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1 Introduction

For the efficient numerical treatment of boundary value problems (BVPs) in science and
engineering, domain decomposition methods are widely used. The Nitsche-finite-element
method as a mortar method enables the discretization of the BVP in the subdomains to
be done in an flexible way, e.g. in presence of non-matching meshes and discontinuities of
the finite element appproximation at the interface of domain decomposition, see e.g. [2, 3,
4, 9, 24].

Nevertheless, domain decomposition with non-matching meshes in 3D is, in general, much
more complicated and expensive than in 2D. In order to bound the effort, in [15] it was
proposed to take the Fourier method for reducing the dimension from 3D to 2D and to
combine it with the Nitsche-finite-element method for getting a domain decomposition
method in 3D, at least for domains Ω̂ ⊂ R

3 having a uniform extension in one direction,
like prismatic or axisymmetric domains.

Thus, in [15] this combined method was presented and investigated as a discretization

scheme for regular solutions û belonging to the Sobolev space H2(Ω̂) (Hs(Ω̂): the usual

Sobolev-Slobodetskĭı space, s real, H0 = L2). The requirement û ∈ H2(Ω̂) restricts the

geometry of the domain Ω̂ and the range of applicability of the method in real problems,
since reentrant edges of Ω̂ are excluded, in general.

In this paper we shall present the extension of the combined method to axisymmetric
domains with reentrant edges and weak regularity of the solution û ∈ H1+δ(Ω̂), δ > 1

2
,

caused by edge singularities of Ω̂. The approach is applied to the Dirichlet problem of the
Poisson equation, −∆û = f̂ in Ω̂, û = 0 on ∂Ω̂, where the axisymmetric domain Ω̂ ⊂ R

3 is
generated by rotation of the corresponding meridian domain Ωa about the x3-axis.

The combined method can be characterized as follows. The first component, the approx-
imating Fourier method (cf. [5, 7, 17, 18]) uses trigonometric polynomials of degree ≤ N
in one space direction, here with respect to the rotational angle ϕ ∈ (π,−π]. This yields
an approximate splitting of the 3D problem into 2N + 1 problems in 2D for the parameter
k = 0,±1, ...,±N . The solutions uk of these 2D problems are just the first 2N + 1 Fourier
coefficients of the solution û. The second component comprises the Nitsche-finite-element
discretization as a mortar method, cf. [1, 2, 9, 13, 14, 16, 21], for solving numerically the
2D problems on the meridian domain Ωa and approximating the Fourier coefficients uk.
Along the interface of the domain decomposition of Ωa, non-matching meshes as well as
discontinuities of the approximated solutions are admitted. Compared with the papers
cited previously, the differential operator depends now on the parameter k and has a more
general form. The method arising by combination of these two components was proposed
and investigated for regular solutions in [15].

The aim of this paper is to extend this new method to problems with singularities of the
solution generated by reentrant edges. The efficient numerical treatment of such BVPs
requires a careful representation of the edge singularity in 3D by the corresponding corner
singularities of the Fourier coefficients acting on the meridian domain Ωa in 2D. The weak
assumption f̂ ∈ L2(Ω̂) does not allow a tensor product representation of the edge singu-
larity function. So it will be necessary to apply a non-tensor product singularity function,
cf. [11, 12]. Furthermore, we employ a triangulation with shape regular triangles and piece-
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wise linear finite elements on the meridian domain Ωa, with a global mesh parameter h > 0.
In order to improve the rate of convergence under the influence of edge singularities, the
mesh is provided with a local grading near the reentrant corners on the boundary of Ωa.
Important properties of the approximation scheme in 3D are derived and, moreover, the
convergence uhN → u of the Nitsche-Fourier-finite element approximation uhN with respect
to N → ∞ and h → 0 is shown. In an H1-like norm and in the L2-norm, the convergence
rates on quasi-uniform meshes are proved to be of the type O(hλ +N−1) and O(h2λ +N−2),
respectively, where λ is the typical singularity exponent with 1/2 < λ < 1. Using an ap-
propriate local mesh grading near reentrant corners, the improved rates O(h + N−1) and
O(h2 + N−2) are derived. The results are valid in the important case when h and N are
chosen independently from each other (anisotropic discretization).

The paper is organized as follows. First we describe the BVP, its transformation into cylin-
drical coordinates, the corner singularities in 2D and a non-tensor product edge singularity
in 3D. Then the Nitsche mortaring for the domain decomposition of the meridian domain
Ωa in 2D is founded for weak regularity of the Fourier coefficients uk(r, z) of the solution
û. Using a mesh with grading for approximating corner singularities of uk(r, z), optimal
error estimates for the Nitsche-finite-element approximation of the Fourier coefficients are
derived. Finally, the combined method acting in 3D is presented and estimates of the error
u−uhN with respect to h → 0 and N → ∞ are given. A numerical example exhibiting an
edge singularity and the observed rates of convergence of the Nitsche-Fourier-finite-element
approximation are given.

2 Analytical framework

Let Ω̂ ⊂ R
3 be a bounded domain which is axisymmetric with respect to the x3-axis. The

part of the x3-axis contained in Ω̂ is denoted by Γ0. Then the set Ω̂ \ Γ0 is generated
by rotation of the corresponding plane meridian domain Ωa about the x3-axis. The set
Γa is defined by Γa := ∂Ωa \ Γ0, where ∂Ωa is the boundary of Ωa. In the following we
assume that Ωa is polygonally bounded. Further let Pi, i = 1, . . . , m (m: the total number
of corners of Ωa), denote the corners of the polygon Ωa such that P1, Pm ∈ Γ0 ∩ Γa,
cf. Figure 1. Then we require that for the interior angles β1, βm at the corners P1, Pm

holds: β1, βm < 0.72616π, i.e., the conical vertices of the three-dimensional domain Ω̂ do
not generate singularities at the x3-axis, cf. [5]. Since the treatment of reentrant corners
is to be done locally, we consider for the sake of simplicity only one reentrant corner, i.e.
βi > π holds for one index i ∈ {2, . . . , m− 1}. Thus, the axisymmetric domain Ω̂ has only
one reentrant edge, and several reentrant edges can be treated analogously.
Let Hs(X) (s ≥ 0, s real, H0 = L2) denote the usual Sobolev-Slobodetskĭı space of
functions defined on X. Subsequently we consider the Dirichlet problem for the Poisson
equation on Ω̂:

−∆û := −
3∑

i=1

∂2û

∂x2
i

= f̂ in Ω̂, û = 0 on ∂Ω̂, (1)

with f̂ ∈ L2(Ω̂). Since the domain Ω̂ is assumed to be axisymmetric, it is natural to employ
cylindrical coordinates r, ϕ, z (x1 = r cos ϕ, x2 = r sin ϕ, x3 = z), with ϕ ∈ (−π, π]. Then
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Figure 1: Meridian domain Ωa

we get one-to-one mappings: Ω̂ \ Γ0 → Ω := Ωa × (−π, π] and ∂Ω̂ \ Γ0 → Γa × (−π, π].

Consequently, for each function v̂(x) with x ∈ Ω̂ \ Γ0, the associated function v on Ω is
defined by

v(r, ϕ, z) := v̂(r cos ϕ, r sin ϕ, z). (2)

Using this, we can define spaces X l
1/2(Ω) of Sobolev-type of functions periodic with respect

to ϕ ∈ (−π, π] as follows: H l(Ω̂ \ Γ0) → X l
1/2(Ω) (l = 0, 1, 2). Since Γ0 is one-dimensional,

H l(Ω̂\Γ0) and H l(Ω̂) can be identified. The spaces X l
1/2(Ω) are equipped with the natural

norms and seminorms given by the relations

|u|Xl
1/2

(Ω) = |û|Hl(bΩ), ‖u‖Xl
1/2

(Ω) = ‖û‖Hl(bΩ), l = 0, 1, 2, (3)

with u, û related by (2). In [11, 17, 23] the spaces X l
1/2(Ω) are described in more detail.

According to (2), the variational formulation of (1) in cylindrical coordinates can be stated
as follows. Find u ∈ V0(Ω) := {u ∈ X1

1/2(Ω) : u|Γa×(−π,π] = 0} such that

b(u, v) = f(v) ∀v ∈ V0(Ω), (4)

with b(u, v) :=

∫

Ω

{∂u

∂r

∂v

∂r
+

1

r2

∂u

∂ϕ

∂v

∂ϕ
+

∂u

∂z

∂v

∂z

}
rdrdϕdz, f(v) :=

∫

Ω

f v rdrdϕdz.

For u(r, ϕ, z), u ∈ X1
1/2(Ω), (and for f(r, ϕ, z), f ∈ X0

1/2(Ω), resp.) we employ partial
Fourier analysis with respect to the rotational angle ϕ:

u(r, ϕ, z) =
∑

k∈Z

uk(r, z) eikϕ, uk(r, z) :=
1

2π

π∫

−π

u(r, ϕ, z) e−ikϕdϕ for k ∈ Z (5)

(Z = {0,±1,±2, . . .}; i2 = −1). Inserting (5) into (4) it can be shown that by means of
the forms

bk(uk, vk) =

∫

Ωa

{∂uk

∂r

∂vk

∂r
+

∂uk

∂z

∂vk

∂z
+

k2

r2
ukvk

}
rdrdz, fk(vk) =

∫

Ωa

fkvk rdrdz (k ∈ Z),
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the BVP (4) can be decomposed into a family of decoupled BVPs in 2D written in the
variational form as follows (see e.g. [5, 11, 17]):

k = 0 : find u0 ∈ V a
0 :={v ∈ H1

1/2(Ωa) : v|Γa = 0 } : b0(u0, w) = f0(w) ∀w ∈ V a
0 ,

(6)
k ∈ Z\{0} : find uk ∈ W a

0 :={v ∈ V a
0 : v ∈ L2,−1/2(Ωa)} : bk(uk, w) = fk(w) ∀w ∈ W a

0 .

