TECHNISCHE UNIVERSITAT CHEMNITZ

Sonderforschungsbereich 393

Parallele Numerische Simulation fiir Physik und Kontinuumsmechanik

SFB

Bernd Heinrich Beate Jung

Nitsche- and Fourier-finite-element
method for the Poisson equation in
axisymmetric domains with reentrant edges

Preprint SFB393/05-16

Abstract

The paper deals with a combination of the Fourier method with
the Nitsche-finite-element method (as a mortar method). The approach
is applied to the Dirichlet problem of the Poisson equation in three-
dimensional axisymmetric domains with reentrant edges generating sin-
gularities. The approximating Fourier method yields a splitting of the
3D problem into 2D problems on the meridian plane of the given domain.
For solving the 2D problems bearing corner singularities, the Nitsche-
finite-element method with non-matching meshes and mesh grading near
reentrant corners is applied. Using the explicit representation of singu-
lar functions, the rate of convergence of the Fourier-Nitsche-mortaring
is estimated in some H'-like norm as well as in the Lo-norm. Finally,
some numerical results are presented.

Keywords. finite-element method, Fourier method, non-matching
meshes, Nitsche-mortaring, Poisson equation, edge singularities
AMS subject classification. 65N30, 656N35

Preprintreihe des Chemnitzer SFB 393
ISSN 1619-7178 (Print) ISSN 1619-7186 (Internet)

393/05-16 December 2005



Contents

1

Introduction

Analytical framework

Nitsche mortaring on locally graded meshes in 2D
Error estimates in 2D

The Fourier-Nitsche-finite-element approximation
and convergence results in 3D

Numerical results

Author’s addresses:

Bernd Heinrich

Beate Jung

TU Chemnitz

Fakultat fir Mathematik
D-09107 Chemnitz

http://www.tu-chemnitz.de/sfb393/

11

16

21



1 Introduction

For the efficient numerical treatment of boundary value problems (BVPs) in science and
engineering, domain decomposition methods are widely used. The Nitsche-finite-element
method as a mortar method enables the discretization of the BVP in the subdomains to
be done in an flexible way, e.g. in presence of non-matching meshes and discontinuities of
the finite element appproximation at the interface of domain decomposition, see e.g. [2, 3,
4,9, 24].

Nevertheless, domain decomposition with non-matching meshes in 3D is, in general, much
more complicated and expensive than in 2D. In order to bound the effort, in [15] it was
proposed to take the Fourier method for reducing the dimension from 3D to 2D and to
combine it with the Nitsche-finite-element method for getting a domain decomposition
method in 3D, at least for domains Q C R? having a uniform extension in one direction,
like prismatic or axisymmetric domains.

Thus, in [15] this combined method was presented and investigated as a discretization
scheme for regular solutions @& belonging to the Sobolev space H2(Q) (H*(Q): the usual
Sobolev-Slobodetskil space, s real, H® = L,). The requirement @ € H2() restricts the
geometry of the domain/@ and the range of applicability of the method in real problems,
since reentrant edges of () are excluded, in general.

In this paper we shall present the extension of the combined method to axisymmetric
1

domains with reentrant edges and weak regularity of the solution & € H 1+5( ), 0 > 3,
caused by edge singularities of Q The approach is applied to the Dirichlet problem of the
Poisson equation, —Au = f in Q 1 =0 on 8(2 where the axisymmetric domain QCR3is
generated by rotation of the corresponding meridian domain €2, about the x3-axis.

The combined method can be characterized as follows. The first component, the approx-
imating Fourier method (cf. [5, 7, 17, 18]) uses trigonometric polynomials of degree < N
in one space direction, here with respect to the rotational angle ¢ € (7, —m|. This yields
an approximate splitting of the 3D problem into 2N + 1 problems in 2D for the parameter
k=0,+1,...,££N. The solutions u; of these 2D problems are just the first 2N + 1 Fourier
coefficients of the solution @. The second component comprises the Nitsche-finite-element
discretization as a mortar method, cf. [1, 2, 9, 13, 14, 16, 21], for solving numerically the
2D problems on the meridian domain €2, and approximating the Fourier coefficients wuy.
Along the interface of the domain decomposition of §2,, non-matching meshes as well as
discontinuities of the approximated solutions are admitted. Compared with the papers
cited previously, the differential operator depends now on the parameter k and has a more
general form. The method arising by combination of these two components was proposed
and investigated for regular solutions in [15].

The aim of this paper is to extend this new method to problems with singularities of the
solution generated by reentrant edges. The efficient numerical treatment of such BVPs
requires a careful representation of the edge singularity in 3D by the corresponding corner
singularities of the Fourier coefficients acting on the meridian domain €, in 2D. The weak
assumption f € Ly(9Q) does not allow a tensor product representation of the edge singu-
larity function. So it will be necessary to apply a non-tensor product singularity function,
cf. [11, 12]. Furthermore, we employ a triangulation with shape regular triangles and piece-
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wise linear finite elements on the meridian domain €2,, with a global mesh parameter h > 0.
In order to improve the rate of convergence under the influence of edge singularities, the
mesh is provided with a local grading near the reentrant corners on the boundary of €2,.
Important properties of the approximation scheme in 3D are derived and, moreover, the
convergence uy,y — u of the Nitsche-Fourier-finite element approximation uyy with respect
to N — oo and h — 0 is shown. In an H'-like norm and in the Lo-norm, the convergence
rates on quasi-uniform meshes are proved to be of the type O(h*+ N~1) and O(h** + N~?%),
respectively, where \ is the typical singularity exponent with 1/2 < A < 1. Using an ap-
propriate local mesh grading near reentrant corners, the improved rates O(h + N~!) and
O(h* + N72) are derived. The results are valid in the important case when h and N are
chosen independently from each other (anisotropic discretization).

The paper is organized as follows. First we describe the BVP, its transformation into cylin-
drical coordinates, the corner singularities in 2D and a non-tensor product edge singularity
in 3D. Then the Nitsche mortaring for the domain decomposition of the meridian domain
Q, in 2D is founded for weak regularity of the Fourier coefficients wuy(r, z) of the solution
@. Using a mesh with grading for approximating corner singularities of u(r, z), optimal
error estimates for the Nitsche-finite-element approximation of the Fourier coefficients are
derived. Finally, the combined method acting in 3D is presented and estimates of the error
u—upy with respect to h — 0 and N — oo are given. A numerical example exhibiting an
edge singularity and the observed rates of convergence of the Nitsche-Fourier-finite-element
approximation are given.

2 Analytical framework

Let  C R3 be a bounded domain which is axisymmetric with respect to the z3-axis. The
part of the xs-axis contained in Q is denoted by I'p. Then the set 0 \ [y is generated
by rotation of the corresponding plane meridian domain €2, about the zs-axis. The set
I, is defined by T, := 09, \ Ty, where 92, is the boundary of Q,. In the following we
assume that €2, is polygonally bounded. Further let P;, i =1,...,m (m: the total number
of corners of Qa), denote the corners of the polygon €, such that P, P, eTynT,
cf. Figure 1. Then we require that for the interior angles i, 8, at the corners P, P,
holds: (1, 3, < 0.726167, i.e., the conical vertices of the three-dimensional domain €2 do
not generate singularities at the xz-axis, cf. [5]. Since the treatment of reentrant corners
is to be done locally, we consider for the sake of simplicity only one reentrant corner, i.e.
B; > m holds for one index i € {2,...,m — 1}. Thus, the axisymmetric domain {2 has only
one reentrant edge, and several reentrant edges can be treated analogously.

