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Abstract

In this paper we consider the fully discrete wavelet Galerkin scheme for the
fast solution of boundary integral equations in three dimensions. It produces ap-
proximate solutions within discretization error accuracy offered by the underlying
Galerkin method at a computational expense that stays proportional to the num-
ber of unknowns. We focus on implementational details of the scheme, in particular
on numerical integration of relevant matrix coefficients. We illustrate the proposed
algorithms by numerical results.

AMS Subject Classification: 47A20, 65F10, 65F50, 65N38, 65R20
Key Words: Boundary integral equations, biorthogonal wavelet bases, matrix compres-
sion, numerical integration.

Introduction

Various problems in science and engineering can be formulated as boundary integral equa-
tions. In general, boundary integral equations are solved numerically by the boundary
element method (BEM). For example, BEM is a favourable approach for the treatment
of exterior boundary value problems. Nevertheless, traditional discretizations of integral
equations suffer from a major disadvantage. The associated system matrices are densely
populated. Therefore, the complexity for solving such equations is at least O(N2

J), where
NJ denotes the number of equations. This fact restricts the maximal size of the linear
equations seriously.

Modern methods for the fast solution of BEM reduce the complexity to a suboptimal
rate, i.e., O(NJ logαNJ), or even an optimal rate, i.e., O(NJ). Prominent examples for
such methods are the fast multipole method [16], the panel clustering [17] or the wavelet
Galerkin scheme [1, 6, 10, 11, 29]. In fact, a Galerkin discretization with wavelet bases
results in quasi-sparse matrices, i.e., the most matrix entries are negligible and can be
treated as zero. Discarding these nonrelevant matrix entries is called matrix compression.
It has been shown in [6, 29] that only O(NJ) significant matrix entries remain.

Concerning boundary integral equations, a strong effort has been spent on the construc-
tion of appropriate wavelet bases on surfaces [8, 12, 13, 19, 24, 29]. In order to achieve
the optimal complexity of the wavelet Galerkin scheme, wavelet bases are required with
a sufficiently large number of vanishing moments. Our realization is based on biorthogo-
nal spline wavelets derived from the multiresolution developed in [3]. These wavelets are
advantageous since the regularity of the duals is known [31]. Moreover, the duals are com-
pactly supported which preserves the linear complexity of the fast wavelet transform also
for its inverse. This is an important task for the coupling of FEM and BEM, cf. [20, 21].
Additionally, in view of the discretization of operators of positive order, for instance, the
hypersingular operator, globally continuous wavelets are available [2, 4, 12, 19].

The efficient computation of the relevant matrix coefficients turned out to be an im-
portant task for the successful application of the wavelet Galerkin method [19, 25, 29]. We
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present a fully discrete Galerkin scheme based on numerical quadrature. Supposing that
the given manifold is piecewise analytic we can use a hp-quadrature scheme [19, 29, 30]
in combination with exponentially convergent quadrature rules. This yields an algorithm
with asymptotically linear complexity without compromising the accuracy of the Galerkin
scheme.

The outline of the present paper is as follows. First, in Section 1, we introduce the class
of problems under consideration. Then, in Section 2 we provide the wavelet bases on man-
ifolds an recall the matrix compression in Section 3. The next sections are concerned with
implementational aspects: In Section 4 a suitable data structure is introduced to handle a
wide class of wavelets, in Section 5 the numerical evaluation of distances is performed, in
Section 7 the computation of the compressed system matrix is reduced to the computation
of certain element-element interactions which are investigated in Section 8. Section 9 is
concerned with the quadrature of element-element interactions which correspond mostly
to nearly singular and singular integrals. We prove that our quadrature strategy computes
the compressed system matrix within linear complexity. In Section 10 we present numeri-
cal results which confirm our analysis quite well. The accuracy of the Galerkin scheme is
never compromised by the matrix compression.

1 Problem formulation and preliminaries

We consider boundary integral equations on a closed boundary surface Γ of a three dimen-
sional domain Ω ⊂ R3

Au = f on Γ, (1)

where the boundary integral operator

Au(x) =

∫
Γ

k(x, y)u(y)dΓy

is assumed to be an operator of order 2q, that is

A : Hq(Γ) → H−q(Γ).

The kernel functions under consideration are supposed to be smooth as functions in the
variables x, y, apart from the diagonal {(x, y) ∈ Γ×Γ : x = y} and may have a singularity
on the diagonal. Such kernel functions arise, for instance, by applying a boundary integral
formulation to a second order elliptic problem. In general, they decay like a negative power
of the distance of the arguments which depends on the order 2q of the operator.

Throughout the remainder of this paper we shall assume that the boundary manifold Γ
is given as a parametric surface consisting of smooth patches. More precisely, let � := [0, 1]2

denote the unit square. The manifold Γ ∈ R3 is partitioned into a finite number of patches

Γ =
M⋃
i=1

Γi, Γi = γi(�), i = 1, 2, . . . ,M, (2)
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where each γi : � → Γi defines a diffeomorphism of � onto Γi. The intersection Γi ∩ Γi′ ,
i 6= i′, of the patches Γi and Γi′ is supposed to be either empty or a common edge or vertex.

A mesh of level j on Γ is induced by dyadic subdivisions of depth j of the unit square
into 4j squares

�j,k = [2−jk1, 2
−j(k1 + 1)]× [2−jk2, 2

−j(k2 + 1)] ⊆ �,

where k = (k1, k2) with 0 ≤ k1, k2 < 2j. This generates 4jM elements (or elementary
domains) Γi,j,k := γi(�j,k) ⊆ Γi, i = 1, . . . ,M .

In order to ensure that the collection of elements {Γi,j,k} on the level j forms a regular
mesh on Γ, the parametric representation is subjected to the following matching condition:
For all x ∈ Γi ∩ Γi′ exists a bijective, affine mapping Ξ : � → � such that γi(s) =
(γi′ ◦ Ξ)(s) = x for s = (s1, s2) ∈ � with γi(s) = x. A conforming mesh of a gearwheel is
depicted in Figure 1.

Figure 1: A gearwheel represented by 336 patches (left) and the resulting mesh on the
level 2 (right).

Denoting the surface measure by κi(s) := ‖∂s1γi(s) × ∂s2γi(s)‖, the canonical inner
product in L2(Γ) is given by

〈u, v〉 :=

∫
Γ

u(x)v(x)dΓx =
M∑
i=1

∫
�
u
(
γi(s)

)
v
(
γi(s)

)
κi(s)ds.

The corresponding Sobolev spaces are denoted by H t(Γ), endowed with the norms ‖ · ‖t,
where for t < 0 it is understood that H t(Γ) = (H−t(Γ))′. Of course, depending on the
global smoothness of the surface, the range of permitted t ∈ R is limited to s ∈ (−tΓ, tΓ).

In the sequel it will be rather convenient to have access to the local parametrizations
γi,j,k : � → Γi,j,k given by

γi,j,k(s) := γi
(
2−j

[
k1+s1
k2+s2

])
, s =

[
s1
s2

]
∈ �. (3)
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For m ∈ N we conclude

∂msnγi,j,k(s) = 2−jm ∂msnγi
(
2−j

[
k1+s1
k2+s2

])
, n = 1, 2, (4)

in particular, the corresponding surface measure satisfies

κi,j,k(s) :=
∥∥∂s1γi,j,k(s)× ∂s2γi,j,k(s)

∥∥ = 2−2jκi
(
2−j

[
k1+s1
k2+s2

])
. (5)

We can now specify the kernel functions. To this end, we denote by α = (α1, α2) and
β = (β1, β2) multi-indices of dimension two and define |α| := α1 + α2.

Definition 1.1. A kernel k(x, y) is called standard kernel of order 2q, if the partial deriva-
tives of the transported kernel functions

ki,i(s, t) := k
(
γi(s), γi′(t)

)
κi(s)κi′(t), (6)

1 ≤ i, i′ ≤M , are bounded by

|∂αs ∂
β
t ki,i(s, t)| . ‖γi(s), γi′(t)‖−(2+2q+|α|+|β|),

provided that 2 + 2q + |α|+ |β| > 0.

