP

*

99999 FORMAT (' DGLPHM EXAMPLE PROGRAM RESULTS',/1X)

99998 FORMAT (' IERR on exit from DGLPHM = ',I2)

99997 FORMAT (' SCALE = ',F8.4,//' The Cholesky factor U of the solution

+ matrix is')

99996 FORMAT (20(1X,F8.4))

99995 FORMAT (/' N is out of range.',/' N = ',I5)

99994 FORMAT (/' M is out of range.',/' M = ',I5)

END

Program Data

DGLPHM EXAMPLE PROGRAM DATA

3 1 F F F

-1.0 3.0 -4.0

0.0 5.0 -2.0

-4.0 4.0 1.0

2.0 1.0 3.0

2.0 0.0 1.0

4.0 5.0 1.0

2.0 -1.0 7.0

Program Results

DGLPHM EXAMPLE PROGRAM RESULTS

SCALE = 1.0000

The Cholesky factor U of the solution matrix is

1.6003 -.4418 -.1523

.0000 .6795 -.2499

.0000 .0000 .2041
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