Let H*(X) (s > 0, s real, H® = Ly) denote the usual Sobolev-Slobodetskii space of
functions defined on X. Subsequently we consider the Dirichlet problem for the Poisson
equation on 2:

924 N R ~
_ :_Zax =f inQ, a=0 on 09, (1)

with f € L2( ). Since the domain () is assumed to be axisymmetric, it is natural to employ
cylindrical coordinates 7, ¢,z (1 = rcosp,xe = rsinp,x3 = z), with ¢ € (—x,7]. Then
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Figure 1: Meridian domain €2,

we get one-to-one mappings: )\ Ty — Q := Q, x (=, 7] and 0\ Ty — T, x (-, 7).
Consequently, for each function v(z) with x € Q \ Iy, the associated function v on € is

defined by

v(r,p, z) = 0(rcos p, rsinp, z). (2)
Using this, we can define spaces X! /2( ) of Sobolev-type of functions periodic with respect
to ¢ € (—m, 7] as follows: HY(Q\ Ty) — X{/Q(Q) (I =0,1,2). Since I'y is one-dimensional,
Hl(ﬁ\l"o) and Hl(ﬁ) can be identified. The spaces X{/z(Q) are equipped with the natural
norms and seminorms given by the relations

Ju |Xi/2 = |ﬂ|Hl(§)> ||u||X§/2(Q) = ||7:L||Hz(§), 1=0,1,2, (3)

with u, @ related by (2). In [11, 17, 23] the spaces X1/2(Q) are described in more detail.

According to (2), the variational formulation of (1) in cylindrical coordinates can be stated
as follows. Find u € V() := {u € X1/2(Q) S U|p,x(—m,x = 0} such that

b(u,v) = f(v) Vv e W(Q), (4)
6u 81} 1 0udv Oudv _
with  b(u,v) : 87“ o ﬁ%% + — o az}rdrdgodz f(v) = /fvrdrdgpdz.

2

For u(r,p,z2), u € X1/2(Q)> (and for f(r,p,z2), [ € X?/Q(Q), resp.) we employ partial

Fourier analysis with respect to the rotational angle ¢
- 4

u(r, @, 2 Zuk r,z) e, ug(r, z) == — /u('r’, @, 2) e *dyp for k€ Z (5)
2w
k€EZ —r
(Z ={0,£1,42,...}; i* = —1). Inserting (5) into (4) it can be shown that by means of
the forms

Oup Qv Oug Ovp k2
b (g, vg,) = /{ ({;ﬁk ;f + al;k ;k + ukvk} rdrdz,  fir(vg) /fkvk rdrdz (k € Z),

Qa



the BVP (4) can be decomposed into a family of decoupled BVPs in 2D written in the
variational form as follows (see e.g. [5, 11, 17]):

k=0:finduy e Vj:={ve H%/Q(Qa): Vlr, = 0}: bo(ug, w) = fo(w) Yw € Vg,
k€ Z\{0}: find up, € Wi:={v e Vi": v € Lo _1/2() }: b(up, w) = fr(w) Yw € Wy

It is well-known that the solutions uy, (k € Z) of (6) are the Fourier coefficients of u defined
by (5). In (6), H. () (resp. La«(Q4)) denote the following spaces of functions with power
weights r® (o real):

Ho(Q) = {w=mw(r.2) :r"DPw € Ly(Qu), 0< |8 <1} for Le {0,012 (1)
o8l
DPwi= oo, 8= (B, B), 18] = Bi+ B H() = Loa(Q).

The canonical scalar product and norm in Ly ,(€2,) are given by

1/2
(v, W)a.0, = /vwrQo‘ drdz, ||wlL, .. = {/|r“w|2drdz} . (8)
Qq Qa

The spaces H.(Q,), [ € {1,2}, are provided with the seminorms and norms

1/2 1/2
wWligon = { D I DPwll o} Iwlmon = {3 I Dl ey} ©)
18]=1 18I1<l

Subsequently, these spaces, scalar products, and norms will also be used with Q! (i = 1,2)
instead of €, where Q! are subdomains of Q.

If up (k € Z) is sufficiently regular, the following differential equations and boundary
conditions for the Fourier coefficients wy correspond to the variational equations (6):

82uk aQUk 1 8uk /{Z2 .
_{ or? - 022 +; or }+r_2uk = Juin fls VkEZ,

up=0 on 'y Vk€Z, wu, =0 on I'y Vk € Z\{0}. (10)

The boundary condition for ug on I'y is formulated in the context of the variational problem.

Now we describe the regularity of the solutions u; (k € Z) and u of the BVPs (6) and
(4), respectively. According to the abovementioned assumptions on the geometry of €,
let E, denote the corner of €}, generating the reentrant edge of Q. It is well-known that
the regularity of solutions of elliptic BVPs is a local problem. Therefore we introduce
local polar coordinates with respect to the non-convex corner E, = (rg,, zg,) as follows:
r—rg, = Rcos(6 +0,), z— zg, = Rsin(f + 6,). Then we define some circular sector G,
(see Figure 2) with the radius R{, and the angle 6:

Gy ={(r2)eR*:0<R<R), 0<0<6}, G,:=G,\0G,, (11)

0G,: boundary of G,. Consider also the domain G e R3 generated by rotation of GG, about
the xg-axis, with boundary 0G. Then G := G, X (=7, 7] and 9yG := IG, x (—m, 7| are
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Figure 2: Domain €, with the sector G,

the images of G and 9G in the (r,, z)-system. The spaces X{/Q and H!, (I =0,1,2; a
real) from (3), (7) can also be defined for G instead of Q2 and G, instead of 2,. Owing to
the boundedness of the weighting factor r on the subdomain G, the norms on H.(G,) are
equivalent to the norms on the usual Sobolev spaces H'(G,), [ = 0,1,2. Further we define
a smooth cut-off function n = n(r, ¢, z) = 7(R) with

R) 2R

0<n<1 nelC®0,0), 1=1for 0<R< 3 7 =0 for RZTO.

Then, the regularity of the solution u to (4) can be characterized as follows.

Theorem 1 Assume f EX?H(Q) and that one edge is reentrant with the angle 8y € (m,2m),
i.e., A\ = It satisfies % < A < 1. Then the solution u to the BVP (4) can be represented by

0o
us(r,p, z) +w(r,p,z) for 0 < R< %,
U(Tv 2 Z) = Zuk(ra Z) elkw = 0<0<6by (12)
kez w(r, , 2) otherwise in €.

The singular part us and its Fourier coefficients sy(r, z) satisfy the relations

US(T, ¥, Z) = Z Sk(ra Z)e“ﬂp = TIR/\ Sln()‘e)\ll((pa R)7 \II((pa R) = Z 5kei|k‘Reik<pa

k€eZ kEZ

su(r, 2) = nore MER sin(M)), (1+ k%) 2 |6;] < M|l fill Ly (00) for k € Z, 1)
and the reqular part w fulfills
w(r,p,z) = Zwk(r, 2)e™* with wy, € Hf/Q(Qa) for k eZ,
keZ (14)

w € Vo() N X7,(Q), [wllxz ) < Mol fllxo )

For the proof of this theorem, we refer to [11, Lemma 6.2 and Theorem 6.3] or [12, Theo-
rem 2.7].

The function us from (13) is called a non-tensor product singularity function since the
factor ¥ depends on both ¢ and R. In [11, Section 5], we have additionally a tensor product
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representation of the singularity of the solution to the BVP (4). But this representation
needs the additional assumption (%fl € X?/Q(G) (I = 1,2). Since the non-tensor product
singularity function requires only f € XV /Q(Q), we prefer that one in the present paper.