We emphasize that this definition requires patchwise smoothness but not global smooth-
ness of the geometry. The surface itself needs to be only Lipschitz. Generally, under this
assumption, the kernel of a boundary integral operator A of order 2q is a standard kernel
of order 2q. Hence, we may assume this property in the sequel. We shall encounter further
specifications in connection with numerical integration.

2 Biorthogonal wavelet bases

The nested trial spaces Vj ⊂ Vj+1 that we shall employ in the Galerkin scheme are the
spaces of piecewise constant or bilinear functions on the given partition. These trial spaces
have the approximation order d = 1 and d = 2 in the case of the piecewise constants and
bilinears, respectively, i.e.

inf
vj∈Vj

‖v − vj‖0 . 2−jd‖v‖d.

These trial space are spanned by so called single-scale bases Φj = {φj,k : k ∈ ∆j} which can
be specified as follows: On the level j, we find for each element Γi′,j,k′ a piecewise constant
scaling function φj,k with

φj,k
∣∣
Γi′,j,k′

≡ 2j (7)

and φj,k(x) = 0 elsewhere. To describe the canonical piecewise bilinear scaling functions,
we define four bilinear shape functions on the unit square

p�
1 (s) := (1− s1)(1− s2), p�

2 (s) := s1(1− s2),
p�

3 (s) := s1s2, p�
4 (s) := (1− s1)s2.

(8)
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Then, φj,k is equal to 1 in one knot and equal to zero in the remaining knots and, if its
support contains an element Γ(i′,j,k′), we find a m ∈ {1, 2, 3, 4} such that

φj,k
∣∣
Γi′,j,k′

(x) = p�
m(s), x = γi′,j,k′(s) ∈ Γi′,j,k′ . (9)

Continuity is supposed on each patch, but along the interfaces of the patches we may
consider double knots or continuity. Notice that our definition yields the L2-normalization
‖φj,k‖0 ∼ 1.

Associated with the multiresolution sequence {Vj}j≥j0 is always a dual multiresolution

sequence {Ṽj}j≥j0 which is generated by dual bases Φ̃j = {φ̃j,k : k ∈ ∆j}, i.e., one has

〈φj,k, φ̃j,k′〉 = δk,k′ , k, k
′ ∈ ∆j. Here and below j0 always stands for some fixed coarsest

level of resolution that may depend on Γ. For the current type of boundary surfaces Γ the
Φj, Φ̃j are generated by constructing first dual pairs of single-scale bases on the interval
[0, 1], using the dual components from [3] adapted to the interval [9]. Tensor products yield
corresponding dual pairs on �. Using the parametric liftings γi and gluing across patch
boundaries leads to globally continuous single-scale bases Φj, Φ̃j on Γ [2, 4, 13, 19]. The

dual spaces have approximation order d̃ ≥ d such that d+ d̃ is even.
Given the single-scale bases Φj, Φ̃j, one can construct now biorthogonal complement

bases Ψj = {ψj,k : k ∈ ∇j}, Ψ̃j = {ψ̃j,k : k ∈ ∇j}, i.e., 〈ψj,k, ψ̃j′,k′〉 = δ(j,k),(j′,k′), such that

diam suppψj,k ∼ diam supp ψ̃j,k ∼ 2−j, j ≥ j0,

see e.g. [2, 4, 12, 13] and [19] for particularly useful local representations of important
construction ingredients. We suppose these complement bases normalized in L2(Γ).

A biorthogonal or dual pair of wavelet bases is now obtained by taking the coarse
single-scale basis and the union of the complement bases

Ψ =
⋃

j≥j0−1

Ψj, Ψ̃ =
⋃

j≥j0−1

Ψ̃j,

where we have set for convenience Ψj0−1 := Φj0 , Ψ̃j0−1 := Φ̃j0 . Of course, in the infinite
dimensional case the notion of basis has to be made more specific. The key feature of the
wavelet basis is now the fact that Ψ, Ψ̃ are actually Riesz bases in L2(Γ).

From biorthogonality and the fact that the dual spaces Ṽj have the approximation order

d̃ one infers vanishing moments or the cancellation property of the primal wavelets

|〈v, ψj,k〉| . 2−j(d̃+1)|v|
W d̃,∞(suppψj,k)

. (10)

Here |v|
W d̃,∞(Ω)

:= sup|α|=d̃, x∈Ω |∂αv(x)| denotes the semi-norm in W d̃,∞(Ω). The fact, that

the concept of biorthogonality allows us to choose the order d̃ of vanishing moments higher
than the approximation order d, is essential for deriving optimal compression strategies
that could not be realized by orthonormal bases.
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3 Matrix compression

We shall be concerned with the Galerkin method for the solution of the given boundary
integral equation (1): find uJ ∈ VJ solving the variational problem

〈AuJ , vJ〉 = 〈f, vJ〉 for all vJ ∈ VJ .

Traditionally this equation is discretized by the single-scale basis of VJ which yields a
densely populated system matrix. Using instead wavelets with a sufficiently strong can-
cellation property (10), the system matrix becomes quasi-sparse and the most matrix
coefficients are neglectable without compromising the order of convergence of the Galerkin
scheme [6, 29].

But before we formulate this result, we introduce the following abbreviation

Ωj,k := conv hull(suppψj,k), Ω′
j,k := sing suppψj,k. (11)

Notice that the first expression denotes the convex hull of the support of a wavelet whereas
the second indicates its singular support, i.e. that subset of Γ where the wavelet is not
smooth.

Theorem 3.1 (A-priori compression). Let Ωj,k and Ω′
j,k be given as in (11) and define

the compressed system matrix AJ , corresponding to the boundary integral operator A, by

[AJ ](j,k),(j′,k′) :=



0, dist(Ωj,k,Ωj′,k′) > Bj,j′ and j, j′ ≥ j0,

0, dist(Ωj,k,Ωj′,k′) . 2−min{j,j′} and

dist(Ω′
j,k,Ωj′,k′) > B′j,j′ if j′ > j ≥ j0 − 1,

dist(Ωj,k,Ω
′
j′,k′) > B′j,j′ if j > j′ ≥ j0 − 1,

〈Aψj′,k′ , ψj,k〉, otherwise.

(12)

Fixing

a, a′ > 1, d < d′ < d̃+ 2q, (13)

the cut-off parameters Bj,j′ and B′j,j′ are set as follows

Bj,j′ = a max
{

2−min{j,j′}, 2
2J(d′−q)−(j+j′)(d′+d̃)

2(d̃+q)

}
,

B′j,j′ = a′ max
{

2−max{j,j′}, 2
2J(d′−q)−(j+j′)d′−max{j,j′}d̃

d̃+2q

}
.

(14)

Then, the error estimate

‖u− uJ‖2q−d . 2−2J(d−q)‖u‖d (15)

holds for the solution uJ of the compressed Galerkin system provided that u and Γ is
sufficiently regular.
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In [6, 19] we presented a general theorem which shows that the overall complexity of
assembling the compressed system matrix can be kept of the order O(NJ), NJ = dimVJ ,
even when a computational cost of logarithmic order is allowed for each entry. This theo-
rem will be used later as the essential ingredient in proving that the quadrature strategy
proposed in Section 9 scales linearly.

Theorem 3.2. Assume that AJ is compressed according to (12). The complexity of com-
puting this compressed matrix is O(NJ) provided that for some α ≥ 0 at most O

([
J −

j+j′

2

]α)
operations are spent on the approximate calculation of the nonvanishing entries

〈Aψj′,k′ , ψj,k〉.

Numerical integration of relevant matrix coefficients has to be performed with sufficient
accuracy. In accordance with [6, 19] we can formulate a sufficient condition to retain the
optimal order of convergence of the Galerkin scheme.

