
Sonderforschungsbereich 393
Parallele Numerische Simulation für Physik und Kontinuumsmechanik

T. Eibner J.M. Melenk

Fast algorithms for setting up the stiffness

matrix in hp-FEM: a comparison

Preprint SFB393/05-08

Preprintreihe des Chemnitzer SFB 393

ISSN 1619-7178 (Print) ISSN 1619-7186 (Internet)

SFB393/05-08 June 2005

Abstract

We analyze and compare different techniques to set up the stiffness matrix in
the hp-version of the finite element method. The emphasis is on methods for sec-
ond order elliptic problems posed on meshes including triangular and tetrahedral
elements. The polynomial degree may be variable. We present a generalization of
the Spectral Galerkin Algorithm of [7], where the shape functions are adapted to the
quadrature formula, to the case of triangles/tetrahedra. Additionally, we study on-
the-fly matrix-vector multiplications, where merely the matrix-vector multiplication
is realized without setting up the stiffness matrix. Numerical studies are included.

Authors’ addresses:

Tino Eibner
TU Chemnitz
Fakultät für Mathematik
D-09107 Chemnitz
Germany

email: t.eibner@mathematik.tu-chemnitz.de

Jens Markus Melenk
Department of Mathematics
PO Box 220
Reading RG6 6AX
United Kingdom

email: j.m.melenk@reading.ac.uk

1

Contents

1 Introduction 3

2 Some key ideas illustrated in 2D 4

2.1 The idea of sum factorization . 4
2.2 Fast stiffness matrix generation in 2D . 5
2.3 Convergence properties . 8

2.3.1 Gauss-Lobatto and Gauss-Lobatto-Jacobi quadrature 8
2.3.2 Convergence analysis . 9

2.4 Overintegration . 10

3 Shape functions on triangles and tetrahedra 11

3.1 Duffy transformation . 11
3.2 Shape functions on T 2 and T 3 . 12

4 Approximation properties 16

5 Algorithms for setting up the element stiffness matrices 17

5.1 Standard algorithm . 17
5.2 Sum factorization . 18
5.3 Spectral Galerkin method . 19

6 Remarks on static condensation and precomputed arrays 22

6.1 Static Condensation . 22
6.2 Precomputed Arrays . 22

7 Matrix vector multiplication without setting up the element stiffness

matrix 23

7.1 Sum factorization . 23
7.2 Speeding up the matrix vector multiplication by spectral Galerkin ideas . . 27

8 Collection of numerical results 31

9 Conclusions 37

2

1 Introduction

The hp-version of the finite element method (hp-FEM) (see, e.g., the monographs [13, 12, 5]
and the references therein) as well as the closely related spectral method (see, e.g., the
survey article [1] and the references there) are well-established tools in computational
structural and fluid mechanics. Typically, the bulk of the alphanumerical cost in the
hp-FEM is in the numerical quadratures used to set up the stiffness matrix; this is in
sharp contrast to the standard low order FEM (h-FEM), where most of the computational
effort is spent on the solution of the resulting (linear) system. The present paper therefore
considers different techniques for the rapid computation of the stiffness matrix in high order
methods. As is standard in most FEM, all quadratures are done on a reference element
K̂, which, in 2D, is either the reference square or the reference triangle; in 3D, the most
important ones are the hexahedron, the tetrahedron, the prism, and the pyramid. Also
the shape functions are defined on the reference element. We will discuss the generation
of the element stiffness matrices for the following situation that is typical of scalar valued
second order elliptic equations:

(SK)ij := a(ψj , ψi), a(u, v) :=

∫

bK

(A(x)∇u) · ∇vdΩ, (1)

where the shape functions ψi ∈ Ψ := {ψi | i = 1, . . . , N} are given. The situation for vector
valued second order problems (e.g., linear elasticity) is very similar as is the case of lower
order terms, i.e.,

∫
bK

b(x)∇uv + c(x)uvdΩ for suitable functions b, c.

The typical procedure, especially in computational structural mechanics, is to set up the
element stiffness matrices SK of (1) for each element and then assemble them into the global
stiffness matrix. This assembly procedure is described, for example, in [3, 2, 12, 5, 11].
If the set Ψ of shape functions spans the space of polynomials of degree p, then the simplest
algorithm to compute the element stiffness matrix S has complexity O(p3d), where d is the

spatial dimension of reference element K̂: the number of elements in Ψ is O(pd) and O(pd)
quadrature points are needed to obtain a sufficiently accurate approximation of the inte-
grals defining the entries of SK . It appears to be S. Orszag [10] who first pointed out that

if the quadrature domain K̂ has product structure (i.e., if it is a square or a hexahedron)
and if the shape functions Ψ have product structure, then the computational cost can be
lowered to O(p2d+1) for setting up the element stiffness matrix and O(pd+1) to realize a
fast matrix-vector multiplication. This technique is called sum factorization. In the 1990s,
Karniadakis and Sherwin designed shape functions on triangles and tetrahedra that—after
transformation to the reference square/hexahedron via the Duffy transformation—again
have product structure. This insight then allowed them to extend the sum factorization
idea to triangles and tetrahedra and set up the stiffness matrix in complexity O(p2d+1)
also in this case. Since modern mesh generators typically create meshes consisting of tri-
angles/tetrahedra, this work of Karniadakis & Sherwin paved the way for the application
of fast high order methods in many applications, [5].

3

Using sum factorization, the O(p2d) entries of the stiffness matrix SK are generated with
work O(p2d+1). It is natural to ask whether the optimal complexity O(p2d) can be reached.
Indeed, by adapting the shape functions to the quadature formula, it is possible to lower
the complexity to O(p2d). This is was shown for squares and hexahedra in [7]. The present
paper generalizes some of these ideas to triangles and tetrahedra.

2 Some key ideas illustrated in 2D

2.1 The idea of sum factorization

The idea of sum factorization can be motivated by the following problem, which mimics
the computation of a mass or a stiffness matrix in 2D: Compute, for all double indices
(i1, i2), (j1, j2) ∈ {1, . . . , p}2 the field M with entries

M(i1,i2),(j1,j2) :=

q∑

k1=0

q∑

k2=0

ϕi1(k1)ψi2(k2)ϕ̃j1(k1)ψ̃j2(k2)g(k1, k2) (2)

where the functions ϕi, ψi, φ̃i, ψ̃i, and g are given. The naive evaluation of all entries of
M requires O(p4(1 + q)2) floating point operations. Since in our applications q = O(p), we
arrive at a total cost of O(p6) to compute the p4 entries of M . By rerranging the sums,
this work can be reduced:

M(i1,i2),(j1,j2) =

q∑

k1=0

ϕi1(k1)ϕ̃j1(k1)H(k1, i2, j2),

H(k1, i2, j2) :=

q∑

k2=0

ψi2(k2)ψ̃j2(k2)g(k1, k2).

(3)

The cost now is O((1 + q)2p2) to set up the auxiliary field H and then O(p4(1 + q)) to
perform the summation over k1. Thus, the total cost is O(p4(1+q)+p2(1+q)2). Assuming
again q = O(p), we arrive at a cost O(p5). We note that the key to the lowering of the
complexity from O(p6) to O(p5) is to exploit product structure. For a further lowering to
the optimal complexity O(p4), additional properties must hold. In our algorithms below,
we will adapt the shape functions to the quadrature formula employed. The analog of this
procedure in the present example of evaluating (2) corresponds to allowing some of the
sums to collapse to few terms: We define the set of relevant indices for the outer sum by

K1(i1, j1) := {k1 ∈ {0, . . . , q} |ϕi1(k1)ϕ̃j1(k1) 6= 0}

and note M(i1,j1),(i2,j2) =
∑

k1∈K1(i1,j1)
ϕi1(k1)ϕ̃j1(k1)H(k1, i2, j2). If we define by |K1| :=

max{#K1(i1, j1)| | (i1, j1) ∈ {1, . . . , p}2} the maximal number of relavant terms, then the
total cost to set upM is O((1+q)2p2)+O(|K1|p

4), which leads to the work bound O(|K1|p
4)

for q = O(p). If |K1| is bounded independently of p, then this represents a lowering of the

4

total complexity of the algorithm. We observe that we arbitarily chose in (3) to evaluate
the double sum defining M(i1,i2),(j1,j2) as the iterated sum

∑
k1

∑
k2

; equally well, we could
have summed

∑
k2

∑
k1

. This is of interest if |K1| is not bounded independently of p but
instead the set

K2(i2, j2) := {k2 ∈ {0, . . . , q} |ψi2(k2)ψ̃j2(k2) 6= 0}

is small for all (i2, j2). If |K2| (defined analogously to |K1|) is bounded independently of p,
then we arrive again at an O(p4) algorithm by switching the summation order in (2) and
evaluating M as

M(i1,i2),(j1,j2) =
∑

k2∈K2(i2,j2)

ϕi2(k2)ϕ̃j2(k2)H(k2, i1, j1),

H(k2, i1, j1) :=

q∑

k1=0

ψi1(k1)ψ̃j1(k1)g(k1, k2).

(4)

This example shows that it may be advantageous to carefully choose the summation order.
It will be an ingredient of the algorithms below, and we also refer to [7] for more details.

2.2 Fast stiffness matrix generation in 2D

We now illustrate how the abstract ideas of sum factorization can be employed in the
generation of stiffness matrices. We consider the case K̂ = T 2, where the reference triangle
T 2 is defined in Def. 3.1 below. The Duffy transformation D2 (see Def. 3.1 below) is a
bijection between the square Q2 = (−1, 1)2 and the triangle T 2. The change of variables
given by D2 allows us to write the integral a(u, v) in (1) is then written as

a(u, v)=

∫

Q2

(
∂η1 û

1 − η2
, ∂η2 û

)
· Â

(
∂η1 v̂

1−η2

∂η2 v̂

)
(1 − η2) dη1dη2,

û := u ◦D2, v̂ := v ◦D2, Â := A ◦D2

(5)

where we used the explicit formulas for D′
2 and detD′

2 given in Lemma 3.2. Since all
quadratures will be performed on Q2, it will be convenient to define the shape functions Ψ
only implicitly on T 2; instead, we will define them explicitly on Q2 as the set Φ and then
set Ψ := Φ ◦D−1

2 . To fix ideas and notation, we define the bilinear form â and the space

of polynomials Q̃p by

â(û, v̂) :=

∫

Q2

(
∂η1 û

1 − η2
, ∂η2 û

)
· Â

(
∂η1 v̂

1−η2

∂η2 v̂

)
(1 − η2) dη1dη2,

Q̃p := {u ∈ Qp | (∂η1u)|η2=1 = 0}, Qp := span{ηi
1η

j
2 | 0 ≤ i, j ≤ p}.

We note that the bilinear form â is well-defined on Q̃p because the polynomials û ∈ Q̃p are
constant on the line η2 = 1 so that the term 1

1−η2
∂η1 û, which seemingly has a singularity

at η2 = 1, is in fact smooth there.

5

The basis Ψ on K̂ is defined such that three goals are met: a) Ψ contains the space of
Pp of polynomial of degree p to ensure good approximation properties; b) Ψ leads to a
fast evaluation of the stiffness matrix SK ; c) Ψ allows for an easy assembly of the element
stiffness matrix SK into the global stiffness matrix. The last requirement effectively dictates
that the set Ψ consist of “external shape functions” (which are typically split further into
“vertex shape functions” and “edge shape functions”) and “internal shape functions”: the

internal shape functions vanish on ∂K̂ and the restriction to ∂K̂ of the external shape
functions coincides with standard choices. We will construct Ψ as Ψ = Ψexternal ∪Ψinternal,
where, Ψexternal is further split into Ψexternal = Ψvertex∪Ψedge. We will assume that standard
choices (e.g., those described in [12, 5]) for Ψvertex and Ψedges are made and that the number
of functions in Ψexternal is 3p. In particular, since the transformation D2 is polynomial and
due to the property of the Duffy transformation that the edge η2 = 1 of Q2 is mapped to
the single point (−1, 1) of T 2, we have that the transformed external shape functions are
polynomials of degree p that are constant on the edge η2 = 1, viz.,

Φexternal := Ψexternal ◦D2 ⊂ Q̃p.

We now seek the internal shape functions Ψinternal such that Φinternal := Ψinternal ◦D
−1
2 is

also a subset of Q̃p. In view of the fact that the quadrature is done on Q2, we define the
internal shape functions directly on Q2, i.e., we choose Φinternal and then set Ψinternal =
Φinternal ◦D

−1
2 . As a specific example, we take Φinternal as

Φinternal = {l
(1)
i (η1)l

(2)
j (η2) | 1 ≤ i, j ≤ p− 1},

where the functions l
(1)
i and l

(2)
j are Lagrange interpolation polynomials for point sets

−1 = ξ
(1)
0 < x

(1)
1 < · · · < ξ(1)

p = 1, −1 = ξ
(2)
0 < ξ

(2)
1 < · · · < ξ(2)

p = 1;

that is, the polynomials l
(1)
i , l

(2)
i are given by

l
(1)
i (x) =

p∏

j=0
j 6=i

x− ξ
(1)
j

ξ
(1)
i − ξ

(1)
j

, l
(2)
i (x) =

p∏

j=0
j 6=i

x− ξ
(2)
j

ξ
(2)
i − ξ

(2)
j

.

