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Abstract

We would like to decompose a closed orientable 2-manifold with arbitrary genus
g into a set of four-sided tessellants. The input surface is a triangular surface mesh
representing a free-form shape. The search for canonical curves is done in two steps:
finding initial curves by means of algebraic or geometric methods and improving
them by using combinatorial optimization. Afterward, we perform the handle de-
composition by slicing the surface along those curves. After flattening the surface
on the plane by using the setting (a1b1a

−1
1 b−1

1 ) · · · (agbga
−1
g b−1

g ), we use the resulting
parametrization to split the surface into four-sided patches. We approximate those
patches by simple surfaces like Bézier in which we want to obtain global C 0-joints.
The proposed methods will be illustrated by several numerical examples.

1 Introduction

It often happens in practice that we have a numerical solver of integral equations which
accepts mesh-free geometric data as input but the only geometry that we have at our
disposal is a mesh. Treating every element of the mesh as a patch will surely explode
the computational costs of the integral solvers. Faced by such a conflicting situation, we
have only one choice if we do not want to reject the input mesh: we try to generate a few
patches from the mesh. That process amounts to approximating or interpolating the mesh
by practical surfaces such as Bézier patches (Fig. 1) and that is exactly the purpose of this
paper where we will treat only free-form surfaces. For algebraic surfaces such as spheres,
planes, cylinders or combinations of them, we recommend [22, 21]. We will also assume
that our surface is orientable and closed. Those types of surfaces already cover a lot of
interesting practical cases.
Apart from the fitting process, two main difficulties have to be considered. First, the
partitioning of the large mesh into pieces which can be approximated by four-sided patches.
Second, having a parameter 2D meshes which allow us to perform the approximation by
parametric surfaces.
Let us suppose that we have a triangular mesh M which represents a surface embedded in
the space. Our primary concern in this paper is to present a methodology to decompose a
closed surface mesh if arbitrary genus into a set of four-sided pieces. The approximation
of an individual four-sided region by a continuous patch is only briefly described in section
7. The main idea of triangulation paving is processed in four main steps. First, we have to
find some curves such that if the surface M is split along these curves, we still have a single
connected surface. The number of these curves depends on the genus of the surface M.
Second, we want to have a topological parameterization from a polygonal disk P ⊂ R2,
which we still have to determine, to the mesh in which we have to take the topological
properties of the mesh into account. The third step consists in splitting the parameter
domain into four-sided subregions. The last step consists in fitting a surface from each
four-sided quadrilateral of the polygonal disk P to the corresponding mesh portion. During
the fitting process, we require C0 joint. In the next sections, we would like to describe
those steps one by one.
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(a) (b)

Figure 1: Triangulation paving: (a) bottle in form of a triangular mesh (b)approximated
surface in form of patches.

2 Handle decomposition

Suppose we have a closed surface M which is orientable and of genus g > ing0. We define
a system of canonical curves to be a set of 2g closed curves A1, B1,...,Ag, Bg which fulfills
the following criteria.

(C1) They all reside on the surface M.

(C2) They have one and only one intersection Ω known as basepoint.

(C3) If we cut the surface M along those curves then we still have a connected surface
(Fig. 2) which can be flatten out to become a planar polygon [3, 7].

a1b1a
−1
1 b−1

1 ...agbga
−1
g b−1

g . (1)

The planar edges ai (resp. bi) correspond to the canonical curves Ai (resp. Bi). The
exponent −1 in (1) specifies that the corresponding edge is to be traversed in the
opposite direction.

The first step in our algorithm is to search for those canonical curves in which achieving
criterion (C2) is the most difficult task. The process of cutting the surface M along these
curves is better known as handle decomposition. After finding the canonical curves, we will
describe an approach to define a parameterization from a planar polygon to the surface.
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Figure 2: (a) A surface with genus 2 and its four canonical curves A1, B1, A2, B2 (b)The
flattened planar polygon a1b1a
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Figure 3: Flattening: (a) Genus zero surface (b) Its flattened planar polygon

3



Remark 1 For surfaces of genus zero, the problem of splitting is much simpler because
we need only to split the mesh along two abutting curves A and B as in Fig. 3(a). Those
3D-curves will be flattened in the plane to obtain the boundary 2D-curves a, b, a−1, b−1

as in Fig. 3(b).