Theorem 3.3. Let the matrix AJ denote the compressed system matrix according to The-
orem 3.1 and consider the perturbed system matrix ÃJ satisfying∣∣[AJ − ÃJ ](j,k),(j′,k′)

∣∣ ≤ εj,j′

for all coefficients, where the level dependent error εj,j′ is given by

εj,j′ ∼ min
{

2−|j−j
′|, 2

−2(J− j+j′
2

) d
′−q
d̃+q

}
22Jq2−2d′(J− j+j′

2
) (16)

with d′ ∈ (d, d̃ + 2q) from (13). Then, the solution uJ of the perturbed Galerkin system
satisfies (15) provided that u and Γ is sufficiently regular.

If the order q of the boundary integral operator A is 6= 0, the compressed system matrix
AJ becomes more and more ill conditioned when J increases. However, as a consequence of
the norm equivalences of wavelet bases, the diagonally scaled system matrix has uniformly
bounded spectral condition numbers, provided that the regularity γ̃ of the dual wavelets
satisfies γ̃ > −q [5, 7, 10, 29].

4 The data structure

In general the wavelet bases are not simply defined via tensor products of the univariate
case. In particular, considering globally continuous wavelets, a single wavelet might be
supported on several patches. This requires a suitable data structure to handle such
wavelet bases. The crucial idea is to split the support of a given wavelet into a set of
elements which correspond to its smooth parts. Then, it suffices to store some additional
weight factors in order to describe the wavelets uniquely. Moreover, it is convenient to
arrange elements and wavelets in trees.
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4.1 The element tree

According to Section 1 the elements Γi,j,k = γi(�j,k) are the images of the refined unit
square under the parametric liftings γi. We introduce a hierarchical element tree with
respect to “⊆” as follows. Starting with theM patches Γi := Γi,0,(0,0) as the first generation,
each element Γi,j,k has the four sons Γi,j+1,k′ ⊆ Γi,j,k, k

′ ∈
{
(2k1, 2k2), (2k1 + 1, 2k2), (2k1 +

1, 2k2 + 1), (2k1, 2k2 + 1)
}
. Denoting by J the level of discretization, the tree consists of

J + 1 generations. The resulting tree is presented in Figure 2.
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Γi,1,(0,0) Γi,1,(0,1) Γi,1,(1,1) Γi,1,(1,0)

Γi,0,(0,0)

Figure 2: The hierarchical element tree to the elements {Γi,j,k}.

Notice that this element tree is given implicitly. The number of all elements is given
by NΓ := N

3
(4J+1 − 1). Hence, we may utilize the mapping

λ := θ(i, j, k) =
N

3
(4j − 1) + 4jNi+ 2jk2 + k1 (17)

to indicate the element Γi,j,k uniquely by an integer λ ∈ {0, 1, . . . , NΓ−1}. This numbering
corresponds to indexing the element tree line-by-line. For a given index λ, the topological
index (i, j, k) is calculated successively by

j =
⌊

log4

(
3λ
N

+ 1
)⌋
, i =

⌊
λ−N

3
(4j−1)

4j

⌋
,

k2 =
⌊
λ−N

3
(4j−1)−4ji

2j

⌋
, k1 = λ− N

3
(4j − 1)− 4ji− 2jk2.

The indices λ′ = θ(i, j + 1, k′) with k′ = (2k1 + n, 2k2 + n′), n, n′ = 0, 1, indicate the four
sons of the element Γi,j,k.

For the sake of brevity we will write frequently Γλ instead of Γi,j,k. Moreover, it is
rather convenient to set |λ| := j.
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4.2 The wavelet representation

For each wavelet ψj,k we introduce a set of elements Lψj,k by the following convention. We
first determine the set of coarse level elements

Lcoarse
ψj,k

:=
{

Γi,j,k′ ⊆ suppψj,k : ψj,k
∣∣
Γi,j,k′

∈ C∞(Γi,j,k′)
}
.

Clearly, we have
⋃

Γλ∈Lcoarse
ψj,k

Γλ $ suppψj,k. We now complete the support of the wavelet

by the set of fine level elements

Lfine
ψj,k

:=
{

Γi,j+1,k′ ⊆ suppψj,k :
⋃

Γλ∈Lcoarse
ψj,k

Γλ ∩ Γ◦i,j+1,k′ = ∅
}
.

Thus, the union Lψj,k := Lcoarse
ψj,k

∪ Lfine
ψj,k

satisfies

suppψj,k =
⋃

Γλ∈Lψj,k

Γλ ⊆ Ωj,k, Ω′
j,k ⊆

⋃
Γλ∈Lψj,k

∂Γλ. (18)

Now, observing (7), for the piecewise constant wavelets we find unique weights ωΓλ
ψj,k

∈ R
such that

ψj,k
∣∣
Γλ
≡ 2|λ|ωΓλ

ψj,k
, Γλ ∈ Lψj,k . (19)

Likewise, via (8) and (9), for piecewise linear wavelets we obtain

ψj,k
∣∣
Γλ

(x) = 2|λ|
4∑

m=1

ωΓλ
m,ψj,k

pΓλ
m (s), x = γλ(s) ∈ Γλ, Γλ ∈ Lψj,k (20)

with certain weights ωΓλ
m,ψj,k

∈ R. This element-based representation is illustrated in Fig-
ure 3.
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3
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-1964
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45
64 -1964

-1964
45
64

45
64 -1964

0 0 0 0 0 00 0 0 0 0 0

Figure 3: Element-based representation of a piecewise linear wavelet with four vanishing
moments.
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Remark: Storing all weights is expensive, particularly for the piecewise linears. Since
many wavelets correspond to an identical mask, a suitable arrangement of the elements
in the lists Lψj,k induces identical lists of weights for such wavelets. Hence, we suggest to
store only the different lists of weights. That way, the required memory is limited to O(1)
since the number of different masks respective weights is independent of the level J .

4.3 The wavelet tree

In view of setting up the compression pattern, we introduce a wavelet tree defined with
respect to the supports. Each wavelet has a certain number of sons with

Ωj+1,son ⊆ Ωj,father, if ψj+1,son is son of ψj,father. (21)

We mention that the father-son relation might be described by fixed index operations inde-
pendently of the geometry. However, the tree depends on the chosen wavelet construction.
Let us remark that the wavelet tree corresponds to the covering tree utilized for the Panel
Clustering .

5 Computing distances numerically

To determine the degrees of quadrature it is required to evaluate the distance between
elements. Additionally, for the matrix compression, the distance of the supports of wavelets
as well as the distance of the singular support and the support of wavelets has to be
computed.

5.1 Computing distances between elements

For each element Γλ we determine a sphere B(mΓλ , rΓλ) :=
{
x ∈ R3 : ‖x −mΓλ‖ ≤ rΓλ

}
which encloses the element. Then, the distance between elements is approximated by

dist(Γλ,Γλ′) ≥ dist
(
B(mΓλ , rΓλ), B(mΓλ′

, rΓλ′ )
)

= max{0, ‖mΓλ −mΓλ′
‖ − rΓλ − rΓλ′}. (22)

We start on the finest level J = |λ| and compute the smallest sphere B(mΓλ , rΓλ) containing
the four vertices of a given element Γλ. Assuming that J is sufficiently large, this sphere
satisfies Γλ ⊆ B(mΓλ , rΓλ). Next, due to

Γλ =
⋃

Γλ′ is son of Γλ

Γλ′ ,

the spheres to the elements on the lower levels are obtained recursively by determining
the smallest spheres which contain the spheres of the associated sons. That way ensures
Γλ ∈ B(mΓλ , rΓλ) for all |λ| ≤ J even if the surface Γ is strongly curved.