We note that Φinternal = {u ∈ Q̃p | u|∂Q2 = 0}. This in turn implies that the functions of
Ψinternal vanish on ∂T 2. A calculation (see, e.g., Lemma 3.8) reveals that together with
standard choices of Ψvertex, Ψedges (e.g., those described in [12, 5]) we get Ψvertex ∪Ψedges ∪
Ψinternal ⊃ Pp, which ensures that

S̃p := spanΨ (6)

has good approximation properties.
The splitting of the shape functions Ψ into external and internal ones induces a block
structure of the stiffness matrix SK :

SK =

(
SEE SEI

SIE SII

)
;

6

here the superscript E represents external shape functions and I internal ones. We now
illustrate how this choice of internal shape functions allows us to construct the stiffness
matrix SK in optimal complexity by showing how SII can be computed with work O(p4);
analogous calculations can be done for the other blocks. We define a tensor product
quadrature formula Sq by

Sq(g) :=

q∑

k=0

q∑

l=0

ω
(1)
k ω

(2)
l g(x

(1)
k , x

(2)
l) ≈

∫

Q2

g(η1, η2)(1 − η2)dη1dη2

and replace the integral in the definition of â by this quadrature formula. Then, the
entries of the matris SII are given by (we use double indices (i1, i2), (j1, j2) for notational
convenience)

SII
(i1,i2),(j1,j2)

=

q∑

k=0

q∑

l=0

ω
(1)
k ω

(2)
l

(
l′i1(x

(1)
k)

li2(x
(2)
l)

1 − x
(2)
l

, li1(x
(1)
k)l′i2(x

(2)
l)

)
Â(x

(1)
k , x

(2)
l)

 l′j1(x

(1)
k)

lj2 (x
(2)
l)

1−x
(2)
l

lj1(x
(1))
k l′j2(x

(2)
l)

 .

Remark 2.1. Below, we will be interested in the case that the 1D quadrature rules∑q
k=0 ω

(1)
k f(x

(1)
k),

∑q
l=0 ω

(2)
l f(x

(2)
l) are of Gauss-Lobatto and Gauss-Lobatto-Jacobi type.

For these quadrature rules, the endpoints ±1 are quadrature knots. Evaluating terms of the

form
l
(2)
i2

(x)

1−x
at x = 1 is then to be understood as taking the limit as x → 1. This is merely

a notational problem since the polynomials l
(2)
i2

, l
(2)
j2

vanish at the endpoints x± 1.

Upon expanding the matrix vector products inside the double sum we arrive at a sum
with 4 four terms. For the technique of sum factorization, all four terms can be treated
similarly. For example, for one of the “mixed” ones, we get

SII,mixed
(i1,i2),(j1,j2)

:=

q∑

k=0

q∑

l=0

ω
(1)
k ω

(2)
l l′i1(x

(1)
k)

li2(x
(2)
l)

1 − x
(2)
l

Â12(x
(1)
k , x

(2)
l)lj1(x

(1)
k)

l′j2(x
(2)
l)

1 − x
(2)
l

.

Using sum factorization techniques, the cost to evaluate all (p− 1)4 entries of SII,mixed is,

as seen above, O(p4(1+ q)+p2(1+ q)2). Up to now, the fact that the functions l
(1)
i , l

(2)
i are

Lagrange interpolation polynomials with respect to some points was not relevant. If we
choose the points {ξ

(1)
i | i = 0, . . . , p}, {ξ

(2)
i | i = 0, . . . , p} to be subsets of the quadrature

points, then the sets

{k ∈ {0, . . . , q} | li1(x
(1)
k) 6= 0}, {l ∈ {0, . . . , q} | li2(x

(2)
l) 6= 0},

have cardinality bounded by 1 + (q− p). Thus, from the above discussion, we see that the
cost to set up SII,mixed reduces to O(p2q2 + p4(1 + q− p)). In particular, if q = p+m for a
fixed m, we arrive at the desired optimal complexity O(p4). One way to proceed therefore

7

is to choose a quadrature formula with q = p+m and then to select from the quadrature
knots an appropriate subset for the definition of the Lagrange interpolation polynomials
l
(1)
i , l

(2)
i . A special case is that of q = p: then the choice of the quadrature formula dictates

uniquely the polynomials l
(1)
i , l

(2)
i .

Remark 2.2. If q > p, then the interpolation points ξ
(1)
i , ξ

(2)
i are not uniquely determined

and a selection has to be made. One possible criterion is the conditioning of the resulting
mass matrix; we refer to [7] where similar considerations were performed for selecting
points on squares and hexahedra.

2.3 Convergence properties

2.3.1 Gauss-Lobatto and Gauss-Lobatto-Jacobi quadrature

The use of quadrature formulas entails errors that need to be estimated. We will consider
quadrature formulas that are tensor products of Gauss-Lobatto and Gauss-Lobatto-Jacobi
quadrature rules. We note that this choice implies in particular that the endpoints x = ±1
are in fact quadrature points. More specifically, we take x

(1)
i = x

(GL)
i , i = 0, . . . , q, and

x
(2)
i = x

(GLJ)
i , i = 0, . . . , q, where the Gauss-Lobatto points −1 = xGL

0 < xGL
1 < · · · <

xGL
q = 1 are the zeros of the polynomial x 7→ (1 − x2)P

(1,1)
q−1 (x) and the Gauss-Lobatto-

Jacobi points −1 = xGLJ
0 < xGLJ

1 < · · · < xGLJ
q = 1 are the zeros of x 7→ (1 − x2)P

(2,1)
q−1 (x);

here, we employed the standard notation for the Jacobi polynomials P
(α,β)
q . It is possible to

find positive quadrature weights ωGL
i , ωGLJ

i (see, e.g., [5, Appendix B] for explicit formulas)
such that

q∑

i=0

ωGL
i f(xGL

i) =

∫ 1

−1

f(x) dx,

q∑

i=0

ωGLJ
i f(xGLJ

i) =

∫ 1

−1

f(x)(1 − x) dx ∀f ∈ P2q−1, (7a)

1

3

q∑

i=0

ωGL
i |f(xGL

i)|2 ≤

∫ 1

−1

|f(x)|2 dx ≤

q∑

i=0

ωGL
i |f(xGLJ

i)|2 ∀f ∈ Pq, (7b)

1

4

q∑

i=0

ωGLJ
i |f(xGLJ

i)|2 ≤

∫ 1

−1

|f(x)|2(1 − x) dx ≤

q∑

i=0

ωGLJ
i |f(xGLJ

i)|2 ∀f ∈ Pq.(7c)

We may then define the quadrature rule

Ŝq(g) :=

q∑

k=0

q∑

l=0

ωGL
k ωGLJ

l g(xGL
k , xGLJ

l) ≈

∫

Q2

g(η1, η2)(1 − η2) dη1dη2,

on the square Q2, which in turn defines a quadrature formula on T 2 via

Sq(g) := Ŝq(g ◦D2) ≈

∫

T 2

g(x, y) dx dy.

8

The bilinear form a(·, ·) of (1) may then be replaced with its discrete counterpart

aq(u, v) := Sq(∇u · A∇v).

The properties (7) of the Gauss-Lobatto and the Gauss-Lobatto-Jacobi quadrature allow
us to formulate a coercivity result for aq:

Theorem 2.3. Let K̂ = T 2, let A ∈ L∞(K̂) be a matrix-valued function x 7→ A(x) ∈ R
2×2

such that for each x ∈ T 2 the matrix A(x) is symmetric positive definite with 0 < λ ≤
A(x) ≤ Λ. Then

λ

12
‖∇u‖2

L2(T 2) ≤ aq(u, u) ≤ Λ‖∇u‖2
L2(T 2) ∀u such that u ◦D2 ∈ Q̃q.

We note that the shape functions Ψ defined above span a S̃p of the form considered in
Theorem 2.3. We also note that the case q = p is explicitly included.

2.3.2 Convergence analysis

The discrete coercivity result of Theorem 2.3 allows one to perform a quadrature analysis
based on the Strang lemma—we refer to, e.g., [6, 1, 8] where the details are elaborated. In
order to illustrate the kind of result that can be expected, we formulate how the optimal
algebraic rate of convergence of the p-version FEM is preserved. To that end, we consider
the model problem

∇ · (A(x)∇u) = f on Ω, u|∂Ω = 0 (8)

and let T be a triangulation (with element maps FK : T 2 → K) of a domain Ω ⊂ R
2; we

recall the definition of S̃p in (6). The approximation space Vp is obtained by assembling the

shape functions Ψ in the standard way, i.e., Vp = {u ∈ H1
0 (Ω) | u|K ◦ FK ∈ S̃p ∀K ∈ T }.

The fully discrete scheme consists of the finite element method for (8) with approximation
space Vp where all integrals are replaced with the quadrature formula Sq: Find up,q ∈ Vp

such that ∑

K∈T

Sq((∇up,qA∇v) ◦ FK) =
∑

K∈T

Sq((fv) ◦ FK) ∀v ∈ Vp. (9)

The following result illustrates that the presence of quadrature does not affect the rate of
convergence of the p-version:

Theorem 2.4. Let Ω ⊂ R
2 be a domain with piecewise analytic boundary. Let T be

a (fixed) triangulation with analytic element maps. Let the matrix A of (1) be analytic
on Ω and assume that 0 < λ ≤ A(x) ≤ Λ < ∞ for all x ∈ Ω. Let f be analytic on Ω.
Let u ∈ H1

0 (Ω) be the solution of (8) and up,q be the solution of (9). Then for q ≥ p the
approximation up,q exists and satisfies

‖u− up,q‖H1(Ω) ≤ C

{
inf

v∈Vp/2

‖u− v‖H1(Ω) + e−bp

}
,

where the constants C, b > 0 depend only on λ, Λ, Ω, the elements maps FK , and f .

9

Remark 2.5. The solution u of the elliptic boundary value problem in Theorem 2.4 has
singularities at the vertices of the curvilinear polygon Ω. This implies that the optimal
rate of convergene of the p-FEM (without quadrature errors) is algebraic. Corollary 2.4
states that the fully discrete scheme converges at athe same (algebraic) rate. If the solution
happens to be analytic, then the fully discrete scheme will also convergence at an exponential
rate.

2.4 Overintegration

We showed in Theorem 2.3 that even the minimial quadrature rule (i.e., the case q = p)
discussed above retains for scalar problems certain coercivity properties of the continuous
problem. However, the proof of Theorem 2.3 suggests that the coercivity constant of the
fully discrete scheme deteriorates in the presence of distorted meshes. Additionally, in the
case of non-affine meshes a corresponding analysis for vector-valued problems such as the
system of linear elasticity is, to the knowledge of the authors, missing. These are just
some reason why it is customary in computational structural mechanics to employ overin-
tegration, where the number of quadrature points q is strictly greater than the polynomial
degree p. Typically, q ∈ {p + 1, . . . , p + 4}. In this situation, it was proposed in [7] to fix
a quadrature order q and then select a subset of the quadrature points as the knots on
which to base the definition of the Lagrange interpolation polynomials. Some criteria on
which to base the selection of the points are discussed in [7] and could be extended to the
present situation. Nevertheless, the focus of the present paper is not the optimal choice of
the points. Instead, we concentrate on investigating whether adapting the shape functions
to the quadrature formula (and thereby reducing the complexity of setting up the stiffness
matrix) can compete with the use of standard shape functions such as those discussed in
[5]: We note that the number of internal shape functions proposed here is roughly twice
that of the standard choice for 2D problems and roughly six times that of standard choices
in 3D. Since in many hp-FEM implementations the internal shape functions are eliminated
on the element level by Gaussian elimination with work O(p3d), the savings achieved by
fast quadrature using enlarged sets of internal shape functions may be partially offset by
a cost increase in the static condensation.

We also mention that the shape functions that we study below differ slightly from those
discussed so far. Our reasons for the specific choice made below is that it ensures that
the second derivatives of the shape functions (on T d) are sufficiently smooth. This is
convenient, for example, if the element residual has to be computed in residual based error
estimation as proposed in [9].

10

Figure 1: Transformations D2 and D3

A B

C C

η1

η2

A
B

C

ξ1

ξ2
D

2

D
2

−1

ξ1

ξ2

ξ3

η1

η2
η3

D

A

B

C

A

B

D

C

C

D

D

D

D
3

D
−1

3

3 Shape functions on triangles and tetrahedra

3.1 Duffy transformation

The coefficient matrix A in (1) is often non-polynomial due to, for example, the use of
blending elements to capture non-polynomial geometries. In this situation, the entries
of SK cannot be evaluated exactly and numerical quadrature has to be employed. If
the reference element K̂ is the reference triangle or tetrahedron, then it is natural to
perform the quadrature on a square/hexahedron by a further transformation using the
Duffy transformation. The following definition formalizes these notions:

Definition 3.1 (reference elements). We define the triangle, tetrahedron, and the i-th
dimensional reference cube Qi by:

T 2 = {(x, y) | − 1 < x, y ∧ x+ y < 0},

T 3 = {(x, y, z) | − 1 < x, y, z ∧ x+ y + z < −1},

Qi = (−1, 1)i.