3 Preliminary search for canonical curves

Searching for the canonical curves is usually done in two stages. First, one finds some
preliminary canonical curves A1, B1,...,Ag,Bg which fulfill the above criteria (C1), (C2),
(C3) but which are undesirable in practice. The second stage consists of improving those
preliminary curves by shifting them homotopically in order to find the final canonical curves
A1,B1,...,Ag,Bg. In this section, we would like to discuss how to achieve the first stage with
two different methods. The first one is based on algebraic operations and the second one
is a combinatorial approach.

3.1 Smith normal form and normalized canonical form

Let us denote by nt, ne, and nv the number of triangles , edges and vertices respectively
of the given mesh M. For topological terms which are not clear , refer to the appendices
or [11, 15]. We will denote the i-th triangle, the j-th edge and the k-th vertex of the
mesh M by σ2

i , σ1
j , σ0

k respectively. We would like to describe briefly the way we compute
the homology bases which represent some curves drawn on the surface (compare with Fig.
4(a)).
Consider the two incidence matrices [9] E0 and E1:

E0 :=







[σ1
1 : σ0

1] ... [σ1
ne

: σ0
1]

... ... ...
[σ1

1 : σ0
nv

] ... [σ1
ne

: σ0
nv

]






E1 :=







[σ2
1 : σ1

1] ... [σ2
nf

: σ1
1]

... ... ...
[σ2

1 : σ1
ne

] ... [σ2
nf

: σ1
ne

]






(2)

where [σs
1 : σs−1

1 ] denotes the incidence number of σs
1 and σs−1

1 .
Since those incidence numbers take integer values, we have to deal with integer compu-
tations. That is, we may not perform any division operations. We have effectively the
following relation pertaining to the operators E0 and E1:

Znf
E1−→Zne E0−→Znv . (3)

The property of the boundary operator [20] implies in particular

E0 · E1 = 0 . (4)

The set σk
i forms now a basis of the k-chains Ck. The reduction into normalized canonical

form consists in searching for new bases of C0, C1, C2 such that in those bases the above
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Figure 4: (a)Homology bases e1, e2, e3, e4 (b)Coincidence of the images of different pa-
rameter nodes

matrices take the form

Ẽ0 =











0
... Λ0

· · · . · · ·

0
... 0











Ẽ1 =











0
... Λ1

· · · . · · ·

0
... 0











(5)

where Λ0 and Λ1 are square diagonal matrices. In other words, we are searching for three
square matrices Mv, Me, and Mt of size nv, ne, and nf respectively such that

Ẽ1 = M−1
e E1Mt Ẽ0 = M−1

v E0Me. (6)

The new bases of C0, C1 and C2 are therefore the columns of the matrices Mv, Me, and
Mt. Denote by γ0 and γ1 the dimensions of the square diagonal matrices Γ0, Γ1. Let us
consider the new basis {e1, ..., ene

} which is provided by Me. Because of the structure of
Ẽ0 and Ẽ1 we have

Ker Ẽ0 = span{e1, ..., ene−γ0
}, (7)

Im Ẽ1 = span{e1, ..., eγ1
}. (8)

The first homology group H1 is spanned by the classes

[eγ1+1], [eγ1+2], ..., [ene−γ0
] (9)

in which [f ] is the class of a representant f . In fact, we could replace the representant f
by another one

f̃ = f +
γ1
∑

i=1

λiei . (10)

After that process, the classes from relation (9) provides us with a set of pairs of closed
curves

Ã1, B̃1, ..., Ãg, B̃g (11)
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Figure 5: (a)Connect the homology bases with Ω by means of approach paths (b)Follow
the approach path γi then the closed curve and finally traverse γi backward.

such that each pair (Ãi, B̃i) intersect only at a single point ωi as illustrated in Fig. 5(a).