It is well-known that the solutions uk (k ∈ Z) of (6) are the Fourier coefficients of u defined
by (5). In (6), H l

α(Ωa) (resp. L2,α(Ωa)) denote the following spaces of functions with power
weights rα (α real):

H l
α(Ωa) := {w = w(r, z) : rαDβw ∈ L2(Ωa), 0 ≤ |β| ≤ l} for l ∈ {0, 1, 2}; (7)

Dβw :=
∂|β|w

∂rβ1∂zβ2

, β = (β1, β2), |β| = β1 + β2; H0
α(Ωa) = L2,α(Ωa) .

The canonical scalar product and norm in L2,α(Ωa) are given by

(v, w)α,Ωa :=

∫

Ωa

vw̄ r2α drdz, ‖w‖L2,α(Ωa) :=
{∫

Ωa

|rα w|2 drdz
}1/2

. (8)

The spaces H l
α(Ωa), l ∈ {1, 2}, are provided with the seminorms and norms

|w|Hl
α(Ωa) :=

{∑

|β|=l

‖rαDβw‖2
L2(Ωa)

}1/2

, ‖w‖Hl
α(Ωa) :=

{∑

|β|≤l

‖rαDβw‖2
L2(Ωa)

}1/2

. (9)

Subsequently, these spaces, scalar products, and norms will also be used with Ωi
a (i = 1, 2)

instead of Ωa, where Ωi
a are subdomains of Ωa.

If uk (k ∈ Z) is sufficiently regular, the following differential equations and boundary
conditions for the Fourier coefficients uk correspond to the variational equations (6):

−
{∂2uk

∂r2
+

∂2uk

∂z2
+

1

r

∂uk

∂r

}
+

k2

r2
uk = fk in Ωa ∀k ∈ Z,

uk = 0 on Γa ∀k ∈ Z, uk = 0 on Γ0 ∀k ∈ Z\{0}. (10)

The boundary condition for u0 on Γ0 is formulated in the context of the variational problem.

Now we describe the regularity of the solutions uk (k ∈ Z) and u of the BVPs (6) and
(4), respectively. According to the abovementioned assumptions on the geometry of Ωa,

let Ea denote the corner of Ωa generating the reentrant edge of Ω̂. It is well-known that
the regularity of solutions of elliptic BVPs is a local problem. Therefore we introduce
local polar coordinates with respect to the non-convex corner Ea = (rEa , zEa) as follows:
r − rEa = R cos(θ + θr), z − zEa = R sin(θ + θr). Then we define some circular sector Ga

(see Figure 2) with the radius R′
0 and the angle θ0:

Ga := {(r, z) ∈ R
2 : 0 ≤ R ≤ R′

0, 0 ≤ θ ≤ θ0}, Ga := Ga \ ∂Ga, (11)

∂Ga: boundary of Ga. Consider also the domain Ĝ ∈ R
3 generated by rotation of Ga about

the x3-axis, with boundary ∂Ĝ. Then G := Ga × (−π, π] and ∂0G := ∂Ga × (−π, π] are
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Figure 2: Domain Ωa with the sector Ga

the images of Ĝ and ∂Ĝ in the (r, ϕ, z)-system. The spaces X l
1/2 and H l

α (l = 0, 1, 2; α

real) from (3), (7) can also be defined for G instead of Ω and Ga instead of Ωa. Owing to
the boundedness of the weighting factor r on the subdomain Ga, the norms on H l

α(Ga) are
equivalent to the norms on the usual Sobolev spaces H l(Ga), l = 0, 1, 2. Further we define
a smooth cut-off function η = η(r, ϕ, z) = η̃(R) with

0 ≤ η ≤ 1, η̃ ∈ C∞[0,∞), η̃ = 1 for 0 ≤ R ≤
R′

0

3
, η̃ = 0 for R ≥

2R′
0

3
.

Then, the regularity of the solution u to (4) can be characterized as follows.

Theorem 1 Assume f ∈X0
1/2(Ω) and that one edge is reentrant with the angle θ0 ∈ (π, 2π),

i.e., λ := π
θ0

satisfies 1
2

< λ < 1. Then the solution u to the BVP (4) can be represented by

u(r, ϕ, z) =
∑

k∈Z

uk(r, z) eikϕ =






us(r, ϕ, z) + w(r, ϕ, z) for 0 < R <
2R′

0

3
,

0 < θ < θ0

w(r, ϕ, z) otherwise in Ω.

(12)

The singular part us and its Fourier coefficients sk(r, z) satisfy the relations

us(r, ϕ, z) :=
∑

k∈Z

sk(r, z)eikϕ = ηRλ sin(λθ)Ψ(ϕ, R), Ψ(ϕ, R) :=
∑

k∈Z

δke
−|k|Reikϕ,

(13)
sk(r, z) := ηδke

−|k|RRλ sin(λθ), (1 + k2)
1−λ

2 |δk| ≤ M1‖fk‖L2,1/2(Ωa) for k ∈ Z,

and the regular part w fulfills

w(r, ϕ, z) =
∑

k∈Z

wk(r, z)eikϕ with wk ∈ H2
1/2(Ωa) for k ∈ Z,

(14)
w ∈ V0(Ω) ∩ X2

1/2(Ω), ‖w‖X2

1/2
(Ω) ≤ M2‖f‖X0

1/2
(Ω).

For the proof of this theorem, we refer to [11, Lemma 6.2 and Theorem 6.3] or [12, Theo-
rem 2.7].

The function us from (13) is called a non-tensor product singularity function since the
factor Ψ depends on both ϕ and R. In [11, Section 5], we have additionally a tensor product
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representation of the singularity of the solution to the BVP (4). But this representation

needs the additional assumption ∂lf
∂ϕl ∈ X0

1/2(G) (l = 1, 2). Since the non-tensor product

singularity function requires only f ∈ X0
1/2(Ω), we prefer that one in the present paper.

Clearly, if the domain Ω̂ has several reentrant edges, the singular part us in (12) is to be
replaced by a sum of the corresponding singular parts.

3 Nitsche mortaring on locally graded meshes in 2D

For the Nitsche-finite-element discretization (cf. also [2, 9, 13, 14, 21]) of the BVPs (6)
we shall need a subdivision of Ωa into subdomains. Throughout this paper we restrict
ourselves to the case of two subdomains Ω1

a, Ω2
a with

Ωa = Ω
1

a ∪ Ω
2

a, Ω1
a ∩ Ω2

a = ∅, Γ = Ω
1

a ∩ Ω
2

a,

and being polygonally bounded. We also introduce the ’broken’ spaces

Va := V 1
a × V 2

a , Wa := W 1
a × W 2

a , (15)

with V i
a = {w ∈ H1

1/2(Ω
i
a) : w|∂Ωi

a∩Γa
= 0 }, W i

a = {w ∈ V i
a : w ∈ L2,−1/2(Ω

i
a) } for i = 1, 2.

There are different cases regarding the position of the two subdomains: Figure 3(a) shows
the case ∂Ωi

a ∩ Γa 6= ∅ for i = 1, 2 as well as Γ ∩ Γ0 6= ∅ and in Figure 3(b) we have
∂Ω2

a ∩ Γa = ∅, Γ = ∂Ω2
a, and Γ∩ Γ0 = ∅. In view of the subdivision of Ωa we introduce the

restrictions vi := v|Ωi
a

of a function v on Ωi
a as well as the vectorized form v = (v1, v2), i.e.,

vi(x) = v(x) holds for x ∈ Ωi
a (i = 1, 2). It should be noted that for simplicity we use here

the same symbol v for denoting the function on Ωa as well as the vector (v1, v2).

(a) (b)

r

z

Γ0

6

-

Γ

Γa

Ω1

a

Ω2

a

Ea

r

z

Γ0

6

-
Γa

Γ

Ω2

a

Ω1

a

Figure 3: Meridian domain Ωa with subdomains Ω1
a, Ω2

a

Using this notation we deduce that for each k ∈ Z the solution of the BVP (10) is equivalent
to the solution of the following problem: Find (u1

k, u
2
k) such that

−
{∂2ui

k

∂r2
+

∂2ui
k

∂z2
+

1

r

∂ui
k

∂r

}
+

k2

r2
ui

k = fk in Ωi
a, i = 1, 2

ui
k = 0 on ∂Ωi

a ∩ Γa, ui
k = 0 on ∂Ωi

a ∩ Γ0 (only for k ∈ Z\{0}) (16)

∂u1
k

∂n1
+

∂u2
k

∂n2
= 0 on Γ, u1

k = u2
k on Γ
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are satisfied, where ni (i = 1, 2) denotes the outward normal to ∂Ωi
a ∩ Γ.