Lemma 3.2. The Duffy transformations D2, D3 are given by:

D2 : (η1, η2) 7→

(
1

2
(1 + η1)(1 − η2) − 1, η2

)
, (10)

D3 : (η1, η2, η3) 7→

(
1

4
(1 + η1)(1 − η2)(1 − η3) − 1,

1

2
(1 + η2)(1 − η3) − 1, η3

)
. (11)

Then

| detD′
2| =

(
1 − η2

2

)
, | detD′

3| =

(
1 − η2

2

)(
1 − η3

2

)2

and

T i = Di(Q
i), i = 2, 3.

11

If K̂ = T d, then the chain rule allows us to rewrite the integral (1) as follows:

a(u, v) =

∫

T d

(A(x)∇u) · ∇vdΩ =

∫

Qd

(
(∇u ◦Dd), Â(∇v ◦Dd)

)
| detD′

d|dΩ,

Â := (D′
d)

−1(A ◦Dd)(D
′
d)

−T .

(12)

Once the integration over T d is rewritten as an integration over Qd, we may employ stan-
dard tensor product quadrature techniques of Gauss, Gauss-Lobatto, or, more generally,
of Gauss-Jacobi-Lobatto type.

3.2 Shape functions on T 2 and T 3

The stiffness matrix SK is completely fixed once the shape functions Ψ are chosen. We will
discuss two different choices of this set Ψ below. Some key considerations that determine
the construction are:

• Since the quadrature over T d is reformulated as a quadrature over Qd in (12), it is
advantageous to define the shape functions explicitly as functions on Qd and thereby
only implicitly on T d by means of the Duffy transformation. In view of the fact that
sum factorization techniques will employed, the shape functions (as defined on Qd)
have product structure.

• In order to facilitate variable polynomial degree distributions in hp-FEM, a (possibly
different) polynomial degree is associated with each of the topological entities, i.e.,
each edge e, face f (in 3D), and the element has its own degree.

We will discuss two sets of shape functions. The first set Ψ(KS) is taken from [5] and contains
shape functions with a tensor product structure suitable for applying sum factorization.
The second set Ψ(Lag) is a modification of Ψ(KS) that contains shape functions where
the so-called internal shape functions are adapted to the quadrature rules. First some
abbreviations:

Abbreviations 3.3. Let

f1(x) :=

(
1 − x

2

)(
1 + x

2

)
, f2(x) :=

(
1 − x

2

)
, f3(x) :=

(
1 + x

2

)
.

Definition 3.4 (shape functions on T 2). Let T 2 be the reference triangle with vertices
A, B, C. Let p = (pAB, pAC, pBC , pK) be a degree vector with the understanding that
pAB is the polynomial degree associated with the edge AB etc. The value pK is the degree
associated with the element. For i = 1, 2 let Ni = {η

(i)
k |k = 1, .., pK − i} be a nodal set

with −1 < η
(i)
1 < . . . < η

(i)
PK−i < 1 and l

(Ni)
k the k-th Lagrange interpolation polynomial with

respect to Ni. Then we define

Ψ(KS) =

5⋃

B=0

Ψ
(KS)
B and Ψ(Lag) =

5⋃

B=0

Ψ
(Lag)
B ,

12

where

Ψ
(KS)
B := Φ

(KS)
B ◦D−1

2 =
{
φ ◦D−1

2 |φ ∈ Φ
(KS)
B

}
,

Ψ
(Lag)
B := Φ

(Lag)
B ◦D−1

2 =
{
φ ◦D−1

2 |φ ∈ Φ
(Lag)
B

}

and the sets ΦB are sets of functions defined on Q2 given by

Φ
(KS)
0 = Φ

(Lag)
0 = Φ0 := {f3(η2)} ,

Φ
(KS)
1 = Φ

(Lag)
1 = Φ1 := {f2(η1)f2(η2), f3(η1)f2(η2)} ,

Φ
(KS)
2 :=

{
f1(η1)f

p+1
2 (η2)P

(1,1)
p−1 (η1) | p = 1, . . . , pAB − 1

}
,

Φ
(Lag)
2 :=

{
f1(η1)f

2
2 (η2)P

(1,1)
p−1 (η1) | p = 1, . . . , pAB − 1

}
,

Φ
(KS)
3 = Φ

(Lag)
3 = Φ3 :=

{
f2(η1)f1(η2)P

(1,1)
q−1 (η2) | q = 1, . . . , pAC − 1

}
,

Φ
(KS)
4 = Φ

(Lag)
4 = Φ4 :=

{
f3(η1)f1(η2)P

(1,1)
q−1 (η2) | q = 1, . . . , pBC − 1

}
,

Φ
(KS)
5 :=

{
f1(η1)f1(η2)f

p
2 (η2)P

(1,1)
p−1 (η1)P

(2p+1,1)
q−1 (η2)

∣∣∣ 1 ≤ p ≤ pK − 2
1 ≤ q ≤ pK − p− 1

}
,

Φ
(Lag)
5 :=

{
f1(η1)f1(η2)f2(η2)Cpl

(N1)
p (η1)Cql

(N2)
q (η2)

∣∣ 1 ≤ p ≤ pK − 1
1 ≤ q ≤ pK − 2

}
,

where the constants Cp are scaling parameters.

Definition 3.5 (shape functions on T 3). Let T 3 be the reference tetrahedron and let p =
(pAB, . . . , pCD, pABC , . . . , pBCD, pK) be a degree vector. As in the 2D case, the subscripts
AB, . . . , BCD represent edges and faces of the tetrahedron T 3 with vertices A, B, C, D.
For i = 1, 2, 3 let Ni = {η

(i)
k |k = 1, .., pK −3} be a nodal set with and l

(Ni)
k the k-th Lagrange

interpolation polynomial with respect to Ni. Then we define

Ψ(KS) =
13⋃

B=0

Ψ
(KS)
B and Ψ(Lag) =

13⋃

B=0

Ψ
(Lag)
B ,

where

Ψ
(KS)
B := Φ

(KS)
B ◦D−1

3 =
{
φ ◦D−1

2 |φ ∈ Φ
(KS)
B

}

Ψ
(Lag)
B := Φ

(Lag)
B ◦D−1

3 =
{
φ ◦D−1

2 |φ ∈ Φ
(Lag)
B

}

13

and the sets ΦB are sets of functions defined on Q3 given by:

Φ
(KS)
0 = Φ

(Lag)
0 = Φ0 := {f3(η3)} ,

Φ
(KS)
1 = Φ

(Lag)
1 = Φ1 := {f3(η2)f2(η3)} ,

Φ
(KS)
2 = Φ

(Lag)
2 = Φ2 := {f2(η1)f2(η2)f2(η3), f3(η1)f2(η2)f2(η3)} ,

Φ
(KS)
3 = Φ

(Lag)
3 = Φ3 :=

{
f1(η1)P

(1,1)
p−1 (η1)f

p+1
2 (η2)f

p+1
2 (η3) | 1 ≤ p ≤ pAB − 1

}
,

Φ
(KS)
4 = Φ

(Lag)
4 = Φ4 :=

{
f2(η1)f1(η2)P

(1,1)
q−1 (η2)f

q+1
2 (η3) | 1 ≤ q ≤ pAC − 1

}
,

Φ
(KS)
5 = Φ

(Lag)
5 = Φ5 :=

{
f3(η1)f1(η2)P

(1,1)
q−1 (η2)f

q+1
2 (η3) | 1 ≤ q ≤ pBC − 1

}
,

Φ
(KS)
6 = Φ

(Lag)
6 = Φ6 :=

{
f2(η1)f2(η2)f1(η3)P

(1,1)
r−1 (η3) | 1 ≤ r ≤ pAD − 1

}
,

Φ
(KS)
7 = Φ

(Lag)
7 = Φ7 :=

{
f3(η1)f2(η2)f1(η3)P

(1,1)
r−1 (η3) | 1 ≤ r ≤ pBD − 1

}
,

Φ
(KS)
8 = Φ

(Lag)
8 = Φ8 :=

{
f3(η2)f1(η3)P

(1,1)
r−1 (η3) | 1 ≤ r ≤ pCD − 1

}
,

Φ
(KS)
9 = Φ

(Lag)
9 = Φ9 :=

{
f1(η1)P

(1,1)
p−1 (η1)f

p
2 (η2)f1(η2)P

(2p+1,1)
q−1 (η2)f

p+q+1
2 (η3)

∣∣∣

1 ≤ p ≤ pABC − 2, 1 ≤ q ≤ pABC − p− 1
}
,

Φ
(KS)
10 = Φ

(Lag)
10 = Φ10 :=

{
f1(η1)P

(1,1)
p−1 (η1)f

p+1
2 (η2)f1(η3)f

p
2 (η3)P

(2p+1,1)
r−1 (η3)

∣∣∣

1 ≤ p ≤ pABD − 2, 1 ≤ r ≤ pABD − p− 1
}
,

Φ
(KS)
11 = Φ

(Lag)
11 = Φ11 :=

{
f2(η1)f1(η2)P

(1,1)
q−1 (η2)f1(η3)f

q
2 (η3)P

(2q+1,1)
r−1 (η3)

∣∣∣

1 ≤ q ≤ pACD − 2, 1 ≤ r ≤ pACD − q − 1
}
,

Φ
(KS)
12 = Φ

(Lag)
12 = Φ12 :=

{
f3(η1)f1(η2)P

(1,1)
q−1 (η2)f1(η3)f

q
2 (η3)P

(2q+1,1)
r−1 (η3)

∣∣∣

1 ≤ q ≤ pBCD − 2, 1 ≤ r ≤ pBCD − q − 1
}
,

Φ
(KS)
13 :=

{
f1(η1)P

(1,1)
p−1 (η1)f1(η2)f

p
2 (η2)P

(2p+1,1)
q−1 (η2)f1(η3)f

p+q
2 (η2)P

(2p+2q+1,1)
r−1 (η3)

∣∣∣

1 ≤ p ≤ pK − 3, 1 ≤ q ≤ pK − p− 2, 1 ≤ r ≤ pK − p− q − 1
}
,

Φ
(Lag)
13 :=

{
f1(η1)Cpl

(1)
p (η1)f1(η2)f2(η2)Cql

(2)
q (η2)f1(η3)f

2
2 (η3)Crl

(3)
r (η3)

∣∣

1 ≤ p ≤ pK − 3, 1 ≤ q ≤ pK − 3, 1 ≤ r ≤ pK − 3
}
.

Here, the factor Cp is a scaling factor. We recall that the sets Φi define the shape functions
on Qd;

Remark 3.6. Restricted to the boundary ∂T d the shape functions of Ψ(Lag) and Ψ(KS) are
(up to possibly a scaling factor) identical. The major difference between these two sets lies

14

in the internal shape functions and the number of internal shape functions:

#INT(Φ(Lag)) =

{
(pK − 1)(pK − 2) : d = 2

(pK − 3)3 : d = 3
,

#INT(Φ(KS)) =

{
1
2
(pK − 1)(pK − 2) : d = 2

1
6
(pK − 1)(pK − 2)(pK − 3) : d = 3

.

Remark 3.7. Whereas in 3D, the functions Φ(KS) and Φ(Lag) differ only in the internal
shape functions, they differ (slightly) also in the edge shape functions associated with edge
AB in the 2D case. However, the restriction to ∂T 2 of these functions differs at most by
a scaling factor. Our reason for choosing these functions in Φ

(Lag)
2 is that the parameter p

is relevant for the η1-variable only, which allows us to simplify the implementation of the
spectral Galerkin algorithm below. Since for the 3-dimensional case such a simplification of
the structure cannot be obtained without changing the shape functions on ∂T 3 significantly,
we restrict our attention in the 3D case to modifying the internal shape functions.

The subdivision of the shape functions into different groups in Definition 3.4 and Defini-
tion 3.5 follows a standard pattern in hp-FEM. In the case of the triangle we have the
vertex shape functions ψ ∈ Ψ0 ∪ Ψ1, the edge shape functions ψ ∈ Ψ2 ∪ . . . ∪ Ψ4 and the
internal shape functions ψ ∈ Ψ5. For the tetrahedron we have the vertex shape functions
ψ ∈ Ψ0 ∪ . . . ∪ Ψ2, the edge shape functions ψ ∈ Ψ2 ∪ . . . ∪ Ψ8, the face shape functions
ψ ∈ Ψ9 ∪ . . . ∪ Ψ12 and the internal shape functions ψ ∈ Ψ13.

The following lemma collects the important properties of the shape functions:

Lemma 3.8. For d = 2, 3 let p(K) be the polynomial degree distribution of K ∈ T . Let
Ψ(KS) = Φ(KS) ◦D−1

d and Ψ(Lag) = Φ(Lag) ◦D−1
d be given by Definition 3.4 or Definition 3.5.