Clearly, if the domain Q has several reentrant edges, the singular part ug in (12) is to be
replaced by a sum of the corresponding singular parts.

3 Nitsche mortaring on locally graded meshes in 2D

For the Nitsche-finite-element discretization (cf. also [2, 9, 13, 14, 21]) of the BVPs (6)
we shall need a subdivision of {2, into subdomains. Throughout this paper we restrict
ourselves to the case of two subdomains Q}, Q2 with

Q,=0,u0;, Qlnt=0 T=0,00
and being polygonally bounded. We also introduce the 'broken’ spaces
Vo=V V2 W, =W x W2 (15)

with V7 = {w € H], (%) : wlogsrr, =0}, W ={w e V)1 w € Ly 1/() } fori =1,2.
There are different cases regarding the position of the two subdomains: Figure 3(a) shows
the case 9 NT, # 0 for i = 1,2 as well as T N Ty # 0 and in Figure 3(b) we have
02NT,=0,T =002 and TNy = 0. In view of the subdivision of , we introduce the
restrictions v := v|g; of a function v on €}, as well as the vectorized form v = (v',v?), i.e.,
v'(z) = v(z) holds for x € Q' (i = 1,2). It should be noted that for simplicity we use here
the same symbol v for denoting the function on , as well as the vector (v',v?).

(a) z (b) 2

Figure 3: Meridian domain 2, with subdomains 2}, Q2

Using this notation we deduce that for each k € Z the solution of the BVP (10) is equivalent
to the solution of the following problem: Find (uj,u}) such that

up = fr in Q, i=1,2

O*ul  O%ul  10ul k?
bR = R
up =0 on 90, NT,, ul, =0 on I NTy (only for k€ Z\{0}) (16)

8n1 8712

r2

_ 1_ 2
=0 onlI, u,=u; onl



are satisfied, where n; (i = 1,2) denotes the outward normal to 9Q) NT.

In order to define the finite-element discretization with non-matching meshes, we cover Qf,
(i = 1,2) by a triangulation 7, (i = 1,2) consisting of triangles T' (T" = T), where T,}
and 7,2 are independent of each other. Moreover, the compatibility of the nodes of 7;' and
7,2 along the mortar interface I' = 9L N 9Q? is not required, i.e., non-matching meshes
on I' are admitted. Let h denote the mesh parameter of the triangulation 7, := 7,} U 7,2,
with 0 < h < hy and sufficiently small hy. Take e.g. h = max{hy : T € T,}, where hp
denotes the diameter of the triangle 7. In the sequel, positive constants C' occurring in
the inequalities are generic constants.

Throughout this paper we suppose that the following assumption on the triangulations 7,

(i =1,2) is fulfilled.
Assumption 1

(i) Fori=1,2, we have ﬁi = Urer:T', and two arbitrary triangles T, T" € T (T #T')
are either disjoint or have a common vertex, or a common edge.

(ii) The mesh in Q; (i =1,2) is shape regular, i.e., the following relation holds:

hr < C forany T €T and h: 0 <h < hy (pr: radius of inscribed circle of T).

pPr
(17)

Relation (17) means that the triangulations 7, (i = 1,2) do not have to be quasi-uniform
in general. The error of the finite element approximation shall be estimated on quasi-
uniform meshes (partially) as well as on meshes with appropriate local grading at the
reentrant corner. In [13], Nitsche-mortaring on meshes with local grading has been studied
for elliptic BVPs in two-dimensional domains with reentrant corners, but the type of the
corresponding singularity functions in 2D differs from the functions s, given by (13).

In order to provide a framework for graded meshes, we introduce the real grading param-
eter p, 0 < p <1, the grading function R; (1 = 0,1,...,n) with some real constant b > 0,
and the step size h; for the mesh associated with layers [R; 1, R;] X [0, 6] around E,:

Ry :==0b(ih)¥ (i=0,1,...,n), hi=Ri—Ri, (i=12...,n). (18)

Here n := n(h) denotes an integer of the order h™!, n := [Bh~!] for some real 3 > 0 ([]
means the integer part). We shall choose b and 3 such that 2R} < R, < Rj holds, i.e. the
mesh grading is located within G, from (11).

Using the step size h; (i =0,1,...,n) we define a mesh which is graded in the neighbour-
hood of the vertex E, of the reentrant corner and quasi-uniform in the remaining part of the
domain €2,. The triangulation 7}, is now characterized by the mesh size h, 0 < h < hq, and
the grading parameter p, with fixed p: 0 < g < 1. The properties of 7j, are summarized
in the following assumption.

Assumption 2 Let the triangulation 75, satisfy Assumption 1. Furthermore, Ty, is provided
with a grading around the vertex E, of the reentrant corner such that hy := diam T depends
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on the distance Ry of T from E,, Ry := dist (T, E,) := infper |E, — P|, in the following
way:

pihi < hy < prthi for T€T,: Ry =0,
poh Ry ™ < hp < py'hRy* for T €T, : 0< Ry < R,, (19)
pghgthpglh for T €T,: Ry < Ry

with some constants p;, 0 < p; < 1 (i = 1,2,3) and some real Ry, 0 < R, < Ry < R,,
where Bg,ﬁg are fixed and independent of h.

Here, R, is the radius of the sector with mesh grading, and w.lo.g. we may assume
R, = R,. The value 1 = 1 yields a quasi-uniform mesh in the whole domain (2, i.e.

ax,

m i h
the relation —— <%~ < (' (1 = 1,2) holds instead of (17). Owing to Assumption 2, the

ming i pT
asymptotic behaviour of hr is determined by the relations

ElhjSthc‘:l—lhj fOI‘TGZL: Rj—lSRTSRj (j:1a27---7n)7 ( )
20
esh < hp <ey'h for T€T,: R, < Rr,

with 0 < g <1 (I =1,2), and h;, R; as well as n from (18). An example of a mesh with
local grading as described in Assumption 2 is given in Figure 4.

Figure 4: Locally graded mesh with parameter u = 0.6

It should be noted that the total number of nodes of 7}, satisfying Assumption 2 is always
of the order O(h™2). In [13, 19, 20] related types of mesh grading are given.

In accordance with V;/, W from (15) introduce finite element spaces V;),, W, of functions v},
on Q.
o = {0, € C(Q) : v, €PUT) VT € Ty, vhloninr, =0}, 1)
o= {v, eVl and vplagiar, =0}, for i=1,2,

i.e. employ linear finite elements. It should be noted that w € W} implies wla0inr, = 0
(cf. [17]) so that we require this also for v}, € W/, . The finite element spaces V,;, and W,
of vectorized functions v, with components vi on Y are given by

Vi =V x VA Wy := Way x W2 (22)
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It should be noted that the functions v, in V,;, and in W, are in general not continuous
across I'. Since we focus our interest on the treatment of edge singularities with non-
matching meshes, we restrict ourselves to the case that one endpoint of I' coincides with
the vertex E, of the reentrant corner (cf. Figure 3(a)).

Further we introduce some triangulation &, of the mortar interface I' by intervals E
(E = E), i.e., I' = Ugeg, E. Let hg denote the diameter of E. We suppose that two
segments E, E’ are either disjoint or have a common endpoint. A natural choice for the
triangulation &, is &, 1= &} or &, := EF, where &} and &7 denote the triangulations of T
defined by the traces of 7, and 7,2 on T, respectively:

E ={E:E=0TNT,if Eis asegment, T € 7/} fori=1,2
Subsequently we use real parameters a;, ap with
Ogalgl (Z:1,2>, Oél—i-OéQIl. (23)

The asymptotic behaviour of the triangulations 7;!, 7,7 and of &, should be consistent on T’
in the sense of the following assumption (cf. also [13, 14]).