In order to define the finite-element discretization with non-matching meshes, we cover Ωi
a

(i = 1, 2) by a triangulation T i
h (i = 1, 2) consisting of triangles T (T = T ), where T 1

h

and T 2
h are independent of each other. Moreover, the compatibility of the nodes of T 1

h and
T 2

h along the mortar interface Γ = ∂Ω1
a ∩ ∂Ω2

a is not required, i.e., non-matching meshes
on Γ are admitted. Let h denote the mesh parameter of the triangulation Th := T 1

h ∪ T 2
h ,

with 0 < h ≤ h0 and sufficiently small h0. Take e.g. h = max{hT : T ∈ Th}, where hT

denotes the diameter of the triangle T . In the sequel, positive constants C occurring in
the inequalities are generic constants.
Throughout this paper we suppose that the following assumption on the triangulations T i

h

(i = 1, 2) is fulfilled.

Assumption 1

(i) For i = 1, 2, we have Ω
i

a = ∪T∈T i
h
T , and two arbitrary triangles T, T ′ ∈ T i

h (T 6= T ′)
are either disjoint or have a common vertex, or a common edge.

(ii) The mesh in Ω
i

a (i = 1, 2) is shape regular, i.e., the following relation holds:

hT

ρT

≤ C for any T ∈ T i
h and h : 0 < h ≤ h0 (ρT : radius of inscribed circle of T ).

(17)

Relation (17) means that the triangulations T i
h (i = 1, 2) do not have to be quasi-uniform

in general. The error of the finite element approximation shall be estimated on quasi-
uniform meshes (partially) as well as on meshes with appropriate local grading at the
reentrant corner. In [13], Nitsche-mortaring on meshes with local grading has been studied
for elliptic BVPs in two-dimensional domains with reentrant corners, but the type of the
corresponding singularity functions in 2D differs from the functions sk given by (13).
In order to provide a framework for graded meshes, we introduce the real grading param-
eter µ, 0 < µ ≤ 1, the grading function Ri (i = 0, 1, . . . , n) with some real constant b > 0,
and the step size hi for the mesh associated with layers [Ri−1, Ri] × [0, θ0] around Ea:

Ri := b(ih)
1

µ (i = 0, 1, . . . , n), hi := Ri − Ri−1 (i = 1, 2, . . . , n). (18)

Here n := n(h) denotes an integer of the order h−1, n := [βh−1] for some real β > 0 ([·]
means the integer part). We shall choose b and β such that 2

3
R′

0 < Rn < R′
0 holds, i.e. the

mesh grading is located within Ga from (11).
Using the step size hi (i = 0, 1, . . . , n) we define a mesh which is graded in the neighbour-
hood of the vertex Ea of the reentrant corner and quasi-uniform in the remaining part of the
domain Ωa. The triangulation Th is now characterized by the mesh size h, 0 < h ≤ h0, and
the grading parameter µ, with fixed µ: 0 < µ ≤ 1. The properties of Th are summarized
in the following assumption.

Assumption 2 Let the triangulation Th satisfy Assumption 1. Furthermore, Th is provided
with a grading around the vertex Ea of the reentrant corner such that hT := diam T depends

7



on the distance RT of T from Ea, RT := dist (T, Ea) := infP∈T |Ea − P |, in the following
way:

ρ1h
1

µ ≤ hT ≤ ρ−1
1 h

1

µ for T ∈ Th : RT = 0,

ρ2hR1−µ
T ≤ hT ≤ ρ−1

2 hR1−µ
T for T ∈ Th : 0 < RT < Rg, (19)

ρ3h ≤ hT ≤ ρ−1
3 h for T ∈ Th : Rg ≤ RT

with some constants ρi, 0 < ρi ≤ 1 (i = 1, 2, 3) and some real Rg, 0 < Rg < Rg < Rg,

where Rg, Rg are fixed and independent of h.

Here, Rg is the radius of the sector with mesh grading, and w.l.o.g. we may assume
Rg = Rn. The value µ = 1 yields a quasi-uniform mesh in the whole domain Ωa, i.e.

the relation
max

T∈T i
h

hT

min
T∈T i

h
ρT

≤ C (i = 1, 2) holds instead of (17). Owing to Assumption 2, the

asymptotic behaviour of hT is determined by the relations

ε1hj ≤ hT ≤ ε−1
1 hj for T ∈ Th : Rj−1 ≤ RT ≤ Rj (j = 1, 2, . . . , n),

(20)
ε2h ≤ hT ≤ ε−1

2 h for T ∈ Th : Rn ≤ RT ,

with 0 < εl ≤ 1 (l = 1, 2), and hj , Rj as well as n from (18). An example of a mesh with
local grading as described in Assumption 2 is given in Figure 4.

Figure 4: Locally graded mesh with parameter µ = 0.6

It should be noted that the total number of nodes of Th satisfying Assumption 2 is always
of the order O(h−2). In [13, 19, 20] related types of mesh grading are given.

In accordance with V i
a , W i

a from (15) introduce finite element spaces V i
ah, W i

ah of functions vi
h

on Ω
i

a:

V i
ah := { vi

h ∈ C(Ω
i

a) : vi
h ∈ P1(T ) ∀T ∈ T i

h , vi
h|∂Ωi

a∩Γa
= 0 },

(21)
W i

ah := { vi
h ∈ V i

ah and vi
h|∂Ωi

a∩Γ0
= 0 }, for i = 1, 2,

i.e. employ linear finite elements. It should be noted that w ∈ W i
a implies w|∂Ωi

a∩Γ0
= 0

(cf. [17]) so that we require this also for vi
h ∈ W i

ah. The finite element spaces Vah and Wah

of vectorized functions vh with components vi
h on Ωi

a are given by

Vah := V 1
ah × V 2

ah, Wah := W 1
ah × W 2

ah. (22)
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It should be noted that the functions vh in Vah and in Wah are in general not continuous
across Γ. Since we focus our interest on the treatment of edge singularities with non-
matching meshes, we restrict ourselves to the case that one endpoint of Γ coincides with
the vertex Ea of the reentrant corner (cf. Figure 3(a)).

Further we introduce some triangulation Eh of the mortar interface Γ by intervals E
(E = E), i.e., Γ = ∪E∈Eh

E. Let hE denote the diameter of E. We suppose that two
segments E, E ′ are either disjoint or have a common endpoint. A natural choice for the
triangulation Eh is Eh := E1

h or Eh := E2
h, where E1

h and E2
h denote the triangulations of Γ

defined by the traces of T 1
h and T 2

h on Γ, respectively:

E i
h := {E : E = ∂T ∩ Γ, if E is a segment, T ∈ T i

h } for i = 1, 2.

Subsequently we use real parameters α1, α2 with

0 ≤ αi ≤ 1 (i = 1, 2), α1 + α2 = 1. (23)

The asymptotic behaviour of the triangulations T 1
h , T 2

h and of Eh should be consistent on Γ
in the sense of the following assumption (cf. also [13, 14]).

Assumption 3

1. For E ∈ Eh and T ∈ T i
h with ∂T ∩E 6= ∅, i = 1 and i = 2, there are positive constants

C1 and C2 independent of hT , hE and h (0 < h ≤ h0) such that the following condition
is satisfied

C1hT ≤ hE ≤ C2hT . (24)

2. In the special case Eh := E i
h and αi := 1 (cf. (23)), where i = 1 or i = 2, for E ∈ Eh

and T ∈ T 3−i
h with ∂T ∩ E 6= ∅, instead of relation (24) the following condition is

required:
C1hT ≤ hE. (25)

Relation (24) means that the diameter hT of the triangle T touching the interface Γ at E
is asymptotically equivalent to the diameter of the segment E, i.e. the equivalence of hT ,
hE is required only locally. Condition (25) is weaker and admits even locally at Γ different
asymptotics of the triangles T1 ∈ T 1

h , T2 ∈ T 2
h : T1 ∩ T2 6= ∅.

In order to define the Nitsche-finite-element approximation of the solutions of the BVPs
(16), we introduce sesquilinear forms Bh,k(·, ·) and linear forms Fh,k(·), k ∈ Z. The def-
inition of Bh,k(·, ·) and Fh,k(·) is also given in [15] where the Fourier-Nitsche-finite ele-
ment approximation of the BVP (4) for regular solutions u ∈ X2

1/2(Ω) with Fourier coeffi-

cients uk ∈ H2
1/2(Ωa) has been studied (i.e. reentrant edges are not considered). It should

be noted that in comparison with the mortar methods in [2, 9, 13, 14, 21], we now have to
take into account the spaces with power weights rα as well as the Fourier parameter k.
For k ∈ Z\{0} and uh, vh ∈ Wah as well as for k = 0 and uh, vh ∈ Vah, resp., Bh,k(·, ·) and
Fh,k(·) are defined as follows:

Bh,k(uh, vh) :=
2∑

i=1

{
(∇ui

h,∇vi
h)1/2,Ωi

a
+ k2(ui

h, v
i
h)−1/2,Ωi

a

}
−

〈
α1

∂u1

h

∂n1

− α2

∂u2

h

∂n2

, v1
h − v2

h

〉

1/2,Γ
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−
〈

α1

∂v1

h

∂n1

− α2

∂v2

h

∂n2

, u1
h − u2

h

〉

1/2,Γ
+ γ

∑

E∈Eh

h−1
E (u1

h − u2
h, v

1
h − v2

h)1/2,E (26)

Fh,k(vh) :=
2∑

i=1

(f i
k, v

i
h)1/2,Ωi

a
.