Denote by

Pp := span

{
d∏

i=1

xαi
i |αi ∈ N0,

d∑

i=1

αi ≤ p

}

the spaces of all polynomials of total degree p in d variables and set

Pp(T d) =

{ ψ ∈ PpK
(T d) | ψ|e ∈ Ppe(e) ∀e = edge of T 2} : d = 2{

ψ ∈ PpK
(T d)

∣∣∣∣
ψ|e ∈ Ppe(e) ∀e = edge of T 3

ψ|f ∈ Ppf
(f) ∀f = face of T 3

}
: d = 3

.

Then

1. The sets Ψ(KS) and Ψ(Lag) are sets of linearly independent functions.

2. Pp(T d) = span{ψ | ψ ∈ Ψ(KS)} ⊂ span{ψ | ψ ∈ Ψ(Lag)} =: Q̃p(T d).

3. All ψ ∈ Ψ(KS) are polynomial.

15

4. For arbitrary ψ = ψ(ξ) ∈ Ψ(Lag) and Dd : R
d → R

d : η 7→ ξ given by Lemma 3.2, the
functions [

∂ψ

∂ξi

]
◦Dd and

[
∂2ψ

∂ξi∂ξj

]
◦Dd

are polynomials for all i, j ∈ {1, .., d}.

Proof. The properties concerning Ψ(KS) are shown in [5]. The properties of Ψ(Lag) follow
by some calculations, the details of which can be found in [4].

Corollary 3.9. For d = 2, 3 let Ψ(KS/Lag) and Φ(KS/Lag) be given by Definition 3.4 or
Definition 3.5 respectively. Then the entries of the local stiffness matrix SK , given by (12),
can be computed as

(SK)ij =

∫

Qd

(
∇̃φj, Ĉ∇̃φi

)
| detD′

d|dΩ =

3∑

r,r′=1

∫

Qd

∇̃r′φjĈr′r∇̃rφi| detD′
d|dΩ

where

∇̃φ
(K)
i :=

[
1

(1−η2)
∂φ
∂η1
, ∂φ

∂η2

]T
: d = 2

[
1

(1−η2)(1−η3)
∂φ
∂η1
, 1

(1−η3)
∂φ
∂η2
, ∂φ

∂η3

]T
: d = 3

is polynomial and

Ĉ := M−1
d (A ◦Dd)M

−T
d , M−1

2 :=

[
2 2(1 + η1)
0 1

]
, M−1

3 :=

4 2(1 + η1) 2(1 + η1)
0 2 (1 + η2)
0 0 1

 .

4 Approximation properties

Lemma 3.8 implies that the space spanned by the Karniadakis-Sherwin shape functions is
contained in the space spanned by the Lagrange shape functions. For problems where the
FEM realizes an energy minimization this implies that the FEM based on the Lagrange
shape functions will have improved approximation properties. The following example il-
lustrates this effect.

Example 4.1. For Ω = T d let

−∆u = 1 on Ω and u = 0 on ∂Ω.

We apply the p-version FEM on a single element using both the sets Φ(KS) and Φ(Lag). The
results of our computations are shown in Figure 2. As expected, using Φ(Lag) reduces the
error significantly. The rate of convergence, however, cannot be expected to be improved
since both sets of shape functions rely on the approximation properties of polynomials.

16

Figure 2: Approximation properties (cf. Example 4.1)

10
1

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

H1−error − 2D

|u
*−

u p| H
1 (T

2)

polynomial degree

Lag shape functions
KS shape functions

10
1

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

H1−error − quadrature: q
i
=p

K
 − 3D

|u
*−

u p| H
1 (T

2)

polynomial degree

Lag
KS

5 Algorithms for setting up the element stiffness ma-

trices

Having several sets of shape functions in hand, we will consider different algorithms for
setting up the element stiffness matrix. We start with the most elementary one, which
applies a standard tensor product quadrature to each entry of SK separately.

5.1 Standard algorithm

For an arbitrary set of shape functions Ψ = {ψi | i = 1, . . . , N} on T d the standard
algorithm for setting up the element stiffness matrix reads:

Algorithm 5.1 (standard algorithm).

1. Choose quadrature rules

QR(i) = S(i) ×W (i) = {(η
(i)
0 , ω

(i)
0), . . . , (η(i)

qi
, ω(i)

qi
)},

which incorporate the det |D′
d| terms of (13) as weight functions (Gauss-Jacobi-Lobatto

quadrature) and set
QR = QR(1) × . . .× QR(d) .

2. Initialize SK = 0

3. For all (η(1), . . . , η(d)) ∈ S(1) × . . .× S(d) and corresponding weight (ω(1), . . . , ω(d)) do

SK [i][j]+ = ω(1) · . . . · ω(d)
(
∇̃(ψj ◦Dd), Ĉ∇̃(ψi ◦Dd)

)∣∣∣
(η(1) ,...,η(d))

∀ 1 ≤ i, j ≤ N.

17

5.2 Sum factorization

Considering Definition 3.4 and Definition 3.5 we observe that after transformation to the
reference cube, all of our shape functions φ = ψ ◦ Dd have a common tensor product
structure. For Ψ(KS) as well as for Ψ(Lag) we have

Ψ ◦D2 = Φ =

{
φ(B,k1,k2)(η1, η2) = g

(1)
B,k1

(η1)g
(2)
B,k1,k2

(η2)

∣∣∣∣
1 ≤ k1 ≤ K1(B)
1 ≤ k2 ≤ K2(B, k1)

}
(13)

for d = 2 and

Ψ ◦D3 = Φ =
{
φ(B,k1,k2,k3)(η1, η2, η3) = g

(1)
B,k1

(η1)g
(2)
B,k1,k2

(η2)g
(3)
B,k1,k2,k3

(η3)
∣∣∣

1 ≤ k1 ≤ K1(B), 1 ≤ k2 ≤ K2(B, k1), 1 ≤ k3 ≤ K3(B, k1, k2)
} (14)

for d = 3. Thus, since the components of ∇̃Φ are of the same structure, we obtain by
making use of sum factorization ideas the following algorithm of complexity O(p2d+1

K) for
setting up the element stiffness matrix. For d = 3 this algorithm reads:

Algorithm 5.2 (sum factorization 3D).

1. For i = 1, . . . , 3 choose quadrature rules

QR(i) = {(η
(i)
li
, ω

(i)
li

) | li = 0, . . . , qi}

which incorporate the det |D′
3| terms of (13).

2. For all 1 ≤ r ≤ 3 and 0 ≤ B ≤ 13 let

∇̃rΦB =
{
g̃

(1)
(B,r,k1)

(η1)g̃
(2)
(B,r,k1,k2)

(η2)g̃
(3)
(B,r,k1,k2,k3)

(η3)
∣∣∣

1 ≤ k1 ≤ K1(B), 1 ≤ k2 ≤ K2(B, k1), 1 ≤ k3 ≤ K3(B, k1, k2)
}

3. For 1 ≤ r ≤ 3, 0 ≤ B ≤ 13, 0 ≤ li ≤ qi, 1 ≤ k1 ≤ K1(B), 1 ≤ k2 ≤ K2(B, k1),
1 ≤ k3 ≤ K3(B, k1, k2) compute the auxiliary arrays

G(1)(B, r, k1, l1) = g̃
(1)
B,r,k1

(η
(1)
l1

)

G(2)(B, r, k1, k2, l2) = g̃
(2)
B,r,k1,k2

(η
(2)
l2

)

G(3)(B, r, k1, k2, k3, l3) = g̃
(3)
B,r,k1,k2,k3

(η
(3)
l3

)

4. For 1 ≤ r, r′ ≤ 3 and 0 ≤ li ≤ qi compute the auxiliary array

Ĉ(r′, r, l1, l2, l3) = Ĉ(r′,r)(η
(1)
l1
, η

(2)
l2
, η

(3)
l3

)

5. Initialize SK = 0

18

6. For 1 ≤ r, r′ ≤ 3 and 0 ≤ B,B′ ≤ 13 compute:

H(1)[k1, k
′
1, l3, l2] =

q1∑

l1=0

G(1)(B, r, k1, l1)G
(1)(B′, r′, k′1, l1)Ĉ(r′, r, l1, l2, l3)ω

(1)
l1
,

H(2)[k1, k
′
1, k2, k

′
2, l3] =

q2∑

l2=0

G(2)(B, r, k1, k2, l2)G
(2)(B′, r′, k′1, k

′
2, l2)H

(1)[k1, k
′
1, l3, l2]ω

(2)
l2
,

with

1 ≤ k1 ≤ K1(B), 1 ≤ k2 ≤ K2(B, k1), 1 ≤ k3 ≤ K3(B, k1, k2),

1 ≤ k′1 ≤ K1(B
′), 1 ≤ k′2 ≤ K2(B

′, k′1), 1 ≤ k′3 ≤ K3(B
′, k′1, k

′
2), 0 ≤ li ≤ qi.

SK [(B, k1, k2, k3)][(B
′, k′1, k

′
2, k

′
3)]

+ =

q3∑

l3=0

G(3)(B, r, k1, k2, k3, l3)G
(3)(B′, r′, k′1, k

′
2, k

′
3, l3)H

(2)[k1, k
′
1, k2, k

′
2, l3]ω

(3)
l3
,

for

1 ≤ k1 ≤ K1(B), 1 ≤ k2 ≤ K2(B, k1), 1 ≤ k3 ≤ K3(B, k1, k2),

1 ≤ k′1 ≤ K1(B
′), 1 ≤ k′2 ≤ K2(B

′, k′1), 1 ≤ k′3 ≤ K3(B
′, k′1, k

′
2).

Remark 5.3. The 2-dimensional version of Algorithm 5.2 can be obtained by the same
ideas as in the 3-dimensional case.

Remark 5.4. For each pair (B,B′) a separate quadrature rule could be chosen. In partic-
ular for blocks with low polynomial degree this might lead to further savings.

Remark 5.5. The precomputing of the shape functions and coefficient matrix in step 3 and
4 is done due to the fact that evaluations of the shape functions and coefficient matrix can
be very expensive, especially for large polynomial degrees or coefficients with a complicated
structure. The precomputations of step 3 and 4 lead to a considerable speed-up, since we
have to evaluate the shape functions and coefficient matrix just once for all quadrature
points.

Remark 5.6. It is not necessary to perform the precomputations of step 3 for each element
of a meshing T . Provided the quadrature rules depend only on the internal polynomial
degree and due to the fact that pe, pf ≤ pK for all edges and faces of the element K, it
suffices to compute the arrays of step 3 just once for each pK ∈ {1, . . . , pmax} and assumed
uniform polynomial degree distribution, that is pe = pf = pk for all edges and faces.

5.3 Spectral Galerkin method

In the last subsection we already exploited the tensor product structure of the shape
functions. If, however, the shape functions and the quadrature rules are adapted to each

19

other, then a further reduction of the complexity is possible. To that end we consider in
the following quadrature rules of the form

QRi = S(i) ×W (i) = {(η
(i)
0 , ω

(i)
0), . . . , (η(i)

qi
, ω(i)

qi
)}, QR = QR1 × . . .× QRd

which incorporate the det |D′
d| terms of (13) in conjunction with the modified shape

functions Φ(Lag), where the nodal sets N (i) are subsets of the quadrature points, that
is N (i) ⊂ S(i). Considering the shape functions of Φ(Lag), we additionally observe a simpler
tensor product stucture as in the general cases (13) and (14)

Φ(Lag) =
{
φ(B,k1,k2)(η) = g

(1)
B,k1

(η1)g
(2)
B,k2

(η2) | 1 ≤ ki ≤ Ki(B)
}

for d = 2 and

Φ
(Lag)
13 =

{
φ(13,k1,k2,k3)(η) = g

(1)
13,k1

(η1)g
(2)
13,k2

(η2)g
(3)
13,k3

(η3) | 1 ≤ ki ≤ K
}

for d = 3. Evaluating the gradient of the interior bubble shape functions at the quadrature
points, we obtain, due to the adaption of shape functions and quadrature rules, a consid-
erable number of zeros. Thus, we can replace the sums in Algorithm 5.2 by the following
pattern:

q1∑

l1=0

g̃
(1)
(B,r,k1)

g̃
(1)
(B′,r′,k′

1)
Ĉr′,r

∣∣∣
(η

(1)
l1

,η
(2)
l2

,η
(3)
l3

)
→

∑

li∈NZ
(1)

(r,r′)
[k1,k′

1]

g̃
(1)
(B,r,k1)

g̃
(1)
(B′,r′,k′

1)
Ĉr′,r

∣∣∣
(η

(1)
l1

,η
(2)
l2

,η
(3)
l3

)
,

where the sets of relevant indices

NZ
(1)
(r,r′)[k1, k

′
1] := {l1 ∈ {0, . . . , q(1)} | g̃

(1)
(B,r,k1)

g̃
(1)
(B′,r′,k′

1)

∣∣∣
η
(1)
l1

6= 0},

can be precomputed easily. (For the summations over l2 and l3 we proceed analogously.)
Moreover, due to simpler stucture of Φ(Lag), we are able to permute the summation order
of li, i = 1, . . . , d arbitrarily for B = B′ = 13 in the 3-dimensional case and for all
pairings (B,B′) in the 2-dimensional case. Since we know the number the non-zero elements

#NZ
(1)
(r,r′)[k1, k

′
1], we can estimate the work for setting up the auxiliary arrays H as well

as for setting up the stiffness matrix SK for each permutation of the summation order
and choose, of course, the cheapest one. Thus, we can replace step 6 of Algorithm 5.2 for
B = B′ = 13 in 3D and for all pairings B,B′ in 2D by the following:1

Algorithm 5.7 (spectral Galerkin 3D).