Assumption 3

1. ForE€&, andT € T; with OTNE # 0, i = 1 and i = 2, there are positive constants
Cy and Cy independent of hr, hg and h (0 < h < hg) such that the following condition
is satisfied

ClhT S hE S CQhT. (24)

2. In the special case &, ==& and o; :=1 (cf. (23)), where i =1 ori =2, for E € &,
and T € T, with 0T N E # 0, instead of relation (24) the following condition is
required.:

Cihr < hg. (25)

Relation (24) means that the diameter hp of the triangle 7" touching the interface I' at E
is asymptotically equivalent to the diameter of the segment E| i.e. the equivalence of Ay,
hg is required only locally. Condition (25) is weaker and admits even locally at I" different
asymptotics of the triangles Ty € 7.}, To € T,2: Ty N'Ty # (.

In order to define the Nitsche-finite-element approximation of the solutions of the BVPs
(16), we introduce sesquilinear forms By x(-, ) and linear forms Fj, x(-), K € Z. The def-
inition of B, (-, -) and Fpx(-) is also given in [15] where the Fourier-Nitsche-finite ele-
ment approximation of the BVP (4) for regular solutions u € XIQ/Q(Q) with Fourier coeffi-
cients uy € H12/2(Qa) has been studied (i.e. reentrant edges are not considered). It should
be noted that in comparison with the mortar methods in [2, 9, 13, 14, 21], we now have to
take into account the spaces with power weights r* as well as the Fourier parameter k.
For k € Z\{0} and uy, vy, € Wy, as well as for k = 0 and up, v, € Vg, resp., Bpi(-,-) and
Frx(-) are defined as follows:

2
. . S our ou?
B (up, vp) := Z{(Vuz, V)10 + E* (ul, Un)_1/2.01 } — <a18—n? — aza—n’;, v — U’QL>1/2,F

i=1



v o 4 2 2
<a18—n}; s 2 T uh>1/2 p 7%; hig! (= W, 04 = Vi) (26)
h

2
Frg(vn) = Y (fir vh)1j20-
i=1

Here, (-,-)1/2,r denotes the [Hll//s*(T)]' X Hll//;*(lﬂ)—duality pairing, with the space Hll//s*(T)
from [15, p.5], and (-,-)1/2,z means the weighted Lo;/(E) scalar product defined by
(u,V)1/2,8 = |  uvrds. Moreover, v is a sufficiently large positive constant (the restriction
of v will be given subsequently) and a; as well as a, are as in (23). For vy, = (v}, v2) € Van,
we have Z%%\p € Laq/5(I"). This will be used subsequently for evaluating (-,-)1/2,r by the
Ly 1 /5(I")-scalar product.

The Nitsche-finite-element approximations ug, = (ud;,, ud,) € Van and ugy, = (up,, uz,) €
Wan, k € Z\{0}, of the functions uy = (uj,u?) are defined to be the solutions of the
equations

B, o(ton, vn) = Fro(vn) Yor € Van i Bhg(kn, vn) = Frp(vn) Yo, € Wan, k € Z\{0}. (27)

We now summarize some important properties of the sesquilinear forms By (-, ). The
following lemma states the consistency of the solutions uy (k € Z) from (6) with the
variational equations (27).

Lemma 1 Let uy (k € Z) be the solution of the BVPs (6). Then uy = (u},u?) satisfies:
Bmo(Uo,Uh) = fmo(vh) Vvh € ‘/;Lh; Bh,k(uk,vh) = ]:hk(vh) Vvh c Waha ke Z\{O} (28)

Proof: For regular solutions u; € Hf/Q(Qa) of the BVPs (6), relations (28) are proved

n [15]. In our case, the singular part s, (see (13)) of wy satisfies s, € H3(Q,) for
any € € (0,g), with sufficiently small g9. From this we Conclude u, € H %+5(Qa) and

gin% € Ly1o(I'), i = 1,2. Since additionally A, .uy := {a ue y Ou g wuk} € Lo1/2(82)

az r Or
holds, the proof of (28) is analogous to [15, Proof of Lemma 1]. [

In order to state the boundedness and ellipticity of the forms By (-,-) we impose the
restriction v > C on the parameter v from (26), where the constant C7 is taken from the
estimate

A

Z g ’ *Ons

Beg), Lo 1/2(E)

2
S C[ ZOZ?HVU;L”%271/2(QZ) fOI‘ Uh E %h,
i=1

with aq, g from (23). This estimate is obtained from [15, Ineq. (24)] valid on shape-regular
meshes. Moreover, we shall need the weighted discrete norms || - |14 (k € Z) defined by

2

ol s = S IV, e + RIS, o b+ 0 Rtk = I,y (29)

=1 EEgh
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Lemma 2 Let Assumptions 1-3 be satisfied for T,;' (i = 1,2) and for &,. Then there exists
a constant py > 0 such that the following estimate holds,

|\ Bk (wp, vp)| < pallwn|linel|valline Ywn, v € Wan, k € Z\{0} (wp, vy, € Vo, k = 0, resp.).

If the constant v in (26) is independent of h and k and fulfills v > Cy, then the inequality
Bi(vnsvn) = polloallfpe Von € Wan, k € Z\{0} (vy € Van, k =0, resp.)

holds with a positive constant ps. The constants iy, o are independent of h and k.

For the proof we refer to [15, Proof of Theorem 1] which is also valid under weaker as-
sumptions on the mesh (shape regularity but not necessarily quasi-uniformity).

4 Error estimates in 2D

The aim of this section is to estimate the approximation error for solutions to BVPs in
2D. We have to take into account that we deal with a family of 2D problems depending
on the parameter k € Z and with norms containing power weights r*, « € {1, 2}, cf. Sec-
tion 2. In [17, 12, 23], an interpolation operator and a projection-interpolation operator
are employed to estimate the approximation error of the 2D solutions arising from the
decomposition of the BVP in 3D. Since we now consider the FEM with mortaring, these
operators have to be slightly adapted.

For estimating the approximation error for the regular part wy (see (14)) of the Fourier
coefficients wuy with |k| < 1, the interpolation operator II, will be employed. It is now
defined as follows:

ywy, := (Ipwy, wy), (30)

where IT,wi (i = 1,2) denotes the usual Lagrange interpolant of w¢ in the space V7, .

The use of IT,wy for |k| > 2 does not lead to optimal error estimates with respect to the
discretization parameters h and N1, cf. [17]. Therefore, for wy with |k| > 2 we shall apply
a projection-interpolation operator Py, (cf. also [8, 15, 17]) which is defined subsequently.
On the other hand, for estimating the approximation error for the singular part s, of the
Fourier coefficients uy, we can employ the operator I, from (30) (now with s instead of wy,)
for all k € Z, without loss of optimality of the error estimate. For this estimate, we take
advantage of the fact that the singular part sy is explicitely known, see (13).