In order to have the preliminary canonical curves A1, B1 ,..., Ag, Bg from the curves Ã1,
B̃1 ,· · ·, Ãg, B̃g, we use the following algorithm

Algorithm: Using approach paths

step 1 : Refine the triangular mesh M so that the edges of the
curves (Ãi, B̃i) become edges of the mesh.

step 2 : Choose as basepoint any point Ω of the surface which
does not reside on those curves.

step 3 : Use Dijkstra algorithm in order to find a path γi joining
the basepoint Ω and the crossing point ωi as illustrated
in Fig. 5(a).

step 4 : At this point we have a set of loops Li. Each loop Li is
obtained by first traversing the approach path γi, then
the closed curve Ci := Ãi or Ci := B̃i and finally travers-
ing γi backward as depicted in Fig. 5(b).

step 5 : Shift the loops Li homotopically so that they traverse
triangles internally as in Fig. 6(b). Use Reidemeister
moves (see Appendix) so that the loops have only inter-
sections at the basepoint Ω.

3.2 Numerical realization

For the reduction of an integer matrix A into normalized canonical form as in relation (5),
we distinguish three row operations:

(Op1) Swap the i-th row Ri and the j-th row Rj of A.

(Op2) Multiply the i-th row Ri by (−1).

(Op3) Replace the i-th row Ri by Ri + qRk where q is a given integer.
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Note that all those three operations are invertible. In fact, the first two are self-invertible
while the inverse of the last one is Ri − qRk.
Similar elementary operations can be done for the columns of A. The reduction into
normalized form is processed in two steps. First, we reduce A into Smith normal form

Ã = GAF (12)

and then we perform some column swappings. Let us describe now how to reduce a matrix
A having a form like in (2) into a matrix of the form like in (5). Suppose the matrix
composed of the first c rows and the first c columns has already been reduced. The next
step are the following

1. Apply the above elementary operations so that α := Acc divides the remaining entries
in the c-th row and the c-th column. That is

∃ki, hj ∈ Z with Aic = kiα and Acj = hjα ∀ i, j > c . (13)

2. Make all those entries zero by applying the third operation (Op3). That is, for all
i, j > c, replace row Ri by Ri − pRc with p = Aic/α and column Cj by Cj − qCc with
q = Acj/α.

Of course, one has to perform column swapping operations to have the final form in (5).
Since we are interested in the matrices of change of bases G−1 and F in (12), we should
store the parameters for the elementary operations so that we do not need to explicitly
compute the inverse of the integer matrices at the end of the process.
The difficulty of directly applying the above process to the incidence matrices E0 and E1

is that we have to do them simultaneously. Observe that we use the same matrix Me of
change of bases in equation (6) for both E0 and E1. For that end, we execute the following
steps.

1. Reduce E0 in normalized canonical form:

E0 = M−1
v E0M e. (14)

2. Apply the change of bases M e to E1:

E1 = M
−1
e E1. (15)

3. Reduce E1 in normalized canonical form:

Ẽ1 = M̃−1
e E1Mt = (M eM̂e)

−1E1Mt. (16)

4. Define
Ẽ0 := E0M̃e = M−1

v E0(M eM̃e). (17)

By introducing Me := M eM̃e, we obtain the relation (6).
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Ω

(a) (b)

Figure 6: (a)Impossible double nodes inside one individual loop (b)Initial loop Le in bold
line and homotopically shifted loop L′

e in dotted line.

3.3 Bases of the fundamental group

Now, we would like to describe a second method of finding the canonical curves A1,
B1,...,Ag, Bg by using the fundamental group. In order to find the basis of the funda-
mental group π1(M) [10] of a two dimensional simplicial complex M, we follow the next
major steps.

Algorithm: Bases of π1(M)

step 1 : Choose an arbitrary point Ω of M as a basepoint.
step 2 : Find a list of loops (a sequence of edges starting and

terminating at the basepoint Ω) Le, e ∈ S.
step 3 : Shift the loops homotopically so that they traverse tri-

angles as in Fig. 6(b).
step 4 : Use Reidemeister moves so that the loops have only in-

tersections at the basepoint Ω.
Let us describe the way of achieving step 2 by following the standard approach [10, 16, 19]
requiring the use of a spanning tree. Let G be the edge-vertex graph which is generated
from the mesh M. We use the Breadth First Search (BFS) algorithm [2] to find a spanning
tree T [12] of G which is rooted at the basepoint Ω. Now we would like to describe how the
set of edges S is found. We introduce a subgraph Γ of G. As an initialization we define S
to be the empty set and Γ to be the spanning tree T . We perform the following updating
process of Γ and S.
Search for an edge e = [v, w] from the set G \ Γ for which there exists a triangle [p, v, w]
of the mesh M such that both of the edges [p, v] and [p, w] belong to the subgraph Γ. We
distinguish now two cases depending on the success of search. If such an edge exists, we
include it in the subgraph Γ:

Γ := Γ ∪ [v, w]. (18)

Otherwise we pick any edge e = [v, w] from G \ Γ and then we include it in the list S. We

8
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Figure 7: (a)First type of loop shifting (b)Second type of loop shifting

(a) (b)

Figure 8: (a)A loop with double edges (b)Two loops with common edges.

terminate the updating of S and Γ when the graph Γ becomes the same as the graph G.
Afterward, for each edge e = [v, w] of S we generate a loop Le in the following way. Find
a path pv (resp. pw) which belongs to the spanning tree T and which starts at v (resp.
w) and which terminates at the basepoint Ω. We define the loop Le corresponding to the
edge e as

Le := pvep
−1
w (19)

which is pv followed by e and then by the inverse pw. The loops Le are also commonly
termed ’generators’ of the fundamental group π1(M).

3.4 Single curve intersection

Before describing the content of step 3, we would like to mention a few features of the loops
Le which result from step 2. There are mainly two common problems after the execution
of step 2. The first one is a local one which happens for an individual generator without
considering the other generators. The second problem is a global one in which two different
loops Le and Lf could interfere. They have intersections away from the basepoint. More
accurately, there could exist

• Double edges: different edges which have the same metric information as in Fig. 8(a)
or

• Double nodes which are not at the basepoint (Fig. 8(b)).

9
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Figure 9: (a)Uniformly splitting an edge traversed by loops (b)Loop intersection inside a
triangle.

Now we would like to describe step 3 which consists in homotopically transforming the loops
Le so that those problems do not occur. For a given loop Le, our objective is to generate
another loop L′

e which starts and terminates at the basepoint Ω and which traverses the
triangles on the left of the original loop Le as in Fig. 6(b). The surface being orientable,
it is not difficult to decide whether an emanating edge from the loop Le is on its left or on
its right by simple ”combinatorial” strategy (ie. without any metric information). That
can be done by orienting all three local vertices of a triangle in anti-clockwise direction.
Now let us denote by R the list of all edges which emanate from a node θ 6= Ω of the loop
Le and which go to the left hand side.

For that end, we need to generate new nodes which we categorize in two types. The first
type of new nodes X resides on an edge e = [θ, B] of R and its distance from the node
loop θ is controlled by a prescribed positive parameter µ as X = µB + (1 − µ)θ. As an
illustration, we find in Fig. 7(a) a dotted curve L′

e obtained by shifting a solid curve Le

using the nodes of first type.

The second type of node is generated when two consecutive edges of a triangle belong to the
loop Le. In such a case a node inside a triangle is generated as in Fig. 7(b). Its coordinates
can also be controlled by a parameter µ in which you use barycentric coordinates. The
generation of the loop L′

e consists therefore in joining those newly generated nodes.

We note the obvious fact that this process generates a loop which is homotopically equiva-
lent to the first one. We would like to mention that this process solves the first problem of
coinciding edges. That is due to the fact that a loop such as the one depicted in Fig. 6(a)
can never occur after execution of step 2. Let us recall from (19) that the edges of the loop
Le from step 2 follow the shortest paths on the spanning tree T . Therefore, once two nodes
of Le coincide, the following paths will also coincide till the root Ω of the spanning tree.
We would like to notice that the above homotopic shifts do not solve the global problem
of interference of several different loops.

Let us now propose a remedy for the global problem. The first stage of the remedy consists
in uniformization in which we search for the list of edges which are traversed by loops. We
shift afterwards the nodes on the edges in such a way that they are equispaced as in Fig.
9(a). After this stage, no two different nodes (other than the basepoint) could have the
same coordinates (ie. there is no double node). But there could still exist the problem of

10



intersection of two different loops which could only occur inside triangles as in Fig. 9(b).

After the execution of step 3, we have the case of ”regular system” of curves which are
described in [6]. We can apply a series of Reidemeister moves [14, 1] to obtain our final
generators and that is exactly the purpose of step 4.