Here, 〈·, ·〉1/2,Γ denotes the [H
1/2
1/2,∗(Γ)]′×H

1/2
1/2,∗(Γ)-duality pairing, with the space H

1/2
1/2,∗(Γ)

from [15, p.5], and (·, ·)1/2,E means the weighted L2,1/2(E) scalar product defined by
(u, v)1/2,E :=

∫
E

uvrds. Moreover, γ is a sufficiently large positive constant (the restriction
of γ will be given subsequently) and α1 as well as α2 are as in (23). For vh = (v1

h, v
2
h) ∈ Vah,

we have
∂vi

h

∂ni
|Γ ∈ L2,1/2(Γ). This will be used subsequently for evaluating 〈·, ·〉1/2,Γ by the

L2,1/2(Γ)-scalar product.
The Nitsche-finite-element approximations u0h = (u1

0h, u
2
0h) ∈ Vah and ukh = (u1

kh, u
2
kh) ∈

Wah, k ∈ Z\{0}, of the functions uk = (u1
k, u

2
k) are defined to be the solutions of the

equations

Bh,0(u0h, vh) = Fh,0(vh) ∀vh ∈ Vah ; Bh,k(ukh, vh) = Fh,k(vh) ∀vh ∈ Wah, k ∈ Z\{0}. (27)

We now summarize some important properties of the sesquilinear forms Bh,k(·, ·). The
following lemma states the consistency of the solutions uk (k ∈ Z) from (6) with the
variational equations (27).

Lemma 1 Let uk (k ∈ Z) be the solution of the BVPs (6). Then uk = (u1
k, u

2
k) satisfies:

Bh,0(u0, vh) = Fh,0(vh) ∀vh ∈ Vah; Bh,k(uk, vh) = Fh,k(vh) ∀vh ∈ Wah, k ∈ Z\{0}. (28)

Proof: For regular solutions uk ∈ H2
1/2(Ωa) of the BVPs (6), relations (28) are proved

in [15]. In our case, the singular part sk (see (13)) of uk satisfies sk ∈ H
3

2
+ε(Ωa) for

any ε ∈ (0, ε0), with sufficiently small ε0. From this we conclude uk ∈ H
3

2
+ε(Ωa) and

∂ui
k

∂ni
∈ L2,1/2(Γ), i = 1, 2. Since additionally ∆r,zuk :=

{
∂2uk

∂r2 + ∂2uk

∂z2 + 1
r

∂uk

∂r

}
∈ L2,1/2(Ωa)

holds, the proof of (28) is analogous to [15, Proof of Lemma 1].

In order to state the boundedness and ellipticity of the forms Bh,k(·, ·) we impose the
restriction γ > CI on the parameter γ from (26), where the constant CI is taken from the
estimate

∑

E∈Eh

hE

∥∥∥α1

∂v1

h

∂n1

− α2

∂v2

h

∂n2

∥∥∥
2

L2,1/2(E)
≤ CI

2∑

i=1

α2
i ‖∇vi

h‖
2
L2,1/2(Ωi

a) for vh ∈ Vah,

with α1, α2 from (23). This estimate is obtained from [15, Ineq. (24)] valid on shape-regular
meshes. Moreover, we shall need the weighted discrete norms ‖ · ‖1,h,k (k ∈ Z) defined by

‖vh‖
2
1,h,k :=

2∑

i=1

{
‖∇vi

h‖
2
L2,1/2(Ωi

a) + k2‖vi
h‖

2
L2,−1/2(Ωi

a)

}
+

∑

E∈Eh

h−1
E ‖v1

h − v2
h‖

2
L2,1/2(E). (29)
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Lemma 2 Let Assumptions 1-3 be satisfied for T i
h (i = 1, 2) and for Eh. Then there exists

a constant µ1 > 0 such that the following estimate holds,

|Bh,k(wh, vh)| ≤ µ1‖wh‖1,h,k‖vh‖1,h,k ∀wh, vh ∈ Wah, k ∈ Z\{0} (wh, vh ∈ Vah, k = 0, resp.).

If the constant γ in (26) is independent of h and k and fulfills γ > CI , then the inequality

Bh,k(vh, vh) ≥ µ2‖vh‖
2
1,h,k ∀vh ∈ Wah, k ∈ Z\{0} (vh ∈ Vah, k = 0, resp.)

holds with a positive constant µ2. The constants µ1, µ2 are independent of h and k.

For the proof we refer to [15, Proof of Theorem 1] which is also valid under weaker as-
sumptions on the mesh (shape regularity but not necessarily quasi-uniformity).

4 Error estimates in 2D

The aim of this section is to estimate the approximation error for solutions to BVPs in
2D. We have to take into account that we deal with a family of 2D problems depending
on the parameter k ∈ Z and with norms containing power weights rα, α ∈ {1, 2}, cf. Sec-
tion 2. In [17, 12, 23], an interpolation operator and a projection-interpolation operator
are employed to estimate the approximation error of the 2D solutions arising from the
decomposition of the BVP in 3D. Since we now consider the FEM with mortaring, these
operators have to be slightly adapted.

For estimating the approximation error for the regular part wk (see (14)) of the Fourier
coefficients uk with |k| ≤ 1, the interpolation operator Πh will be employed. It is now
defined as follows:

Πhwk := (Πhw
1
k, Πhw

2
k), (30)

where Πhw
i
k (i = 1, 2) denotes the usual Lagrange interpolant of wi

k in the space V i
ah.

The use of Πhwk for |k| ≥ 2 does not lead to optimal error estimates with respect to the
discretization parameters h and N−1, cf. [17]. Therefore, for wk with |k| ≥ 2 we shall apply
a projection-interpolation operator Ph (cf. also [8, 15, 17]) which is defined subsequently.
On the other hand, for estimating the approximation error for the singular part sk of the
Fourier coefficients uk we can employ the operator Πh from (30) (now with sk instead of wk)
for all k ∈ Z, without loss of optimality of the error estimate. For this estimate, we take
advantage of the fact that the singular part sk is explicitely known, see (13).

The projection-interpolation operator Ph is defined as follows (see [15, Section 5] for more
details):

Phuk := (P 1
hu1

k, P
2
hu2

k) with P i
hv :=

∑

Q∈Σi,⋆
h

vi
QΦi

Q, i = 1, 2. (31)

In (31), Σi,⋆
h denotes the set of all nodes Q ∈ T i

h with Q 6∈ (∂Ωi
a∩Γa) and T ∩Γ0 = ∅ for any

T ∈ T i
h having Q as vertex. Further, vi

Q is given by vi
Q := (P i

Qv)(Q) with the orthogonal

11



projection operator P i
Q :L2(S

i
Q) −→ P1(S

i
Q) defined by the relation (v − P i

Qv, p)L2(Si
Q) = 0

∀p ∈ P1(S
i
Q), and Φi

Q denotes Courant’s basis function associated with the node Q.

In addition to ‖ · ‖2
1,h,k at (29) and adapted to Bh,k(·, ·), we introduce the weighted mesh-

dependent norm ‖ · ‖h,k,Ωa:

‖v‖2
h,k,Ωa

:=
2∑

i=1

{
‖∇vi‖2

L2,1/2(Ωi
a) + k2‖vi‖2

L2,−1/2(Ωi
a) +

∑

E∈Eh

hE

∥∥∥αi
∂vi

∂ni

∥∥∥
2

1/2,E

}

(32)
+

∑

E∈Eh

h−1
E ‖v1 − v2‖2

L2,1/2(E)

for functions v satisfying v ∈ Va for k = 0, v ∈ Wa for k ∈ Z \ {0}, and ∂vi

∂ni
|Γ∈ L2,1/2(Γ)

for i ∈ {1, 2} : αi 6= 0.
The norm of the error uk − ukh (k ∈ Z) of the Nitsche finite-element approximation ukh

can be bounded by means of the norms of wk − P ∗wk (with P ∗wk := Πhwk for |k| ≤ 1,
P ∗wk := Phwk for |k| ≥ 2) and sk − Πhsk (k ∈ Z). This is stated in the following lemma.

Lemma 3 Let Assumptions 1-3 be satisfied for T i
h (i = 1, 2) and for Eh, moreover, let

γ > CI . Then the following estimates hold for the error uk −ukh (uk, ukh from (10), (27)):

‖uk − ukh‖1,h,k ≤ C (‖wk − Πhwk‖h,k,Ωa + ‖sk − Πhsk‖h,k,Ωa) for |k| ≤ 1
(33)

‖uk − ukh‖1,h,k ≤ C (‖wk − Phwk‖h,k,Ωa + ‖sk − Πhsk‖h,k,Ωa) for |k| ≥ 2,

with wk, sk from (14), (13).

Proof: We employ the representation uk = wk + sk (cf. Theorem 1) of the Fourier coeffi-
cients uk. Then, by means of Lemmas 1 and 2 and the linearity of the operator Πh, the proof
of the first inequality in (33) can be carried out by analogy to the proof of [13, Lemma 3].
In order to prove the second inequality in (33), we use the relation ‖v‖1,h,k ≤ ‖v‖h,k,Ωa

(cf. (29) and (32)) leading to

‖uk − ukh‖1,h,k = ‖wk + sk − ukh‖1,h,k (34)

≤ ‖wk − Phwk‖h,k,Ωa + ‖Phwk + Πhsk − ukh‖1,h,k + ‖sk − Πhsk‖h,k,Ωa.