The projection-interpolation operator P is defined as follows (see [15, Section 5] for more
details):

Pyuy == (Pruy, Plui) with Plv = Z vy, i=1,2. (31)

Qexi*
In (31), ¥7* denotes the set of all nodes Q € 7,/ with Q ¢ (9% NT',) and TNTy =  for any
T € T} having Q as vertex. Further, v, is given by vf, := (P,v)(Q) with the orthogonal
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projection operator P} : Ly(S§) — P1(Sg) defined by the relation (v — Pév,p)LQ(ség) =0
Vp € IP’l(Sé), and (1322 denotes Courant’s basis function associated with the node Q).
In addition to || - [|3,, at (29) and adapted to By (-, -), we introduce the weighted mesh-
dependent norm || - ||px.0,:

2

1/2,E}

2
ol . = S {IVOIR, oy + KN IR, oy + 3 P
Eeé&y,

i=1

o’
o ——

ani

(32)
+ Z h]_levl - 1)2||%2,1/2(E)
Eeé&y,

for functions v satisfying v € V, for k =0, v € W, for k € Z\ {0}, and g—:’;“e Lyq/o(T)
forie {1,2}: oy #0.

The norm of the error uy — ug, (k € Z) of the Nitsche finite-element approximation wgy,
can be bounded by means of the norms of wy, — P*wy (with P*wy := Iwy for |k| < 1,
P*wy, := Pywy, for |k| > 2) and s, — 1,8, (k € Z). This is stated in the following lemma.

Lemma 3 Let Assumptions 1-3 be satisfied for T;' (i = 1,2) and for &,, moreover, let
v > Cr. Then the following estimates hold for the error up —ugp (uk, ugy from (10), (27)):

luk — ugnlline < C (JJwe — Hpwillpga, + |58 — Dnskllaga,) for |kl <1 (33)
luk — ugnlline < C(JJwp — Powillhra, + 158 — Daskllnr,) for |k| > 2,
with wy, sy from (14), (13).

Proof: We employ the representation u, = wy + s; (cf. Theorem 1) of the Fourier coeffi-
cients uy. Then, by means of Lemmas 1 and 2 and the linearity of the operator I, the proof
of the first inequality in (33) can be carried out by analogy to the proof of [13, Lemma 3].
In order to prove the second inequality in (33), we use the relation ||v|[1nr < ||v]nk.
(cf. (29) and (32)) leading to

luk — wgnlline = lJwe + Sk — wknl|1nk (34)
< Nlwk, — Powg||h g0, + || Prwr + pse — wenll1n.6 + ISk — nSkl neo.-

Further, thanks to Lemmas 1 and 2 we obtain for the second term on the right-hand side
of (34):

| Prwg + sy, — Ukh”ih,k < 11y B (Pywy, + My sy — wen, Pywy, + Mysp — ugn)
= u;lBhk(Phwk + s — wi — Sk, Powg + Hpsp — ugn). (35)
Employing the Holder and Cauchy—Schwarz inequalities we get the estimate
\Bh, i (Prwy, + s, — wy, — si, Pywy, + s, — wgn)|
< C||Pywy + sk — wi — Skl hk,00 | Prwr + pse — wen 1,0,k
This, together with (35) leads to

| Prwg + Ipse — win|l1ne < C || Powg + Hpsk — we — Sk||pk.0us (36)

12



and the second estimate in (33) is a consequence of (34) and (36). |

Lemma 3 implies that we need estimates for the interpolation and projection-interpolation
errors of the regular part wy of uy as well for the interpolation error of the singular part s;.
First we give estimates for the error of the regular part.

Theorem 2 Let the Assumptions 1-3 be satisfied. Furthermore, for each F' € &} we require
that the triangle T € T;' with Tr NT = F has at most one common point with Ty. Then
for the reqular parts wy of the Fourier coefficients uy of u, the following error estimate

holds:
|wi, — Ipwi[pp0, < ChHwkHHf/Q(Qa) for |k| <1, (37)
1/2
lwe = Prwk|[n k0. < Ch{k2”wk‘”§{£1/2(§2a) + ”wk‘H?{f/Q(Qa)} for [k =2, (38)

where 11, and Py, are defined in (30) and (31), respectively.

Proof: Owing to wy, € Hf/Q(Qa), k € Z, the estimate (37) follows from [15, Theorem 3],
and the estimate (38) is a consequence of [15, Theorem 4]. |
For the error estimate of the singular part s; we introduce some notations. Let the subset
Cop, of the triangulation 7, be given by: Cop, :={T € 7}, : Ry < R, }, with Ry := dist (T, E,)
and R, from (18), i.e. Cp, consists of the triangles near the vertex E, of the reentrant

corner. The set Cp, can be decomposed into layers D, (j = 0,1,...,n) of triangles, such
that Cyp, := U’_oDjn holds:

DOhZZ{TG%IRTZO}, Dth:{TE%IRj_lgRT<Rj} for j=1,...,n, (39)

where R; is given in (18). Furthermore, we define for ¢ = 1,2 and j = 0,...,n: D;h =
{T_e Dy, - T C Q,}. According to 2Ry < R, < Ry, the triangles T € Cy, are located
in GG,. The number n; of all triangles T € D, (j = 1,...,n) is bounded by C-j, and
ng < C holds for the number nq of all triangles T' € Dy, cf. [12, 19].

Concerning the error norm of the singular part, we may write by means of (32):

2
sk — il p.0, = Z{HV@Z - HhSZ)H%Q’I/Q(Qg) + ks, — HhSZH%Q,,I/Q(Qg)
i=1
O(s}, — Insj,)

2
oy o, } + Z hiptsy — Iysy, — (s7 — Ms37)

1/2,E

In order to deal with the first two terms on the right-hand side of (40), we take into
account that the singular part sg, k& € Z, vanishes outside of the subdomain G, given
by (11). Therefore, the norms on H! (G,) (« real) are equivalent to the norms on the usual
Sobolev spaces H'(G,). Moreover, let G (i = 1,2) be defined by G := G, N Q.. Then we
have the following estimate.
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Lemma 4 Under the Assumptions 1-3 on the triangulation 7Ty, the interpolation error
. — s), for the function si, = sp|qi (i = 1,2), with s from (13), satisfies the estimates

|| % I z||2 < C|5 |2 h2+2>\ f07“ k=0 (41)
S — S i
bR = L k2 4 k2R for k€ 2\ {0},
i = Musilin gy < OO0 (o) [R5 for k € 2, (42)
hw  for A<p<l1
with  k*(h,p1) = § h?[Inh|  for p= A (43)
h? for 0 < p <A

The proof of this lemma (with s;, instead of si and G, instead of G%) is given by [12, Proof
of Lemma 4.2].

In the next lemma, we give estimates for the last two terms on the right-hand side of (40).

Lemma 5 Let the Assumptions 1-3 on the triangulation 7, be satisfied. Then for the
interpolation error s}€ — HhsﬁC (k€ Z;i=1,2), the following estimates hold:

Z holla Hhsk)

Eeé&y, i
g sk = TnsillL, ) < Clo* (k2 (h, ) + [KPP70%), (45)
Ee&y
where k2 (h, ) is taken from (43).

It should be noted that the sums on the left-hand side of (44) (respectively (45)) could
be taken over F € &, : E NG, # () instead of E € &), because the summands for £ ¢ G,
vanish.

2
< Clai*63*(5° (h, ) + |k[*~?) (44)
Ly 1/2(E)

Proof: For the sake of brevity we set vl = st — II;st (i = 1,2). By analogy to [15,
Egs. (57), (58)] we may write

5 i

2 i 12 . .
o —— 8712 L 1/2( ) S C|Oél‘ Z thVkame(F) f()r 1€ {1, 2} a7 > 0, (46)
Besn Feg}
Ee&y FEE;L

i.e. the summation over £ € &, can be replaced by a summation over F' € &}, and
8 .
151, () can be bounded by [V |z, ,(m)-

For I' € 5,2” let T be the triangle such that T/ N T" = F. Since the functions s, vanish
outside of G, for proving inequalities (44), (45) it suffices to consider the triangles T' = Tp
with T" € Cyp, where we distinguish two cases concerning the position of the triangle T'.