10



In the next subsection, the computation of the distance of the singular support and
the support of wavelets is reduced to the computation of the distance dist(Γi,j,k, ∂Γi′,j′,k′)
(j > j′). Clearly, we find

dist(Γi,j,k, ∂Γi′,j′,k′) = dist(Γi,j,k,Γi′,j′,k′), i 6= i′, (23)

which is evaluated according to (22). Thus, it remains to consider i = i′. Since γi defines
a diffeomorphism, we deduce

dist(Γi,j,k, ∂Γi,j′,k′) ∼ dist(�j,k, ∂�j′,k′),

i.e. we might reduce our problem to the unit square. Observing that the l2-norm and the l∞-
norm are equivalent in R2, the square �j,k might be interpreted as the sphere B(m�j,k , r�j,k)

with the midpoint m�j,k := γi
(
2−(j+1)

[
2k1+1
2k2+1

])
and the radius r�j,k := 2−(j+1). Therefore,

we conclude

dist(Γi,j,k, ∂Γi,j′,k′) ∼
∣∣‖m�j,k −m�j′,k′‖∞ − r�j′,k′

∣∣− r�j,k , (24)

where we utilized that either �j,k ⊆ �j′,k′ or �◦
j,k ∩�◦

j′,k′ = ∅.
For each element, O(1) operations are performed to compute the midpoint and the

radius of its enclosing sphere. Hence, observing that the number of elements is equal to
NΓ ≈ 4

3
NJ = O(NJ), the complexity of computing and storing the midpoints and radii

scales linearly with respect to the number of unknowns.

5.2 Computing distances between wavelets

Computing for each wavelet the sphere B(mψj,k , rψj,k) with

B(mψj,k , rψj,k) := inf
B(m,r)∈R3

{
B(m, r) ⊇

⋃
Γλ∈Lψj,k

B(mΓλ , rΓλ)
}

we conclude Ωj,k ⊆ B(mψj,k , rψj,k), cf. (18). Thus, the distance between the wavelets ψj,k
and ψj′,k′ is computed analogously to (22) by

dist(Ωj,k,Ωj′,k′) ≥ max{0, ‖mψj,k −mψj′,k′
‖ − rψj,k − rψj′,k′} (25)

Clearly, the complexity of computing and storing all midpoints and radii of the enclosing
spheres is O(NJ).

Next, the computation of dist(Ωj,k,Ω
′
j′,k′) is performed by invoking Lψj,k and Lψj′,k′ .

One readily infers

dist(Ωj,k,Ω
′
j′,k′) & min

Γλ∈Lψj,k
min

Γλ′∈Lψj′,k′

{
dist(Γλ, ∂Γλ′)

}
,

which is evaluated by (23) and (24), respectively.

11



6 Setting up the compression pattern

Checking the distance criteria (12) for each matrix coefficient, in order to assemble the
compressed matrix, would require O(N2

J) function calls. To realize linear complexity,
we exploit the tree structure with respect to the supports of the wavelets, to predict
negligible matrix coefficients. Recall that each son ψj+1,son of the wavelet ψj,father satisfies
Ωj+1,son ⊆ Ωj,father. The following observation is an immediate consequence of the relations
Bj,j′ ≥ Bj+1,j′ ≥ Bj+1,j+1′ , and B′j,j′ ≥ B′j+1,j′ for j > j′.

Lemma 6.1. For Ωj+1,son ⊆ Ωj,father and Ωj′+1,son ⊆ Ωj′,father the following statements hold.

1. dist(Ωj,father,Ωj′,father′) > Bj,j′ implies dist(Ωj+1,son,Ωj′,father′) > Bj+1,j′ as well as
dist(Ωj+1,son,Ωj′+1,son′) > Bj+1,j+1′.

2. Suppose that j > j′ and dist(Ωj,father,Ω
′
j′,father′) > B′j,j′. Then one has dist(Ωj+1,son,Ω

′
j′,father′) >

B′j+1,j′.

With the aid of this lemma we have to check the distance criteria only for coefficients
which stem from subdivisions of calculated coefficients on a coarser level. Therefore, the
resulting procedure of checking the distance criteria is still of linear complexity. The
subsequent algorithm computes the index sets Ij,j′ , j0 − 1 ≤ j, j′ < J , consisting of all
index pairs (k, k′) of relevant matrix coefficients. Note that the result of the function
relevant(ψj,k, ψj′,k′) is supposed to be true, if the matrix coefficient 〈Aψj′,k′ , ψj,k〉 is rele-
vant according to (12). Otherwise it is false.

initialization: Ij0−1,j0−1 := {∆j0 ×∆j0}; Ij,j′ := ∅ elsewhere

for j := j0 to J − 1 do begin

for j′ := j0 − 1 to j − 1 do begin

for all (father, father′) ∈ Ij−1,j′ do begin C: compute Ij,j′ from Ij−1,j′

for all sons ψj,son of ψj−1,father do begin

if
(
relevant(ψj,son, ψj′,father′) = true

)
Ij,j′ := Ij,j′ ∪ {(son, father′)}

end; end

Ij′,j := Ij,j′ C: according to symmetry

end

for all (father, father′) ∈ Ij−1,j−1 do begin C: compute Ij,j from Ij−1,j−1

for all sons ψj,son of ψj−1,father do begin

for all sons ψj,son′ of ψj−1,father′ do begin

if
(
relevant(ψj,son, ψj,son′) = true

)
Ij,j := Ij,j ∪ {(son, son′)}

end; end; end; end

12



7 Assembling the system matrix

This section is concerned with the assemblation of the relevant matrix coefficients 〈Aψj′,k′ , ψj,k〉.
For applying product Gauß quadrature rules it is required to split the wavelets into the
smooth parts of their supports.

First, we consider piecewise constant wavelets. Invoking the wavelet representation
(19) and abbreviating the element-element interactions by

αλ,λ′ := 2|λ|+|λ
′|
∫

�

∫
�
k
(
γλ(s), γλ′(t)

)
κλ(s)κλ′(t)dtds, (26)

we conclude

〈Aψj′,k′ , ψj,k〉 =
∑

Γλ∈Lψj,k

∑
Γλ′∈Lψj′,k′

ω
Γλ′
ψj′,k′

αλ,λ′ . (27)

For piecewise linear wavelets, the element-element interactions are given by

β(m,λ),(m′,λ′) := 2|λ|+|λ
′|
∫

�

∫
�
k
(
γλ(s), γλ′(t)

)
p�
m(s)p�

m′(t)κλ(s)κλ′(t)dtds. (28)

Thus, the representation (20) yields the equation

〈Aψj′,k′ , ψj,k〉 =
∑

Γλ∈Lψj,k

∑
Γλ′∈Lψj′,k′

4∑
m,m′=1

ωΓλ
m,ψj,k

ω
Γλ′
m′,ψj′,k′

β(m,λ),(m′,λ′). (29)

Consequently, the computation of the stiffness matrix is reduced to the computation of
element-element interactions. But since, in general, the intersection of the supports of
different wavelets is not empty, a naive calculation of (27) and (29) leads to a repeated
computation of the element-element interactions. Hence, to develop an efficient algorithm,
it is worth to examine these interactions.

8 On element-element interactions

As we have seen in the last section, the assembling of the compressed system matrix reduces
to the computation of element-element interactions. Utilizing the mapping θ from (17),
these element-element interactions are identified uniquely with coefficients of a (sparse)
matrix QJ , where, in the case of piecewise linear wavelets, a single entry consists of 16
double values. The pattern of QJ is structured similarly to the corresponding compressed
system matrix, namely it is finger structured, cf. Figure 4.

Since nearly all element-element interactions of QJ represent singular or nearly singular
integrals, we often have to subdivide the associated domain of integration for quadrature.
We realize this subdivision effectively by the following recycling formulas yielding again
element-element interactions which can be recycled when assembling the compressed system

13
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Figure 4: The matrix pattern of required element-element interactions.

matrix. Considering a given element Γfather with index father = (i, j, k), the indices of its
sons are given by

son1 := (i, j + 1, (2k1, 2k2)), son2 := (i, j + 1, (2k1 + 1, 2k2)),

son3 := (i, j + 1, (2k1, 2k2 + 1)), son4 := (i, j + 1, (2k1 + 1, 2k2 + 1)).