6. For B = B′ = 13 and all 1 ≤ r, r′ ≤ 3 do:

1again, we only consider the 3D version

20

1. For i = 1, ..., 3, 1 ≤ ki ≤ Ki(B), 1 ≤ k′i ≤ Ki(B
′) and 0 ≤ li ≤ qi compute:

F (i)[ki, k
′
i, li] := G(i)(B, r, ki, li)G

(i)(B′, r′, k′i, li),

NZ(i)[ki, k
′
i] := {li | F

(i)[ki, k
′
i, li] 6= 0},

Si :=
∑

ki,k′

i

|NZ i[ki, k
′
i]|

2. For all permutations (i1, i2, i3) of {1, 2, 3} estimate the work for the summation order∑qi1
li1=0

∑qi2
li2=0

∑qi3
li3=0:

W(i1,i2,i3) =(qi1 + 1)(qi2 + 1)Si3+ %setting up H(1)

Ki3(B)Ki3(B
′)(qi1 + 1)Si2+ %setting up H(2)

Ki3(B)Ki3(B
′)Ki2(B)Ki2(B

′)Si1 %setting up SK

3. Find a permutation (i1, i2, i3) with W(i1,i2,i3) ≤W(i′1,i′2,i′3)
for all (i′1, i

′
2, i

′
3).

4. For 1 ≤ ki ≤ Ki(B), 1 ≤ k′i ≤ Ki(B
′) and 0 ≤ li ≤ qi compute the auxiliary arrays

H(1)[ki3, k
′
i3 , li1, li2] =

∑

li3∈NZ(i3)

F (i3)[ki3, k
′
i3 , li3]Ĉ(r′, r, l1, l2, l3)ω

(i3)
li3

H(2)[li1 , ki3, k
′
i3
, ki2, k

′
i2
] =
∑

li2∈NZ(i2)

F (i2)[ki2, k
′
i2
, li2]H

(1)[li1 , li2, ki3 , k
′
i3
]ω

(i2)
li2

5. For all 1 ≤ ki ≤ Ki(B), 1 ≤ k′i ≤ Ki(B
′) add

SK [(B, k1, k2, k3)][(B
′, k′1, k

′
2, k

′
3)]

+ =
∑

li1∈NZ(i1)

F (i1)[ki1, k
′
i1
, li1]H

(2)[li1 , ki3, k
′
i3
, ki2 , k

′
i2
]ω

(i1)
li1

Assuming quadradure rules of order

qi =

pK + q : d = 2, i = 1
pK − 1 + q : d = 2, i = 2
pK + q : d = 3

(15)

with q ≥ 0 and q = O(1), we obtain, completely analogously to [7], a complexity of O(p2d
K)

for setting up the element stiffness matrix SK . Thus, asymptotically Algorithm 5.7 is
superior to Algorithm 5.2 if we consider the computing time for setting up SK . How-
ever, the critical point is that due to the increased number of internal shape functions for
large polynomial degrees pK the advantage in setting up the stiffness matrix will be off-
set if we consider an hp-implementation making use of static condensation, since, at least
asymptotically, the cost of static condensation dominates the total cost per element. Only
numerical tests, which we present below, can tell whether there exists a range {p0, . . . , pN}
of polynomial degrees where it is preferable to use Algorithm 5.7.

21

6 Remarks on static condensation and precomputed

arrays

6.1 Static Condensation

In hp-FEM it is customary to perform static condensation. The partition of the shape
functions into external E={vertex, edge, face} and I=internal shape functions implies a
corresponding block structure of the local element stiffness matrices SK as well as of the
global stiffness matrix Sglob. That is:

SK =

[
SEE

K SEI
K

SIE
K SII

K

]
Sglob =

[
SEE SEI

SIE SII

]
.

Due to the support properties of the internal shape functions, the matrix SII is block
diagonal with SII = diag(SII

K). In static condensation, the Schur complement is formed
by eliminating the internal shape functions, Sc = SEE − SEI(SII)−1SIE; which leads (at
least for large polynomial degrees) to a dramatically reduced problem size. In practice, the
Schur complement Sc is obtained by assembling the condensed element stiffness matrices
Sc

K = SEE
K − SEI

K (SII
K)−1SIE

K . The local static condensation, i.e., computing Sc
K , is an

O(p3d
K) process, but can be performed using highly optimized Lapack routines, namely,

the routine ’dposv’ to solve the linear system of equations SII
K X = SIE

K and the routine
’dgemm’ to compute Sc

K = SEE
K − SEI

K X. Due to the high degree of optimization of these
Lapack routine, we expect this O(p3d

K) term to dominate the total cost per element only
for large polynomial degrees pK .

6.2 Precomputed Arrays

A standard device for computing element stiffness matrices in hp-FEM is to employ precom-
puted arrays, which can lead to considerable savings. To describe this technique, suppose
that the matrix A of (1) is constant for each element and that the mesh consists of affine

elements only, i.e., all element maps FK : K̂ → K of the mesh are affine. Then all element
stiffness matrices SK are given by

(SK)ij =

∫

bK

∇ψj(F
′
K)−1A(F ′

K)−⊤∇ψi| detF ′
K |dΩ.

Since the element map FK is affine and the matrix A is constant, we note that (SK)ij can be
obtained as a linear combination of the values

∫
bK

∂kψj∂lψidΩ. Thus, if the polynomial degree

p is the same for all elements of the mesh (and the polynomial basis Ψ is the same for all
elements), then an array with values Hpre(k, l, i, j) :=

∫
bK

∂kψj∂lψidΩ may be precomputed

once, and all element stiffness matrices SK are easily obtained as linear combinations of
entries of Hpre. If the polynomial degree is not constant on the mesh, then the method

22

of precomputed arrays is still applicable provided that Hpre includes all combinations of
shape functions needed. In practice, this can be achieved efficiently if the polynomial basis
employed is hierarchic, i.e., if the set Ψp of shape functions for polynomial degree p is
contained in Ψp′ for p′ ≥ p; in that case, the cost of setting up Hpre depends only on the
maximal polynomial degree of the mesh.

7 Matrix vector multiplication without setting up the

element stiffness matrix

In the last sections we discussed different methods for setting up the element stiffness
matrices SK . However, for solving the final global linear system of equations by an iterative
solver such as, for example, the conjugated gradient method, we actually do not need to
generate the stiffness matrices explicitly. Instead, it suffices to realize the matrix-vector
multiplication w 7→ Sglobw. In fact, for the shape functions considered here an “assembly
on the fly” is very simple to realize so that we may restrict our attention the elementwise
matrix-vector multiplication, i.e., the map v 7→ b := SKv. In this section we show how
to realize such a matrix vector multiplication without setting up the matrix SK explicitly.
For the following we always assume (15) .

7.1 Sum factorization

We start with a sum factorization idea leading to an algorithm of complexity O(pd+1
K) for

performing one multiplication. Since the cases d = 2 and d = 3 are very similar, we will
describe this idea only for the case d = 3. On the reference tetrahedron T 3 let the shape
functions Ψ be given by Definition 3.5. That is

ψ(B,k1,k2,k3) = φ(B,k1,k2,k3) ◦D
−1
3

with
φ(B,k1,k2,k3)(η1, η2, η3) = g

(1)
(B,k1)

(η1)g
(2)
(B,k1,k2)

(η2)g
(3)
(B,k1,k2,k3)

(η3)

and

0 ≤ B ≤ 13, 1 ≤ k1 ≤ K1(B), 1 ≤ k2 ≤ K2(B, k1), 1 ≤ k3 ≤ K3(B, k1, k2).

Applying the quadrature rule

QR = QR1 ×QR2 ×QR3 with QRi = S(i) ×W (i) = {(η
(i)
0 , ω

(i)
0), . . . , (η(i)

qi
, ω(i)

qi
)},

on Q3, with the abbreviations I = (B, k1, k2, k3) and I ′ = (B′, k′1, k
′
2, k

′
3), the entries of the

element stiffness matrix SK are given by (see Algorithm 5.1)

SK =

[
∑

l1,l2,l3

3∑

r,r′=1

ω
(1)
l1
ω

(2)
l2
ω

(3)
l3

(
∇̃r′φI′Ĉr′r∇̃rφI

)∣∣∣
(η

(1)
l1

,η
(2)
l2

,η
(3)
l3

)

]

I,I′

.

23

Thus, the vector b := SKv can be evaluated as

bI =
∑

(r,r′,B′,k′

1,k′

2,k′

3)

∑

(l1,l2,l3)

ω
(1)
l1
ω

(2)
l2
ω

(3)
l3

(
∇̃r′φI′Ĉr′,r∇̃rφI

)∣∣∣
(η

(1)
l1

,η
(2)
l2

,η
(3)
l3

)
vI′ (16)

and following algorithm realizes a sum factorization idea leading to an efficient matrix
vector multiplication without setting up the element stiffness matrix SK and complexity
O(pd+1

K).

Algorithm 7.1 (Matrix vector multiplication on the fly - 3D).

1. For i = 1, . . . , 3 choose quadrature rules

QR(i) = {(η
(i)
li
, ω

(i)
li

) | li = 0, . . . , qi)},

which incorporate the det |D′
3| terms of (13).

2. For all 1 ≤ r ≤ 3 and 0 ≤ B ≤ 13 let

∇̃rΦB =
{
g̃

(1)
(B,r,k1)

(η1)g̃
(2)
(B,r,k1,k2)

(η2)g̃
(3)
(B,r,k1,k2,k3)

(η3)
∣∣∣

1 ≤ k1 ≤ K1(B), 1 ≤ k2 ≤ K2(B, k1), 1 ≤ k3 ≤ K3(B, k1, k2)
}
.

3. For 1 ≤ r ≤ 3, 0 ≤ B ≤ 13, 0 ≤ li ≤ qi, 1 ≤ k1 ≤ K1(B), 1 ≤ k2 ≤ K2(B, k1),
1 ≤ k3 ≤ K3(B, k1, k2) compute the auxiliary arrays

G(1)(B, r, k1, l1) = g̃
(1)
B,r,k1

(η
(1)
l1

)

G(2)(B, r, k1, k2, l2) = g̃
(2)
B,r,k1,k2

(η
(2)
l2

)

G(3)(B, r, k1, k2, k3, l3) = g̃
(3)
B,r,k1,k2,k3

(η
(3)
l3

).

4. For 1 ≤ r, r′ ≤ 3, and 0 ≤ li ≤ qi compute the auxiliary array

Ĉ(r′, r, l1, l2, l3) = Ĉ(r′,r)(η
(1)
l1
, η

(2)
l2
, η

(3)
l3

).

5. Initialize b = 0

6. Compute the auxiliary arrays

H(1)[r′, B′, k′1, k
′
2, l3] =

∑

k′

3

v(B′,k′

1,k′

2,k′

3)
G(3)(B′, r′, k′1, k

′
2, k

′
3, l3)

H(2)[r′, B′, k′1, l2, l3] =
∑

k′

2

H(1)[r′, B′, k′1, k
′
2, l3]G

(2)(B′, r′, k′1, k
′
2, l2)

H(3)[r′, l1, l2, l3] =
∑

B′,k′

1

H(2)[r′, B′, k′1, l2, l3]G
(1)(B′, r′, k′1, l1)

H(4)[r, B, k1, l2, l3] =
∑

r′,l1

ω
(1)
l1
H(3)[r′, l1, l2, l3]Ĉ(r′, r, l1, l2, l3)G

(1)(B, r, k1, l1)

H(5)[r, B, k1, k2, l3] =
∑

l2

ω
(2)
l2
H(4)[r, B, k1, l2, l3]G

(2)(B, r, k1, k2, l2)

24

for 1 ≤ r, r′ ≤ 3, 0 ≤ B,B′ ≤ 13, 0 ≤ li ≤ qi and

1 ≤ k1 ≤ K1(B), 1 ≤ k2 ≤ K2(B, k1), 1 ≤ k3 ≤ K3(B, k1, k2),

1 ≤ k′1 ≤ K1(B
′), 1 ≤ k′2 ≤ K2(B

′, k′1), 1 ≤ k′3 ≤ K3(B
′, k′1, k

′
2).

For 0 ≤ B ≤ 13, 1 ≤ k1 ≤ K1(B), 1 ≤ k2 ≤ K2(B, k1), 1 ≤ k3 ≤ K3(B, k1, k2)
compute

b(B,k1,k2,k3) =
∑

l3

ω
(3)
l3
H(5)[r, B, k1, k2, l3]G

(3)(B, r, k1, k2, k3, l3).