Case 1: We suppose that T € Dj,, i € {1,2}, holds with D}, from (39). Taking into
account the estimate (46), we have to find a bound of ||Vv,@||%2 o (F) Clearly, we have

1912, < CUVSIE, o+ IV, )
< C(HVSZH%Q(F) + HV(HhS@H%Q(F) )-

14
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We now use the explicit representation of the singular functions s; (see (13)) and get

hp
. dsi 2 1 |0si |2 B o
IVsil13,0m) :/{‘85 73 a@k }ng C|5k|2/(|k|232*e 2RR o R2A20-2KIRY IR (49)
F 0

Since A > 3 holds, the first term on the right-hand side of (49) (without the factor |d,|?)
can be bounded as follows:

hF hF
- - - L @ .
|k;|2/R”e WHMEIR < kPR 1/Re 2MEIR < |k[PRE 1(2|§€|>)2 <ChR', (50)
0 0

with the Gamma function I'(-). The second term on the right-hand side of (49) (without
the factor |y |?) satisfies the estimate

hp hF
/ R¥ e ?HigR < / R*7?dR < ChP, (51)
0 0

Furthermore, by means of the properties of the linear interpolant ITj, s we obtain
IV (Masi)7 i < Clok|*he™ ™", This, together with (48)-(51), and with the estimate

hp < hy < Chi (see (19), case Ry = 0) yields
, 2
hel VUL, o) < Clok*he (52)

for all triangles T' € D), , i € {1,2}.
The estimate for the norm ”U}%H%Q’I/Q () (cf. (47)) can be derived by analogy to the afore-
mentioned estimates. In this way we obtain

_ i 22
hip [0k N1L, 4y < CloRl*h (53)

Case 2: We consider T' € D;.h, i € {1,2} and j # 0. Then, the triangle has a positive
distance to the singular corner and, consequently, s;, € H? /Q(T) holds. Moreover, according

to [15, Theorem 2] (applied to v := Vu}) , we obtain

Ikl oy < C (BT ok By + 10kl oy Pkl ).

Owing to si, € H12/2(T), this yields together with [15, Lemma 4] and [17, Lemma 6.2]:

HVUIZ;”%QJ/Q(F) <cC (h;lh%|82|§{12/2(T) + hT|SZ|?{12/2(T)) < ChT‘SZﬁ{f/Q(T)-

Owing to the boundedness of the weighting factor r, the seminorm |-| H2,,(T) Can be replaced

by | - |m2r). Taking into account hp < hp and summing up over all triangles T € D;h
(j=1,....n;i € {1,2}) satisfying T'NT # () we obtain with the help of [12, Ineq. (4.18)]:

R;
S 3 el Vel e SO S Blstle o < CloE S A / (1 + @) dR, (54)
Jj=1 Feg;';: j=1T6D§h; j=1 B
TFED;:h TAT#D -1
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with R, | == R;y (j =2,...,n), R; := R, +e7'hj (g1 from (20); j =1,...,n) and &, =
D1 (R, \ k) = RP3(B2R? + k*RY) e 2MR  §y = @y (R, N\, k) := R3¢ 2R ¢f [12, Proof
of Lemma 4.2]. For estimating the integral on the right-hand side of (54) we employ [12,
Ineq. (4.21), (4.22)]:

. R W T
3w / ®dR < CRAK[*?, kez\{0}, S A / ®ydR < CK*(h, ), k € Z, (55)
=g =t R,

with &2(h, i) from (43), which leads to

S sl ) < IO + k2, ). (56)

i=1 i
J TGDJ.M

TNL#Q

In order to derive a bound for the norm [lv |7, »(r) Occurring on the right-hand side
of (47), we use again [15, Theorem 2, Lemma 4] and [17, Lemma 6.2]. This yields

0412, iy < C (R AR, iy + Wkt IVl o)) < OB i,

and by means of inequalities analogous to (54), (55) we are led to

> D hetlulli,, ua < Clol (2R + £2(h, 1)) (57)

.]:1 TED;h:
TNT#Q

Finally, collecting inequalities (46), (52), (54), and (56) (resp. (47), (53), and (57)) we
obtain the assertion of Lemma 5. |

5 The Fourier-Nitsche-finite-element approximation
and convergence results in 3D

In order to define the Fourier-Nitsche-finite-element approximation of the solution to the
BVP (4) in 3D, we employ the space Vj,y depending on the parameters h and N,

Vin = {v: v(r, e, 2) :Z ven(r, 2) €™ with voy € Vap, ven € Wap, for 1 < |k| < N}, (58)
kI<N

with Vg, and W, from (22). Furthermore, by means of By, x(-, -) and Fj x(-) from (26) we
introduce the forms

By (u,v) =21 Y Bug(we,vp), Fi(v) =27 Fuplvw), (59)

Ik|<N k<N

for u,v € Xll/z(Ql) X XII/Q(QQ). Note that the decomposition of €, in 2D yields the
corresponding decomposition in 3D, with 7 := QJ x (—m, 7], j = 1,2. For treating the
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BVP in 3D, the combined Fourier-Nitsche-finite-element method is now defined by the
Galerkin approach

find upy € Vin such that B;]lv(uhN,UhN) = ]:}le(vhN) Yoy € Vin. (60)

By analogy to [15], we can state that the solution u,y to (60) is given by

uny = (upy, tpy)  with wly = Y u,(r,2) ™ for j=1,2, (61)
kI<N

where ug, = (u},,u?,) (k =0,=£1,...,+£N) can be calculated as the solution of the 2D prob-
lem (27). The Fourier-Nitsche-finite-element approximation u,y of u obviously depends
on h and N.

In order to derive estimates of the error u — uyyn, with u and u,y from (4) and (60),
respectively, we introduce for elements of the "broken’ space X/ /2((21) x X{ /2((22) a suitable

H'-like norm:

2
)13 1.0 = 2|U]|§}/2(Qj) + EZ; hy vt — 'U2||§(?/2(E><(77r,7r})7 (62)
J= €Ch

where the H'-seminorm part | - |X11/2(Qj) is defined by analogy to | - |X11/2(Q) at (3), and the
Ly-norm assigned to £ x (—m, ] C Q' N0 is determined by the completeness relation

|’UH§(§/2(Ex(—7r,n]) =21 Z Hka%Q,I/Q(E)- (63)
kEZ

It should be noted that we have uy,y € XII/Q(QI) X X11/2(§22) and, in general, u,y & X11/2(Q).

Now we are in a position to give the error estimate in the norm || - [|1 4.0.

Theorem 3 Assume that f € Ly(Q) (Q: azisymmetric domain) and that there is only
one reentrant edge on 8@, w 1s the solution of the BVP (4), upn its Fourier-Nitsche-finite-
element approximation on Vin. Then, under the assumptions of Theorem 2 the following
error estimate holds,

|u = upnll1n0 < C(k(h, 1) + Nﬁl)”f”xgm(sz) (64)
hi for A<pu<1
with k(h, ) = ¢ hlInh|z  for p =\
h for 0 < p <A

Clearly, relation (64) implies also the convergence upy — u as h — 0, N — oo. In
particular, h and N can be chosen independently from each other.