Further, thanks to Lemmas 1 and 2 we obtain for the second term on the right-hand side
of (34):

‖Phwk + Πhsk − ukh‖
2
1,h,k ≤ µ−1

2 Bh,k(Phwk + Πhsk − ukh, Phwk + Πhsk − ukh)

= µ−1
2 Bh,k(Phwk + Πhsk − wk − sk, Phwk + Πhsk − ukh). (35)

Employing the Hölder and Cauchy–Schwarz inequalities we get the estimate

|Bh,k(Phwk + Πhsk − wk − sk, Phwk + Πhsk − ukh)|

≤ C ‖Phwk + Πhsk − wk − sk‖h,k,Ωa‖Phwk + Πhsk − ukh‖1,h,k.

This, together with (35) leads to

‖Phwk + Πhsk − ukh‖1,h,k ≤ C ‖Phwk + Πhsk − wk − sk‖h,k,Ωa, (36)
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and the second estimate in (33) is a consequence of (34) and (36).

Lemma 3 implies that we need estimates for the interpolation and projection-interpolation
errors of the regular part wk of uk as well for the interpolation error of the singular part sk.

First we give estimates for the error of the regular part.

Theorem 2 Let the Assumptions 1-3 be satisfied. Furthermore, for each F ∈ E i
h we require

that the triangle TF ∈ T i
h with TF ∩ Γ = F has at most one common point with Γ0. Then

for the regular parts wk of the Fourier coefficients uk of u, the following error estimate
holds:

‖wk − Πhwk‖h,k,Ωa ≤ Ch‖wk‖H2

1/2
(Ωa) for |k| ≤ 1, (37)

‖wk − Phwk‖h,k,Ωa ≤ Ch
{
k2‖wk‖

2
H1

−1/2
(Ωa) + ‖wk‖

2
H2

1/2
(Ωa)

}1/2

for |k| ≥ 2, (38)

where Πh and Ph are defined in (30) and (31), respectively.

Proof: Owing to wk ∈ H2
1/2(Ωa), k ∈ Z, the estimate (37) follows from [15, Theorem 3],

and the estimate (38) is a consequence of [15, Theorem 4].

For the error estimate of the singular part sk we introduce some notations. Let the subset
C0h of the triangulation Th be given by: C0h := {T ∈ Th : RT < Rn}, with RT := dist (T, Ea)
and Rn from (18), i.e. C0h consists of the triangles near the vertex Ea of the reentrant
corner. The set C0h can be decomposed into layers Djh (j = 0, 1, . . . , n) of triangles, such
that C0h := ∪n

j=0Djh holds:

D0h := {T ∈ Th : RT = 0}, Djh := {T ∈ Th : Rj−1 ≤ RT < Rj} for j = 1, . . . , n, (39)

where Rj is given in (18). Furthermore, we define for i = 1, 2 and j = 0, . . . , n: Di
jh :=

{T ∈ Djh : T ⊂ Ω
i

a}. According to 2
3
R′

0 < Rn < R′
0, the triangles T ∈ C0h are located

in Ga. The number nj of all triangles T ∈ Djh (j = 1, . . . , n) is bounded by C ·j, and
n0 < C holds for the number n0 of all triangles T ∈ D0h, cf. [12, 19].

Concerning the error norm of the singular part, we may write by means of (32):

‖sk − Πhsk‖
2
h,k,Ωa

:=
2∑

i=1

{
‖∇(si

k − Πhs
i
k)‖

2
L2,1/2(Ωi

a) + k2‖si
k − Πhs

i
k‖

2
L2,−1/2(Ωi

a)

(40)

+
∑

E∈Eh

hE

∥∥∥αi
∂(si

k − Πhsi
k)

∂ni

∥∥∥
2

1/2,E

}
+

∑

E∈Eh

h−1
E ‖s1

k − Πhs
1
k − (s2

k − Πhs
2
k)‖

2
L2,1/2(E).

In order to deal with the first two terms on the right-hand side of (40), we take into
account that the singular part sk, k ∈ Z, vanishes outside of the subdomain Ga given
by (11). Therefore, the norms on H l

α(Ga) (α real) are equivalent to the norms on the usual
Sobolev spaces H l(Ga). Moreover, let Gi

a (i = 1, 2) be defined by Gi
a := Ga ∩Ωi

a. Then we
have the following estimate.
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Lemma 4 Under the Assumptions 1-3 on the triangulation Th, the interpolation error
si

k − Πhs
i
k for the function si

k = sk|Ωi
a

(i = 1, 2), with sk from (13), satisfies the estimates

‖si
k − Πhs

i
k‖

2
L2(Gi

a) ≤ C |δk|
2

{
h2+2λ for k = 0

k−2h
2λ
µ + |k|−2λh2 for k ∈ Z \ {0},

(41)

|si
k − Πhs

i
k|

2
H1(Gi

a) ≤ C |δk|
2(κ2(h, µ) + |k|2−2λh2) for k ∈ Z, (42)

with κ2(h, µ) =






h
2λ
µ for λ < µ ≤ 1

h2| lnh| for µ = λ

h2 for 0 < µ < λ.

(43)

The proof of this lemma (with sk instead of si
k and Ga instead of Gi

a) is given by [12, Proof
of Lemma 4.2].

In the next lemma, we give estimates for the last two terms on the right-hand side of (40).

Lemma 5 Let the Assumptions 1-3 on the triangulation Th be satisfied. Then for the
interpolation error si

k − Πhs
i
k (k ∈ Z; i = 1, 2), the following estimates hold:

∑

E∈Eh

hE

∥∥∥αi
∂(si

k − Πhsi
k)

∂ni

∥∥∥
2

L2,1/2(E)
≤ C|αi|

2|δk|
2(κ2(h, µ) + |k|2−2λh2) (44)

∑

E∈Eh

h−1
E ‖si

k − Πhs
i
k‖

2
L2,1/2(E) ≤ C|δk|

2(κ2(h, µ) + |k|2−2λh2), (45)

where κ2(h, µ) is taken from (43).

It should be noted that the sums on the left-hand side of (44) (respectively (45)) could
be taken over E ∈ Eh : E ∩ Ga 6= ∅ instead of E ∈ Eh because the summands for E 6⊂ Ga

vanish.

Proof: For the sake of brevity we set vi
k := si

k − Πhs
i
k (i = 1, 2). By analogy to [15,

Eqs. (57), (58)] we may write

∑

E∈Eh

hE

∥∥∥αi
∂vi

k

∂ni

∥∥∥
2

L2,1/2(E)
≤ C|αi|

2
∑

F∈Ei
h

hF‖∇vi
k‖

2
L2,1/2(F ) for i ∈ {1, 2} : αi > 0, (46)

∑

E∈Eh

h−1
E ‖vi

k‖
2
L2,1/2(E) ≤ C

∑

F∈Ei
h

h−1
F ‖vi

k‖
2
L2,1/2(F ) for i = 1, 2, (47)

i.e. the summation over E ∈ Eh can be replaced by a summation over F ∈ E i
h, and

‖
∂vi

k

∂ni
‖L2,1/2(E) can be bounded by ‖∇vi

k‖L2,1/2(E).

For F ∈ E i
h, let TF be the triangle such that TF ∩ Γ = F . Since the functions sk vanish

outside of Ga, for proving inequalities (44), (45) it suffices to consider the triangles T = TF

with T ∈ C0h, where we distinguish two cases concerning the position of the triangle T .

Case 1: We suppose that T ∈ Di
0h, i ∈ {1, 2}, holds with Di

0h from (39). Taking into
account the estimate (46), we have to find a bound of ‖∇vi

k‖
2
L2,1/2(F ). Clearly, we have

‖∇vi
k‖

2
L2,1/2(F ) ≤ C(‖∇si

k‖
2
L2,1/2(F ) + ‖∇(Πhs

i
k)‖

2
L2,1/2(F ) )

(48)
≤ C(‖∇si

k‖
2
L2(F ) + ‖∇(Πhs

i
k)‖

2
L2(F ) ).
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We now use the explicit representation of the singular functions sk (see (13)) and get

‖∇si
k‖

2
L2(F ) =

∫

F

{∣∣∣
∂si

k

∂R

∣∣∣
2

+
1

R2

∣∣∣
∂si

k

∂θ

∣∣∣
2}

dR ≤ C|δk|
2

hF∫

0

(|k|2R2λe−2|k|R + R2λ−2e−2|k|R) dR.(49)

Since λ > 1
2

holds, the first term on the right-hand side of (49) (without the factor |δk|
2)

can be bounded as follows:

|k|2
hF∫

0

R2λe−2|k|RdR ≤ |k|2h2λ−1
F

hF∫

0

R e−2|k|RdR ≤ |k|2h2λ−1
F

Γ(2)

(2|k|)2
≤ Ch2λ−1

F , (50)

with the Gamma function Γ(·). The second term on the right-hand side of (49) (without
the factor |δk|

2) satisfies the estimate

hF∫

0

R2λ−2e−2|k|RdR ≤

hF∫

0

R2λ−2dR ≤ Ch2λ−1
F . (51)

Furthermore, by means of the properties of the linear interpolant Πhs
i
k we obtain

‖∇(Πhs
i
k)‖

2
L2(F ) ≤ C|δk|

2hF
2λ−1. This, together with (48)-(51), and with the estimate

hF ≤ hT ≤ Ch
1

µ (see (19), case RT = 0) yields

hF‖∇vi
k‖

2
L2,1/2(F ) ≤ C|δk|

2h
2λ
µ (52)

for all triangles T ∈ Di
0h, i ∈ {1, 2}.