The algorithm can be divided into two parts, namely, steps 1-4 which are the initialization
and steps 5,6, which realize the actual matrix vector multiplication. Irrespective of the
number of matrix-vector multiplications, the initialization has to be done only once. More
precisely, assuming that a finite element mesh T is given, the computation of the arrays of
step 2 has to be done only once for each internal polynomial degree pK occurring in T (see
Remark 5.6) and the computation of the symmetric auxiliary array Ĉ(r′, r, l1, l2, l3) with its
(1/2)32(q1+1)(q2+1)(q3+1) entries has to be done once for each K ∈ T . Even for elements
with large polynomial degrees and resulting quadrature rules of high order this additional
storage is of an acceptable size. For example, for an element with pK = qi = 10 the storage
of Ĉ(r′, r, l1, l2, l3) requires, assuming 8 Byte per entry, about 47 KByte. Consequently,
considering the computing time for one matrix-vector multiplication, we will omit the time
necessary for steps 1-4. For the modified shape functions ΦLag we obtain further savings
by adding up only the non-zero elements in the sums of step 6.

Remark 7.2. The disadvantage of adding up only the non-zero elements is a frequent
accessing of non-contiguous pieces of computer memory, which may offset some of these
gains on some modern memory architectures.

Figures 8, 9 and Tables 1-4 show the computing time for the matrix vector multiplication
for different sets of shape functions and different methods. Note that for a matrix vector
multiplication performed with the Blas-routine we additionally have to set up the stiffness
matrix SK .
Algorithm 7.1 realizes one special summation order and the question arises if there are
other good summation orders. For the case of ΦKS the following lemma answers this
question.

Lemma 7.3. Let the shape functions ΨKS be given by Definition 3.4 or Definition 3.5.
Then the only summation order for (16) yielding a complexity O(pd+1) for one matrix
vector multiplication is given by (l3, l2, l1, k

′
1, k

′
2, k

′
3) for d = 3 or (l2, l1, k

′
1, k

′
2) for d = 2

respectively. All other summation orders lead to a complexity worse than O(pd+1).

Proof. Since the proofs for d = 2 and d = 3 are completely analogous, we will only prove the
3-dimensional case. We consider only the internal shape functions (B=B’=13). The upper
left graph in Figure 3 shows the dependences between the entities k1, k2, k3, l1, l2, l3, k

′
1, k

′
2, k

′
3.

25

Each vertex represents one of those entities and an edge between two vertices V1 and V2

exists if and only if there is a factor in

b(B,k1,k2,k3) =
∑

{r,r′,B′}

∑

{k′

1,k′

2,k′

3,l1,l2,l3}

ω
(1)
l1
ω

(2)
l2
ω

(3)
l3
G

(3)
B′,r′(k

′
1, k

′
2, k

′
3, l3)G

(2)
B′,r′(k

′
1, k

′
2, l2)

G
(1)
B′,r′(k

′
1, l1)Ĉr′,r(l1, l2, l3)G

(1)
B,r(k1, l1)G

(2)
B,r(k1, k2, l2)

G
(3)
B,r(k1, k2, k3, l3)v(B′,k′

1,k′

2,k′

3)
.

which depends on both entities represented by V1 and V2. For example, G
(3)
B′,r′(k

′
1, k

′
2, k

′
3, l3)

implies the edges {k′1, k
′
2}, {k

′
1, k

′
3}, {k

′
1, l3}, {k

′
2, k

′
3}, {k

′
2, l3} and {k′3, l3}. Now, summation

over one entity, characterized by V , means creating an auxiliary array depending on all
entities adjacent to V and leads to a new dependence graph. Since for the internal shape
functions each ki, k

′
i and li covers a range of O(pK), the total amount of work for such a

summation is given by O(p
1+A(V)
K), where A(V) is the number of vertices adjacent to V .

Thus, in order to obtain a complexity of O(p4
K) or better, we are not allowed to sum over

entities with more than 3 adjacent vertices. Figure 3 shows the unique summation order
leading to complexity O(p4).

Figure 3: Proof of Lemma 7.3

k’_1 k’_2 k’_3

l_3l_2l_1

k_1 k_2 k_3

k’_2k’_1

l_3
l_2l_1

k_1 k_2 k_3

k’_1

l_3l_2l_1

k_3k_2k_1

k’_3 k’_2
Sum Sum Sum

k’_1

l_1
l_2 l_3

k_1 k_2 k_3

l_1 l_2 l_3 l_3 l_3l_2

k_1 k_1 k_1 k_1 k_3k_3k_3k_3 k_2k_2k_2k_2

SumSumSum
l_1 l_2 l_3

Remark 7.4. There exists one exception to Lemma 7.3, namely,

b(B,k1,k2,k3) =
∑

(r,r′,B′,k′

1,k′

2,k′

3,l∗,l∗)

∑

(li)

. . . ,

where we start with summation over li. In this case the inner sum is independent of the
vector v(B′,k′

1,k′

2,k′

3)
and can be precomputed as an auxiliary array H. However, since this

26

inner sum contains the factor Ĉ(r′, r, l1, l2, l3) which depends on the element K, we have to
compute an auxiliary array H(K) for each element K of a finite element meshing separately.
Starting the summation with

• l1, this leads to

H
(K)
r,r′,B,B′[k1, k

′
1, l2, l3] =

∑

l1

ω
(1)
l1
Ĉr′,r(l1, l2, l3)G

(1)
B,r(k1, l1)G

(1)
B′,r′(k

′
1, l1),

• l2, this leads to

H
(K)
r,r′,B,B′[k1, k

′
1, k2, k

′
2, l1, l3] =

∑

l2

ω
(2)
l2
Ĉr′,r(l1, l2, l3)G

(2)
B,r(k1, k2, l2)G

(2)
B′,r′(k

′
1, k

′
2, l2),

• l3, this leads to

H
(K)
r,r′,B,B′ [k1, k

′
1, k2, k

′
2, k3, k

′
3, l1, l2]

=
∑

l3

ω
(3)
l3
Ĉr′,r(l1, l2, l3)G

(3)
B,r(k1, k2, k3, l3)G

(3)
B′,r′(k

′
1, k

′
2, k

′
3, l3).

As we can see, setting up these auxiliary arrays is of complexity worse than O(pd+1) and has
to be done for each element of a mesh separately. Thus, for large polynomial degrees and
just a few matrix vector multiplications (i.e., good preconditioners) setting up the arrays
H(K) can become more time consuming than performing the matrix vector multiplications
with use of Algorithm 7.1. Another point is that storing H

(K)
r,r′,B,B′ [k1, k

′
1, l2, l3] for pK =

qi = 10 requires about (1/2) ∗ 32 ∗ 62 ∗ 104 ∗ 8 Byte ≈ 17MByte of memory. Consequently,
we exclude a summation order starting with li.

Remark 7.5. Lemma 7.3 says that (l3, l2, l1, k
′
1, k

′
2, k

′
3) or (l2, l1, k

′
1, k

′
2) respectively are the

uniquely determined best choices for a global and constant summation order and one may
think of a summation order depending on B and B′. However, for Ψ(KS), due to factors
g

(j)
(B,...) which depend several ki or k′i, this approach will not be practicable and leads only

to an extensive case differentiation. For the modified shape functions Ψ(Lag) we investigate
this possibility in the next subsection.

7.2 Speeding up the matrix vector multiplication by spectral

Galerkin ideas

In this subsection we want to exploit the special structure of ΦLag to obtain a speed up
for the on the fly matrix vector multiplication. However, since in the 3-dimensional case
we only modified the internal shape functions and the internal shape functions take only a
fraction of the total computing time (Fig. 8) will restrict our attention to the 2-dimensional
case. Thus we have

ψ(B,k1,k2) = φ(B,k1,k2) ◦D
−1
2

27

with

φ(B,k1,k2)(η1, η2) = g
(1)
(B,k1)(η1)g

(2)
(B,k2)

(η2) and 0 ≤ B ≤ 5, 1 ≤ ki ≤ Ki(B).

The main idea to achieve a speed-up compared to Algorithm 7.1 is to exploit that the
shape functions and the quadrature rules are adapted to each together with the simpler
structure of the shape functions. Considering

b(B,k1,k2) =
∑

{r,r′,B′}

∑

{k′

1,k′

2,l1,l2}

ω
(1)
l1
ω

(2)
l2
G

(2)
B′,r′(k

′
2, l2)G

(1)
B′,r′(k

′
1, l1)Ĉr′,r(l1, l2)

G
(1)
B,r(k1, l1)G

(2)
B,r(k2, l2)v(B′,k′

1,k′

2)
,

with G
(i)
B,r(ki, li), Ĉr′,r(l1, l2) and v(B′,k′

1,k′

2)
as in the previous section, we have 24 possi-

ble summation orders for {k′1, k
′
2, l1, l2}. Thus, we want to find and apply the cheapest,

or at least a good summation order depending on B,B′, r, r′. However, some of these
permutations can be excluded a priori:

• (k′i, lj, ∗, ∗) since a calculation reveals that for all i, j ∈ {1, 2} (lj, k
′
i, ∗, ∗) is equal to

or more efficient than (k′i, lj, ∗, ∗).

• (k′i, k
′
i
, lj , lj) since this is equivalent to setting up a block of the stiffness matrix.

• (∗, ∗, k′i, lj) du to an argumentation as in Remark 7.4.

• (li, k
′
i
, li, k

′
i) since an efficient implementation becomes equivalent to (∗, ∗, k′i, lj).

Thus, it remain four permutations of type (lj , lj, k
′
i, k

′
i
) and two permutations of type

(lj , k
′
j, lj , k

′
j
). Considering (l1, k

′
1, l2, k

′
2), we have

b(B,k1,k2) =
∑

l1

ω
(1)
l1
G

(1)
B,r(k1, l1)

∑

r′,B′,k′

1

G
(1)
B′,r′(k

′
1, l1)H

(2)
r,r′,B,B′(k2, k

′
1, l1),

where

H
(2)
r,r′,B,B′(k2, k

′
1, l1) =

∑

l2

Hr′,B′(k′1, l2)Ĉr′,r(l1, l2)G
(2)
B,r(k2, l2) (17)

Hr′,B′(k′1, l2) =
∑

k′

2

ω
(2)
l2
G

(2)
B′,r′(k

′
2, l2)v(B′,k′

1,k′

2)
. (18)

Since G
(1)
B,r(k1, l1) depends on the same entities as the auxiliary array H (2), we can avoid

setting up the array H
(2)
r,r′,B,B′(k2, k

′
1, l1) and evaluate the sum with almost the same or even

less work as:

b(B,k1,k2) =
∑

l1

ω
(1)
l1
G

(1)
B,r(k1, l1)

∑

r′,B′,k′

1

∑

l2

G
(1)
B′,r′(k

′
1, l1)Hr′,B′(k′1, l2)Ĉr′,r(l1, l2)G

(2)
B,r(k2, l2),

28

which in turn is equivalent to

b(B,k1,k2) =
∑

l1

ω
(1)
l1
G

(1)
B,r(k1, l1)

∑

l2

∑

r′,B′,k′

1

G
(1)
B′,r′(k

′
1, l1)Hr′,B′(k′1, l2)Ĉr′,r(l1, l2)G

(2)
B,r(k2, l2).

Thus, since we can argue in the same way for (l2, k
′
2, l1, k

′
1), we can restrict our algorithm

to consider the four permutations of type (lj, lj, k
′
i, k

′
i
}.

Algorithm 7.6 (spectral matrix vector multiplication on the fly).

1. For i = 1, 2 choose quadrature rules

QR(i) = {(η
(i)
li
, ω

(i)
li

) | li = 0, . . . , qi}

which incorporate the det |D′
2| term of (13).

2. For all 1 ≤ r ≤ 2 and 0 ≤ B ≤ 5 let

∇̃rΦB =
{
g̃

(1)
(B,r,k1)

(η1)g̃
(2)
(B,r,k2)

(η2)
∣∣∣ 1 ≤ ki ≤ Ki(B)

}

3. For 1 ≤ r ≤ 2, 0 ≤ B ≤ 5, 0 ≤ li ≤ qi, 1 ≤ ki ≤ Ki(B) compute

G(1)(B, r, k1, l1) = g̃
(1)
B,r,k1

(η
(1)
l1

) NZ(1)(B, r, k1) = {l1 | G
(1)(B, r, k1, l1) 6= 0}

G(2)(B, r, k2, l2) = g̃
(2)
B,r,k2

(η
(2)
l2

) NZ(2)(B, r, k2) = {l2 | G
(2)(B, r, k2, l2) 6= 0}

4. For 1 ≤ r, r′ ≤ 3 and 0 ≤ li ≤ qi compute the auxiliary array

Ĉ(r′, r, l1, l2) = Ĉ(r′,r)(η
(1)
l1
, η

(2)
l2

)

5. Initialize b = 0, H (2)[r′, l2, l1] = 0

6. For 1 ≤ r′ ≤ 2, 0 ≤ li ≤ qi compute

H(2)[r′, l2, l1] =
∑

B′,k′

1,k′

2

v(B′,k′

1,k′

2)
ω

(1)
l1
ω

(2)
l2
G(1)(B′, r′, k′1, l1)G

(2)(B′, r′, k′2, l2)

as follows: For all 1 ≤ r′ ≤ 2, 0 ≤ B′ ≤ 5 compute

(a) S1 :=
∑

k′

1

#NZ(1)(B′, r′, k′1) and S2 :=
∑

k′

2

#NZ(2)(B′, r′, k′2)

(b) If [(q2 + 1)S1 +K1(B
′)S2] ≤ [(q1 + 1)S2 +K2(B

′)S1]

Initialize H(1)[k′1, l2] = 0

Add H(1)[k′1, l2]+ = v(B′,k′

1,k′

2)
ω

(2)
l2
G(2)(B′, r′, k′2, l2)

for all 1 ≤ k′1 ≤ K1(B
′), 1 ≤ k′2 ≤ K2(B

′), l2 ∈ NZ(2)(B′, r′, k2).