4 Improvements of the canonical curves

After a direct application of the formerly described algorithms, the resulting canonical
curves could be too long or unnecessarily complicated. That could lead to undesirable
splitting of the topological surface M as in Fig. 10(b). In order that we can apply the
subsequent algorithm efficiently, we need to shorten the lengths of the canonical curves.
Suppose the canonical curves obtained from the former sections are A1,B1,...,Ag, Bg. In
this section, we would like to describe an algorithm to improve them and to obtain the final
canonical curves A1, B1,..., Ag, Bg. Before describing the improvement algorithm, let us
introduce the notion of weighted split graph which can be obtained from the edge-vertex
graph and the current canonical curves.

4.1 Weighted split graph

Suppose we have a few curves S1,S2...,S2g on the triangulated surface M. Every curve Si

is composed of a sequence of consecutive edges of the mesh M. For every index i from
{1, ..., 2g}, let us describe [5] how a weighted graph Hi is defined by specifying its nodes,
edges and weights. Consider the dual graph H of the edge-vertex graph G. At this first
stage, the surface M is split into different faces Fk which are delineated by the edges of
H. By inserting the edges of Sk for all k different from i inside the relevant faces Fk,
we obtain a splitting of the topological surface M into several connected components C1,
C2,..., CN . In Fig. 10(a) , we see an illustration of the graph Hi where thin segments
represent the edge-vertex graph G while the dual graph H is depicted with dotted lines
and the canonical curves are shown in bold faces. The highlighted region is an example of
a connected component. The nodes of the weighted split graph Hi are then defined to be
the connected components.

With the nodes of Hi in place, let us now define its edges. Consider two graph-nodes Np

and Nq whose corresponding connected components are Cp and Cq respectively. Consider
the parent faces Fp and Fq of the connected components Cp and Cq. Let us denote by
Tp (resp. Tq) the set of triangles of Fp (resp. Fq) which are in the connected component
Cp (resp. Cq). Between the two graph-nodes Np and Nq of the graph Hi, we introduce a
graph-edge epq of Hi if the sets Tp and Tq share a common triangle tpq.

Now let us define the weight wpq that is assigned to the graph-edge epq. Two nodes Ωp and
Ωq of the triangle tpq must be the centers of the parent faces Fp and Fq. The weight wpq

assigned to the edges epq will then be the Euclidean distance between Ωp and Ωq.

11



(a) (b)

Figure 10: (a) Dual graph split by the canonical curves (b) Undesirable canonical curves.

4.2 Improvement algorithm

The improvement of the canonical curve is processed recursively as follow. Suppose the
current canonical curves are S1, S2, ...,S2g with g being the genus of the surface. For a given
index i = 1, ..., 2g, we would now like to describe hot to find the improved canonical curve
S ′

i. Using the weighted graph Hi, we can search for the shortest path from the starting
and the terminating connected components of Si. The new path S ′

i will therefore consist
of the thus defined path.
Notice that after the search for the shortest path in the weighted graph Hi, you only obtain
a sequence of connected components. Care must therefore be taken in order to convert
that sequence to a list of nodes because the path Si should not touch the other canonical
curves except at the basepoint Ω.

5 Global parameterization

Suppose that we have an orientable surface M without boundary and a set of canonical
curves. We would like to have a single parameterization of the whole surface M from a
planar parameter domain as illustrated in Fig. 11.
Thus, we would like to determine a planar parameter domain and the corresponding pa-
rameterization. For the parametrization, we follow the idea of Floater [8] which solves a
linear system to find coordinates of the nodes of the 2D-mesh. We would like now to point
out how it applies to global parameterization. Let us recall that the canonical curves of the
surface M have a single common point Ω. Consequently, if we parameterize the polygonal

12
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Figure 11: (a)Surface with genus 2 (b)Parameterization on aba−1b−1cdc−1d−1

disk P to M then all the 2D-corner vertices w1, w2, ..., w2g−1 of P map to the same vertex
Ω of the surface mesh M. More precisely, the basepoint Ω is mapped 2g times if we deal
with genus g. That means we have 2g different indices but those 2g points all have the
same coordinates. Similarly, the points w1 and w2 which are portrayed in Fig. 4(b) maps
to the same 3D points A of the surface mesh M. For that reason, the point A has to be
repeated twice. The vertices of the polygonal disk are chosen as

ws = [cos(sπ/2g), sin(sπ/2g)] foralls = 0, 1, ...2g − 1 . (20)

6 Constrained quadrangulation

In this section, we will describe a way to decompose a surface M into pieces of four-sided
domains. In order to facilitate the presentation, we suppose that we have a parametrization
P in disposition and that M is of genus zero and thus the parameter domain is a rectangle.