The estimate for the norm ‖vi
k‖

2
L2,1/2(F ) (cf. (47)) can be derived by analogy to the afore-

mentioned estimates. In this way we obtain

h−1
F ‖vi

k‖
2
L2,1/2(F ) ≤ C|δk|

2h
2λ
µ . (53)

Case 2: We consider T ∈ Di
jh, i ∈ {1, 2} and j 6= 0. Then, the triangle has a positive

distance to the singular corner and, consequently, sk ∈ H2
1/2(T ) holds. Moreover, according

to [15, Theorem 2] (applied to v := ∇vi
k) , we obtain

‖∇vi
k‖

2
L2,1/2(F ) ≤ C

(
h−1

T |vi
k|

2
H1

1/2
(T ) + |vi

k|H1

1/2
(T ) |v

i
k|H2

1/2
(T )

)
.

Owing to sk ∈ H2
1/2(T ), this yields together with [15, Lemma 4] and [17, Lemma 6.2]:

‖∇vi
k‖

2
L2,1/2(F ) ≤ C

(
h−1

T h2
T |s

i
k|

2
H2

1/2
(T ) + hT |s

i
k|

2
H2

1/2
(T )

)
≤ ChT |s

i
k|

2
H2

1/2
(T ).

Owing to the boundedness of the weighting factor r, the seminorm |·|H2

1/2
(T ) can be replaced

by | · |H2(T ). Taking into account hF ≤ hT and summing up over all triangles T ∈ Di
jh

(j = 1, . . . , n; i ∈ {1, 2}) satisfying T ∩ Γ 6= ∅ we obtain with the help of [12, Ineq. (4.18)]:

n∑

j=1

∑

F∈Ei
h
:

TF ∈Di
jh

hF‖∇vi
k‖

2
L2,1/2(F ) ≤ C

n∑

j=1

∑

T∈Di
jh

:

T∩Γ 6=∅

h2
T‖s

i
k‖

2
H2

1/2
(T ) ≤ C|δk|

2
n∑

j=1

h2
j

Rj∫

Rj−1

(Φ1 + Φ2) dR, (54)
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with Rj−1 := Rj−1 (j = 2, . . . , n), Rj := Rj + ε−1
1 hj (ε1 from (20); j = 1, . . . , n) and Φ1 =

Φ1(R, λ, k) := R2λ−3(k2R2 + k4R4) e−2|k|R, Φ2 = Φ2(R, λ, k) := R2λ−3e−2|k|R, cf. [12, Proof
of Lemma 4.2]. For estimating the integral on the right-hand side of (54) we employ [12,
Ineq. (4.21), (4.22)]:

n∑

j=1

h2
j

Rj∫

Rj−1

Φ1dR ≤ Ch2|k|2−2λ, k ∈ Z \ {0},
n∑

j=1

h2
j

Rj∫

Rj−1

Φ2dR ≤ Cκ2(h, µ), k ∈ Z, (55)

with κ2(h, µ) from (43), which leads to

n∑

j=1

∑

T∈Di
jh

:

T∩Γ 6=∅

h2
T‖s

i
k‖

2
H2

1/2
(T ) ≤ C|δk|

2(h2|k|2−2λ + κ2(h, µ)). (56)

In order to derive a bound for the norm ‖vi
k‖

2
L2,1/2(F ) occurring on the right-hand side

of (47), we use again [15, Theorem 2, Lemma 4] and [17, Lemma 6.2]. This yields

‖vi
k‖

2
L2,1/2(F ) ≤ C

(
h−1

T ‖vi
k‖

2
L2,1/2(T ) + ‖vi

k‖L2,1/2(T ) ‖∇vi
k‖L2,1/2(T )

)
≤ Ch3

T |s
i
k|

2
H2

1/2
(T ),

and by means of inequalities analogous to (54), (55) we are led to

n∑

j=1

∑

T∈Di
jh

:

T∩Γ 6=∅

h−1
F ‖vi

k‖
2
L2,1/2(T ) ≤ C|δk|

2(h2|k|2−2λ + κ2(h, µ)). (57)

Finally, collecting inequalities (46), (52), (54), and (56) (resp. (47), (53), and (57)) we
obtain the assertion of Lemma 5.

5 The Fourier-Nitsche-finite-element approximation

and convergence results in 3D

In order to define the Fourier-Nitsche-finite-element approximation of the solution to the
BVP (4) in 3D, we employ the space VhN depending on the parameters h and N ,

VhN :=
{
v : v(r, ϕ, z) =

∑

|k|≤N

vkh(r, z) eikϕ with v0h∈Vah, vkh∈Wah for 1 ≤ |k| ≤ N
}

, (58)

with Vah and Wah from (22). Furthermore, by means of Bh,k(·, ·) and Fh,k(·) from (26) we
introduce the forms

BN
h (u, v) := 2π

∑

|k|≤N

Bh,k(uk, vk) , FN
h (v) := 2π

∑

|k|≤N

Fh,k(vk), (59)

for u, v ∈ X1
1/2(Ω

1) × X1
1/2(Ω

2). Note that the decomposition of Ωa in 2D yields the

corresponding decomposition in 3D, with Ωj := Ωj
a × (−π, π], j = 1, 2. For treating the
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BVP in 3D, the combined Fourier-Nitsche-finite-element method is now defined by the
Galerkin approach

find uhN ∈ VhN such that BN
h (uhN , vhN) = FN

h (vhN) ∀vhN ∈ VhN . (60)

By analogy to [15], we can state that the solution uhN to (60) is given by

uhN = (u1
hN , u2

hN) with uj
hN =

∑

|k|≤N

uj
kh(r, z) eikϕ for j = 1, 2, (61)

where ukh = (u1
kh, u

2
kh) (k = 0,±1, ...,±N) can be calculated as the solution of the 2D prob-

lem (27). The Fourier-Nitsche-finite-element approximation uhN of u obviously depends
on h and N .
In order to derive estimates of the error u − uhN , with u and uhN from (4) and (60),
respectively, we introduce for elements of the ’broken’ space X1

1/2(Ω
1)×X1

1/2(Ω
2) a suitable

H1-like norm:

‖v‖2
1,h,Ω :=

2∑

j=1

|vj|2X1

1/2
(Ωj) +

∑

E∈Eh

h−1
E ‖v1 − v2‖2

X0

1/2
(E×(−π,π]), (62)

where the H1-seminorm part | · |X1

1/2
(Ωj) is defined by analogy to | · |X1

1/2
(Ω) at (3), and the

L2-norm assigned to E × (−π, π] ⊂ Ω
1
∩ Ω

2
is determined by the completeness relation

‖v‖2
X0

1/2
(E×(−π,π]) := 2π

∑

k∈Z

‖vk‖
2
L2,1/2(E). (63)

It should be noted that we have uhN ∈ X1
1/2(Ω

1)×X1
1/2(Ω

2) and, in general, uhN 6∈ X1
1/2(Ω).

Now we are in a position to give the error estimate in the norm ‖ · ‖1,h,Ω.

Theorem 3 Assume that f̂ ∈ L2(Ω̂) ( Ω̂: axisymmetric domain) and that there is only

one reentrant edge on ∂Ω̂, u is the solution of the BVP (4), uhN its Fourier-Nitsche-finite-
element approximation on VhN . Then, under the assumptions of Theorem 2 the following
error estimate holds,

‖u − uhN‖1,h,Ω ≤ C(κ(h, µ) + N−1)‖f‖X0

1/2
(Ω) (64)

with κ(h, µ) =






h
λ
µ for λ < µ ≤ 1

h| lnh|
1

2 for µ = λ

h for 0 < µ < λ.

Clearly, relation (64) implies also the convergence uhN → u as h → 0, N → ∞. In
particular, h and N can be chosen independently from each other.

Proof: By means of the auxiliary function uN = (u1
N , u2

N) defined by

uj
N =

∑

|k|≤N

uj
k(r, z) eikϕ j = 1, 2, (65)
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we easily get

‖u − uhN‖1,h,Ω ≤ ‖u − uN‖1,h,Ω + ‖uN − uhN‖1,h,Ω =: S1 + S2, (66)

where S1 and S2 denote the corresponding norm terms. We shall now find estimates of S1

and S2 in terms of powers of h and N . According to (62) we have

S2
1 =

2∑

j=1

|uj − uj
N |

2
X1

1/2
(Ωj) +

∑

E∈Eh

h−1
E ‖u1 − u1

N − (u2 − u2
N)‖2

X0

1/2
(E×(−π,π]). (67)

Owing to u − uN ∈ X1
1/2(Ω), the first term on the right-hand side of (67) is equal to

|u−uN |
2
X1

1/2
(Ω)

. Further, by means of completeness relations from [11, Lemma 3.2] and the

following a priori estimate (see [11, Ineq. (4.4(c))])

‖u0‖
2
V a
0

+
∑

|k|>N

k2
{∥∥∥

∂uk

∂r

∥∥∥
2

L2,1/2(Ωa)
+

∥∥∥
∂uk

∂z

∥∥∥
2

L2,1/2(Ωa)
+ k2

∥∥∥
uk

r

∥∥∥
2

L2,1/2(Ωa)

}
≤ C‖f‖2

X0

1/2
(Ω) (68)

we get

|u − uN |
2
X1

1/2
(Ω) = 2π

∑

|k|>N

{∥∥∥
∂uk

∂r

∥∥∥
2

L2,1/2(Ωa)
+

∥∥∥
∂uk

∂z

∥∥∥
2

L2,1/2(Ωa)
+ k2

∥∥∥
uk

r

∥∥∥
2

L2,1/2(Ωa)

}

≤ 2πN−2
∑

|k|>N

k2
{∥∥∥

∂uk

∂r

∥∥∥
2

L2,1/2(Ωa)
+

∥∥∥
∂uk

∂z

∥∥∥
2

L2,1/2(Ωa)
+ k2

∥∥∥
uk

r

∥∥∥
2

L2,1/2(Ωa)

}
(69)

≤ CN−2‖f‖2
X0

1/2
(Ω).