Add H(2)[r′, l2, l1]+ = ω
(1)
l1
H(1)[k′1, l2]G

(1)(B′, r′, k′1, l1)

for all 1 ≤ k′1 ≤ K1(B
′), l1 ∈ NZ(1)(B′, r′, k1), 0 ≤ l2 ≤ q2.

29

(c) If [(q2 + 1)S1 +K1(B
′)S2] > [(q1 + 1)S2 +K2(B

′)S1]

InitializeH(1)[k′2, l1] = 0

Add H(1)[k′2, l1]+ = v(B′,k′

1,k′

2)
ω

(1)
l1
G(1)(B′, r′, k′1, l1)

for all 1 ≤ k′1 ≤ K1(B
′), 1 ≤ k′2 ≤ K2(B

′), l1 ∈ NZ(1)(B′, r′, k1).

Add H(2)[r′, l2, l1]+ = ω
(2)
l2
H(1)[k′2, l1]G

(2)(B′, r′, k′2, l2)

for all 1 ≤ k′1 ≤ K1(B
′), l1 ∈ NZ(1)(B′, r′, k1), 0 ≤ l2 ≤ q2.

7. Compute

b(B,k1,k2) =
∑

(r,r′,l1,l2)

H(2)[r′, l2, l1]Ĉ(r′, r, l1, l2)G
(1)(I1)G

(2)(I2)

as follows: For all 1 ≤ r ≤ 2, 0 ≤ B ≤ 5 compute

(a) S1 :=
∑

k1

#NZ(1)(B, r, k1) and S2 :=
∑

k2

#NZ(2)(B, r, k2)

(b) If [2(q2 + 1)S1 +K1(B)S2] ≤ [2(q1 + 1)S2 +K2(B)S1]

InitializeH(3)[k1, l2] = 0

Add H(3)[k1, l2]+ = Ĉ(r′, r, l1, l2)H
(2)[r′, l2, l1]G

(1)(B, r, k1, l1)

for all 1 ≤ k1 ≤ K1(B), l1 ∈ NZ(1)(B, r, k1), 0 ≤ r′ ≤ 2, 0 ≤ l2 ≤ q2.

Add b(B,k1,k2)+ = H(3)[k1, l2]G
(2)(B, r, k2, l2)

for all 1 ≤ k2 ≤ K2(B), l2 ∈ NZ(2)(B, r, k2), 1 ≤ k1 ≤ K1(B).

(c) If [2(q2 + 1)S1 +K1(B)S2] > [2(q1 + 1)S2 +K2(B)S1]

InitializeH(3)[k2, l1] = 0

Add H(3)[k2, l1]+ = Ĉ(r′, r, l1, l2)H
(2)[r′, l2, l1]G

(2)(B, r, k2, l2)

for all 1 ≤ k2 ≤ K2(B), l2 ∈ NZ(2)(B, r, k2), 0 ≤ r′ ≤ 2, 0 ≤ l1 ≤ q1.

Add b(B,k1,k2)+ = H(3)[k2, l1]G
(1)(B, r, k1, l1)

for all 1 ≤ k1 ≤ K1(B), l1 ∈ NZ(1)(B, r, k1), 1 ≤ k2 ≤ K2(B).

The basic idea of this algorithm is to set up the auxiliary array

H(2)[r′, l2, l1] =
∑

B′

∑

{k′

1,k′

2}

v(B′,k′

1,k′

2)
ω

(1)
l1
ω

(2)
l2
G(1)(B′, r′, k′1, l1)G

(2)(B′, r′, k′2, l2)

and the vector

b(B,k1,k2) =
∑

{r,r′}

∑

{l1,l2}

H(2)[r′, l2, l1]Ĉ(r′, r, l1, l2)G
(1)(B, r, k1, l1)G

(2)(B, r, k2, l2)

30

by applying the more efficient summation order of {k′1, k
′
2} or {l1, l2} respectively depending

on (B′, r′) and (B, r). Since we always have to add up only the non-zero terms, one matrix
vector multiplication has a total amount of work given by:

WMv =
∑

B,r

Wb(B, r) +
∑

B′,r′

WH(B′, r′),

with

WH(B′, r′) = min{ (q2 + 1)S1(B
′, r′) +K1(B

′)S2(B
′, r′),

(q1 + 1)S2(B
′, r′) +K2(B

′)S1(B
′, r′) },

Wb(B, r) = min{ 2(q2 + 1)S1(B, r) +K1(B)S2(B, r),

2(q1 + 1)S2(B, r) +K2(B)S1(B, r) }

and Si(B, r) =
∑

ki
NZ(i)(B, r, ki), Si(B

′, r′) =
∑

k′

i
NZ(i)(B′, r′, k′i). The complexity of

Algorithm 7.6 is still O(p3) but it reduces the computing time significantly. (See Figure 2
and Tables 1, 2)

8 Collection of numerical results

This section collects all numerical results for the 2- and 3-dimensional case. For our
computations we chose A(x) = I but proceed as in the case of non-constant coefficients.
The quadrature rules that we use are Gauss-Lobatto-Jacobi rules

QR = QR1 × . . .× QRd with QRi = S(i) ×W (i) = {(η
(i)
0 , ω

(i)
0), . . . , (η(i)

qi
, ω(i)

qi
)},

which incorporate the | detD′
d| terms. That is, we have the following weight functions:

ω = 1 for QR1, ω = (1 − η2) for QR2, ω = (1 − η3)
2 for QR3 .

For the 2-dimensional case we consider a quadrature order of q1 = q2 = pK and define the
following 3 types of quadrature for the 3-dimensional case:

Typ-1: q1 = q2 = q3 = pK , Typ-2: q1 = q2 = q3 = pK+1, Typ-3: q1 = q2 = q3 = pK+2.

Remark 8.1. The quadrature of Typ-1 and the quadrature we use in the 2-dimensional
case are not of the minimal possible order. Indeed, setting up the stiffness matrix in 2D
could also be done with q1 = pK, q2 = pK − 1.

The Lagrange shape functions Φ(Lag) are always adapted to the quadrature and we assume
a uniform polynomial degree distribution on K. That is, all edges and faces of K have the
same polynomial degree pK as K has. All computations are executed on the same com-
puter, a Pentium IV, 2400 MHz with 1GB main memory. Tables 1- 4 show the computing
time for the generation of the stiffness matrix (gen), for performing the static condensation

31

(sc) and for one matrix-vector multiplication (Sv). Furthermore, the abbreviations in the
tables mean the following:

KS - our computation is performed with the shape functions Φ(KS)

Lag - our computation is performed with the shape functions Φ(Lag)

blas - our computation is performed with Blas or Lapack routines
sum fact. - our computation is performed with the sum factorization algorithm
spect Gal. - our computation is performed with the spectral Galerkin algorithm

We denote the total number of shape functions by DOF and the number of internal shape
functions by INT.

Figure 4: Setting up the element stiffness matrix - computing time - 2D

10
1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Assemblation − 2D

t[s
ec

]

polynomial degree

Lag − sum fact
Lag − spect Gal
Lag − const coeff.
KS − sum fact
KS − simple Alg
KS − const coeff.

10
1

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Assemblation and static condensation − 2D
t[s

ec
]

polynomial degree

Lag − sum fact
Lag − spect Gal
KS − sum fact
KS − simple Alg

32

Figure 5: Setting up the element stiffness matrix - computing time - blockwise - 2D

10
1

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Lagr. − spect. Gal. − assemblation − 2D

t[s
ec

]

polynomial degree

Int x Int
Edg x Int
Edg x Edg
Vtx x{Vtx,Edg,Int}
Init
Sc

10
1

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

KS − sum fact. − assemblation − 2D

t[s
ec

]

polynomial degree

Int x Int
Edg x Int
Edg x Edg
Vtx x{Vtx,Edg,Int}
Init
Sc

Table 1: KS - computing time - quadrature: qi = pK - 2D
pK DOF INT gen sc S*v (blas) S*v (sum fact)
4 15 3 1.98e-04 3.70e-05 3.00e-06 3.50e-05
5 21 6 2.97e-04 3.10e-05 4.00e-06 4.00e-05
6 28 10 4.56e-04 5.00e-05 4.00e-06 5.60e-05
7 36 15 6.95e-04 6.10e-05 8.00e-06 7.00e-05
8 45 21 1.10e-03 9.30e-05 9.00e-06 9.40e-05
9 55 28 1.58e-03 1.53e-04 1.20e-05 1.23e-04
10 66 36 2.29e-03 2.35e-04 1.40e-05 1.57e-04
11 78 45 3.29e-03 3.60e-04 1.90e-05 1.97e-04
12 91 55 4.62e-03 5.48e-04 2.50e-05 2.36e-04
13 105 66 6.40e-03 8.55e-04 3.70e-05 2.88e-04
14 120 78 8.64e-03 1.22e-03 4.20e-05 3.44e-04
15 136 91 1.13e-02 1.75e-03 5.90e-05 4.20e-04
20 231 171 4.02e-02 7.79e-03 2.10e-04 9.10e-04
25 351 276 1.00e-01 2.54e-02 4.04e-04 1.69e-03
30 496 406 2.27e-01 7.57e-02 6.89e-04 2.75e-03
50 1326 1176 2.27e+00 1.23e+00 4.49e-03 1.20e-02

33

Table 2: Lag - computing time - quadrature: qi = pK - 2D
pK DOF INT gen sc S*v (blas) S*v (sum fact) S*v (spect Gal)
4 18 6 2.18e-04 9.60e-05 2.00e-06 3.40e-05 2.30e-05
5 27 12 2.96e-04 1.16e-04 4.00e-06 4.10e-05 2.80e-05
6 38 20 4.30e-04 1.72e-04 4.00e-06 5.30e-05 4.90e-05
7 51 30 6.09e-04 2.55e-04 8.00e-06 6.70e-05 4.40e-05
8 66 42 8.62e-04 3.35e-04 1.80e-05 8.80e-05 5.30e-05
9 83 56 1.14e-03 5.58e-04 2.70e-05 1.14e-04 6.30e-05
10 102 72 1.62e-03 9.30e-04 3.60e-05 1.54e-04 7.70e-05
11 123 90 2.09e-03 1.51e-03 4.60e-05 2.03e-04 9.40e-05
12 146 110 2.81e-03 2.36e-03 6.40e-05 2.42e-04 1.11e-04
13 171 132 3.54e-03 3.54e-03 9.10e-05 3.01e-04 1.31e-04
14 198 156 4.63e-03 5.26e-03 1.25e-04 3.58e-04 1.53e-04
15 227 182 5.70e-03 7.51e-03 1.75e-04 4.27e-04 1.81e-04
20 402 342 1.66e-02 3.67e-02 5.32e-04 9.00e-04 3.61e-04
30 902 812 7.74e-02 4.03e-01 2.08e-03 2.69e-03 9.70e-04
40 1602 1482 3.02e-01 1.93e+00 7.00e-03 6.09e-03 2.11e-03
50 2502 2352 8.43e-01 7.31e+00 1.51e-02 1.15e-02 3.98e-03

Table 3: KS - computing time - quadrature: qi = pK - 3D
pK DOF INT gen sc S*v (blas) S*v (sum fact)
4 35 1 6.00e-03 1.43e-04 5.00e-06 7.65e-04
5 56 4 1.20e-02 2.76e-04 9.00e-06 1.20e-03
6 84 10 2.25e-02 6.24e-04 1.90e-05 1.81e-03
7 120 20 3.87e-02 9.92e-04 3.60e-05 3.23e-03
8 165 35 7.25e-02 2.45e-03 6.90e-05 4.35e-03
9 220 56 1.29e-01 5.57e-03 1.25e-04 6.92e-03
10 286 84 2.14e-01 1.16e-02 2.34e-04 9.47e-03
11 364 120 4.02e-01 2.48e-02 4.11e-04 1.28e-02
12 455 165 5.22e-01 5.00e-02 6.36e-04 1.63e-02
13 560 220 7.90e-01 9.71e-02 9.23e-04 2.22e-02
14 680 286 1.12e+00 1.83e-01 1.34e-03 2.78e-02
15 816 364 1.60e+00 3.37e-01 1.88e-03 3.61e-02
20 1771 969 8.21e+00 3.98e+00 9.07e-03 9.78e-02
25 3276 2024 2.80e+01 2.47e+01 3.08e-02 2.17e-01
30 5456 3654 7.59e+01 1.10e+02 8.52e-02 4.19e-01

34

Table 4: Lag - computing time - quadrature: qi = pK - 3D
pK DOF INT gen sc S*v (blas) S*v (sum)
4 35 1 5.99e-03 1.35e-04 4.00e-06 7.69e-04
5 60 8 1.18e-02 3.30e-04 1.00e-05 1.21e-03
6 101 27 2.27e-02 1.03e-03 2.70e-05 1.97e-03
7 164 64 4.13e-02 3.29e-03 7.10e-05 3.03e-03
8 255 125 8.02e-02 1.12e-02 1.81e-04 4.37e-03
9 380 216 1.45e-01 3.44e-02 4.42e-04 6.75e-03
10 545 343 2.46e-01 1.12e-01 8.27e-04 9.15e-03
11 756 512 3.90e-01 3.12e-01 1.56e-03 1.23e-02
12 1019 729 6.21e-01 7.70e-01 2.85e-03 1.59e-02
13 1340 1000 9.65e-01 1.63e+00 5.18e-03 2.13e-02
14 1725 1331 1.43e+00 3.25e+00 8.56e-03 2.73e-02
15 2180 1728 2.13e+00 6.29e+00 1.37e-02 3.52e-02
20 5715 4913 1.34e+01 1.01e+02 9.30e-02 9.49e-02

Figure 6: Setting up the element stiffness matrix - computing time - 3D

10
1

10
−6

10
−4

10
−2

10
0

10
2

10
4

Assemblation − quadrature: q
i
=p

K
 − 3D

t[s
ec

]

polynomial degree

Lag − sum fact
Lag − spect Gal
Lag − const. coeff.
KS − sum fact
KS − simple Alg.
KS − const. coeff.