(a)
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Figure 12: (a)Surface with genus 1 (b)Parameterization on aba−1b−1
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(a) (b)

Figure 13: (a) Triangular decomposition (b) Quadrilateral decomposition

6.1 Globally smooth surfaces

Suppose for now that the surface M to be approximated is globally smooth in the sense
that it does not have very sharp edges. Our way of segmenting M into several four-
sided pieces is done into two steps as explained in Fig. 13. The first one consists in
splitting M into large curved triangles. Afterwards, we convert the resulting triangular
decomposition T into four-sided decomposition Q. For one thing, the Delaunay approaches
are better understood in the context of triangulations than quadrangulations and it is very
simple to split a triangle without introducing any hanging node and without increasing the
number of new elements significantly. For another, we have already a parameterization P
in disposition and we can thus apply the idea of Riemannian Delaunay triangulation as we
did in [18].
In order to convert a triangulation T to a quadrangulation Q, we follow the algorithm in
[17] or we find a Hamiltonian path on the edge graph of the large triangular mesh and we
merge two consecutive triangles on the path. Let us recall that a Hamiltonian path [2]
from a graph G is a path which traverse all the nodes and each node is traversed only once.
Now we would like to describe our decomposition algorithm to obtain the large triangu-
lation T . Since the method of generalized Delaunay triangulation was already presented
in full detail in many literatures, we need only to specify the criteria for splitting an edge
(Fig. 14(a)) and for inserting a node inside a triangle (Fig. 14(b)).

Definition 1 For a curve C defined on an interval [a, b], we define its linear curve distortion
ε(C) as

ε(C) :=
1

‖AB‖

∑

i∈I

‖C(ti) − L(ti)‖, where A := C(a), B := C(b) and (21)

L(ti) := λiA + (1 − λi)B with λ = (ti − a)/(b − a) and (22)

ti are some values taken within [a, b].
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Figure 14: Insertion of a new node: (a) edge cutting (b) triangle subdivision

This definition can be extended to the case of linear surface distortion µ(S) of a surface S
defined on a triangle [a, b, c] where we need to replace L(ti) by

L(ti) := λa
i A + λb

iB + λc
iC with (23)

λa
i , λb

i , λc
i being the barycentric coordinates.

The determination of the large triangulation T is done recursively by starting from an
initial coarse triangulation T (0). The large triangulation T (k+1) is obtained by T (k) by
generalized Delaunay point insertion: we split an edge (resp. triangle) of T (k) if its linear
curve (resp. surface) distortion exceeds some prescribed accuracy ε0 (resp. µ0).
The initial coarse large triangulation T (0) can be done manually by picking a few vertices
on the surface M. We recall that the quadrangulation conversion is only feasible if the
number of triangles of T is even. If we start from a coarse triangulation T (0) with an even
number of triangles, then applying the mesh operations in Fig. 14 will keep the parity
of the number of triangles even. In order to have the parametric representations, we use
the method in section 5. For genus zero surfaces, we need two parameterizations P1 and
P2. The first parameterization P1 consists of a split surface and parameterization P2 is a
representation of the surface in the vicinity of the split curve (A,B) as in Fig. 7.2. For
surfaces of higher genera g ≥ 1, we proceed similarly but the parameterizations are now
neighbors of the canonical curves and the basepoint.