Proof: By means of the auxiliary function uy = (ul, u%) defined by

w = Z ul(r,z) e j=1,2, (65)
|k|<N
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we easily get
v —upnllipo < [Ju—un|lino + [[un — unn|l1n0 = S1+ Ss, (66)

where S7 and S5 denote the corresponding norm terms. We shall now find estimates of S
and Sy in terms of powers of h and N. According to (62) we have

E:ma_uNu1“m4—§:h,wu —uy = (0¥ =)k, (<)) (67)
j=1 Ee&y,

Owing to u — uy € X%/Q(Q), the first term on the right-hand side of (67) is equal to
lu—un|3 (- Further, by means of completeness relations from [11, Lemma 3.2] and the
1/2

following a priori estimate (see [11, Ineq. (4.4(c))])

Ouy, |12 Ouy, |12 uy ||
o[ + kQ{H H Iy }gc : 68
ol Z La1/2(Qa) La1/2(@a) 1Ly 00) 11,0 (68)
we get
0 0
=iy o =27 2 {5 5 +’CQH% J
1/2 La,1/2(Q0) Ly 1/2(82) Lo 1/2(82)
0 0 2
< 27N~ ZkQ{H Uk H Lk ] e } (69)
L3 1/2(a) L 1/2(Ra) T Ly 1/2(0)

|k|>
< CN?Q”.]CHX?/Q(Q)'

The second term on the right-hand side of (67) vanishes. This is clear by u!|gx(—rx =
U?| gy (—nx); the same holds for uj, u3,. This, together with (67) and (69) completes the
estimate for Si:

S1 < ON7! fllxo (o (70)

Using relation (63) we obtain for Sy the relation

2
83 = Z|UN uhN|X1 L(97) + Zh Hluy — gy — (U?V_u%zN)H,QX?/Q(Ex(fmﬂ)

7=1 Ee&;,
2
= 23 3 IV~ b, oy Rk =l ) (71)
J=1lk|<N
+ 27Tzh 1{ Z [y, — wgy, — (uj Uzh)”%mm(m}-
Ecé;, ‘k|<N

Changing the order of summation and applying (29) as well as Lemma 3 we are led to

Sy =21 ) llwe — wnnlli )
Ik[<N
< C{ Y o =Tl o, + 3 lwn = Pawkll g, + D llsk = Masill? s, |-
k|<1 2<|k|<N Ikl<N
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The first two terms on the right-hand side of this inequality can be estimated by means of
Theorem 2 and the last inequality in (14):

Mk = Thwillf g, + D llwe — Powsllh g, (73)
k<1 2<[k|<N
2 2 2 2 2 2 2 2
< Ch { > ||wk||Hf/2(Qa) + Yk ||wk||H11/2(Qa)}§ Ch ||w||Xf/2(Q) <Ch ||f||Xg/2(Q)v
k<N 2<[k|<N

such that it remains to find an estimate for the last term on the right-hand side of in-
equality (72). Here, relation (40) together with Lemmas 4 and 5 as well as estimate (13)
yields:

> sk = Mpselli o, < C D 102 (K3(h, 1) + R [K]*>Y) (74)
k| <N |k|<N
< CRA(hy ) D0 0P (L4 KPP < CR2 (o) Y IAIIZ, i) < CR2 (B i) o )
|k|<N |k|<N
Finally, the assertion of Theorem 3 can be concluded from (66), (70), and (72)-(74). W
The error estimate in the norm || - || X9,(%) is given in the next theorem.

Theorem 4 Let the assumptions of Theorem 3 be fulfilled. Then, for u and its approxi-
mation upy the following error estimate is satisfied:

|u — uhNHX‘1)/2(Q) < C(K(hy ) + N2 fll xo

1/2

where k2 (h, 1) is given by (43).
Proof: We consider the BVP (4) with u — uyy instead of f, i.e., find u® € V(£2) such that

b(u,v) = /(u — upn) Urdrdedz =: (u — uhN,v)X?/Q(Q) Vo € Vo(Q). (76)
Q

Owing to u — upy € X?/Q(Q) and to the assumptions on € (cf. Section 2), the solution u°
can be decomposed into a singular and a regular part as mentioned in Theorem 1. In order
to distinguish the decompositions of u and u®, we use in context with u® notations with
index e such as u¢ instead of us (and analogously: w®, s§, wg, and d5). By analogy to the
last inequality in (13) we have the estimate

1—

(1+ K3 7165 < M} (| (u — wnn )il 1oy for k € Z, (77)

where (v — upy )i denotes the kth Fourier coefficient of the error u — uy,y, i.e.

up —ugp, for |k <N
_ — 78
(= unx) { Ug for |k| > N. (78)
Moreover, we have the following decomposition (cf. also (6)) of the BVP (76):
k=0: find US € ‘/Oa . b()(ug,’l]) = ((u — uhN)(),’U)l/ZQa Yv € ‘/Oa’ ( )
79

ke Z\{0}: find u; € Wy : bi(uy,v) = (v — upn)i, 0)1/2,0, Vv € W
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Further, using the definition (26) of By x(-, -) and applying Green’s formula with the weight
r we obtain

B;Lk(uz, uk) = bk(uz,uk) Vk € 7. (80)
By means of (80), the completeness relation b(u®, u) = 27 > by(u, ug) (cf. [11, Lemma 4.1])
keZ
as well as (76) we are led to
21> B (uf, ur) = b(u®,u) = (u — upy, w)x0,0): (81)
keZ

This, together with |]u—uhNH§(?/2(Q) = (u—uhN,u—uhN)Xg/Q(Q) and (u—upN, Unn) x0, (@) =

1/2
271 > (= upN ) ks Ukh)1/2,0, = 27 Y Bpg(ug, ugn), cf. (28) and (79), yields
keZ kEZ

Ju — uhNH%(?/Q(Q) =27 <Z By, o (uy, ur) — Z By, 1o (g Ulch)) =2m Z By (u, (u — unn)k)-

keZ kez ez
(82)
Further we introduce the function
7 ~ j 1~ Myws + I, s¢ for |k| <1
W = ; ke with ag, =4 "k - - 83
UpN MZ:NUM<T’ z)e WIth Uy, { phwz + HhSZ for 2 < |/{;| <N, ( )

where II, and P, are taken from (30), (31). In the following, for |k| > N we set af,, = 0.
Owing to @f, € Van, G5, € Wan, 1 < |k] < N, we get by means of Lemma 1 (with
v 1= Uy): Bpog(ug — ugn, @5,) = 0 for 0 < |k] < N. Combining this with (59), (78), (82),
and (83) and using the symmetry of B, yields

=iy ) = 2 (D2 B, (= un)e) = D Busliigy (w—unn)e)) — (84)
kezZ |k|<N
= 271'(2 Bth(uz - szh, Uk — ukh) + Z Bth(uz, uk)> = 271'(51 + SQ)
k<N k>N

Employing the Holder and Cauchy—Schwarz inequalities, the terms occurring in the sum Sy
can be bounded as follows,

| Bp,k(ug, — U, up — upn)| < Cllug — tgpllng,0allur — Urnllngo, for [k] < N. (85)

In order to estimate the second factor in (85), we define the function @y, by analogy to ag,
in (83). Then, using the equivalence of the norms || - || 5.0, and || - [[14,x on the spaces V,p,
Wan as well as the inequality ||ugn — Gknl|1nk < ||ux — Ugnllnro, being analogous to [13,
estimate (22)], we arrive at

uk — wknllnka, < C(lluk — Ggnllnr0, + ks — Genlling) < Cllug — Grn||pg 0,- (86)