10
1

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

Assemblation and static condensation − quadrature: q
i
=p

K
 − 3D

t[s
ec

]

polynomial degree

Lag − sum fact
Lag − spect Gal
KS − sum fact
KS − simple

35

Figure 7: Setting up the element stiffness matrix - computing time - blockwise - 3D

10
1

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Lag − spect.Gal. − assemblation − quadrature: q
i
=p

K
 − 3D

t[s
ec

]

polynomial degree

Int x Int
Face x Int
Face x Face
{Vtx,Edg}x{Vtx,Edg,Face,Int}
Init
Sc

10
1

10
−6

10
−4

10
−2

10
0

10
2

10
4

KS − sum fact. − assemblation − quadrature: q
i
=p

K
 − 3D

t[s
ec

]

polynomial degree

Int x Int
Face x Int
Face x Face
{Vtx,Edg}x{Vtx,Edg,Int}
Init
Sc

Figure 8: Matrix vector multiplication - computing time

10
1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

S*v − 2D

t[s
ec

]

polynomial degree

KS − blas
KS − on the fly − sum
Lag − blas
Lag − on the fly − sum
Lag − on the fly − spect

10
1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

S*v − quadrature: q
i
=p

K
 − 3D

co
m

p.
 ti

m
e

 t[
se

c]

polynomial degree p

KS − blas
KS − sum fact
Lag − blas
Lag − sum fact
Lag − sum fact − Φ

13
 part

36

Figure 9: Different quadrature rules - assemblation and matrix vector multiplication -
computing time - 3D

10
1

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Lag − assemblation(spect.Gal.) and S*v(sum fact.) − 3D

as
se

m
bl

at
io

n
tim

e
 t[

se
c]

polynomial degree p

Typ1 − total
Typ2 − total
Typ3 − total
Typ1 − IntxInt
Typ2 − IntxInt
Typ3 − IntxInt
Typ1 − S*v
Typ2 − S*v
Typ3 − S*v

10
1

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

KS − assemblation(sum fact) − S*v(sum fact)

as
se

m
bl

at
io

n
tim

e
 t[

se
c]

polynomial degree p

Typ1 − total
Typ2 − total
Typ3 − total
Typ1 − IxI
Typ2 − IxI
Typ3 − IxI
Typ1 − M*v
Typ2 − M*v
Typ3 − M*v

9 Conclusions

In the last sections we discussed different algorithms for setting up the element stiff-
ness matrix and performing on-the-fly matrix vector multiplication. We considered the
Karniadakis-Sherwin shape functions Φ(KS) in combination with both the standard quadra-
ture algorithm and the and sum factorization technique; we also introduced modified shape
functions ΦLag that generalize the spectral Galerkin ideas of [7] to triangular and tetrahe-
dral elements. The numerical results of Section 8 show the following:

• The standard method is by far the slowest algorithm in any case.

• Due to the increased number of internal shape functions, using Φ(Lag) leads to better
approximation results. Moreover, in 2D setting up the element stiffness matrix with
the spectral Galerkin algorithm in conjunction with Φ(Lag) is significantly faster than
setting up the stiffness matrix for Φ(KS) with sum factorization. In 3D, the shape
functions Φ(Lag) contain almost six times as many internal shape functions as Φ(KS);
nevertheless, the time to set up the element stiffness matrix with the spectral Galerkin
algorithm in conjunction with Φ(Lag) is, for pK ≤ 20, almost the same as setting up
the stiffness matrix for Φ(KS) with sum factorization.

• Due to the increased number of internal shape functions, the static condensation
process for the element stiffness matrix based on Φ(Lag) is considerable slower as the
static condensation process for the element stiffness matrix based on Φ(KS). However,
for the 2D case and pK ≤ 20 the computing time for setting up the condensed element

37

stiffness matrix is in the case of Φ(Lag) in conjunction with the spectral Galerkin
algorithm almost the same as for the case of Φ(KS) together with sum factorization.
In the 3D case this point is reached already for pK = 8.

• A significant speed-up for setting up the element stiffness matrix can be obtained on
elements with constant coefficients.

• Considering an hp-implemention using on-the-fly matrix vector multiplications, we
obtain in the 2D case a significant speed-up using the modified shape functions Φ(Lag)

in conjunction with Algorithm 7.6.

References

[1] C. Bernardi and Y. Maday. Spectral methods. In P.G. Ciarlet and J.L. Lions, editors,
Handbook of Numerical Analysis, Vol. 5. North Holland, 1997.

[2] L. Demkowicz, K. Gerdes, C. Schwab, A. Bajer, and T. Walsh. A general and flexible
fortran 90 hp-FE code. Computing and Visualization in Science, 1:145–163, 1998.

[3] L. Demkowicz, T.J. Oden, W. Rachowicz, and O. Hardy. Towards a universal hp finite
element strategy. part 1. constrained approximation and data structure. Comput.
Meth. Appl. Mech. Engrg., 77:79–112, 1989.

[4] T. Eibner. Algorithmik der randkonzentrierten FEM. PhD thesis, TU Chemnitz, (in
prep.).

[5] G.E. Karniadakis and S.J. Sherwin. Spectral/hp Element Methods for CFD. Oxford
University Press, 1999.

[6] Y. Maday and E.M. Rønquist. Optimal error analysis of spectral methods with em-
phasis on non-constant coefficients and deformed geometries. Comput. Meth. Appl.
Mech. Engrg., 80:91–115, 1990.

[7] J.M. Melenk, K. Gerdes, and C. Schwab. Fully discrete hp-FEM: fast quadrature.
Comput. Meth. Appl. Mech. Engrg., 190:4339–4364, 2001.

[8] J.M. Melenk and C. Schwab. hp FEM for reaction-diffusion equations I: Robust
exponentional convergence. SIAM J. Numer. Anal., 35:1520–1557, 1998.

[9] J.M. Melenk and B. Wohlmuth. On residual-based a posteriori error estimation in
hp-FEM. Advances in Comp. Math., 15:311–331, 2001.

[10] S.A. Orszag. spectral methods for problems in complex geometries. J. Comput. Phys.,
37:70–92, 1980.

38

[11] I. Dolezel P. Solin, K. Segeth. Higher-Order Finite Element Methods. CRC Press,
2003.

[12] C. Schwab. p- and hp-Finite Element Methods. Oxford University Press, 1998.

[13] B. Szabó and I. Babuška. Finite Element Analysis. Wiley, 1991.

39

Other titles in the SFB393 series:

03-01 E. Creusé, G. Kunert, S. Nicaise. A posteriory error estimation for the Stokes problem:
Anisotropic and isotropic discretizations. January 2003.

03-02 S. I. Solov’ëv. Existence of the guided modes of an optical fiber. January 2003.

03-03 S. Beuchler. Wavelet preconditioners for the p-version of the FEM. February 2003.

03-04 S. Beuchler. Fast solvers for degenerated problems. February 2003.

03-05 A. Meyer. Stable calculation of the Jacobians for curved triangles. February 2003.

03-06 S. I. Solov’ëv. Eigenvibrations of a plate with elastically attached load. February 2003.

03-07 H. Harbrecht, R. Schneider. Wavelet based fast solution of boundary integral equations.
February 2003.

03-08 S. I. Solov’ëv. Preconditioned iterative methods for monotone nonlinear eigenvalue prob-
lems. March 2003.

03-09 Th. Apel, N. Düvelmeyer. Transformation of hexahedral finite element meshes into tetra-
hedral meshes according to quality criteria. May 2003.

03-10 H. Harbrecht, R. Schneider. Biorthogonal wavelet bases for the boundary element method.
April 2003.

03-11 T. Zhanlav. Some choices of moments of refinable function and applications. June 2003.

03-12 S. Beuchler. A Dirichlet-Dirichlet DD-pre-conditioner for p-FEM. June 2003.

03-13 Th. Apel, C. Pester. Clément-type interpolation on spherical domains - interpolation error
estimates and application to a posteriori error estimation. July 2003.

03-14 S. Beuchler. Multi-level solver for degenerated problems with applications to p-version of
the fem. (Dissertation) July 2003.

03-15 Th. Apel, S. Nicaise. The inf-sup condition for the Bernardi-Fortin-Raugel element on
anisotropic meshes. September 2003.

03-16 G. Kunert, Z. Mghazli, S. Nicaise. A posteriori error estimation for a finite volume dis-
cretization on anisotropic meshes. September 2003.

03-17 B. Heinrich, K. Pönitz. Nitsche type mortaring for singularly perturbed reaction-diffusion
problems. October 2003.

03-18 S. I. Solov’ëv. Vibrations of plates with masses. November 2003.

03-19 S. I. Solov’ëv. Preconditioned iterative methods for a class of nonlinear eigenvalue problems.
November 2003.

03-20 M. Randrianarivony, G. Brunnett, R. Schneider. Tessellation and parametrization of
trimmed surfaces. December 2003.

04-01 A. Meyer, F. Rabold, M. Scherzer. Efficient Finite Element Simulation of Crack Propaga-
tion. February 2004.

04-02 S. Grosman. The robustness of the hierarchical a posteriori error estimator for reaction-
diffusion equation on anisotropic meshes. March 2004.

04-03 A. Bucher, A. Meyer, U.-J. Görke, R. Kreißig. Entwicklung von adaptiven Algorithmen
für nichtlineare FEM. April 2004.

04-04 A. Meyer, R. Unger. Projection methods for contact problems in elasticity. April 2004.

04-05 T. Eibner, J. M. Melenk. A local error analysis of the boundary concentrated FEM. May
2004.

04-06 H. Harbrecht, U. Kähler, R. Schneider. Wavelet Galerkin BEM on unstructured meshes.
May 2004.

04-07 M. Randrianarivony, G. Brunnett. Necessary and sufficient conditions for the regularity of
a planar Coons map. May 2004.

04-08 P. Benner, E. S. Quintana-Ort́ı, G. Quintana-Ort́ı. Solving Linear Matrix Equations via
Rational Iterative Schemes. October 2004.

04-09 C. Pester. Hamiltonian eigenvalue symmetry for quadratic operator eigenvalue problems.
October 2004.

04-10 T. Eibner, J. M. Melenk. An adaptive strategy for hp-FEM based on testing for analyticity.
November 2004.

04-11 B. Heinrich, B. Jung. The Fourier-finite-element method with Nitsche-mortaring. Novem-
ber 2004.

04-12 A. Meyer, C. Pester. The Laplace and the linear elasticity problems near polyhedral corners
and associated eigenvalue problems. December 2004.

04-13 M. Jung, T. D. Todorov. On the Convergence Factor in Multilevel Methods for Solving 3D
Elasticity Problems. December 2004.

05-01 C. Pester. A residual a posteriori error estimator for the eigenvalue problem for the Laplace-
Beltrami operator. January 2005.

05-02 J. Bad́ıa, P. Benner, R. Mayo, E. Quintana-Ort́ı, G. Quintana-Ort́ı, J. Saak. Parallel Order
Reduction via Balanced Truncation for Optimal Cooling of Steel Profiles. February 2005.

05-03 C. Pester. CoCoS – Computation of Corner Singularities. April 2005.

05-04 A. Meyer, P. Nestler. Mindlin-Reissner-Platte: Einige Elemente, Fehlerschätzer und Ergeb-
nisse. April 2005.

05-05 P. Benner, J. Saak. Linear-Quadratic Regulator Design for Optimal Cooling of Steel Pro-
files. April 2005.

The complete list of current and former preprints is available via
http://www.tu-chemnitz.de/sfb393/preprints.html.