In the case of piecewise constants, by (26) one readily verifies the recycling formulas

αfather,λ = 1
2

[
αson1,λ + αson2,λ + αson3,λ + αson4,λ

]
,

αλ,father = 1
2

[
αλ,son1 + αλ,son2 + αλ,son3 + αλ,son4

]
.

(30)

Similar formulas can be derived in the case of piecewise linears, for example we have

β(1,father),(m,λ) = 1
2
β(1,son1),(m,λ)

+1
4
[β(2,son1),(m,λ) + β(4,son1),(m,λ) + β(1,son2),(m,λ) + β(1,son3),(m,λ)]

+1
8
[β(3,son1),(m,λ) + β(4,son2),(m,λ) + β(2,son3),(m,λ) + β(1,son4),(m,λ)],

β(m,λ),(1,father) = 1
2
β(m,λ),(1,son1)

+1
4
[β(m,λ),(2,son1) + β(m,λ),(4,son1) + β(m,λ),(1,son2) + β(m,λ),(1,son3)]

+1
8
[β(m,λ),(3,son1) + β(m,λ),(4,son2) + β(m,λ),(2,son3) + β(m,λ),(1,son4)].

(31)

The pattern of QJ is symmetric. This suggests to compute the element-element inter-
action of Γλ with Γλ′ and that of Γλ′ with Γλ simultaneously since the application of our
quadrature algorithm yields many identical function calls.

Since a finite number of element-element interactions has to be calculated per relevant
matrix coefficient, the number of nonzero coefficients of QJ is O(NJ). However, storing QJ

completely is so expensive that the computable number of unknowns is restricted crucially.
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Hence, we propose an element-based assembling of the system matrix. For a fixed index
λ one computes and stores all required element-element interactions αλ,λ′ and αλ′,λ with
|λ| ≥ |λ′|, and likewise for the piecewise linears. Then, after updating the system matrix,
these values can be deleted. Clearly, this strategy requires a rearrangement of the loops
within the wavelet Galerkin scheme. But the number of multiple calculations is reduced
enormously and the requirement of memory is limited to at most NΓ element-element
interactions.

9 Numerical integration

As we have seen in the previous sections it suffices to compute element-element interactions
with respect to the domain of integration �×�. Based on tensor product Gauß-Legendre
rules we construct an adaptive quadrature algorithm which converges exponentially. In
combination with Theorem 3.2 we realize linear complexity for the computation of the
compressed system matrix.

9.1 Error estimates on the reference domain

For a given function f ∈ L2([0, 1]), we set I [0,1]f :=
∫ 1

0
f(s) ds. The g-point Gauß-Legendre

formula on [0, 1] Q
[0,1]
g f :=

∑g
i=1 ωg,if

(
ξg,i

)
applied to f ∈ C2g(0, 1) can be estimated as∣∣R[0,1]

g f
∣∣ :=

∣∣I [0,1]f −Q[0,1]
g f

∣∣ .
2−4g

(2g)!
max
s∈[0,1]

∣∣f (2g)(s)
∣∣, (32)

cf. [18]. For f ∈ L2(�) we define I�f :=
(
I [0,1] ⊗ I [0,1]

)
f =

∫
� f(s) ds with s =

[
s1
s2

]
.

Approximating I�f by the product Gauß-Legendre quadrature formula

Q�
g f :=

(
Q[0,1]
g ⊗Q[0,1]

g

)
f =

g∑
i,i′=1

ωg,iωg,i′f
([ ξg,i

ξg,i′

])
(33)

we find the following error estimate.

Lemma 9.1. If f ∈ C2g(�) the quadrature error R�
g f := I�f − Q�

g f of the product
Gauß-Legendre quadrature formula (33) is bounded by∣∣R�

g f
∣∣ .

2−4g

(2g)!

[
max
s∈�

∣∣∂2g
s1
f(s)

∣∣ + max
s∈�

∣∣∂2g
s2
f(s)

∣∣]. (34)

Proof. Invoking (32), the classical tensor product argument

R�
g f =

[(
I [0,1] ⊗ I [0,1]

)
−

(
Q[0,1]
g ⊗Q[0,1]

g

)]
f

=
[(
I [0,1] ⊗ I [0,1]

)
−

(
I [0,1] ⊗Q[0,1]

g

)
+

(
I [0,1] ⊗Q[0,1]

g

)
−

(
Q[0,1]
g ⊗Q[0,1]

g

)]
f

=
[
I [0,1] ⊗

(
I [0,1] −Q[0,1]

g

)]
f +

[(
I [0,1] −Q[0,1]

g

)
⊗Q[0,1]

g

]
f

leads us to the desired estimate (34).
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Next, to a function f(s, t) ∈ L2(�×�) we apply the four dimensional product Gauß-
Legendre quadrature formula

Q�×�
g,g′ f :=

(
Q�
g ⊗Q�

g′

)
f =

g∑
i,i′=1

g′∑
j,j′=1

ωg,iωg,i′ωg′,jωg′,j′f
([ ξg,i

ξg,i′

]
,
[ ξg′,j
ξg′,j′

])
(35)

in order to approximate the integral I�×�f :=
(
I� ⊗ I�

)
f =

∫
�

∫
� f(s, t) dt ds.

Lemma 9.2. For f(s, t) ∈ C2g(�) × C2g′(�) the quadrature error R�×�
g,g′ f := I�×�f −

Q�×�
g,g′ f of the product Gauß-Legendre quadrature formula (35) can be estimated by

∣∣R�×�
g,g′ f

∣∣ .
2−4g

(2g)!

[
max
s,t∈�

∣∣∂2g
s1
f(s, t)

∣∣ + max
s,t∈�

∣∣∂2g
s2
f(s, t)

∣∣]
+

2−4g′

(2g′)!

[
max
s,t∈�

∣∣∂2g′

t1 f(s, t)
∣∣ + max

s,t∈�

∣∣∂2g′

t2 f(s, t)
∣∣].

Proof. This lemma is proved analogously to the latter lemma.

9.2 Basic estimates

We now assume that the diffeomorphisms γi are analytical on � for all i ∈ {1, 2, . . . ,M}.
Then, in general, a given boundary integral operator A : Hq(Γ) → H−q(Γ) of order 2q
satisfies the following definition.

Definition 9.3. A kernel k(x, y) is called analytically standard of order 2q, if the partial
derivatives of the transported kernel functions (6) are bounded by

|∂αs ∂
β
t ki,i(s, t)| . ‖γi(s), γi′(t)‖−(2+2q+|α|+|β|),

with some r > 0, provided that 2 + 2q + |α|+ |β| > 0.

Defining the local transported kernels

kλ,λ′(s, t) := k
(
γλ(s), γλ′(t)

)
κλ(s)κλ′(t)dtds

for s, t ∈ �, we find the relation

I�×�kλ,λ′ = 2−(|λ|+|λ′|)αλ,λ′ . (36)

Lemma 9.4. Let the kernel k(x, y) be analytically standard of order 2q and assume that
dist(Γλ,Γλ′) > 0. Then, applying the quadrature formula Q�×�

g,g′ defined in (35) to the
integral (36) yields the error estimate

∣∣R�×�
g,g′ kλ,λ′

∣∣ . 2−2(|λ|+|λ|′)
[(

2−|λ|

4r

)2g

dist(Γλ,Γλ′)
−(2+2q+2g)

+

(
2−|λ

′|

4r

)2g′

dist(Γλ,Γλ′)
−(2+2q+2g′)

]
. (37)
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Proof. Since the kernel is analytically standard of order 2q, the equations (4) and (5) imply
the estimate

|∂αs ∂
β
t kλ,λ′(s, t)| .