The second term on the right-hand side of (67) vanishes. This is clear by u1|E×(−π,π] =
u2|E×(−π,π]; the same holds for u1

N , u2
N . This, together with (67) and (69) completes the

estimate for S1:

S1 ≤ CN−1‖f‖X0

1/2
(Ω). (70)

Using relation (63) we obtain for S2 the relation

S2
2 =

2∑

j=1

|uj
N − uj

hN |
2
X1

1/2
(Ωj) +

∑

E∈Eh

h−1
E ‖u1

N − u1
hN − (u2

N − u2
hN)‖2

X0

1/2
(E×(−π,π])

= 2π
2∑

j=1

∑

|k|≤N

{
‖∇(uj

k − uj
kh)‖

2
L2,1/2(Ωj

a)
+ k2‖uj

k − uj
kh‖

2
L2,−1/2(Ωj

a)

}
(71)

+ 2π
∑

E∈Eh

h−1
E

{ ∑

|k|≤N

‖u1
k − u1

kh − (u2
k − u2

kh)‖
2
L2,1/2(E)

}
.

Changing the order of summation and applying (29) as well as Lemma 3 we are led to

S2
2 = 2π

∑

|k|≤N

‖uk − ukh‖
2
1,h,k (72)

≤ C
{ ∑

|k|≤1

‖wk − Πhwk‖
2
h,k,Ωa

+
∑

2≤|k|≤N

‖wk − Phwk‖
2
h,k,Ωa

+
∑

|k|≤N

‖sk − Πhsk‖
2
h,k,Ωa

}
.
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The first two terms on the right-hand side of this inequality can be estimated by means of
Theorem 2 and the last inequality in (14):
∑

|k|≤1

‖wk − Πhwk‖
2
h,k,Ωa

+
∑

2≤|k|≤N

‖wk − Phwk‖
2
h,k,Ωa

(73)

≤ Ch2
{ ∑

|k|≤N

‖wk‖
2
H2

1/2
(Ωa) +

∑

2≤|k|≤N

k2‖wk‖
2
H1

−1/2
(Ωa)

}
≤ Ch2‖w‖2

X2

1/2
(Ω) ≤ Ch2‖f‖2

X0

1/2
(Ω),

such that it remains to find an estimate for the last term on the right-hand side of in-
equality (72). Here, relation (40) together with Lemmas 4 and 5 as well as estimate (13)
yields:
∑

|k|≤N

‖sk − Πhsk‖
2
h,k,Ωa

≤ C
∑

|k|≤N

|δk|
2(κ2(h, µ) + h2|k|2−2λ) (74)

≤ Cκ2(h, µ)
∑

|k|≤N

|δk|
2(1 + |k|2−2λ) ≤ Cκ2(h, µ)

∑

|k|≤N

‖fk‖
2
L2,1/2(Ωa) ≤ Cκ2(h, µ)‖f‖2

X0

1/2
(Ω).

Finally, the assertion of Theorem 3 can be concluded from (66), (70), and (72)-(74).

The error estimate in the norm ‖ · ‖X0

1/2
(Ω) is given in the next theorem.

Theorem 4 Let the assumptions of Theorem 3 be fulfilled. Then, for u and its approxi-
mation uhN the following error estimate is satisfied:

‖u − uhN‖X0

1/2
(Ω) ≤ C(κ2(h, µ) + N−2)‖f‖X0

1/2
(Ω), (75)

where κ2(h, µ) is given by (43).

Proof: We consider the BVP (4) with u− uhN instead of f , i.e., find ue ∈ V0(Ω) such that

b(ue, v) =

∫

Ω

(u − uhN) v rdrdϕdz =: (u − uhN , v)X0

1/2
(Ω) ∀v ∈ V0(Ω). (76)

Owing to u − uhN ∈ X0
1/2(Ω) and to the assumptions on Ω (cf. Section 2), the solution ue

can be decomposed into a singular and a regular part as mentioned in Theorem 1. In order
to distinguish the decompositions of u and ue, we use in context with ue notations with
index e such as ue

s instead of us (and analogously: we, se
k, we

k, and δe
k). By analogy to the

last inequality in (13) we have the estimate

(1 + k2)
1−λ

2 |δe
k| ≤ M ′

1 ‖(u − uhN)k‖L2(Ωa) for k ∈ Z, (77)

where (u − uhN)k denotes the kth Fourier coefficient of the error u − uhN , i.e.

(u − uhN)k =

{
uk − ukh for |k| ≤ N

uk for |k| > N.
(78)

Moreover, we have the following decomposition (cf. also (6)) of the BVP (76):

k = 0: find ue
0 ∈ V a

0 : b0(u
e
0, v) = ((u − uhN)0, v)1/2,Ωa ∀v ∈ V a

0 ,
(79)

k ∈ Z\{0}: find ue
k ∈ W a

0 : bk(u
e
k, v) = ((u − uhN)k, v)1/2,Ωa ∀v ∈ W a

0 .
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Further, using the definition (26) of Bh,k(·, ·) and applying Green’s formula with the weight
r we obtain

Bh,k(u
e
k, uk) = bk(u

e
k, uk) ∀k ∈ Z. (80)

By means of (80), the completeness relation b(ue, u) = 2π
∑
k∈Z

bk(u
e
k, uk) (cf. [11, Lemma 4.1])

as well as (76) we are led to

2π
∑

k∈Z

Bh,k(u
e
k, uk) = b(ue, u) = (u − uhN , u)X0

1/2
(Ω). (81)

This, together with ‖u−uhN‖
2
X0

1/2
(Ω)

= (u−uhN , u−uhN)X0

1/2
(Ω) and (u−uhN , uhN)X0

1/2
(Ω) =

2π
∑
k∈Z

((u − uhN)k, ukh)1/2,Ωa = 2π
∑
k∈Z

Bh,k(u
e
k, ukh), cf. (28) and (79), yields

‖u − uhN‖
2
X0

1/2
(Ω) = 2π

(∑

k∈Z

Bh,k(u
e
k, uk) −

∑

k∈Z

Bh,k(u
e
k, ukh)

)
= 2π

∑

k∈Z

Bh,k(u
e
k, (u − uhN)k).

(82)
Further we introduce the function

ũe
hN :=

∑

|k|≤N

ũe
kh(r, z) eikϕ with ũe

kh =

{
Πhw

e
k + Πhs

e
k for |k| ≤ 1

Phw
e
k + Πhs

e
k for 2 ≤ |k| ≤ N,

(83)

where Πh and Ph are taken from (30), (31). In the following, for |k| > N we set ũe
kh = 0.

Owing to ũe
0h ∈ Vah, ũe

kh ∈ Wah, 1 ≤ |k| ≤ N , we get by means of Lemma 1 (with
vh := ũe

kh): Bh,k(uk − ukh, ũ
e
kh) = 0 for 0 ≤ |k| ≤ N . Combining this with (59), (78), (82),

and (83) and using the symmetry of Bh yields

‖u − uhN‖
2
X0

1/2
(Ω) = 2π

(∑

k∈Z

Bh,k(u
e
k, (u − uhN)k) −

∑

|k|≤N

Bh,k(ũ
e
kh, (u − uhN)k)

)
(84)

= 2π
(∑

k≤N

Bh,k(u
e
k − ũe

kh, uk − ukh) +
∑

k>N

Bh,k(u
e
k, uk)

)
=: 2π(S1 + S2).