6.2 Dealing with sharp edges

In the former discussion, we have described the quadrangulation process for a surface M
which is supposed to be globally smooth. For surfaces presenting corners or sharp edges,
the problem is more complicated because we do not want that a sharp edge traverses a four-
sided surface patch within its internal domain. Otherwise, the resulting four-sided patch
in the surface M could have internal irregularities and therefore no possible local smooth
approximation is conceivable. For that end, we use similar ideas as CDT (Constrained
Delaunay Triangulation). Let us recall that a CDT [4, 13] is a method for generating a
triangulation which interpolates a prescribed set of points and line segments. That is,
those points and line segments will be the vertices and the edges of the final triangulation
T . We want to carry over that idea to the case of large triangular subdivision. There are
several numerical methods which describe an approach for detecting sharp edges whose
corresponding parameter values can be determined simultaneously. Therefore, we put
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constraints on the large triangular subdivisions T in order that the curves represented by
the sharp edges become edges of the final large triangulation T .

7 Surface fitting with C0 joint

Let us suppose we have K patches. We would like to approximate/represent each four-sided
surface Sr by a Bézier surface. For each r = 1, ..., K we have therefore the representation
of Sr:

Xr(u, v) =
n

∑

i=0

n
∑

j=0

br
ijB

n
i (u)Bn

j (v) . (24)

From now on, we want to fit a Bézier surface bij for given samples (u, v)k Pk ∈ M . We
will drop the index r when no confusion is possible.
After some lexicographical reordering, we could have the following representation of the
relation (24).

X(u, v) =
N

∑

s=0

dsRs(u, v). (25)

Let us denote by D the unknown sequence ds:

D = [d0, ...,dN ] . (26)

In order that we have global C0, the Bézier patches have to abut at the interfaces. Therefore
we have to add the condition that the control points at the boundaries b0?, bn?, b?0, b?n

are prescribed. These control points are then interpolated by two adjacent Bézier surfaces.
We are going to describe later on how to determine their values but for now we assume
that they are known explicitly. By excluding the external control points from di, we
have the remaining unknowns. Let us denote their sequence by E and their number by
R := (N +1)2− 4N . The problem is then locally reduced to a least-square approximation:

R
∑

r=0

‖Pr − XE(ur, vr)‖ → min
E

(27)

8 Numerical results

In this section, we would like to describe some results of the former methods when applied
to some meshes. First, we would like to show the developments of the canonical curves in
three stages:

• Before applying the Reidemeister moves,

• After application of the Reidemeister moves which give us the preliminary canonical
curves,
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(a) (b)

Figure 15: Before Reidemeister moves

• The ultimate canonical curves after optimization.

We will describe our results with the help of two surfaces which have respectively genus 1
and 2 (torus and pretzel). In the figures, we display on the left hand sides the canonical
curves which are traced on the underlying surface meshes. We find on the right hand sides
the canonical curves without surfaces in order to facilitate the visualization of the curve
properties. In Fig. 15, we can see that the canonical curves still have an intersection which
is not at the basepoint. After application of the Reidemeister moves, there remains only
one intersection at the basepoint but the curves are still very undesirable as seen in Fig.
16. By applying the optimization algorithm that we described in section 4, we obtain the
ultimate canonical curves (Fig. 17) in which we have one single intersection and the quality
of the curves has been optimized homotopically.
The same process has been successfully applied to a surface of genus two (see Fig(s) 18, 19,
21). We can see a magnification of the results after Reidemeister moves in the neighborhood
of the basepoint in Fig. 20. As Fig. 20(a) clearly shows , there are still several curve
crossings which can be eliminated with the help of Reidemeister moves. In Fig. 20(b) we
see only one position where we have curve crossings which are exactly at the basepoint.
The second result consists in reconstructing surfaces from three surface meshes which have
respectively 8288, 11656 and 21872 triangles. We can see the surface meshes together with
the splittings in Figs 22(a), 23(a), 24(a). The corresponding surface patches are located
on the right hand side.
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(a) (b)

Figure 16: After Reidemeister moves

(a) (b)

Figure 17: After combinatorial optimization

(a) (b)

Figure 18: Before Reidemeister moves

18



(a) (b)

Figure 19: After Reidemeister moves

(a) (b)

Figure 20: Removing curve-crossings with the help of Reidemeister moves

(a) (b)

Figure 21: After combinatorial optimization

(a) (b)

Figure 22: (a)Mesh with 8288 triangles (b)Approximation with 40 patches
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(a) (b)

Figure 23: (a)Mesh with 11656 triangles (b)Approximation with 32 patches

(a) (b)

Figure 24: (a)Mesh with 21872 triangles (b)Approximation with 52 patches
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