(|α|+ |β|)!
r|α|+|β|

2−|λ|(|α|+2)2−|λ
′|(|β|+2)∥∥γλ(s)− γλ′(t)

∥∥2+2q+|α|+|β| (38)

Hence, we find

max
s,t∈�

∣∣∂2g
snkλ,λ′(s, t)

∣∣ . 2−2(|λ|+|λ′|) 2−2g|λ| (2g)!

r2g
min
s,t∈�

∥∥γλ(s)− γλ′(t)
∥∥−(2+2q+2g)

. 2−2(|λ|+|λ′|) 2−2g|λ| (2g)!

r2g
dist(Γλ,Γλ′)

−(2+2q+2g)

for n = 1, 2. Analogously one infers

max
s,t∈�

∣∣∂2g′

tn kλ,λ′(s, t)
∣∣ . 2−2(|λ|+|λ′|) 2−2g′|λ′| (2g′)!

r2g′
dist(Γλ,Γλ′)

−(2+2q+2g′).

The integrand kλ,λ′ is nonsingular if dist(Γλ,Γλ′) > 0. Therefore, we conclude the desired
estimate by Lemma 9.2.

In the case of piecewise linear wavelets, we have to compute in accordance with (28)
the integrals

I�×�
[
kλ,λ′(p

�
m ⊗ p�

m′)
]

= 2−(|λ|+|λ′|)β(m,λ),(m′,λ′). (39)

Herein, p�
m, p�

m′ denote the bilinear polynomials on � defined by (8).

Lemma 9.5. Let the kernel k(x, y) be analytically standard of order 2q and assume that
dist(Γλ,Γλ′) & 2−min{|λ|,|λ′|}. Then, the application of the quadrature formula Q�×�

g,g′ (35)
to the integral (39) yields the error estimate

∣∣R�×�
g,g′

[
kλ,λ′(p

�
m ⊗ p�

m′)
]∣∣ .

(
2−|λ|

4r

)2g
2−2|λ|′−|λ|

dist(Γλ,Γλ′)1+2q+2g

+

(
2−|λ

′|

4r

)2g′
2−2|λ|−|λ|′

dist(Γλ,Γλ′)1+2q+2g′
. (40)

Proof. The (2g)-th partial derivative of kλ,λ′(s, t)p
�
m(s)p�

m′(t) with respect to sn, n = 1, 2,
is given by

∂2g
sn

[
kλ,λ′(s, t)p

�
m(s)p�

m′(t)
]

= ∂2g
snkλ,λ′(s, t)p

�
m(s)p�

m′(t)

+ ∂2g−1
sn kλ,λ′(s, t)∂snp

�
m(s)p�

m′(t).
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Obviously, there holds
∣∣p�
m(s)p�

m′(t)
∣∣ ≤ 1 and

∣∣∂p�
m(s)
∂sn

p�
m′(t)

∣∣ ≤ 1 for all s, t ∈ � and
1 ≤ m,m′ ≤ 4, cf. (8). Therefore, according to (38) we find the bound

max
s,t∈�

∣∣∂2g
sn

[
kλ,λ′(s, t)p

�
m(s)p�

m′(t)
]

. 2−2g|λ| (2g)!

r2g

2−2|λ′|−|λ|

dist(Γλ,Γλ′)1+2q+2g
·
[

2−|λ|

dist(Γλ,Γλ′)
+

r

2g

]
︸ ︷︷ ︸

.1 since dist(Γλ,Γλ′ )&2−min{|λ|,|λ′|}

. 2−2g|λ| (2g)!

r2g

2−2|λ′|−|λ|

dist(Γλ,Γλ′)1+2q+2g
.

Analogously one gets the corresponding result for the derivatives with respect to t1 and t2.
Hence, (40) is valid according to Lemma 9.2.

We now can formulate the following proposition which is an immediate consequence of
the Lemmata 9.4 and 9.5.

Proposition 9.6. Let the kernel k(x, y) be analytically standard of order 2q and ε denote
a given precision. Consider two elements Γλ and Γλ′ which satisfy the distance criterion

dist(Γλ,Γλ′) ≥ 2−min{|λ|,|λ′|}s, s >
1

4r
. (41)

Choosing the degrees of quadrature

g =
⌈
− 1

2
· |λ|+|λ

′|+log2(ε)+(2+2q) log2(dist(Γλ,Γλ′ ))
|λ|+2+log2 r+log2(dist(Γλ,Γλ′ ))

⌉
,

g′ =
⌈
− 1

2
· |λ|+|λ

′|+log2(ε)+(2+2q) log2(dist(Γλ,Γλ′ ))
λ′|+2+log2 r+log2(dist(Γλ,Γλ′ ))

⌉
,

(42)

in the case of piecewise constant wavelets and

g =
⌈
− 1

2
· |λ

′|+log2 ε+(1+2q) log2(dist(Γλ,Γλ′ ))
|λ|+2+log2 r+log2(dist(Γλ,Γλ′ ))

⌉
,

g′ =
⌈
− 1

2
· |λ| +log2 ε+(1+2q) log2(dist(Γλ,Γλ′ ))

|λ′|+2+log2 r+log2(dist(Γλ,Γλ′ ))

⌉
,

(43)

in the case of piecewise linear wavelets, the Gauß-Legendre quadrature formula Q�×�
g,g′ (35)

computes the element-element interaction αλ,λ′ or β(m,λ),(m′,λ′) with precision ∼ ε.

Notice that the error of quadrature does not tend to zero when increasing g and g′ if
the elements violate the distance criterion (41). For such integrals we propose an adaptive
quadrature strategy in the next subsection.

A special situation occurs if |λ| = |λ′| and Γλ ∩ Γλ′ 6= ∅, i.e., if both elements are
identical or share a common edge or vertex. Then, the domain of integration contains the
singularity. We utilize the Duffy trick to transform the singular integrands on nonsingular
ones, cf. [15, 27, 28]. It turns out, that the error of quadrature behaves like in (37) and (40),
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respectively, with dist(Γλ,Γλ′) := 2−|λ|. Consequently, we have to subdivide the domain of
integration [0, 1]4 into 16m same sized cubes. Herein, m denotes the nonnegative integer
m := max{0, dlog2 se} with s from (41). After rescaling the domains of integration to
[0, 1]4, the application of the quadrature formula Q�×�

g,g′ with

g = g′ =
⌈
q|λ|−(log2 ε)/2
2+m+log2 r

⌉
. (44)

yields a quadrature error . ε. We like to mention that we are allowed to choose s = 1 if
r > 1/4. Then, no subdivision (m = 0) is required and the degrees of quadrature coincide
with those of (42) and (43) when setting dist(Γλ,Γλ′) = 2−|λ|.

9.3 An adaptive quadrature strategy

We are now in the position to formulate the adaptive algorithm. It is defined recursively
and stops after a finite number of steps. The algorithm performs the computation of
a the element-element interaction of Γλ with Γλ′ with the precision ε. Without loss of
generality we assume |λ| ≥ |λ′|. An example of the subdivision of the elements is depicted
in Figure 5. Note that, when we compute a desired element-element interaction by the
recycling formulas, the quadrature error appears four times. Therefore, observing the
weight factors of the element-element interactions, the precision of quadrature has to be
increased to ε/2 to claim the precision ε.

1. Starting point. If the elements Γλ and Γλ′ violate the distance criterion (41) then
goto item 2 if |λ| > |λ′| and goto item 3 if |λ| = |λ′|. Otherwise apply the product
Gauß-Legendre quadrature formula Q�×�

g,g′ choosing g and g′ as in proposition 9.6.

2. Case |λ| > |λ′|. Replace the larger element Γλ by its four sons and compute the
associated element-element interactions with precision ε/2 according to item 1 . The
desired element-element interaction is calculated via the recycling formulas.

3. Case |λ| > |λ′|. If the domain of integration contains the singularity then apply
the Duffy trick. Else, replace the element Γλ′ by its four sons and compute the
associated element-element interactions with precision ε/2 according to item 1 . The
desired element-element interaction is calculated via the recycling formulas.

Since the support of a wavelet on the level j os subdivided into finitely many elements
of the levels j and j + 1, it suffices to compute the element-element interactions of Γλ and
Γλ′ with the precision ε|λ|,|λ′| according to (3.3).