Owing to the definitions of uf, and @, both factors on the right-hand side of (85) can be
estimated by means of Theorem 2 and Lemmas 4, 5. Then we obtain

|Bhe(uy, — U, Up — Ugr)|

< C{hllwellmz @, + |0k]S (R ks &) HAllwill 52 . + 1061 (hy ky k) ) for [k <1,

|Bh, e (uy, — Uy, g — Ugn)|

< C{S(h, by wr) + |0|S (b, by 8)HD(h, b wf) + 65 S(h, i 1)} for 2 < [k| < N,
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with the abbreviations S(h, k, k) := (k2(h, )+ |k[*72*h*)V2 S (h, k, wi) = h(k?||wk || ()
—1/2\%a

+[Jwe |32 @ ))1/ 2 and analogously with w{ instead of wy,. Summing up these inequalities
1724

and using Holder’s inequality, completeness relations, the last inequality from (13) as well
as (77), we get for Sy from (84)

S < Ol o+ 520 I e, o)V oy + 2, = wnally(0)*

Now, employing the last inequality from (14) as well as the analogous estimate ||w®|| x2,@) <
Cllu— uhNHX%(Q) yields the following bound of Si:
S1 < Ok (h, )|l f xo

1/2

Q) (87)

In order to deal with the term S, from (84), we take (80), (79) (with v := wuy) and employ the
Cauchy—Schwarz and Holder inequalities as well as [11, Lemma 3.2] and the estimate (68)
to deduce that

So < Y Bualupw)l = Y bi(ufu)| = D (0= wnn)es w120,

@llu— uhNHX?/2

|k|>N |k|>N |k|>N
_ 1/2 1/2
< N2 = unildy ) (2 Kl ) (88)
|k|>N |k|>N

< CN~™ 2Hu—uhNHX0/2(Q 1 lxo

1/2

Finally, collecting (84), (87), and (88) yields the assertion of Theorem 4. |

6 Numerical results

For verifying the convergence rate of the Fourier-finite-element method with Nitsche mor-
taring on graded meshes, we consider the BVP —Ad = fin Q U= gon 9Q. The meridian
domain (), generating the axisymmetric domain Qis a pentagon with the vertices (0,0),
(2,0), (1,1), (2,2), and (0,2). The subdomains of Q, are given by: Q! = {(r,2) € Q,
z>1}and Q2 ={(r,2) € Q, : 2 < 1}, cf. also Figure 5. With the notation from Section 2
we deduce that the non-convex corner E, has the coordinates rp, = 1, 2z, = 1 and that
the angle of the reentrant edge of Qis 6y =

The data f and ¢ are chosen so that the solutlon of the BVP is:

o = " R sin(\)¥(p, R),

. (59)
U(p,R) = R—ln{4sinh2< >+4s1n ( )} Z% R cos ke,
k=1

where R, 0 are local polar coordinates with respect to E, (see Section 2) and A = I~ = %
The right-hand side g of the boundary condition satisfies § = 0 on that part of the boundary
where # = 0 or # = 6, holds. A complete homogenization of the boundary condition could

be done by applying a suitable cut-off function to .
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Near the reentrant edge the solution @ from (89) is equal to a non-tensor product singularity
function of the type (13), where the function ¥(y, R) is explicitly given by the limit of
the corresponding Fourier series. Using the complex form of the series at (13), the setting
S0 =0, 0, = |k| 7! for k € Z\{0} leads to the series and its limit at (89). In [12, Section 7],
the properties of the function W(p, R) are described in more detail.

For the experiments, meshes with the grading parameters u; = 1 (i.e. quasi-uniform
meshes) as well as 5 = 0.8\ = 0.533 according to Section 3 are used. Figure 5(a) shows
the initial mesh for g = 1. This mesh is refined globally by dividing each triangle into four
equal triangles such that the mesh parameters form a sequence {hq, ho, ...}, here for five
levels with h; 1 = 0.5h;, i = 1,2,3,4. The ratio of the number of mesh segments on the
mortar interface is given by 2 : 3. For the locally graded meshes we also employ five levels
hi, i =1,...,5, of triangulation. The mesh with y = s on the level h = h; is represented
in Figure 5(b).

For both types of meshes (i.e. 1 = uy and p = uy), the trace £} of the triangulation 7, of Q!
on the interface I" is taken to form the partition &,. The mortar parameters (cf. Section 3)
are chosen as follows: ay =1, ap = 0, and v = 10.

Furthermore, for the discretization with respect to N (the number of Fourier coefficients
for the approximate solution), we employ five levels V;, where N; = 8 and N;,; = 2 N; for
1=1,2,3,4 holds.

(@) 2 (b)

oy R

N AN N NN
0 1 2 r 0 1 2 r

Figure 5: Triangulation with grading parameters ;= 1 and g = 0.8\

For the approximate measuring of the convergence rates stated in (64) and (75), the hy-
pothesis for the tests is that

|u — UhN||X§/2(Q) ~ COh + CONT ju— upn||1,n,0 R cWprr 4 VN (90)

where u is associated with the solution u from (89) by relation (2), and wupy is its approx-
imate solution defined by (60). The parameters C’fi) and C’éi) (1 =0,1) are assumed to be
approximately constant for two consecutive levels of h and N.

First we investigate the convergence order with respect to the discretization parameter h.
Table 1 shows the observed o-values o,ps0(1) and ous1 () of the convergence orders oy
and o7 on meshes of the levels ho,..., hs with grading parameters p = p; (i = 1,2),
for fixed N = 64. According to Theorems 3 and 4, the expected convergence orders
are Oegpo(f1) = 2A & 1.33, Oepo(pte) = 2, Teapi(pt1) = A = 0.67, and oy 1(p2) = 1. We
can state that for u = pp the observed rates are slightly better than the expected ones,
and for p = s the observed rates are very close to the expected ones.
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level | 0ops0(ft1) | Tobs,0(ft2) | Tobs,1(41) | Tobs,1(ft2)
ho 1.51 2.05 0.74 1.06
hs 1.50 1.99 0.74 1.01
hy 1.47 1.96 0.73 1.00
hs 1.43 1.95 0.72 1.00

Table 1: Convergence orders on the levels h = hy, ... hs for u; = 1, s = 0.8\, and N = 64

For the purpose of testing the convergence order with respect to N, some computations
on the meshes of the level h = hs with the grading parameters p© = py, 4 = po and N
varying from N; to Nj are carried out. As predicted by theory (estimates (64) and (75)),
the observed values Tupso(ft), Tobs,1(ft) of the convergence orders 7y, 7 are nearly equal
(leading digits coincide) for different values u = 1, g = po of the mesh grading parameter.
Therefore, in Table 2 we represent the observed values 7,50, Tops,1 Without any dependence
on the grading parameter p. Comparing Tops o, Tops,i With the expected values 7..p0 =

level | Topso | Tobs
Ny 1.95 1.08
N, 2.05 1.13
N, 2.11 1.16
N; 2.14 1.21

Table 2: Convergence orders on the levels N = N, ..., N5 for h = hs

2, Tezp1 = 1 we establish that the observed convergence rates are slightly better than
the expected ones. This could be explained by the fact that the function ¥(p, R) (and,
consequently, the solution @) is more regular with respect to ¢ than in Theorems 1 and 3
required.

Thus, the numerical example illustrates that local refinement of the mesh with an ap-
propriate grading parameter is suited for improving the convergence order of the Fourier-
finite-element method combined with Nitsche mortaring when the solution of the BVP has
singularities. Especially, using meshes with a grading parameter p < XA (here, p = 0.8)),
we get the same convergence order as in case of a regular solution (see [15]).
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