Employing the Hölder and Cauchy–Schwarz inequalities, the terms occurring in the sum S1

can be bounded as follows,

|Bh,k(u
e
k − ũe

kh, uk − ukh)| ≤ C‖ue
k − ũe

kh‖h,k,Ωa‖uk − ukh‖h,k,Ωa for |k| ≤ N. (85)

In order to estimate the second factor in (85), we define the function ũkh by analogy to ũe
kh

in (83). Then, using the equivalence of the norms ‖ · ‖h,k,Ωa and ‖ · ‖1,h,k on the spaces Vah,
Wah as well as the inequality ‖ukh − ũkh‖1,h,k ≤ ‖uk − ũkh‖h,k,Ωa being analogous to [13,
estimate (22)], we arrive at

‖uk − ukh‖h,k,Ωa ≤ C(‖uk − ũkh‖h,k,Ωa + ‖ukh − ũkh‖1,h,k) ≤ C‖uk − ũkh‖h,k,Ωa. (86)

Owing to the definitions of ũe
kh and ũkh, both factors on the right-hand side of (85) can be

estimated by means of Theorem 2 and Lemmas 4, 5. Then we obtain

|Bh,k(u
e
k − ũe

kh, uk − ukh)|

≤ C {h‖wk‖H2

1/2
(Ωa) + |δk|S(h, k, κ)}{h‖we

k‖H2

1/2
(Ωa) + |δe

k|S(h, k, κ)} for |k| ≤ 1,

|Bh,k(u
e
k − ũe

kh, uk − ukh)|

≤ C {Σ(h, k, wk) + |δk|S(h, k, κ)}{Σ(h, k, we
k) + |δe

k|S(h, k, κ)} for 2 ≤ |k| ≤ N,
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with the abbreviations S(h, k, κ) :=(κ2(h, µ)+|k|2−2λh2)1/2, Σ(h, k, wk)=h(k2‖wk‖
2
H1

−1/2
(Ωa)

+‖wk‖
2
H2

1/2
(Ωa)

)1/2 and analogously with we
k instead of wk. Summing up these inequalities

and using Hölder’s inequality, completeness relations, the last inequality from (13) as well
as (77), we get for S1 from (84)

S1 ≤ C(h2‖w‖2
X2

1/2
(Ω) + κ2(h, µ)‖f‖2

X0

1/2
(Ω))

1/2(h2‖we‖2
X2

1/2
(Ω) + κ2(h, µ)‖u − uhN‖

2
X0

1/2
(Ω))

1/2.

Now, employing the last inequality from (14) as well as the analogous estimate ‖we‖X2

1/2
(Ω) ≤

C‖u − uhN‖X0

1/2
(Ω) yields the following bound of S1:

S1 ≤ Cκ2(h, µ)‖f‖X0

1/2
(Ω)‖u − uhN‖X0

1/2
(Ω). (87)

In order to deal with the term S2 from (84), we take (80), (79) (with v := uk) and employ the
Cauchy–Schwarz and Hölder inequalities as well as [11, Lemma 3.2] and the estimate (68)
to deduce that

S2 ≤
∑

|k|>N

|Bh,k(u
e
k, uk)| =

∑

|k|>N

|bk(u
e
k, uk)| =

∑

|k|>N

|((u − uhN)k, uk)1/2,Ωa |

≤ N−2
( ∑

|k|>N

‖(u − uhN)k‖
2
L2,1/2(Ωa)

)1/2( ∑

|k|>N

k4‖uk‖
2
L2,1/2(Ωa)

)1/2

(88)

≤ CN−2‖u − uhN‖X0

1/2
(Ω)‖f‖X0

1/2
(Ω).

Finally, collecting (84), (87), and (88) yields the assertion of Theorem 4.

6 Numerical results

For verifying the convergence rate of the Fourier-finite-element method with Nitsche mor-
taring on graded meshes, we consider the BVP −∆û = f̂ in Ω̂, û = ĝ on ∂Ω̂. The meridian
domain Ωa generating the axisymmetric domain Ω̂ is a pentagon with the vertices (0, 0),
(2, 0), (1, 1), (2, 2), and (0, 2). The subdomains of Ωa are given by: Ω1

a = {(r, z) ∈ Ωa :
z > 1} and Ω2

a = {(r, z) ∈ Ωa : z < 1}, cf. also Figure 5. With the notation from Section 2
we deduce that the non-convex corner Ea has the coordinates rEa = 1, zEa = 1 and that
the angle of the reentrant edge of Ω̂ is θ0 = 3π

2
.

The data f̂ and ĝ are chosen so that the solution of the BVP is:

û = r1.1Rλ sin(λθ)Ψ(ϕ, R),
(89)

Ψ(ϕ, R) = R − ln
{

4 sinh2
(

R

2

)
+ 4 sin2

(
ϕ

2

)}
=

∞∑

k=1

2

k
e−kR cos kϕ,

where R, θ are local polar coordinates with respect to Ea (see Section 2) and λ = π
θ0

= 2
3
.

The right-hand side ĝ of the boundary condition satisfies ĝ = 0 on that part of the boundary
where θ = 0 or θ = θ0 holds. A complete homogenization of the boundary condition could
be done by applying a suitable cut-off function to û.
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Near the reentrant edge the solution û from (89) is equal to a non-tensor product singularity
function of the type (13), where the function Ψ(ϕ, R) is explicitly given by the limit of
the corresponding Fourier series. Using the complex form of the series at (13), the setting
δ0 = 0, δk = |k|−1 for k ∈ Z\{0} leads to the series and its limit at (89). In [12, Section 7],
the properties of the function Ψ(ϕ, R) are described in more detail.
For the experiments, meshes with the grading parameters µ1 = 1 (i.e. quasi-uniform
meshes) as well as µ2 = 0.8λ ≈ 0.533 according to Section 3 are used. Figure 5(a) shows
the initial mesh for µ = µ1. This mesh is refined globally by dividing each triangle into four
equal triangles such that the mesh parameters form a sequence {h1, h2, . . .}, here for five
levels with hi+1 = 0.5 hi, i = 1, 2, 3, 4. The ratio of the number of mesh segments on the
mortar interface is given by 2 : 3. For the locally graded meshes we also employ five levels
hi, i = 1, . . . , 5, of triangulation. The mesh with µ = µ2 on the level h = h1 is represented
in Figure 5(b).
For both types of meshes (i.e. µ = µ1 and µ = µ2), the trace E1

h of the triangulation T 1
h of Ω1

a

on the interface Γ is taken to form the partition Eh. The mortar parameters (cf. Section 3)
are chosen as follows: α1 = 1, α2 = 0, and γ = 10.
Furthermore, for the discretization with respect to N (the number of Fourier coefficients
for the approximate solution), we employ five levels Ni, where N1 = 8 and Ni+1 = 2 Ni for
i = 1, 2, 3, 4 holds.

(a) (b)

r
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1

2

r
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Figure 5: Triangulation with grading parameters µ = 1 and µ = 0.8λ

For the approximate measuring of the convergence rates stated in (64) and (75), the hy-
pothesis for the tests is that

‖u − uhN‖X0

1/2
(Ω) ≈ C

(0)
1 hσ0 + C

(0)
2 N−τ0 , ‖u − uhN‖1,h,Ω ≈ C

(1)
1 hσ1 + C

(1)
2 N−τ1 , (90)

where u is associated with the solution û from (89) by relation (2), and uhN is its approx-

imate solution defined by (60). The parameters C
(i)
1 and C

(i)
2 (i = 0, 1) are assumed to be

approximately constant for two consecutive levels of h and N .
First we investigate the convergence order with respect to the discretization parameter h.
Table 1 shows the observed σ-values σobs,0(µ) and σobs,1(µ) of the convergence orders σ0

and σ1 on meshes of the levels h2, . . . , h5 with grading parameters µ = µi (i = 1, 2),
for fixed N = 64. According to Theorems 3 and 4, the expected convergence orders
are σexp,0(µ1) = 2λ ≈ 1.33, σexp,0(µ2) = 2, σexp,1(µ1) = λ ≈ 0.67, and σexp,1(µ2) = 1. We
can state that for µ = µ1 the observed rates are slightly better than the expected ones,
and for µ = µ2 the observed rates are very close to the expected ones.
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level σobs,0(µ1) σobs,0(µ2) σobs,1(µ1) σobs,1(µ2)

h2 1.51 2.05 0.74 1.06

h3 1.50 1.99 0.74 1.01

h4 1.47 1.96 0.73 1.00

h5 1.43 1.95 0.72 1.00

Table 1: Convergence orders on the levels h = h2, . . . h5 for µ1 = 1, µ2 = 0.8λ, and N = 64

For the purpose of testing the convergence order with respect to N , some computations
on the meshes of the level h = h5 with the grading parameters µ = µ1, µ = µ2 and N
varying from N1 to N5 are carried out. As predicted by theory (estimates (64) and (75)),
the observed values τobs,0(µ), τobs,1(µ) of the convergence orders τ0, τ1 are nearly equal
(leading digits coincide) for different values µ = µ1, µ = µ2 of the mesh grading parameter.
Therefore, in Table 2 we represent the observed values τobs,0, τobs,1 without any dependence
on the grading parameter µ. Comparing τobs,0, τobs,1 with the expected values τexp,0 =

level τobs,0 τobs,1

N2 1.95 1.08

N3 2.05 1.13

N4 2.11 1.16

N5 2.14 1.21

Table 2: Convergence orders on the levels N = N2, . . . , N5 for h = h5

2, τexp,1 = 1 we establish that the observed convergence rates are slightly better than
the expected ones. This could be explained by the fact that the function Ψ(ϕ, R) (and,
consequently, the solution û) is more regular with respect to ϕ than in Theorems 1 and 3
required.

Thus, the numerical example illustrates that local refinement of the mesh with an ap-
propriate grading parameter is suited for improving the convergence order of the Fourier-
finite-element method combined with Nitsche mortaring when the solution of the BVP has
singularities. Especially, using meshes with a grading parameter µ < λ (here, µ = 0.8λ),
we get the same convergence order as in case of a regular solution (see [15]).
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numérique, 16(4):405-461, 1982.

24



[18] B. Nkemzi, B. Heinrich. Partial Fourier approximation of the Lamé equations in
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