The recycling can be realized easily by inserting the line “return the previously com-
puted element-element interaction if it exists” in item 1 . According to

εj,j′ ≤ εj+1,j′ ≤ εj+1,j′+1, j0 − 1 ≤ j ≤ j′ < J − 1,

cf. (16), this requires the element-element interactions computed successively by starting
on the coarse grid.
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Γλ

Figure 5: This subdivision of the elements Γλ and Γλ′ results if s = 3/2.

The next theorem proves in combination with Theorem 3.2 that the proposed quadra-
ture strategy computes in fact the compressed system matrix in linear complexity. This is
achieved even without the recycling of previously computed element-element interactions.
But we emphasize that the recycling accelerates the computation of the system matrix
enormously.

Theorem 9.7. Exploiting the adaptive quadrature algorithm introduced above, the com-
putation of the element-element interactions αλ,λ′ and β(m,λ),(m′,λ′) with the precision εj,j′

given by (16) requires O
([
J + 1− |λ|+|λ′|

2

]4)
operations.

Proof. i. Due to (13) we find d′−q
d̃+q

< 1. Consequently, εj,j′ can be estimated by

εj,j′ ∼ min
{

2−|j−j
′|, 2

−2(J− j+j′
2

) d
′−q
d̃+q

}
︸ ︷︷ ︸

≥2−2(J− j+j
′

2 )

22Jq2−2d′(J− j+j′
2

) ≥ 22Jq2−2(d′+1)(J− j+j′
2

).

Moreover, according to (35), the quadrature rule Q�×�
g,g′ applies (gg′)2 quadrature knots.

The evaluation of the recycling formulas scales linearly with the number of computed
element-element interactions. For the sake of simplicity, in the sequel we restrict ourselves
to piecewise constant wavelets. The desired result for the piecewise linear wavelets is
confirmed in complete analogy.

ii. First, we consider the case that the associated elements Γλ and Γλ′ satisfy the
distance criterion (41). Without loss of generality we assume |λ′| ≥ |λ| which implies
dist(Γλ,Γλ′) ≥ 2−|λ|s and g ≥ g′. In particular, we have

|λ|+ 2 + log2 r + log2

(
dist(Γλ,Γλ′)

)
≥ |λ|+ 2 + log2 r + log2(2

−|λ|s) =: cs > 0.

Inserting this inequaliy into (42) yields

g′ ≤ g ∼ −1
2
· |λ|+|λ

′|+log2(ε|λ|,|λ′|)+(2+2q) log2(dist(Γλ,Γλ′ ))

|λ|+2+log2 r+log2(dist(Γλ,Γλ′ ))

≤ − 1
2cs

[
|λ|+ |λ′|+ log2(ε|λ|,|λ′|) + (2 + 2q) log2(2

−|λ|s)
]

≤ 1
2cs

[
|λ| − |λ′| − 2q(J − |λ|) + (2d′ + 1)

(
J − |λ|+|λ|′

2

)
+ (2 + 2q) log2(1/s)

]
.
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Due to

|λ| − |λ′| − 2q(J − |λ|) ≤

{
−2q

(
J − |λ|+|λ|′

2

)
, if q ≥ −1,

−4q
(
J − |λ|+|λ|′

2

)
, otherwise,

we conclude g′ ≤ g . J + 1− |λ|+|λ|′
2

. This proves the assertion due to item i .
iii. Next, we treat the case that |λ| = |λ′| and Γλ ∩ Γλ′ 6= ∅, i.e. the Duffy trick is

applied. We have to compute 16m, m = max{0, dlog2 se}, integrals with the degree of
quadrature given by (44). We find 2 +m+ log2 r ≥ cs which implies

g = g′ ∼ q|λ|−(log2 ε|λ|,|λ′|)/2

2+m+log2 r
≤ 1

cs

[
q|λ| − Jq + (d′ + 1)

(
J − |λ|+|λ′|

2

)]
= d′+1−q

cs

(
J − |λ|+|λ′|

2

)
. J − |λ|+|λ′|

2
.

In fact, the complexity is O
([
J + 1− |λ|+|λ′|

2

]4)
since m ∼ 1 independently of |λ| and J .

iv. We consider again |λ| = |λ′| and two disjoint elements Γλ and Γλ′ which violate the
distance criterion (41). Since the mesh is quasi uniform, a constant cΓ > 0 exists such that
dist(Γλ,Γλ′) ≥ 2−|λ|cΓ for all pairs of elements with Γλ ∩ Γλ′ = ∅. Herein, cΓ depends only
on the manifold and its parametrization but not on |λ| or J . The algorithm subdivides
the desired element-element interaction in at most 16m element-element interactions αλ̂,λ̂′ ,

with |λ̂| = |λ̂′| = |λ| +m and m = max{0, dlog2(s/cΓ)e}. Thereby, the precision ε|λ|,|λ|′ is
increased to 2−2mε|λ|,|λ|′ . Due to

|λ|+m+ 2 + log2 r + log2

(
dist(Γλ̂,Γλ̂′)︸ ︷︷ ︸

≥dist(Γλ,Γλ′ )≥2−|λ|cΓ

)
≥ cs

the degrees of quadrature are estimated by

g = g′ ∼ −1
2
· |λ|+|λ

′|+2m+log2(2−2mε|λ|,|λ′|)+(2+2q) log2(dist(Γ
λ̂
,Γ
λ̂′ ))

|λ|+m+2+log2 r+log2(dist(Γ
λ̂
,Γ
λ̂′ ))

− 1
2cΓ

[
|λ|+ |λ′|+ log2(ε|λ|,|λ′|) + (2 + 2q) log2(2

−|λ|cΓ)
]

. J + 1− |λ|+|λ′|
2

analogously to item ii . Again, the complexity is O
([
J − |λ|+|λ|′

2

]4)
since m ∼ 1 indepen-

dently of |λ| and J .
v. Finally, we consider the case of two elements Γλ and Γλ′ , |λ′| 6= |λ|, violating the

distance criterion (41). Without loss of generality we assume |λ′| > |λ|. Moreover, we

make use of the following observation. Due to diam(Γλ̂) ∼ 2−|̂λ|, for a fixed level |λ̂| ≤ |λ′|,
only O(s2) elements Γλ̂ are found with dist(Γλ̂,Γλ) < s2−|̂λ|. Consequently, our algorithm

subdivides for all |λ| < |λ̂| ≤ |λ′| only O(s2) element-element interactions while O(s2)
element-element interactions are evaluated since they satisfy the distance criterion.

Thus, on the level |λ̂|, we compute O(s2) element-element interactions satisfying

dist(Γλ̂,Γλ′) ≥ 2−|λ̂|s = 2−|λ|2|λ|−|λ̂|s,
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with the precision 2|λ|−|λ̂|ε|λ|,|λ′|. The degree of quadrature for the element larger element
is bounded by

g ∼ −1
2
· |λ̂|+|λ

′|+log2(2|λ|−|λ̂|ε|λ|,|λ′|)+(2+2q) log2(dist(Γ
λ̂
,Γλ′ ))

|λ̂|+2+log2 r+log2(dist(Γ
λ̂
,Γλ′ ))

≤ − 1
2cs

{[
|λ|+ |λ′|+ log2(ε|λ|,|λ′|) + (2 + 2q) log2(2

−|λ|s)
]
+ (2 + 2q)(|λ| − |λ̂|)}

Herein, the first term is bounded by

− 1
2cs

[
|λ|+ |λ′|+ log2(ε|λ|,|λ′|) + (2 + 2q) log2(2

−|λ|s)
]

. J − |λ|+|λ′|
2

according to item ii while the second term satisfies

1 + q

cs
(|λ̂| − |λ|) ≤

{
2+2q
cs

(J − |λ|−|λ′|
2

), if q ≥ −1,

0, otherwise,

This implies g . J + 1− |λ|−|λ′|
2

and

g′ ∼ −1
2
· |λ̂|+|λ

′|+log2(2|λ|−|λ̂|ε|λ|,|λ′|)+(2+2q) log2(dist(Γ
λ̂
,Γλ′ ))

|λ|′+2+log2 r+log2(dist(Γ
λ̂
,Γλ′ ))

= −1
2
· |λ̂|+|λ

′|+log2(2|λ|−|λ̂|ε|λ|,|λ′|)+(2+2q) log2(dist(Γ
λ̂
,Γλ′ ))

[|λ′|−|λ̂|]+[|λ̂|+2+log2 r+log2(dist(Γ
λ̂
,Γλ′ ))]

. 1

|λ′|−|λ̂|+cs

(
J + 1− |λ|+|λ′|

2

)
.

Consequently, O
(

1

(|λ′|−|λ̂|+cs)2
[
J − |λ|+|λ′|

2

]4)
quadrature knots are applied. Now, we sum

over ĵ with j := |λ| < ĵ ≤ |λ′| =: j′ and obtain

j′∑
ĵ=j+1

1

(j′ − ĵ + cs)2
<

∞∑
ĵ=0

1

(ĵ + cs)2
<

1

c2s
+

∞∑
ĵ=1

1

ĵ2
=

1

c2s
+
π2

6
. 1.

Consequently, we find the complextity O
([
J + 1 − |λ|+|λ′|

2

]4)
of computing all element-

element interactions αλ̂,λ′ with |λ̂| ≥ |λ′|.
The complexity of computing the remaining O(s2) element-element interactions αλ̂,λ′ ,

|λ̂| = |λ′|, with the precision 2|λ|−|λ
′|ε|λ|,|λ′| ≥ 2−2(J− |λ|+|λ′|

2
)ε|λ|,|λ′| is also O

([
J+1− |λ|+|λ′|

2

]4)
which is verified analogously to the items iii and iv . This finishes the proof.

10 Numerical results

In order to demonstrate the efficiency of our method we present in this section some
numerical results. We choose our problem such that the solution is known analytically.
We consider the Laplace equation

∆u = 0 inΩ
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where we choose Ω as the gearwheel presented in Figure 1. Choosing the Dirichlet data
f := u

∣∣
Γ

or Neumann data g := ∂u/partialn of the harmonical function u(x) = 〈x, b〉/‖x‖3,
x 6∈ Ω, then u is the unique solution (modulo some constant in the case of the Neumann
problem) of the interior Dirichlet and Neumann problem, respectively.

We solve these both, the interior Dirichlet and Neumann problem, by the indirect
approach using the single layer operator

V : H−1/2(Γ) → H1/2(Γ), (V ρ)(x) =

∫
Γ

1

‖x− y‖
ρ(y)dσy,

the double layer operator K and its adjoint K?

K : L2(Γ) → L2(Γ), (Kρ)(x) =

∫
Γ

∂

∂ny

1

‖x− y‖
ρ(y)dσy,

K? : L2(Γ) → L2(Γ), (K?ρ)(x) =

∫
Γ

∂

∂nx

1

‖x− y‖
ρ(y)dσy,

as well as the hypersingular operator

W : H+1/2(Γ) → H−1/2(Γ), (Wρ)(x) = − ∂

∂nx

∫
Γ

∂

∂ny

1

‖x− y‖
ρ(y)dσy.

The indirect method yields a density ρ living on the boundary Γ which leads to the solution
u(x) by potential evaluation. More precisely, the Dirichlet problem we derive the Fredholm
integral equations of the first kind

V ρ = f on Γ, u(x) = (V ρ)(x) in Ω, (45)

and of the second kind

(K − 1
2
)ρ = f on Γ, u(x) = (Kρ)(x) in Ω. (46)

The Neumann problem is solved via the Fredholm integral equations of the first kind

Wρ = g on Γ, u(x) = (Kρ)(x) in Ω, (47)

and of the second kind

(K? + 1
2
)ρ = g on Γ, u(x) = (V ρ)(x) in Ω. (48)

We solve all these integral equations using piecewise constant and bilinear wavelets. Equa-
tions (45), (46), and (48) are discretized by by piecewise constant wavelets with three
vanishing moments as well as piecewise bilinear wavelets with double nodes along the
interfaces and four vanishing moments. The discretization of (47) requires globally contin-
uous piecewise bilinear wavelet bases since the energy space of the hypersingular operator
is H1/2(Γ). It suffices that these wavelets provide two vanishes moments.
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Problem J NJ ‖u− uJ‖∞ cpu-time (sec.) density (%)
Equation (45) 1 1344 5.94e-1 10 15
discretized by 2 5376 4.94e-2 (12) 27 4.7

piecewise constant 3 21504 2.62e-2 (1.9) 308 1.7
wavelets 4 86016 5.25e-3 (5.0) 2339 0.55

Equation (46) 1 1344 2.89 3 15
discretized by 2 5376 1.43e-1 (20) 26 3.8

piecewise constant 3 21504 4.37e-2 (3.3) 257 1.3
wavelets 4 86016 1.15e-2 (3.8) 1610 0.37

Equation (45) 1 3024 1.44e-2 35 100
discretized by 2 8400 7.34e-3 (2.0) 111 16

piecewise bilinear 3 27216 3.72e-3 (2.0) 1366 4.1
wavelets 4 97104 8.61e-5 (43) 12185 1.3

Equation (46) 1 3024 3.42e-1 27 100
discretized by 2 8400 1.35e-1 (2.5) 105 16

piecewise bilinear 3 27216 1.70e-2 (7.9) 1424 3.5
wavelets 4 97104 1.71e-3 (9.9) 12992 0.95

Table 1: Numerical results for the Dirichlet problem.

Problem J NJ ‖u− uJ‖∞ cpu-time (sec.) density (%)
Equation (48) 1 1344 6.25e-1 3 15
discretized by 2 5376 5.99e-1 (1.0) 26 3.8

piecewise constant 3 21504 7.18e-2 (8.3) 257 1.3
wavelets 4 86016 2.78e-2 (2.6) 1610 0.37

Equation (47) 1 1344 7.89e-1 19 100
discretized by 2 5376 5.08e-1 (1.6) 469 18

piecewise bilinear 3 21504 3.62e-2 (14) 3137 5.1
wavelets 4 86016 6.13e-3 (5.9) 16247 1.4

Equation (48) 1 3024 6.44e-1 27 100
discretized by 2 8400 2.44e-1 (2.6) 105 16

piecewise bilinear 3 27216 7.50e-3 (33) 1424 3.5
wavelets 4 97104 6.46e-3 (1.2) 12992 0.95

Table 2: Numerical results for the Neumann problem.
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Figure 6: The evaluation points of the solution.

The approximate solution uJ is computed in a lot of points xi distributed in the interior
of the gearwheel as shown in Figure 6. Depending on the approximation order d and the
operator order 2q, the optimal order of convergence of the maximum norm of the absolute
errors u(xi) − uJ(xi) is given by ‖u − uJ‖∞ . 2−2J(d−q) if the density ρ is sufficiently
smooth, cf. [32]. We mention that this order cannot be expected due to reentrant edges of
our geometry.

We perform the computation by a standard personal computer with 1 Gigabyte main
memory. In the Tables 1 and 2 we tabulated the results for the Dirichlet and the Neumann
problem, respectively. The cpu-time refers to the computation of the approximate density,
i.e. assembling and solving the linear system of equations. The number of nonzero coeffi-
cients of the system matrix (density) is given in percent. The density versus the number of
unknowns is visualized in Figure 7. One figures out that the number of nonzero coefficients
tends in fact to a linear scaling (dashed line). In Figure 8 we plot the absolute error versus
the cpu-time. In the case of the Dirichlet problem (left plot), one observes that the single
layer operator yields the best performance. In the case of the Neumann problem (right
plot), the adjoint of the double layer operator discretized by piecewise bilinears is the best
choice. We emphasize that only two levels are computable by the traditional Galerkin
scheme. Its accuracy is nearly identical to that of the wavelet Galerkin scheme.
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